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Abstract

We study random mechanism design in an environment where the set of alternatives has a Cartesian prod-
uct structure. We first show that all generalized random dictatorships are sd-strategy-proof on a minimally 
rich domain if and only if all preferences are top-separable. We call a domain satisfying top-separability a 
multidimensional domain, and furthermore generalize the notion of connectedness (Monjardet, 2009) to a 
broad class of multidimensional domains: connected+ domains. We show that in the class of minimally rich 
and connected+ domains, the multidimensional single-peakedness restriction is necessary and sufficient for 
the design of a flexible random social choice function that is unanimous and sd-strategy-proof. Such a flex-
ible random social choice function allows for a systematic notion of compromise. We prove an analogous 
result for deterministic social choice functions satisfying anonymity. Our characterization remains valid for 
a problem of voting under constraints where not all alternatives are feasible (Barberà et al., 1997).
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Multidimensional models arise very naturally in economic environments as it is often the case 
that the object of choice consists of several attributes or components (commodities in consumer 
theory, positions in political economy, different levels of provision of public goods, etc), with no 
dependence across choices in different components.1 The set of alternatives thus has the struc-
ture of a Cartesian product set, i.e., A = ×s∈MAs , where M collects all components, s ∈ M is 
a component, and As is the corresponding component set.2 The underlying Cartesian product 
structure on the set of alternatives allows for a richer description of available alternatives and 
introduces furthermore the possibility of defining domains of restricted preferences which take 
cognizance of the multidimensional structure, and allow positive results for aggregation and eco-
nomic design. We explore the theoretical underpinnings of such multidimensional preference 
domains from the perspective of mechanism design. We first identify that a particular condition, 
top-separability (introduced by Le Breton and Weymark, 1999), is fundamental in formulating 
multidimensional preferences that admit new possibilities for mechanism design.3 Our principal 
finding is that within the class of top-separable preferences, multidimensional single-peaked do-
mains (introduced by Barberà et al., 1993), a particular generalization of single-peakedness to a 
multidimensional setting, emerge as the unique preference domains that allow for the design of 
attractive random mechanisms. Thus the notion of single-peakedness, which is well-studied and 
prominent in aggregation theory, voting theory and political economy, turns out to be a particu-
larly distinguished one in the context of multidimensional random mechanism design.

We focus on probabilistic mechanisms in multidimensional settings in the absence of mone-
tary transfers where the set of alternatives is assumed to be finite.4 We impose a strong version of 
the incentive compatibility requirement by requiring that truth-telling first-order stochastically 
dominate every possible manipulation of preferences. We thus study Random Social Choice 
Functions (RSCFs) that satisfy the ordinal version of strategy-proofness formulated by Gibbard 
(1977), which we henceforth term sd-strategy-proofness.5 We also impose the mild condition 
that the RSCFs satisfy unanimity, which says that if an alternative is top ranked for every agent 
at a preference profile, then it receives probability one under the RSCFs at that profile.

1 See for instance, legislative, political and club-member elections (e.g., Border and Jordan, 1983; Barberà et al., 1991, 
1993, 1999, 2005; Le Breton and Sen, 1999; Le Breton and Weymark, 1999; Aswal et al., 2003; Bahel and Sprumont, 
2018) and public goods location and provision problems (e.g., Zhou, 1991; Peters et al., 1992; Chichilnisky and Heal, 
1997; Ehlers, 2002; Svensson and Torstensson, 2008; Reffgen and Svensson, 2012).

2 We pick an element in each component set, and assemble the selected elements to form an alternative.
3 In a top-separable preference, when we compare two alternatives which disagree on exactly one component, the 

alternative that inherits the element from the top ranked alternative in that disagreed component is always preferred. 
Throughout the paper, the term multidimensional preference refers to a preference satisfying top-separability (and possi-
bly some other restrictions).

4 We focus on the classic voting model which we hope will be useful in formulating more general models where 
some of the dimensions include private goods or monetary transfers. Recent work (e.g., Morimoto and Serizawa, 2015; 
Kazumura et al., 2017) studies formulations with monetary transfers under non-quasi-linear preferences.

5 This is equivalent to requiring that the expected utility of truth-telling be at least as large as the expected utility of 
manipulating, for every possible utility representation of the primitive ordinal preference.
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An important class of RSCFs is the class of random dictatorships. These are defined by fixing 
a probability distribution over agents; the probability assigned to an alternative at a preference 
profile is then the sum of the weights of the agents who have this particular alternative as their top 
ranked alternative. Random dictatorships are sd-strategy-proof and ex-post efficient (a strength-
ening of unanimity), and allow for a equitable distribution of power among agents which is 
precluded by a deterministic dictatorship. These are however not entirely satisfactory from the 
design point of view as they lack flexibility; indeed any alternative that is not top ranked for some 
agent at the profile in question can never get strictly positive probability. In particular, such an 
alternative may be second ranked for all agents in a profile where agents disagree on peaks; we 
refer to such an alternative as a compromise alternative, and suggest that it is desirable to design 
RSCFs that have the flexibility to give positive probability to such an alternative.6

Under a Cartesian product structure, random dictatorships can be naturally generalized to 
accord with the multidimensional setting in the following way. Instead of fixing a probability 
distribution over agents, we fix a probability on each voter sequences, which is an |M|-tuple 
of agents, and associates each component with an agent who can be viewed as the dictator of 
that component (note that one agent can be associated to multiple components). At a preference 
profile, according to one voter sequence, we can assemble a unique alternative whose kth com-
ponent is the kth component of the corresponding component dictator’s preference peak. The 
probability assigned to an alternative at a preference profile is then the sum of the weights of 
the voter sequences which can assemble this alternative. These random mechanisms are called 
generalized random dictatorships, and were introduced by Chatterji et al. (2012). Generalized 
random dictatorships recognize the Cartesian product structure and allow for greater flexibility 
than do random dictatorships as at some preference profiles: Some non-peak alternatives can be 
assembled and receive strictly positive probability. In contrast to random dictatorships, certain 
preference restrictions must however be imposed to ensure sd-strategy-proofness of a generalized 
random dictatorship. We show in Proposition 1 that top-separability is necessary and sufficient 
for sd-strategy-proofness of all generalized random dictatorships. However, due to the somewhat 
limited assembling capability of voter sequences, generalized random dictatorships sometimes 
ignore compromise alternatives.

This paper examines restricted domains of multidimensional preferences that allow us to con-
struct sd-strategy-proof RSCFs which are flexible in that they systematically admit compromise. 
The preference domains we study satisfy a particular “richness” property that is based on the idea 
of connectedness initially proposed by Grandmont (1978) and Monjardet (2009), and has been 
recently adopted to explore various issues which include the equivalence of local sd-strategy-
proofness and sd-strategy-proofness (e.g., Carroll, 2012; Sato, 2013; Cho, 2016; Mishra, 2016), 
the extent to which RSCFs can depend on agents’ preferences (Chatterji and Zeng, 2018), and 
the characterization of preference restrictions that allow one to design attractive RSCFs (Chatterji 
et al., 2016). The notion of connectedness requires that one be able to reconcile the differences 
between two preferences via a sequence of preferences in the domain where each successive 
pair involves one “local switch” of two contiguously ranked alternatives. This richness condition 

6 Gibbard (1977) proved that on the domain of unrestricted preferences, the only sd-strategy-proof and unanimous 
RSCFs are random dictatorships. Recent literature has examined restricted preference domains where one may design 
more flexible RSCFs that are sd-strategy-proof and unanimous. See for instance, almost random dictatorships (Chatterji 
et al., 2014), fixed probabilistic ballots rules (Ehlers et al., 2002) and probabilistic generalized median voter schemes 
(Peters et al., 2014).
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restricts the probabilities received by alternatives that do not switch across two successive pref-
erences, and plays a fundamental methodological role in deriving the results mentioned above.

This notion of connectedness however does not apply to domains of multidimensional pref-
erences, e.g., the top-separable domain, as it is often the case that multiple pairs of alternatives 
have to be switched simultaneously across two successive preferences. We introduce a new no-
tion of a connectedness which permits the requisite simultaneous local switches, and allows us 
to investigate systematically domains of multidimensional preferences that permit the design of 
nice sd-strategy-proof RSCFs. The domains we consider are termed connected+ domains; these 
are subsets of the top-separable domain, and include the well studied instances of separable 
preferences (Barberà et al., 1991; Le Breton and Sen, 1999), multidimensional single-peaked 
preferences (Barberà et al., 1993), and their intersection and unions. Connected+ domains also 
possess the requisite generality and structure that would in principle allow one to investigate 
other issues being studied in the literature (like the equivalence of local sd-strategy-proofness 
and sd-strategy-proofness, etc, alluded to above), and can presumably be exploited beyond this 
paper.

In the class of connected+ domains, multidimensional single-peaked domains are an impor-
tant and well studied class. These are a particular generalization of the idea of single-peaked 
preferences to a multidimensional setting using the Cartesian product structure and the city 
block metric. Our first theorem characterizes multidimensional single-peaked domains as the 
unique domains that permit the design of sd-strategy-proof and unanimous RSCFs departing 
from random dictatorships/generalized random dictatorships systematically, in that they admit 
compromises, wherein the compromise alternatives necessarily receive strictly positive proba-
bilities whenever they appear (see Theorem 1). Our version of multidimensional single-peaked 
domains allows elements of each component set to be arranged on a tree which is a general-
ization of multidimensional single-peakedness initiated by Barberà et al. (1993).7 In the special 
case where the connected+ domain contains two complete reversal preferences, we refine the 
domain characterization to the more familiar formulation of Barberà et al. (1993). We next pro-
vide a characterization result for multidimensional single-peaked domains using deterministic 
social choice functions (see Theorem 2). We do so by replacing the compromise property by the 
familiar axiom of anonymity.8

We finally turn to the setup of voting under constraints originally proposed by Barberà et al. 
(1997). Here, not all alternatives in the underlying Cartesian product structure are feasible. We 
investigate what structure on the set of feasible alternatives and preferences (applicable now only 
to the restriction of the original preferences to the feasible alternatives) would allow us to define 
RSCFs which satisfy our requirements of unanimity, sd-strategy-proofness and compromise on 
connected+ domains. We deduce that the set of feasible alternatives must be factorizable as a 
Cartesian product of trees, and the preferences must satisfy a particular version of multidimen-
sional single-peakedness w.r.t. the feasible alternatives (see Theorem 3). Our results are therefore 
robust to voting under constraints.

The rest of the paper is organized as follows. The remainder of the Introduction explains in 
greater detail the relation of this paper to the literature. Section 2 describes the model, introduces 
generalized random dictatorships, establishes the domain richness condition, and specifies the 
formal notion of compromise. Section 3 presents the domain characterization results for multidi-

7 In the formulation of multidimensional single-peakedness of Barberà et al. (1993), all elements of each component 
set are located on a line.

8 Anonymity implies that the social outcome is immune to the identities of agents.
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mensional single-peaked preferences, while Section 4 concludes. The Appendix gathers proofs, 
examples and verifications that are not included in the main text.

1.1. Related literature

Much of the literature on multidimensional models has focused on deterministic social choice 
functions (DSCFs). The early literature proved impossibility results for various generalizations 
of single-peakedness to cases where the set of alternatives is a convex subset of R|M| (e.g., 
Border and Jordan, 1983; Bordes et al., 1990; Zhou, 1991; Peters et al., 1992). The case of sep-
arable/top-separable preferences over a convex subset of alternatives was analyzed by Le Breton 
and Weymark (1999) while general results on formulations where the set of alternatives is a 
subset of a metric space were presented by Weymark (2008). Barberà et al. (1991) provided a 
possibility result for voting by committees when the number of elements in each component set 
is two, while in the general case of finitely many elements in each component set studied by Le 
Breton and Sen (1999), sd-strategy-proof DSCFs degenerate to generalized dictatorships which 
are the deterministic counterparts of generalized random dictatorships. Positive characterization 
results for generalized median voter schemes have been introduced by Barberà et al. (1993) who 
proposed the restriction of multidimensional single-peakedness, and by Barberà et al. (1997) who 
introduced the intersection property on generalized median voter schemes to accord with voting 
under constraints. Two comprehensive surveys of these results are provided by Sprumont (1995)
and Barberà (2010). Besides the characterizations of sd-strategy-proof DSCFs on multidimen-
sional domains, several papers also verify the necessity of separable preferences (see Hatsumi 
et al., 2014), and variants of multidimensional single-peaked preferences for the existence of 
particular sd-strategy-proof generalized median voter schemes (e.g., Barberà et al., 1993, 1999) 
or general sd-strategy-proof DSCFs satisfying different well-behavedness criteria (e.g., neutral-
ity and anonymity in Nehring and Puppe, 2007, and the tops-only property and anonymity in 
Chatterji and Massó, 2018).9

The literature on random mechanism design on restricted domains arising from multidimen-
sional models is not as large. An early paper by Dutta et al. (2002) studied lotteries defined 
on a convex subset of R|M| where preferences are convex, continuous and single-peaked, and 
established a random dictatorship result. Subsequently, Chatterji et al. (2012) characterized gen-
eralized random dictatorships on the lexicographically separable domain, which is a particular 
subset of the separable domain, while Chatterji and Zeng (2018) characterize random dictator-
ships using sd-strategy-proofness and ex-post efficiency on the multidimensional single-peaked 
domain. A more directly related to this paper is the paper by Chatterji et al. (2016) which charac-
terized single-peaked preferences on a tree in a class of connected domains. The characterization 
of the multidimensional single-peaked domain in this paper differs from their result in two im-
portant ways. First, Chatterji et al. (2016) used an extra tops-only axiom on the RSCFs, and 
secondly, as mentioned earlier, their connectedness assumption excludes the multidimensional 
domains studied in this paper. In the present paper, the tops-only property emerges endogenously
(Proposition 2) from our richness condition. Our richness condition is a strengthening of the 
“Interior and Exterior” properties of Chatterji and Zeng (2018) that was shown to induce the 
tops-only property. Their results do not apply for the connected+ domains in this paper. We 

9 Neutrality implies that the social outcome is immune to relabelings of alternatives. The tops-only property implies 
that across two preference profiles, if each agent has the same preference peak, the social outcomes remain unchanged.
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extend their tops-only result to our setting by postulating the existence of sufficiently many sepa-
rable preferences that allow the sort of multiple switches of alternatives we alluded to earlier. This 
strengthening is critical for establishing that the alternatives in the Cartesian product structure can 
be embedded in a product of trees, and that preferences be multidimensional single-peaked (as 
stated in Theorem 1). Similarly, our characterization result for multidimensional single-peaked 
domains using deterministic social choice functions extends the analysis of Chatterji et al. (2013)
to multidimensional domains (which were excluded by their hypothesis of connected domains), 
and does so by endogenizing the tops-only property (which was an exogenous axiom in their pa-
per). For the set up of voting under constraints, Barberà et al. (1997) characterized all unanimous 
and sd-strategy-proof DSCFs on the multidimensional single-peaked domain for arbitrary feasi-
ble sets. We investigate and provide an answer to the converse question: What can be inferred 
about the structure of the set of the feasible alternatives and the preferences from the existence of 
a well-behaved sd-strategy-proof RSCF satisfying the property of compromise on a connected+

domain?

2. Model

Let A be a finite set of alternatives with |A| ≥ 4. We assume that the alternative set can be rep-
resented as a Cartesian product of a finite number of sets, each of which contains finitely many 
elements. Formally, throughout the paper, we fix A = ×s∈MAs where M = {1, 2, . . . , m}, m ≥ 2
is an integer; and |As | ≥ 2 is an integer for each s ∈ M .10 Each s ∈ M is called a component; 
As is referred to as a component set, and an element in As is denoted as as . Accordingly, an 
alternative is represented by a m-tuple, i.e., a ≡ (a1, a2, . . . , am) ≡ (as)s∈M . Given a nonempty 
strict subset S ⊂ M , let AS = ×s∈SAs , aS ≡ (as)s∈S ∈ AS ; A−S ≡ ×s /∈SAs and a−S ≡ (as)s /∈S ∈
A−S .11 Therefore, we also write alternative a ≡ (as, a−s) ≡ (aS, a−S). In particular, we say that 
a pair of alternatives a, b ∈ A is similar if they disagree on exactly one component, i.e., as �= bs

and a−s = b−s for some s ∈ M . For notational convenience, given a non-empty strict subset 
S ⊂ M , XS ⊆ AS and Y−S ⊆ A−S , let (XS, Y−S) = {a ∈ A : aS ∈ XS and a−S ∈ Y−S}.12 Let 
�(A) denote the space of lotteries/probability distributions over A. In particular, ea ∈ �(A) is a 
degenerate lottery where a is chosen with probability one.

Let I = {1, . . . , N} be a finite set of voters with N ≥ 2. Each voter i has a preference order 
Pi over A which is complete, antisymmetric and transitive, i.e., a linear order. For any a, b ∈ A, 
aPib is interpreted as “a is strictly preferred to b according to Pi”.13 Moreover, we use aP i!b to 
denote that a is contiguously ranked above b in Pi , i.e., aPib and there exists no c ∈ A such that 
aPic and cPib. Two preferences Pi, P ′

i are complete reversals if [aPib] ⇔ [bP ′
i a] for all a, b ∈

A. Given a preference Pi and a strict subset B ⊂ A, let Pi|B denote the induced preference over B
which preserves the relative rankings of all alternatives of B in preference Pi . Given a preference 
Pi , let rk(Pi) denote the kth ranked alternative in Pi , 1 ≤ k ≤ |A|. Let P denote the set containing 
all linear orders over A. The set of all admissible preferences is a set D ⊆ P , referred to as a
preference domain. We call P the complete domain, and refer to D as a restricted domain

10 To make sure all components indispensable, we assume |As | ≥ 2 for all s ∈ M .
11 In this paper, ⊆ and ⊂ denote the weak and strict inclusion relations respectively.
12 We henceforth frequently use (xs , A−s ) = {a ∈ A : as = xs } and (As , x−s ) = {a ∈ A : a−s = x−s }.
13 In a table, we specify a preference “vertically”, while in a sentence, we specify a preference “horizontally”. For 
instance, preference Pi : a⇀b⇀c⇀ · · · is one where a is at the top, b is the second best, c is the third ranked alternative 
while the remaining alternatives are arbitrarily ranked.
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when D �= P . For notational convenience, given a ∈ A, let Da = {Pi ∈ D : r1(Pi) = a} denote a 
subdomain where each preference’s peak is a. Correspondingly, a domain D is minimally rich if 
Da �= ∅ for every a ∈ A. Throughout the paper, we restrict attention to minimally rich domains.

Each voter reports a preference, and all reported preferences are collected to formulate a pref-
erence profile P ≡ (P1, P2, . . . , PN) ≡ (Pi, P−i ) ∈ DN . A Random Social Choice Function
(or RSCF) is a map ϕ : DN → �(A), which associates to each profile P ∈ DN , a “socially 
desirable” lottery ϕ(P ). For any alternative a ∈ A, ϕa(P ) is the probability with which a
will be chosen in ϕ(P ). Thus, ϕa(P ) ≥ 0 for all a ∈ A and 

∑
a∈A ϕa(P ) = 1. A Determin-

istic Social Choice Function (or DSCF) is a particular RSCF where a degenerate lottery is 
specified at each preference profile, i.e., ϕ(P ) = ea for some a ∈ A at profile P .14 First, an 
RSCF ϕ : DN → �(A) is unanimous if it assigns probability one to an alternative that is top 
ranked in a profile by all voters, i.e., [r1(Pi) = a for all i ∈ I ] ⇒ [ϕa(P ) = 1] for all a ∈ A and 
P ∈ DN . Next, an RSCF ϕ : DN → �(A) is sd-strategy-proof if for all i ∈ I , Pi, P ′

i ∈ D and 
P−i ∈ DN−1, the lottery ϕ(Pi, P−i ) first-order stochastically dominates ϕ(P ′

i , P−i ) according to 
Pi , i.e., 

∑t
k=1 ϕrk(Pi)(Pi, P−i ) ≥ ∑t

k=1 ϕrk(Pi)(P
′
i , P−i ) for all t = 1, . . . , |A|.15

A prominent class of unanimous and sd-strategy-proof RSCFs is the class of random dicta-
torships (Gibbard, 1977). Each voter first is assigned a non-negative weight such that the sum 
of all weights equals one. In a random dictatorship, at each preference profile, the probability 
received by an alternative is determined by the set of voters who prefer this alternative the most, 
and equals the sum of these voters’ weights. Formally, an RSCF ϕ : DN → �(A) is a random 
dictatorship if there exists εi ≥ 0 for each i ∈ I with 

∑
i∈I εi = 1 such that for all P ∈ DN and 

a ∈ A, ϕa(P ) = ∑
i∈I : r1(Pi )=a εi .16 Note that a random dictatorship is sd-strategy-proof on any 

arbitrary preference domain.

2.1. Generalized random dictatorships

Under the Cartesian product setting, one may consider the following generalization of a ran-
dom dictatorship. We associate each component s ∈ M with a voter is ∈ I , and construct an 
m-tuple of voters i = (is)s∈M ∈ Im to form a voter sequence. A voter sequence can be viewed 
as a combination of m dictators (note that one voter may appear multiple times); on each com-
ponent s ∈ M , voter is is the dictator over the component set As . Given a profile P ∈ DN , for 
notational convenience, assume r1(Pi) ≡ (xs

i )s∈M , i ∈ I . We say that an alternative a ≡ (as)s∈M

is assembled by a voter sequence i ≡ (is)s∈M at profile P if as = xs
is ≡ r1(Pis )

s for all s ∈ M . 
Analogously to random dictatorships, we associate a non-negative weight to each voter sequence 
i ∈ Im, denoted γ (i) ≥ 0, and let 

∑
i∈Im γ (i) = 1. Last, at each preference profile, the proba-

bility assigned to an alternative is determined by the set of voter sequences which can assemble 
this alternative. Such an RSCF is referred to as a generalized random dictatorship (Chatterji et 
al., 2012). Formally, an RSCF ϕ : DN → �(A) is a generalized random dictatorship if there 
exists γ (i) ≥ 0 for each i ∈ Im with 

∑
i∈Im γ (i) = 1 such that for all P ∈ DN and a ∈ A, 

14 We sometimes simply write a DSCF as f :DN → A.
15 To avoid confusion, we also use the term “sd-strategy-proofness” for DSCFs. One can easily infer that the definition 
of sd-strategy-proofness for a DSCF f : DN → A degenerates to that for all i ∈ I , Pi, P ′

i
∈ D and P−i ∈ DN−1, we 

have f (Pi , P−i ) = f (P ′
i
, P−i ) or f (Pi , P−i )Pif (P ′

i
, P−i ). Note that a mixture (equivalently, a convex combination) 

of finitely many sd-strategy-proof DSCFs is an sd-strategy-proof RSCF.
16 In particular, if εi = 1 for some i ∈ I , the random dictatorship degenerates to a dictatorship.
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ϕa(P ) = ∑
i≡(is )s∈M∈Im: a=(

r1(Pis )s
)
s∈M

γ (i). In particular, if γ (i) = 1 for some i ∈ Im, the general-

ized random dictatorship degenerates to a generalized dictatorship. Therefore, each generalized 
random dictatorship is a mixture of generalized dictatorships.

Evidently, every generalized random dictatorship satisfies unanimity. On the one hand, if only 
constant voter sequences (i.e., one voter dictates all components) receive positive weights, the 
generalized random dictatorship degenerates to a random dictatorship. On the other hand, if every 
voter sequence receives a strictly positive weight, the generalized random dictatorship prescribes 
a maximal support for the social lottery at each preference profile compared to others. The char-
acterization of random dictatorships (Gibbard, 1977) implies that to restore sd-strategy-proofness 
on generalized random dictatorships, especially those associating strictly positive weights to 
non-constant voter sequences, we must impose some preference restriction. This preference re-
striction turns out to be top-separability; it was initially introduced by Le Breton and Weymark 
(1999) on continuous preferences over a product of first-countable Tychonoff space.17 To formu-
late a top-separable preference, we first fix exactly one “acceptable” element in each component 
set. Evidently, the most preferred alternative must be the one assembled by all acceptable ele-
ments. Furthermore, when comparing a pair of similar alternatives, the one which inherits the 
acceptable element in the disagreed component is always preferred.

Definition 1. A preference Pi , say r1(Pi) ≡ (xs)s∈M , is top-separable if for all similar alterna-
tives a, b ∈ A, say as �= bs and a−s = b−s , we have 

[
as = xs

] ⇒ [aPib].

Let DTS denote the top-separable domain containing all top-separable preferences. The 
proposition below shows that under minimal richness, top-separability is necessary and suffi-
cient for sd-strategy-proofness of all generalized random dictatorships, in particular, those that 
assign strictly positive weights to all voter sequences.

Proposition 1. Let D be a minimally rich domain. All generalized random dictatorships are 
sd-strategy-proof if and only if all preferences are top-separable.

The proof of Proposition 1 is available in Appendix A.
The Cartesian product structure would be redundant, for instance it could be simply viewed 

as a relabeling of alternatives, if it is not involved in establishing preference restrictions. The 
restriction of top-separability however respects the Cartesian product structure, systematically 
restores sd-strategy-proofness in a class of RSCFs which is significantly more flexible than ran-
dom dictatorships, and therefore distinguishes us from the models in the one-dimensional setting 
(e.g., Gibbard, 1977). Henceforth, we restrict attention to domains of top-separable preferences.

Definition 2. A domain is called a multidimensional domain if all preferences are top-
separable.

In the literature, two well studied preference restrictions, separability (Le Breton and Sen, 
1999) and multidimensional single-peakedness (Barberà et al., 1993) naturally meet the require-
ment of top-separability, and refine top-separable preferences by imposing additional restrictions.

17 Theorem 5 of Le Breton and Weymark (1999) showed that a DSCF with a full range is sd-strategy-proof on their 
top-separable domain if and only if it is a generalized dictatorship.
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In order to formulate a separable preference, not just a unique acceptable element is fixed in 
advance, but a linear order, referred to as a marginal preference, is first fixed over all elements of 
each component set. Separability then requires that between each pair of similar alternatives, the 
one endowed with a better element in the disagreed component is always preferred.

Definition 3. A preference Pi is separable if there exists a (unique) marginal preference [Pi]s
over As for each s ∈ M such that for all similar alternatives a, b ∈ A, say as �= bs and a−s = b−s , 
we have 

[
as[Pi]sbs

] ⇒ [
aPib

]
.

In a separable preference Pi , the relative ranking of two similar alternatives are determined 
independently of their agreed components, i.e., for all s ∈ M , as, bs ∈ As and x−s , y−s ∈ A−s , [
(as, x−s)Pi(b

s, x−s)
] ⇔ [

(as, y−s)Pi(b
s, y−s)

]
. The domain including all separable prefer-

ences is referred to as the separable domain, denoted DS. Evidently, DS = DTS if |As | = 2
for all s ∈ M , and DS ⊂DTS if |As | > 2 for some s ∈ M . For more detailed studies on separable 
preferences, please refer to Barberà et al. (1991), Le Breton and Sen (1999), Barberà et al. (2005)
and Reffgen and Svensson (2012).

Alternatively, multidimensional single-peakedness adopts a particular “grid” to measure the 
geometric distance between alternatives, and then requires one alternative be preferred to another 
when it stands “closer” to the preference peak. Formally, for each s ∈ M , all elements of As are 
located on a tree, denoted G(As).18 Let 〈as, bs〉 denote the unique graph path between as and bs

in G(As).19 Combining all trees G(As), we generate a product of trees ×s∈MG(As) where the 
set of vertices is A, and two distinct alternatives a and b form an edge if and only if a and b are 
similar, say a−s = b−s for some s ∈ M , and moreover, as and bs form an edge in G(As). Given 
a, b ∈ A, for notational convenience, let 〈a, b〉 = {x ∈ A : xs ∈ 〈as, bs〉 for each s ∈ M} denote 
the minimal box containing all alternatives located between a and b in each component. Thus, 
in a multidimensional single-peaked preference, if one alternative is in the minimal box formed 
by the preference peak and another alternative, it is naturally closer to the preference peak, and 
hence is ranked relatively higher.

Definition 4. A preference Pi is multidimensional single-peaked on a product of trees 
×s∈MG(As) if for all distinct a, b ∈ A, we have 

[
a ∈ 〈r1(Pi), b〉] ⇒ [aPib].

Therefore, a domain is multidimensional single-peaked if there exists a product of trees on 
which every preference is multidimensional single-peaked. Given a product of trees ×s∈MG(As), 
let DMSP denote the multidimensional single-peaked domain which contains all corresponding 
multidimensional single-peaked preferences.20 For more details on multidimensional single-
peaked preferences, please refer to Barberà et al. (1993) and Sprumont (1995).

Remark 1. In the multidimensional single-peaked domain, some preferences are separable while 
some are not separable. Note that a separable preference Pi , say r1(Pi) = x ≡ (xs)s∈M , is multi-

18 A graph is a combination of vertices and edges. A graph path is a sequence of vertices with each consecutive pair 
forming an edge. A tree is a graph where each pair of vertices is connected via a unique graph path.
19 If as = bs , 〈as , bs 〉 = {as } is a singleton set.
20 The version of multidimensional single-peakedness we derive is a generalization of the one studied by Barberà et al. 
(1993), since they restrict attention to a product of lines. Throughout this paper, any strict subset of the multidimensional 
single-peaked domain is just referred to as “a multidimensional single-peaked domain”. Two distinct product graphs of 
trees always induce two distinct multidimensional single-peaked domains.
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dimensional single-peaked on a product of trees ×s∈MG(As) if and only if for every s ∈ M , the 
marginal preference [Pi]s is single-peaked on G(As), i.e., for all distinct as, bs ∈ As , we have [
as ∈ 〈xs, bs〉 ] ⇒ [

as[Pi]sbs
]
.21 �

2.2. Connected+ domains

To execute our investigation, we restrict attention to a class of multidimensional domains that 
satisfies a particular richness condition, connectedness+.

To establish connectedness+, we first introduce two notions to address the relation between 
two preferences which are sufficiently close to each other in the Kemeny distance (Kemeny, 
1959). Let �(Pi, P ′

i ) =
{{a, b} ∈ A2

∣∣aPib and bP ′
i a

}
denote the set collecting all pairs of al-

ternatives that are oppositely ranked across Pi and P ′
i . Correspondingly, the Kemeny distance 

between Pi and P ′
i equals 

∣∣�(Pi, P ′
i )

∣∣. Henceforth, to avoid confusion, whenever we write 
{a, b} ∈ �(Pi, P ′

i ), we also presume aPib and bP ′
i a. First, the notion of adjacency links two 

distinct preferences with Kemeny distance 1, which thereby disagree on the relative ranking of 
exactly one pair of alternatives. The second notion, adjacency+, is customized for two separable 
preferences which happen to disagree on the relative ranking of some pair of similar alternatives, 
and meanwhile have a “minimum” Kemeny distance.22 To see why this is a natural notion of 
adjacency between two separable preferences, notice that if separable preferences Pi and P ′

i dis-
agree on the relative ranking of two similar alternatives, say {(as, z−s), (bs, z−s)} ∈ �(Pi, P ′

i ), 
then separability implies (as, z−s)Pi(b

s, z−s) and (bs, z−s)P ′
i (a

s, z−s) for all z−s ∈ A−s . Hence, 
the minimum Kemeny distance between Pi and P ′

i is |A−s |, and can only be reached at 
�(Pi, P ′

i ) =
{{(as, z−s), (bs, z−s)}}

z−s∈A−s .

Definition 5. Preferences Pi and P ′
i are adjacent, denoted Pi ∼ P ′

i , if �(Pi, P ′
i ) =

{{a, b}} for 
some a, b ∈ A. Preferences Pi and P ′

i are adjacent+, denoted Pi ∼+ P ′
i , if they are separable 

preferences, and �(Pi, P ′
i ) =

{{(as, z−s), (bs, z−s)}}
z−s∈A−s for some s ∈ M and as, bs ∈ As .

Observe that across two adjacent preferences Pi and P ′
i , the pair {a, b} is locally switched, re-

ferred to as a local switching pair, while every other alternative is identically ranked. Hence, 
aPi !b, bP ′

i !a, and for every c /∈ {a, b}, c = rk(Pi) = rk(P
′
i ) for some 1 ≤ k ≤ |A|. Simi-

larly, across two adjacent+ preferences Pi and P ′
i , all pairs {(as, z−s), (bs, z−s)}, z−s ∈ A−s , 

are locally switched simultaneously, and every other alternative is identically ranked. Hence, 
(as, z−s)Pi !(bs, z−s), (bs, z−s)P ′

i !(as, z−s) for all z−s ∈ A−s , and for every c ∈ A with cs /∈
{as, bs}, c = rk(Pi) = rk(P

′
i ) for some 1 ≤ k ≤ |A|.

In an sd-strategy-proof RSCF, if one voter unilaterally changes her sincere preference to an 
adjacent or adjacent+ preference, the probability associated to the alternative in a local switching 
pair whose ranking is lifted up from the sincere preference to the other one, might increase, while 
the sum of two probabilities in each local switching pair and the probability received by every 
alternative excluded from the local switching pair(s) remain fixed (see Lemma 8 of Appendix B). 

21 To show the necessity part, given s ∈ M , as ∈ 〈
xs , bs

〉
first implies (as , x−s ) ∈ 〈x, (bs , x−s )〉, and then multidimen-

sional single-peakedness implies (as , x−s )Pi (b
s , x−s ). Furthermore, separability implies as [Pi ]sbs . For the sufficiency 

part, given distinct a, b ∈ A with a ∈ 〈x, b〉, we first know as ∈ 〈xs , bs 〉 for every s ∈ M . Hence, by single-peakedness of 
the marginal preferences, we have as [Pi ]sbs for all s ∈ M with as �= bs which furthermore implies aPib by separability, 
as required.
22 See the coexistence of adjacency and adjacency+ in the separable domain of Example 8 of Appendix E.2.
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This makes the variation of the two corresponding social lotteries in the sd-strategy-proof RSCF 
more tractable.

Given two distinct preferences Pi and P ′
i , a sequence of preferences {P k

i }tk=1, t ≥ 2, which 
is required to contain no repetition, is referred to as a path connecting Pi and P ′

i if for all 
1 ≤ k ≤ t − 1, either P k

i ∼ P k+1
i or P k

i ∼+ P k+1
i . This indicates that the differences between 

Pi and P ′
i can be reconciled via a sequence of one-pair or multiple-pair local switchings. In 

particular, if every consecutive pair of preferences in a path is adjacent, this path is referred to as 
an adjacency path.

As the difference between two preferences may be reconciled via multiple paths, the length 
of the path matters. We impose two properties: the Interior+ property and the Exterior+ property, 
which ensure that for each pair of distinct preferences, a sufficiently short path in the domain 
can be used to reconcile the difference between the two. First, we partition the domain into 
several subdomains of preferences according to the preference peaks. The Interior+ property is 
established on each subdomain, and requires two preferences in one subdomain be connected 
via a path in this subdomain. The Exterior+ property imposes conditions on two preferences in 
two distinct subdomains. When these two preferences share the same relative ranking of a pair of 
alternatives, we can construct a path in the domain connecting them, and meanwhile preserve the 
relative ranking of this particular pair of alternatives along the path. In particular, when these two 
preferences have similar peaks, say (as, z−s) and (bs, z−s), an additional condition is imposed 
so that the peak of each preference in the path lies in the set (As, z−s).

Definition 6. Domain D satisfies the Interior+ property if given distinct Pi, P ′
i ∈ D with 

r1(Pi) = r1(P
′
i ) ≡ a, there exists a path {P k

i }qk=1 ⊆Da connecting Pi and P ′
i .

Definition 7. Domain D satisfies the Exterior+ property if given Pi, P ′
i ∈ D with r1(Pi) �=

r1(P
′
i ), and a, b ∈ A with aPib and aP ′

i b, there exists a path {P k
i }qk=1 ⊆ D connecting Pi

and P ′
i such that aP k

i b for all 1 ≤ k ≤ q . In addition, when r1(Pi) and r1(P
′
i ) are similar, say 

r1(Pi) = (as, z−s) and r1(P
′
i ) = (bs, z−s), the path {P k

i }qk=1 satisfies the no-detour property, 
i.e., r1(P

k
i ) ∈ (As, z−s) for all 1 ≤ k ≤ q .23

Throughout the paper, a multidimensional domain satisfying the Interior+ property and the 
Exterior+ property is referred to as a connected+ domain.

Remark 2. The top-separable domain, the separable domain, multidimensional single-peaked 
domains, their intersection and unions are all included in the class of connected+ domains. The 
detailed verifications are available in Appendices E.2 - E.6. Drawing on recent work (Chatterji 
et al., 2018), we introduce a new multidimensional domain by generalizing their preference 
restriction, eventual-single-peakedness, from the one-dimensional setting to the multidimen-
sional setting. This multidimensional eventually-single-peaked domain can be applied to models 
that seek to allocate multiple public facilities (e.g., Bochet and Gordon, 2012). The details 
of this formulation are available in Appendix E.7. The lexicographically separable domain of 
Chatterji et al. (2012) fails connectedness+ due to the non-existence of preferences delivering 

23 Appendix E.1 provides an example of top-separable domain which violates the no-detour property but satisfies the 
Interior+ property and the remainder of the Exterior+ property.
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Fig. 1. The relations among several multidimensional domains.

adjacency.24 We use Fig. 1 to summarize the relations among these multidimensional domains. 
The class of connected+ domains also excludes domains studied in the one-dimensional setting 
(e.g., Gibbard, 1977; Moulin, 1980; Demange, 1982; Saporiti, 2009).25 In particular, if we dis-
regard the no-detour property, our Interior+ and Exterior+ properties generalize the connected 
domains of Sato (2013) which only adopt adjacency paths. �

We next turn to an important property of unanimous and sd-strategy-proof RSCFs on 
connected+ domains which plays a critical role in the subsequent analysis: The social lottery 
at every preference profile depends only on voters’ preference peaks. We say that such an RSCF 
satisfies the tops-only property. Formally, an RSCF ϕ : DN → �(A) satisfies the tops-only 
property if for all P, P ′ ∈ DN , we have [r1(Pi) = r1(P

′
i ) for all i ∈ I ] ⇒ [ϕ(P ) = ϕ(P ′)].

Proposition 2. Every unanimous and sd-strategy-proof RSCF on a connected+ domain satisfies 
the tops-only property.

The proof of Proposition 2 is available in Appendix B.

Remark 3. We add the superscript “+” to highlight the role of adjacency+ in our two proper-
ties, and distinguish our two properties from the Interior and Exterior properties of Chatterji and 
Zeng (2018) which also endogenize the tops-only property in all unanimous and sd-strategy-
proof RSCFs. The connected+ domains considered here fail to satisfy their Interior and Exterior 
properties: The Interior property only adopts adjacency paths, and cannot be applied to the sep-
arable domain (see Example 8 of Appendix E.2), while the Exterior property is significantly 
weaker than the Exterior+ property as it is defined by using the notion of isolation which is 
weaker than both adjacency and adjacency+. The verification of Proposition 2 is similar to the 
proof of the Theorem of Chatterji and Zeng (2018), but requires an additional step (Lemma 11 of 

24 A separable preference Pi is lexicographically separable if there exists a lexicographic order (a linear order) � over 
M such that for all x, y ∈ A, we have 

[
xs [Pi ]sys and xτ = yτ for all τ ∈ M with τ � s

] ⇒ [xPiy]. Let DLS denote the 
lexicographically separable domain which contains all lexicographically separable preferences. Evidently, DLS ⊆DS. 
In the lexicographically separable domain, we know that (i) there exists no pair of adjacent preferences when |M| > 2
or |As | > 2 for some s ∈ M , and (ii) even though adjacency+ exists, every pair of adjacent+ preferences shares the same 
lexicographic order over M . Therefore, the difference of two lexicographically separable preferences which have two 
distinct lexicographic orders can never be reconciled via a path in the lexicographically separable domain.
25 The complete domain satisfies both the Interior+ and Exterior+ properties, but fails top-separability, while the single-
peaked domain and the single-crossing domain violate both top-separability and the no-detour property.



S. Chatterji, H. Zeng / Journal of Economic Theory 182 (2019) 25–105 37

Appendix B) that specifically applies to adjacent+ preferences. Finally, we note that Proposition 2
still holds even when the no-detour property fails. �

We believe that Proposition 2 is of some independent interest for the study of RSCFs. For 
instance, we use Proposition 2 to generalize an existing characterization result of generalized 
random dictatorships on all connected+ supersets of the lexicographically separable domain (re-
call footnote 24), like the separable domain and the top-separable domain.

Corollary 1. Let |As | ≥ 3 for each s ∈ M , and D be a connected+ domain that includes the 
lexicographically separable domain. A unanimous RSCF is sd-strategy-proof if and only if it is a 
generalized random dictatorship.

Proof. The sufficiency part is implied by Proposition 1. We show the necessity part. First, recall 
Theorem 3 of Chatterji et al. (2012) which shows that every unanimous and sd-strategy-proof 
RSCF on the lexicographically separable domain is a generalized random dictatorship. Next, by 
Proposition 2, we know that every unanimous and sd-strategy-proof RSCF on D satisfies the 
tops-only property. Last, since the lexicographically separable domain is included in D, the tops-
only property implies that every unanimous and sd-strategy-proof RSCF on D is a generalized 
random dictatorship. �

We conclude this section with an important implication of Proposition 2. Since the tops-only 
property emerges endogenously, every unanimous and sd-strategy-proof RSCF ϕ : DN → �(A)

degenerates to a random voting rule ϕ : AN → �(A). We hence simplify the notation of a pref-
erence profile (P1, . . . , PN) to (x1, . . . , xN), where r1(Pi) = xi , i = 1, . . . , N . We also mix the 
notation of alternatives and preferences, e.g., (a, Pj) represents a two-voter preference profile 
where voter i’s preference peak is a and voter j ’s preference is Pj . More importantly, due to 
the tops-only property, we henceforth can simply focus on the peak alternatives in each pair of 
adjacent+ preferences which disagree on peaks. Accordingly, we induce an adjacency+ relation 
between alternatives from the adjacency+ relation between preferences. We say that a pair of dis-
tinct alternatives a, b ∈ A is adjacent+, denoted a ∼+ b, if there exist Pi ∈Da and P ′

i ∈Db such 
that Pi ∼+ P ′

i . Given distinct a, b ∈ A, let {xk}tk=1 denote an adjacent+ sequence (of alterna-
tives) connecting a and b such that x1 = a, xt = b and xk ∼+ xk+1 for all k = 1, . . . , t −1. Similar 
to the definition of a path, we do not allow repetition in an adjacent+ sequence. Consequently, we 
can specify a geometric relation on all alternatives that will be useful in the subsequent analysis.

2.3. The compromise property

Random dictatorships never admit compromise as probabilities are assigned only to the 
peak alternatives at every preference profile. Generalized random dictatorships improve upon 
random dictatorships in this respect by diversifying social lotteries. However, they do not sys-
tematically admit compromise, and only recognize the “compromise alternative” at a preference 
profile which can be assembled via some voter sequence. For instance, let A = A1 × A2, 
A1 = {a1, b1, c1} and A2 = {a2, b2}. Two voters may disagree on each other’s most preferred 
alternatives but may nonetheless have a common second best alternative which is naturally 
viewed as the compromise alternative. Given two groups of three alternatives (1) x ≡ (a1, a2), 
y ≡ (b1, b2) and z ≡ (a1, b2), and (2) x′ ≡ (a1, a2), y′ ≡ (b1, a2) and z′ ≡ (c1, a2), we iden-
tify two profiles of top-separable preferences: (1) (Pi, Pj ) where r1(Pi) = x, r1(Pj ) = y and 
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r2(Pi) = r2(Pj ) = z, and (2) (P ′
i , P

′
j ) where r1(P

′
i ) = x′, r1(P

′
j ) = y′ and r2(P

′
i ) = r2(P

′
j ) = z′. 

First, the compromise alternatives z and z′ receive zero probability at (Pi, Pj ) and (P ′
i , P

′
j ) in 

a random dictatorship. Second, consider a generalized random dictatorship ϕ where each voter 
sequence is associated to a strictly positive weight. At profile (Pi, Pj ), since z can be assembled 
by the voter sequence (i, j), it is recognized by ϕ, i.e., ϕz(Pi, Pj ) > 0. However, the compromise 
alternative z′ cannot be assembled by any voter sequence at (P ′

i , P
′
j ), and therefore receives zero 

probability, i.e., ϕz′(P ′
i , P

′
j ) = 0.

We are interested in identifying a class of unanimous and sd-strategy-proof RSCFs which 
differ from random dictatorships/generalized random dictatorships in a “minimal” but significant 
degree by systematically admitting compromise. Our formulation of the compromise property 
guarantees that a non-assemblable compromise alternative arising out of a particular preference 
profile must get strictly positive probability in the social lottery. First, we pick two preferences 
Pi and Pj with similar peaks, say (xs, a−s) and (ys, a−s), and with a common second best 
alternative which is also similar to both peaks, say (zs, a−s). We treat (zs, a−s) as a natural 
compromise alternative. Next, we consider a preference profile where the voters are separated 
into two groups of approximately equal size, the voters of the first group have preference Pi

and the remaining voters have preference Pj . Our compromise property insists that the RSCF 
assign a strictly positive probability to the compromise alternative in every such situation. Note 
that our compromise property is formulated on profiles where the two peaks and the compromise 
alternative are pairwise similar; this makes our version of compromise weaker than the version 
introduced by Chatterji et al. (2016) which considers profiles where this pairwise similarity is 
not required.

Definition 8. An RSCF ϕ :DN → �(A) satisfies the compromise property if there exists Î ⊆ I

with |Î | = N
2 if N is even, and |Î | = N+1

2 if N is odd, such that given Pi, Pj ∈ D, we have26

[
r1(Pi) ≡ (xs, a−s) �= (ys, a−s) ≡ r1(Pj ) and

r2(Pi) = r2(Pj ) ≡ (zs, a−s) where zs /∈ {xs, ys}

]
⇒

[
ϕ(zs ,a−s )

( Pi

Î
,

Pj

I\Î
)

> 0

]
.

Remark 4. The compromise effect has been widely studied in the literature on bargaining theory 
(e.g., Kıbrıs and Sertel, 2007) and choice theory (e.g., De Clippel and Eliaz, 2012). Specifically, 
in the two-agent bargaining model studied by both Kıbrıs and Sertel (2007) and De Clippel and 
Eliaz (2012), given a bargaining problem (B, P1, P2), where B ⊆ A contains at least three el-
ements, if xP1zP1y and yP2zP2x, then z is recognized as a compromise for this bargaining 
problem, and the compromise effect requires that either x or y be excluded from the bargain-
ing solution. They then show that the fallback bargaining solution is uniquely characterized by 
the compromise effect in conjunction with other bargaining axioms. Börgers (1991) studied the 
game-form mechanism which consists of all agents’ strategy spaces and a consequence function 
associating each strategy profile to an alternative, and restricted attention to the solution concept 
of undominated strategies in each induced normal-form game. Börgers introduced a stronger 
compromise notion which at each preference profile captures all non-peak and Pareto efficient 
alternatives, established a compromise effect which requires that at some preference profile, a 

26 The notation 
(Pi

Î
, Pj

I\Î
)

denotes a preference profile where all voters of Î report preference Pi , while all voters not 

in Î report preference Pj .
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compromise alternative is enforced at each profile of undominated strategies, but showed that 
every game-form mechanism that delivers Pareto efficient alternative at each profile of undomi-
nated strategies (relative to the preference profile) never enforces compromise. Our compromise 
alternative notion is relatively weaker as we only concern ourselves with the non-assemblable 
and commonly second ranked alternative at a preference profile. Our compromise property dif-
fers from the two alluded compromise effects as we always include the compromise alternative 
in the social lottery with a strictly positive probability. �
3. Main results

We ask what multidimensional domains admit unanimous and sd-strategy-proof RSCFs sat-
isfying the compromise property. In this section, we show that the existence of a unanimous and 
sd-strategy-proof RSCF satisfying the compromise property on a connected+ domain implies that 
all preferences must be multidimensional single-peaked, and conversely, we construct a particu-
lar RSCF, a mixed multidimensional projection rule, satisfying unanimity, sd-strategy-proofness 
and the compromise property on a multidimensional single-peaked domain. Next, we switch our 
model to the deterministic setting, and establish an analogous characterization result by replacing 
the compromise property by anonymity. Finally, we generalize our analysis to the case of voting 
under constraints where some alternatives are not feasible in social lotteries.

3.1. A characterization of multidimensional single-peaked preferences

In this section, we prove that if a minimally rich and connected+ domain admits an RSCF 
which satisfies the aforementioned properties: unanimity, sd-strategy-proofness and the compro-
mise property, then it is a multidimensional single-peaked domain. Furthermore, we use several
counter examples to illustrate the indispensability of each axiom and domain condition in our 
characterization result.

Now, we formally state the main result.

Theorem 1. Let D be a minimally rich and connected+ domain. If it admits a unanimous and 
sd-strategy-proof RSCF satisfying the compromise property, it is multidimensional single-peaked. 
Conversely, a multidimensional single-peaked domain admits a unanimous and sd-strategy-proof 
RSCF satisfying the compromise property.

Proof. We start from the verification of the necessity part. If |As| = 2 for each s ∈ M , top-
separability implies D ⊆DTS =DS. For each s ∈ M , since |As | = 2, we naturally construct a line 
G(As) to connect the two elements of As . Thus, we assemble a product of lines ×s∈MG(As), and 
generate the multidimensional single-peaked domain DMSP. Since DS = DMSP when |As | = 2
for each s ∈ M , we have D ⊆ DMSP. Henceforth, we assume |As | > 2 for some s ∈ M . Let 
φ : DN → �(A) be a unanimous and sd-strategy-proof RSCF satisfying the compromise prop-
erty. First, Proposition 2 implies that φ satisfies the tops-only property. Since φ satisfies the com-
promise property, we accordingly separate voters into two groups Î and I\Î such that |Î | = N

2

if N is even, and |Î | = N+1
2 if N is odd. We induce a two-voter RSCF: ϕ(Pi, Pj ) = φ

(
Pi

Î
, Pj

I\Î
)

for all Pi, Pj ∈ D. It is easy to verify that ϕ is unanimous, tops-only and sd-strategy-proof, and 
satisfies the compromise property.
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In Lemma 1 below, we show that no two preferences with similar peaks are complete reversals, 
and induce that every pair of similar alternatives (as, x−s) and (bs, x−s) is connected via an 
adjacent+ sequence in (As, x−s).

Lemma 1. Given s ∈ M , as, bs ∈ As and x−s ∈ A−s , there exists an adjacent+ sequence 
{xk}qk=1 ⊆ (As, x−s) connecting (as, x−s) and (bs, x−s).

Proof. Since D(as ,x−s ) �= ∅ and D(bs ,x−s ) �= ∅ by minimal richness, there are two situations: (i) 
There exist Pi ∈D(as ,x−s ) and P ′

i ∈ D(bs ,x−s ) such that they agree on the relative ranking of some 
pair of alternatives, and (ii) both D(as,x−s ) and D(bs ,x−s ) are singleton sets, say D(as ,x−s ) = {Pi}
and D(bs ,x−s ) = {P ′

i }, and Pi and P ′
i are complete reversals.

In the first situation, the no-detour property implies that there exists a path {P k
i }qk=1 ⊆D con-

necting Pi and P ′
i such that r1(P

k
i ) ∈ (As, x−s) for all 1 ≤ k ≤ q . We partition the path {P k

i }qk=1
(without any rearrangement) according to the preference peaks, and then elicit a sequence of 
preference peaks which starts from (as, x−s) and ends at (bs, x−s):{

Pi ≡ P 1
i , . . . ,P

k1
i

the same peak x1
,

P
k1+1
i , . . . ,P

k2
i

the same peak x2
, . . . ,

P
kt−1+1
i , . . . ,P

kt

i ≡ P ′
i

the same peak xt

}

Elicit peaks−−−−−−−→ {x1, x2, . . . , xt }.
Note that the sequence {x1, x2, . . . . . . , xt } may contain repetition, and every pair of consecutive 
alternatives is distinct. First, since two preferences with distinct peaks are never adjacent by 
Lemma 9 of Appendix B, we know that each consecutive pair of {x1, x2, . . . . . . , xt } is adjacent+, 
i.e., xk ∼+ xk+1 for all k = 1, . . . , t −1. Second, whenever a repetition of one alternative appears 
in the sequence, we remove all alternatives strictly between the repetition and one alternative of 
the repetition. For instance, if xk = xl where 1 ≤ k < l ≤ t , we remove xk, xk+1, . . . , xl−1, and 
refine the sequence to {x1, . . . , xk−1, xl, . . . , xt }. Thus, by repeatedly eliminating repetitions, we 
finally elicit an adjacent+ sequence {xk}qk=1 ⊆ (As, x−s) such that x1 = (as, x−s), xq = (bs, x−s)

and xk ∼+ xk+1 for all k = 1, . . . , q − 1.
We next show that the second situation is invalid. Suppose that the second situation oc-

curs. Consequently, (bs, x−s) must be bottom ranked in Pi . Pick arbitrary τ ∈ M\{s} and 
zτ ∈ Aτ\{xτ }, and assemble the alternative (bs, zτ , x−{s,τ }). Since r1(Pi) = (as, x−s) =
(as, xτ , x−{s,τ }), top-separability implies (bs, xτ , x−{s,τ })Pi(b

s, zτ , x−{s,τ }), which contradicts 
the hypothesis that (bs, x−s) is the worst alternative in Pi . �
Lemma 2. Given s ∈ M and x−s ∈ A−s , let {xk}qk=1 ⊆ (As, x−s), q > 2, be an adjacent+ se-
quence. There exist 0 ≤ α1 < · · · < αq−1 ≤ 1 such that for all 1 ≤ k < k′ ≤ q , we have

ϕ(xk, xk′) = αkexk
+

∑k′−1

l=k+1
(αl − αl−1)exl

+ (1 − αk′−1)exk′ .

Moreover, for every Pi ∈ Dx1 , we have xkPixk+1 for all k = 1, . . . , q − 1.

Proof. Given 1 ≤ k ≤ q − 1, since xk ∼+ xk+1, we have Pi ∈ Dxk and Pj ∈ Dxk+1 with 
Pi ∼+ Pj . Thus, r1(Pi) = r2(Pj ) = xk and r2(Pi) = r1(Pj ) = xk+1. Then, by tops-onlyness, 
item 2(ii) of Lemma 8 of Appendix B and unanimity, we have ϕxk

(xk, xk+1) +ϕxk+1(xk, xk+1) =
ϕxk

(Pi, Pj ) +ϕxk+1(Pi, Pj ) =ϕxk
(Pi, Pi) +ϕxk+1(Pi, Pi) =ϕxk

(Pi, Pi) =1. Let ϕxk
(xk, xk+1) =
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αk and ϕxk+1(xk, xk+1) = 1 − αk where 0 ≤ αk ≤ 1. Thus, ϕ(xk, xk+1) = αk exk
+ (1 − αk)exk+1 . 

We adopt an induction argument.

Induction Hypothesis: Given l ≥ 2, for all 1 ≤ k < k′ ≤ q with 0 < k′ − k < l, we have 
ϕ(xk, xk′) = αkexk

+ ∑k′−1
ν=k+1(αν − αν−1)exν + (1 − αk′−1)exk′ .

Let k′ −k = l. We show ϕ(xk, xk′) = αkexk
+∑k′−1

ν=k+1(αν −αν−1)exν + (1 −αk′−1)exk′ . Since 
xk ∼+ xk+1, we have Pi ∈ Dxk and P ′

i ∈Dxk+1 with Pi ∼+ P ′
i . Then, by the induction hypothesis 

and items 2(ii) and 2(iii) of Lemma 8 of Appendix B, the following three equalities hold:

(i) ϕxk
(Pi, xk′) + ϕxk+1(Pi, xk′) = ϕxk

(P ′
i , xk′) + ϕxk+1(P

′
i , xk′) = αk+1,

(ii) ϕxν (Pi, xk′) = ϕxν (P
′
i , xk′) = αν − αν−1 for all ν = k + 2, . . . , k′ − 1, and

(iii) ϕxk′ (Pi, xk′) = ϕxk′ (P
′
i , xk′) = 1 − αk′−1.

Similarly, since xk′ ∼+ xk′−1, we have Pj ∈ Dxk′ and P ′
j ∈ Dxk′−1 such that Pj ∼+ P ′

j . Then, 
item 2(iii) of Lemma 8 and the induction hypothesis imply ϕxk

(xk, Pj ) = ϕxk
(xk, P ′

j ) = αk . Thus, 
ϕxk+1(xk, xk′) = ϕxk

(Pi, xk′) +ϕxk+1(Pi, xk′) −ϕxk
(xk, Pj ) = αk+1 −αk . Therefore, ϕ(xk, xk′) =

αkexk
+∑k′−1

ν=k+1(αν −αν−1)exν +(1 −αk′−1)exk′ . This completes the verification of the induction 
hypothesis.

Next, we show αk < αk+1 for all k = 1, . . . , q − 2. Given 1 ≤ k ≤ q − 2, since xk ∼+ xk+1
and xk+1 ∼+ xk+2, we have Pi ∈ Dxk and Pj ∈ Dxk+2 with r2(Pi) = r2(Pj ) = xk+1 and 
xk, xk+2, xk+1 ∈ (As, x−s). Then, the compromise property implies αk+1 −αk = ϕxk+1(Pi, Pj ) >
0.

Last, given Pi ∈ Dx1 , we show xkPixk+1 for all k = 1, . . . , q − 1. Given 1 ≤ k ≤ q − 1, 
suppose xk+1Pixk . Evidently, 1 < k < q . At the profile (Pi, xk+1), we have ϕxk

(Pi, xk+1) = αk −
αk−1 > 0. Assume xk+1 = rη(Pi) for some 1 < η < |A|. We then have 

∑η
t=1 ϕrt (Pi )(Pi, xk+1) ≤

1 − ϕxk
(Pi, xk+1) < 1 = ϕxk+1(xk+1, xk+1) = ∑η

t=1 ϕrt (Pi )(xk+1, xk+1). Consequently, voter i
will manipulate at (Pi, xk+1) via a preference with peak xk+1. Therefore, xkPixk+1 for all k =
1, . . . , q − 1. �

Given s ∈ M and x−s ∈ A−s , we induce a graph G∼+
(
(As, x−s)

)
where (As, x−s) is the set 

of vertices, and two distinct alternatives form an edge if and only if they are adjacent+.

Lemma 3. Given s ∈ M and x−s ∈ A−s , G∼+
(
(As, x−s)

)
is a tree.

Proof. By Lemma 1, we first know that every pair of distinct alternatives of (As, x−s) is 
connected via an adjacent+ sequence of (As, x−s). Suppose that G∼+

(
(As, x−s)

)
is not a 

tree. Then, there must exist a cycle {xk}tk=1 ⊆ (As, x−s), t ≥ 3, such that xk ∼+ xk+1 for 
all k = 1, . . . , t , where xt+1 = x1. According to the sequence {xk}tk=1, Lemma 2 implies 
ϕx1(x1, xt ) + ϕxt (x1, xt ) < 1. However, x1 ∼+ xt implies ϕx1(x1, xt ) + ϕxt (x1, xt ) = 1. Con-
tradiction! �

We are going to show that two trees G∼+
(
(As, x−s)

)
and G∼+

(
(As, y−s)

)
are “identical” in 

the sense that for all as, bs ∈ As , (as, x−s) and (bs, x−s) form an edge in G∼+
(
(As, x−s)

)
if 

and only if (as, y−s) and (bs, y−s) form an edge in G∼+
(
(As, y−s)

)
. With this result, we can 

generate a tree G(As) on the component set As .
For the next lemma, we fix the following four alternatives: a = (xs, xτ , z−{s,τ }), b =

(ys, yτ , z−{s,τ }), c = (xs, yτ , z−{s,τ }) and d = (ys, xτ , z−{s,τ }) where xs �= ys and xτ �= yτ .
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Fig. 2. The geometric relations among a, b, c and d . The dash line represents an adjacent+ sequence connecting two 
alternatives.

Lemma 4. If a ∼+ c and a ∼+ d , then b ∼+ c and b ∼+ d .

Proof. Since b, d ∈ (ys, As, z−{s,τ }) and b, c ∈ (As, yτ , z−{s,τ }), Lemma 3 implies that there 
exists a unique adjacent+ sequence {xk}pk=1 ⊆ (ys, Aτ , z−{s,τ }) connecting b and d , and a unique 
adjacent+ sequence {yk}qk=1 ⊆ (As, yτ , z−{s,τ }) connecting b and c. We use Fig. 2 to illustrate 
the geometric relations among a, b, c and d .

To verify this lemma, we show q = 2 and p = 2 (equivalently, b ∼+ c and b ∼+ d). Suppose 
not, i.e., either q > 2 or p > 2. Assume w.l.o.g. that q > 2. The verification related to p > 2 is 
symmetric, and we hence omit it. Thus, y2 ≡ (ys

2, y
τ , z−{s,τ }), y2 /∈ {b, c} and ys

2 /∈ {xs, ys}.
Since a ∼+ c, we have Pi ∈ Da and P ′

i ∈ Dc with Pi ∼+ P ′
i . According to {yk}qk=1, 

ϕy2(P
′
i , b) = ϕy2(yq, y1) > 0 by Lemma 2. Let z2 ≡ (ys

2, x
τ , z−{s,τ }). Thus, {z2, y2} is a lo-

cal switching pair of Pi and P ′
i , and hence item 2(ii) of Lemma 8 of Appendix B implies 

ϕz2(Pi, b) + ϕy2(Pi, b) = ϕz2(P
′
i , b) + ϕy2(P

′
i , b) > 0. On the other hand, since a ∼+ d , we 

have P̄i ∈ Da and P̄ ′
i ∈ Dd with P̄i ∼+ P̄ ′

i . Since y2, z2 /∈ {xk}pk=1 ⊆ (ys, Aτ , z−{s,τ }), Lemma 2
implies ϕy2(P̄

′
i , b) = ϕy2(xp, x1) = 0 and ϕz2(P̄

′
i , b) = ϕz2(xp, x1) = 0. Furthermore, since 

y2, z2 /∈ (xs, A−s) ∪ (ys, A−s), item 2(iii) of Lemma 8 of Appendix B implies ϕy2(P̄i , b) =
ϕy2(P̄

′
i , b) = 0 and ϕz2(P̄i , b) = ϕz2(P̄

′
i , b) = 0. Thus, ϕz2(P̄i , b) +ϕy2(P̄i , b) = 0. Consequently, 

ϕ(Pi, b) �= ϕ(P̄i, b) which contradicts the tops-only property. Therefore, q = 2. By a similar ar-
gument, p = 2. �
Lemma 5. Given s ∈ M and as, bs ∈ As , if (as, x−s) ∼+ (bs, x−s) for some x−s ∈ A−s , then 
(as, y−s) ∼+ (bs, y−s) for all y−s ∈ A−s .

Proof. Given y−s ∈ A−s\{x−s} and τ ∈ M\{s} with xτ �= yτ , we show (as, yτ , x−{s,τ }) ∼+
(bs, yτ , x−{s,τ }). By switching x−{s,τ } to y−{s,τ } component by component and applying the 
symmetric argument, we can complete the verification of the lemma.

Since G∼+
(
(as, Aτ , x−{s,τ })

)
is a tree, there exists a unique adjacent+ sequence {ak}qk=1 ⊆

(as, Aτ , x−{s,τ }) such that a1 = (as, xτ , x−{s,τ }), aq = (as, yτ , x−{s,τ }) and ak ∼+ ak+1 for 
all k = 1, . . . , q − 1. For each k = 1, . . . , q − 1, we switch the element as of the alterna-
tive ak to bs , and construct an alternative bk = (bs, aτ

k , x−{s,τ }). Thus, we have a sequence 
{bk}qk=1 ⊆ (bs, Aτ , x−{s,τ }), b1 = (bs, xτ , x−{s,τ }) and bq = (bs, yτ , x−{s,τ }) (see Fig. 3(1)). Note 
that {bk}qk=1 is not necessarily an adjacent+ sequence.

Since a1 = (as, xτ , x−{s,τ }) = (as, x−s) ∼+ (bs, x−s) = (bs, xτ , x−{s,τ }) = b1 by the hypoth-
esis, and a1 ∼+ a2, we note that {a1, b2, b1, a2} are analogous to {a, b, c, d} of Lemma 4. Hence, 
Lemma 4 implies b2 ∼+ b1 and b2 ∼+ a2 (see Fig. 3(2)). Following the adjacent+ sequence 
{ak}tk=1 and repeatedly applying Lemma 4, we have bk ∼+ bk−1 and bk ∼+ ak for all k =
2, . . . , q (see Fig. 3(3)). Eventually, we have (as, yτ , x−{s,τ }) = aq ∼+ bq = (bs, yτ , x−{s,τ }), 
as required. �



S. Chatterji, H. Zeng / Journal of Economic Theory 182 (2019) 25–105 43

Fig. 3. The graphic illustration of the proof of Lemma 5.

Now, by Lemma 5, we know that for all s ∈ M and x−s, y−s ∈ A−s , both trees G∼+
(
(As, x−s)

)
and G∼+

(
(As, y−s)

)
induced by Lemma 3 coincide: [(as, x−s) ∼+ (bs, x−s)] ⇔ [(as, y−s) ∼+

(bs, y−s)]. Therefore, for each s ∈ M , we induce a tree over As , denoted G(As), such that 
as, bs ∈ As form an edge in G(As) if and only if (as, x−s) ∼+ (bs, x−s) for all x−s ∈ A−s . 
Then, combining all these trees, we have a product of trees ×s∈MG(As). Thus, we know that in 
the product of trees ×s∈MG(As), a pair of distinct alternatives a and b forms an edge if and only 
if they are similar, i.e., a−s = b−s for some s ∈ M , and as and bs form an edge in G(As).

Lemma 6. Given a separable preference Pi ∈ D, it is multidimensional single-peaked on 
×s∈MG(As).

Proof. Assume r1(Pi) = a ≡ (as)s∈M . To verify this lemma, it suffices to show that for every 
s ∈ M , the marginal preference [Pi]s is single-peaked on the tree G(As) (recall Remark 1).

Given s ∈ M and distinct xs, ys ∈ As such that xs ∈ 〈as, ys〉, we show xs[Pi]sys . If xs = as , 
the result holds evidently. Assume xs �= as . Let 〈as, ys〉 = {xs

k}qk=1 where xs
1 = as and xs

q = ys . 
Thus, xs = xs

l for some 1 < l < q . Let xk = (xs
k, a

−s) for all k = 1, . . . , q . Thus, x1 = a =
r1(Pi) and {xk}qk=1 ⊆ (As, a−s) is an adjacent+ sequence. Then, Lemma 2 implies (xs, a−s) =
xlPixq = (ys, a−s). Furthermore, by separability, we have xs[Pi]sys , as required. Therefore, Pi

is multidimensional single-peaked on ×s∈MG(As). �
Lemma 7. Domain D is multidimensional single-peaked on ×s∈MG(As).

Proof. Given Pi ∈ D, say r1(Pi) = a ≡ (as)s∈M , suppose that it is not multidimensional single-
peaked on ×s∈MG(As). Thus, there exist distinct x, y ∈ A such that x ∈ 〈a, y〉 but yPix. Evi-
dently, a �= y. Since D is minimally rich, we have P ′

i ∈ Dy . Thus, Pi and P ′
i differ on peaks, 

but agree on the relative ranking of y and x, i.e., yPix and yP ′
i x. Then, the Exterior+ prop-

erty implies that there exists a path {P k
i }qk=1 ⊆ D connecting Pi and P ′

i such that yP k
i x for 

all k = 1, . . . , q . Note that since r1(P
1
i ) = a �= y = r1(P

q
i ), there must exist 1 ≤ k < q such 

that r1(P
k
i ) = a �= r1(P

k+1
i ). Consequently, Lemma 9 of Appendix B implies P k

i ∼+ P k+1
i . 

Hence, P k
i is a separable preference, and hence multidimensional single-peaked on ×s∈MG(As)

by Lemma 6. Consequently, x ∈ 〈a, y〉 implies xP k
i y. Contradiction! This proves the lemma, and 

completes the verification of the necessity part of Theorem 1. �
Now, we turn to the sufficiency part of Theorem 1. Given a product of trees ×s∈MG(As), 

let DMSP be the multidimensional single-peaked domain, and D ⊆ DMSP. Thus, to complete the 
verification of the sufficiency part, it suffices to construct an RSCF on DMSP which satisfies 
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unanimity, sd-strategy-proofness and the compromise property. The construction consists of 3 
steps and 4 claims below.

If |As | = 2 for each s ∈ M , then every generalized random dictatorship is unanimous and 
sd-strategy-proof, and satisfies the compromise property vacuously. Henceforth, we consider the 
case that |As | > 2 for some s ∈ M . For notational convenience, let D̄MSP = DS ∩ DMSP denote 
the intersection of the separable domain and the multidimensional single-peaked domain, and 
[D̄MSP]s = {[Pi]s : Pi ∈ D̄MSP} denote the induced marginal domain over As for each s ∈ M . 
Evidently, for each s ∈ M , [D̄MSP]s is the single-peaked (marginal) domain on the tree G(As). 
We construct an RSCF on DMSP in three steps.

STEP 1. We introduce a class of DSCFs on each marginal domain. Fix s ∈ M . Given a 
N -tuple (xs

1, . . . , x
s
N) ∈ [As]N , let G(xs

1, . . . , x
s
N) denote the minimal subgraph of 

G(As) containing xs
1, . . . , x

s
N as vertices.27 Fixing as ∈ As , we have the projection

of as on G(xs
1, . . . , x

s
N), denoted πs

(
as, G(xs

1, . . . , x
s
N)

)
, which is unique.28 Thus, we 

have a particular marginal function gas : [As]N → As such that gas
(xs

1, . . . , x
s
N) =

πs
(
as, G(xs

1, . . . , x
s
N)

)
for all (xs

1, . . . , x
s
N) ∈ [As]N .

STEP 2. Fixing a ≡ (as)s∈M ∈ A, we assemble all marginal functions (gas
)s∈M to construct a 

DSCF on DMSP: Given (P1, . . . , PN) ∈ DN
MSP, say for notational convenience r1(Pi) =

xi ≡ (xs
i )s∈M for each i ∈ I , let f a(P1, . . . , PN) = (

gas
(xs

1, . . . , x
s
N )

)
s∈M

. DSCF f a is 
called a multidimensional projection rule, and alternative a ≡ (as)s∈M is referred to 
as the projector.

STEP 3. Last, we construct an RSCF on DMSP by a mixture of all multidimensional projection 
rules. We associate each projector a ∈ A with a strictly positive weight λa > 0, and let ∑

a∈A λa = 1. We then construct an RSCF ϕ(P ) = ∑
a∈A λaf

a(P ) for all P ∈ DN
MSP. 

RSCF ϕ is called a mixed multidimensional projection rule.

Evidently, ϕ is well-defined, and satisfies unanimity. Also note that since only preference 
peaks are used in constructing the multidimensional projection rule in Step 2, it is true that all 
multidimensional projection rules and the mixed multidimensional projection rule ϕ satisfy the 
tops-only property.

CLAIM 1: Each multidimensional projection rule f a is decomposable on D̄MSP, i.e., for each 
s ∈ M , there exists a marginal DSCF f s : [[D̄MSP]s]N → As such that for all P ∈ D̄N

MSP, we 
have f a(P ) = (

f s([P1]s , . . . , [PN ]s))
s∈M

.

By the construction of f a at Step 2, for each s ∈ M , we can construct a marginal DSCF: For 
all 

([P1]s , . . . , [PN ]s) ∈ [[D̄MSP]s]N , f s
([P1]s , . . . , [PN ]s) = gas (

r1([P1]s), . . . , r1([PN ]s)). 
Therefore, f a is decomposable on D̄MSP. This completes the verification of the claim.

CLAIM 2: Each multidimensional projection rule f a is sd-strategy-proof on D̄MSP.

27 For details of minimal subgraph, please refer to Chatterji et al. (2013).
28 Fix a tree G, a subtree G′ ⊆ G and a vertex a. If a belongs to the vertex set of G′ , the projection of a on G′ is a itself. 
If a does not belong to the vertex set of G′ , there exists an unique vertex a′ in G′ which lies in every path connecting a
and every vertex of G′ . Thus, a′ is referred to as the projection of a on G′ .
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First, note that D̄MSP satisfies Properties A and B of Le Breton and Sen (1999).29 Then, by 
Theorem 4.1 of Le Breton and Sen (1999), we know that to prove the claim, it suffices to show 
that for each s ∈ M , the marginal DSCF f s of Claim 1 is sd-strategy-proof. Last, following 
exactly the proof of the sufficiency part of the Theorem of Chatterji et al. (2013), we obtain that 
f s is sd-strategy-proof on [D̄MSP]s . This completes the verification of the claim.

CLAIM 3: RSCF ϕ is sd-strategy-proof on DMSP.

First, since ϕ is a mixture of all multidimensional projection rules, Claim 2 implies that ϕ
is sd-strategy-proof on D̄MSP. Now, given i ∈ I , Pi, P ′

i ∈ DMSP and P−i ∈ DN−1
MSP , we show 

that for each a ∈ A, either f a(Pi, P−i ) = f a(P ′
i , P−i ) or f a(Pi, P−i )Pif

a(P ′
i , P−i ). Suppose 

not, i.e., there exists a ∈ A such that f a(P ′
i , P−i ) ≡ yPix ≡ f a(Pi, P−i ). For notational con-

venience, assume r1(Pi) = z. Next, by the definition of multidimensional single-peakedness, 
yPix implies x /∈ 〈z, y〉. By minimal richness of D̄MSP, we identify two arbitrary preferences 
P̄i , P̄ ′

i ∈ D̄MSP and P̄−i ∈ D̄N−1
MSP such that r1(P̄i) = r1(Pi), r1(P̄

′
i ) = r1(P

′
i ) and r1(P̄j ) = r1(Pj )

for all j �= i. By the construction at Step 2, we know f a(P̄i , P̄−i ) = f a(Pi, P−i ) = x and 
f a(P̄ ′

i , P̄−i ) = f a(P ′
i , P−i ) = y. Then, Claim 2 implies xP̄iy. Since we choose P̄i arbitrar-

ily, it is also true that xP̄iy for all P̄i ∈ D̄MSP with r1(P̄i) = z. Then, the definition of D̄MSP
implies x ∈ 〈z, y〉.30 Contradiction! Therefore, for each a ∈ A, the multidimensional projec-
tion rule f a is sd-strategy-proof on DMSP. Consequently, as a mixture of all multidimensional 
projection rules, RSCF ϕ is sd-strategy-proof on DMSP. This completes the verification of the 
claim.

CLAIM 4: RSCF ϕ satisfies the compromise property.

Let Î ⊆ I be a subset of voters with |Î | = N
2 if N is even, and |Î | = N+1

2 if N is odd. 
Given Pi, Pj ∈ DMSP, assume r1(Pi) = (xs, a−s) �= (ys, a−s) = r1(Pj ) and r2(Pi) = r2(Pj ) =
(zs, a−s). According to the product of trees ×s∈MG(As), one can easily tell zs ∈ 〈xs, ys〉. Thus, 

(zs, a−s) ∈ 〈(xs, a−s), (ys, a−s)〉, and hence, f (zs ,a−s )
(

Pi

Î
,

Pj

I\Î
)

= (zs, a−s). Consequently, 

ϕ(zs ,a−s )

(
Pi

Î
,

Pj

I\Î
)

≥ λ(zs ,a−s ) > 0. This completes the verification of the claim, and hence proves 

the sufficiency part of Theorem 1. �
Remark 5. The Theorem of Chatterji et al. (2016) shows that in the class of minimally rich 
and path-connected domains, the existence of a unanimous, tops-only and sd-strategy-proof 

29 Both Properties A and B are specified on a domain of separable preferences, say D ⊆ DS. Property A re-

quires each marginal domain be minimally rich which is evidently satisfied by D̄MSP. Property B contains two 
parts. Fixing marginal preferences 

([Pi ]τ
)
τ∈M

, the first part requires that for each s ∈ M , there exists a preference 
P̄i ∈ D such that [P̄i ]τ = [Pi ]τ for all τ ∈ M , and component s is lexicographically dominant, i.e., 

[
xs [Pi ]sys

] ⇒
[(xs , a−s )P̄i (y

s , b−s ) for all a−s , b−s ∈ A−s ], while the second part requires that for each s ∈ M , there exists a pref-
erence P i ∈ D such that [P i ]τ = [Pi ]τ for all τ ∈ M , and component s is lexicographically dominated by all other 
components, i.e., 

[
xP iy and xs [Pi ]sys

] ⇒ [either x−s = y−s , or there exists τ ∈ M\{s} such that xτ [Pi ]τ yτ ]. Given 
single-peaked marginal preferences 

([Pi ]τ
)
τ∈M

, for each s ∈ M , we pick two lexicographic orders � and �′ such that 
s � τ and τ �′ s for all τ �= s, and then assemble two preferences of D̄MSP which meet the two parts of Property B. 
Therefore, D̄MSP satisfies Property B.
30 Suppose x /∈ 〈z, y〉. There must exist s ∈ M such that xs /∈ 〈zs , ys 〉. Consequently, there exists [P̄i ]s ∈ [D̄MSP]s
such that r1([P̄i ]s ) = zs and ys [P̄i ]sxs . Next, for each τ �= s, pick [P̄i ]τ ∈ [D̄MSP]τ with r1([P̄i ]τ ) = zτ . Last, we fix 
a lexicographic order � where component s is lexicographically dominant, i.e., s � τ for all τ �= s, and assemble all 
marginal preferences according to �. Thus, we have P̄i ∈ D̄MSP and yP̄ix. Contradiction!
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RSCF satisfying a stronger version of the compromise property implies that the domain must be 
single-peaked on a tree.31 Theorem 1 significantly generalizes their result in three ways. First, all 
multidimensional domains studied here are excluded by their domain richness condition. Second, 
we endogenize the tops-only property. Third, the necessity part of Theorem 1 does not require the 
full power of their compromise property, and the mixed multidimensional projection rule con-
structed for the sufficiency part of Theorem 1 outperforms their compromise property: Whenever 
a common second best alternative appears in a preference profile where some two voters dis-
agree on peaks, it receives a strictly positive probability.32 Next, we observe that even though the 
Interior and Exterior properties of Chatterji and Zeng (2018) include multidimensional single-
peaked domains, the characterization in Theorem 1 cannot be achieved in their model. In their 
setup, the boundary that distinguishes one-dimensional models from multidimensional models 
is not clear. On the contrary, the key notion of this paper, adjacency+, brings sufficiently many 
separable preferences into consideration, which not only clearly separate the domains in ques-
tion from the one-dimensional setting, but also create the basis for embodying the restriction of 
multidimensional single-peakedness (see Lemma 6) and furthermore spreading the restriction to 
other preferences (see the proof of Lemma 7). More importantly, in a connected+ domain, we 
utilize the notion of adjacency+ to induce a general geometric relation among alternatives which 
is eventually refined (via Lemmas 4 and 5) to a product of trees, a necessary step for establishing 
multidimensional single-peakedness. �

If two complete reversal preferences happen to be included in the domain in question, we 
refine the necessity part of Theorem 1 to the multidimensional single-peakedness of Barberà et 
al. (1993).33

Corollary 2. Let D be a minimally rich and connected+ domain. If it contains two complete 
reversal preferences and admits a unanimous and sd-strategy-proof RSCF satisfying the com-
promise property, it is multidimensional single-peaked on a product of lines.

Proof. By Theorem 1, we know that domain D is multidimensional single-peaked on a product 
of trees ×s∈MG(As). Let P i, P i ∈ D be two complete reversal preferences. Assume r1(P i) = x

and r1(P i) = x. Evidently, x �= x. We show that ×s∈MG(As) is a product of lines. Suppose that it 
is not true. Then, it must be the case that 〈x, x〉 �= A. Thus, there exists a /∈ 〈x, x〉. For each s ∈ M , 
let âs be the projection of as on 〈xs, xs〉. Let â ≡ (âs)s∈M . Since a /∈ 〈x, x〉 and â ∈ 〈x, x〉, it is 
evident that â �= a. Since â ∈ 〈x, a〉 and â ∈ 〈x, a〉, multidimensional single-peakedness implies 
âP ia and âP ia. Contradiction! �
31 Given a domain D, a pair of distinct alternatives a, b ∈ A is adjacent if there exist Pi ∈ Da and P ′

i
∈ Db such that 

Pi ∼ P ′
i
. Then, a domain is said path-connected if every pair of distinct alternatives is connected via a sequence of 

alternatives which are consecutively adjacent. Note that this notion of adjacency between alternatives is stronger than the 
notion of adjacency+ between alternatives specified in the end of Section 2.2.
32 Given a preference profile (P1, . . . , PN) ∈ DMSP, assume r1(Pi ) = xi ≡ (xs

i
)s∈M for all i ∈ I , x1 �= x2 and 

r2(P1) = · · · = r2(PN ) = z ≡ (zs )s∈M . It is easy to show that for each s ∈ M , zs is included in the minimal 
subgraph induced by (xs

1, . . . , xs
N

). Consequently, according to the multidimensional projection rule f z , we have 
f z(P1, . . . , PN) = z, and hence ϕ(P1, . . . , PN) = ∑

a∈A λaf a(P1, . . . , PN) ≥ λz > 0.
33 Let ×s∈MG(As) be a product of lines, and DMSP be the corresponding multidimensional single-peaked domain. 
Given s ∈ M , according to the line G(As), we can arrange all elements in As on a linear order >s , and identify xs , xs ∈
As such that xs >s xs >s xs for all xs ∈ As\{xs , xs }. We then find Pi ∈DMSP with r1(Pi ) = (xs)s∈M and P ′

i
∈DMSP

with r1(P ′
i
) = (xs )s∈M which are complete reversals.
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3.1.1. Indispensability
In this subsection, we demonstrate the indispensability of each axiom of the RSCF and each 

domain condition in the characterization result of Theorem 1. For each case, we drop or weaken 
an axiom or a domain condition, keep all other axioms and domain conditions fixed, and construct 
a domain that diverges from multidimensional single-peakedness.

Example 1 (Indispensability of unanimity). Consider the top-separable domain DTS. We refer 
to Barberà (1979), and construct a two-voter point voting scheme ϕ : D2

TS → �(A). First, we 

specify a vector (α1, α2, . . . , α|A|) ∈ R|A|
+ such that α1 > 0, α2 > 0, α1 + α2 = 1

2 and αk = 0 for 
all k = 3, . . . , |A|. Next, given (Pi, Pj ) ∈ D2

TS and a ∈ A, if a = rs(Pi) and a = rt (Pj ), then ϕ
gives a probability αs + αt . Therefore, a social lottery is well defined at each preference profile. 
Theorem 1 of Barberà (1979) implied that ϕ is sd-strategy-proof. We assert that ϕ also satisfies 
the compromise property since α2 > 0. However, ϕ fails unanimity as at each preference profile, 
each voter’s second best alternative receives a strictly positive probability. �
Example 2 (Indispensability of sd-strategy-proofness). Consider the top-separable domain DTS. 
We construct the following two-voter DSCF f : D2

TS → A, which chooses the common second 
best alternative whenever it appears in a preference profile with distinct peaks, and chooses voter 
i’s preference peak otherwise, i.e.,

f (Pi,Pj ) =
{

a if r1(Pi) �= r1(Pj ) and r2(Pi) = r2(Pj ) ≡ a, and

r1(Pi) otherwise.

DSCF f satisfies unanimity and the compromise property. However, by Corollary 1, it fails 
sd-strategy-proofness since it is never a generalized random dictatorship. �

We have explained the violation of the compromise property in all generalized random dic-
tatorships at the beginning of Section 2.3. This demonstrates the indispensability of the com-
promise property in Theorem 1. The next example shows that if we impose more restrictions 
on recognizing a compromise alternative, the corresponding compromise property becomes too 
weak to diversify the social lottery’s support, and consequently, can be vacuously satisfied by 
generalized random dictatorships.

Example 3 (Indispensability of the compromise property34). An alternative x is called a modified 
compromise alternative at P if all preference peaks are pairwise distinct, and x is the common 
second best alternative. We then say that an RSCF ϕ : DN → �(A) satisfies the modified com-
promise property if we have [x is a modified compromise alternative at P ] ⇒ [ϕx(P ) > 0].

Now, let I = {1, 2, 3}, A = A1 × A2, A1 = {0, 1, 2} and A2 = {0, 1}, and consider the top-
separable domain DTS. Note that whenever a profile P ∈ D3

TS has a compromise alternative, 
this modified compromise alternative can be assembled by the three distinct peaks. Therefore, 
a generalized random dictatorship where all voter sequences have strictly positive weights is 
unanimous and sd-strategy-proof, and satisfies the modified compromise property. �
Example 4 (Indispensability of top-separability). Let A = A1 × A2 and A1 = A2 = {0, 1}. Con-
sider the complete domain P which satisfies the Interior+ and the Exterior+ properties, but fails 

34 We are grateful to an anonymous referee for suggesting this example.
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Fig. 4. The product of lines G(A1) × G(A2).

Fig. 5. The product of lines G(A1) × G(A2) × G(A3).

top-separability. An arbitrary random dictatorship is unanimous and sd-strategy-proof, and satis-
fies the compromise property vacuously since |A1| = |A2| = 2. �
Example 5 (Indispensability of minimal richness). Let A = A1 × A2, A1 = {0, 1, 2} and A2 =
{0, 1}. Let DMSP be the multidimensional single-peaked domain on the product of two lines 
G(A1) × G(A2) specified in Fig. 4.

We first pick the subdomain of DMSP containing every preference whose peak is neither (2, 0)

nor (2, 1), i.e., D̂ = {Pi ∈ DMSP : r1(Pi) �= (2, 0) and r1(Pi) �= (2, 1)}. Meanwhile, we specify 
one particular top-separable preference P̄i : (0, 0)⇀(0, 1)⇀(1, 0)⇀(2, 0)⇀(2, 1)⇀(1, 1). Note 
that P̄i is excluded from DMSP since (1, 1) ∈ 〈r1(P̄i), (2, 1)〉 but (2, 1)P̄i(1, 1). Finally, we con-
struct the domain D = D̂ ∪ {P̄i}.

Evidently, D is a top-separable domain, and violates minimal richness. It is also true that 
D satisfies the Interior+ and Exterior+ properties (the detailed verification is available in Ap-
pendix E.8). However, D is never a multidimensional single-peaked domain. We refer to an 
arbitrary random dictatorship which is unanimous and sd-strategy-proof on D. Moreover, since 
no preference of D has peak (2, 0) or (2, 1), no preference profile has a compromise alternative 
(i.e., the nonassemblable common second best alternative). Consequently, the random dictator-
ship satisfies the compromise property vacuously. �
Example 6 (Indispensability of paths in connectedness+). Let A = A1 ×A2 ×A3, A1 = {0, 1, 2}, 
A2 = {0, 1} and A3 = {0, 1}. Let DMSP be the multidimensional single-peaked domain on the 
product of three lines G(A1) × G(A2) × G(A3) specified in Fig. 5.

We specify a particular top-separable preference:

P̄i : (0,0,0)⇀(1,0,0)⇀(2,0,0)⇀(0,1,0)⇀(1,1,0)⇀(2,1,0)⇀(0,0,1)⇀

(1,0,1)⇀(2,0,1)⇀(0,1,1)⇀(2,1,1)⇀(1,1,1).

Note that P̄i is excluded from DMSP since (1, 1, 1) ∈ 〈r1(P̄i), (2, 1, 1)〉 but (2, 1, 1)P̄i(1, 1, 1). 
Thus, D = DMSP ∪ {P̄i} is a minimally rich top-separable domain, but never a multidimen-
sional single-peaked domain. Next, domain D satisfies the Interior+ property, but violates the 
Exterior+ property since there exists no path in D which reconciles the difference between P̄i
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and a preference with peak (2, 1, 1), and meanwhile keeps (2, 1, 1) ranked above (1, 1, 1) in 
every involved preference. However, a two-voter mixed multidimensional projection rule which 
only associates strictly positive weights to projectors A\ {(1,1,1), (2,1,1)} satisfies unanimity, 
sd-strategy-proofness and the compromise property. All detailed verifications are put in Ap-
pendix E.9. �

We conclude this subsection by mentioning some issues that remain unresolved. First, the 
example in Appendix E.1 suggests that in some special cases, the full extent of the no-detour 
property may not be required for establishing the characterization result of Theorem 1. However, 
in the general setting, in particular, when the number of dimensions M is large, and each di-
mension includes sufficiently many elements, we are unable to establish the result of Theorem 1
without using the no-detour property.35 Second, we have also been unable to construct an exam-
ple to illustrate the indispensability of the Interior+ property, since a violation of the Interior+

property usually implies a failure of the Exterior+ property.36 It is also inconclusive whether the 
Interior+ property is redundant for establishing Theorem 1 since we have been unable to show 
that the Exterior+ property is by itself sufficient for the tops-onlyness result of Proposition 2.

3.2. Deterministic voting

In this section, we provide a characterization of multidimensional single-peaked domains us-
ing deterministic social choice functions. Unlike the random setting where anonymity can be 
satisfied by the random dictatorship that gives equal weights to all voters, the axiom of anonymity 
is appropriate for distinguishing deterministic social choice functions from dictatorships. We 
replace the compromise property by anonymity, and obtain a characterization result that is anal-
ogous to Theorem 1.

Formally, a DSCF f : DN → A is anonymous if for all (P1, . . . , PN) ∈ DN and every per-
mutation σ : I → I , we have f (P1, . . . , PN) = f

(
Pσ(1), . . . , Pσ(N)

)
.

Theorem 2. Let D be a minimally rich and connected+ domain. If it admits a unanimous, anony-
mous and sd-strategy-proof DSCF, it is multidimensional single-peaked. Conversely, a multidi-
mensional single-peaked domain admits a unanimous, anonymous and sd-strategy-proof DSCF.

The proof of Theorem 2 is available in Appendix C.

Remark 6. The verification of the indispensability of axioms and domain conditions in The-
orem 2 is similar to the examples of Section 3.1.1. First, fixing the top-separable domain, we 
can illustrate the indispensability of unanimity via a constant rule which is anonymous and 
sd-strategy-proof; the indispensability of anonymity via a generalized dictatorship which is unan-
imous and sd-strategy-proof, and the indispensability of sd-strategy-proofness via a plurality rule 
with a fixed tie-breaking order over alternatives which is unanimous and anonymous. Second, we 
use the domain of Example 5, and show the indispensability of minimal richness via a multidi-
mensional projection rule which has the projector (0, 0), or (1, 0), or (0, 1), or (1, 1). Third, we 

35 For instance, the proof of Lemma 4 fails without the path connecting b and d , and the path connecting b and c.
36 Recall the example in Appendix E.1. If we drop P4, then the Interior+ property fails. Meanwhile, one can tell that the 
Exterior+ property is also violated, e.g., the path {P3, P2, P1, P̄1, P̄2, P̄3} becomes the unique path connecting P3 and 
P̄3, and however, (1, 0) does not always rank above (0, 0) along the path.
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adopt both the domain and an arbitrary multidimensional projection rule of Example 6 to show 
the indispensability of the path in the domain richness condition of connectedness+. Last, unlike 
Example 4, we are unable to show the indispensability of top-separability. However, we refer to 
the single-peaked domain and a median voter rule to show the indispensability of the conjunction
of top-separability and the no-detour property. �
Remark 7. The characterization of multidimensional single-peaked preferences in Theorem 2
can be interpreted as further evidence in favor of the Gul conjecture (see Section 6.5.2 of Bar-
berà, 2010). Our work is related to earlier work by Chatterji et al. (2013) and Chatterji and 
Massó (2018). The paper by Chatterji et al. (2013) excludes multidimensional models. They de-
rive a weaker version of single-peakedness, semi-single-peakedness, assuming tops-onlyness and 
an even number of voters. Chatterji and Massó (2018), using the same additional assumptions on 
the DSCF, derive another weaker version of single-peakedness, semilattice-single-peakedness, in 
a more general setup which allows A to be infinite, and includes multidimensional models. Our 
Theorem 2 recovers full multidimensional single-peakedness without the tops-onlyness assump-
tion and the restriction on the number of voters. We get a sharper result here because our richness 
condition is more elaborate. In particular, the Exterior+ property plays a key role in recovering 
full multidimensional single-peakedness.37 �
3.3. Voting under constraints

Barberà et al. (1997) first studied the model where not all alternatives are feasible. The set 
of feasible alternatives then becomes a strict subset of the Cartesian product structure. In such a 
setup, our result is not valid. In particular, the necessity part of Theorem 1 fails once invalid alter-
natives appear,38 while the sufficiency part of Theorem 1 may not hold as the multidimensional 
projection rule may select infeasible alternatives.

In this section, we adapt our model to accord with the infeasible alternatives problem in the 
following three ways: (1) modify RSCFs to constrained RSCFs which only assign probabilities 
to feasible alternatives, (2) adjust the axioms of unanimity and the compromise property w.r.t. 
feasible alternatives, and (3) restrict attention to the class of feasible alternative sets such that 
two preferences with the same peak also share the same best feasible alternative. We then show 
that without any change in the domain condition: minimal richness and connectedness+, the 
existence of a unanimous (w.r.t. feasibility) and sd-strategy-proof constrained RSCF satisfying 
the compromise property (w.r.t. feasibility) implies that the domain must be multidimensional 
single-peaked w.r.t. feasible alternatives, i.e., (i) the set of feasible alternatives is factorizable (in 
other words, the feasible set itself is a Cartesian product), and located on a product of trees, and 
(ii) for each preference over A, the induced preference over the feasible alternatives is multidi-
mensional single-peaked on the product of trees consisting of feasible alternatives. With these 
modifications, every multidimensional projection rule that has a projector of a feasible alterna-
tive (recall the proof of the sufficiency part of Theorem 1) is well-defined, and the mixture of 

37 If we drop the Interior+ property, keep the Exterior+ property, and add the top-only property on the DSCF to cover 
the invalidation of Proposition 2, the characterization result of Theorem 2 still holds. If we further weaken the Exterior+

property to a richness condition stated in Lemma 1, a significantly weaker version of multidimensional single-peakedness 
can be elicited, multidimensional semi-single-peakedness, which is an extension of semi-single-peakedness of Chatterji 
et al. (2013) to the multidimensional setting (see Appendix E.9).
38 For instance, the verification of Lemma 4 relies on the feasibility of the four alternatives a, b, c and d .
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these multidimensional projection rules satisfies the requirements of unanimity (w.r.t. feasibil-
ity), sd-strategy-proofness and the compromise property (w.r.t. feasibility). This indicates that 
our characterization of multidimensional single-peaked preferences is robust to voting under 
constraints.

Let Ā ⊆ A ≡ ×s∈MAs denote the set of feasible alternatives. Note that if there exists s ∈ M

such that as = bs for all a, b ∈ Ā, then the component set s becomes redundant, and hence can 
be eliminated. For simplicity, we impose an assumption to make all components indispensable.

Assumption 1. For each s ∈ M , there exist a, b ∈ Ā such that as �= bs .

Under Assumption 1, we say that the feasible set Ā is factorizable if there exists Ās ⊆ As for 
each s ∈ M such that Ā = ×s∈MĀs .

Given a preference Pi over A, let Pi|Ā denote the induced preference over Ā which preserves 
the relative rankings of feasible alternatives in preference Pi . Accordingly, let D|Ā = {Pi|Ā : Pi ∈
D} denote the domain of induced preferences over Ā and �(Ā) = {λ ∈ �(A) : ∑

a∈Ā λa = 1}
denote the constrained lottery space where each lottery over A assigns zero probability to 
infeasible alternatives.39 A constrained RSCF is a map ϕ : DN → �(Ā). We modify the ax-
ioms of unanimity and the compromise property to accord with feasibility. Formally, a con-
strained RSCF ϕ : DN → �(Ā) is unanimous (w.r.t. feasibility) if for all a ∈ Ā and P ∈ DN , 
[r1(Pi|Ā) = a for all i ∈ I ] ⇒ [ϕa(P ) = 1]. Next, a constrained RSCF ϕ : DN → �(Ā) satisfies

the compromise property (w.r.t. feasibility) if there exists Î ⊆ I with |Î | = N
2 if N is even, and 

|Î | = N+1
2 if N is odd, such that given Pi, Pj ∈D, we have[
r1(Pi) ≡ (xs, a−s) �= (ys, a−s) ≡ r1(Pj ) and

r2(Pi) = r2(Pj ) ≡ (zs, a−s) ∈ Ā where zs /∈ {xs, ys}

]
⇒

[
ϕ(zs ,a−s )

( Pi

Î
,

Pj

I\Î
)

> 0

]
.

Note that in the definition of compromise property (w.r.t. feasibility), the peaks of preferences 
Pi and Pj need not be feasible. The definition of sd-strategy-proofness is not affected by the 
feasibility issue. For voting under constraints, the definition of multidimensional single-peaked 
domain is modified as follows.

Definition 9. A domain D is multidimensional single-peaked w.r.t. Ā if the following two 
conditions are satisfied:

(i) The feasible set Ā is factorizable, i.e., Ā = ×s∈MĀs .
(ii) There exists a product of trees ×s∈MG(Ās) such that every Pi ∈ D is multidimensional 

single-peaked w.r.t. Ā, i.e., given distinct x, y ∈ Ā, 
[
x ∈ 〈

r1(Pi|Ā), y
〉] ⇒ [xPiy].40

We shall continue to restrict attention to the class of minimally rich and connected+ do-
mains. However, without additional conditions imposed on the feasible set or domains, the 
factorization of the feasible set cannot be elicited, and the characterization of multidimensional 
single-peakedness over feasible alternatives eventually fails. We provide an example to illustrate.

39 For mathematical consistency and notational convenience, we define each element of �(Ā) as a lottery over A, not 
over Ā. Thus, �(Ā) ⊂ �(A), and, for instance, Lemma 8 of Appendix B still holds in voting under constraints.
40 For each s ∈ M , graph G(Ās) is a tree over Ās . The vertex set of ×s∈MG(Ās) is Ā = ×s∈MĀs .
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Fig. 6. The product of lines G(A1) × G(A2).

Example 7. Let A = A1 ×A2, A1 = {0, 1, 2} and A2 = {0, 1}. Let DMSP be the multidimensional 
single-peaked domain on the product of two lines G(A1) × G(A2) in Fig. 6. It is evident that 
DMSP is a connected+ domain.

Let Ā = A\{(0, 0), (2, 1)}. Thus, Ā is not factorizable, and DMSP is not multidimensional 
single-peaked w.r.t. Ā. We can construct a unanimous (w.r.t. feasibility) and sd-strategy-proof 
constrained RSCF ϕ :D2

MSP → �(Ā) which satisfies the compromise property (w.r.t. feasibility): 
For all Pi, Pj ∈DMSP, ϕ(Pi, Pj ) = 1

2er1(Pi|Ā) + 1
2er1(Pj |Ā). In fact, ϕ is a constrained random dic-

tatorship,41 and therefore is naturally unanimous (w.r.t. feasibility) and sd-strategy-proof. Note 
that a preference profile (Pi, Pj ) ∈ D2

MSP has a non-assemblable feasible compromise alternative 
if and only if one of the following two cases occurs:

(i) {r1(Pi), r1(Pj )} = {(0, 0), (2, 0)} and r2(Pi) = r2(Pj ) = (1, 0), and
(ii) {r1(Pi), r1(Pj )} = {(0, 1), (2, 1)} and r2(Pi) = r2(Pj ) = (1, 1).

When all alternatives are feasible, these two compromise alternatives never receive any proba-
bility from any random dictatorship or generalized random dictatorship. However, when (0, 0)

becomes infeasible, alternative (1, 0) becomes the feasible peak of some voter’s preference in a 
preference profile of case (i), and then inherits probability 1

2 in ϕ. The same argument holds for 
case (ii) as well. Therefore, ϕ satisfies the compromise property (w.r.t. feasibility). �

Example 7 indicates that under the feasibility constraint, the compromise property is weak-
ened so that it is no longer incompatible with constrained random dictatorships. In general, we 
are unable to elicit any meaningful preference restrictions over the feasible alternatives from a 
constrained random dictatorship. Therefore, without further conditions, our characterization of 
multidimensional single-peakedness in Theorem 1 fails in voting under constraints. We observe 
that in Example 7, there are two preferences of DMSP which share the same the infeasible alter-
native (0, 0) as the peak, but have two distinct feasible peaks (1, 0) and (0, 1), e.g.,

Pi : (0,0)⇀(1,0)⇀(0,1)⇀(1,1)⇀(2,0)⇀(2,1)

P ′
i : (0,0)⇀(0,1)⇀(1,0)⇀(1,1)⇀(2,0)⇀(2,1)

⇒ Pi|Ā : (1,0)⇀(0,1)⇀(1,1)⇀(2,0)

P ′
i|Ā : (0,1)⇀(1,0)⇀(1,1)⇀(2,0)

.

We impose an additional condition which excludes the alluded observation by ensuring that two 
preferences with the same peak over A always share the same feasible peak.

Assumption 2. For all Pi, P ′
i ∈ D, we have [r1(Pi) = r1(P

′
i )] ⇒

[
r1(Pi|Ā) = r1(P

′
i|Ā)

]
.

41 A constrained RSCF ϕ : DN → �(A) is a constrained random dictatorship if there exists εi ≥ 0 for each i ∈ I

with 
∑

i∈I εi = 1 such that for all P ∈DN and a ∈ Ā, ϕa(P ) = ∑
i∈I :r1(P

i|Ā)=a εi . A constrained random dictatorship 
is unanimous (w.r.t. feasibility) and sd-strategy-proof on an arbitrary domain.
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If Ā = A, then both Assumptions 1 and 2 are automatically satisfied. In the framework of 
Example 7, there are three ways to satisfy Assumptions 1 and 2: Set Ā = {0, 1, 2} × {0, 1}, or 
Ā = {0, 1} ×{0, 1}, or Ā = {1, 2} ×{0, 1}. In either case, the feasible set Ā is factorizable, and one 
can immediately infer that DMSP is multidimensional single-peaked w.r.t. Ā. Note that if we make 
Ā = {0, 2} × {0, 1}, the feasible set Ā is factorizable, domain DMSP remains multidimensional 
single-peaked w.r.t. Ā, but Assumption 2 fails since two preferences with the same peak (1, 0)

may own two distinct feasible peaks (0, 0) and (2, 0) respectively.
Now, we present the result.

Theorem 3. Fix Assumptions 1 and 2. The following two statements hold:

(i) Let D be a minimally rich and connected+ domain. If it admits a unanimous (w.r.t. feasi-
bility) and sd-strategy-proof constrained RSCF φ : DN → �(Ā) satisfying the compromise 
property (w.r.t. feasibility), then it is multidimensional single-peaked w.r.t. Ā.

(ii) Conversely, a multidimensional single-peaked domain D w.r.t. Ā admits a unanimous (w.r.t. 
feasibility) and sd-strategy-proof constrained RSCF ϕ : DN → �(Ā) satisfying the compro-
mise property (w.r.t. feasibility).

The proof of Theorem 3 is available in Appendix D.

Remark 8. Example 7 demonstrates that Assumption 2 is needed for Theorem 3(i), as we pro-
vide a multidimensional single-peaked domain which is connected+ but violates Assumption 2, 
construct a unanimous (w.r.t. feasibility) and sd-strategy-proof constrained random dictatorship 
which satisfies the compromise property (w.r.t. feasibility), but we are unable to elicit the multidi-
mensional single-peakedness restriction on all feasible alternatives. More specifically, Assump-
tion 2 is critical for establishing that the sd-strategy-proofness and unanimity (w.r.t. feasibility) 
of a constrained RSCF on a connected+ domain imply that the constrained RSCF satisfies the 
tops-only property (see Proposition 3 in the proof of Theorem 3 in Appendix D). This step com-
mences the proof of Theorem 3, and its role is analogous to the one played by Proposition 2 in the 
proofs of Theorems 1 and 2 respectively. Assumption 2 is strong, but we are unable to proceed 
without it. Indeed if one considers a constrained voting scenario where Assumption 2 does not 
hold, there exists no sd-strategy-proof and unanimous (w.r.t. feasibility) constrained RSCF that 
satisfies the tops-only property, and then it may not be possible to make any inferences about the 
structure of the domain. Example 7 is a case in point.42 Proposition 3 summarizes the role of 
Assumption 2 with regards to the tops-only property. �
Remark 9. We briefly discuss the indispensability of our assumptions. Assumption 1 is intro-
duced to simplify the analysis, and can be dispensed with by refining the Cartesian product 
structure appropriately. The indispensability of Assumption 2 has been shown in Example 7. Ex-
amples 1 - 6 of Section 3.1.1 can be appropriately adapted to show the indispensability of our 
axioms and domain conditions of Theorem 3. The details are available in Appendix E.10. �

We conclude this section by discussing the relation of Theorem 3 to the literature.

42 Note that the constrained random dictatorship in Example 7 violates the tops-only property.
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Remark 10. Barberà et al. (1997) studied a deterministic constrained voting model on the mul-
tidimensional single-peaked domain DMSP of Barberà et al. (1993) where A is located on a 
product of lines, and Ā is an arbitrary subset of A. They characterized the class of unanimous 
(w.r.t. feasibility) and sd-strategy-proof DSCFs that map to Ā: These are feasible generalized 
median voter schemes satisfying the intersection property.43 The structure of the feasible set Ā
determines the size of the class of feasible generalized median voter schemes satisfying the inter-
section property. On the one hand, if Ā is factorizable, then all feasible generalized median voter 
schemes satisfy the intersection property automatically, and DMSP is multidimensional single-
peaked w.r.t. Ā. Furthermore, one can construct a multidimensional projection rule on DMSP|Ā
using a projector of a feasible alternative, and then extend it to a feasible generalized median 
voter scheme on DMSP which satisfies unanimity (w.r.t. feasibility), anonymity and sd-strategy-
proofness. On the other hand, if Ā is not factorizable, see for instance, Example 7, Section 4 
of Aswal et al. (2003) and Theorem 2 of Barberà et al. (2005), every feasible generalized me-
dian voter schemes satisfying the intersection property degenerates to a constrained dictatorship. 
We ask what structure on Ā is implied by the existence of a “well-behaved” sd-strategy-proof 
RSCF, and shows that the existence of a unanimous (w.r.t. feasibility) and sd-strategy-proof con-
strained RSCF satisfying the compromise property (w.r.t. feasibility) implies that Ā must be 
factorizable. Moreover, in contrast to the model of Barberà et al. (1997) where domain DMSP
was the primitive and automatically multidimensional single-peaked w.r.t. every factorizable 
feasible set, our characterization analysis (i) takes a more general class of domains as the prim-
itive, connected+ domains, (ii) endogenously establishes the factorizability of Ā = ×s∈MĀs and 
induces a product of trees ×s∈MG(Ās), and (iii) elicits the embedded restriction of multidimen-
sional single-peakedness w.r.t. feasibility. Barberà et al. (1999) considered the same model of 
Barberà et al. (1997), fixed a feasible generalized median voter scheme satisfying the intersec-
tion property, and induced preference restrictions to retrieve sd-strategy-proofness of the fixed 
generalized median voter scheme. However, their induced preference restrictions depend on the 
specific form of the primitive generalized median voter scheme. On the contrary, our analysis 
only takes a general unanimous (w.r.t. feasibility) and sd-strategy-proof constrained RSCF as 
the primitive, and more importantly, our notion of multidimensional single-peaked preferences 
is independent of the primitive RSCF. �
4. Conclusion

We have proposed a class of multidimensional domains, connected+ domains. We first prove 
that multidimensional single-peakedness is necessary and sufficient in the class of minimally rich 
and connected+ domain for the existence of a unanimous and sd-strategy-proof RSCF satisfying 
the compromise property. We also present an analogous result for DSCFs using anonymity in-
stead of the compromise property. Last, we show that our characterization is robust to voting 
under constraints. The results for multidimensional models presented here are in the spirit of 
earlier results (e.g., Bogomolnaia, 1998; Nehring and Puppe, 2007; Chatterji et al., 2013, 2016; 
Chatterji and Massó, 2018) that indicate that some form of single-peakedness is inherent in pref-
erence domains that allow the construction of “well-behaved” sd-strategy-proof rules.

43 A feasible generalized median voter scheme is a generalized median voter scheme which always chooses a feasible 
alternative at each preference profile. The formal definition of the intersection property can be found in Definition 9 of 
Barberà et al. (1997). An alternative formulation of the intersection property can be found in Section 3.3 of Nehring and 
Puppe (2007).
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We suggest that connected+ domains may be useful in resolving other open issues; one such 
issue is the equivalence of sd-strategy-proofness and local sd-strategy-proofness where the latter 
is formulated by requiring that only a manipulation via a preference adjacent or adjacent+ to the 
sincere one is forbidden from being profitable.

The characterization of all well-behaved sd-strategy-proof RSCFs on connected+ domains is 
not attempted in this paper, and is left for future work. It would also be of interest to extend the 
analysis to situations where some of the dimensions include private goods or monetary transfers.

Appendix A. Proof of Proposition 1

Given i ≡ (is)s∈M , let f i : DN → A denote a generalized dictatorship. Recall the defini-
tion of a generalized random dictatorship, given γ (i) ≥ 0 for each i ∈ Im and 

∑
i∈Im γ (i) = 1, 

ϕa(P ) = ∑
i≡(is )s∈M∈Im: a=(

r1(Pis )s
)
s∈M

γ (i) for all a ∈ A and P ∈ DN . We know that ϕ can 

be rewritten as a mixture of generalized dictatorships, i.e., ϕ(P ) = ∑
i∈Im γ (i) f i(P ) for all 

P ∈ DN . Therefore, to verify the sufficiency part of Proposition 1, it suffices to show that every 
generalized dictatorship is sd-strategy-proof.

Fix i ≡ (is)s∈M and i ∈ I . Given Pi, P ′
i ∈ D and P−i ∈ DN−1, assume f i(Pi, P−i ) = x ≡

(xs)s∈M and f i(P ′
i , P−i ) = y ≡ (ys)s∈M . We show either x = y or xPiy. Assume r1(Pi) = a ≡

(as)s∈M and r1(P
′
i ) = b ≡ (bs)s∈M . In the voter sequence i ≡ (is)s∈M , we identify S ⊆ M such 

that is = i for all s ∈ S and iτ �= i for all τ /∈ S. Thus, we know xs = as and ys = bs for all s ∈ S, 
and xτ = yτ for all τ /∈ S. Evidently, if S = ∅, then x = y. Similarly, if S �= ∅ and as = bs for 
all s ∈ S, we also have x = y. Last, we assume that S �= ∅, and there exists a non-empty S+ ⊆ S

such that as �= bs for all s ∈ S+ and aτ = bτ for all τ ∈ S\S+. For notational simplicity, assume 
S+ = {1, . . . , s}. Thus, we know xk = ak �= bk = yk for all k = 1, . . . , s, and xτ = yτ ≡ zτ for all 
τ = s + 1, . . . , m, and write x = (a1, . . . , as, zs+1, . . . , zm) and y = (b1, . . . , bs, zs+1, . . . , zm). 
We identify alternatives ak = (a1, . . . , ak, bk+1, . . . , bs, zs+1, . . . , zm) for all k = 0, 1, . . . , s. 
Evidently, a0 = y and as = x. Since r1(Pi) = a, top-separability implies akPiak−1 for all 
k = 1, . . . , s. Consequently, we have xPiy by transitivity. This completes the verification of sd-
strategy-proofness of f i , as required.

Conversely, to verify the necessity part of Proposition 1, we consider a particular general-
ized random dictatorship ϕ : DN → �(A) where γ (i) > 0 for all i ∈ Im. We show that all 
preferences of D are top-separable. Suppose not, i.e., there exists P̄i ∈ D, say r1(P̄i) = a ≡
(as)s∈M , such that (bs, z−s)P̄i(a

s, z−s) for some s ∈ M , bs ∈ As\{as} and z−s ∈ A−s . Let 
(bs, z−s) = rη(P̄i) for some 1 < η < |A|. We construct a particular preference profile (P̄i, P−i )

where r1(Pj ) = (bs, z−s) for all j �= i. We know that (as, z−s) can be assembled by a voter se-
quence i such that is = i and iτ �= i for all τ �= s. Hence, ϕ(as,z−s )(P̄i , P−i ) ≥ γ (i) > 0. Given 
P ′

i ∈ D(bs ,z−s ) by minimal richness, it is evident that ϕ(bs,z−s )(P
′
i , P−i ) = 1. Consequently, we 

have 
∑η

t=1 ϕrt (P̄i )
(P̄i , P−i ) < 1 = ∑η

t=1 ϕrt (P̄i )
(P ′

i , P−i ), and hence voter i will manipulate at 
(P̄i , P−i ) via P ′

i . Therefore, all preferences must be top-separable.

Appendix B. Proof of Proposition 2

We first provide four general results which will be repeatedly applied. Let D be a connected+

domain and ϕ : DN → �(A) be an sd-strategy-proof RSCF.
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Lemma 8. Fix i ∈ I , Pi, P ′
i ∈D and P−i ∈ DN−1. The following two statements hold:

1. If Pi ∼ P ′
i and �(Pi, P ′

i ) =
{{a, b}},44 then we have

(i) ϕa(Pi, P−i ) ≥ ϕa(P
′
i , P−i ) and ϕb(Pi, P−i ) ≤ ϕb(P

′
i , P−i );

(ii) ϕa(Pi, P−i ) + ϕb(Pi, P−i ) = ϕa(P
′
i , P−i ) + ϕb(P

′
i , P−i );

(iii) ϕz(Pi, P−i ) = ϕz(P
′
i , P−i ) for all z /∈ {a, b}.

2. If Pi ∼+ P ′
i and �(Pi, P ′

i ) =
{{(as, z−s), (bs, z−s)}}

z−s∈A−s , then we have
(i) ϕ(as ,z−s )(Pi, P−i ) ≥ ϕ(as ,z−s )(P

′
i , P−i ) and ϕ(bs ,z−s )(Pi, P−i ) ≤ ϕ(bs ,z−s )(P

′
i , P−i ) for 

all z−s ∈ A−s ;
(ii) ϕ(as ,z−s )(Pi, P−i ) + ϕ(bs ,z−s )(Pi, P−i ) = ϕ(as ,z−s )(P

′
i , P−i ) + ϕ(bs ,z−s )(P

′
i , P−i ) for all 

z−s ∈ A−s ;
(iii) ϕc(Pi, P−i ) = ϕc(P

′
i , P−i ) for all c ∈ A with cs /∈ {as, bs}.

The verification of Lemma 8 is routine, and we hence omit it.

Lemma 9. Two preferences with distinct peaks are never adjacent.

Proof. Suppose not, i.e., there exist two preferences Pi, P ′
i ∈ D such that r1(Pi) ≡ a �= b ≡

r1(P
′
i ) and Pi ∼ P ′

i . Alternatives a and b must disagree on some component, say as �= bs . Given 
the Cartesian product structure, we can identify x, y ∈ A\{a, b} such that xs = as , ys = bs and 
x−s = y−s . Thus, x and y are similar, and Pi ∼ P ′

i implies either xPiy and xP ′
i y, or yPix and 

yP ′
i x. However, since Pi and P ′

i are top-separable preferences, r1(Pi) = a implies xPiy while 
r1(P

′
i ) = b implies yP ′

i x. Contradiction! �
Lemma 10. Let Pi ∼ P ′

i and �(Pi, P ′
i ) =

{{a, b}}. Let Pj ∼ P ′
j or Pj ∼+ P ′

j . Assume either 
aPjb and aP ′

j b, or bPja and bP ′
j a. We have

[
ϕ(Pi,Pj ,P−{i,j}) = ϕ(P ′

i , Pj ,P−{i,j})
] ⇒ [

ϕ(Pi,P
′
j ,P−{i,j}) = ϕ(P ′

i , P
′
j ,P−{i,j})

]
.

Proof. Since Pj ∼ P ′
j or Pj ∼+ P ′

j , and Pj and P ′
j agree on the relative ranking of a and b, 

we can identify an integer 1 ≤ t ≤ |A| such that Pj and P ′
j have the same set of top-t ranked 

alternatives which either includes a and excludes b, or includes b and excludes a, i.e., either 
a ∈ {rk(Pj )}tk=1 = {rk(P ′

j )}tk=1 /� b (if aPjb and aP ′
j b), or a /∈ {rk(Pj )}tk=1 = {rk(P ′

j )}tk=1 � b (if 
bPja and bP ′

j a). Thus, we assert in the terminology of Chatterji and Zeng (2018): Alternatives 
a and b are isolated in Pj and P ′

j . Then, the verification of this lemma follows exactly from 
Lemma 1 of Chatterji and Zeng (2018). �
Lemma 11. Let Pi ∼+ P ′

i and �(Pi, P ′
i ) =

{{(xs, z−s), (ys, z−s)}}
z−s∈A−s . Assume Pj ∼+ P ′

j , 
and either (xs, z−s)Pj (y

s, z−s) and (xs, z−s)P ′
j (y

s, z−s) for all z−s ∈ A−s , or (ys, z−s) ×
Pj (x

s, z−s) and (ys, z−s)P ′
j (x

s, z−s) for all z−s ∈ A−s . We have

[
ϕ(Pi,Pj ,P−{i,j}) = ϕ(P ′

i , Pj ,P−{i,j})
] ⇒ [

ϕ(Pi,P
′
j ,P−{i,j}) = ϕ(P ′

i , P
′
j ,P−{i,j})

]
.

44 Recall that whenever we write {a, b} ∈ �(Pi , P ′
i
), we presume aPib and bP ′

i
a.
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Proof. According to items 2(ii) and 2(iii) of Lemma 8, to verify this lemma, it suffices to 
show that given z−s ∈ A−s , ϕ(as ,z−s )(Pi, P ′

j , P−{i,j}) = ϕ(as ,z−s )(P
′
i , P

′
j , P−{i,j}) for some as ∈

{xs, ys}.
We assume (xs, z−s)Pj (y

s, z−s) and (xs, z−s)P ′
j (y

s, z−s) for all z−s ∈ A−s . The verification 
related to the other case is symmetric, and we hence omit it. Since Pj ∼+ P ′

j , we know that 
Pj and P ′

j are separable preferences, and �(Pj , P ′
j ) =

{{(x̄τ , z−τ ), (ȳτ , z−τ )}}
z−τ ∈A−τ for some 

τ ∈ M and x̄τ , ȳτ ∈ Aτ . We consider two situations: τ = s and τ �= s.
Assume τ = s. Given z−s ∈ A−s , since (xs, z−s)Pj (y

s, z−s) and (xs, z−s)P ′
j (y

s, z−s), 
it is true that there exists as ∈ {xs, ys} such that as /∈ {x̄s , ȳs}. Therefore, item 2(iii) of 
Lemma 8 and the hypothesis imply ϕ(as ,z−s )(Pi, P ′

j , P−{i,j}) = ϕ(as ,z−s )(Pi, Pj , P−{i,j}) =
ϕ(as ,z−s )(P

′
i , Pj , P−{i,j}) = ϕ(as ,z−s )(P

′
i , P

′
j , P−{i,j}), as required.

Next, assume τ �= s. Given z−s ∈ A−s , either one of two cases occurs: (i) There
exists as ∈ {xs, ys} such that (as, z−s) /∈ (x̄τ , A−τ ) ∪ (ȳτ , A−τ ), or (ii) (xs, z−s),

(ys, z−s) ∈ (x̄τ , A−τ ) ∪ (ȳτ , A−τ ). In the first case, item 2(iii) of Lemma 8 and the hypoth-
esis imply ϕ(as ,z−s )(Pi, P ′

j , P−{i,j}) = ϕ(as ,z−s )(Pi, Pj , P−{i,j}) = ϕ(as ,z−s )(P
′
i , Pj , P−{i,j}) =

ϕ(as ,z−s )(P
′
i , P

′
j , P−{i,j}), as required. If the second case occurs, it must be either (xs, z−s) =

(xs, x̄τ , z−{s,τ }) and (ys, z−s) = (ys, x̄τ , z−{s,τ }), or (xs, z−s) = (xs, ȳτ , z−{s,τ }) and (ys, z−s) =
(ys, ȳτ , z−{s,τ }).

Given (xs, z−s) = (xs, x̄τ , z−{s,τ }) and (ys, z−s) = (ys, x̄τ , z−{s,τ }), by item 2(ii) of Lemma 8
and the hypothesis, we have∑

āτ ∈{x̄τ ,ȳτ } ϕ(xs ,āτ ,z−{s,τ })
(
Pi,P

′
j ,P−{i,j}

) =
∑

āτ ∈{x̄τ ,ȳτ } ϕ(xs ,āτ ,z−{s,τ })
(
Pi,Pj ,P−{i,j}

)
=

∑
āτ ∈{x̄τ ,ȳτ } ϕ(xs ,āτ ,z−{s,τ })

(
P ′

i , Pj ,P−{i,j}
)

=
∑

āτ ∈{x̄τ ,ȳτ } ϕ(xs ,āτ ,z−{s,τ })
(
P ′

i , P
′
j ,P−{i,j}

)
.

Furthermore, since item 2(i) of Lemma 8 implies

ϕ(xs ,x̄τ ,z−{s,τ })(Pi,P
′
j ,P−{i,j}) ≥ϕ(xs ,x̄τ ,z−{s,τ })(P

′
i , P

′
j ,P−{i,j}), and

ϕ(xs ,ȳτ ,z−{s,τ })(Pi,P
′
j ,P−{i,j}) ≥ϕ(xs ,ȳτ ,z−{s,τ })(P

′
i , P

′
j ,P−{i,j}),

we have ϕ(xs,z−s )( Pi, P ′
j , P−{i,j}) ≡ϕ(xs ,x̄τ ,z−{s,τ })( Pi, P ′

j , P−{i,j}) =ϕ(xs ,x̄τ ,z−{s,τ })( P
′
i , P

′
j , P−{i,j})

≡ ϕ(xs ,z−s )(P
′
i , P

′
j , P−{i,j}), as required.

Given (xs, z−s) = (xs, ȳτ , z−{s,τ }) and (ys, z−s) = (ys, ȳτ , z−{s,τ }), by item 2(ii) of Lemma 8
and the hypothesis, we have∑

āτ ∈{x̄τ ,ȳτ } ϕ(ys ,āτ ,z−{s,τ })
(
Pi,P

′
j ,P−{i,j}

) =
∑

āτ ∈{x̄τ ,ȳτ } ϕ(ys ,āτ ,z−{s,τ })
(
Pi,Pj ,P−{i,j}

)
=

∑
āτ ∈{x̄τ ,ȳτ } ϕ(ys ,āτ ,z−{s,τ })

(
P ′

i , Pj ,P−{i,j}
)

=
∑

āτ ∈{x̄τ ,ȳτ } ϕ(ys ,āτ ,z−{s,τ })
(
P ′

i , P
′
j ,P−{i,j}

)
.

Furthermore, since item 2(i) of Lemma 8 implies

ϕ(ys ,x̄τ ,z−{s,τ })(Pi,P
′
j ,P−{i,j}) ≤ϕ(ys ,x̄τ ,z−{s,τ })(P

′
i , P

′
j ,P−{i,j}), and

ϕ(ys ,ȳτ ,z−{s,τ })(Pi,P
′
j ,P−{i,j}) ≤ϕ(ys ,ȳτ ,z−{s,τ })(P

′
i , P

′
j ,P−{i,j}),
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we have ϕ(ys,z−s )( Pi, P ′
j , P−{i,j}) ≡ϕ(ys ,x̄τ ,z−{s,τ })( Pi, P ′

j , P−{i,j}) =ϕ(ys ,x̄τ ,z−{s,τ })( P
′
i , P

′
j , P−{i,j})

≡ ϕ(ys ,z−s )(P
′
i , P

′
j , P−{i,j}), as required. �

Now, we start to prove Proposition 2. Let domain D be connected+. If N = 1, it is evident 
that unanimity implies the tops-only property.45 Next, we provide an induction argument on the 
number of voters.

Induction Hypothesis: Given N ≥ 2, every unanimous and sd-strategy-proof RSCF φ : Dn →
�(A) with 1 ≤ n < N satisfies the tops-only property.

Given a unanimous and sd-strategy-proof RSCF ϕ : DN → �(A), we show that ϕ satisfies 
the tops-only property. According to the Interior+ property, it suffices to show that fixing i ∈ I , 
for all Pi, P ′

i ∈ D with r1(Pi) = r1(P
′
i ) and either Pi ∼ P ′

i or Pi ∼+ P ′
i and P−i ∈ DN−1, we 

have ϕ(Pi, P−i ) = ϕ(P ′
i , P−i ).

We first induce an (N −1)-voter RSCF. Fixing j ∈ I\{i}, let φ(Pi, P−{i,j}) =ϕ(Pi, Pi, P−{i,j})
for all Pi ∈ D and P−{i,j} ∈ DN−2. It is evident that φ is a well-defined RSCF satisfying 
unanimity and sd-strategy-proofness. Hence, the induction hypothesis implies that φ satisfies 
the tops-only property. Henceforth, we fix Pi, P ′

i ∈ D with r1(Pi) = r1(P
′
i ) ≡ x∗ and either 

Pi ∼ P ′
i or Pi ∼+ P ′

i , and P−{i,j} ∈ DN−2. We show ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′
i , Pj , P−{i,j}) for 

all Pj ∈ D.
The lemma below implies that if r1(Pj ) = x∗, then ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′

i , Pj , P−{i,j}).

Lemma 12. Given Pj , P ′
j ∈D with r1(Pj ) = r1(P

′
j ) = x∗, we have

(i) ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′
i , Pj , P−{i,j}) and ϕ(Pi, P ′

j , P−{i,j}) = ϕ(P ′
i , P

′
j , P−{i,j});

(ii) ϕ(Pi, Pj , P−{i,j}) = ϕ(Pi, P ′
j , P−{i,j}) and ϕ(P ′

i , Pj , P−{i,j}) = ϕ(P ′
i , P

′
j , P−{i,j}).

Proof. Given P−{i,j} ∈DN−2, by sd-strategy-proofness, we have that for every 1 ≤ l ≤ |A|,∑l
k=1 ϕrk(Pi )(Pj ,Pj ,P−{i,j})≤∑l

k=1 ϕrk(Pi )(Pi,Pj ,P−{i,j})≤∑l
k=1 ϕrk(Pi )(Pi,Pi,P−{i,j}),∑l

k=1 ϕrk(P
′
i )

(Pj ,Pj ,P−{i,j})≤∑l
k=1 ϕrk(P

′
i )

(P ′
i , Pj ,P−{i,j})≤∑l

k=1 ϕrk(P
′
i )

(P ′
i , P

′
i , P−{i,j}),

}

(1)

∑l
k=1 ϕrk(Pi )(P

′
j ,P

′
j ,P−{i,j})≤∑l

k=1 ϕrk(Pi )(Pi,P
′
j ,P−{i,j})≤∑l

k=1 ϕrk(Pi )(Pi,Pi,P−{i,j}),∑l
k=1 ϕrk(P

′
i )

(P ′
j ,P

′
j ,P−{i,j})≤∑l

k=1 ϕrk(P
′
i )

(P ′
i , P

′
j ,P−{i,j})≤∑l

k=1 ϕrk(P
′
i )

(P ′
i , P

′
i , P−{i,j}),

}

(2)

∑l
k=1 ϕrk(Pj )(Pi,Pi,P−{i,j})≤∑l

k=1 ϕrk(Pj )(Pi,Pj ,P−{i,j})≤∑l
k=1 ϕrk(Pj )(Pj ,Pj ,P−{i,j}),∑l

k=1 ϕrk(P
′
j )(Pi,Pi,P−{i,j})≤∑l

k=1 ϕrk(P
′
j )(Pi,P

′
j ,P−{i,j})≤∑l

k=1 ϕrk(P
′
j )(P

′
j ,P

′
j ,P−{i,j}),

}

(3)

∑l
k=1 ϕrk(Pj )(P

′
i , P

′
i , P−{i,j})≤∑l

k=1 ϕrk(Pj )(P
′
i , Pj ,P−{i,j})≤∑l

k=1 ϕrk(Pj )(Pj ,Pj ,P−{i,j}),∑l
k=1 ϕrk(P

′
j )(P

′
i , P

′
i , P−{i,j})≤∑l

k=1 ϕrk(P
′
j )(P

′
i , P

′
j ,P−{i,j})≤∑l

k=1 ϕrk(P
′
j )(P

′
j ,P

′
j ,P−{i,j}).

}

(4)

45 We follow Chatterji and Sen (2011) and add the case N = 1 just to simplify the proof.
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In Inequalities (1), since ϕ(Pj , Pj , P−{i,j}) ≡φ(Pj , P−{i,j}) =φ(Pi, P−{i,j}) ≡ϕ(Pi, Pi, P−{i,j})
and ϕ(Pj , Pj , P−{i,j}) ≡ φ(Pj , P−{i,j}) = φ(P ′

i , P−{i,j}) ≡ ϕ(P ′
i , P

′
i , P−{i,j}) by the induc-

tion hypothesis, it is true that ϕ(Pi, Pj , P−{i,j}) = ϕ(Pj , Pj , P−{i,j}) = ϕ(P ′
i , Pj , P−{i,j}). This 

proves the first part of item (i). Symmetrically, by Inequalities (2), (3), (4) and the induction 
hypothesis, we complete the verification of the lemma. �

Henceforth, we fix Pj ∈ D with r1(Pj ) �= x∗. The lemma below considers the situation Pi ∼
P ′

i .

Lemma 13. Let Pi ∼ P ′
i and �(Pi, P ′

i ) =
{{a, b}}. Given Pj ∈ D with r1(Pj ) �= x∗, we have 

ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′
i , Pj , P−{i,j}).

Proof. We assume w.l.o.g. that aPjb. The verification related to the case bPja is symmetric and 
we hence omit it. Now, by the Exterior+ property, we have a path {P k

j }tk=1 ⊆ D connecting Pi

and Pj such that aP k
j b for all 1 ≤ k ≤ t .46 Since ϕ(Pi, P 1

j , P−{i,j}) = ϕ(P ′
i , P

1
j , P−{i,j}) by item 

(i) of Lemma 12, following the path from P 1
j to P t

j = Pj , and repeatedly applying Lemma 10, 
we eventually have ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′

i , Pj , P−{i,j}). �
Now, to complete the verification, we consider the situation Pi ∼+ P ′

i .

Lemma 14. Let Pi ∼+ P ′
i and �(Pi, P ′

i ) =
{{(xs, z−s), (ys, z−s)}}

z−s∈A−s . Given Pj ∈ D with 
r1(Pj ) �= x∗, we have ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′

i , Pj , P−{i,j}).

Proof. Given an arbitrary z−s ∈ A−s , we assume w.l.o.g. that (xs, z−s)Pj (y
s, z−s). The veri-

fication related to the case (ys, z−s)Pj (x
s, z−s) is symmetric, and we hence omit it. Accord-

ing to the Exterior+ property, we have a path {P k
j }tk=1 ⊆ D connecting Pi and Pj such that 

(xs, z−s)P k
j (ys, z−s) for all 1 ≤ k ≤ t .47 Evidently, ϕ(Pi, P 1

j , P−{i,j}) = ϕ(P ′
i , P

1
j , P−{i,j}) by 

item (i) of Lemma 12. We introduce another induction argument.

The Secondary Induction Hypothesis: Given 1 < k ≤ t , for all 1 ≤ k′ < k, we have
ϕ(Pi, P k′

j , P−{i,j}) = ϕ(P ′
i , P

k′
j , P−{i,j}).

We show ϕ(Pi, P k
j , P−{i,j}) = ϕ(P ′

i , P
k
j , P−{i,j}). First, we know either P k−1

j ∼+ P k
j or 

P k−1
j ∼ P k

j . Assume P k−1
j ∼+ P k

j . Thus, P k−1
j and P k

j are separable preferences. Since 

(xs, z−s)P k−1
j (ys, z−s) and (xs, z−s)P k

j (ys, z−s), separability implies (xs, z−s)P k−1
j (ys, z−s)

and (xs, z−s)P k
j (ys, z−s) for all z−s ∈ A−s . Consequently, by Lemma 11, ϕ(Pi, P

k−1
j , P−{i,j}) =

ϕ(P ′
i , P

k−1
j , P−{i,j}) implies ϕ(Pi, P k

j , P−{i,j}) = ϕ(P ′
i , P

k
j , P−{i,j}), as required.

Next, assume P k−1
j ∼ P k

j and �(P k−1
j , P k

j ) = {{a, b}} (note that aP k−1
j !b and bP k

j !a). 

Thus, Lemma 9 implies r1(P
k−1
j ) = r1(P

k
j ) ≡ x and x /∈ {a, b}. We consider two situations: 

x = x∗ and x �= x∗. First, if x = x∗, then item (i) of Lemma 12 implies ϕ(Pi, P k
j , P−{i,j}) =

46 If bPj a, we have a path {Pk
j
}t
k=1 ⊆D connecting P ′

i
and Pj such that bP k

j
a for all 1 ≤ k ≤ t .

47 If (ys , z−s )Pj (xs , z−s ), we have a path {Pk
j
}t
k=1 ⊆D connecting P ′

i
and Pj such that (ys , z−s )P k

j
(xs , z−s ) for all 

1 ≤ k ≤ t .
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ϕ(P ′
i , P

k
j , P−{i,j}). Second, assume x �= x∗. Assume w.l.o.g. that aPib. The verification related 

to the case bPia is symmetric, and we hence omit it. Thus, the Exterior+ property implies that 
there exists a path {P k

i }qk=1 ⊆ D connecting P k−1
j and Pi such that aP k

i b for all 1 ≤ k ≤ q .48

Since ϕ(P 1
i , P k−1

j , P−{i,j}) = ϕ(P 1
i , P k

j , P−{i,j}) by item (ii) of Lemma 12, following the 

path {P k
i }qk=1 from P 1

i to P q
i = Pi , and repeatedly applying Lemma 10, we eventually have 

ϕ(Pi, P
k−1
j , P−{i,j}) = ϕ(Pi, P k

j , P−{i,j}).49 Analogously, we also have ϕ(P ′
i , P

k−1
j , P−{i,j}) =

ϕ(P ′
i , P

k
j , P−{i,j}).50 Last, by the secondary induction hypothesis, ϕ(Pi, P

k−1
j , P−{i,j}) =

ϕ(P ′
i , P

k−1
j , P−{i,j}) implies ϕ(Pi, P k

j , P−{i,j}) = ϕ(P ′
i , P

k
j , P−{i,j}). This completes the verifi-

cation of the secondary induction hypothesis. Therefore, ϕ(Pi, Pj , P−{i,j}) =
ϕ(P ′

i , Pj , P−{i,j}). �
Finally, by Lemmas 13 and 14, we have ϕ(Pi, Pj , P−{i,j}) = ϕ(P ′

i , Pj , P−{i,j}) for all Pj ∈D. 
This completes the verification of the induction hypothesis and hence proves Proposition 2.

Appendix C. Proof of Theorem 2

First, by the verification of the sufficiency part of Theorem 1, we know that all multidimen-
sional projection rules are unanimous, anonymous and sd-strategy-proof on the multidimensional 
single-peaked domain. Therefore, we focus on the necessity part of Theorem 2.

Let D be a minimally rich and connected+ domain. Let f̄ :DN → A be a unanimous, anony-
mous and sd-strategy-proof DSCF. First, Proposition 2 implies that f̄ satisfies the tops-only 
property. Next, note that we establish all Lemmas 1, 5, 6 and 7 in the proof of the necessity part 
of Theorem 1 without referring to any RSCFs. These lemmata therefore remain valid for the 
DSCF f̄ . Therefore, to complete the verification, we only need to use f̄ and its induced DSCFs 
to prove the results of Lemmas 3 and 4.

There are two cases: N is an even integer, and N is an odd integer. If N is an even integer, 
we separate I into Î = {1, . . . , N2 } and Ī = {N

2 + 1, . . . , N}, and similar to the proof of the 
necessity part of Theorem 1, we induce a two-voter DSCF f̂ : D2 → A which is unanimous, 
anonymous, tops-only and sd-strategy-proof. If N is an odd integer, we separate I into three 
subgroups Î = {1, 2, . . . , N−1

2 }, Ī = {N+1
2 , . . . , N − 1} and I\[Î ∪ Ī ] = {N}, and induce the 

following three DSCFs: For all Pi, Pj , PN ∈ D,

f (Pi,Pj ,PN) = f̄
( Pi

Î
,

Pj

Ī
,PN

)
,

g(Pi,Pj ) = f (Pi,Pj ,Pj ) and h(Pi,PN) = f (Pi,Pi,PN).

Note that f is unanimous, tops-only and sd-strategy-proof, and satisfies constrained anonymity: 
f (Pi, Pj , PN) = f (Pj , Pi, PN) for all Pi, Pj , PN ∈ D, while both DSCFs g and h are unani-

48 If bPia, we have a path {Pk
i
}q
k=1 ⊆D connecting Pk

j
and Pi such that bP k

i
a for all 1 ≤ k ≤ q .

49 To apply Lemma 10 here, we need to make a notational change on the expression of Lemma 10 by switching voters 
i and j : Let Pj ∼ P ′

j
and �(Pj , P ′

j
) = {{a, b}}. Let Pi ∼ P ′

i
or Pi ∼+ P ′

i
. Assume that either aPib and aP ′

i
b, or bPia

and bP ′
i
a. We have 

[
ϕ(Pi , Pj , P−{i,j}) = ϕ(Pi , P ′

j
, P−{i,j})

] ⇒ [
ϕ(P ′

i
, Pj , P−{i,j}) = ϕ(P ′

i
, P ′

j
, P−{i,j})

]
.

50 If aP ′
i
b, then by the Exterior+ property, we have a path connecting Pk−1

j
and P ′

i
along which each preference ranks 

a above b. If bP ′
i
a, then by the Exterior+ property, we have a path connecting Pk

j
and P ′

i
along which each preference 

ranks b above a. Then, by a similar argument, we can show ϕ(P ′
i
, Pk−1

j
, P−{i,j}) = ϕ(P ′

i
, Pk

j
, P−{i,j}).
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mous, tops-only and sd-strategy-proof. The verification for the case of an even number of voters 
is significantly simpler. Henceforth, we assume that N is an odd integer, and establish lemmas 
accordingly. To make clear that our proof applies to the case of an even number of voters as well, 
we provide a paragraph at the end of each lemma to explain how the proof can be adapted to the 
two-voter DSCF f̂ .

We first provide an intermediate step which will be repeatedly applied in the subsequent veri-
fication.

Lemma 15. The following three statements hold:

1. Given a, x, y, z ∈ A, if f (x, y, a) = y, f (y, z, a) = z and y ∼+ z, then f (x, z, a) = z.
2. Let {xk}tk=1 ⊆ (As, x−s) be an adjacent+ sequence. Given a, y ∈ A, if f (x1, y, a) =

(xs
1, z

−s) for some z−s ∈ A−s , then f (xl, y, a) ∈ {(xs
k, z

−s)}lk=1 for all l = 1, . . . , t .
3. Let {xk}tk=1 ⊆ (As, z−s) be an adjacent+ sequence. Given a ∈ A, if f (x1, x1, a) = x1 and 

f (xt , xt , a) = xt , then f (xk, xk, a) = xk for all k = 1, . . . , t .

Proof. Since z ∼+ y and f (x, y, a) = y, sd-strategy-proofness implies f (x, z, a) ∈ {y, z}. If 
f (x, z, a) = y, sd-strategy-proofness implies f (y, z, a) = y which contradicts the hypothesis 
f (y, z, a) = z. Therefore, f (x, z, a) = z. This completes the verification of the first statement.

Since f (x1, y, a) = (xs
1, z

−s), we adopt an induction hypothesis: Given 1 < k ≤ t , for all 
1 ≤ k′ < k, we have f (xk′ , y, a) ∈ {(xs

1, z
−s), (xs

2, z
−s), . . . , (xs

k′ , z−s)}. We show f (xk, y, a) ∈
{(xs

1, z
−s), (xs

2, z
−s), . . . , (xs

k, z
−s)}. Since xk−1 ∼+ xk , we have Pi ∈ Dxk−1 and P ′

i ∈ Dxk

with Pi ∼+ P ′
i . Note that {(xs

k−1, z
−s), (xs

k, z
−s)} ∈ �(Pi, P ′

i ). If f (Pi, y, a) = (xs
l , z

−s) where 
l < k−1 by the induction hypothesis, item 2(iii) of Lemma 8 implies f (xk, y, a) = f (P ′

i , y, a) =
f (Pi, y, a) = (xs

l , z
−s). If f (Pi, y, a) = (xs

k−1, z
−s) by the induction hypothesis, item 2(ii) of 

Lemma 8 implies f (xk, y, a) = f (P ′
i , y, a) ∈ {(xs

k−1, z
−s), (xs

k, z
−s)}. This completes the veri-

fication of the induction hypothesis, and hence proves the second statement.
To verify the third statement, we refer to DSCF h, and have h(x1, a) = f (x1, x1, a) = x1

and h(xt , a) = f (xt , xt , a) = xt . Similar to the verification of Statement 2, we have h(xk, a) ∈
{x1, x2, . . . , xk} for all k = 1, . . . , t . Given 1 < k < t , suppose h(xk, a) �= xk . Thus, h(xk, a) = xl

for some 1 ≤ l < k. Following the sequence {xk}tk=1 from xk to xt , since xs
l /∈ {xs

ν, x
s
ν+1} for all 

ν = k, . . . , t − 1, by repeatedly applying item 2(iii) of Lemma 8, we eventually have h(xt , a) =
xl . Contradiction! Therefore, f (xk, xk, a) = h(xk, a) = xk . This proves the third statement. �

In order to adapt the proof to the case of an even number of voters, we erase alternative a in 
each preference profile in Lemma 15; it is evident that the first two statements of Lemma 15 still 
hold under f̂ while the third statement follows directly from the unanimity of f̂ .

Next, we replicate the conclusion of Lemma 3.

Lemma 16. Given s ∈ M and x−s ∈ A−s , G∼+
(
(As, x−s)

)
is a tree.

Proof. Suppose not, i.e., by Lemma 1, there exists a cycle {xk}tk=1 ⊆ (As, x−s), t ≥ 3, such that 
xk ∼+ xk+1 for all k = 1, . . . , t , where xt+1 = x1. Start from profile (x1, x2). First, by unanim-
ity and sd-strategy-proofness, x1 ∼+ x2 implies f (x1, x2, x2) ∈ {x1, x2}. We consider two cases 
separately: f (x1, x2, x2) = x1 and f (x1, x2, x2) = x2, and induce a contradiction in each case.

First, assume f (x1, x2, x2) = x1. We recall DSCF g. Thus, g(x1, x2) = f (x1, x2, x2) = x1. 
We claim f (xk, xk′, xk′) = g(xk, xk′) = xk for all 1 ≤ k < k′ ≤ t . We introduce an induction 
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hypothesis: Given 2 < l ≤ t , for all 1 ≤ k < k′ < l, we have g(xk, xk′) = xk . To verify the 
induction hypothesis, it suffices to show g(xk, xl) = xk for all 1 ≤ k < l. We consider two 
situations: (1) k < l − 1 and (2) k = l − 1. In situation (1), the induction hypothesis implies 
g(xk, xl−1) = xk . Furthermore, since xl ∼+ xl−1 and xs

k /∈ {xs
l−1, x

s
l }, item 2(iii) of Lemma 8

implies g(xk, xl) = xk . Next, assume that situation (2) occurs. Since g(xl−2, xl) = xl−2 by situa-
tion (1) and xl−1 ∼+ xl−2, sd-strategy-proofness implies g(xl−1, xl) ∈ {xl−2, xl−1}. Meanwhile, 
since xl−1 ∼+ xl , unanimity and sd-strategy-proofness imply g(xl−1, xl) ∈ {xl−1, xl}. Therefore, 
it is true that g(xl−1, xl) = xl−1. This completes the verification of the induction hypothesis. 
Thus, f (xk, xk′, xk′) = xk for all 1 ≤ k < k′ ≤ t . Now, we have f (xt , x2, xt ) = f (x2, xt , xt ) = x2

by constrained anonymity. Then, sd-strategy-proofness implies f (xt , x2, x2) = x2. Furthermore, 
since xt ∼+ x1 and xs

2 /∈ {xs
t , x

s
1}, item 2(iii) of Lemma 8 implies f (x1, x2, x2) = x2. This con-

tradicts the hypothesis f (x1, x2, x2) = x1. Therefore, G∼+
(
(As, x−s)

)
must be a tree in the case 

f (x1, x2, x2) = x1.
Next, assume f (x1, x2, x2) = x2. Since x1 ∼+ x2, by unanimity and sd-strategy-proofness, we 

also know f (x2, x1, x1) ∈ {x1, x2}. If f (x2, x1, x1) = x2, we can relabel the cycle as {zk}tk=1 such 
that z1 = x2, z2 = x1 and zk = xt+3−k for all k = 3, . . . , t . Thus, f (z1, z2, z2) = f (x2, x1, x1) =
x2 = z1. Then, by the same argument in the second paragraph, we induce a contradiction.

Therefore, we further assume f (x2, x1, x1) = x1. We recall DSCF g. Thus, g(x1, x2) = x2 and 
g(x2, x1) = x1. We claim g(xk′, xk) = xk for all 1 ≤ k, k′ ≤ t . We introduce an induction hypoth-
esis: Given 2 < l ≤ t , for all 1 ≤ k, k′ < l, we have g(xk, xk′) = xk′ . To verify the induction hy-
pothesis, it suffices to show g(xk, xl) = xl and g(xl, xk) = xk for all 1 ≤ k ≤ l. If k = l, the result 
follows from the axiom of unanimity. Next, assume k < l − 1, the induction hypothesis implies 
g(xk, xl−1) = xl−1 and g(xl−1, xk) = xk . According to g(xl−1, xk) = xk , since xl ∼+ xl−1 and 
xs
k /∈ {xs

l−1, x
s
l }, item 2(iii) of Lemma 8 implies g(xl, xk) = xk . According to g(xk, xl−1) = xl−1, 

since xl ∼+ xl−1, sd-strategy-proofness implies g(xk, xl) ∈ {xl−1, xl}. Suppose g(xk, xl) = xl−1. 
We refer to the counter clockwise sequence {xk, xk−1, . . . , x1, xt , xt−1, . . . , xl+1, xl} from xk

to xl which excludes xl−1. For all xη and xκ in the counter clockwise sequence with xη ∼+
xκ , we know xs

l−1 /∈ {xs
η, x

s
κ}. Therefore, by repeatedly applying item 2(iii) of Lemma 8, 

we have xl−1 = g(xk, xl) = g(xk−1, xl) = · · · = g(x1, xl) = g(xt , xl) = g(xt−1, xl) = · · · =
g(xl+1, xl) = g(xl, xl) which contradicts unanimity. Therefore, g(xk, xl) = xl . Last, assume 
k = l − 1. Since l > 2, we know g(xl−2, xl) = xl and g(xl, xl−2) = xl−2. According to 
g(xl−2, xl) = xl , since xl−1 ∼+ xl−2 and xs

l /∈ {xs
l−1, x

s
l−2}, item 2(iii) of Lemma 8 implies 

g(xl−1, xl) = xl . According to g(xl, xl−2) = xl−2, since xl−1 ∼+ xl−2, sd-strategy-proofness 
implies g(xl, xl−1) ∈ {xl−2, xl−1}. Meanwhile, since xl−1 ∼+ xl , unanimity and sd-strategy-
proofness imply g(xl, xl−1) ∈ {xl−1, xl}. Therefore, we have g(xl, xl−1) = xl−1. This completes 
the verification of the induction hypothesis. Hence, g(xk′, xk) = xk for all 1 ≤ k, k′ ≤ t .

Now, we have f (xt , x2, x2) = g(xt , x2) = x2. Since x1 ∼+ x2, sd-strategy-proofness im-
plies f (xt , x2, x1) ∈ {x1, x2}. We show that both cases f (xt , x2, x1) = x1 and f (xt , x2, x1) =
x2 are invalid. Suppose f (xt , x2, x1) = x2. Since xt ∼+ x1 and xs

2 /∈ {xs
1, x

s
t }, constrained 

anonymity and item 2(iii) of Lemma 8 imply f (x2, x1, x1) = f (x1, x2, x1) = x2, which con-
tradicts the hypothesis f (x2, x1, x1) = x1. Suppose f (xt , x2, x1) = x1. On the one hand, we 
refer to the counter clockwise sequence {xt , xt−1, . . . , x3, x2} from xt to x2 which excludes 
x1. For all xη and xκ in the counter clockwise sequence with xη ∼+ xκ , we know xs

1 /∈
{xs

η, x
s
κ}. Then, by repeatedly applying item 2(iii) of Lemma 8, we have x1 = f (xt , x2, x1) =

f (xt−1, x2, x1) = · · · = f (x3, x2, x1) = f (x2, x2, x1). Thus, f (x2, x2, x1) = x1. On the other 
hand, by anonymity of f̄ and the hypothesis f (x1, x2, x2) = x2, we have f̄

(
x1

Î\{i} , x2, 
x2
Ī

, x1
) =
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f̄
(

x1

Î\{i} , x1, 
x2
Ī

, x2
) ≡ f̄

(
x1

Î
, x2

Ī
, x2

) = f (x1, x2, x2) = x2. Then, sd-strategy-proofness implies 

f (x2, x2, x1) ≡ f̄
(

x2

Î\{i} , x2, 
x2
Ī

, x1
) = x2. Contradiction! Therefore, G∼+

(
(As, x−s)

)
must be a 

tree in the case f (x1, x2, x2) = x2. This completes the verification of the lemma. �
For the case of an even number of voters, we prove the result of Lemma 16 simply by erasing 

the third element in each preference profile of f , and changing f and g to f̂ in the first three 
paragraphs of the proof of Lemma 16. The remaining paragraphs in the proof of Lemma 16 are 
omitted.

Lemma 17. Given an adjacent+ sequence {xk}qk=1 ⊆ (As, x−s) and Pi ∈Dx1 , we have xkPixk+1
for all k = 1, . . . , q − 1.

Proof. Suppose xk+1Pixk for some 1 ≤ k < q . It is evident 1 < k < q . Pick an arbitrary 
P ′

i ∈ Dxk+1 by minimal richness. By the no-detour property, we have a path {P l
i }pl=1 ⊆ D(As,x−s )

connecting Pi and P ′
i such that xk+1P

l
i xk for all l = 1, . . . , p. Evidently, r1(P

l
i ) �= xk for all 

1 ≤ l ≤ p. Then, by the proof of Lemma 1, we elicit an adjacent+ sequence connecting x1 and 
xk+1 from {P l

i }pl=1 which excludes xk . This contradicts Lemma 16. Therefore, xkPixk+1 for all 
k = 1, . . . , q − 1. �

The verification of Lemma 17 has nothing related to the number of voters, and applies to both 
the odd and even cases.

Before proceeding further with the proof, we note that the order of Lemmas 2 and 3 is opposite 
to the order of Lemmas 16 and 17, which arises mainly from the difference between the random 
setting and the deterministic one. In the random setting, the preference restriction in Lemma 2 is 
simply induced from the compromise property of the RSCF, and Lemma 3 is proved by the RSCF 
characterization result in Lemma 2. In the deterministic case, Lemma 16 (identical to Lemma 3) 
is proved using mainly the anonymity of the DSCF, and the preference restriction in Lemma 17
(the counterpart of Lemma 2) is elicited from the result of Lemma 16 and the richness condition 
of connectedness+.

We fix four alternatives: a = (xs, xτ , z−{s,τ }), b = (ys, yτ , z−{s,τ }), c = (xs, yτ , z−{s,τ }) and 
d = (ys, xτ , z−{s,τ }) where xs �= ys and xτ �= yτ . Assume a ∼+ c and a ∼+ d . Let {xk}pk=1 ⊆
(ys, Aτ , z−{s,τ }) denote the adjacent+ sequence connecting b ≡ x1 and d ≡ xp , and {yk}qk=1 ⊆
(As, yτ , z−{s,τ }) denote the adjacent+ sequence connecting b ≡ y1 and c ≡ yq (recall Fig. 2).

Lemma 18. Given a ∼+ c and a ∼+ d , we have [b ∼+ d] ⇔ [b ∼+ c].

Proof. Assume b ∼+ d . We show b ∼+ c. Suppose not, i.e., q > 2. Fixing an arbitrary 1 < k <

q , Lemma 17 implies ykPic for all Pi ∈ Db and ykP̂ib for all P̂i ∈ Dc. Since ys
k /∈ {xs, ys}, we 

induce an alternative x∗ ≡ (ys
k, x

τ , z−{s,τ }) ∈ A\{a, d}. Thus, a, d, x∗ ∈ (As, xτ , z−{s,τ }). Since 
a ∼+ d , by Lemma 16, there exists an adjacent+ sequence {zk

k}ηk=1 ⊆ (As, xτ , z−{s,τ }) such that 
one of the following two cases occurs:

(1) {zk
k}ηk=1 connects d and x∗, and includes a (see Fig. 7(1)).

(2) {zk
k}ηk=1 connects d and x∗, and excludes d (see Fig. 7(2)).

In each case, we induce a contradiction.
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Fig. 7. Two cases for the adjacent+ sequence {zk
k
}η
k=1 connecting d and x∗.

Fig. 8. Four situations. Taking the first diagram of Fig. 8 as an example, the arrow “a → c” represents that a ∼+ c and 
f (a, c, a) = f (c, a, a) = c.

In case (1), Lemma 17 implies aP ′
i x

∗ for all P ′
i ∈ Dd . Since b ∼+ d , we have two sep-

arable preferences P̄i ∈ Db and P̄ ′
i ∈ Dd with Pi ∼+ P ′

i . Thus, �(P̄i , P̄ ′
i ) =

{{(yτ , z−τ ),

(xτ , z−τ )}}
z−τ ∈A−τ . Note that ykP̄ic and aP̄ ′

i x
∗. Since yk ≡ (ys

k, y
τ , z−{s,τ })P̄i(x

s, yτ , z−{s,τ }) ≡
c, separability implies x∗ ≡ (ys

k, x
τ , z−{s,τ })P̄i(x

s, xτ , z−{s,τ }) ≡ a. Thus, x∗P̄ia and aP̄ ′
i x

∗. 
Hence, 

{
(ys

k, x
τ , z−{s,τ }), (xs, xτ , z−{s,τ })

} ∈ �(P̄i, P̄ ′
i ). Contradiction! Therefore, b ∼+ c.

In case (2), Lemma 17 implies dP ′
i x

∗ for all P ′
i ∈ Da . Since c ∼+ a, we have two sep-

arable preferences P̄i ∈ Dc and P̄ ′
i ∈ Da with Pi ∼+ P ′

i . Thus, �(P̄i , P̄ ′
i ) =

{{(yτ , z−τ ),

(xτ , z−τ )}}
z−τ ∈A−τ . Note that ykP̄ib and dP̄ ′

i x
∗. Since yk ≡ (ys

k, y
τ , z−{s,τ })P̄i(y

s, yτ , z−{s,τ }) ≡
b, separability implies x∗ ≡ (ys

k, x
τ , z−{s,τ })P̄i(y

s, xτ , z−{s,τ }) ≡ d . Thus, x∗P̄id and dP̄ ′
i x

∗. 
Hence, 

{
(ys

k, x
τ , z−{s,τ }), (ys, xτ , z−{s,τ })

} ∈ �(P̄i, P̄ ′
i ). Contradiction! Therefore, b ∼+ c.

Therefore, we conclude [b ∼+ d] ⇒ [b ∼+ c]. Symmetrically, we can show [b ∼+ d] ⇐
[b ∼+ c]. �

The verification of Lemma 18 has nothing related to the number of voters, and applies to both 
the odd and even cases.

Now, we are ready to prove the equivalent of Lemma 4. Since a ∼+ c and a ∼+ d , by sd-
strategy-proofness and constrained anonymity of f , we have f (a, c, a) = f (c, a, a) ∈ {c, a} and 
f (a, d, a) = f (d, a, a) ∈ {a, d}. Therefore, there are four situations (also see Fig. 8):

Situation 1. f (a, c, a) = f (c, a, a) = c and f (a, d, a) = f (d, a, a) = a.

Situation 2. f (a, c, a) = f (c, a, a) = c and f (a, d, a) = f (d, a, a) = d .

Situation 3. f (a, c, a) = f (c, a, a) = a and f (a, d, a) = f (d, a, a) = d .

Situation 4. f (a, c, a) = f (c, a, a) = a and f (a, d, a) = f (d, a, a) = a.

Note that Situations 1 and 3 are analogous. Therefore, we only consider Situations 1, 2 and 
4. We show that in each situation, b ∼+ c and b ∼+ d . After removing the third element in each 
preference profile of f and switching notation f to f̂ , we establish the counterpart 4 situations 
in the case of an even number of voters.

Lemma 19. In Situation 1, b ∼+ c and b ∼+ d .
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Proof. Since f (d, a, a) = a, f (a, c, a) = c and c ∼+ a, Statement 1 of Lemma 15 implies 
f (d, c, a) = c. By Lemma 18, it suffices to show b ∼+ d . Suppose not, i.e., p > 2. Thus, we 
have xp−1 ≡ (ys, xτ

p−1, z
−{s,t}) and xτ

p−1 /∈ {xτ , yτ }.
CLAIM 1: f (xp, xp−1, a) = f (xp−1, xp, a) = xp .

According to f (xp, c, a) ≡ f (d, c, a) = c, since xp ∼+ xp−1 and cτ = yτ /∈ {xτ
p, xτ

p−1}, item 
2(iii) of Lemma 8 implies f (xp−1, c, a) = c. Next, since a ∼+ c, sd-strategy-proofness implies 
f (xp−1, a, a) ∈ {c, a}. Suppose f (xp−1, a, a) = c. Since xp ∼+ xp−1 and cτ ≡ yτ /∈ {xτ

p, xτ
p−1}, 

item 2(iii) of Lemma 8 implies f (d, a, a) ≡ f (xp, a, a) = f (xp−1, a, a) = c which contradicts 
the hypothesis of Situation 1. Therefore, f (xp−1, a, a) = a. Furthermore, since xp ∼+ a, sd-
strategy-proofness implies f (xp−1, xp, a) ∈ {xp, a}. Suppose f (xp−1, d, a) ≡ f (xp−1, xp, a) =
a. On the one hand, following the sequence {xk}pk=1 from xp−1 to x1 ≡ b, since aτ /∈ {xτ

k , xτ
k−1}

for all k = p − 1, . . . , 2, by repeatedly applying item 2(iii) of Lemma 8, we eventually have 
f (b, d, a) = a. On the other hand, recall f (yq, d, a) ≡ f (c, d, a) = f (d, c, a) = c ≡ yq and the 
sequence {yk}qk=1 (from yq to y1). Statement 2 of Lemma 15 implies f (yk, d, a) ∈ {yl}ql=k for all 
k = 1, . . . , q . Consequently, f (b, d, a) ≡ f (y1, d, a) �= a. Contradiction! Therefore, it must be 
the case f (xp−1, xp, a) = xp . This completes the verification of the claim.

Next, we show f (b, d, a) = d . Since f (xp−1, xp, a) = xp and xτ
p /∈ {xτ

k , xτ
k−1} for all k =

p − 1, . . . , 2, following the sequence {xk}pk=1 from xp−1 to x1 ≡ b, by repeatedly applying item 
2(iii) of Lemma 8, we eventually have f (b, d, a) ≡ f (x1, xp, a) = xp ≡ d . Furthermore, since 
d ∼+ a and f (d, a, a) = a by the hypothesis of Situation 1, Statement 1 of Lemma 15 implies 
f (b, a, a) = a. Pick an arbitrary P̂i ∈ Db . Since r1(P̂i) = b ≡ (ys, yτ , z−{s,τ }), top-separability 
implies c ≡ (xs, yτ , z−{s,τ })P̂i(x

s, xτ , z−{s,τ }) ≡ a. Consequently, by the hypothesis of Situation 
1, we have f (c, a, a) = cP̂ia = f (P̂i , a, a), and hence voter i will manipulate at (P̂i, a, a) via 
P ′

i ∈Dc . Therefore, it must be the case b ∼+ d , as required. �
In order to adapt the proof of Lemma 19 to the case of an even number of voters, we remove 

alternative a in each preference profile of f , and switch f to f̂ .

Lemma 20. In Situation 2, b ∼+ c and b ∼+ d .

Proof. Suppose not, i.e., Lemma 18 implies p > 2 and q > 2.

CLAIM 1: According to sequence {xk}pk=1, we have f (a, b, a) = f (b, a, a) = d .

Since xp ∼+ xp−1, unanimity, constrained anonymity and sd-strategy-proofness imply 
f (xp, xp−1, xp) = f (xp−1, xp, xp) ∈ {xp−1, xp}. Suppose f (xp, xp−1, xp) = f (xp−1, xp,

xp) = xp−1. Meanwhile, since f (a, xp, a) = f (xp, a, a) = xp by the hypothesis of Situa-
tion 2, sd-strategy-proofness implies f (a, xp, xp) = f (xp, a, xp) = xp . According to alterna-
tives xp, xp−1 and a, we induce another alternative x∗ = (xs, xτ

p−1, z
−{s,τ }). Thus, xp ∼+ a, 

xp ∼+ xp−1, f (xp, a, xp) = f (a, xp, xp) = xp and f (xp, xp−1, xp) = f (xp−1, xp, xp) = xp−1
which together formulate an analogy of Situation 1 (see Fig. 9). Consequently, x∗ ∼+ a and 
x∗ ∼+ xp−1 by Lemma 19.

We next show f (a, xp−1, a) = f (xp−1, a, a) = xp−1. Since f (a, xp, a) = xp by the hypoth-
esis of Situation 2 and xp−1 ∼+ xp , sd-strategy-proofness implies f (a, xp−1, a) ∈ {xp−1, xp}. 
Suppose f (a, xp−1, a) = xp . Then, sd-strategy-proofness implies f (xp, xp−1, xp) = xp , which 
contradicts the hypothesis f (xp, xp−1, xp) = xp−1. Therefore, f (a, xp−1, a) = f (xp−1, a, a) =
xp−1.
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Fig. 9. The analogy of Situation 1 on {xp, x∗, xp−1, a}.

We next show f (a, x∗, a) = f (x∗, a, a) = x∗. Since a ∼+ x∗, unanimity and sd-strategy-
proofness imply f (a, x∗, a) ∈ {a, x∗}. Meanwhile, since f (a, xp−1, a) = xp−1 and x∗ ∼+
xp−1, sd-strategy-proofness implies f (a, x∗, a) ∈ {xp−1, x∗}. Therefore, f (a, x∗, a) ∈ {a, x∗} ∩
{xp−1, x∗} = {x∗}, and hence f (a, x∗, a) = x∗.

Note that a, c, x∗ ∈ (xs, Aτ , z−{s,τ }), x∗ ∼+ a and a ∼+ c. According to f (a, c, a) = c by 
the hypothesis of Situation 2, since a ∼+ x∗ and cτ /∈ {aτ , x∗ τ }, item 2(iii) of Lemma 8 im-
plies f (x∗, c, a) = c. Furthermore, since c ∼+ a, sd-strategy-proofness implies f (x∗, a, a) ∈
{a, c} which contradicts f (x∗, a, a) = x∗. Therefore, it must be the case f (xp, xp−1, xp) =
f (xp−1, xp, xp) = xp . Equivalently, f (xp−1, d, d) = d .

For notational convenience, recall DSCF g. We know g(xp−1, d) = f (xp−1, d, d) = d . Next, 
since a ∼+ d , sd-strategy-proofness implies g(xp−1, a) ∈ {a, d}. Suppose g(xp−1, a) = a. Since 
xp−1 ∼+ xp , we have Pi ∈ Dxp−1 and P ′

i ∈ Dxp with Pi ∼+ P ′
i . Note that {x∗, a} ∈ �(Pi, P ′

i ), 
i.e., x∗Pi !a and aP ′

i !x∗. Since g(Pi, a) = a, item 2(i) of Lemma 8 implies g(P ′
i , a) = a. 

Thus, f (d, a, a) = g(d, a) = a which contradicts the hypothesis of Situation 2. Therefore, 
f (xp−1, a, a) = g(xp−1, a) = d . Last, following the sequence {xk}pk=1 from xp−1 to x1 ≡ b, 
since dτ /∈ {xτ

k , xτ
k−1} for all k = p − 1, . . . , 3, 2, by repeatedly applying item 2(iii) of Lemma 8, 

we eventually have f (b, a, a) = d . This completes the verification of the claim.
Symmetric to Claim 1, according to sequence {yk}qk=1 from yq = c to y1 = b, we can show 

f (a, b, a) = f (b, a, a) = c, which contradicts Claim 1. Therefore, it must be the case b ∼+ c

and b ∼+ d . �
In order to adapt the proof of Lemma 20 to the case of an even number of voters, we remove 

the third element in each preference profile of f , and replace f and g by f̂ .
The verification related to Situation 4 is more complicated. First, since a ∼+ d , unanimity 

and sd-strategy-proofness imply f (a, d, d) = f (d, a, d) ∈ {a, d}. We then have to consider two 
separated cases under Situation 4:

(i) DSCF f is invariant at profiles (a, d, d) and (a, d, a), i.e., f (a, d, d) = a = f (a, d, a), and
(ii) DSCF f is variant at profiles (a, d, d) and (a, d, a), i.e., f (a, d, d) = d �= a = f (a, d, a).

Note that in the case of an even number of voters, the hypothesis of Situation 4 coincides with 
the invariant case after removing the third element of each preference profile of f and replacing 
f by f̂ . Therefore, the invariant case arises for both cases of the odd and even number of voters, 
while the variant case only occurs for the case of an odd number of voters.

Lemma 21. In Situation 4, if f is invariant at (a, d, d) and (a, d, a), i.e., f (a, d, d) = a =
f (a, d, a), then b ∼+ c and b ∼+ d .

Proof. By Lemma 18, it suffices to show b ∼+ d . Suppose not, i.e., p > 2. According 
to the adjacent+ sequence {xk}pk=1 ⊆ (ys, Aτ , z−{s,τ }), we replace the element ys in each 
xk by xs , and then construct another sequence of alternatives {x̄k}pk=1 = {(xs, x−s

k )}pk=1 ≡
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Fig. 10. The analogy of Situation 1 or 2 on {xp, x̄p−1, x̄p, xp−1}.

{
(xs, xτ

k , z−{s,τ })
}p

k=1 ⊆ (xs, Aτ , z−{s,τ }). Note that x̄p ≡ (xs, xτ
p, z−{s,τ }) = (xs, xτ , z−{s,τ }) ≡

a, x̄1 ≡ (xs, xτ
1 , z−{s,τ }) = (xs, yτ , z−{s,τ }) ≡ c, and {x̄k}pk=1 may not be an adjacent+ sequence.

We start from xp, x̄p−1, x̄p and xp−1. First, note that xp ∼+ xp−1, xp ∼+ x̄p and f (xp, x̄p, xp)

= f (x̄p, xp, xp) = x̄p by the invariance hypothesis. Second, since xp ∼+ xp−1, unanimity 
and sd-strategy-proofness imply f (xp, xp−1, xp) = f (xp−1, xp, xp) ∈ {xp, xp−1}. Therefore, 
if f (xp, xp−1, xp) = f (xp−1, xp, xp) = xp , then {xp, x̄p−1, x̄p, xp−1} formulate an analogy of 
Situation 1, and if f (xp, xp−1, xp) = f (xp−1, xp, xp) = xp−1, then {xp, x̄p−1, x̄p, xp−1} formu-
late an analogy of Situation 2 (see Fig. 10). Then, by Lemma 19 or 20, we have x̄p−1 ∼+ x̄p and 
x̄p−1 ∼+ xp−1.

Furthermore, we recall DSCF g and claim f (xp−1, x̄p−1, xp−1) = f (x̄p−1, xp−1, xp−1) =
g(x̄p−1, xp−1) = x̄p−1. Since xp−1 ∼+ x̄p−1, unanimity and sd-strategy-proofness imply 
g(x̄p−1, xp−1) ∈ {xp−1, x̄p−1}. Suppose g(x̄p−1, xp−1) = xp−1. On the one hand, since xp ∼+
xp−1, sd-strategy-proofness implies g(x̄p−1, xp) ∈ {xp−1, xp}. On the other hand, by the invari-
ance hypothesis, we know g(x̄p, xp) = f (x̄p, xp, xp) ≡ f (a, d, d) = a ≡ x̄p . Furthermore, since 
x̄p−1 ∼+ x̄p , sd-strategy-proofness implies g(x̄p−1, xp) ∈ {x̄p, x̄p−1}. Contradiction! Therefore, 
f (xp−1, x̄p−1, xp−1) = f (x̄p−1, xp−1, xp−1) = g(x̄p−1, xp−1) = x̄p−1.

Following the adjacent+ sequence {xk}pk=1 from xp−1 to x1 ≡ b, we consecutively consider 
{xk, x̄k−1, x̄k, xk−1} from k = p − 1 to k = 2, and by repeatedly applying the similar argument in 
the two paragraphs right above, we have x̄k−1 ∼+ x̄k , x̄k−1 ∼+ xk−1 and f (xk−1, x̄k−1, xk−1) =
f (x̄k−1, xk−1, xk−1) = x̄k−1 for all k = p − 1, . . . , 2. Eventually, we have c = x̄1 ∼+ x1 = b

which furthermore implies b ∼+ d by Lemma 18. This contradicts the hypothesis p > 2. There-
fore, it must be the case b ∼+ d , as required. �

In order to adapt the result of Lemma 21 to the case of an even number of voters, we remove 
the third element in each preference profile of f , and replace f and g by f̂ . Recall that the 
variant case cannot occur in the case of an even number of voters. Therefore, we have completed 
the verification of the necessity part of Theorem 2 for the case of an even number of voters. The 
remainder of the proof only applies to the case of an odd number of voters.

Lemma 22. In Situation 4, if f is variant at (a, d, d) and (a, d, a), i.e., f (a, d, d) = d �= a =
f (a, d, a), then b ∼+ c and b ∼+ d .

Proof. Suppose not, i.e., Lemma 18 implies p > 2 and q > 2.

CLAIM 1: f (a, c, c) = f (c, a, c) = c.

Since a ∼+ c, unanimity and sd-strategy-proofness imply f (c, a, c) = f (a, c, c) ∈ {a, c}. 
Suppose f (c, a, c) = f (a, c, c) = a. Then, by the hypothesis of Situation 4, we have f (a, c, c) =
a = f (a, c, a). Thus, f is invariant at (a, c, c) and (a, c, a). Consequently, analogous to the proof 
of Lemma 21, we can eventually induce a contradiction! Therefore, f (c, a, c) = f (a, c, c) = c. 
This completes the verification of the claim.

CLAIM 2: f (d, c, a) = f (c, d, a) = a.
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Since a ∼+ c and f (d, a, a) = a by the hypothesis of Situation 4, sd-strategy-proofness 
implies f (d, c, a) ∈ {a, c}. Symmetrically, since d ∼+ a and f (a, c, a) = a by the hypothe-
sis of Situation 4, sd-strategy-proofness implies f (d, c, a) ∈ {a, d}. Therefore, it is true that 
f (d, c, a) = a. This completes the verification of the claim.

CLAIM 3: f (d, d, a) = d and f (c, c, a) = c.

First, by anonymity of f̄ and the variance hypothesis, we have f̄
(

d

Î
, a

Ī\{j} , d, a
)

=
f̄

(
d

Î
, a

Ī\{j} , a, d
)

≡ f̄
(

d

Î
, a

Ī
, d

)
= f (d, a, d) = d . Then, sd-strategy-proofness implies

f (d, d, a) ≡ f̄
(

d

Î
, d

Ī
, a

)
= d . Symmetrically, by anonymity of f̄ and Claim 1, we have 

f̄
(

c

Î
, a

Ī\{j} , c, a
)

= f̄
(

c

Î
, a

Ī\{j} , a, c
)

≡ f̄
(

c

Î
, a

Ī
, c

)
= f (c, a, c) = c. Then, sd-strategy-proof-

ness implies f (c, c, a) ≡ f̄
(

c

Î
, c

Ī
, a

)
= c. This completes the verification of the claim.

According to the adjacent+ sequence {xk}pk=1 ⊆ (ys, Aτ , z−{s,τ }), we replace the ele-
ment ys in each xk by xs , and then construct another sequence of alternatives {x̄k}pk=1 =
{(xs, x−s

k )}pk=1 ⊆ (xs, Aτ , z−{s,τ }). Note that x̄p ≡ (xs, xτ
p, z−{s,τ }) = (xs, xτ , z−{s,τ }) ≡ a, 

x̄1 ≡ (xs, xτ
1 , z−{s,τ }) = (xs, yτ , z−{s,τ }) ≡ c, and {x̄k}pk=1 may not be an adjacent+ sequence. 

Symmetrically, according to the adjacent+ sequence {yk}qk=1 ⊆ (As, yτ , z−{s,τ }), we replace the 
element yτ in each yk by xτ , and then construct another sequence of alternatives {ȳk}qk=1 =
{(ys

k, x
τ , z−{s,τ })}pk=1 ⊆ (As, xτ , z−{s,τ }). Note that ȳq ≡ (ys

q, xτ , z−{s,τ }) = (xs, xτ , z−{s,τ }) ≡
a, ȳ1 ≡ (ys

1, x
τ , z−{s,τ }) = (ys, xτ , z−{s,τ }) ≡ d , and {ȳk}qk=1 may not be an adjacent+ sequence. 

Note that {x̄k}pk=1 ∩ {ȳk}qk=1 = {a}.
CLAIM 4: f (a, xk, a) = f (xk, a, a) = a for all k = 1, . . . , p.

By the hypothesis of Situation 4, we first have f (a, xp, a) ≡ f (a, d, a) = a. We next 
show f (a, x1, a) ≡ f (a, b, a) = a. Since f (a, d, a) = a, following the sequence {xk}pk=1 from 
xp = d to x1 = b, Statement 2 of Lemma 15 implies f (a, b, a) ∈ {x̄k}pk=1. Symmetrically, 
since f (a, c, a) = a by the hypothesis of Situation 4, following the sequence {yk}qk=1 from 
yq = c to y1 = b, Statement 2 of Lemma 15 implies f (a, b, a) ∈ {ȳk}qk=1. Thus, f (a, b, a) ∈
{x̄k}pk=1 ∩ {ȳk}qk=1 = {a}, and hence f (a, x1, a) ≡ f (a, b, a) = a. Furthermore, following the se-
quence {xk}pk=1 from x1 ≡ b to xp−1, since aτ /∈ {xτ

k , xτ
k+1} for all k = 1, . . . , p − 3, p − 2, by 

repeatedly applying item 2(iii) of Lemma 8, we have f (a, xk, a) = a for all k = 2, . . . , p − 1. 
This completes the verification of the claim.

CLAIM 5: f (xk, xk, a) = xk for all k = 1, . . . , p.

Recall DSCF h. We first show h(b, a) = b. On the one hand, according to the adjacent+

sequence {xk}pk=1 from xp = d to x1 = b, since h(d, a) = f (d, d, a) = d by Claim 3, by a 
similar proof of Statement 2 of Lemma 15, we know h(b, a) ∈ {xk}pk=1. On the other hand, 
according to the sequence {yk}qk=1 from yq = c to y1 = b, since h(c, a) = f (c, c, a) = c

by Claim 3, by a similar proof of Statement 2 of Lemma 15, we know h(b, a) ∈ {yk}qk=1. 
Therefore, h(b, a) ∈ {xk}pk=1 ∩ {yk}qk=1 = {b}, and hence f (b, b, a) = h(b, a) = b. Last, since 
f (x1, x1, a) = f (b, b, a) = b = x1 and f (xp, xp, a) = f (d, d, a) = d = xp by Claim 3, State-
ment 3 of Lemma 15 implies f (xk, xk, a) = xk for all k = 1, . . . , p. This completes the verifica-
tion of the claim.



S. Chatterji, H. Zeng / Journal of Economic Theory 182 (2019) 25–105 69

Fig. 11. The geometric relation among xp, x̄p−1, x̄p and xp−1.

CLAIM 6: f (xk, xk−1, a) = f (xk−1, xk, a) = xk for all k = 2, . . . , p.

We first show f (d, b, a) = d . Since f (xp, xp, a) = xp by Claim 5, Statement 2 of Lemma 15
implies f (d, b, a) ≡ f (xp, x1, a) ∈ {xk}pk=1. Next, since d ∼+ a and f (a, b, a) = a by Claim 4, 
sd-strategy-proofness implies f (d, b, a) ∈ {a, d}. Thus, f (d, b, a) ∈ {xk}pk=1 ∩ {a, d} = {d}, and 
hence f (d, b, a) = d ≡ xp .

Now, given 1 < k ≤ p, since xk ∼+ xk−1 and f (xk, xk, a) = xk by Claim 5, sd-strategy-
proofness implies f (xk, xk−1, a) ∈ {xk, xk−1}. Suppose f (xk, xk−1, a) = xk−1. First, if k =
p, we have f (xp, xk−1, a) = xk−1. Second, assume k < p. Following the sequence {xk}pk=1
from xk to xp = d , since xs

k−1 /∈ {xs
l , x

s
l+1} for all k ≤ l < p, by repeatedly applying item 

2(iii) of Lemma 8, we have f (xp, xk−1, a) = xk−1. In conclusion, given k ≤ p, we have 
f (xp, xk−1, a) = xk−1. Next, following the sequence {xk}pk=1 from xk−1 to x1 = b, Statement 2 
of Lemma 15 implies f (d, b, a) ≡ f (xp, x1, a) ∈ {xk−1, . . . , x2, x1}. Contradiction! Therefore, 
f (xk, xk−1, a) = xk for all k = 2, . . . , p. This completes the verification of the claim.

CLAIM 7: Given 1 ≤ k < p, let {x̂ν}ην=1 ⊆ (As, xτ
k , z−{s,τ }) be the adjacent+ sequence connecting 

xk ≡ x̂1 and x̄k ≡ x̂η. Then, f (x̂ν, x̂ν , a) = x̂ν for all ν = 1, . . . , η.

Recall DSCF h. We first show h(x̄k, a) = x̄k . Since x̄k, a ∈ (xs, Aτ , z−{s,t}), by Lemma 1, 
there exists an adjacent+ sequence in (xs, Aτ , z−{s,t}) connecting x̄k and a. Furthermore, since 
h(x̄k, x̄k) = x̄k ∈ (xs, Aτ , z−{s,t}) by unanimity, by the proof of Statement 2 of Lemma 15, 
following the adjacent+ sequence in (xs, Aτ , z−{s,t}) from x̄k to a, we know h(x̄k, a) ∈
(xs, Aτ , z−{s,t}). Next, since h(x̂1, a) ≡ f (xk, xk, a) = xk ≡ x̂1 by Claim 6, following the 
sequence {x̂ν}ην=1 ⊆ (As, xτ

k , z−{s,τ }) from x̂1 to x̂η ≡ x̄k , Statement 2 of Lemma 15 im-
plies h(x̄k, a) ≡ h(x̂η, a) ∈ {x̂ν}ην=1 ⊆ (As, xτ

k , z−{s,τ }). Therefore, h(x̄k, a) ∈ (xs, Aτ , z−{s,t}) ∩
(As, xτ

k , z−{s,τ }) = {(xs, xτ
k , z−{s,τ })} = {x̄k}, and hence, f (x̂η, x̂η, a) ≡f (x̄k, x̄k, a) =h(x̄k, a) =

x̄k ≡ x̂η. Last, since f (x̂1, x̂1, a) ≡ f (xk, xk, a) = xk ≡ x̂1 by Claim 5, according to {x̂ν}ην=1, 
Statement 3 of Lemma 15 implies f (x̂ν, x̂ν, a) = x̂ν for all ν = 1, . . . , η. This completes the 
verification of the claim.

We start from {xp, x̄p−1, x̄p, xp−1}. Let {x̂ν}ην=1 ⊆ (As, xτ
k , z−{s,τ }), η ≥ 2, be the adjacent+

sequence connecting xp−1 ≡ x̂1 and x̄p−1 ≡ x̂η (see Fig. 11). Note that f (xp, x̄p, a) =
f (x̄p, xp, a) = a ≡ x̄p by the hypothesis of Situation 4, and f (xp, xp−1, a) = f (xp−1, xp, a) =
xp by Claim 6 (see the two arrows in Fig. 11). We focus on preference profiles (·, ·, a) of f , 
where the first two elements belong to {xp, x̄p−1, x̄p, xp−1}, and the third element is fixed to be 
a. The next claim shows x̄p−1 ∼+ xp−1.

CLAIM 8: x̄p−1 ∼+ xp−1 and x̄p−1 ∼+ x̄p .

Suppose that x̄p−1 is not adjacent+ to xp−1. Thus, η > 2, x̂s
2 /∈ {x̂s

1 ≡ xs
p, x̂s

η ≡ x̄s
p} and 

as ≡ x̄s
p /∈ {x̂s

1, x̂
s
2}. We first show f (x̂1, x̂2, a) = f (x̂2, x̂1, a) = x̂1. According to f (x̂1, a, a) ≡

f (xp−1, a, a) = a by Claim 4, since x̂1 ∼+ x̂2 and as /∈ {x̂s
1, x̂

s
2}, item 2(iii) of Lemma 8

implies f (x̂2, a, a) = a. Next, since xp ∼+ a, sd-strategy-proofness implies f (x̂2, xp, a) ∈
{a, xp}. Suppose f (x̂2, xp, a) = a. Consequently, since x̂1 ∼+ x̂2 and as /∈ {x̂s

1, x̂
s
2}, item 
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2(iii) of Lemma 8 implies f (xp−1, xp, a) ≡ f (x̂1, xp, a) = f (x̂2, xp, a) = a which contra-
dicts Claim 6. Therefore, f (x̂2, xp, a) = xp . Since xp ∼+ xp−1, sd-strategy-proofness implies 
f (x̂2, x̂1, a) ≡ f (x̂2, xp−1, a) ∈ {xp, xp−1 ≡ x̂1}. Meanwhile, since f (x̂1, x̂1, a) = x̂1 by Claim 
7 and x̂2 ∼+ x̂1, sd-strategy-proofness implies f (x̂2, x̂1, a) ∈ {x̂1, x̂2}. Therefore, it is true that 
f (x̂2, x̂1, a) = x̂1. Now, following the adjacent+ sequence {x̂ν}ην=1 from x̂2 to x̂η ≡ x̄p−1, since 
x̂s

1 /∈ {x̂s
ν, x̂

s
ν+1} for all ν = 2, . . . , η − 1, by repeatedly applying item 2(iii) of Lemma 8, we 

eventually have f (x̄p−1, xp−1, a) ≡ f (x̂η, x̂1, a) = · · · = f (x̂2, x̂1, a) = x̂1 ≡ xp−1. Further-
more, since f (xp−1, xp, a) = xp by Claim 6 and xp−1 ∼+ xp , Statement 1 of Lemma 15
implies f (x̄p−1, xp, a) = xp . Last, by connectedness+ and minimal richness, we have a top-
separable preference Pi ∈ D with r1(Pi) = x̄p−1 ≡ (xs, xτ

p−1, z
−{s,τ }). Then, top-separability 

implies a ≡ (xs, xτ
p, z−{s,τ })Pi(y

s, xτ
p, z−{s,τ }) ≡ xp . Recall f (a, xp, a) = a by Claim 4. Thus, 

f (a, xp, a) = aPixp = f (Pi, xp, a), and consequently, voter i will manipulate at (Pi, xp, a)

via P ′
i ∈ Da . Therefore, it must be the case x̄p−1 ∼+ xp−1. Furthermore, Lemma 18 implies 

x̄p−1 ∼+ x̄p . This completes the verification of the claim.
Now, note that f (xp, x̄p, a) = f (x̄p, xp, a) = x̄p by the hypothesis of Situation 4, and 

x̄p−1 ∼+ xp−1 and x̄p−1 ∼+ x̄p by Claim 8. Following the adjacent+ sequence {xk}pk=1 from 
xp to x1, we adopt an induction argument.

Induction Hypothesis: Given 1 < k < p, for all k < k′ ≤ p, we have

• f (xk′ , x̄k′ , a) = f (x̄k′ , xk′ , a) = x̄k′ , and
• x̄k′−1 ∼+ xk′−1 and x̄k′−1 ∼+ x̄k′ .

To complete the verification of the induction hypothesis, we show f (xk, x̄k, a) = f (x̄k, xk, a)

= x̄k , and x̄k−1 ∼+ xk−1 and x̄k−1 ∼+ x̄k in the following two claims.

CLAIM 9: f (xk, x̄k, a) = f (x̄k, xk, a) = x̄k .

First, we have f (xk, xk+1, a) = xk+1 by Claim 6 and f (xk+1, x̄k+1, a) = x̄k+1 by the induc-
tion hypothesis. Furthermore, if k < p − 1, we refer to k′ = k + 2, and hence have xk+1 ∼+ x̄k+1

by the induction hypothesis, and if k = p − 1, we refer to the hypothesis d ∼+ a, and hence 
have xk+1 = xp ≡ d ∼+ a ≡ x̄p = x̄k+1. In conclusion, we have xk+1 ∼+ x̄k+1. Then, State-
ment 1 of Lemma 15 implies f (xk, x̄k+1, a) = x̄k+1. Furthermore, since x̄k ∼+ x̄k+1 by the 
induction hypothesis, sd-strategy-proofness implies f (xk, x̄k, a) ∈ {x̄k+1, x̄k}. Meanwhile, since 
f (xk, xk, a) = xk by Claim 5 and x̄k ∼+ xk by the induction hypothesis, sd-strategy-proofness 
implies f (xk, x̄k, a) ∈ {xk, x̄k}. Therefore, it is true that f (xk, x̄k, a) = x̄k . This completes the 
verification of the claim.

CLAIM 10: x̄k−1 ∼+ xk−1 and x̄k−1 ∼+ x̄k .

Note that f (xk, x̄k, a) = f (x̄k, xk, a) = x̄k by Claim 9, f (xk, xk−1, a) = f (xk−1, xk, a) = xk

by Claim 6, xk ∼+ x̄k by the induction hypothesis and xk ∼+ xk−1 according to the adjacent+

sequence {xk}pk=1. Thus, {xk, x̄k−1, x̄k, xk−1} formulate an analogy of {xp, x̄p−1, x̄p, xp−1} in 
Claim 8. Therefore, we immediately obtain x̄k−1 ∼+ xk−1 and x̄k−1 ∼+ x̄k . This proves the 
claim, and hence completes the verification of the induction hypothesis.

Therefore, we eventually have c = x̄1 ∼+ x1 = b which contradicts the hypothesis q > 2
in the beginning of the proof. Hence, b ∼+ c and b ∼+ d . This completes the verification of 
Lemma 22. �
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Now, by Lemmas 19 - 22, we have [a ∼+ c and a ∼+ d] ⇒ [b ∼+ c and b ∼+ d] which is 
analogous to Lemma 4, as required. This completes the necessity part of Theorem 2.

Appendix D. Proof of Theorem 3

For simplicity, we first show part (ii) of Theorem 3. Let Ā = ×s∈MĀs , where Ās ⊆ As for each 
s ∈ M , satisfy Assumption 1. Thus, it is true that |Ās | ≥ 2 for each s ∈ M . Let G(Ās) be a tree 
for each s ∈ M . Thus, Ā is located on a product of trees ×s∈MG(Ās). Let D be multidimensional 
single-peaked w.r.t. Ā, and satisfy Assumption 2. Let D|Ā = {

Pi|Ā : Pi ∈ D
}
. Thus, the induced 

domain D|Ā is multidimensional single-peaked on ×s∈MG(Ās).
By the proof of the sufficiency part of Theorem 1, we construct the multidimensional projec-

tion rules 
{
f a : [D|Ā]N → Ā

}
a∈Ā

, and assemble them as a mixed multidimensional projection 

rule φ : [D|Ā]N → �(Ā) such that φ(P1|Ā, . . . , PN |Ā) = ∑
a∈Ā λaf

a(P1|Ā, . . . , PN |Ā) for all 
(P1|Ā, . . . , PN |Ā) ∈ [D|Ā]N , where λa > 0 for all a ∈ Ā and 

∑
a∈Ā λa = 1. Recalling the con-

struction of the mixed multidimensional projection rule, we know that φ is unanimous and sd-
strategy-proof, and satisfies the compromise property. Next, we extend φ to a constrained RSCF 
ϕ : DN → �(Ā) such that for all (P1, . . . , PN) ∈ DN , ϕ(P1, . . . , PN) = φ

(
P1|Ā, . . . , PN |Ā

)
. 

It is evident that ϕ is well defined, and satisfies unanimity (w.r.t. feasibility) and sd-strategy-
proofness. Last, we show that ϕ satisfies the compromise property (w.r.t. feasibility). Given 
Î ⊆ I with |Î | = N

2 if N is even, and |Î | = N+1
2 if N is odd, fix Pi, Pj ∈ D with r1(Pi) ≡

(xs, a−s) �= (ys, a−s) ≡ r1(Pj ), r2(Pi) = r2(Pj ) ≡ (zs, a−s) ∈ Ā and zs /∈ {xs, ys}. If either 
xs /∈ Ās or ys /∈ Ās , we know either r1(Pi|Ā) = (zs, a−s) or r1(Pj |Ā) = (zs, a−s), and hence 

f (zs ,a−s )
(Pi|Ā

Î
, 

Pj |Ā
I\Î

) = (zs, a−s). If xs, ys ∈ Ās , by Claim 4 in the proof of the sufficiency part 

of Theorem 1, we know (zs, a−s) ∈ 〈(xs, a−s), (ys, a−s)〉, and hence f (zs ,a−s )
(Pi|Ā

Î
, 

Pj |Ā
I\Î

) =
(zs, a−s). Therefore, ϕ(zs ,a−s )

(
Pi

Î
, Pj

I\Î
) = φ(zs ,a−s )

(Pi|Ā
Î

, 
Pj |Ā
I\Î

) ≥ λ(zs ,a−s ) > 0. Hence, ϕ satis-

fies the compromise property (w.r.t. feasibility). This completes the verification of part (ii) of 
Theorem 3.

Now, we turn to part (i) of Theorem 3. Analogous to Proposition 2, we first show in Propo-
sition 3 below that every unanimous (w.r.t. feasibility) and sd-strategy-proof constrained RSCF 
on a connected+ domain satisfies the tops-only property. Meanwhile, to illustrate the key role 
of Assumption 2, we show that Assumption 2 is necessary and sufficient for the existence of a 
unanimous (w.r.t. feasibility) and sd-strategy-proof constrained RSCF that satisfies the tops-only 
property.

Proposition 3. Under Assumption 2, every unanimous (w.r.t. feasibility) and sd-strategy-proof 
constrained RSCF on a connected+ domain satisfies the tops-only property. Moreover, a unan-
imous (w.r.t. feasibility), tops-only and sd-strategy-proof constrained RSCF exists if and only if 
the domain satisfies Assumption 2.

Proof. The verification of the first statement of Proposition 3 follows almost exactly from the 
proof of Proposition 2. Let D be a connected+ domain, and satisfy Assumption 2. First, note 
that the notions of sd-strategy-proofness and connectedness+ are unchanged in voting under con-
straints, and Lemmas 8 - 11 are established according to an arbitrary sd-strategy-proof RSCF 
which is either unconstrained or constrained, and is not required to satisfy unanimity. Therefore, 
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Lemmas 8 - 11 remain valid for constrained RSCFs. Second, the initial argument in the proof of 
Proposition 2 (see the middle of page 33) is modified as follows: If N = 1, by unanimity (w.r.t. 
feasibility) and Assumption 2, we know that every constrained RSCF in question satisfies the 
tops-only property. Last, since the induction argument in the proof of Proposition 2 (Lemmas 12
- 14) completely relies on Lemmas 8 - 11, it is also applicable to the proof of Proposition 3. 
Therefore, we assert that every unanimous (w.r.t. feasibility) and sd-strategy-proof constrained 
RSCF satisfies the tops-only property.

We next show that Assumption 2 is necessary for the existence of a unanimous (w.r.t. fea-
sibility), tops-only and sd-strategy-proof constrained RSCF. Given an arbitrary domain D, let 
φ : DN → �(Ā) be a unanimous, tops-only and sd-strategy-proof constrained RSCF. We parti-
tion I into to groups Î and I\Î such that |Î | = N

2 if N is even, and |Î | = N+1
2 if N is odd, and 

then induce a two-voter constrained RSCF ϕ : D2 → �(Ā) such that ϕ(Pi, Pj ) = φ(
Pi

Î
, Pj

I\Î )

for all Pi, Pj ∈ D. It is easy to show that ϕ is unanimous (w.r.t. feasibility), tops-only and 
sd-strategy-proof. Suppose that D violates Assumption 2. Thus, we have Pi, P ′

i ∈ D such 
that r1(Pi) = r1(P

′
i ) /∈ Ā and r1(Pi|Ā) ≡ a �= b ≡ r1(P

′
i|Ā). We construct profiles (Pi, Pj )

and (P ′
i , P

′
j ) where Pi = Pj and P ′

i = P ′
j . On the one hand, the tops-only property implies 

ϕ(Pi, Pj ) = ϕ(P ′
i , P

′
j ). On the other hand, unanimity (w.r.t. feasibility) implies ϕa(Pi, Pj ) = 1

and ϕb(P
′
i , P

′
j ) = 1. Hence, ϕ(Pi, Pj ) �= ϕ(P ′

i , P
′
j ). Contradiction! Therefore, D satisfies As-

sumption 2.
Last, we show that Assumption 2 is sufficient for the existence of a unanimous (w.r.t. fea-

sibility), tops-only and sd-strategy-proof constrained RSCF. Let D satisfy Assumption 2. We 
construct a constrained random dictatorship ϕ : DN → �(Ā) (recall footnote 41). It is evident 
that ϕ is unanimous (w.r.t. feasibility) and sd-strategy-proof. Last, we claim that ϕ satisfies the 
tops-only property. Given P, P ′ ∈ DN , let r1(Pi) = r1(P

′
i ) for all i ∈ I . Then, Assumption 2

implies r1(Pi|Ā) = r1(P
′
i|Ā) for all i ∈ I . Consequently, by the construction of the constrained 

random dictatorship ϕ, we have ϕ(P ) = ϕ(P ′). This completes the verification of Proposi-
tion 3. �

Now, let Ā satisfy Assumption 1. Let D be a minimally rich connected+ domain, and satisfy 
Assumption 2. Let φ : DN → �(Ā) be a constrained RSCF satisfying unanimity (w.r.t. feasibil-
ity), sd-strategy-proofness and the compromise property (w.r.t. feasibility). By Proposition 3, we 
know that φ satisfies the tops-only property. Then, similar to the proof of the necessity part of 
Theorem 1, we induce a two-voter unanimous (w.r.t. feasibility), tops-only and sd-strategy-proof 
constrained RSCF ϕ : D2 → �(Ā) satisfying the compromise property (w.r.t. feasibility).

Before proceeding with the proof, we point out that the following proof is essentially analo-
gous to the proof of Theorem 1. Lemmas 23, 24 and 25 replicate the conclusions of Lemmas 1, 
2 and 3 respectively. Lemma 26 is a key result which identifies the best feasible alternative in a 
preference whose original peak is infeasible. Under Lemma 26, we establish Lemma 27 which 
is analogous to Lemma 4. However, the subsequent proof of Theorem 3 appears significantly 
more complicated in the following two aspects. First, due to the feasibility issue, Lemma 5 is 
not directly applicable to elicit a product of trees over the feasible alternatives. We therefore in-
troduce an intermediate step, Lemma 28, which implies that the feasible set is factorizable. This 
eventually allows us to state Lemma 29 which is analogous to Lemma 5. Second, we can only 
use the results of Lemmas 6 and 7 to reveal the restriction of multidimensional single-peakedness 
embedded in preferences whose peaks are feasible alternatives. We have to establish additional 
Lemmas 30 - 32 to deal with preferences whose peaks are infeasible alternatives.
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Lemma 23. Given s ∈ M , as, bs ∈ As and x−s ∈ A−s , if (as, x−s), (bs, x−s) ∈ Ā, there exists 
an adjacent+ sequence {xk}qk=1 ⊆ (As, x−s) ∩ Ā connecting (as, x−s) and (bs, x−s), i.e., x1 =
(as, x−s), xq = (bs, x−s) and xk ∼+ xk+1 for all k = 1, . . . , q − 1.

Proof. First, by Lemma 1, we have an adjacent+ sequence {xk}qk=1 ⊆ (As, x−s) connecting 
(as, x−s) and (bs, x−s). Suppose that xk /∈ Ā for some 1 < k < q . Thus, we elicit an adjacent+

subpath {xk, xk+1, . . . , xk−1, xk} such that k − k ≥ 2, xk, xk ∈ Ā and xk+1, . . . , xk−1 /∈ Ā.
Since xk ∼+ xk+1, we have Pi ∈ Dxk and Pj ∈ Dxk+1 with Pi ∼+ Pj . Since xk ∈ Ā and xk+1 /∈

Ā, the tops-only property and unanimity (w.r.t. feasibility) imply ϕxk
(xk, xk+1) = ϕxk

(Pi, Pj ) =
1. Symmetrically, since xk ∼+ xk−1, xk ∈ Ā and xk−1 /∈ Ā, we have ϕxk

(xk−1, xk) = 1. On the 
one hand, following the subsequence {xk, xk+1, . . . , xk} from xk+1 to xk , since xs

k /∈ {xs
k, x

s
k+1}

for all k = k + 1, . . . , k − 1, by repeatedly applying item 2(iii) of Lemma 8, we have 1 =
ϕxk

(xk, xk+1) = ϕxk
(xk, xk+2) = · · · = ϕxk

(xk, xk). On the other hand, following the subsequence 
{xk, . . . , xk−1, xk} from xk−1 to xk , since xs

k
/∈ {xs

k, x
s
k−1} for all k = k − 1, . . . , k + 1, by re-

peatedly applying item 2(iii) of Lemma 8, we have 1 = ϕxk
(xk−1, xk) = ϕxk

(xk−2, xk) = · · · =
ϕxk

(xk, xk). Contradiction! Hence, {xk}qk=1 ⊆ Ā. �
Lemma 24. Given s ∈ M and x−s ∈ A−s , let the adjacent+ sequence {xk}qk=1 ⊆ (As, x−s) be 
such that x1, . . . , xk̄ ∈ Ā and xk̄+1, . . . , xq /∈ Ā, where 1 ≤ k̄ ≤ q . The following statements hold:

(i) If k̄ = 1, then ϕ(x1, xq) = ex1 .

(ii) If 1 < k̄ ≤ q , there exist 0 ≤ α1 < · · · < αk̄−1 ≤ 1 such that ϕ(x1, xq) = α1ex1 + ∑k̄−1
k=2(αk −

αk−1)exk
+ (1 − αk̄−1)exk̄

. Moreover, for every Pi ∈ Dx1 , xkPixk+1 for all k = 1, . . . , k̄ − 1.

Proof. The verification is similar to Lemma 2. We omit the detailed proof. �
Given s ∈ M and x−s ∈ A−s with (As, x−s) ∩ Ā �= ∅, let G∼+

(
(As, x−s) ∩ Ā

)
be a graph 

where the vertex set is (As, x−s) ∩ Ā, and two distinct feasible alternatives form an edge if and 
only if they are adjacent+. The next lemma shows that G∼+

(
(As, x−s) ∩ Ā

)
is a tree.

Lemma 25. Given s ∈ M and x−s ∈ A−s , if |(As, x−s) ∩ Ā| ≥ 2, then G∼+
(
(As, x−s) ∩ Ā

)
is 

a tree. Furthermore, every two distinct feasible alternatives of (As, x−s) are connected via a 
unique adjacent+ sequence in (As, x−s), and all alternatives of this sequence are feasible.

Proof. Suppose that G∼+
(
(As, x−s) ∩ Ā

)
is not a tree. By Lemma 23, we know that there must 

exist a cycle of feasible alternatives {xk}tk=1 ⊆ (As, x−s) ∩ Ā, where t ≥ 3, xk ∼+ xk+1 for 
all k = 1, . . . , t , and xt+1 = x1. Then, by the proof of Lemma 3, we induce a contradiction. 
Therefore, G∼+

(
(As, x−s) ∩ Ā

)
is a tree. Furthermore, by the proof of Lemma 23, we know 

that every adjacent+ sequence connecting two feasible alternatives of (As, x−s) must consist of 
feasible alternatives. Therefore, the adjacent+ sequence connecting two feasible alternatives of 
(As, x−s) is unique. �
Lemma 26. Fix s ∈ M , x−s ∈ A−s and a ∈ (As, x−s). If (As, x−s) ∩ Ā �= ∅, there exists ā ∈
(As, x−s) ∩ Ā such that ā = r1

(
Pi|Ā

)
for all Pi ∈Da .
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Proof. The lemma holds evidently if a ∈ (As, x−s) ∩ Ā. Thus, we assume a ∈ (As, x−s)\Ā. Pick 
an arbitrary b ∈ (As, x−s) ∩Ā. By Lemma 1, we have an adjacent+ sequence {xk}qk=1 ⊆ (As, x−s)

connecting b and a. Since x1 ∈ Ā and xq /∈ Ā, there must exist 1 ≤ k̄ < q such that xk̄ ∈ Ā and 
xk̄+1, . . . , xq /∈ Ā. Moreover, we know either k̄ = 1, or k̄ > 1 and x1, x2, . . . , xk̄ ∈ (As, x−s) ∩ Ā

by Lemma 25. Thus, the sequence {xk}qk=1 is separated into two parts {x1, x2, . . . , xk̄} which are 
feasible, and {xk̄+1, . . . , xq} which are not feasible. We show xk̄ = r1

(
Pi|Ā

)
for all Pi ∈ Da .

First, since xk̄+1 ∼+ xk̄ , we have Pi ∈ Dxk̄+1 such that r2(Pi) = xk̄ , which implies r1(Pi|Ā) =
xk̄ . Furthermore, Assumption 2 implies r1(Pi|Ā) = xk̄ for all Pi ∈ Dxk̄+1 . Next, we adopt an 
induction hypothesis: Given k̄ + 1 < l ≤ q , for all k̄ + 1 ≤ l′ < l, we have r1(Pi|Ā) = xk̄ for all 
Pi ∈ Dxl′ . We show r1(Pi|Ā) = xk̄ for all Pi ∈ Dxl . Since xl ∼+ xl−1, we have Pi ∈ Dxl and 
P ′

i ∈ Dxl−1 with Pi ∼+ P ′
i . Since xk̄ = r1(P

′
i|Ā) by the induction hypothesis, we know that every 

alternative ranked above xk̄ in P ′
i is infeasible. Since xk̄ is not involved in any local switching 

pair across Pi and P ′
i , Pi ∼+ P ′

i implies that all alternatives ranked above xk̄ in Pi are also 
infeasible. Hence, xk̄ = r1(Pi|Ā). Furthermore, Assumption 2 implies xk̄ = r1(Pi|Ā) for all Pi ∈
Dxl . This completes the verification of the induction hypothesis. Therefore, xk̄ = r1

(
Pi|Ā

)
for all 

Pi ∈ Da . �
To establish the next lemma which is similar to Lemma 4, we fix four alternatives: a =

(xs, xτ , z−{s,τ }), b = (ys, yτ , z−{s,τ }), c = (xs, yτ , z−{s,τ }) and d = (ys, xτ , z−{s,τ }) where xs �=
ys and xτ �= yτ .

Lemma 27. If a, c, d ∈ Ā, a ∼+ c and a ∼+ d , then b ∈ Ā, b ∼+ c and b ∼+ d .

Proof. We first show b ∈ Ā. Suppose that it is not true. Since b, d ∈ (ys, Aτ , z−{s,τ }) and 
d ∈ Ā, Lemma 26 implies that there exists b̄ ∈ (ys, Aτ , z−{s,τ }) ∩ Ā such that r1(Pi|Ā) = b̄ for 
all Pi ∈ Db . Symmetrically, since b, c ∈ (As, yτ , z−{s,τ }) and c ∈ Ā, Lemma 26 implies that 
there exists b ∈ (As, yτ , z−{s,τ }) ∩ Ā such that r1(Pi|Ā) = b for all Pi ∈ Db . However, since 
(ys, Aτ , z−{s,τ }) ∩ (As, yτ , z−{s,τ }) = {b} and b /∈ Ā, we have b̄ �= b which contradicts Assump-
tion 2. Therefore, b ∈ Ā.

Now, by Lemma 25, we have a unique adjacent+ path {xk}pk=1 ⊆ (ys, Aτ , z−{s,τ }) ∩ Ā con-
necting b and d , and a unique adjacent+ path {yk}qk=1 ⊆ (As, yτ , z−{s,τ }) ∩ Ā connecting b and 
c. Then, the rest of the lemma follows exactly from Lemma 4. �

We introduce a new notion. Given distinct c, d ∈ Ā and nonempty subset S ⊆ M , let cs �= ds

for every s ∈ S and c−S = d−S ≡ z−S . We say that c and d formulate a feasible box if the 
following two conditions are satisfied.

(i) For each s ∈ S, there exists a sequence {xs
k}q(s)

k=1 ⊆ As where q(s) ≥ 2,51 xs
1 = cs and xs

q(s) =
ds such that B(c, d) ≡

((
{xs

k}q(s)

k=1

)
s∈S

, z−S
)

⊆ Ā.

(ii) For all x, y ∈ B(c, d), we have

[xs = xs
k, y

s = xs
k+1 and x−s = y−s for some s ∈ S and some 1 ≤ k < q(s)] ⇒ [x ∼+ y].

51 The notation q(s) implies that the length of the sequence may vary across all components of S.
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We highlight the key role of the feasible box B(c, d): We can always find an adjacent+ se-
quence consisting of feasible alternatives in the feasible box B(c, d) which connects c and d .

Lemma 28. Every pair of distinct feasible alternatives formulate a feasible box.

Proof. Evidently, Lemma 23 implies that every two similar feasible alternatives always formu-
late a feasible box. Next, we provide an induction argument to complete the verification.

Induction Hypothesis: Given an integer 2 ≤ l ≤ m, for all c, d ∈ Ā which disagree on at least one 
component and at most l − 1 components, e.g., S ⊆ M , 1 ≤ |S| < l, cs �= ds for every s ∈ S ⊆ M

and c−S = d−S ≡ z−S , we know that c and d formulate a feasible box.

Given c, d ∈ Ā and S ⊆ M , let |S| = l, cs �= ds for every s ∈ S ⊆ M and c−S = d−S ≡ z−S . 
We show that c and d formulate a feasible box. For notational convenience, let S = {1, 2, . . . , l}.
CLAIM 1: If there exists s ∈ S such that â ≡ (c1, . . . , cs−1, ds, cs+1, . . . , cl, z−S) ∈ Ā, then c and 
d formulate a feasible box.

Assume w.l.o.g. that s = 1. Thus, â ≡ (d1, c2, . . . , cl, z−S) and d disagree on l − 1 compo-
nents, and induction hypothesis implies that â and d formulate a feasible box B(â, d). Specifi-
cally,

(i) for each s ∈ {2, . . . , l}, there exists a sequence {xs
k}q(s)

k=1 ⊆ As where q(s) ≥ 2, xs
1 = cs and 

xs
q(s) = ds , such that B(â, d) ≡

(
d1, {x2

k }q(2)
k=1, . . . , {xl

k}q(l)
k=1, z

−S
)

⊆ Ā, and

(ii) for all x, y ∈ B(â, d), we have[
xs = xs

k, y
s = xs

k+1 and x−s = y−s for some s ∈ {2, . . . , l} and some 1 ≤ k < q(s)
]

⇒ [x ∼+ y].

Next, since â, c ∈ (A1, c2, . . . , cl, z−S) ∩ Ā, we have a unique adjacent+ sequence {xk}qk=1 ≡{
(x1

k , c2, . . . , cl, z−S)
}q

k=1 ⊆ Ā connecting â and c by Lemma 25.
Pick an arbitrary adjacent+ sequence {yk}pk=1 ⊆ B(â, d) connecting â and d . Note that all 

alternatives of {yk}pk=1 agree on d1, and for every 1 ≤ k < p, yk and yk+1 disagree on ex-
actly one component of {2, . . . , l}. Since â = x1, we know d1 = x1

1 , and rewrite B(â, d) ≡(
x1

1 , {x2
k }q(2)

k=1, . . . , {xl
k}q(l)

k=1, z
−S

)
. Note that d1 = x1

1 �= x1
2 . For each k = 1, . . . , p, we replace d1

by x1
2 in the alternative yk = (d1, y−1

k ), and hence construct the alternative zk ≡ (x1
2 , y−1

k ). Note 
that z1 = (x1

2 , y−1
1 ) ≡ (x1

2 , c2, . . . , cl, z−S) and zp ≡ (x1
2 , y−1

p ) ≡ (x1
2 , d2, . . . , dl, z−S). Thus, we 

have a sequence {zk}pk=1 (see Fig. 12(1)). We next show that {zk}pk=1 ⊆ Ā and {zk}pk=1 is an 
adjacent+ sequence.

First, consider four alternatives y1 = (d1, y−1
1 ), z2 = (x1

2 , y−1
2 ), z1 = (x1

2 , y−1
1 ) and y2 =

(d1, y−2
2 ). Note that y−1

1 and y−1
2 disagree on exactly one component of {2, . . . , l}, y1 = x1 ∼+

x2 = z1 and y1 ∼+ y2. Thus, y1, z2, z1, y2 are analogous to a, b, c, d of Lemma 27 respectively. 
Then, Lemma 27 implies z2 ∈ Ā and z2 ∼+ z1 and z2 ∼+ y2 (see Fig. 12(2)).

Next, along the adjacent+ sequence {yk}pk=1 from y1 to yp , by repeatedly applying the ar-
gument above, we have zk+1 ∈ Ā, zk+1 ∼+ zk and zk+1 ∼+ yk+1 for all k = 1, . . . , p − 1. 
Thus, {zk}pk=1 ⊆ Ā and {zk}pk=1 is an adjacent+ sequence. Furthermore, since we choose the 
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Fig. 12. The graphic illustration. In Fig. 12, “•” denotes a feasible alternative, “◦” denotes an infeasible alternative, while 
“•/◦” represents that we are uncertain on whether the alternative is feasible or not.

Fig. 13. Combine B
(
(x1

k
, c2, . . . , cl , z−S), (x1

k
, d2, . . . , dl , z−S)

)
for all k = 1, . . . , q to formulate B(c, d).

adjacent+ sequence {yk}pk=1 arbitrarily, it is true that z1 ≡ (x1
2 , c2, . . . , cm, z−S) and zp ≡

(x1
2 , d2, . . . , dm, z−S) formulate a feasible box B(z1, zp) =

(
x1

2 , {x2
k }q(2)

k=1, . . . , {xl
k}q(l)

k=1, z
−S

)
, 

and moreover, for all y ∈ B(â, d) ≡ B(y1, yp) and z ∈ B(z1, zp), [y−1 = z−1] ⇒ [y ∼+ z] (see 
Fig. 12(3)).

Along the adjacent+ sequence {xk}qk=1, moving from x2 to xq ≡ c, by repeatedly applying the 
argument above, we know that the following two statements hold:

(i) Given k = 1, . . . , q , (x1
k , c2, . . . , cl, z−S) and (x1

k , d2, . . . , dl, z−S) formulate a feasible box 
B

(
(x1

k , c2, . . . , cl, z−S), (x1
k , d2, . . . , dl, z−S)

)
. See the ellipses in Fig. 13.

(ii) Given k = 1, . . . , q − 1, y ∈ B
(
(x1

k , c2, . . . , cl, z−S), (x1
k , d2, . . . , dl, z−S)

)
and z ∈

B
(
(x1

k+1, c
2, . . . , cl, z−S), (x1

k+1, d
2, . . . , dl, z−S)

)
, we have [y−1 = z−1] ⇒ [y ∼+ z]. See 

for instance the solid lines in Fig. 13.

Consequently, we assert that c and d formulate a feasible box B(c, d) = ({x1
k }qk=1, {x2

k }q(2)
k=1, . . . ,

{xl
k}q(l)

k=1, z
−S

)
. This completes the verification of Claim 1.

CLAIM 2: If there exists s ∈ S such that â ≡ (d1, . . . , ds−1, cs, ds+1, . . . , dl, z−S) ∈ Ā, then c
and d formulate a feasible box.

The verification of this claim is symmetric to the verification of Claim 1.

CLAIM 3: There exists s ∈ S such that either (d1, . . . , ds−1, cs, ds+1, . . . , dl, z−S) ∈ Ā or 
(c1, . . . , cs−1, ds, cs+1, . . . , cl, z−S) ∈ Ā.



S. Chatterji, H. Zeng / Journal of Economic Theory 182 (2019) 25–105 77

Fig. 14. The geometric relations among a, b, c, d, xk̄ and yk .

Fig. 15. The geometric relations among a, b, c, d, xk̄ , yk, z̄, z and B(z, z) in Case (1).

Suppose that it is not true. Thus, we have a ≡ (c1, d2, . . . , dl, z−S) /∈ Ā and b ≡ (d1, c2, . . . ,
cl, z−S) /∈ Ā. Since b, c ∈ (A1, c2, . . . , cl, z−S) and c ∈ Ā, by Lemma 26 and its proof, we 
have an adjacent+ sequence {xk}pk=1 ⊆ (A1, c2, . . . , cl, z−S) connecting b and c, and a particular 
1 < k̄ ≤ p, such that x1, . . . , xk̄−1 /∈ Ā, xk̄, xk̄+1, . . . , xp ∈ Ā and xk̄ = r1(Pi|Ā) for all Pi ∈ Db . 
Symmetrically, since a, d ∈ (A1, d2, . . . , dl, z−S) and d ∈ Ā, by Lemma 26 and its proof, we 
have an adjacent+ sequence {yk}qk=1 ⊆ (A1, d2, . . . , dl, z−S) connecting a and d , and a particu-
lar 1 < k ≤ q , such that y1, . . . , yk−1 /∈ Ā, yk, yk+1, . . . , yq ∈ Ā and yk = r1(Pi|Ā) for all Pi ∈ Da

(see Fig. 14).
There are two cases: (1) {x1

k̄
, . . . , x1

p} ∩{y1
k , . . . , y1

q} �= ∅ and (2) {x1
k̄
, . . . , x1

p} ∩{y1
k , . . . , y1

q} =
∅. In each of these two cases, we induce a contradiction.

In the first case, assume z1 ∈ {x1
k̄
, . . . , x1

p} ∩ {y1
k , . . . , y1

q}. Since x1
1 = y1

q = d1 and x1
p =

y1
1 = c1, we know z1 /∈ {c1, d1} = {x1

p, y1
q}. Thus, we have two feasible alternatives z̄ ≡

(z1, c2, . . . , cl, z−S) ∈ {xk̄, . . . , xp−1} and z ≡ (z1, d2, . . . , dl, z−S) ∈ {yk, . . . , yq−1} which dis-
agree on l − 1 components. Then, the induction hypothesis implies that z̄ and z formulate a 
feasible box B(z̄, z) (see Fig. 15).

Note that c, z and z̄ are pairwise distinct, and more importantly, are analogous to c, d and â in 
Claim 1. Then, by the proof of Claim 1, we know that c and z formulate a feasible box B(c, z). 
Consequently, a = (c1, d2, . . . , dl, z−S) = (x1

p, d2, . . . , dl, z−S) ∈ B(c, z) ⊆ Ā. This contradicts 
the hypothesis a /∈ Ā.

Now, assume that the second case occurs. First, according to a = (c1, d2, . . . , dl, z−S) and c =
(c1, c2, . . . , cl, z−S), we identify l alternatives ck = (c1, . . . , ck, dk+1, . . . , dl, z−s) for all k =
1, . . . , l. Thus, c1 = a and cl = c. For each k = 1, . . . , l − 1, by Lemma 1, we have an adjacent+

sequence in (c1, . . . , ck, Ak+1, dk+2, . . . , dl, z−S) connecting (c1, . . . , ck, dk+1, dk+2, . . . , dl,

z−S) and (c1, . . . , ck, ck+1, dk+2, . . . , dl, z−S). Combining all l − 1 adjacent+ sequences, we 
have an adjacent+ sequence {zk}ηk=1 ⊆ (c1, A2, . . . , Al, z−S) connecting a and c (see Fig. 16). 
Note that all alternatives of {zk}ηk=1 agree on c1, i.e., z1

k = c1 for all k = 1, . . . , η.
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Fig. 16. The geometric relations among a, b, c, d, xk̄ , yk and {zk}η
k=1 in Case (2).

Second, since a and d are connected via the adjacent+ sequence {yk}qk=1, Lemma 24 im-
plies supp

(
ϕ(z1, d)

) ≡ {x ∈ A : ϕx(z1, d) ≡ ϕx(a, d) > 0} ⊆ {yk, . . . , yq} ⊆ ({y1
k }qk=k, A

−1
)
. We 

adopt another induction argument.

The Secondary Introduction Hypothesis: Given 1 < ν ≤ η, for all 1 ≤ ν′ < ν, we have 
supp

(
ϕ(zν′ , d)

) ≡ {x ∈ A : ϕx(zν′ , d) > 0} ⊆ ({y1
k }qk=k, A

−1
)
.

We show supp
(
ϕ(zν, d)

) ⊆ ({y1
k }qk=k, A

−1
)
. Assume zν−1 = (c1, . . . , ck, zk+1, dk+2, . . . ,

dl, z−s) and zν = (c1, . . . , ck, ̄zk+1, dk+2, . . . , dl, z−s) for some 1 < k < l. Since zν−1 ∼+ zν , 
we have Pi ∈ Dzν−1 and P ′

i ∈ Dzν such that Pi ∼+ P ′
i . Thus, �(Pi, P ′

i ) =
{
(zk+1, x−(k+1)),

(z̄k+1, x−(k+1))
}
x−(k+1)∈A−(k+1) . Suppose that there exists y ≡ (ys)s∈M ∈ supp

(
ϕ(zν, d)

)∖({y1
k }qk=k, A

−1
)
. Thus, ϕy(zν, d) > 0, y ∈ Ā and y1 /∈ {y1

k }qk=k . By the secondary induc-

tion hypothesis, y1 /∈ {y1
k }qk=k implies y /∈ supp

(
ϕ(zν−1, d)

)
. Hence, ϕy(zν−1, d) = 0. If y is 

not involved in any local switching pair of �(Pi, P ′
i ), by item 2(iii) of Lemma 8, we have 

0 = ϕy(zν−1, d) ≡ ϕy(Pi, d) = ϕy(P
′
i , d) ≡ ϕy(zν, d) > 0. Contradiction! If y is involved in 

a local switching pair of �(Pi, P ′
i ), we know either y = (zk+1, y−(k+1)) or y = (z̄k+1, y−(k+1)). 

Let y = (zk+1, y−(k+1)). The verification related to the other case is symmetric, and we hence 
omit it. Then, let ȳ = (z̄k+1, y−(k+1)). Thus, {y, ȳ} ∈ �(Pi, P ′

i ) and ȳ1 = y1 /∈ {y1
k }qk=k . Hence, 

ȳ /∈ supp
(
ϕ(zν−1, d)

)
by the secondary induction hypothesis, and equivalently, ϕȳ(zν−1, d) = 0. 

Consequently, item 2(ii) of Lemma 8 implies 0 = ϕy(zν−1, d) + ϕȳ(zν−1, d) = ϕy(Pi, d) +
ϕȳ(Pi, d) = ϕy(P

′
i , d) + ϕȳ(P

′
i , d) = ϕy(zν, d) + ϕȳ(zν, d) > 0. Contradiction! Therefore, 

supp
(
ϕ(zν, d)

) ⊆ ({y1
k }qk=k, A

−1
)
. This completes the verification of the second induction hy-

pothesis. Therefore, supp
(
ϕ(c, d)

) ⊆ ({y1
k }qk=k, A

−1
)
.

Third, symmetrically, according to b = (d1, c2, . . . , cl, z−S) and d = (d1, d2, . . . , dl, z−S), 
we can induce an adjacent+ sequence in (d1, A2, . . . , Al, z−S) connecting b and d . According 
to the adjacent+ sequence {xk}pk=1 connecting b and c, Lemma 24 implies supp

(
ϕ(c, b)

) ⊆
{xk, . . . , xp} ⊆

(
{x1

k }p
k=k̄

,A−1
)

. Then, following the adjacent+ sequence connecting b and d , 

by a similar argument, we have supp
(
ϕ(c, d)

) ⊆
(
{x1

k }p
k=k̄

,A−1
)

.

Last, by the hypothesis of {x1
k̄
, . . . , x1

p} ∩ {y1
k , . . . , y1

q} = ∅, we have 
(
{x1

k }p
k=k̄

,A−1
)

∩({y1
k }qk=k, A

−1
) = ∅. Therefore, we induce two mutually exclusive supports for the same social 

lottery ϕ(c, d). Contradiction! This completes the verification of Claim 3.
Now, by Claims 1, 2 and 3, we know that c and d formulate a feasible box. This completes 

the verification of the induction hypothesis, and hence proves Lemma 28. �
To establish the next lemma, we first introduce a graph. Let G∼+(Ā) be a graph where the ver-

tex set is Ā, and two distinct feasible alternatives form an edge if and only if they are adjacent+.
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Lemma 29. The feasible set Ā is factorizable and graph G∼+(Ā) is a product of trees.

Proof. Given s ∈ M , we first show that there exists a−s ∈ A−s such that 
∣∣(As, a−s) ∩ Ā

∣∣ ≥ 2. 
First, since Ā �= ∅, there exists a−s ∈ A−s such that (As, a−s) ∩ Ā �= ∅. Given a ≡ (as, a−s) ∈ Ā, 
by Assumption 1, we have b ≡ (bs, b−s) ∈ Ā such that as �= bs . Then, Lemma 28 implies that a
and b formulate a feasible box B(a, b). Thus, (bs, a−s) ∈ B(a, b) ⊆ Ā. Hence, 

∣∣(As, x−s) ∩ Ā
∣∣ ≥

2.
Next, fixing an arbitrary s ∈ M , we pick x−s ∈ A−s such that 

∣∣(As, x−s) ∩ Ā
∣∣ ≥ 2. Fur-

thermore, by Assumption 1, there must exist y−s ∈ A−s\{x−s} such that (As, y−s) ∩ Ā �=
∅. Then, it must be the case 

∣∣(As, y−s) ∩ Ā
∣∣ ≥ 2. Furthermore, by Lemma 25, we induce 

two trees G∼+
(
(As, x−s) ∩ Ā

)
and G∼+

(
(As, y−s) ∩ Ā

)
. Note that by Lemma 28, each al-

ternative in (As, x−s) ∩ Ā and each alternative in (As, y−s) ∩ Ā formulate a feasible box. 
Hence, it must be the case [(as, x−s) ∈ Ā] ⇔ [(as, y−s) ∈ Ā]. Consequently, there exists 
Ās ⊆ As with |Ās | ≥ 2 such that (As, x−s) ∩ Ā = (Ās, x−s) and (As, y−s) ∩ Ā = (Ās, y−s), 
and hence, G∼+

(
(Ās, x−s)

)
and G∼+

(
(Ās, y−s)

)
coincide such that for all as, bs ∈ Ās , [

(as, x−s) ∼+ (bs, x−s)
] ⇔ [

(as, y−s) ∼+ (bs, y−s)
]
. In conclusion, we can induce a tree 

G(Ās) such that as and bs form an edge if and only if (as, z−s), (bs, z−s) ∈ Ā and (as, z−s) ∼+
(bs, z−s) for all z−s ∈ A−s with (Ās, z−s) ≡ (As, z−s) ∩ Ā �= ∅. Hence, we assert that Ā is fac-
torizable, i.e., Ā = ×s∈MĀs , and G∼+(Ā) = ×s∈MG(Ās) is a product of trees. �

Applying the proofs of Lemmas 6 and 7, we know that for all Pi ∈ D, if r1(Pi) ∈ Ā, then 
Pi|Ā is multidimensional single-peaked on ×s∈MG(Ās). In the rest of the proof, we focus on 
preferences whose peaks are infeasible alternatives.

Lemma 30. Fix a ∈ A\Ā and P̄i ∈ Da . If P̄i|Ā is multidimensional single-peaked on ×s∈MG(Ās), 
then every preference of Da is multidimensional single-peaked on ×s∈MG(Ās).

Proof. Let r1(P̄i|Ā) = ā ≡ (ās)s∈M . Then, Assumption 2 implies r1(Pi|Ā) = ā for all Pi ∈ Da . 
Note that ās ∈ Ās for all s ∈ M by the factorization Ā = ×s∈MĀs .

CLAIM 1: Given s ∈ M and xs ∈ Ās , ϕ
(
Pi, (x

s, ā−s)
) = ϕ

(
ā, (xs, ā−s)

)
for all Pi ∈Da .

If xs = ās , the claim follows from unanimity (w.r.t. feasibility). We henceforth assume 
xs �= ās . Note that (xs, ā−s) ∈ Ā. By the tops-only property, we know ϕ

(
Pi, (x

s, ā−s)
) =

ϕ
(
P̄i , (x

s, ā−s)
)

for all Pi ∈ Da . Therefore, to complete the verification, it suffices to show 
ϕ

(
P̄i , (x

s, ā−s)
) = ϕ

(
ā, (xs, ā−s)

)
.

Given the interval 〈ā, (xs, ā−s)〉 in G∼+
(
(Ās, ā−s)

)
, since P̄i|Ā is multidimensional single-

peaked on ×s∈MG(Ās) by the hypothesis of the lemma and r1(P̄i|Ā) = ā, we know that 
P̄i|〈ā,(xs ,ā−s )〉 is single-peaked on 〈ā, (xs, ā−s)〉. Next, pick arbitrary P ′

i ∈ Dā by mini-
mal richness. Since ā ∈ Ā, we know that P ′

i is multidimensional single-peaked w.r.t. Ā. 
Hence, P ′

i|〈ā,(xs ,ā−s )〉 is single-peaked on 〈ā, (xs, ā−s)〉 as well. Since r1(P̄i|〈ā,(xs ,ā−s )〉) =
r1(P

′
i|〈ā,(xs ,ā−s )〉) = ā, single-peakedness on 〈ā, (xs, ā−s)〉 implies P̄i|〈ā,(xs ,ā−s )〉 = P ′

i|〈ā,(xs ,ā−s )〉. 
Moreover, since 

∑
z∈〈ā,(xs ,ā−s )〉 ϕz

(
P̄i , (xs, ā−s)

) = 1 and 
∑

z∈〈ā,(xs ,ā−s )〉 ϕz

(
P ′

i , (x
s, ā−s)

) = 1

by Lemma 24, sd-strategy-proofness and the tops-only property imply ϕ
(
P̄i , (xs, ā−s)

) =
ϕ
(
P ′

i , (x
s, ā−s)

) = ϕ
(
ā, (xs

t , ā
−s)

)
, as required. This completes the verification of the claim.
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Before establishing the next claim, note that minimal richness and connectedness+ imply that 
there exists a separable preference Pi ∈ D such that r1(Pi) = a.

CLAIM 2: Given a separable preference Pi ∈ Da , the induced preference Pi|Ā is multidimensional 
single-peaked on ×s∈MG(Ās).

By Remark 1, it suffices to show that [Pi]s|Ās is single-peaked on G(Ās) for every s ∈ M . 

Given s ∈ M and xs ∈ Ās , since ϕ
(
Pi, (x

s, ā−s)
) = ϕ

(
ā, (xs, ā−s)

)
by Claim 1, the proof of 

Lemma 6 implies that [Pi]s|Ās is single-peaked on G(Ās), as required. This completes the verifi-

cation of the claim.

CLAIM 3: Given Pi ∈ Da , the induced preference Pi|Ā is multidimensional single-peaked on 
×s∈MG(Ās).

Suppose not, i.e., there exist distinct x, y ∈ Ā such that x ∈ 〈ā, y〉 and yPix. Pick arbitrary 
P ′

i ∈ Dy by minimal richness. Evidently, a �= y. Since yPix and yP ′
i x, by the Exterior+ prop-

erty, we have a path {P k
i }qk=1 connecting Pi and P ′

i such that yP k
i x for all k = 1, . . . , q . Since 

a �= y, there exists 1 ≤ k∗ < q such that r1(P
k∗
i ) = a and r1(P

k∗+1
i ) �= a. Thus, Lemma 9 implies 

P k∗
i ∼+ P k∗+1

i , and hence P k∗
i is a separable preference. Then, Claim 2 implies that Pk∗

i|Ā is mul-

tidimensional single-peaked on ×s∈MG(Ās), and hence xP k∗
i y. Contradiction! This completes 

the verification of the claim and the lemma. �
Lemma 31. Given Pi, P ′

i ∈ D with Pi ∼+ P ′
i , if Pi|Ā is multidimensional single-peaked on 

×s∈MG(Ās), then P ′
i|Ā is multidimensional single-peaked on ×s∈MG(Ās).

Proof. If r1(Pi) = r1(P
′
i ), the result follows from Lemma 30. If r1(P

′
i ) ∈ Ā, it is evident that P ′

i|Ā
is multidimensional single-peaked on ×s∈MG(Ās). Hence, we assume r1(Pi) ≡ a �= b ≡ r1(P

′
i )

and b /∈ Ā. Since Pi ∼+ P ′
i , we know as �= bs and a−s = b−s for some s ∈ M , �(Pi, P ′

i ) ={{
(as, z−s), (bs, z−s)

}}
z−s∈A−s , and both Pi and P ′

i are separable preferences. Let ā = r1(Pi|Ā)

and b̄ = r1(P
′
i|Ā).

CLAIM 1: If ā �= b̄, then P ′
i|Ā is multidimensional single-peaked on ×s∈MG(Ās).

Since āPi b̄, b̄P ′
i ā and Pi ∼+ P ′

i , we know {ā, b̄} ∈ �(Pi, P ′
i ), and hence, āPi !b̄, b̄P ′

i !ā, 
ās = as , b̄s = bs and ā−s = b̄−s ≡ z̄−s . Moreover, since ā, b̄ ∈ Ā, we know as = ās ∈ Ās , 
bs = b̄s ∈ Ās and z̄−s ∈ Ā−s . Next, we show 〈as, bs〉 = {as, bs}. Suppose not, i.e., there exists 
cs ∈ 〈as, bs〉\{as, bs}. Thus, cs ∈ Ās , c̄ ≡ (cs, ̄z−s) ∈ Ā and (cs, ̄z−s) ∈ 〈(as, ̄z−s), (bs, ̄z−s)〉 ≡
〈ā, b̄〉. Consequently, since Pi is multidimensional single-peaked w.r.t. Ā, we have āPi c̄ and 
c̄Pi b̄. This contradicts āPi !b̄. Therefore, 〈as, bs〉 = {as, bs}.

Last, suppose that P ′
i|Ā is not multidimensional single-peaked on ×s∈MG(Ās), i.e., there exist 

distinct x, y ∈ Ā such that x ∈ 〈b̄, y〉 and yP ′
i x. Since x ∈ 〈b̄, y〉, we have xs ∈ 〈b̄s , ys〉 ≡ 〈bs, ys〉

and x−s ∈ 〈b̄−s , y−s〉 = 〈z̄−s , y−s〉. Since 〈as, bs〉 = {as, bs}, xs ∈ 〈bs, ys〉 implies xs ∈ 〈as, ys〉. 
Thus, x = (xs, x−s) ∈ 〈(as, ̄z−s), (ys, y−s)〉 = 〈ā, y〉, and hence xPiy by multidimensional 
single-peakedness w.r.t. Ā. Thus, {x, y} ∈ �(Pi, P ′

i ), and hence xs = as , ys = bs and x−s = y−s .
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Consequently, xs ∈ 〈bs, ys〉 = 〈bs, bs〉 = {bs} which contradicts xs = as . This completes the 
verification of the claim.

CLAIM 2: If ā = b̄, then P ′
i|Ā is multidimensional single-peaked on ×s∈MG(Ās).

If as /∈ Ās , we show Pi|Ā = P ′
i|Ā. Suppose not, i.e., there exist x, y ∈ Ā such that xPi|Āy and 

yP ′
i|Āx. Thus, xPiy and yP ′

i x. Consequently, Pi ∼+ P ′
i implies xs = as , ys = bs and x−s =

y−s . Hence, by factorization Ā = ×s∈MĀs , xs = as /∈ Ās implies x /∈ Ā. This contradicts the 
hypothesis x ∈ Ā. Therefore, Pi|Ā = P ′

i|Ā. Symmetrically, if bs /∈ Ās , we have Pi|Ā = P ′
i|Ā.

Now, we show either as /∈ Ās or bs /∈ Ās . Suppose not, i.e., as, bs ∈ Ās . Since ā = b̄ ∈ Ā, it 
is evident that z̄−s ≡ ā−s = b̄−s ∈ Ā−s . Thus, (as, ̄z−s), (bs, ̄z−s) ∈ Ā. Recall that both Pi and 
P ′

i are separable preferences. Since r1(Pi) = a and r1(P
′
i ) = b, separability implies (i) either 

(as, ̄z−s)Pi(ā
s , ̄z−s) ≡ ā or as = ās , and (ii) either (bs, ̄z−s)P ′

i (b̄
s , ̄z−s) ≡ b̄ or bs = b̄s . Further-

more, since ā = b̄ and as �= bs , it must be the case either (as, ̄z−s)Pi ā or (bs, ̄z−s)P ′
i b̄ which 

contradicts the hypothesis ā = r1(Pi|Ā) and b̄ = r1(P
′
i|Ā). This completes the verification of the 

claim, and proves the lemma. �
Lemma 32. Domain D is multidimensional single-peaked w.r.t. Ā.

Proof. Given an arbitrary Pi ∈ D, let r1(Pi) = a /∈ Ā and r1(Pi|ā ) = ā. Pick an arbitrary P ′
i ∈ Dā

by minimal richness. We know that P ′
i|Ā is multidimensional single-peaked on ×s∈MG(Ās). We 

have a path {P k
i }qk=1 connecting P ′

i and Pi . We first consider preference P 2
i . If P 2

i ∼ P 1
i = P ′

i , 
then r1(P

2
i ) = r1(P

1
i ) = a by Lemma 9, and then Lemma 30 implies that P 2

i|Ā is multidimen-

sional single-peaked on ×s∈MG(Ās). If P 2
i ∼+ P 1

i , Lemma 31 implies that P 2
i|Ā is multidi-

mensional single-peaked on ×s∈MG(Ās). Following the path {P k
i }qk=1 from P 2

i to P q
i = Pi , 

by repeatedly applying the argument above, we eventually show that Pi|Ā is multidimensional 
single-peaked on ×s∈MG(Ās). This completes the verification of the lemma, and hence proves 
part (i) of Theorem 3. �
Appendix E. Remaining verifications

E.1. A minimally rich domain satisfying all conditions of connectedness+ except the no-detour 
property

Let A = A1 × A2, A1 = {0, 1, 2} and A2 = {0, 1}. Let DMSP be the multidimensional single-
peaked domain on the product of two lines G(A1) ×G(A2) specified in Fig. 4 of Example 5. Let 
D ⊂DMSP be a domain of 20 preferences specified in Table 1.

Note that there exist no Pi ∈ D(1,0) and P ′
i ∈ D(1,1) such that Pi ∼+ P ′

i . This implies the 
violation of the no-detour property. We use a graph of adjacency and adjacency+ over D to show 
the Interior+ property and the remainder of the Exterior+ property.

The diagram of Fig. 17 directly shows that the Interior+ property is met by D. To verify the 
Exterior+ property (without the requirement of the no-detour property) on domain D, it suffices 
to make two observations on Fig. 17: First, each pair of preferences is connected via two inde-
pendent paths, and second, each local switching pair in Fig. 17 appears exactly twice.
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Table 1
Domain D.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

(0,0) (0,0) (1,0) (1,0) (1,0) (1,0) (1,0) (1,0) (2,0) (2,0)

(0,1) (1,0) (0,0) (0,0) (0,0) (2,0) (2,0) (2,0) (1,0) (2,1)

(1,0) (0,1) (1,1) (1,1) (2,0) (0,0) (1,1) (1,1) (2,1) (1,0)

(1,1) (1,1) (0,1) (2,0) (1,1) (1,1) (0,0) (2,1) (1,1) (1,1)

(2,0) (2,0) (2,0) (0,1) (0,1) (2,1) (2,1) (0,0) (0,0) (0,0)

(2,1) (2,1) (2,1) (2,1) (2,1) (0,1) (0,1) (0,1) (0,1) (0,1)

P̄1 P̄2 P̄3 P̄4 P̄5 P̄6 P̄7 P̄8 P̄9 P̄10

(0,1) (0,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (2,1) (2,1)

(0,0) (1,1) (0,1) (0,1) (0,1) (2,1) (2,1) (2,1) (1,1) (2,0)

(1,1) (0,0) (1,0) (1,0) (2,1) (0,1) (1,0) (1,0) (2,0) (1,1)

(1,0) (1,0) (0,0) (2,1) (1,0) (1,0) (0,1) (2,0) (1,0) (1,0)

(2,1) (2,1) (2,1) (0,0) (0,0) (2,0) (2,0) (0,1) (0,1) (0,1)

(2,0) (2,0) (2,0) (2,0) (2,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Fig. 17. The adjacency and adjacency+ relations among preferences of D. In Fig. 17, for instance, “P1
{(0,1),(1,0)}

P2” 
represents P1 ∼ P2 and �(P1, P2) = {(0, 1), (1, 0)}, and “P2

{(0,0),(1,0)}
{(0,1),(1,1)}P3” represents P2 ∼+ P3 and �(P2, P3) =

{{(0, 0), (1, 0)}, {(0, 1), (1, 1)}}.

E.2. The separable domain is a connected+ domain

We first provide an example to illustrate how to verify connectedness+ on a particular separa-
ble domain.

Example 8. Let A = A1 × A2, A1 = {0, 1, 2} and A2 = {0, 1}. Fix two particular separable pref-
erences:

Pi : (0,0)⇀(0,1)⇀(1,0)⇀(1,1)⇀(2,0)⇀(2,1), and

P ′
i : (2,1)⇀(0,1)⇀(2,0)⇀(1,1)⇀(0,0)⇀(1,0).

Note that (0, 1)Pi(1, 1) and (0, 1)P ′
i (1, 1).

First, we identify the transition of marginal preferences from Pi to P ′
i below which consists 

of 3 steps.([Pi]1; [Pi]2) ≡ (0⇀1⇀2;0⇀1)
1©==⇒ (0⇀1⇀2;1⇀0)

2©==⇒ (0⇀2⇀1;1⇀0)

3©==⇒ (2⇀0⇀1;1⇀0) ≡ ([P ′
i ]1; [P ′

i ]2).
For each transition step, we identify a pair of adjacent+ preferences in Table 2.

Next, we make the following observations.

(i) Pi = P̄ 1
i .

(ii) P̂ 1
i and P̄ 2

i share the same marginal preferences, and P̂ 1
i ∼ P̄ 2

i .
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Table 2
Three pairs of adjacent+ preferences.

1©==⇒ 2©==⇒ 3©==⇒
P̄ 1

i
∼+ P̂ 1

i
P̄ 2

i
∼+ P̂ 2

i
P̄ 3

i
∼+ P̂ 3

i

(0,0) (0,1) (0,1) (0,1) (0,1) (2,1)

(0,1) (0,0) (0,0) (0,0) (2,1) (0,1)

(1,0) (1,1) (1,1) (2,1) (1,1) (1,1)

(1,1) (1,0) (2,1) (1,1) (0,0) (2,0)

(2,0) (2,1) (1,0) (2,0) (2,0) (0,0)

(2,1) (2,0) (2,0) (1,0) (1,0) (1,0)

(iii) P̂ 2
i and P̄ 3

i share the same marginal preferences. We identify another separable pref-
erence P̃i : (0, 1)⇀(2, 1)⇀(0, 0)⇀(1, 1)⇀(2, 0)⇀(1, 0), and construct an adjacency path 
{P̂ 2

i , P̃i , P̄ 3
i } along which (0, 1) always ranks above (1, 1).52

(iv) P̂ 3
i and P ′

i share the same marginal preferences, and P̂ 3
i ∼ P ′

i .

Eventually, we construct a path connecting Pi and P ′
i which meets the requirement of the 

Exterior+ property: Pi = P̄ 1
i ∼+ P̂ 1

i ∼ P̄ 2
i ∼+ P̂ 2

i ∼ P̃i ∼ P̄ 3
i ∼+ P̂ 3

i ∼ P ′
i . Note that r1(P̂

1
i ) =

(0, 1) and r1(P
′
i ) = (2, 1) are similar, and {P̂ 1

i , P̄ 2
i , P̂ 2

i , P̃i , P̄ 3
i , P̂ 3

i , P ′
i } satisfies the requirement 

of the no-detour property. As an instance, {P̂ 1
i , P̄ 2

i , P̂ 2
i , P̃i , P̄ 3

i } meets the requirement of the 
Interior+ property. �

We make one observation on the separable domain DS.

Observation 1. If a pair of separable preferences is adjacent, they share the same marginal pref-
erence on each component. If a pair of separable preferences is adjacent+, they have a pair of 
adjacent marginal preferences on one component, and share the same marginal preference on 
every other component. Fix a separable preference Pi . Given aPi !b, if a and b disagree on at 
least two components, then by locally switching a and b in Pi , we generate a new separable 
preference P ′

i such that Pi ∼ P ′
i and �(Pi, P ′

i ) =
{{a, b}}. Similarly, if there exist s ∈ M and 

as, bs ∈ As such that (as, z−s)Pi !(bs, z−s) for all z−s ∈ A−s , then by locally switching (as, z−s)

and (bs, z−s) for all z−s ∈ A−s simultaneously in Pi , we generate a new separable preference P ′
i

such that Pi ∼+ P ′
i and �(Pi, P ′

i ) =
{{(as, z−s), (bs, z−s)}}

z−s∈A−s . �
Now, we provide five general facts to show that the separable domain in general is a 

connected+ domain. Fact 1 only serves for the proof of Fact 2, Facts 2 and 3 are step results 
for the proof of Fact 4, while Facts 4 and 5 are utilized to construct paths for the verification 
of the Interior+ and Exterior+ properties. We separately establish these five facts because they 
will be replicated for the verifications of connectedness+ on other multidimensional domains. 
For notational convenience, let [DS]s denote the marginal domain over As which in fact is the 
complete domain of marginal preferences over As .

52 Note that the existence of preference P̃i also illustrates the importance of the co-existence of adjacency and 
adjacency+. If we forbid the presence of adjacency, then preference P̄ 3

i
cannot be obtained via the transition of pref-

erence P̂ 2
i

, and consequently, the adjacency+ relation between P̄3 and P̂3 disappears.



84 S. Chatterji, H. Zeng / Journal of Economic Theory 182 (2019) 25–105

Fact 1. Given s ∈ M and distinct [Pj ]s , [P ′
j ]s ∈ [DS]s , there exist [P ′′

j ]s ∈ [DS]s and as, bs ∈ As

such that [Pj ]s ∼ [P ′′
j ]s , as[Pj ]s !bs , bs[P ′′

j ]s !as and bs[P ′
j ]sas . (Note that it is possible [P ′′

j ]s =
[P ′

j ]s .)

Proof. Since [Pj ]s and [P ′
j ]s are distinct, there exist as, bs ∈ As such that as[Pj ]s !bs and 

bs[P ′
j ]sas . By locally switching as and bs in [Pj ]s , we generate [P ′′

j ]s ∈ [DS]s . Thus, [Pj ]s ∼
[P ′′

j ]s and bs[P ′′
j ]s !as . �

Fact 2. Fixing Pj , P ′
j ∈ DS with [Pj ]q �= [P ′

j ]q for some q ∈ M , and x, y ∈ A with xPjy and 
xP ′

j y, there exists P ′′
j ∈DS such that

(i) [P ′′
j ]s ∼ [Pj ]s for some s ∈ M , and [P ′′

j ]ω = [Pj ]ω for all ω �= s,
(ii) as[Pj ]s !bs , bs[P ′′

j ]s !as and bs[P ′
j ]sas for some as, bs ∈ As , and

(iii) xP ′′
j y.

Proof. Let S = {s ∈ M : [Pj ]s �= [P ′
j ]s} and T = {τ ∈ M : xτ �= yτ }. Evidently, both S and T

are nonempty. We consider two cases:

(1) There exists τ ∈ T such that xτ [Pj ]τ yτ and xτ [P ′
j ]τ yτ .

(2) For all τ ∈ T , 
[
xτ [Pj ]τ yτ

] ⇒ [
yτ [P ′

j ]τ xτ
]
.

In case (1), we know either τ ∈ S or τ /∈ S. If τ ∈ S, we know [Pj ]τ �= [P ′
j ]τ . Further-

more, by Fact 1, we have [P ′′
j ]τ ∈ [DS]τ and aτ , bτ ∈ Aτ such that [P ′′

j ]τ ∼ [Pj ]τ , aτ [Pj ]τ !bτ , 
bτ [P ′′

j ]τ !aτ and bτ [P ′
j ]τ aτ . Thus, {aτ , bτ } �= {xτ , yτ }. Hence, [Pj ]τ ∼ [P ′′

j ]τ and xτ [Pj ]τ yτ

imply xτ [P ′′
j ]τ yτ . We then refer to a lexicographic order � where τ is lexicographically domi-

nant, assemble marginal preferences [P ′′
j ]τ and [Pj ]ω for all ω �= τ , and form a lexicographically 

separable preference P ′′
j . Thus, P ′′

j must satisfy conditions (i) - (iii). If τ /∈ S, we pick an arbi-
trary s ∈ S. Since [Pj ]s �= [P ′

j ]s , by Fact 1, we have [P ′′
j ]s ∈ [DS]s and as, bs ∈ As such that 

[P ′′
j ]s ∼ [Pj ]s , as[Pj ]s !bs , bs[P ′′

j ]s !as and bs[P ′
j ]sas . We then refer to a lexicographic order �

where τ is lexicographically dominant, assemble marginal preferences [P ′′
j ]s and [Pj ]ω for all 

ω �= s, and form a lexicographically separable preference P ′′
j . Thus, P ′′

j must satisfy conditions 
(i) - (iii).

Next, assume that case (2) occurs. Since xP ′
j y, there exists s ∈ T such that xs[P ′

j ]sys . Then, 
case (2) implies ys[Pj ]sxs , and hence s ∈ S. Then, by Fact 1, we have [P ′′

j ]s ∈ [DS]s and as, bs ∈
As such that [P ′′

j ]s ∼ [Pj ]s , as[Pj ]s !bs , bs[P ′′
j ]s !as and bs[P ′

j ]sas . Symmetrically, since xPjy, 

there exists τ̂ ∈ T such that xτ̂ [Pj ]τ̂ yτ̂ . Then, case (2) implies yτ̂ [P ′
j ]τ̂ xτ̂ . Since xτ̂ [Pj ]τ̂ yτ̂ and 

ys[Pj ]sxs , we know τ̂ �= s. Now, we refer to a lexicographic order � where τ̂ is lexicographically 
dominant, assemble marginal preferences [P ′′

j ]s , [Pj ]τ̂ and [Pj ]ω for all ω /∈ {s, τ̂ }, and form a 
lexicographically separable preference P ′′

j . Thus, P ′′
j must satisfy conditions (i) - (iii). �

Fact 3. Given Pj ∈ DS, s ∈ M , as, bs ∈ As with as[Pj ]s !bs , there exists P̄j ∈ DS such that

(i) for all x, y ∈ A\(bs, A−s), [xPjy] ⇔ [xP̄j y],
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(ii) for all z−s ∈ A−s , (as, z−s)P̄j !(bs, z−s), and
(iii) [Pj ]ω = [P̄j ]ω for all ω ∈ M .

Moreover, there exists P̂j ∈DS such that �(P̄j , P̂j ) =
{{(as, z−s), (bs, z−s)}}

z−s∈A−s .

Proof. We first construct preferences P̄j satisfying conditions (i) and (ii). First, we remove 
all alternatives of (bs, A−s) from Pj , and induce preference Pj |A\(bs ,A−s ) over A\(bs, A−s). 
Next, we construct preference P̄j over A by plugging all alternatives of (bs, A−s) back to 
Pj |A\(bs ,A−s ) such that for all z−s ∈ A−s , (as, z−s) contiguously ranks above (bs, z−s), i.e., 
(as, z−s)P̄j !(bs, z−s). Evidently, by the construction, P̄j satisfies conditions (i) and (ii). More-
over, note that P̄j satisfies condition (iii) if it is a separable preference.

Next, we show that P̄j is a separable preference. Given τ ∈ M , âτ , b̂τ ∈ Aτ and z̄−τ , z−τ ∈
A−τ , let (âτ , z−τ )P̄j (b̂

τ , z−τ ). Suppose by contradiction (b̂τ , z−τ )P̄j (â
τ , z−τ ). We consider the 

following four cases, and induce a contradiction in each case:

(1) τ �= s and zs �= bs or zs �= bs ,
(2) τ �= s and zs = bs = zs ,
(3) τ = s and b̂τ = bs , and
(4) τ = s and b̂τ �= bs .

In case (1), we assume zs �= bs . The verification related to zs �= bs is symmetric, and we 
hence omit it. Since τ �= s and zs �= bs , we know (âτ , z−τ ), (b̂τ , z−τ ) /∈ (bs, A−s). Then, by 
condition (i), the hypothesis (âτ , z−τ )P̄j (b̂

τ , z−τ ) implies (âτ , z−τ )Pj (b̂
τ , z−τ ). Furthermore, 

by separability, we have (âτ , z−τ )Pj (b̂
τ , z−τ ) and (âτ , as, z−{τ,s})Pj (b̂

τ , as, z−{τ,s}) which 
implies (âτ , as, z−{τ,s})P̄j (b̂

τ , as, z−{τ,s}) by condition (i). If zs �= bs , condition (i) implies 
(âτ , z−τ )P̄j (b̂

τ , z−τ ). This contradicts the hypothesis (b̂τ , z−τ )P̄j (â
τ , z−τ ). Therefore, zs = bs . 

Since (âτ , as, z−{τ,s})P̄j !(âτ , bs, z−{τ,s}) = (âτ , z−τ ) and (b̂τ , as, z−{τ,s})P̄j !(b̂τ , bs, z−{τ,s}) =
(b̂τ , z−τ ) by condition (ii), (âτ , as, z−{τ,s})P̄j (b̂

τ , as, z−{τ,s}) implies (âτ , z−τ )P̄j (b̂
τ , z−τ ). 

Contradiction!
Assume that case (2) occurs. On the one hand, since (âτ , as, z−{τ,s})P̄j !(âτ , bs, z−{τ,s}) =

(âτ , z−τ ) and (b̂τ , as, z−{τ,s})P̄j !(b̂τ , bs, z−{τ,s}) = (b̂τ , z−τ ) by condition (ii), the hypothe-
sis (âτ , z−τ )P̄j (b̂

τ , z−τ ) implies (âτ , as, z−{τ,s})P̄j (b̂
τ , as, z−{τ,s}). Then, condition (i) implies 

(âτ , as, z−{τ,s})Pj (b̂
τ , as, z−{τ,s}), and hence âτ [Pj ]τ b̂τ by separability. On the other hand, 

since (âτ , as, z−{τ,s})P̄j !(âτ , bs, z−{τ,s}) = (âτ , z−τ ) and (b̂τ , as, z−{τ,s})P̄j !(b̂τ , bs, z−{τ,s}) =
(b̂τ , z−τ ) by condition (ii), the hypothesis (b̂τ , z−τ )P̄j (â

τ , z−τ ) implies (b̂τ , as, z−{τ,s}) ×
P̄j (â

τ , as, z−{τ,s}). Then, condition (i) implies (b̂τ , as, z−{τ,s})Pj (â
τ , as, z−{τ,s}), and hence 

b̂τ [Pj ]τ âτ by separability. Contradiction!
In case (3), since (as, z−s)P̄j !(bs, z−s) = (b̂s , z−s) by condition (ii) and (b̂s, z−s)P̄j (â

s , z−s)

by the hypothesis, we know (as, z−s)P̄j (â
s , z−s) and hence as �= âs . Then, condition (i) implies 

(as, z−s)Pj (â
s, z−s), and hence (as, z−s)Pj (â

s, z−s) by separability. Again, condition (i) im-
plies (as, z−s)P̄j (â

s , z−s). Last, since (as, z−s)P̄j !(bs, z−s) by condition (ii), it must be the case 
(bs, z−s)P̄j (â

s , z−s) which is equivalently (b̂τ , z−τ )P̄j (â
τ , z−τ ). This contradicts the hypothesis 

(âτ , z−τ )P̄j (b̂
τ , z−τ ).
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In case (4), we first show bs = âs . Suppose not, i.e., bs �= âs . By condition (i), the hypoth-
esis (âs , z−s)P̄j (b̂

s , z−s) and (b̂s, z−s)P̄j (â
s , z−s) imply (âs, z−s)Pj (b̂

s , z−s) and (b̂s, z−s) ×
Pj (â

s, z−s) respectively, which contradict the separability of Pj . Therefore, bs = âs . Next, since 
(as, z−s)P̄j !(bs, z−s) by condition (ii) and (bs, z−s) = (âs , z−s)P̄j (b̂

s , z−s) by the hypothesis, 
transitivity implies (as, z−s)P̄j (b̂

s , z−s). Then, condition (i) implies (as, z−s)Pj (b̂
s , z−s), and 

hence (as, z−s)Pj (b̂
s , z−s) by separability. Furthermore, by condition (i), (as, z−s)Pj (b̂

s , z−s)

implies (as, z−s)P̄j (b̂
s , z−s). Last, since (as, z−s)P̄j (b̂

s , z−s) and (as, z−s)P̄j !(bs, z−s) =
(âs , z−s) by condition (ii), it must be the case (âs, z−s)P̄j (b̂

s , z−s) which contradicts the hy-
pothesis (b̂s , z−s)P̄j (â

s , z−s). In conclusion, P̄j is a separable preference. Hence, condition (iii) 
is satisfied by P̄j .

Last, according to Observation 1, by locally switching (as, z−s) and (bs, z−s) for all z−s ∈
A−s simultaneously in P̄j , we generate a separable preference P̂j such that �(P̄j , P̂j ) ={{(as, z−s), (bs, z−s)}}

z−s∈A−s . This completes the proof of Fact 3. �
Fact 4. Fixing Pj , P ′

j ∈ DS with [Pj ]s �= [P ′
j ]s for some s ∈ M , and x, y ∈ A with xPjy and 

xP ′
j y, there exist t ≥ 1 pair(s) {P̄ k

j , P̂ k
j : k = 1, . . . , t} ⊆DS such that

(i) P̄ k
j ∼+ P̂ k

j for all k = 1, . . . , t ,

(ii) [Pj ]s = [P̄ 1
j ]s for all s ∈ M ,

(iii) [P̂ k
j ]s = [P̄ k+1

j ]s for all s ∈ M and k = 1, . . . , t − 1,

(iv) [P̂ t
j ]s = [P ′

j ]s for all s ∈ M , and

(v) xP̄ k
j y and xP̂ k

j y for all k = 1, . . . , t .

In particular, if r1(Pj ) and r1(P
′
j ) are similar, say r1(Pj ) = (as, z−s) and r1(P

′
j ) = (bs, z−s), 

then r1(P̄
k
j ), r1(P̂

k
j ) ∈ (As, z−s) for all k = 1, . . . , t .

Proof. Let S = {q ∈ M : [Pj ]q �= [P ′
j ]q} and T = {τ ∈ M : xτ �= yτ }. Evidently, both S and T

are nonempty. Since xPjy, there exists τ̂ ∈ T such that xτ̂ [Pj ]τ̂ yτ̂ . According to Pj and P ′
j , 

we identify P ′′
j ∈ DS satisfying conditions (i) - (iii) of Fact 2. Specifically, (i) [P ′′

j ]s ∼ [Pj ]s for 
some s ∈ S, and [P ′′

j ]ω = [Pj ]ω for all ω �= s, (ii) as[Pj ]s !bs , bs[P ′′
j ]s !as and bs[P ′

j ]sas for some 
as, bs ∈ As , and (iii) xP ′′

j y.

CLAIM 1: According to Pj and P ′′
j , there exist P̄j , P̂j ∈ DS satisfying the following four condi-

tions:

(i) P̄j ∼+ P̂j and �(P̄j , P̂j ) =
{{(as, z−s), (bs, z−s)}}

z−s∈A−s ,

(ii) [P̄j ]ω = [Pj ]ω for all ω ∈ M ,
(iii) [P̂j ]ω = [P ′′

j ]ω, and

(iv) xP̄j y and xP̂j y.

According to the subset T and the component s in the first paragraph, we consider four cases:

(1) s /∈ T .
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(2) T = {s}.
(3) |T | ≥ 2, s ∈ T , and there exists τ ∈ T \{s} such that xτ [Pj ]τ yτ .
(4) |T | ≥ 2, s ∈ T , xs[Pj ]sys and yτ [Pj ]τ xτ for all τ ∈ T \{s}.

In case (1), component τ̂ in the first paragraph is distinct to s. Since xτ̂ [Pj ]τ̂ yτ̂ mentioned 
in the first paragraph and [P ′′

j ]τ̂ = [Pj ]τ̂ by condition (i) of Fact 2, we have xτ̂ [P ′′
j ]τ̂ yτ̂ . We 

fix a lexicographic order � where τ̂ is lexicographically dominant, and s is lexicographically 
dominated. According to �, we assemble all marginal preferences of Pj , and form preference 
P̄j ∈ DLS. Symmetrically, according to �, we assemble all marginal preferences of P ′′

j , and form 

preference P̂j ∈DLS. Evidently, P̄j and P̂j satisfy conditions (i) - (iv) of Claim 1.
In case (2), we know x = (xs, x−s) and y = (ys, y−s) where xs �= ys and x−s = y−s . Since 

xPjy by the hypothesis of Fact 4 and xP ′′
j y by condition (iii) of Fact 2, separability im-

plies xs[Pj ]sys and xs[P ′′
j ]sys . We fix a lexicographic order � where s is lexicographically 

dominated. According to �, we assemble all marginal preferences of Pj , and form preference 
P̄j ∈ DLS. Symmetrically, according to �, we assemble all marginal preferences of P ′′

j , and form 

preference P̂j ∈DLS. Evidently, P̄j and P̂j satisfy conditions (i) - (iv) of Claim 1.
In case (3), since xτ [Pj ]τ yτ and [P ′′

j ]τ = [Pj ]τ by condition (i) of Fact 2, we have xτ [P ′′
j ]τ yτ . 

We fix a lexicographic order � where τ is lexicographically dominant, and s is lexicographically 
dominated. According to �, we assemble all marginal preferences of Pj , and form preference 
P̄j ∈ DLS. According to �, we also assemble all marginal preferences of P ′′

j , and form preference 

P̂j ∈ DLS. Evidently, P̄j and P̂j satisfy conditions (i) - (iv) of Claim 1.
In case (4), since yτ [Pj ]τ xτ for all τ ∈ T \{s}, condition (i) of Fact 2 implies yτ [P ′′

j ]τ xτ for 
all τ ∈ T \{s}. We first show xs[P ′′

j ]sys . Suppose not, i.e., ys[P ′′
j ]sxs . Thus, yτ [P ′′

j ]τ xτ for all 
τ ∈ T , and consequently, yP ′′

j x which contradicts condition (iii) of Fact 2. Therefore, xs[P ′′
j ]sys . 

Then, according to condition (ii) of Fact 2, we know {xs, ys} �= {as, bs}. We thus have two 
subcases: ys �= bs and ys = bs .

First, assume ys �= bs . According to Pj , since as[Pj ]s !bs by condition (ii) of Fact 2, we 
construct P̄j , P̂j ∈DS satisfying Fact 3. Thus, conditions (i) and (ii) of Claim 1 are satisfied. Fur-
thermore, by �(P̄j , P̂j ) =

{{(as, z−s), (bs, z−s)}}
z−s∈A−s in Fact 3 and conditions (i) and (ii) of 

Fact 2, we know that condition (iii) of Claim 1 also holds. Last, we show condition (iv) of Claim 
1. We consider two situations: xs �= bs and xs = bs . If xs �= bs , condition (i) of Fact 3 implies 
xP̄j y. Furthermore, since xs �= bs and ys �= bs , �(P̄j , P̂j ) =

{{(as, z−s), (bs, z−s)}}
z−s∈A−s in 

Fact 3 implies that P̄j and P̂j share the same relative ranking over x and y. Therefore, xP̂j y. 
This proves condition (iv) of Claim 1 in the situation xs �= bs . If xs = bs , as[Pj ]s !bs by con-
dition (ii) of Fact 2 implies (as, x−s)Pj (b

s, x−s) = x. Hence, condition (ii) of Fact 3 implies 
(as, x−s)P̄j !(bs, x−s) = x. Moreover, since xPjy by the hypothesis of Fact 4, (as, x−s)Pj x

implies (as, x−s)Pjy. Then, condition (i) of Fact 3 again implies (as, x−s)P̄j y, and further-
more, (as, x−s)P̄j !x implies xP̄j y. Last, since xs = bs , ys �= bs and xP̄j y, �(P̄j , P̂j ) ={{(as, z−s), (bs, z−s)}}

z−s∈A−s in Fact 3 implies that P̄j and P̂j share the same relative rank-

ing over x and y. Therefore, xP̂j y. This proves condition (iv) of Claim 1 in the situation 
xs = bs .

Next, assume ys = bs . Since {xs, ys} �= {as, bs}, we know xs /∈ {as, bs}. Since as[Pj ]s !bs by 
condition (ii) of Fact 2 and xs[Pj ]sys = bs by the hypothesis of case (4), we know xs[Pj ]sas . 
We first identify preference P̃j ∈ DLS such that [P̃j ]ω = [Pj ]ω for all ω ∈ M , and com-
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ponent s is lexicographically dominant in the lexicographic order. Thus, xP̃j (a
s, y−s) and 

(as, y−s)P̃j (b
s, y−s) = y. According to P̃j , since as[Pj ]s !bs by condition (ii) of Fact 2 and 

[P̃j ]s = [Pj ]s , we construct P̄j , P̂j ∈ DS satisfying Fact 3. Thus, condition (i) of Claim 1 is 
satisfied. Moreover, by condition (iii) of Fact 3, we have [P̄j ]ω = [P̃j ]ω = [Pj ]ω for all ω ∈ M

which verifies condition (ii) of Claim 1. Next, by �(P̄j , P̂j ) =
{{(as, z−s), (bs, z−s)}}

z−s∈A−s in 
Fact 3 and conditions (i) and (ii) of Fact 2, we know that condition (iii) of Claim 1 also holds. 
Last, we show condition (iv) of Claim 1. According to the construction of P̄j , since xP̃j (a

s, y−s), 
condition (i) of Fact 3 implies xP̄j (a

s, y−s), and since (as, y−s)P̃j (b
s, y−s) = y, condition (ii) 

of Fact 3 implies (as, y−s)P̄j !(bs, y−s) = y. Therefore, xP̄j y by transitivity. Furthermore, since 
xs /∈ {as, bs} and xP̄j y, �(P̄j , P̂j ) =

{{(as, z−s), (bs, z−s)}}
z−s∈A−s in Fact 3 implies that P̄j

and P̂j share the same relative ranking over x and y. Therefore, xP̂j y. This completes the veri-
fication of Claim 1.

By Claim 1, we identify the pair {P̄j , P̂j }. Let P̄ 1
j = P̄j and P̂ 1

j = P̂j . Note that P̂ 1
j is 

one-step closer to P ′
j than Pj in the sense �([P̂ 1

j ]s , [P ′
j ]s) = �([Pj ]s , [P ′

j ]s)\
{{as, bs}} and 

�([P̂ 1
j ]ω, [P ′

j ]ω) = �([Pj ]ω, [P ′
j ]ω) for all ω �= s. Next, according to P̂ 1

j and P ′
j , we identify 

another separable preference P ′′
j satisfying condition (i) - (iii) of Fact 2. Then, according to 

P̂ 1
j and P ′′

j , we identify the second pair {P̄ 2
j , P̂ 2

j } satisfying conditions (i) - (iv) of Claim 1. 

Note that P̂ 2
j is also one-step closer to P ′

j than P̂ 1
j . Repeat this procedure until identifying the 

pair {P̄ t
j , P̂ t

j } where P̂ t
j and P ′

j share the same marginal preferences. Thus, we have the pair(s) 

{P̄ k
j , P̂ k

j : k = 1, . . . , t} ⊆ DS satisfying condition (i) - (v) of Fact 4. In particular, note that if 
r1(Pj ) and r1(P

′
j ) are similar, say r1(Pj ) = (as, z−s) and r1(P

′
j ) = (bs, z−s), the construction of 

{P̄ k
j , P̂ k

j : k = 1, . . . , t} implies r1(P̄
k
j ), r1(P̂

k
j ) ∈ (As, z−s) for all k = 1, . . . , t . This completes 

the verification of Fact 4. �
Fact 5. Given two distinct Pj , P ′

j ∈ DS with [Pj ]s = [P ′
j ]s for all s ∈ M , there exists 

an adjacency path {P k
j }qk=1 ⊆ DS connecting Pj and P ′

j such that [xPjy and xP ′
j y] ⇒

[xP k
j y for all k = 1, . . . , q].

Proof. Since [Pj ]s = [P ′
j ]s for all s ∈ M , it is evident that r1(Pj ) = r1(P

′
j ). Searching from 

the top of Pj and P ′
j down to the bottom, since Pj �= P ′

j , we identify 1 < k ≤ |A| such that 
rl(Pj ) = rl(P

′
j ) for all 1 ≤ l < k and rk(Pj ) �= rk(P

′
j ). For notational convenience, let rk(P ′

j ) ≡ y

and y ≡ rν(Pj ). It is evident that ν > k, and hence ν − 1 ≥ k. Let x ≡ rν−1(Pj ). Since rl(Pj ) =
rl(P

′
j ) for all 1 ≤ l < k, we know yP ′

j x. Thus, xPj !y and yP ′
j x. We construct another preference 

P ′′
j by locally switching x and y in Pj . Thus, Pj ∼ P ′′

j and �(Pj , P ′′
j ) = {{x, y}}. Last, to show 

that P ′′
j is a separable preference, by Observation 1, it suffices to show that x and y disagree on 

at least two components. Since x �= y, there exists s ∈ M such that xs �= ys . Suppose xτ = yτ for 
all τ ∈ M\{s}. Consequently, separability implies xs[Pj ]sys and ys[P ′

j ]sxs which contradict the 
hypothesis [Pj ]s = [P ′

j ]s . Therefore, P ′′
j is a separable preference.

Note that P ′′
j is closer to P ′

j than Pj since �(P ′′
j , P ′

j ) = �(Pj , P ′
j )\

{{x, y}}. By repeat-
edly applying the argument in the first paragraph, we eventually construct an adjacency path 
{P k

j }qk=1 ⊆ DS connecting Pj and P ′
j . By the construction, we know that for each 1 ≤ k < q , 
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[xP k
j !y and yP k+1

j !x] ⇒ [yP ′
j x]. Therefore, we have [xPjy and xP ′

j y] ⇒ [xP k
j y for all k =

1, . . . , q]. �
Now, we use Facts 4 and 5 to construct paths for the verification of the Interior+ and Exterior+

properties. Fix Pj , P ′
j ∈ DS and x, y ∈ A with xPjy and xP ′

j y. If Pj and P ′
j share the same 

marginal preferences, then r1(Pj ) = r1(P
′
j ), and we have a path connecting Pj and P ′

j which 
satisfies the requirement of the Interior+ property by Fact 5. If Pj and P ′

j have distinct marginal 

preferences, we first identify pair(s) {P̄ k
j , P̂ k

j : k = 1, . . . , t} satisfying condition (i) - (v) of Fact 4. 
Next, according to conditions (ii) - (iv) of Fact 4, we construct an adjacency path connecting 
Pj and P̄ 1

j which satisfies Fact 5, an adjacency path connecting P̂ k
j and P̄ k+1

j which satisfies 

Fact 5 for each k = 1, . . . , t − 1, and an adjacency path connecting P̂ t
j and P ′

j which satisfies 
Fact 5. Last, we combine all these adjacency paths via condition (i) of Fact 4, and generate a 
path {P k

j }qk=1 ⊆ DS connecting Pj and P ′
j . If r1(Pj ) = r1(P

′
j ) ≡ a, then the proof of Fact 4

implies r1(P̄
k
j ) = r1(P̂

k
j ) = a for all k = 1, . . . , t , and furthermore, Fact 5 implies r1(P

k
j ) = a

for all k = 1, . . . , q . This meets the requirement of the Interior+ property. If r1(Pj ) �= r1(P
′
j ), we 

know xP̄ k
j y and xP̂ k

j y by condition (v) of Fact 4 for all k = 1, . . . , t , and furthermore, Fact 5

implies xP k
j y for all k = 1, . . . , q . This meets the requirement of the Exterior+ property. In 

particular, if r1(Pj ) and r1(P
′
j ) are similar, say r1(Pj ) = (as, z−s) and r1(P

′
j ) = (bs, z−s), we 

know r1(P̄
k
j ), r1(P̂

k
j ) ∈ (As, z−s) by Fact 4 for all k = 1, . . . , t , and furthermore, Fact 5 implies 

r1(P
k
j ) ∈ (As, z−s) for all k = 1, . . . , q . This meets the requirement of no-detour property.

E.3. The top-separable domain is a connected+ domain

We first provide Fact 6 which links DTS to the connectedness+ of DS.

Fact 6. Given Pj ∈ DTS\DS and a, b ∈ A with aPjb, there exists P̄j ∈ DS such that r1(P̄j ) =
r1(Pj ) ≡ ā and aP̄j b. Furthermore, there exists an adjacency path {P k

j }tk=1 ⊆ Dā
TS connecting 

Pj and P̄j such that [xPjy and xP̄j y] ⇒ [xP k
j y for all k = 1, . . . , t].

Proof. Let S = {s ∈ M : as �= bs}. Evidently, S �= ∅. Since aPjb, there exists s ∈ S such that 
bs �= ās by top-separability. We then fix a marginal preference [P̄j ]s such that r1([P̄j ]s) = ās

and as[P̄j ]sbs , and a marginal preference [P̄j ]τ with r1([P̄j ]τ ) = āτ for each τ �= s. Last, we fix 
a lexicographic order � such that component s is lexicographically dominant, and assemble all 
marginal preferences above to generate a preference P̄j ∈ DLS. Hence, r1(P̄j ) = ā = r1(Pj ) and 
aP̄j b.

Recalling the proof of Fact 5, according to Pj and P̄j , we identify x, y ∈ A such that 
x �= ā, y �= ā, xPj !y and yP̄j x. Let nonempty T ⊆ M be such that xτ �= yτ for all τ ∈ T and 
x−T = y−T . Since Pj , P̄j ∈ DTS, xPj !y implies that there exists τ ∈ T such that yτ �= āτ , and 
yP̄j x implies that there exists τ ′ ∈ T such that xτ ′ �= āτ ′

. Note that either τ = τ ′ or τ �= τ ′. 
By locally switching x and y in Pj , we generate a preference P ′′

j . Thus, r1(P
′′
j ) = ā, Pj ∼ P ′′

j , 

xPj !y, yP ′′
j !x and yP̄j x. Then, yτ �= āτ and xτ ′ �= āτ ′

imply P ′′
j ∈ DTS. Note that P ′′

j is closer 

to P̄j than Pj since �(P ′′
j , P̄j ) = �(Pj , P̄j )\

{{x, y}}. By repeatedly applying the argument 

above, we eventually generate an adjacency path {P k
j }tk=1 ⊆ Dā

TS such that for each 1 ≤ k < t , 
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[xP k
j !y and yP k+1

j !x] ⇒ [yP̄j x]. Therefore, we have [xPjy and xP̄j y] ⇒ [xP k
j y for all k =

1, . . . , t]. �
To verify connectedness+ of DTS, we fix distinct Pj , P ′

j ∈ DTS, and consider the following 
three cases: (i) Pj ∈ DS and P ′

j ∈ DS, (ii) Pj ∈ DTS\DS and P ′
j ∈ DS, or Pj ∈ DS and P ′

j ∈
DTS\DS, and (iii) Pj , P ′

j ∈ DTS\DS. In each case, we construct a path of DTS connecting Pj

and P ′
j which satisfies the requirements of the Interior+ and Exterior+ properties.

Case (i) is covered by Section E.2. In case (ii), assume w.l.o.g. that Pj ∈ DTS\DS and 
P ′

j ∈ DS. If r1(Pj ) = r1(P
′
j ) ≡ a, we first identify P̄j ∈ DS with r1(P̄j ) = a, and construct an 

adjacency path of Da
TS connecting Pj and P̄j by Fact 6. Next, by Section E.2, we have a path of 

Da
S connecting P̄j and P ′

j . Last, combining these two paths, we have a path of Da
TS connecting 

Pj and P ′
j . If r1(Pj ) �= r1(P

′
j ), xPjy and xP ′

j y for some x, y ∈ A, we first identify P̄j ∈ DS

with r1(P̄j ) = r1(Pj ) and xP̄j y, and construct an adjacency path of DTS connecting Pj and P̄j

along which x ranks above y by Fact 6. Next, by Section E.2, we have a path of DS connecting 
P̄j and P ′

j along which x ranks above y. Last, combining these two paths, we have a path of DTS

connecting Pj and P ′
j along which x ranks above y. The verification of case (iii) is similar to 

that of the second case. Therefore, DTS is a connected+ domain.

E.4. The intersection of the separable domain and the multidimensional single-peaked domain 
is a connected+ domain

We fix a product of trees ×s∈MG(As) and the multidimensional single-peaked domain DMSP. 
Let D̄MSP =DS ∩DMSP. Recall the notation [D̄MSP]s which denotes the single-peaked (marginal) 
domain on G(As). Similar to Section E.2, we first provide three step results, Facts 7, 8 and 9, 
which are respectively analogous to Facts 1, 2 and 3. We next establish Facts 10 and 11, which 
are respectively analogous to Facts 4 and 5, and will be utilized to verify connectedness+ of 
D̄MSP.

Fact 7. Given s ∈ M and distinct [Pj ]s , [P ′
j ]s ∈ [D̄MSP]s , there exist [P ′′

j ]s ∈ [D̄MSP]s and 
as, bs ∈ As such that [Pj ]s ∼ [P ′′

j ]s , as[Pj ]s !bs , bs[P ′′
j ]s !as and bs[P ′

j ]sas . (Note that it is pos-
sible [P ′′

j ]s = [P ′
j ]s .)

Proof. By the proof of Proposition 4.2 of Sato (2013), we have an adjacency path 
{
[P k

j ]s
}q

k=1
⊆

[D̄MSP]s connecting [Pj ]s and [P ′
j ]s , i.e., [P 1

j ]s = [Pj ]s , [P q
j ]s = [P ′

j ]s and [P k
j ]s ∼ [P k+1

j ]s for 

all k = 1, . . . , q − 1, such that 
[
xs[Pj ]sys and xs[P ′

j ]sys
] ⇒

[
xs[P k

j ]sys, k = 1, . . . , q
]
. Thus, 

given [P ′′
j ]s ≡ [P 2

j ]s , we have [Pj ]s ∼ [P ′′
j ]s , as[Pj ]s !bs , bs[P ′′

j ]s !as and bs[P ′
j ]sas for some 

as, bs ∈ As . �
Fact 8. Fixing Pj , P ′

j ∈ D̄MSP with [Pj ]q �= [P ′
j ]q for some q ∈ M , and x, y ∈ A with xPjy and 

xP ′
j y, there exists P ′′

j ∈ D̄MSP such that

(i) [P ′′
j ]s ∼ [Pj ]s for some s ∈ S, and [P ′′

j ]ω = [Pj ]ω for all ω �= s,
(ii) as[Pj ]s !bs , bs[P ′′

j ]s !as and bs[P ′
j ]sas for some as, bs ∈ As , and
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(iii) xP ′′
j y.

Proof. After replacing the reference of Fact 1 and the notation [DS]s in the proof of Fact 2 by the 
reference of Fact 7 and the notation [D̄MSP]s respectively, the modified proof of Fact 2 remains 
applicable for the verification of Fact 8. �
Fact 9. Given Pj ∈ D̄MSP, s ∈ M , as, bs ∈ As with as[Pj ]s !bs , there exists P̄j ∈ D̄MSP such that

(i) for all x, y ∈ A\(bs, A−s), [xPjy] ⇔ [xP̄j y],
(ii) for all z−s ∈ A−s , (as, z−s)P̄j !(bs, z−s), and

(iii) [Pj ]ω = [P̄j ]ω for all ω ∈ M .

Moreover, if there exists [P ′′
j ]s ∈ [D̄MSP]s such that [Pj ]s ∼ [P ′′

j ]s and �([Pj ]s , [P ′′
j ]s) ={{as, bs}}, then there exists P̂j ∈ D̄MSP such that �(P̄j , P̂j ) =

{{(as, z−s), (bs, z−s)}}
z−s∈A−s .

Proof. By the proof of Fact 3, we have P̄j ∈ DS satisfying condition (i) - (iii). Furthermore, 
by condition (iii), we know [P̄j ]ω = [Pj ]ω ∈ [D̄MSP]ω for all s ∈ M . Therefore, P̄j ∈ D̄MSP by 
Remark 1.

Next, by the proof of Fact 3, we have P̂j ∈ DS such that �(P̄j , P̂j ) =
{{(as, z−s),

(bs, z−s)}}
z−s∈A−s . Thus, [P̄j ]s ∼ [P̂j ]s , �([P̄j ]s , [P̂j ]s) =

{{as, bs}} and [P̄j ]ω = [P̂j ]ω
for all ω ∈ M\{s}. We show P̂j ∈ D̄MSP. First, for every ω ∈ M\{s}, we know [P̂j ]ω =
[P̄j ]ω ∈ [D̄MSP]ω. Second, given [P̄j ]s = [Pj ]s and �([P̄j ]s , [P̂j ]s) =

{{as, bs}}, the hypothesis 
�([Pj ]s , [P ′′

j ]s) = {{as, bs}} and [P ′′
j ]s ∈ [D̄MSP]s imply [P̂j ]s = [P ′′

j ]s ∈ [D̄MSP]s . Therefore, 

we have P̂j ∈ D̄MSP by Remark 1. �
Fact 10. Given Pj , P ′

j ∈ D̄MSP with [Pj ]s �= [P ′
j ]s for some s ∈ M , and x, y ∈ A with xPjy and 

xP ′
j y, there exist t ≥ 1 pair(s) {P̄ k

j , P̂ k
j : k = 1, . . . , t} ⊆ D̄MSP such that

(i) P̄ k
j ∼+ P̂ k

j for all k = 1, . . . , t ,

(ii) [Pj ]s = [P̄ 1
j ]s for all s ∈ M ,

(iii) [P̂ k
j ]s = [P̄ k+1

j ]s for all s ∈ M and k = 1, . . . , t − 1,

(iv) [P̂ t
j ]s = [P ′

j ]s for all s ∈ M , and

(v) xP̄ k
j y and xP̂ k

j y for all k = 1, . . . , t .

In particular, if r1(Pj ) and r1(P
′
j ) are similar, say r1(Pj ) = (as, z−s) and r1(P

′
j ) = (bs, z−s), 

then r1(P̄
k
j ), r1(P̂

k
j ) ∈ (As, z−s) for all k = 1, . . . , t .

Proof. Let S = {q ∈ M : [Pj ]q �= [P ′
j ]q} and T = {τ ∈ M : xτ �= yτ }. Evidently, both S and T

are nonempty. Since xPjy, there exists τ̂ ∈ T such that xτ̂ [Pj ]τ̂ yτ̂ . According to Pj and P ′
j , 

we first identify P ′′
j ∈ D̄MSP satisfying conditions (i) - (iii) of Fact 8. Specifically, we have (i) 

[P ′′
j ]s ∼ [Pj ]s for some s ∈ S, and [P ′′

j ]ω = [Pj ]ω for all ω �= s, (ii) as[Pj ]s !bs , bs[P ′′
j ]s !as and 

bs[P ′
j ]sas for some as, bs ∈ As , and (iii) xP ′′

j y. Note that P ′′
j ∈ D̄MSP implies [P ′′

j ]s ∈ [D̄MSP]s . 
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Moreover, since [Pj ]s ∼ [P ′′
j ]s and �([Pj ]s , [P ′′

j ]s) = {{as, bs}}, Fact 9 becomes applicable 
here. Then, after replacing the references of Facts 2, 3 and 4 and the notation DLS in the proof 
of Fact 4 by the references of Facts 8, 9 and 10 and the notation DLS ∩ DMSP respectively, 
the modified proof of Fact 4 (from Claim 1 to the end) remains valid for the verification of 
Fact 10. �
Fact 11. Given two distinct Pj , P ′

j ∈ D̄MSP with [Pj ]s = [P ′
j ]s for all s ∈ M , there exists 

an adjacency path {P k
j }qk=1 ⊆ D̄MSP connecting Pj and P ′

j such that [xPjy and xP ′
j y] ⇒

[xP k
j y for all k = 1, . . . , q].

Proof. Recall the construction of P ′′
j ∈ DS in the proof of Fact 5. If we show [P ′′

j ]s ∈ [D̄MSP]s
for all s ∈ M , then we have P ′′

j ∈ D̄MSP, and the rest proof of Fact 5 on the construction of 
the adjacency path remains applicable for the verification of Fact 11. Since both Pj and P ′′

j are 
separable preferences, Pj ∼ P ′′

j implies that Pj and P ′′
j share the same marginal preferences by 

Observation 1. Therefore, [P ′′
j ]s = [Pj ]s ∈ [D̄MSP]s for all s ∈ M , as required. �

Now, similar to the last paragraph of Section E.2, we use Facts 10 and 11 to construct paths 
satisfying the requirements of the Interior+ and Exterior+ properties.

E.5. The multidimensional single-peaked domain is a connected+ domain

We fix a product of trees ×s∈MG(As) and the multidimensional single-peaked domain DMSP. 
We first provide Fact 12 which links DMSP to the connectedness+ of D̄MSP.

Fact 12. Given Pj ∈ DMSP\D̄MSP and a, b ∈ A with aPjb, there exists P̄j ∈ D̄MSP such that 
r1(P̄j ) = r1(Pj ) ≡ ā and aP̄j b. Furthermore, there exists an adjacency path {P k

j }qk=1 ⊆ Dā
MSP

connecting Pj and P̄j such that [xPjy and xP̄j y] ⇒ [xP k
j y for all k = 1, . . . , q].

Proof. Let S = {s ∈ M : as �= bs}. Evidently, S �= ∅. Since aPjb, we know b /∈ 〈ā, a〉, and hence, 
there exists s ∈ S such that bs /∈ 〈ās , as〉. We then fix a marginal preference [P̄j ]s ∈ [D̄MSP]s such 
that r1([P̄j ]s) = ās and as[P̄j ]sbs , and a marginal preference [P̄j ]τ ∈ [D̄MSP]τ with r1([P̄j ]τ ) =
āτ for each τ �= s. Last, we fix a lexicographic order � such that component s is lexicographically 
dominant, and assemble all marginal preferences to generate a preference P̄j ∈ DLS ∩ DMSP ⊆
D̄MSP. Hence, r1(P̄j ) = ā = r1(Pj ) and aP̄j b. This proves the first part of Fact 12. The second 
part of Fact 12 follows exactly from Lemma 8 of Chatterji and Zeng (2018). �

Now, similar to the last two paragraphs of Section E.3, by applying the connectedness+ of 
D̄MSP and Fact 12, we assert that DMSP is a connected+ domain.

E.6. The union of the separable domain and several multidimensional single-peaked domains is 
a connected+ domain

It suffices to consider the union DU ≡ DS ∪ DMSP ∪ D′
MSP where DMSP is the multidimen-

sional single-peaked domain on a product of trees ×s∈MG(As), and D′
MSP is the multidimen-

sional single-peaked domain on another product of trees ×s∈MG′(As). Note that there exists at 
least one component s ∈ M such that G(As) and G′(As) disagree on some edges.
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To verify connectedness+ of DU, we fix distinct Pj , P ′
j ∈ DU. If Pj , P ′

j ∈ DS, or Pj , P ′
j ∈

DMSP, or Pj , P ′
j ∈ D′

MSP, then by Section E.2 or Section E.5, we have a path of DU connecting 
Pj and P ′

j which satisfies the requirements of connectedness+. Next, we consider the following 
two cases:

(i) Pj ∈ DMSP\DS and P ′
j ∈ DS\DMSP, (symmetrically, Pj ∈ D′

MSP\DS and P ′
j ∈ DS\D′

MSP), 
and

(ii) Pj ∈ DMSP\DS and P ′
j ∈ D′

MSP\DS.

In each case, we construct two paths of DU connecting Pj and P ′
j which satisfy the requirements 

of the Interior+ and Exterior+ properties respectively.
In case (i), assume w.l.o.g. that Pj ∈ DMSP\DS and P ′

j ∈ DS\DMSP. If r1(Pj ) = r1(P
′
j ) ≡ a, 

we first identify P̄j ∈ DS ∩ DMSP with r1(P̄j ) = a, and construct an adjacency path of Da
MSP

connecting Pj and P̄j by Fact 12. Next, by Section E.2, we have a path of Da
S connecting P̄j and 

P ′
j . Last, combining these two paths, we have a path of Da

U connecting Pj and P ′
j . If r1(Pj ) �=

r1(P
′
j ), xPjy and xP ′

j y for some x, y ∈ A, we first identify P̄j ∈ DS ∩ DMSP with r1(P̄j ) =
r1(Pj ) and xP̄j y, and construct an adjacency path of DMSP connecting Pj and P̄j along which 
x ranks above y by Fact 12. Next, by Section E.2, we have a path of DS connecting P̄j and P ′

j

along which x ranks above y. Last, combining these two paths, we have a path of DU connecting 
Pj and P ′

j along which x ranks above y. The verification of case (ii) is similar to that of the first 
case. Therefore, DU is a connected+ domain.

E.7. The multidimensional eventually-single-peaked domain is a connected+ domain

To motivate a multidimensional eventually-single-peaked domain, we consider the allocation 
of multiple public facilities to a region. Consider a region which has a central urban area and a 
large remote area surrounding the central urban area. There is a railway in the region which goes 
through the urban area. Along the railway, there are several stations � = {l1, l2, . . . , lt }, t ≥ 2, 
each of which is viewed as a location. A location in the urban area is referred to as an urban 
location, while a location in the remote area is called a remote location. To depict the locations’ 
geometric relations on the railway, we use a linear order l1 < l2 < · · · < lt . We assume that 
there are least two urban locations, and all urban locations cluster, i.e., any location between two 
urban locations on the railway must also be an urban location. We then identify two particular 
urban locations lk and lk , 1 ≤ k < k ≤ t , which separate � into three disjoint subsets: the set 
of left remote locations L = {l1, l2, . . . , lk−1}, the set of urban locations M = {lk, lk+1, . . . , lk}, 
and the set of right remote locations R = {lk+1, . . . , lt−1, lt }. It is natural to postulate that the 
central urban area has a more advanced transportation than the remote area. We assume that all 
urban locations are pairwise connected by urban roads, while all left (respectively, right) remote 
locations are simply linked via the railway. Then, the railway and the urban roads together form 
the transportation system of the region.53 Note that lk is connected to all other urban locations 
via urban roads, and is the gate to all left remote locations on the railway. Therefore, it can be 
viewed as the left transportation hub. Symmetrically, lk is referred to as the right transportation 

53 Mathematically speaking, the transportation system is a graph where the vertex set is �, and two distinct locations 
form an edge if they are directly connected by the railway or an urban road.
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Fig. 18. The transportation system in the region.

hub. We use Fig. 18 to illustrate the transportation system of the region, where the space in the 
bigger oval represents the region, the space in the smaller oval represents the central urban area, 
the space between the two ovals therefore denotes the remote area, the bold line represents the 
railway <, each hollow node represents a location, and the dash lines denote the urban roads.

Fixing three locations lo, lp, lq ∈ �, let lo ≤ lp ≤ lq and lo �= lq .54 We know that lp is between 
lo and lq on the railway, and hence lp is closer to lo than lq on the railway. However, if the three 
locations are in the central urban area, their geometric relations on the transportation system
change to pairwise connections due to urban roads. Consequently, we are no longer able to infer 
that lp is closer to lo than lq . We make two more observations. First, if lp, lq ∈ L ∪ {lk}, then 
lo ≤ lp ≤ lq implies lo ∈ L. Then, the unique railway connection on L ∪ {lk} implies that lp
is closer to lo than lq on the transportation system. Similarly, if lp, lq ∈ R ∪ {lk}, according to 
lo ≤ lp ≤ lq , we know that lp is between lo and lq on every route of the transportation system 
(either the railway, or the combination of the railway and the urban roads). Therefore, lp is closer 
to lo than lq on the transportation system. Second, symmetrically, if lo, lp ∈ L ∪{lk} (respectively, 
lo, lp ∈ R ∪ {lk}), it is also true that lp is closer to lo than lq on the transportation system. We 
introduce a ternary relation to summarize the two observations. Given lo, lp, lq ∈ As with lo �= lq , 
let (lo, lp, lq) denote a ternary relation such that lp is between lo and lq on the railway <, i.e., 
lp ∈ 〈lo, lq〉 (equivalently, either lo ≤ lp ≤ lq or lq ≤ lp ≤ lo), and one of the following two 
additional conditions is satisfied:

(i) lp = lq , or lp, lq ∈ L ∪ {lk}, or lp, lq ∈R ∪ {lk}, and
(ii) lp = lo, or lp, lo ∈ L ∪ {lk}, or lp, lo ∈R ∪ {lk}.55

Multiple admissible public facilities M = {1, 2, . . . , m}, m ≥ 2, are to be constructed in the 
region, and each facility will be built at some location of �. For each facility s ∈ M , some loca-
tions are available for its construction while some locations are not available. We let As ⊆ �

denote the set of locations that are available for the construction of the facility s. We nor-
mally write a location of As as xs ∈ As . For simplicity, we assume that As always contains 
both transportation hubs. Let A = ×s∈MAs be the set of alternatives. Note that each alterna-
tive a ≡ (a1, a2, . . . , am) ∈ A is an m-tuple which consists of m locations of �. Therefore, we 
sometimes also call an alternative a location bundle. Each agent has a preference over A, a lin-
ear order. To construct our restricted preferences over A, we first need to extend the ternary 

54 For notational convenience, let lo ≤ lp denote either lo < lp or lo = lp .
55 By the definition, the ternary relation is symmetric, i.e., 

[
(lo, lp, lq )

]
⇔

[
(lq , lp, lo)

]
, and transitive, i.e., [

(lo, lp, lq ) and (lo, lq , lr )
]

⇔
[
(lo, lp, lr )

]
.
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Fig. 19. Available location sets A1 and A2 on the transportation system.

relation on three locations to a ternary relation on three location bundles. Given x, a, y ∈ A

with x �= y, let (x, a, y) be a multidimensional ternary relation such that for all s ∈ M , 

[xs �= ys] ⇒
[
(xs, as, ys)

]
and [xs = ys] ⇒ [as = xs = ys]. Geometrically, (x, a, y) indicates 

that the location bundle a is component-wise closer to x than y according to the transportation 
system, provided a �= y. Since all public facilities are admissible, it is natural that an agent, who 
prefers x the best, would like all public facilities be constructed at the location bundle a rather 
than at y.

Definition 10. Given a linear order < over � = {l1, l2, . . . , lt } and lk, lk ∈ � with 1 ≤ k < k ≤ t , 
a preference Pi over A = ×s∈MAs is multidimensional eventually-single-peaked if for all 

distinct a, y ∈ A, we have 
[(

r1(Pi), a, y
)] ⇒ [aPiy]. Let DMESP denote the multidimensional 

eventually-single-peaked domain which contains all admissible preferences.

If there are no urban roads, the railway < simply describes the transportation system of 
the region, and then the closeness relations among location bundles can be simply recognized 
from the product of lines ×s∈M(<, As) where for each s ∈ M , (<, As) is the linear order over 
As induced from the railway <. Intuitively, when urban roads are involved, some closeness 
relations recognized by ×s∈M(<, As) are destroyed. We identify the remaining closeness rela-
tions by the multidimensional ternary relations, and then apply the single-peakedness restriction 
accordingly to form a multidimensional eventually-single-peaked preference. Therefore, multi-
dimensional eventually-single-peakedness is close to, but less restrictive than multidimensional 
single-peakedness on ×s∈M(<, As). We provide one example of a multidimensional eventually-
single-peaked domain below to illustrate.

Example 9. Let � = {l1, l2, l3, l4, l5, l6}, and l2 and l4 be the left and right transportation hubs 
respectively. Thus, L = {l1}, M = {l2, l3, l4} and R = {l5, l6}. Two admissible public facili-
ties M = {1, 2} will be constructed. The available location sets are A1 = {l1, l2, l3, l4, l5} and 
A2 = {l1, l2, l4, l6}. See the two diagrams of Fig. 19 where � represents a location of A1 and �
represents a location of A2.

We construct a multidimensional eventually-single-peaked preference Pj with peak (l1, l1). 
We first induce all corresponding multidimensional ternary relations:{(

(l1, l1), a, y
) ∣∣∣y �= (l1, l1), a

1 ∈ 〈l1, y1〉, a2 ∈ 〈l1, y2〉, and [y1 ∈ {l4, l5}] ⇒ [a1 �= l3]
}

.

We notice that Pj still follows the restriction of multidimensional single-peakedness on 
{l1, l2, l3} × {l1, l2, l4, l6} and {l1, l2, l4, l5} × {l1, l2, l4, l6} according to the product of lines 
(<, A1) × (<, A2). More importantly, as suggested by the last restriction of the multidimen-

sional ternary relation 
(
(l1, l1), a, y

)
, we have neither (l1, l3, l4) nor (l1, l3, l5), and therefore, 

a = (l3, l1) is no longer closer to (l1, l1) than any location bundle y ∈ {l4, l5} × {l1, l2, l4, l6}. 
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Therefore, the relative ranking between a = (l3, l1) and y ∈ {l4, l5} × {l1, l2, l4, l6} is arbitrary 
in Pi , whereas a = (l3, l1) ranks above all y ∈ {l4, l5} × {l1, l2, l4, l6} in every multidimensional 
single-peaked preference on (<, A1) × (<, A2) which has the peak (l1, l1). �
Remark 11. First, we always induce the multidimensional ternary relation (x, a, y) such that 
xs = as �= ys and a−s = y−s for some s ∈ M . Therefore, it is true that all preferences of 
DMESP are top-separable. Second, since (x, a, y) implies as ∈ 〈xs, ys〉 for all s ∈ M , it is 
also true that every multidimensional single-peaked preference on ×s∈M(<, As) is multidi-
mensional eventually-single-peaked. Therefore, DMESP must contain many non-separable pref-
erences. In one extreme case, if As ⊆ M for all s ∈ M (in other words, for each public facility, 
all feasible locations are urban locations), then we induce all multidimensional ternary re-

lations 
{
(x, a, y) : x �= y, aS = xS and a−S = y−S for some S ⊆ M

}
.56 Consequently, DMESP =

DTS. In another extreme case, if As ∩M = {xs, xs} for all s ∈ M (in other words, for each public 
facility, there is no feasible urban location other than the two transportation hubs), then we in-

duce all multidimensional ternary relations 
{
(x, a, y) : x �= y and as ∈ 〈xs, ys〉 for all s ∈ M

}
.57

Consequently, DMESP is identical to the multidimensional single-peaked domain DMSP on 
×s∈M(<, As). �
Remark 12. Chatterji et al. (2018) introduce a new preference restriction, eventually-single-
peakedness, in the one-dimensional setting. Formally, given an linear order < over � =
{l1, l2, . . . , lt } and lk, lk ∈ � with 1 ≤ k < k ≤ t , a preference Pj over � is eventually-single-
peaked if it satisfies the following two conditions:

(i) For all distinct lo, lq ∈ L ∪ {lk} or lo, lq ∈R ∪ {lk}, [lo ∈ 〈r1(Pj ), lq〉] ⇒ [
loPj lq

]
.

(ii) If r1(Pj ) ∈ L, max(Pj , M) = lk . Symmetrically, if r1(Pj ) ∈ R, max(Pj , M) = lk .

As suggested by its name, an eventually-single-peaked preference follows the single-peakedness 
restriction on both L ∪{lk} and R ∪{lk}, but has no restriction on the relative rankings of elements 
in M\{lk, lk}. We unify the two conditions above using ternary relations, and then establish Def-
inition 10 to generalize the restriction of eventually-single-peakedness to the multidimensional 
setting. �

Now, we start to verify that DMESP is a connected+ domain. For each s ∈ M , recall that 
As includes the two transportation hubs lk and lk , and we for the notational convenience let 
xs ≡ lk and xs ≡ lk . We first investigate the intersection D̄MESP = DS ∩ DMESP. According 
to D̄MESP, for each s ∈ M , we induce the domain of marginal preferences, denoted [DESP]s . 
Note that [DESP]s includes every marginal preference [Pj ]s such that for all distinct as, ys ∈
As , 

[(
r1([Pi]s), as, ys

)] ⇒ [
as[Pj ]sys

]
. Therefore, all marginal preferences of [DESP]s are 

56 When As ⊆ M, we only have the ternary relations (xs , xs , ys) and (xs , ys , ys) for all distinct xs , ys ∈ As . Con-

sequently, we have (x, a, y) if and only if x �= y, and as = xs or as = ys for each s ∈ M which implies aS = xS and 
a−S = y−S for some S ⊆ M .
57 When As ∩ M = {xs , xs }, the two additional conditions in the definition of the ternary relation (xs , as , ys ) is 
implied by the first condition as ∈ 〈xs , ys〉. Therefore, we have the ternary relation (xs , as , ys ) if and only if xs �= ys

and as ∈ 〈xs , ys 〉. Correspondingly, we have (x, a, y) if and only if x �= y and as ∈ 〈xs , ys〉 for all s ∈ M .
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eventually-single-peaked according to <, xs and xs (recall Remark 12 above). We show that 
D̄MESP is a connected+ domain. The proof consists of five facts, Facts 13 - 17, which are respec-
tively analogous to Facts 1 - 5 of Section E.2. Last, we establish Fact 18 which links DMESP to 
the connectedness+ of D̄MESP.

Fact 13. Given s ∈ M and distinct [Pj ]s , [P ′
j ]s ∈ [DESP]s , there exist [P ′′

j ]s ∈ [DESP]s and 
as, bs ∈ As such that [Pj ]s ∼ [P ′′

j ]s , as[Pj ]s !bs , bs[P ′′
j ]s !as and bs[P ′

j ]sas . (Note that it is pos-
sible [P ′′

j ]s = [P ′
j ]s .)

Proof. Let r1([Pj ]s) = xs and r1([P ′
j ]s) = ys . If xs = ys ≡ x̂s , by a similar argument in the 

first paragraph of the proof of Fact 5, we identify as, bs ∈ As such that as �= x̂s , bs �= x̂s , 
as[Pj ]s !bs and bs[P ′

j ]sas . Then, by locally switching as and bs in [Pj ]s , we generate a marginal 
preference [P ′′

j ]s . Thus, r1([P ′′
j ]s) = x̂s , [Pj ]s ∼ [P ′′

j ]s , as[Pj ]s !bs and bs[P ′′
j ]s !as . We show 

[P ′′
j ]s ∈ [DESP]s . Suppose not, i.e., [P ′′

j ]s /∈ [DESP]s . Then, we must have (x̂s , as, bs) which con-
sequently implies as[P ′

j ]sbs . This contradicts the hypothesis bs[P ′
j ]sas ! This proves Fact 13 in 

the case xs = ys .
Henceforth, let xs �= ys . We assume w.l.o.g. that xs < ys . The verification related to ys < xs

is symmetric, and we hence omit it. We consider the following four cases:

(1) xs < xs ,
(2) xs ≤ xs ,
(3) xs ≤ xs < xs ≤ ys , and
(4) xs ≤ xs < ys < xs .

In case (1), we identify the element bs which is contiguously located behind xs on <, i.e., 
xs < bs , and there exists no cs ∈ As such that xs < cs < bs . Thus, xs < bs ≤ xs and xs <

bs ≤ ys . Let rk([Pj ]s) = bs for some 1 < k ≤ |As |. Meanwhile, identify as ≡ rk−1([Pj ]s). Thus, 
as[Pj ]s !bs . Since r1([Pj ]s) = xs ∈ L and [Pj ]s ∈ [DESP]s , as[Pj ]sbs implies as ≤ xs . Hence, 
as ≤ xs < bs ≤ xs and as ≤ xs < bs ≤ ys , which imply (ys, bs, as) and hence, bs[P ′

j ]sas . Thus, 
we have as[Pj ]s !bs and bs[P ′

j ]sas . Now, by locally switching as and bs in [Pj ]s , we generate 
a marginal preference [P ′′

j ]s . Thus, [Pj ]s ∼ [P ′′
j ]s , as[Pj ]s !bs , bs[P ′′

j ]s !as and bs[P ′
j ]sas . We 

last show [P ′′
j ]s ∈ [DESP]s . We know either r1([P ′′

j ]s) = r1([Pj ]s) or r1([P ′′
j ]s) �= r1([Pj ]s). 

If r1([P ′′
j ]s) = r1([Pj ]s) = xs , then bs[P ′′

j ]s !as implies as �= xs . Hence, we have as < xs <

bs ≤ xs which implies neither (xs, as, bs) nor (xs, bs, as). Therefore, it is true that [P ′′
j ]s ∈

[DESP]s . If r1([P ′′
j ]s) �= r1([Pj ]s) = xs , it must be the case r1([Pj ]s) = r2([P ′′

j ]s) = xs = as and 
r2([Pj ]s) = r1([P ′′

j ]s) = bs . Since r1([Pj ]s) = xs and r2([Pj ]s) = bs , it must be the case that 
xs, bs ∈ L ∪ {xs} must form an edge on <. Suppose [P ′′

j ]s /∈ [DESP]s , i.e., there exist zs, ̂zs ∈ As

such that (bs, zs, ẑs) and ẑs[P ′′
j ]szs . Since xs, bs ∈ L ∪ {xs} form an edge on <, (bs, zs, ẑs)

implies (xs, zs, ẑs), and hence zs[Pj ]s ẑs . Since �
([Pj ]s , [P ′′

j ]s) = {{xs, bs}}, we infer zs = xs

and ẑs = bs . Thus, we have (bs, zs, ẑs) = (bs, xs, bs) which contradicts the definition of the 
ternary relation. Therefore, [P ′′

j ]s ∈ [DESP]s . This completes the verification of Fact 13 in case 
(1).

In case (2), we identify the element bs which is contiguously located behind xs on <, i.e., 
xs < bs , and there exists no cs ∈ As such that xs < cs < bs . Thus, xs ≤ xs < bs ≤ ys . Let 
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rk([Pj ]s) = bs for some 1 < k ≤ |As |. Meanwhile, identify as ≡ rk−1([Pj ]s). Thus, as[Pj ]s !bs . 
Since r1([Pj ]s) = xs ∈R ∪ {xs} and [Pj ]s ∈ [DESP]s , as[Pj ]sbs implies as ≤ xs . Consequently, 
we know either as < xs ≤ xs < bs ≤ ys , or xs ≤ as ≤ xs < bs ≤ ys , which implies (ys, bs, as), 
and hence bs[P ′

j ]sas . Thus, we have as[Pj ]s !bs and bs[P ′
j ]sas . Now, by locally switching as

and bs in [Pj ]s , we generate a marginal preference [P ′′
j ]s . Thus, [Pj ]s ∼ [P ′′

j ]s , as[Pj ]s !bs , 
bs[P ′′

j ]s !as and bs[P ′
j ]sas . We last show [P ′′

j ]s ∈ [DESP]s . We know either r1([P ′′
j ]s) = r1([Pj ]s)

or r1([P ′′
j ]s) �= r1([Pj ]s). If r1([P ′′

j ]s) = r1([Pj ]s) = xs , then bs[P ′′
j ]s !as implies as �= xs . 

Hence, we know either as < xs ≤ xs < bs or xs ≤ as < xs < bs , which implies neither 
(xs, as, bs) nor (xs, bs, as). Therefore, it is true that [P ′′

j ]s ∈ [DESP]s . If r1([P ′′
j ]s) �= r1([Pj ]s) =

xs , it must be the case r1([Pj ]s) = r2([P ′′
j ]s) = xs = as and r2([Pj ]s) = r1([P ′′

j ]s) = bs . Since 
r1([Pj ]s) = xs and r2([Pj ]s) = bs , xs, bs ∈ R ∪ {xs} must form an edge on <. Similar to the 
verification in case (1), after locally switching of xs and bs in [Pj ]s (the top-two elements of 
[Pj ]s ) to obtain [P ′′

j ]s , it is true that [P ′′
j ]s ∈ [DESP]s . This completes the verification of Fact 13

in case (2).
In case (3), let xs = rk([Pj ]s) for some 1 < k ≤ |As |. Meanwhile, identify as ≡ rk−1([Pj ]s). 

Thus, as[Pj ]s !xs . Since xs ≤ xs < xs and [Pj ]s ∈ [DESP]s , as[Pj ]sxs implies as < xs . Thus, 
we know either as < xs < xs ≤ ys , or xs ≤ as < xs ≤ ys , which implies (ys, xs, as), and 
hence xs[P ′

j ]sas . Thus, we have as[Pj ]s !xs and xs[P ′
j ]sas . Now, by locally switching as

and xs in [Pj ]s , we generate a marginal preference [P ′′
j ]s . Thus, [Pj ]s ∼ [P ′′

j ]s , as[Pj ]s !xs , 
xs[P ′′

j ]s !as and xs[P ′
j ]sas . We last show [P ′′

j ]s ∈ [DESP]s . We know either r1([P ′′
j ]s) = r1([Pj ]s)

or r1([P ′′
j ]s) �= r1([Pj ]s). If r1([P ′′

j ]s) = r1([Pj ]s) = xs , we know as �= xs . Since as < xs

and xs ≤ xs < xs imply neither (xs, as, xs) nor (xs, xs, as), it is true that [P ′′
j ]s ∈ [DESP]s . 

If r1([P ′′
j ]s) �= r1([Pj ]s) = xs , it must be the case r1([Pj ]s) = r2([P ′′

j ]s) = xs = as and 
r2([Pj ]s) = r1([P ′′

j ]s) = xs . Suppose [P ′′
j ]s /∈ [DESP]s , i.e., there exist zs, ̂zs ∈ As such that 

(xs, zs, ẑs) and ẑs[P ′′
j ]szs . Thus, ẑs �= zs and xs �= zs . Furthermore, according to (xs, zs, ẑs), 

we know zs ∈ 〈xs, ̂zs〉, and either xs, zs ∈ R ∪ {xs} or zs, ̂zs ∈ R ∪ {xs} which further implies 
xs < zs < ẑs , or zs, ̂zs ∈ L ∪ {xs} which further implies ẑs < zs ≤ xs < xs . Since xs ≤ xs < xs , 
we know either xs ≤ xs < xs < zs < ẑs , or ẑs < zs ≤ xs ≤ xs < xs which implies (xs, zs, ẑs), 
and hence zs[Pj ]s ẑs . Since �

([Pj ]s , [P ′′
j ]s) = {{xs, xs}}, we infer zs = xs and ẑs = xs . Thus, we 

have (xs, zs, ẑs) = (xs, xs, xs) which contradicts the definition of the ternary relation. Therefore, 
[P ′′

j ]s ∈ [DESP]s . This completes the verification of Fact 13 in case (3).
In case (4), let ys = rk([Pj ]s) for some 1 < k ≤ |As |. Meanwhile, identify as ≡ rk−1([Pj ]s). 

Thus, as[Pj ]s !ys and ys[P ′
j ]sas (recall that r1([P ′

j ]s) = ys ). Now, by locally switching as

and ys in [Pj ]s , we generate a marginal preference [P ′′
j ]s . Thus, [Pj ]s ∼ [P ′′

j ]s , as[Pj ]s !ys , 
ys[P ′′

j ]s !as and ys[P ′
j ]sas . We last show [P ′′

j ]s ∈ [DESP]s . Since ys /∈ L ∪{xs} and ys /∈R ∪{xs}, 
�
([Pj ]s , [P ′′

j ]s) = {{as, ys}} implies that [Pj ]s and [P ′′
j ]s share the same relative rankings on 

the elements of L ∪{xs} and the elements of R ∪{xs} respectively. Consequently, if r1([P ′′
j ]s) =

r1([Pj ]s) = xs , it is evident that [P ′′
j ]s ∈ [DESP]s . Next, assume r1([P ′′

j ]s) �= r1([Pj ]s) = xs . 
Then, it must be the case r1([Pj ]s) = r2([P ′′

j ]s) = xs = as and r2([Pj ]s) = r1([P ′′
j ]s) = ys . Sim-

ilar to the verification in case (3), since xs ≤ xs < ys < xs , after locally switching of xs and ys

in [Pj ]s (the top-two elements of [Pj ]s ) to obtain [P ′′
j ]s , it is true that [P ′′

j ]s ∈ [DESP]s . This 
completes the verification of Fact 13 in case (4), and hence proves Fact 13. �
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Fact 14. Fixing Pj , P ′
j ∈ D̄MESP with [Pj ]q �= [P ′

j ]q for some q ∈ M , and x, y ∈ A with xPjy

and xP ′
j y, there exists P ′′

j ∈ D̄MESP such that

(i) [P ′′
j ]s ∼ [Pj ]s for some s ∈ S, and [P ′′

j ]ω = [Pj ]ω for all ω �= s,
(ii) as[Pj ]s !bs , bs[P ′′

j ]s !as and bs[P ′
j ]sas for some as, bs ∈ As , and

(iii) xP ′′
j y.

Proof. After replacing the reference of Fact 1 and the notation [DS]τ and [DS]s in the proof 
of Fact 2 by the reference of Fact 13 and the notation [DESP]τ and [DESP]s respectively, the 
modified proof of Fact 2 remains applicable for the verification of Fact 14. �
Fact 15. Given Pj ∈ D̄MESP, s ∈ M , as, bs ∈ As with as[Pj ]s !bs , there exists P̄j ∈ D̄MESP such 
that

(i) for all x, y ∈ A\(bs, A−s), [xPjy] ⇔ [xP̄j y],
(ii) for all z−s ∈ A−s , (as, z−s)P̄j !(bs, z−s), and

(iii) [Pj ]ω = [P̄j ]ω for all ω ∈ M .

Moreover, if there exists [P ′′
j ]s ∈ [DESP]s such that [Pj ]s ∼ [P ′′

j ]s and �([Pj ]s , [P ′′
j ]s) ={{as, bs}}, then there exists P̂j ∈ D̄MESP such that �(P̄j , P̂j ) =

{{(as, z−s), (bs, z−s)}}
z−s∈A−s .

Proof. By the proof of Fact 3, we have P̄j ∈ DS satisfying condition (i) - (iii). Furthermore, by 
condition (iii), we have [P̄j ]ω = [Pj ]ω ∈ [DESP]ω for all ω ∈ M . Therefore, P̄j ∈ D̄MESP.

Next, by the proof of Fact 3, we have P̂j ∈ DS such that �(P̄j , P̂j ) =
{{(as, z−s),

(bs, z−s)}}
z−s∈A−s . Thus, [P̄j ]s ∼ [P̂j ]s , �([P̄j ]s , [P̂j ]s) =

{{as, bs}} and [P̄j ]ω = [P̂j ]ω
for all ω ∈ M\{s}. We show P̂j ∈ D̄MESP. First, for every ω ∈ M\{s}, we know [P̂j ]ω =
[P̄j ]ω ∈ [DESP]ω . Second, given [P̄j ]s = [Pj ]s and �([P̄j ]s , [P̂j ]s) =

{{as, bs}}, the hypothesis 
�([Pj ]s , [P ′′

j ]s) = {{as, bs}} and [P ′′
j ]s ∈ [DESP]s imply [P̂j ]s = [P ′′

j ]s ∈ [DESP]s . Therefore, 

P̂j ∈ D̄MESP. �
Fact 16. Fixing Pj , P ′

j ∈ D̄MESP with [Pj ]s �= [P ′
j ]s for some s ∈ M , and x, y ∈ A with xPjy

and xP ′
j y, there exist t ≥ 1 pair(s) {P̄ k

j , P̂ k
j : k = 1, . . . , t} ⊆ D̄MESP such that

(i) P̄ k
j ∼+ P̂ k

j for all k = 1, . . . , t ,

(ii) [Pj ]s = [P̄ 1
j ]s for all s ∈ M ,

(iii) [P̂ k
j ]s = [P̄ k+1

j ]s for all s ∈ M and k = 1, . . . , t − 1,

(iv) [P̂ t
j ]s = [P ′

j ]s for all s ∈ M , and

(v) xP̄ k
j y and xP̂ k

j y for all k = 1, . . . , t .

In particular, if r1(Pj ) and r1(P
′
j ) are similar, say r1(Pj ) = (as, z−s) and r1(P

′
j ) = (bs, z−s), 

then r1(P̄
k
j ), r1(P̂

k
j ) ∈ (As, z−s) for all k = 1, . . . , t .
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Proof. Let S = {q ∈ M : [Pj ]q �= [P ′
j ]q} and T = {τ ∈ M : xτ �= yτ }. Evidently, both S and T

are nonempty. Since xPjy, there exists τ̂ ∈ T such that xτ̂ [Pj ]τ̂ yτ̂ . According to Pj and P ′
j , we 

first identify P ′′
j ∈ D̄MESP satisfying conditions (i) - (iii) of Fact 14. Specifically, (i) [P ′′

j ]s ∼ [Pj ]s
for some s ∈ S, and [P ′′

j ]ω = [Pj ]ω for all ω �= s, (ii) as[Pj ]s !bs , bs[P ′′
j ]s !as and bs[P ′

j ]sas for 

some as, bs ∈ As , and (iii) xP ′′
j y. Note that P ′′

j ∈ D̄MESP implies [P ′′
j ]s ∈ [DESP]s . Moreover, 

since [Pj ]s ∼ [P ′′
j ]s and �([Pj ]s , [P ′′

j ]s) = {{as, bs}}, Fact 15 becomes applicable here. Then, 
after replacing the references of Facts 2, 3 and 4 and the notation DLS in the proof of Fact 4 by 
the references of Facts 14, 15 and 16 and the notation DLS ∩ DMESP respectively, the modified 
proof of Fact 4 (from Claim 1 to the end) remains valid for the verification of Fact 16. �
Fact 17. Given two distinct Pj , P ′

j ∈ D̄MESP with [Pj ]s = [P ′
j ]s for all s ∈ M , there exists 

an adjacency path {P k
j }qk=1 ⊆ D̄MESP connecting Pj and P ′

j such that [xPjy and xP ′
j y] ⇒

[xP k
j y for all k = 1, . . . , q].

Proof. Recall the construction of preference P ′′
j ∈ DS in the proof of Fact 5. If we show [P ′′

j ]s ∈
[DESP]s for all s ∈ M , then we have P ′′

j ∈ D̄MESP, and the rest proof of Fact 5 on the construction 
of the adjacency path remains applicable for the verification of Fact 17. Since both Pj and P ′′

j

are separable preferences, Pj ∼ P ′′
j implies that Pj and P ′′

j share the same marginal preferences 
by Observation 1. Therefore, [P ′′

j ]s = [Pj ]s ∈ [DESP]s for all s ∈ M , as required. �
Now, similar to the last paragraph of Section E.2, we use Facts 16 and 17 to construct paths in 

D̄MESP satisfying the requirements of the Interior+ and Exterior+ properties. Therefore, D̄MESP
is a connected+ domain. Next, we establish a fact to link DMESP to D̄MESP.

Fact 18. Given Pj ∈ DMESP\D̄MESP and a, b ∈ A with aPjb, there exists P̄j ∈ D̄MESP such that 
r1(P̄j ) = r1(Pj ) ≡ ā and aP̄j b. Furthermore, there exists an adjacency path {P k

j }qk=1 ⊆ Dā
MESP

connecting Pj and P̄j such that [xPjy and xP̄j y] ⇒ [xP k
j y for all k = 1, . . . , q].

Proof. Since aPjb, we do not have (ā, b, a). Therefore, there must exist s ∈ M such that either 
ās �= as and (ās , bs, as) does not exist, or ās = as and bs �= ās = as . Thus, bs �= as , and there 
exists [P̄j ]s ∈ [DESP]s such that r1([P̄j ]s) = ās and as[P̄j ]sbs . For each τ �= s, we fix a marginal 
preference [P̄j ]τ ∈ [DESP]τ with r1([P̄j ]τ ) = āτ . Last, we fix a lexicographic order � such that 
component s is lexicographically dominant, and assemble all alluded marginal preferences to 
generate a preference P̄j ∈DLS ∩DMESP ⊆ D̄MESP. Hence, r1(P̄j ) = ā = r1(Pj ) and aP̄j b.

Recalling the proof of Fact 5, according to Pj and P̄j , we identify x, y ∈ A such that x �= ā, 
y �= ā, xPj !y and yP̄j x. By locally switching x and y in Pj , we generate a preference P ′′

j . 

Thus, r1(P
′′
j ) = ā, Pj ∼ P ′′

j , xPj !y, yP ′′
j !x and yP̄j x. We show P ′′

j ∈ DMESP. Suppose not, 

i.e., P ′′
j /∈ DMESP. Then, we must have (ā, x, y), which consequently implies xP̄jy. This con-

tradicts the hypothesis yP̄j x. Therefore, P ′′
j ∈ DMESP. Note that P ′′

j is closer to P̄j than Pj

since �(P ′′
j , P̄j ) = �(Pj , P̄j )\

{{x, y}}. By repeatedly applying the argument above, we even-

tually generate an adjacency path {P k
j }qk=1 ⊆ Dā

MESP connecting Pj and P̄j , such that for each 

1 ≤ k < q , �(P k+1
j , P̄j ) = �(P k

j , P̄j )\
{{x, y}} for some x, y ∈ A with xP k

j !y, yP k+1
j !x and 

yP̄j x. Therefore, we have [xPjy and xP̄j y] ⇒ [xP k
j y for all k = 1, . . . , q]. �
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Last, similar to the last two paragraphs of Section E.3, by applying the connectedness+ of 
D̄MESP and Fact 18, we assert that DMESP is a connected+ domain.

E.8. Detailed verification for Example 5

To show that D is a connected+ domain, we first provide two observations on the subdomain 
D̂: (i) subdomain D̂ is connected+, and (ii) every preference of D̂ ranks (1, 1) above (2, 1). 
Therefore, with respect to the pair (2, 1) and (1, 1), we need not to construct a path in D to 
reconcile the difference between P̄i and any preference of D̂. We next identify preference P̂i :
(0, 0)⇀(0, 1)⇀(1, 0)⇀(2, 0)⇀(1, 1)⇀(2, 1), which belongs to D̂. Note that r1(P̄i) = r1(P̄i) =
(0, 0), P̄i ∼ P̂i , and �(P̄i , P̂i) =

{{(2, 1), (1, 1)}}. Therefore, by the first observation, D still 
satisfies the Interior+ property. Next, given P ′

i ∈ D̂ with r1(P
′
i ) �= (0, 0) and a, b ∈ A with aP̄ib

and aP ′
i b, by the second observation, note that {a, b} �= {(1, 1), (2, 1)}, and hence aP̂ib. Then, 

by the first observation, we have a path in D̂ which connects P̂i and P ′
i , and ranks a above b in 

all involved preferences. Last, since P̄i ∼ P̂i , we add P̄i to the beginning of the path, and hence, 
construct a path in D which connects P̄i and P ′

i , and ranks a above b in all involved preferences.

E.9. Detailed verification for Example 6

To verify the Interior+ property on domain D, we first identify preference P̄i ∈DMSP below:

P̂i : (0,0,0)⇀(1,0,0)⇀(2,0,0)⇀(0,1,0)⇀(1,1,0)⇀(2,1,0)⇀(0,0,1)⇀

(1,0,1)⇀(2,0,1)⇀(0,1,1)⇀(1,1,1)⇀(2,1,1).

Note that r1(P̂i) = r1(P̄i) = (0, 0, 0), P̂i ∼ P̄i and �(P̂i, P̄i) =
{{(1, 1, 1), (2, 1, 1)}}. Then, it 

is easy to check that domain D satisfies the Interior+ property. We show by contradiction that 
no path in D reconciles the difference between P̄i and a preference P ′

i with peak (2, 1, 1), and 
meanwhile keeps (2, 1, 1) ranked above (1, 1, 1) in every involved preference. Suppose not, i.e., 
we have such an admissible path in D. Since the path starts from P̄i whose peak is (0, 0, 0)

and ends at preference P ′
i whose peak is (2, 1, 1), the path must include a preference with peak 

(1, 0, 0) or (0, 1, 0) or (1, 0, 0). However, in every preference of D which has peak (1, 0, 0) or 
(0, 1, 0) or (1, 0, 0), alternative (1, 1, 1) always ranks above (2, 1, 1). Contradiction! Therefore, 
domain D violates the Exterior+ property.

We consider a particular mixed multidimensional projection rules ϕ : D2 → �(A): For all 
Pi, Pj ∈ D,

ϕ(Pi,Pj ) = 1

10

∑
a /∈{(1,1,1),(2,1,1)} f

a(Pi,Pj ).

It is evident that ϕ satisfies unanimity. To verify sd-strategy-proofness of ϕ, we show that each 
one of these 10 multidimensional projection rules is sd-strategy-proof. In fact, analogous to 
the proof of the Theorem of Chatterji et al. (2013), it is easy to show that a multidimensional 
projection rule f a : D2 → A is sd-strategy-proof if and only if domain D is multidimensional 
semi-single-peaked w.r.t. the projector a, i.e., given Pi ∈D, say r1(Pi) = z,

1. if x, y ∈ 〈z, a〉 and x ∈ 〈z, y〉, then xPiy;
2. if x /∈ 〈z, a〉, then π(x, 〈z, a〉)Pix. Recall that π(x, 〈z, a〉) = (

πs(xs, 〈zs, as〉))
s∈M

denotes 
the projection of x on 〈z, a〉.



102 S. Chatterji, H. Zeng / Journal of Economic Theory 182 (2019) 25–105

Since we choose projectors a /∈ {(1, 1, 1), (2, 1, 1)}, sd-strategy-proofness of the multidimen-
sional projection rule f a does not require a preference with peak (0, 0, 0) rank (1, 1, 1) over 
(2, 1, 1). Therefore, all 10 multidimensional projection rules here are sd-strategy-proof, and 
hence RSCF ϕ is sd-strategy-proof. Last, we show that ϕ satisfies the compromise property. 
By the proof of Claim 4 in the verification of the sufficiency part of Theorem 1, we here only 
need to consider the profile (Pi, Pj ) ∈ D2 such that {r1(Pi), r1(Pj )} = {(0, 1, 1), (2, 1, 1)} and 
r2(Pi) = r2(Pj ) = (1, 1, 1). According to Fig. 5, it is true that the projection of (1, 0, 0) or 
(1, 0, 1) or (1, 1, 0) on 〈r1(Pi), r1(Pj )〉 is (1, 1, 1). Therefore, at least one of these 10 multi-
dimensional projection rules chooses the compromise alternative (1, 1, 1) at (Pi, Pj ). Hence, ϕ
satisfies the compromise property.

E.10. Details of the discussion in Remark 9

Example 10 (Indispensability of unanimity (w.r.t. feasibility)). Let A = A1 ×A2 and A1 = A2 =
{0, 1, 2}. First, let D1 and D2 be two marginal domains such that D1 is the single-peaked domain 
over A1 according to the underlying order 0 < 1 < 2, and D2 is the complete marginal domain 
over A2. Second, according to D1 and D2, construct a separable domain D ⊂ DS containing all 
admissible preferences. It is evident that D is a minimally rich and connected+ domain.

Let Ā = {1, 2} × {0, 1, 2}. It is evident that D satisfies Assumptions 1 and 2. However, D is 
not multidimensional single-peaked w.r.t. Ā. Last, similar to Example 1, we define a two-voter 
point voting scheme φ : [

D|Ā
]2 → �(Ā), and extend it to a constrained RSCF ϕ : D2 → �(Ā)

such that ϕ(P1, P2) = φ
(
P1|Ā, P2|Ā

)
for all (P1, P2) ∈ D2. It is easy to show that ϕ satisfies 

sd-strategy-proofness and the compromise property (w.r.t. feasibility), but fails unanimity (w.r.t. 
feasibility). �
Example 11 (Indispensability of sd-strategy-proofness). Consider the same domain D and the 
same feasible set Ā of Example 10. Then, similar to Example 2 we define a two-voter constrained 
DSCF f :D2 → Ā such that

f (Pi,Pj ) =
{

a if r1(Pi) �= r1(Pj ) and r2(Pi) = r2(Pj ) ≡ a ∈ Ā,

r1(Pi|Ā) otherwise.

It is evident that f satisfies unanimity (w.r.t. feasibility) and the compromise property (w.r.t. 
feasibility), but fails sd-strategy-proofness. �
Example 12 (Indispensability of the compromise property (w.r.t. feasibility)). We adopt the 
same strengthening on recognizing compromise alternatives as that in Example 3. Consider 
the same domain D and the same feasible set Ā of Example 10. Note that since D|Ā re-
mains to be top-separable, we can construct a three-voter generalized random dictatorship 
φ : [

D|Ā
]3 → �(Ā) which assigns strictly positive weights to all voters sequences, and is sd-

strategy-proof by Proposition 1, and extend it to a constrained RSCF ϕ : D3 → �(Ā) such that 
ϕ(P1, P2, P3) = φ

(
P1|Ā, P2|Ā, P3|Ā

)
for all (P1, P2, P3) ∈ D3. It is evident that ϕ is unanimous 

(w.r.t. feasibility) and sd-strategy-proof. Last, given (P1, P2, P3) ∈ D3, assume that peaks are 
pairwise distinct, the common second best alternative exists, say a, and a ∈ Ā. If r1(Pi) /∈ Ā for 
some i ∈ I , then we have ϕa(P1, P2, P3) = φa

(
P1|Ā, P2|Ā, P3|Ā

) ≥ γ (i, i, i) > 0. If r1(Pi) ∈ Ā

for all i ∈ I , then a can be assembled by three peaks via some voter sequence i. We then have 
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ϕa(P1, P2, P3) = φa

(
P1|Ā, P2|Ā, P3|Ā

) ≥ γ (i) > 0. Therefore, ϕ satisfies the modified compro-
mise property (w.r.t. feasibility). �
Example 13 (Indispensability of top-separability). Let A = A1 × A2, A1 = {0, 1, 2} and A2 =
{0, 1}. Recalling the product of two lines in Fig. 4, we generate the multidimensional single-
peaked domain DMSP, and construct a particular preference P̄i : (2, 0)⇀(1, 0)⇀(1, 1)⇀(2, 1)⇀
(0, 0)⇀(0, 1). Evidently, P̄i /∈ DMSP since (1, 1)P̄i(2, 1), and P̄i is not top-separable since 
r1(P̄i) = (2, 0) and (1, 1)P̄i(2, 1). Let D = DMSP ∪ {P̄i}, and Ā = {1, 2} × {0, 1}. It is easy to 
show that D satisfies Assumptions 1 and 2. However, D is not multidimensional single-peaked 
w.r.t. Ā.

To show that D satisfies the Interior+ and Exterior+ properties, we first highlight two prefer-
ences P̂i , P̃i ∈ DMSP below which are adjacent to P̄i .

P̂i : (2,0)⇀(1,0)⇀(2,1)⇀(1,1)⇀(0,0)⇀(0,1), and

P̃i : (1,0)⇀(2,0)⇀(1,1)⇀(2,1)⇀(0,0)⇀(0,1).

By Fact 11 of Appendix E.5, given Pi ∈ DMSP\{P̂i} with r1(Pi) = (2, 0), there exists an adja-
cency path of DMSP connecting Pi and P̂i such that every involved preference has peak (2, 0). 
Since P̂i ∼ P̄i , we can generate an adjacency path of D connecting Pi and P̄i . Therefore, the 
Interior+ property still holds. Next, given Pi ∈ DMSP with r1(Pi) �= (2, 0) and a, b ∈ A with aPib

and aP̄ib, we know 
[{a, b} �= {(1, 1), (2, 1)}] ⇒ [aP̂ib], and 

[{a, b} = {(1, 1), (2, 1)}] ⇒ [aP̃ib]. 
According to the Exterior+ property satisfied by DMSP and Fact 11 of Appendix E.5, we know 
that there exists a path connecting Pi and P̂i (respectively, Pi and P̃i ) such that a is ranked above 
b in every preference of the path. We then extend the path to connect Pi and P̄i via either P̂i

or P̃i , and keep a ranked above b along the path. In particular, when r1(Pi) ∈ (A1, 0), since the 
path connecting Pi and P̂i (respectively, Pi and P̃i ) satisfies the requirement of the no-detour 
property, we know that the extended path connecting Pi and P̄i also satisfies the requirement of 
the no-detour property. Therefore, domain D satisfies the Interior+ and Exterior+ properties.

Last, we can construct a constrained random dictatorship on D where all voters receive strictly 
positive weights. Similar to Example 7, this constrained random dictatorship is unanimous (w.r.t. 
feasibility) and sd-strategy-proof, and satisfies the compromise property (w.r.t. feasibility). �
Example 14 (Indispensability of minimal richness). We adopt the same domain D of Example 5. 
Evidently, D is not minimally rich. By Appendix E.8, we know that D is a connected+ domain.

Let Ā = {1, 2} × {0, 1}. It is easy to show that D satisfies Assumptions 1 and 2. However, D
is not multidimensional single-peaked w.r.t. Ā due to preference P̄i of Example 5. Similarly, we 
refer to an arbitrary constrained random dictatorship which is unanimous (w.r.t. feasibility) and 
sd-strategy-proof, and satisfies the compromise property (w.r.t. feasibility) vacuously. �
Example 15 (Indispensability of paths in connectedness+). We adopt the same domain D of 
Example 6. Thus, we know that D is a minimally rich top-separable domain, satisfies the Interior+

property, but violates the Exterior+ property by Appendix E.9.
Let Ā = {1, 2} × {0, 1} × {0, 1}. It is easy to show that D satisfies Assumptions 1 and 2. 

However, D is not multidimensional single-peaked w.r.t. Ā due to preference P̄i of Exam-
ple 6. Last, since Ā form a box in Fig. 5, we can construct a multidimensional projection rules 
f̄ a : [

D|Ā
]N → Ā for each a ∈ {(1, 0, 0), (1, 1, 0), (1, 0, 1), (2, 0, 0), (2, 1, 0), (2, 0, 1)}, and as-

semble them as a mixed multidimensional projection rule φ : [D|Ā
]N → �(Ā). We then extend 
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φ to a constrained RSCF ϕ : DN → �(Ā) such that ϕ(P1, . . . , PN) = φ
(
P1|Ā, . . . , PN |Ā

)
for all 

(P1, . . . , PN) ∈ DN . By a similar verification in Appendix E.9, we know that ϕ is unanimous 
(w.r.t. feasibility) and sd-strategy-proof, and satisfies the compromise property (w.r.t. feasibil-
ity). �
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