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Abstract

We study a trade model with monopolistic competition a la Melitz (2003) that is standard

except that firm heterogeneity is endogenously determined by firms innovating to enhance their

productivities. We show that the equilibrium productivity and firm-size distributions exhibit

power-law tails under rather general conditions on demand and technology. In particular, the

emergence of the power laws is essentially independent of the underlying primitive heterogene-

ity among firms. We investigate the model’s welfare implications, and conduct a quantitative

analysis of welfare gains from trade. We find that, conditional on the same trade elasticity and

values of the common parameters, our model yields 40% higher welfare gains from trade than

a standard model with exogenously given productivity distribution.
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1 Introduction

In the last two decades of the development of the trade literature on heterogeneous firms, the source

of heterogeneity has been mostly exogenous, e.g., the exogenously given productivity distribution

in Bernard, Eaton, Jensen, and Kortum (2003), Eaton and Kortum (2002), Melitz (2003), Melitz

and Ottaviano (2008), and the large literature following these work-horse models. Trade affects

which parts of the productivity distribution in each country are utilized via either firm selection

or comparative advantage. Nevertheless, empirical evidence shows that trade affects productivity

at the level of individual firms, hence making the distribution of productivity endogenous. For

examples, see Pavcnik (2002), Fernandes (2007), Bustos (2011), and Aghion, Bergeaud, Lequien,

and Melitz (2018).

This paper studies a Melitz model in which firms can invest in R&D to enhance their productiv-

ities. In a nutshell, an entrant firm decides the complexity of the production process and hence the

number of procedures. For each procedure, the entrant firm conducts a sequence of experiments

to enhance the performance of the procedure, and the entrant firms differ in their probabilities of

failure/success in conducting the experiments. This process results in a neat relation between ca-

pability, innovation effort, and resulting productivity. In a standard Melitz model, the R&D effort

of a firm is represented by the entry cost so that once an entrant pays the entry cost, it obtains a

distinct product and a right to draw a productivity from an exogenously given distribution. The

major difference here is that our model incorporates both product and process innovation. An en-

trant still pays the entry cost to obtain a distinct product (product innovation), but its productivity

is determined by the ensuing innovation effort after entry (process innovation). As our focus is on

process innovation, we simply refer to it as innovation henceforth.

This paper makes three contributions. First, we show that under certain regularity conditions

a power law for productivity emerges, i.e., the right tail of the productivity distribution is Pareto.

Strikingly, this result is essentially independent of the underlying firm heterogeneity. This result

also implies that the firm size distribution follows a power law. Both power laws are widely doc-

umented empirical regularities (see, for examples, Axtell 2001, Luttmer 2007, and Nigai 2017).

Moreover, it has been shown that these power laws provide microfoundation for the gravity equa-

tions (Arkolakis, Costinot, Donaldson, and Rodríguez-Clare 2018 and Chaney 2018) and that the

few very large firms may be what matters the most for macro economic performance, i.e., granular

economies (Gabaix 2011). Thus, it is important to understand what may be a plausible general

explanation for these power laws.

Specifically, we show that if the demand and the innovation cost functions are regularly vary-

ing, then both of the above-mentioned power laws hold with a minimal requirement on firm het-
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erogeneity. This is achieved via a “Power Law Change of Variable Close to the Origin” technique.1

Whereas a standard general equilibrium trade model with constant-elasticity-of-substitution (CES)

preference and a Pareto productivity distribution generates a power law in firm size, our result

greatly relaxes the class of models consistent with power laws in firm size because regular varying

demands are much broader than CES and there is virtually no functional-form requirement on firm

heterogeneity. For example, several non-CES preferences studied by Mrazova and Neary (2018)

in fact entail regularly varying demand functions. We first show our power-law results in a closed

economy, and then we show that it actually holds in a very general open-economy environment.

The second contribution is to clarify how productivity distribution is affected by trade liberal-

ization. We show that a lower variable trade cost increases (decreases) exporters’ (non-exporters’)

innovation efforts. On the one hand, a lower trade cost implies a larger effective market size facing

the exporters. Hence, the exporters’ marginal benefit of having a higher productivity increases,

leading them to innovate more. On the other hand, the non-exporters face more import competi-

tion and make less profit as the prices of imported goods are reduced not only because of a lower

variable trade cost but also due to the fact that these foreign exporters become more productive.

Consequently, a lower trade cost negatively affects the productivities of non-exporters.

The third contribution is that this paper clarifies how innovation affects welfare gains from

trade and conducts a quantitative analysis. Despite some slight differences from the class of models

characterized by Arkolakis, Costinot, and Rodríguez-Clare (2012; henceforth ACR), the welfare

gains from trade still follow the formula provided by ACR, i.e., d lnW = 1
ε
d lnλ, where W is

welfare, λ is the expenditure share on domestic goods, and ε is the trade elasticity. We refer to this

formula as the local ACR formula as it deals with small changes in trade cost. However, the ACR

formula W ′/W = (λ′/λ)1/ε for large changes in trade cost does not apply here because the trade

elasticity ε in our model is a variable. Nevertheless, one can obtain the welfare changes for large

changes in trade cost by integrating over the local ACR formula.

To highlight the role played by innovation, we compare the welfare gains from trade with

Melitz (2003) with an exogenous Pareto distribution of productivity. For this purpose, we focus

on a symmetric country world with CES preference and a power innovation-cost function. When

firms’ R&D abilities are uniformly distributed, the resulting productivity distribution has a Pareto

right tail, and thus such a parameterization is adopted. We calibrate the model to match the same

trade elasticity, domestic expenditure share, and the share of exporters. Conditional on the same

trade elasticity and values of the common parameters, our quantitative analysis finds that the model

with innovation entails larger welfare gains from trade than Melitz-Pareto by about 40%. The

intuition is as follows. As mentioned, exporters innovate more and non-exporters innovate less

1This technique has already been used in physics; see Jan et al. (1999), Sornette (2002) and Newman (2005). The
name of the technique is given by Sornette (2006, Section 14.2.1).
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when facing trade liberalization, thus creating a larger productivity advantage of exporters over

non-exporters. Compared with the Melitz model with exogenous productivity distribution, the

above-mentioned effect entails larger imports and exports, and by the ACR formula, this implies

larger welfare gains from trade. That the model with innovation entails significantly larger welfare

gains from trade confirms the importance of incorporating innovation and endogenous choice of

productivity.

This paper is closely related to the literature of power laws in firm size. A popular explanation

to such power laws is based on firm-size dynamics that follow Brownian motions with reflection

barriers; see, for example, Luttmer (2007), Rossi-Hansberg and Wright (2007), and Acemoglu

and Cao (2015).2 Recently, Chaney (2014, 2018) and Geerolf (2017) have provided explanations

for power law in firm size via network and firm hierarchy, respectively. Note that no models of

the above-mentioned studies are free of functional form assumption or restrictions; for examples,

Luttmer (2007) and Acemoglu and Cao (2015) assume CES and constant-relative-risk-aversion

(CRRA) preferences. Thus, our relaxation of demand and innovation cost to regularly varying

functions should be viewed as an advantage rather than a strong restriction. Most importantly, the

common theme of these studies and our work is that power laws emerge with minimal assumptions

on the underlying firm heterogeneity. Our model differs from these studies in its economic mech-

anism, and is most closely related to Geerolf (2017) in terms of mathematical mechanism because

both use the “power law change of variable close to the origin” technique.

This paper is also closely related to Yeaple (2005), Bustos (2011), Bas and Ledezma (2015),

Aghion et al. (2018), and Bonfiglioli, Crinò, and Gancia (2018),3 who also model how innovation

effort affects productivity. Whereas the mechanism of our theory bears some similarity to these

studies, our work differs at least in the two following aspects: (1) we show that the concentration

of innovation efforts among exporters and large firms results in power laws in both productivity

and firm size under a rather general environment; (2) we investigate the welfare effect of such

innovation efforts.

As mentioned, our theoretical and quantitative analyses on the welfare gains from trade is

closely related to ACR. Our approach of modeling innovation is similar in spirit to the technolog-

ical choice embedded in the ACR framework, but is different in form.4 Nevertheless, we show

that the ACR formula still holds in our model, despite a variable trade elasticity. Our work is

also closely related to Melitz and Redding (2015) who conduct a welfare comparison between

homogeneous-firm and heterogeneous-firm models by fixing common parameters. To highlight

2Also see Gabaix (2009) for a survey of the literature.
3A feature in many of these studies is that productivity or quality is affected by choices in some type of fixed costs.

Also see Sutton (1991) for an early example of such modeling.
4As is made clear in Section 2, innovation effort is determined in the stage before production and consumption,

whereas ACR assumes they are simultaneous.
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the role of innovation, the welfare comparison between our model and Melitz-Pareto is conducted

in a similar fashion to Melitz and Redding as our quantitative comparison is done conditional on

the same trade elasticity and common parameters. Whereas Melitz and Redding show that the

heterogeneous-firm model adds additional gains from trade compared with homogeneous firms,5

we show that innovation further adds gains from trade compared with the Melitz-Pareto model.

Moreover, we show that such extra gains could be substantial. Our work is also generally related

to the large literature analyzing either deviations from the ACR framework or decomposition of

the welfare gains from trade through various mechanisms.6

The rest of the paper is organized as follows. Section 2 presents the model and shows how

power laws emerge. Section 3 provides comparative statics of productivity distribution on trade

costs and other parameters. Section 4 studies the properties pertaining to welfare gains from trade

and conducts a quantitative analysis. Section 5 concludes.

2 Power Laws in Productivity and Firm Size

We first start with a closed economy model to illustrate the mechanism of innovation. We show

how power laws for productivity and firm size emerge from such a model. Such results easily

extend to a general open-economy environment, as we show in Section 2.3.

2.1 Model Setup

There are N individuals in the economy, and every individual is endowed with 1 unit of labor.

All individuals are identical in their preferences and income. The preference is represented by

U =
∫
υ∈Υ

u (q (υ)) dυ, where Υ is a continuum of varieties. The sub-utility u (.) is defined on[
q,∞

)
with q ≥ 0, and is thrice differentiable on

(
q,∞

)
. Assume that u′ > 0 and u′′ < 0. The

budget constraint is
∫
υ∈Υ

p (υ) q (υ) dυ = w, where w is the wage rate, which can be normalized

to 1 in the closed economy by choosing numeraire. Standard solution yields the inverse demand

function p = D (q (υ) ;A) ≡ u′ (q (υ)) /A, where A is the Lagrange multiplier of the consumer’s

problem and is a general equilibrium object. Note that u′′ < 0 implies that the law of demand

holds, i.e., D′ (q (υ) ;A) < 0.

On the production side, labor is the only input, and firms engage in monopolistic competition.

To enter, each entrant hires κe amount of labor, which allows the entrant to obtain a distinct variety

5See their Propositions 2 and 3.
6For examples, see Caliendo and Parro (2015) on the roles of intermediate goods and sectoral linkages; Melitz and

Redding (2014) on how sequential production can amplify welfare gains from trade; and Hsieh and Ossa (2016) on the
global welfare impact of China’s trade integration and productivity growth. For pro-competitive effects, see Arkolakis
et al. (2018), Edmond, Midrigan, and Xu (2015), Feenstra and Weinstein (2017), and Holmes, Hsu, and Lee (2014).
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and a draw of a R&D parameter γ from a given distribution which we explain shortly. For a firm

to produce, κD units of labor as fixed input is required. The productivity of a firm is endogenously

determined and denoted as ϕ. Thus the unit labor requirement is ϕ−1. By choosing labor as

numeraire, the wage equals 1, and the total cost of production as a function of output q is q/ϕ+κD.

As in Melitz (2003), a positive κD results in firm selection. As we will see, whether there is

selection or not (κD > 0 or κD = 0) is immaterial for the results on power laws, and we keep

selection for generality and for the welfare comparison with the literature. A firm’s profit from

production is thus

π (ϕ) = pq − ϕ−1q − κD. (1)

Each entrant can determine its productivity level by engaging in R&D activities in the fol-

lowing manner. The production process involves a continuum of procedures, and the entrant can

choose the size of the continuum, k. How well the firm can perform in each procedure (which

we term the quality of the procedure) depends on the outcome of a sequence of experiments that

the firm conducts. For each procedure, every firm is endowed with one quality unit to begin with.

When the first experiment is successful, then the firm obtains one additional quality unit for this

procedure, and can continue to conduct the second experiment. Recursively, every successful ex-

periment results in one additional quality unit and the chance to conduct the next experiment. But

if the experiment fails, no more experiments will be performed and the quality of the procedure is

finalized. Firms differ in their probabilities of failure, γ ∈ (0, 1). In short, the probability of obtain-

ing quality y for a procedure is (1− γ)y−1 γ, i.e., y is geometrically distributed on the continuum

of size k. The process is illustrated as in Figure 1.

Each procedure requires a worker, say a research assistant, to perform the experiments. There-

fore, the mass of research assistants employed by the firm equals the mass of procedures, k. The

productivity ϕ is a function of the total quality of all k procedures, kE (y). That is,

ϕ ≡ B (kE (y)) = B

(
k

∞∑
y=1

(1− γ)y−1 γy

)
= B

(
k

γ

)
.

The function B (·) is strictly increasing and concave. The concavity of B (·) reflects the manage-

ment burden for the firm to manage these research assistants. For operational convenience, we

rewrite the above equation as

k = γB−1 (ϕ) ≡ γV (ϕ) , (2)

where V ≡ B−1 is strictly increasing and convex. k as a function in γ and ϕ given by (2) defines

what we term an innovation cost function. The c.d.f. and p.d.f. of the distribution of γ are denoted

as F (·) and f (·), respectively. We assume that f (.) is continuous and positive on (0, 1). The

5



Figure 1: A sequence of Bernoulli trials

higher the γ, the more costly to obtain the same ϕ.7

A γ-typed firm thus chooses an optimal productivity level ϕ that maximizes its following total

profit

Π (ϕ; γ) = π (ϕ)− γV (ϕ) , (3)

and the resulting optimal choice of ϕ is denoted as ϕ∗ = ϕ̃ (γ).

Given a non-degenerate distribution of optimal ϕ, there may exist a cutoff ϕD > 0 below

which firms decide not to produce and obtain π (ϕ) = 0. To justify paying γV (ϕ) > 0, π (ϕ) >

γV (ϕ) is needed. Suppose the optimal choice of ϕ is strictly decreasing in γ. Then, the fact

that π (ϕ) = 0 for those firms with ϕ < ϕD implies a corresponding cutoff γD > 0 such that

π (ϕ̃ (γD)) = γDV (ϕ̃ (γD)). Thus, the free entry condition can be written as∫ γD

0

Π (ϕ̃ (γ) ; γ) dF (γ) = κe. (4)

In sum, the model contains three stages as follows:

7Note that above-described process entails a deterministic relation between firm heterogeneity γ and productivity
ϕ by (2), and is unrelated to the random growth process used in the literature. First, the random walk or Brownian
motion in a random growth process is idiosyncratic to firms with different capability. For the firms with the same
γ, they may be struck by different shocks over time. Second, whereas the random walk or Brownian motion with a
reflection barrier is the basis for entailing power laws in those models, the mechanism generating power laws here does
not rely either on the random walk or Brownian motion or a reflection barrier. In particular, no central limit theorem
is applied here.
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Stage 1. Entry Stage: Each potential entrant decides whether to enter the market. If an entrant

decides to enter, it pays the fixed entry cost κe and draws its type γ randomly from the

distribution f (γ).

Stage 2. Innovation Stage: Given γ, each firm decides whether to invest in productivity or not,

and if yes, how much to invest to determine its productivity level ϕ.

Stage 3. Production/Consumption Stage: Each firm decides whether to produce or not. If yes,

each firm pays κD and determines its output and price. Production and consumption take

place and markets clear.

2.2 Equilibrium and Power Laws

2.2.1 Preliminaries: Regularly and smoothly varying functions

We first provide some preliminaries on regular variation that are applied to both the inverse demand

and innovation cost functions. A function v (x) is regularly varying if for some α ∈ R,

v (x) = xαl (x) ,

where l (x) is such that for any ζ > 0

lim
x→∞

l (ζx)

l (x)
= 1.

The function l (x) is referred to as a slowly varying function. If l (x) is a constant, then the func-

tion v (x) reduces to a power function. This implies v (ζx) ≈ ζαv (x) for large x; that is, a

regularly varying function is a homogeneous function (of degree α) asymptotically. The definition

of smoothly varying function is as follows (see e.g. Bingham et al. 1989).

Definition 1. A positive function v defined on some neighbourhood of infinity varies smoothly

with index α ∈ R if for all n ≥ 1

lim
x→∞

xnv(n) (x)

v (x)
= α (α− 1) ... (α− n+ 1) , (5)

where v(n) (x) denotes the n-th derivative of v (x). An equivalent definition is as follows: Consider

a transformation to the infinitely differentiable regularly varying function v (x): v̂ (x) ≡ log v (ex).

Then, v (x) is a smoothly varying function if

lim
x→∞

v̂′ (x) = α, and lim
x→∞

v̂(n) (x) = 0 ∀ n ≥ 2. (6)
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Literally speaking, a smoothly varying function is a regularly varying function that does not

oscillate too much. More importantly, any regularly varying functions can be approximated by

a smoothly varying function asymptotically (Theorem 1.8.2 of Bingham et al. 1989). Since we

are concerned with the tail behavior of the productivity distribution, this theorem ensures that our

results also apply to all regularly varying inverse demand and innovation cost functions.

We now show a lemma that will prove useful throughout the paper.

Lemma 1. If v (x) = xαl (x) is a smoothly varying function, then

lim
x→∞

x
l′ (x)

l (x)
= lim

x→∞
x2 l
′′ (x)

l (x)
= 0.

Proof. By the definition of smoothly varying function, the following equations must hold:

lim
x→∞

xv′ (x)

v (x)
= lim

x→∞

(
α + x

l′ (x)

l (x)

)
= α (7)

lim
x→∞

x2v′′ (x)

v (x)
= lim

x→∞

(
α (α− 1) + 2αx

l′ (x)

l (x)
+ x2 l

′′ (x)

l (x)

)
= α (α− 1) . (8)

Equation (7) implies that lim
x→∞

x l
′(x)
l(x)

= 0, therefore Equation (8) implies that lim
x→∞

x2 l
′′(x)
l(x)

= 0.

We now formally state our assumption on the demand and innovation cost functions as follows.

Assumption 1. The inverse demand function of each variety can be written as p = D (q;A) ≡
q−

1
σQ (q;A), where σ > 1 and lim

q→∞
Q (q;A) = CQ > 0. The innovation cost function can be

written as k (ϕ) = γV (ϕ) ≡ γϕβL (ϕ), where β > 1 and lim
ϕ→∞

L (ϕ) = CL > 0.

Both Q and L are slowly varying functions because they have positive limits at infinity. As-

sumption 1 thus implies that both the demand and the innovation cost functions are regularly

varying. Without loss of generality, we work with the smoothly varying representations of these

functions following Theorem 1.8.2 of Bingham et al. (1989).

Assumption 1 essentially requires the demand to be asymptotically CES, but the admissible

class of demand is actually more general than it seems at the first glance. Needless to say, this in-

cludes the CES demand. As shown in Table 1, several important classes of demand functions with

variable demand elasticity also satisfy this assumption.8 For examples, Assumption 1 includes

several demand classes that exhibit “manifold invariance” (Mrazova and Neary 2017),9 including

8The details are provided in Appendix A.1.
9A demand manifold depicts a relation between price elasticity and the curvature of the demand function, and the

demand manifolds in these two classes are invariant to changes in general equilibrium objects, making them powerful
tools for inferring demand/welfare by micro-level information such as firm sales and markups.
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Demand Class Functional Form Inverse Demand

Bipower Direct
q = âp−ν + ap−σ ≡ q (p)

p = q−
1
σ

(
â
[
q−1 (q)

]σ−ν
+ a
) 1
σ

σ > 1, σ > ν, a > 0

Pollak (HARA)
q = â+ ap−σ

p = q−
1
σ a

1
σ

(
1− â

q

)− 1
σ

σ > 1, a > 0

PIGL
q = âp−1 + ap−σ ≡ q (p)

p = q−
1
σ

(
â
[
q−1 (q)

]σ−1
+ a
) 1
σ

σ > 1, a > 0

QMOR
q = apr−1 + âp

r
2
−1 ≡ q (p)

p = q
1
r−1

(
a+ â

[
q−1 (q)

]− r
2

) 1
1−r

σ ≡ 1− r > 1, a > 0

Bipower Inverse
p = âq−ν + aq−

1
σ

p = q−
1
σ

(
âq

1
σ
−ν + a

)
σ > 1, ν > 1/σ, a > 0

CEMR (Inverse PIGL)
p = âq−1 + aq−

1
σ

p = q−
1
σ

(
âq

1−σ
σ + a

)
σ > 1, a > 0

CREMR
p = a

q (q − â)
σ−1
σ

p = q−
1
σ a
(

1− â
q

)σ−1
σ

σ > 1, a > 0, q > âσ

Table 1: Examples of demands satisfying Assumption 1

Bipower Direct demand, Bipower Inverse demand, Pollak Family demand (Pollak 1971, which is

equivalent to the HARA [Hyperbolic Absolute Risk Aversion] preference [Merton 1971; Zhelo-

bodko et al. 2012]), PIGL (Price-Independent Generalized Linear) demand (Muellbauer 1975),

QMOR (Quadratic Mean of Order r) expenditure function (Diewert 1976; Feenstra 2018), and

CEMR (Constant Elasticity of Marginal Revenue) demand. It also includes CREMR (Constant

Revenue Elasticity of Marginal Revenue) demand (Mrazova, Neary, and Parenti 2017).10

As we will show shortly that there are one-to-one mappings at the tails between γ → 0 and

ϕ → ∞ and between ϕ → ∞ and q → ∞, the requirement of σ > 1 is needed to ensure that the

demand is consistent with monopoly pricing at these tails. Note that the CARA (Constant Absolute

Risk Aversion) demand is excluded because its price elasticity tends to 0 when q goes to infinity.11

Linear demand is also excluded because q is a finite value when p = 0. Put it differently, the linear

demand is inconsistent with power laws as it never generates unbounded firm sales.

10Mrazova, Neary and Parenti (2017) have shown that CREMR is the only consistent demand class in a monopolistic
competitive framework when both the productivity and sales distributions are required to be “general power functions”.
As will be shown shortly, Assumption 1 leads to power laws for both productivity and sales distribution. Nevertheless,
it is worth noting that distributions with power-law tails are not necessarily “general power functions”, whereas general
power functions do not necessarily exhibit power laws in their tails. Thus, neither our framework nor Mrazova, Neary,
and Parenti’s (2017) is a subset of the other.

11To see this, observe that the CARA demand can be written as q = a − b ln p, where a > 0, b > 0. Its price
elasticity equals b/q. This implies that the monopoly for each variety chooses a finite q even when its productivity ϕ
tends to infinity.
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The assumption on the innovation cost function parallels that on the inverse demand func-

tion. Obviously, simple power functions are included, but general polynomial functions are also

included.

2.2.2 Equilibrium productivity and firm-size distributions

We solve the model backwards. For any given ϕ, the first- and second-order conditions for an

interior solution q from (1) in the production stage are

p′q + p− ϕ−1 = 0 (9)

p′′q + 2p′ < 0. (10)

These imply that |ε (q)| ≡ −p/ (qp′) > 1, and µ (q) ≡ − (p′′q) /p′ < 2. Namely, at the interior

solution q, the demand elasticity must be greater than 1 so as to be consistent with monopoly

pricing, and the convexity of the demand curve must be sufficiently small in order to satisfy the

second-order condition.

Note that Assumption 1 only regulates the inverse demand p = D (q;A) for large values of q.

As there is no guarantee that the profit function will be concave in the entire domain of q, there

may exist corner solutions to the profit-maximization problem or multiple local optima satisfying

(9) and (10). As we are concerned with the right tail of the firm size distribution, where the firm

size is defined as total revenue s ≡ p (q) q = D (q;A) q, what is relevant is large values of q. This

is because by Assumption 1, lim
q→∞

s (q) = lim
q→∞

q1− 1
σQ (q;A) =∞.

Using Assumption 1, we can rewrite (9) and (10) as

ϕ = q
1
σ

[
Q×

(
1− 1

σ
+ q

Q′

Q

)]−1

(11)

q−
1
σ
−1Q

[
− 1

σ

(
1− 1

σ

)
+ 2

(
1− 1

σ

)
q
Q′

Q
+ q2Q

′′

Q

]
≡ πqq (q, ϕ) < 0. (12)

Let q∗ be a solution to (11). For large values of ϕ, we can show that q∗ exists and is unique.

Moreover, q∗ strictly increases in ϕ and lim
ϕ→∞

q∗ (ϕ) = ∞. The following assumption rules out the

corner solution.

Assumption 2. The inverse demand function D is such that the revenues around q remain finite.

Namely, lim
q→q

s (q) <∞.

We have the following lemma.

Lemma 2. Suppose that Assumption 1 holds. For sufficiently large ϕ, the interior solution q∗ (ϕ)

that satisfies (11) exists and is unique. Moreover, q∗ (ϕ) strictly increases in ϕ and lim
ϕ→∞

q∗ (ϕ) =

10



∞. If, in addition, Assumption 2 holds, then q∗ (ϕ) is the unique profit-maximizing quantity and

lim
ϕ→∞

π (ϕ) =∞.

Proof. Lemma 1 implies that qQ
′

Q
tends to zero and Q tends to a constant when q →∞. For a firm

with an arbitrarily large ϕ, there exists a large q that satisfies (11) because the term in the bracket

tends to a constant. Thus, q∗ exists. However, there is a possibility that this firm with arbitrarily

large ϕ might choose a finite q such that the term Q ·
(

1− 1
σ

+ qQ
′

Q

)
tends to zero. Nevertheless,

note that by plugging in (11) into (1), we have

π (ϕ) = q1− 1
σQ

(
1

σ
− qQ

′

Q

)
− κD.

Assumption 1 and Lemma 1 imply that if q becomes arbitrarily large as ϕ becomes arbitrarily large,

then the profit also becomes arbitrarily large. However, if a finite q is chosen, then because this q

is such that either 1
σ
− qQ′

Q
tends to one or Q tends to zero, the resulting profit must be finite. Thus,

q∗ is unique and lim
ϕ→∞

q∗ (ϕ) = ∞. As a result, when ϕ (and hence q) becomes arbitrarily large,

the second-order condition (12) is satisfied because of Lemma 1. Applying the implicit function

theorem on (11), we have
dq∗

dϕ
= − ϕ−2

πqq (q∗, ϕ)
> 0 (13)

as πqq (q∗, ϕ) < 0. Finally, the only concern that q∗ is not the profit-maximizing quantity is that it

might be dominated by a corner solution at q. For this concern to be valid, it requires that the profit

tends to infinity as q → q. This, in turn, requires that q forms an asymptote of the demand curve

so that lim
q→q

s (q) = ∞.12 This possibility is ruled out by Assumption 2, and thus q∗ is the unique

profit-maximizing quantity.

In the innovation stage, a firm chooses ϕ to maximize its profit. By the envelope theorem, the

first-order condition of ϕ is

dΠ (ϕ; γ)

dϕ
= ϕ−2q∗ (ϕ)− γV ′ (ϕ) = 0, (14)

and thus the optimal productivity ϕ satisfies

γ =
q∗ (ϕ)

ϕ2V ′ (ϕ)
. (15)

12The Pollak demand with σ > 0, A > 0, and Â > 0 is such an example. Here, the demand requires that q > Â,
and s (q) being increasing (concave) in q when q > σ

σ−1 Â (q > 2σ
σ−1 Â). However, the optimal output degenerates to

Â for all ϕ because lim
q→Â

π (q) = lim
q→Â

(
s (q)− ϕ−1q

)
=∞.

11



The associated second-order condition is

−2ϕ−3q∗ (ϕ) + ϕ−2∂q
∗ (ϕ)

∂ϕ
− γV ′′ (ϕ) < 0. (16)

Similar to Sutton (1991), the innovation cost function must be sufficiently convex so that (16)

holds. This essentially requires β to be sufficiently large.

It is intuitive that a firm endowed with a higher R&D ability (smaller γ) invests more and

obtains a higher productivity; as γ tends to 0 then the productivity tends to infinity. The following

lemma establishes this intuition.

Lemma 3. Suppose that Assumptions 1 and 2 hold, and that the innovation cost function is suf-

ficiently convex. For those firms with sufficiently small γ, the optimal choice of ϕ exists and is

unique. Such an optimal choice is denoted as ϕ∗ = ϕ̃ (γ). Moreover, ϕ∗ is strictly decreasing in γ,

and thus the inverse function exists and is denoted as γ̃ (ϕ). Finally, lim
ϕ→∞

γ̃ (ϕ) = 0 if and only if

θ ≡ β + 1− σ > 0.

Proof. By plugging (11) into (15), we obtain

γ =
Q (ϕ)σ

L (ϕ)

(
1− 1

σ
+ q∗ (ϕ) Q′(ϕ)

Q(ϕ)

)σ
β + ϕL′(ϕ)

L(ϕ)

ϕ−(β+1−σ). (17)

Then, Assumption 1 and Lemmas 1 and 2 imply that, for a firm with an arbitrarily small γ there

exists a large ϕ, denoted as ϕ∗, satisfying (17) if and only if β + 1− σ ≡ θ > 0. The second-order

condition (16) holds if V is sufficiently convex. However, there is a possibility that this firm with

an arbitrarily small γ might choose a finite ϕ such that either Q (ϕ)
(

1− 1
σ

+ q∗ (ϕ) Q′(ϕ)
Q(ϕ)

)
tends

to 0 or β+ϕL′(ϕ)
L(ϕ)

tends to infinity. Note that L (ϕ) must be finite at any finite value of ϕ; otherwise,

it violates V ′ > 0. Observe that by plugging (11) and (17) into (3) we have

Π =π (ϕ)− γV (ϕ)

=Qσ ·
(

1− 1

σ
+ q∗

Q′

Q

)σ 
(

1
σ
− q∗Q′

Q

)
(

1− 1
σ

+ q∗Q
′

Q

) − 1(
β + ϕL′

L

)
ϕσ−1 − κD.

This implies that if Q (ϕ)
(

1− 1
σ

+ q∗ (ϕ) Q′(ϕ)
Q(ϕ)

)
tends to 0 or β + ϕL′(ϕ)

L(ϕ)
tends to infinity at

some finite ϕ, then the profit is also finite. In contrast, the profit becomes arbitrarily large for an

arbitrarily large ϕ. Thus, a finite ϕ would not be the solution to (17) when γ becomes arbitrarily

small, and hence ϕ∗ is the unique solution and denoted as ϕ̃ (γ). The derivative of the right-hand

12



side of Equation (15) is(
1

ϕ2V ′ (ϕ)

)2(
ϕ2V ′ (ϕ)

∂q∗ (ϕ)

∂ϕ
− 2V ′ (ϕ) q∗ (ϕ)ϕ− V ′′ (ϕ) q∗ (ϕ)ϕ2

)
=

1

V ′ (ϕ)

(
−2ϕ−3q∗ (ϕ) + ϕ−2∂q

∗ (ϕ)

∂ϕ
− γV ′′ (ϕ)

)
by equation (15).

<0,

where the last inequality holds by (16). Hence, ϕ̃′ (γ) < 0 and the inverse function γ̃ (ϕ) is well-

defined. Obviously, lim
ϕ→∞

γ̃ (ϕ) = 0 if and only if θ ≡ β + 1− σ > 0.

As in Melitz (2003), the existence of a fixed cost of production κD > 0 gives rise to firm

selection. This means that a successful entrant must be capable enough to obtain a high enough

productivity to survive. As Π (ϕ̃ (γ) ; γ) = π (ϕ̃ (γ)) − γV (ϕ̃ (γ)), dΠ/dγ = −V < 0 by the

envelope theorem. Thus, any firm produces if and only if γ ≤ γD, where γD is defined by13

Π (ϕ̃ (γD) , γD) = π (ϕ̃ (γD))− γDV (ϕ̃ (γD)) = 0. (18)

We now complete the description of the equilibrium conditions. An equilibrium is defined by

first-order conditions for q and ϕ, (11) and (15), the cutoff condition (18), and the free entry con-

dition (4). For the free entry condition (4) to hold, we must ensure that
∫ γD

0
Π (ϕ̃ (γ) ; γ) dF (γ) <

∞. What determines whether this integral is finite or not is small γ (high-productivity firms), and

thus what matters is essentially the orders of demand and innovation cost function (σ and β). Thus,

β must be sufficiently large relative to a given σ. As we show in Appendix A.2, this is ensured

when θ ≡ β + 1− σ > σ − 1.

Now we are ready to show how the power law for productivity arises. By change of variables,

the p.d.f. of productivity is

g (ϕ) =
f (γ̃ (ϕ))

F (γD)
J (ϕ) ,

where the Jacobian J (ϕ) is given by (See Appendix A.2)

J (ϕ) =

∣∣∣∣∂γ̃ (ϕ)

∂ϕ

∣∣∣∣ =

∣∣∣∣ ∂∂ϕ q∗ (ϕ)

ϕ2V ′ (ϕ)

∣∣∣∣ (19)

=
Qσ

L

(
1− 1

σ
+ q∗Q

′

Q

)σ
β + ϕL′

L

·

[
2 +

β (β − 1) + 2βϕL′

L
+ ϕ2L′′

L

β + ϕL′

L

13The following definition of γD implicitly assumes continuity of Π in γ. Note that smooth variation guarantees
that all relevant functions are continuous for large values of q and ϕ and small values of γ. However, even when Π is
discontinuous in some large values of γ, a cutoff γD can still be well-defined as long as Π strictly decreases in γ.
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+
1− 1

σ
+ q∗Q

′

Q

− 1
σ

(
1− 1

σ

)
+ 2

(
1− 1

σ

)
q∗Q

′

Q
+ (q∗)2 Q′′

Q

]
· ϕ−θ−1.

For power laws, we consider how the density g behaves as ϕ goes large. The following Proposi-

tion 1 shows that power laws for productivity arise under Assumption 1 and a very weak condition

on the distribution of R&D ability. Essentially, the distribution does not matter as long as its density

has a finite positive limit around zero.

Proposition 1. Under Assumptions 1 and 2, suppose that

lim
γ→0

f (γ) = K > 0,

and θ ≡ β + 1− σ > σ − 1. Then, the productivity distribution is approximately

g (ϕ) ≈ K

F (γD)

Cσ
Q

CL

(
σ − 1

σ

)σ
θ

β
ϕ−θ−1.

Proof. We sketch the proof as follows; for the detailed proof, see Appendix A.2. As mentioned,

θ > σ − 1 is needed to ensure that
∫ γD

0
Π (ϕ̃ (γ) ; γ) dF (γ) < ∞. Observe the Jacobian (19).

First note that by Assumption 1 and Lemma 2, the slowly varying functions Q (q;A) and L (ϕ)

converge to some constantsCQ andCL, respectively. Also, by Lemma 1, smoothly varying demand

and innovation cost imply that q∗Q
′

Q
, ϕL′

L
, (q∗)2 Q′′

Q
, and ϕ2L′′

L
all go to zero. If f (γ̃ (ϕ)) has a finite

positive limit at γ → 0, then g (ϕ) /ϕ−θ−1 converges to some constant when ϕ tends to infinity.

Thus, the productivity distribution exhibits a power law with a tail index θ > σ − 1.

The mechanism behind Proposition 1 is “power law change of variable close to the origin”: if

the distribution of a variable x has a positive density near the origin, and the interested variable

y relates to x in a reciprocal manner y = x−1, then y becomes arbitrarily large as x goes to

0 and the distribution of y exhibits a power law tail (Sornette 2006, Section 14.2.1). Since the

innovation efforts entail a reciprocal relationship between γ and ϕ given by (17), the condition

that f (γ) being positive near the origin thus entails a power law productivity distribution. In other

words, the condition on f (γ) implies that there is a sufficient mass of capable firms, resulting in a

fat-tailed productivity distribution.

Proposition 1 provides a justification for applying productivity distributions with power laws,

e.g. the Pareto distribution or the two-piece distribution by Nigai (2017). As mentioned, the power

laws for firm size are directly observable empirically and widely documented. The following

corollary establishes that the firm size distribution in our model also exhibits a power law.
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Corollary 1. Under Assumptions 1 and 2, suppose that

lim
γ→0

f (γ) = K > 0,

and θ > σ − 1. Then, the distribution of firm size s follows the power law with a tail index θ
σ−1

,

i.e.,

g (s) ≈ K

F (γD)

C
βσ
σ−1

Q

CL

(
σ − 1

σ

)β
θ

βσ
s−

θ
σ−1
−1.

Proof. See Appendix A.3.

Proposition 1 and Corollary 1 are the central results of the paper. These results establish how

power laws can emerge from a generalized environment of a standard static general-equilibrium

model. Whereas regularly varying demand and innovation cost function are still intimately linked

with power laws, what is striking is that the functional form of firm heterogeneity essentially

does not matter for the emergence of power laws. All it asks is that the rate of change of the

cumulative density around zero is positive, which means that there are many capable firms whose

R&D abilities are very strong.14

2.3 Power Laws in Open Economy

This subsection extends the model to a general open-economy environment and shows that the

power laws for productivity and firm size still hold.

2.3.1 Model setup in open economy

There are n + 1 asymmetric countries with the asymmetry in possibly every aspect of the model.

Not only are all the parameters {σi, βi, κD,i} specific to each country i, but also the inverse demand

function Di, innovation cost function ki, and the density function fi are country-specific. Similar

to the closed-economy case, Assumptions 1 and 2 are assumed to hold with CQ,i and CL,i allowed

to be country-specific. Also assume that the density of γ is such that lim
γ→0

fi (γ) = Ki.

The timing is identical to the closed economy case, except that in the production stage each

firm can determine whether to export, and, if yes, the price and quantity of exported goods. After

paying the fixed cost of production κD,i, the profit of a firm located in country i obtained from

selling to country j is

πij (ϕ) = pijqij − τijwiϕ−1qij − κij, (20)

14Note that our results could be even more general because even when lim
γ→0

f (γ) = 0, power laws for both produc-

tivity and firm size still hold provided that f (γ) is regularly varying around zero.
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where τij ≥ 1 denotes the variable trade cost, κij denotes the fixed selling cost from i to j, and wi
denotes the wage in country i. Then, a firm produces if and only if

Πi (ϕ) =

[∑
j

πij (ϕ)

]
− κD,i ≥ 0.

2.3.2 Equilibrium and power laws for productivity and firm size

Given ϕ, the first-order condition for qij is similar to (11) and is given as follows.

ϕ = wiτijq
1
σj

ij

[
Qj ×

(
1− 1

σj
+ qij

Q′j
Qj

)]−1

. (21)

It is straightforward to see that Lemma 2 holds here. That is, we have lim
ϕ→∞

q∗ij (ϕ) = ∞ and

lim
ϕ→∞

πij (ϕ) = ∞. Note that when ϕ becomes arbitrarily large, the firm must sell to every market

j because the fixed selling cost κij is fixed while the gross profit also becomes arbitrarily large.

Observe that for a given γ, the first-order condition is

γ =

∑
j Iijτijq∗ij (ϕ)

ϕ2V ′i (ϕ)
, (22)

where Iij = {0, 1} is the indicator function that indicates whether the firm with γ at country i sells

to country j. By combining (21) with (22), we can rewrite (22) as

γ =

∑
j Iijτ

1−σj
ij w

−σj
i Q

σj
j ·
(

1− 1
σj

+ q∗ij
Q′j
Qj

)σj
· ϕσj−βi−1

Li ·
(
βi + ϕ

L′i
Li

) . (23)

Each component in the numerators of (23) is similar to those in the closed-economy case. Thus,

for an arbitrarily small γ, there exists a corresponding large ϕ such that (23) holds with Iij = 1 for

all j. The same proof in Lemma 3 rules out other potential solutions. Therefore, the conclusion

of Lemma 3 also holds here. That is, for those firms with sufficiently small γ, the optimal choice

of ϕ exists, is unique, and is denoted as ϕ∗ = ϕ̃ (γ). Moreover, ϕ̃′ (γ) < 0 and lim
ϕ→∞

γ̃ (ϕ) = 0 if

θij ≡ βi + 1− σj > 0 for all i and j.

Similar to the closed-economy case, θij > σj − 1 is required such that the expected profit

in each country remains finite. Since we are concerned with the tail behavior of the productiv-

ity distribution, it suffices to focus on the right-most piece of the productivity distribution. The
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corresponding Jacobian is obtained by differentiating Equation (22), i.e.,

Ji (ϕ) =

∣∣∣∣∣∣∣∣
∂γ̃ (ϕ)

∂ϕ︸ ︷︷ ︸
−

∣∣∣∣∣∣∣∣ = −
n∑
j=0

∂

∂ϕ

τijq
∗
ij (ϕ)

ϕ2V ′i (ϕ)
. (24)

Obviously, each component of Equation (24) is similar to Equation (19), and with a tail index

θij ≡ βi − σj − 1. Following the same argument to Proposition 1, the productivity distribution

exhibits a power law with the tail index minj θij .

We now turn to the firm size distribution. Denote sij as a firm’s sales from i to j and thus the

firm size of the firms that export to all countries is s ≡
∑n

j=0 sij . By a similar argument to that

in Appendix A.3, noting that ∂s
∂ϕ

=
∑n

j=0
∂sij
∂ϕ

=
∑n

j=0
∂sij
∂qij

∂qij
∂ϕ

, the power law in firm size also

follows with the tail index minj
θij
σj−1

. The above derivation leads to the following proposition.

Proposition 2. Under Assumptions 1 and 2, suppose that

lim
γ→0

fi (γ) = Ki > 0,

and θij ≡ βi + 1− σj > σj − 1 for all (i, j) ∈ {0, 1, 2, ..., n}. Then, the productivity distribution

in each country i has a power law tail with a tail index of minj θij , and the distribution of firm size

has a power law tail with a tail index of minj
θij
σj−1

.15

The tail indices of both the productivity and firm size distributions in each country i are asso-

ciated with the innovation technology parameter βi and the largest σj among all destination coun-

tries. As a larger σj generally implies a larger elasticity of substitution and larger price elasticity,

the destination with the largest σj entails the largest responsiveness of firm sales to productivity

changes. Thus, the destination with the largest σj plays the dominant role in determining the tail

indices of every source country. The same logic applies analogously for the firm size distribution.

Proposition 2 implies that opening up to trade causes the tails of both productivity and firm-size

distributions in each country to (weakly) fatten. A similar theoretical prediction has been provided

by di Giovanni, Levchenko, and Rancière (2011) and is also empirically tested in the same paper.

15Note that the statement about tail indices here resembles the well-known theorem that the tail index of a sum
of independent Pareto random variables is the minimum of the tail indices of these random variables. However, the
different components of (24) are not literally independent random variables.
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3 The Effects of Trade on Productivity Distribution

This section analyzes the effects of trade. In particular, we focus on how trade costs affect produc-

tivity distribution. For tractability, we follow Melitz (2003) by assuming n+1 symmetric countries

and CES demand: p =
(

N
P 1−σ

) 1
σ q−

1
σ , where σ > 1, in this and subsequent sections. In particu-

lar, for the welfare analysis in the next section, the CES demand is needed to be comparable with

the ACR formula. Also for tractability, we use a simple power function for the innovation cost:

k = γϕβ. We allow the distribution of γ to be general until Section 4.2 where we need to generate

a Pareto productivity distribution for comparison purposes.

3.1 Equilibrium

Given the functional-form assumptions on the inverse demand and innovation cost, Assumption

1 is satisfied. Moreover, the profit-maximizing solution of q∗ (ϕ) and ϕ̃ (γ) must be interior and

unique given by the relevant first- and second-order conditions. Thus, Assumption 2 is no longer

needed.

To solve the model, we start with the production stage. The optimal quantity that a firm pro-

duces for the domestic market (denoted by subscript D) and the foreign market (denoted by sub-

script X) are respectively given by

qD (ϕ) =
N

P 1−σ

(
σ − 1

σ

)σ
ϕσ

qX (ϕ) =τ−σ
N

P 1−σ

(
σ − 1

σ

)σ
ϕσ.

Accordingly, the operating profits in the domestic and each foreign markets are

πD (ϕ) =
N

P 1−σ

(
σ−1
σ

)σ
σ − 1

ϕσ−1 − κD

πX (ϕ) =τ 1−σ N

P 1−σ

(
σ−1
σ

)σ
σ − 1

ϕσ−1 − κX .

In the innovation stage, a firm decides its productivity level according to whether it serves the

foreign market or not. For a non-exporting firm, its total profit is such that

ΠD (ϕ) = πD (ϕ)− γϕβ, (25)
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while for an exporting firm its profit is given by

ΠX (ϕ) = πD (ϕ) + nπX (ϕ)− γϕβ. (26)

The optimal productivity level is such that

ϕ̃ (γ) =


(

N
P 1−σ

) 1
θ
(
σ−1
σ

)σ
θ β−

1
θ γ−

1
θ for non-exporting firms

φ
(

N
P 1−σ

) 1
θ
(
σ−1
σ

)σ
θ β−

1
θ γ−

1
θ for exporting firms

, (27)

where

φ ≡
(
1 + nτ 1−σ) 1

θ . (28)

Since exporting decisions are made after the firm has invested in its productivity, the firm chooses

a higher productivity level if it plans to export afterward. The ratio φ can thus be interpreted as the

productivity advantages of the exporting firms versus the nonexporting ones.

By substituting Equation (27) into (25) and (26), the profits for both non-exporting and export-

ing firms become

ΠD (γ) =

(
N

P 1−σ

)β
θ
(
σ − 1

σ

)βσ
θ

β−
β
θ

(
β

σ − 1
− 1

)
γ−

σ−1
θ − κD (29)

ΠX (γ) =

(
N

P 1−σ

)β
θ
(
σ − 1

σ

)σ
θ
β

β−
β
θ

[
β

σ − 1

(
1 + nτ 1−σ)φσ−1 − φβ

]
γ−

σ−1
θ − κD − nκX .

(30)

Observe that the gross profits are proportional to γ−
σ−1
θ . The cutoff types are thus obtained as

γD =

[
κ−1
D

(
N

P 1−σ

)β
θ
(
σ − 1

σ

)βσ
θ

β−
β
θ

(
β

σ − 1
− 1

)] θ
σ−1

(31)

γX =

{
n−1κ−1

X

(
N

P 1−σ

)β
θ
(
σ − 1

σ

)βσ
θ

β−
β
θ

[
β

σ − 1

(
1 + nτ 1−σ)φσ−1 − φβ −

(
β

σ − 1
− 1

)]} θ
σ−1

,

(32)

such that ΠD (γ) ≥ 0 if and only if γ ≤ γD and ΠX (γ) ≥ ΠD (γ) if and only if γ ≤ γX . Notice

that, if γD ≤ γX , then all operating firms choose high productivity levels and become exporters.

Similar to the literature, we consider only the case of γX < γD because all firms exporting is

counter-factual.
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From (31) and (32), we have

δ ≡ γX
γD

=

(
κD
nκX

) θ
σ−1 [(

1 + nτ 1−σ)βθ − 1
] θ
σ−1

. (33)

To ensure that γX < γD, so that there are both exporters and non-exporters in the economy, we

assume that δ < 1, which requires trade frictions κX or τ to be sufficiently large relative to the

fixed cost of production κD.

In the entry stage, each firm decides whether to enter the market. The free entry condition

implies that the equilibrium entry is such that the expected profit of entry equals the entry cost for

each firm,

E (Π) ≡
∫ γX

0

ΠX (γ) dF (γ) +

∫ γD

γX

ΠD (γ) dF (γ) = κe. (34)

An equilibrium is accordingly defined by (27), (31), (32), (34) and the aggregate price

P 1−σ =Me

[∫ γD

γX

(
σ − 1

σ

)σ−1

ϕ̃ (γ)σ−1 dF (γ) +

∫ γX

0

(
σ − 1

σ

)σ−1

ϕ̃ (γ)σ−1 dF (γ)

]
(35)

+ nMe

∫ γX

0

τ 1−σ
(
σ − 1

σ

)σ−1

ϕ̃ (γ)σ−1 dF (γ)

where Me denotes the mass of entrants paying the entry cost.

The aggregate price is composed of three terms. The first and second terms are associated with

the prices charged by domestic non-exporting and exporting firms, respectively. The third term is

associated with the foreign exporters. Note that by (27), there is a jump in the function ϕ̃ (γ) at

γX .

In Appendix A.4, we provide the derivation of the following equilibrium outcome. First, an

equilibrium exists and is unique. In equilibrium, γD is given by

κDγ
σ−1
θ

D

{
ΓD +

[(
1 + nτ 1−σ)βθ − 1

]
ΓX

}
− κDF (γD)− nκXF (γX) = κe, (36)

where Γz ≡
∫ γz

0
γ−

σ−1
θ dF (γ) for z ∈ {D,X}. Note that Γz

F (γz)
is proportional to the average

productivity of firms in (0, γz). Therefore, Γz measures the contribution of the productivities in

(0, γz) to the expected profit of an entrant.

The price index and mass of entrant are

P 1−σ =N

(
σ − 1

σ

)σ
β−1

(
β

σ − 1
− 1

) θ
β

κ
− θ
β

D γ
−σ−1

β

D (37)
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Me =
N

κe + κDF (γD) + nκXF (γX)

σ − 1

βσ

(
β

σ − 1
− 1

)
. (38)

The equilibrium productivity is

ϕ̃ (γ) =

κ
1
β

Dγ
σ−1
βθ

D

(
β
σ−1
− 1
)− 1

β γ−
1
θ if γ ∈ (γX , γD]

φκ
1
β

Dγ
σ−1
βθ

D

(
β
σ−1
− 1
)− 1

β γ−
1
θ if γ ∈ [0, γX ]

, (39)

and the associated density is

g (ϕ) =



κ
θ
β
D γ

σ−1
β

D ( β
σ−1−1)

− θ
β θ

F (γD) f

(
κ
θ
β

Dγ
σ−1
β

D

(
β
σ−1 − 1

)− θβ
ϕ−θ

)
ϕ−θ−1 if ϕ ∈

[
ϕD, ϕ

−
X

)
0 if ϕ ∈

[
ϕ−X , ϕ

+
X

)
κ
θ
β
D γ

σ−1
β

D ( β
σ−1−1)

− θ
β θ

F (γD) f

(
φθκ

θ
β

Dγ
σ−1
β

D

(
β
σ−1 − 1

)− θβ
ϕ−θ

)
φθϕ−θ−1 if ϕ ∈

[
ϕ+
X ,∞

) , (40)

where ϕD ≡ κ
1
β

Dγ
σ−1
βθ

D

(
β
σ−1
− 1
)− 1

β γ
− 1
θ

D , ϕ−X ≡ lim
γ→γX+

ϕ̃ (γ) = κ
1
β

Dγ
σ−1
βθ

D

(
β
σ−1
− 1
)− 1

β γ
− 1
θ

X , and

ϕ+
X ≡ lim

γ→γX−
ϕ̃ (γ) = φκ

1
β

Dγ
σ−1
βθ

D

(
β
σ−1
− 1
)− 1

β γ
− 1
θ

X .

Equation (39) shows that equilibrium productivity not only depends on γ, but also on firm

selection; we analyze these in Section 3.2. The power-law results in the previous section hold

here, as the functional-form assumptions here on D and V satisfy Assumption 1.16

The following proposition shows the conditions under which an equilibrium exists and is

unique.

Proposition 3. Suppose that θ > σ − 1 and that δ < 1 where δ is defined by (33). Then, E (Π) is

a strictly increasing function of γD. If κe ∈ (0, E (Π) |γD=1), then a unique equilibrium exists, and

there are both exporters and nonexporters in the economy.

Proof. Recall that θ > σ − 1 ensures that E (Π) < ∞. When δ < 1, E (Π) can be expressed as

the left-hand side of (36), and is increasing in γD as shown in Appendix A.4. Note that both ΓD

and ΓX are positive and increasing in γD, thus lim
γD→∞

γ
σ−1
θ

D ΓD = lim
γD→∞

γ
σ−1
θ

D ΓX = ∞. Since both

F (γD) and F (γX) are less than 1, it follows that lim
γ→γD

E (Π) =∞. Since E (Π) is bounded from

above by E (Π) |γD=1, for any κe ∈ (0, E (Π) |γD=1) there exists a unique γD such that (36) holds.

16Moreover, the productivity distribution further belongs to a general functional class: the General Power Function
(GPF) class (Mrazova, Neary and Parenti 2017). A distribution of ϕ belongs to the GPF class if its c.d.f. takes a form
such that H

(
θ0 + θ1ϕ

θ2
)
, where θ0, θ1, and θ2 are constants, and H (·) is a monotonic function. Several frequently

used skewed distributions belong to this functional class, including Pareto, lognormal, Frechet, and Inverse-Weibull
distributions. Our framework thus resonates well with Mrazova, Neary and Parenti (2017) not only because it provides
a microfoundation to the GPF class, but also because it narrows down to those with a power-law tail.
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3.2 The Comparative Statics of Trade Costs

We explore some key comparative statics on the productivity distribution, and summarize the re-

sults in the following proposition.

Proposition 4. Assume that the conditions of Proposition 3 hold. We have the following compar-

ative statics.

(1) An increase in κD results in a lower γD, a higher γX , and a higher ϕ for all γ. The new

productivity distribution FOSD (First-Order Stochastically Dominates) the old distribution.

(2) An increase in κX results in a higher γD and a lower γX . Moreover, productivity ϕ increases

for any exporting (non-exporting) firm which remains exporting (non-exporting) after the

shock.

(3) An increase in τ results in a higher γD and a lower γX . Productivity ϕ increases (decreases)

for any non-exporting (exporting) firm which remains non-exporting (exporting) after the

shock. Productivity decreases for any firm which switches from exporting to non-exporting

after the shock.

Proof. See Appendix A.5.

In Figures 2a to 2c we illustrate the comparative statics of the three parameters in Proposition 4.

Point 1 states that an increment of fixed production cost raises the average productivity by shifting

the whole distribution rightwards. A higher fixed production cost means that firms are less likely

to survive even in the domestic market. Therefore, on the one hand the surviving firms must be

more efficient in innovation. On the other hand, because fewer firms operate in the market due to

a higher fixed production cost, the foreign firms thus face less competition in the domestic market

and have more incentive to export even if it is not so efficient. Therefore, γX increases. Moreover,

a higher κD and γD together creates a substitution effect by raising the aggregate price, hence each

surviving firm has more incentive to acquire a higher productivity. As a result, the productivity

distribution shifts to the right from both the extensive and the intensive margins.

Regarding the intuitions behind Point 2, an increase in κX makes exporting more difficult. For

nonexporting firms which remain nonexporting, they face less import competition, and thus have

more incentive to invest in productivity to extract the gains from the effectively larger market size

facing them. Similarly, for exporting firms which remain exporting, they invest more in productiv-

ity not only because they face less import competition in their home market, but also because they

face less competition in their foreign markets. The fact that γD increases implies a more lenient

selection, and so some entrants who were not able to survive before can now survive with positive
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(a) The effect of an increment of κD

(b) The effect of an increment of κX

(c) The effect of an increment of τ

Figure 2: Comparative statics
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innovation. There is a set of firms which switch from exporting to not exporting, but their changes

in productivity are ambiguous because on the one hand, they seek to invest less due to the loss of

the foreign market, but they also seek to invest more for the lesser import competition. In sum, if

the change in κX is infinitesimal, then the overall productivity distribution FOSD the previous one

almost surely.

For the mechanism behind Point 3, first note that an increase in τ adds friction to exporting,

and its effect on selection and export cutoffs (γD and γX) is similar to the case of an increase in

κX . For the nonexporting firms which remain nonexporting, they invest more due to less import

competition. Similar to the case of an increase in κX , for exporting firms which remain exporting,

they have incentives to invest more in productivity because of less competition in both domestic and

foreign markets. But since their effective market size shrinks due to increased friction, this force

dominates and so their productivities actually reduce. For the firms which switch from exporting

to not exporting, their productivities decrease because the loss of the foreign market.

It is interesting and important to note that Proposition 4 actually implies the same effects of

trade on the selection and export cutoffs as Melitz (2003) but different implications on the average

productivity. As shown in the appendix in Melitz (2003), an increase in κX or τ implies lower aver-

age productivity because more lenient selection includes firms with lower productivities before the

change. However, when productivity is an endogenous choice, Proposition 4 shows that average

productivity actually increases when κX increases, either because the newly included firms due to

more lenient selection increase their innovation from zero to positive, or because the incumbent

firms invest more due to less competition in both home and foreign markets. When τ increases,

the effect on the average productivity is generally ambiguous as exporting firms invest less but

nonexporting or newly included firms invest more. If κX is sufficiently high so that the fraction of

exporting firms is relatively small, then an increase in τ may increase average productivity.17

4 Welfare Gains from Trade

This section analyzes the properties of welfare gains from trade in our model and then carries out

a corresponding quantitative analysis. As is standard, welfare in both our model and the ACR

framework is measured by Wj = wjNj/Pj. We are concerned with the welfare gains from trade,

d lnW/d ln τ . ACR show that under CES demand and certain macro restrictions, the welfare

change from a small change in the trade cost, d ln τ , is given by 1
ε
d lnλ (local formula), where λ

is the expenditure share on domestic goods, and ε = ∂ ln (Xij/Xjj) /∂ ln τ with i 6= j is the trade

elasticity. If the trade elasticity is invariant in τ , then the welfare change from a large change in

17Even though the average productivity may increase with κX or τ , such increases unambiguously decrease welfare,
which is readily verified by examining (37).
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the trade cost can be expressed as W new/W old =
(
λnew/λold

)1/ε (global formula). As the trade

elasticity depends on λ, the main message from ACR is that trade flows provide sufficient statistic

to the welfare gains from trade.

Even though the ACR framework includes technology choices, our model is different from the

ACR framework because of the sequential nature of innovation.18 It turns out the welfare gains

from trade in our model still follow the local ACR formula (that is, the formula for small changes

in τ ). However, the trade elasticity is a variable in τ , and hence the global ACR formula (for large

changes in τ ) is not applicable.19 It is important to note that both of the above-mentioned points

hold for arbitrary distributions of γ. In our quantitative analysis, to investigate the role played

by (process) innovation, our main comparison is with the Melitz model with an exogenous Pareto

distribution.

4.1 Welfare Formula and Trade Elasticity

The following proposition shows that, for any distribution of γ, the local ACR formula holds

with a variable trade elasticity. Under the symmetric country setting with wages normalized to

1, the expenditure share on the product imported from a foreign country equals (1− λ) /n and

the trade elasticity equals ε = d ln
(

1−λ
nλ

)
/d ln τ . Recall that Γz =

∫ γz
0
γ−

σ−1
θ dF (γ) measures the

contribution of the productivities in (0, γz) to the expected profit of an entrant. Define the elasticity

of Γz to the cutoff γz as ηz.

Proposition 5. Suppose that the conditions of Proposition 3 hold. For a general distribution of γ,

F (.) , the welfare gains from trade follow the local ACR formula:

d lnW

d ln τ
=

1

ε

d lnλ

d ln τ
= − (1− λ) . (41)

The trade elasticity is given by

ε = (σ − 1)
ΓD − ΓX

ΓD + (φσ−1 − 1) ΓX

d lnφ

d ln τ
+ (1− σ) (42)

+
ΓD

ΓD + (φσ−1 − 1) ΓX
ηX
d ln γX

γD

d ln τ
+

ΓD
ΓD + (φσ−1 − 1) ΓX

(ηX − ηD) β (1− λ) ,

where the domestic expenditure share is given by

λ =
ΓD + (φσ−1 − 1) ΓX

ΓD + [(1 + nτ 1−σ)φσ−1 − 1] ΓX
.

18In ACR (2012), the technological decision that influences productivity is simultaneous with production and sales,
and the technology innovation is multiplicative in the overall fixed cost of production and exporting.

19One can, of course, obtain the gains from trade under large changes in τ by integrating over the local formula.
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Proof. See Appendix A.6.

It is readily verified with a numerical example that the elasticity is variable in τ . In the next

proposition, we show that when there is no fixed exporting cost, the trade elasticity becomes a

constant.

Proposition 6. Suppose that κX = 0 and assume that the conditions of Proposition 3 hold, then

all firms such that γ ≤ γD survive and export, where

γκX=0
D =

[
1

κD

(
1 + nτ 1−σ)φσ−1N

β
θ

(
P κX=0

)(σ−1)β
θ

(
σ − 1

σ

)βσ
θ

β−
β
θ

(
β

σ − 1
− 1

)] θ
σ−1

;

the welfare formula satisfies the local ACR formula and the trade elasticity is a constant

εκX=0 =1− σ < 0. (43)

Moreover, λ > λκX=0, and hence the welfare gains from trade are higher than the case with

selection to export.

Proof. See Appendix A.7.

Recall that the productivity distribution is piecewise because the fact that exporters have an

extra incentive to invest creates a jump around γX . When there is no fixed exporting cost, the

resulting productivity distribution becomes continuous. A comparison between Propositions 5 and

6 shows that whether κX > 0 or not is the key between variable or constant elasticity. What is

intriguing is that these results are independent of the distributional forms. In any case, it is worth

noting that the ACR local formula holds regardless of the distribution of γ or productivity. As

shown in the ACR paper, the ACR formula holds for the Melitz model with an (exogenous) Pareto

productivity distribution under a general asymmetric-country setting. Here we show that under a

symmetric-country setting, the distributional form assumption is dispensable.

The intuition as to why the trade elasticity is a constant is as follows. All firms are exporters,

and trade costs affect trade flows only through the intensive margin, which is affected by produc-

tivity and trade cost in a multiplicative way. Thus, trade elasticity is a constant and not dependent

on the distribution of γ. In contrast, when there is selection to export, trade costs affects the inten-

sive margin of exporters and nonexporters in different ways, and the extensive margin also matters.

Both of these effects make the trade elasticity a variable and dependent on the distribution of γ.

As for the welfare gains from trade, the case without fixed exporting costs always yields higher

gains than the case with it. This result is intuitive because trade liberalization induces further
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innovation for all firms in the former case, whereas only some firms are induced to invest more in

the later case.

4.2 Quantitative Analysis of Welfare Gains from Trade

In this subsection we conduct a quantitative analysis of welfare gains from trade. In particular, to

assess the role of innovation quantitatively, we compare with the Melitz model with an exogenous

Pareto productivity distribution (henceforth MP), as both our model and MP satisfy the (local) ACR

formula but differ only in how the productivity distribution is generated. Formally, the density

function of the productivity distribution in the MP model is denoted as gMP (ϕ) = θMPϕ−θ
MP−1

where θMP > σ − 1 is the tail index. The trade elasticity in MP is εMP = −θMP . The domestic

expenditure share is given by

λMP =

[
1 + nτ 1−σ

(
ϕX
ϕD

)σ−θMP−1
]−1

, (44)

and we relegate the derivation to Appendix A.8. It is well-known that the MP model is in the ACR

class, and under symmetric countries, we have

d lnWMP

d ln τ
=

1

εMP

d lnλMP

d ln τ
= −

(
1− λMP

)
.

We now turn to our model, which is referred to as IN (innovation) from now on. To single out

the effect of innovation, we assume that γ is uniformly distributed so that the resulting productivity

distribution is similar to the Pareto distribution except that there is a jump at γX when κX >

0. Under this assumption, the fraction of exporters equals δ as defined in (33). The domestic

expenditure share in our model is

λ =
1 + [φσ−1 − 1]

(
γX
γD

)1−σ−1
θ

1 + [(1 + nτ 1−σ)φσ−1 − 1]
(
γX
γD

)1−σ−1
θ

. (45)

To quantify the model, we calibrate the values of σ, β, n, τ , and κX/κD. We calibrate these

parameters from the viewpoint of the US in 2002. Feenstra and Weinstein (2017) report that the

median of markups in the US is 1.3. Taking this median as a representative for our constant-

markup model, σ ≈ 4.33. Under the uniform distribution of γ, δ (see [33]) is the fraction of

exporters among all (surviving) firms. As documented by Bernard, Jensen, Redding, and Schott

(2007), this fraction in the US in 2002 equals 0.18.
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Model W
Wτ→∞

d lnW
d ln τ

IN 1.035 −0.147
MP 1.025 −0.108

Table 2: Welfare gains from trade

Denote domestic absorption and imports asDA andM . By definition, λ then equals (DA−M) /DA.

Using data from Penn World Table 9.0 (PWT 9.0), λ is 0.853 in 2002 for the US.20 To better fit our

symmetric-country model, the number of countries, n + 1, is computed as the ratio of the world

GDP to that of the US. Also using PWT 9.0, this number equals 4.41. We therefore set n = 3.

As our model IN is most similar to the MP model, we adopt the estimate of the trade elasticity

in Simonovska and Waugh (2014), which is 4.63.21 This implies that θMP = 4.63. We calibrate β,

κX/κD, and τ to match λ = 0.853, δ = 0.18, and ε = 4.63 using (45), (33), and (42). The results

are β = 7.838, κX/κD = 0.572, and τ = 2.097. This, in turn, implies that θ = 4.505, which is

rather close to θMP .

Given the calibrated parameters, we compute the local welfare gains for both IN and MP mod-

els. We also compare the welfare gains by moving from autarky (τ → ∞) to the current level of

trade cost τ for both models. In Appendix A.8 we show that the welfare gains relative to autarky

in both models are given by

W

Wτ→∞
=

{
1 + n1− θ

σ−1

(
κX
κD

)1− θ
σ−1 [(

1 + nτ 1−σ)βθ − 1
] θ
σ−1

} 1
β

(46)

WMP

WMP
τ→∞

=

1 + nτ−θ
MP

(
κX
κD

)1− θ
MP

σ−1

 1

θMP

. (47)

The results are as shown in Table 2. From autarky to the calibrated τ , IN and MP entail 3.5%

and 2.5% of welfare gains, respectively. Hence, the gains from trade in IN is 40% larger than those

in MP. The welfare elasticities to trade cost are −0.147 and −0.108, for IN and MP, respectively.

This implies that for small changes of τ , the welfare gains in IN is 36.1% higher than those in MP;

this is quite similar to the above-mentioned comparison with autarky.

Figure 3 shows the welfare elasticity (in absolute value) under different values of τ given the

calibrated β and κX/κD. The result is plotted with the horizontal axis being 1/τ , of which the

20We also use the US’s Input-Output Table (obtained from OECD-IOT) as our alternative data set to compute λ. We
compute DA by subtracting the net exports from the total value added across industries. With this alternative data set,
λ equals 0.862 and is similar to that computed with PWT 9.0.

21See their Table 7.
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Figure 3:
∣∣d lnW
d ln τ

∣∣
lower bound, 0, corresponds to autarky and the upper bound corresponds to δ → 1 (recall that we

restrict δ < 1). The welfare elasticity (actually given by 1− λ as in Proposition 5) increases when

there is more trade openness in both IN and MP models. The gains from trade (compared with

autarky) is simply the area under the curve of welfare elasticity. It is clearly seen from Figure 3

that the IN model entails higher gains from trade than the MP model because λ < λMP at every

value of τ . To see why this is the case, recall from Proposition 4 that a reduction in trade cost

induces exporters to invest more and become more productive and non-exporters to invest less and

become less productive. This means that the productivity advantage of exporter vs. non-exporters

widens with trade liberalization at a larger rate than the MP model. Thus, the rate of increase in

1− λ (the expenditure share on imports) is larger in the IN model than in the MP one.

5 Conclusion

This paper has demonstrated that with a process innovation stage added to a standard Melitz model,

power laws for both productivity and firm size could emerge under a rather general environment.

As highlighted by both Arkolakis et al. (2018) and Chaney (2018), the power law for productivity

or firm size is instrumental for the gravity equation. Also evidenced is the fact that the performance

of top firms is what matters the most for the aggregate economies (Gabaix 2011). Thus, under-

standing the root of these power laws is of first-order importance. Even though this paper is not the
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first to provide a microfoundation for these power laws, we add a new angle to this literature by

applying the “power law change of variable close to the origin” technique in a general equilibrium

model of trade and highlight the role of innovation. Both Geerolf (2017) and our work suggest that

there may be more application of this technique in some suitable models of firm heterogeneity.

Conditional on the same trade elasticity and values of the common parameters, quantitatively

our model yields 40% higher welfare gains from trade than the Melitz-Pareto model. This suggests

the importance of incorporating innovation in a trade model because innovation naturally reacts to

changes in trade cost. The economics is fundamentally a market-size effect that works differently

for exporters and non-exporters. Exporters enjoy a larger market size with trade liberalization and

tend to innovate more, whereas non-exporters do not enjoy such a benefit but suffer from stronger

import competition that shrinks their effective market size. As a result, trade liberalization leads to

further concentration of innovation and hence overall economic activities favor the large firms.

As shown by the welfare analysis, welfare gains from trade critically depend on the tail indices

of these power laws, which reflects how granular the economy is. In this model, the tail indices

depend on the price elasticities and how costly it is to conduct innovation. Interestingly, trade plays

an important role because the market with the largest competitiveness (largest price elasticities)

dominates and determines the tail index. This provides an important angle to comprehend trade

wars. For example, the Trump administration’s sharp increase in tariffs against Chinese products,

regardless of whether it benefits or hurts the US or global economy, will certainly have a strong

negative impact on the Chinese aggregate economy and welfare because the US tends to be the

largest and most competitive market that affects the top Chinese firms the most.
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A Appendix

A.1 Derivations for Table 1

Bipower direct demand q = âp−ν + ap−σ:

Assume that σ > 1, a > 0, and σ > ν; we immediately obtain

q =p−σ
(
âpσ−ν + a

)
≡ q (p)

lim
p→0

(
âpσ−ν + a

)
=a

lim
p→0

q =∞

lim
p→0

pq =∞.

Moreover, ∂p/∂q = −p−ν−1 (νâ+ σapν−σ) and is strictly negative for small enough p. Thus for

large enough q the inverse demand is well-defined as p = q−
1
σ

(
â [q−1 (q)]

σ−ν
+ a
) 1
σ ≡ q−

1
σQ (q)

where lim
q→∞

Q (q) = a
1
σ .

Pollak demand q = â+ ap−σ:

Assume that σ > 1 and a > 0; we immediately obtain

q =â+ ap−σ

lim
p→0

q =∞

lim
p→0

pq =∞.

As a result, p = q−
1
σ a

1
σ

(
1− â

q

)− 1
σ ≡ q−

1
σQ (q) where lim

q→∞
Q (q) = a

1
σ .

PIGL demand q = âp−1 + ap−σ:

Assume that σ > 1 and a > 0; we immediately obtain

q =p−σ
(
âpσ−1 + a

)
≡ q (p)

lim
p→0

(
âpσ−1 + a

)
=a

lim
p→0

q =∞

lim
p→0

pq =∞.
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Moreover, ∂p/∂q = −p−2 (â+ σap1−σ) and is strictly negative for small enough p. Thus for

large enough q the inverse demand is well-defined as p = q−
1
σ

(
â [q−1 (q)]

σ−1
+ a
) 1
σ ≡ q−

1
σQ (q)

where lim
q→∞

Q (q) = a
1
σ .

QMOR demand q = apr−1 + âp
r
2
−1:

Assume that σ ≡ 1− r > 1 and a > 0. This implies that r < 0 and 1− r > 1− r
2
> 0, thus

q =pr−1
(
âp−

r
2 + a

)
≡ q (p)

lim
p→0

(
âp−

r
2 + a

)
=a

lim
p→0

q =∞

lim
p→0

pq =∞.

Moreover, ∂p/∂q = pr−2
[(

r
2
− 1
)
âp−

r
2 + (r − 1) a

]
and is strictly negative for small enough p.

Thus for large enough q the inverse demand is well-defined as p = q
1
r−1

(
a+ â [q−1 (q)]

− r
2

) 1
1−r ≡

q
1
r−1Q (q) where lim

q→∞
Q (q) = a

1
1−r .

Bipower inverse demand p = âq−ν + aq−
1
σ :

Assume that σ > 1, a > 0, and ν > 1
σ

; we immediately obtain

p =q−
1
σ

(
âq

1
σ
−ν + a

)
≡ q−

1
σQ (q)

lim
q→∞

Q (q) =a

lim
q→∞

p =0

lim
q→∞

pq =∞.

CEMR demand p = âq−1 + aq−
1
σ :

Assume that σ > 1 and a > 0; we immediately obtain

p =q−
1
σ

(
âq

1
σ
−1 + a

)
≡ q−

1
σQ (q)

lim
q→∞

Q (q) =a

lim
q→∞

p =0
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lim
q→∞

pq =∞.

CREMR demand p = a
q

(q − â)
σ−1
σ :

Assume that σ > 1, a > 0, and q > âσ; we immediately obtain

p =q−
1
σ a

(
1− â

q

)σ−1
σ

≡ q−
1
σQ (q)

lim
q→∞

Q (q) =a

lim
q→∞

p =0

lim
q→∞

pq =∞.

A.2 Proof of Proposition 1

To ensure the existence of equilibrium, we require
∫ γD

0
Π (ϕ̃ (γ) ; γ) dF (γ) <∞ for the free entry

condition to be well-defined. Since Π (ϕ̃ (γ) ; γ) is finite for all γ > 0, the only possibility for the

expected profit to explode is when γ is close to 0. Note that using (11) and (17) we can write

Π (ϕ̃ (γ) ; γ) =

(
1

L

1

β + ϕL′

L

)σ−1
θ (

1− 1

σ
+ q∗

Q′

Q

)(1+β)σ−1
θ

Q
βσ
θ

(
1

σ
− q∗Q

′

Q
−

1− 1
σ

+ q∗Q
′

Q

β + ϕL′

L

)
γ−

σ−1
θ −κD.

Because κD is a constant, the expected profit is finite if
∫ γD

0
[Π (ϕ̃ (γ) ; γ) + κD] f (γ) dγ <∞. By

Assumption 1 and our setting to f (γ), it follows that

lim
γ→0

[Π (ϕ̃ (γ) ; γ) + κD] f (γ)

γ−
σ−1
θ

=
C

σβ
θ
Q

(
σ−1
σ

)σβ
θ

C
σ−1
θ

L β
β
θ

(
β

σ − 1
− 1

)
K,

and hence for all ω > 0 there exists a γ > 0 such that for all γ < γ,

[Π (ϕ̃ (γ) ; γ) + κD] f (γ)

γ−
σ−1
θ

<
C

σβ
θ
Q

(
σ−1
σ

)σβ
θ

C
σ−1
θ

L β
β
θ

(
β

σ − 1
− 1

)
K + ω.

By picking a sufficiently small γ, we have∫ γ

0

[Π (ϕ̃ (γ) ; γ) + κD] f (γ) dγ =

∫ γ

0

[Π (ϕ̃ (γ) ; γ) + κD] f (γ)

γ−
σ−1
θ

γ−
σ−1
θ dγ

36



<

∫ γ

0

C σβ
θ
Q

(
σ−1
σ

)σβ
θ

C
σ−1
θ

L β
β
θ

(
β

σ − 1
− 1

)
K + ω

 γ−σ−1
θ dγ

=

C σβ
θ
Q

(
σ−1
σ

)σβ
θ

C
σ−1
θ

L β
β
θ

(
β

σ − 1
− 1

)
K + ω

∫ γ

0

γ−
σ−1
θ dγ.

When θ > σ − 1 the integral
∫ γ

0
[Π (ϕ̃ (γ) ; γ) + κD] f (γ) dγ has a finite upper bound, which

implies that
∫ γ

0
Π (ϕ̃ (γ) ; γ) dF (γ) < ∞. Because whether the expected profit is finite or not

depends on small γ, we conclude that
∫ γD

0
Π (ϕ̃ (γ) ; γ) dF (γ) <∞.

We derive Equation (19) in detail. Starting from the definition,

J (ϕ) =

∣∣∣∣∂γ̃ (ϕ)

∂ϕ

∣∣∣∣
=

q∗ (ϕ)

ϕ2V ′ (ϕ)

(
2ϕ−1 +

V ′′ (ϕ)

V ′ (ϕ)

)
− 1

ϕ2V ′ (ϕ)

∂q∗ (ϕ)

∂ϕ

=
q∗ (ϕ)

ϕ2V ′ (ϕ)

(
2ϕ−1 +

V ′′ (ϕ)

V ′ (ϕ)

)
+

1

ϕ2V ′ (ϕ)

ϕ−2

πqq (q∗ (ϕ) , ϕ)
by equation (13).

Then, by Assumption 1, and Equations (11) and (12), we can replace V ′ (ϕ), V ′′ (ϕ), q∗ (ϕ), and

πqq (q∗ (ϕ) , ϕ) to obtain Equation (19) as

J (ϕ) =
Qσ

L

(
1− 1

σ
+ q∗Q

′

Q

)σ
β + ϕL′

L

·

[
2 +

β (β − 1) + 2βϕL′

L
+ ϕ2L′′

L

β + ϕL′

L

+
1− 1

σ
+ q∗Q

′

Q

− 1
σ

(
1− 1

σ

)
+ 2

(
1− 1

σ

)
q∗Q

′

Q
+ (q∗)2 Q′′

Q

]
· ϕ−θ−1.

By Assumption 1, and Lemmas 1, 2, and 3, we immediately obtain the following results:

lim
ϕ→∞

ϕ
L′

L
= lim

ϕ→∞
ϕ2L

′′

L
= 0

lim
ϕ→∞

q∗
Q′

Q
= lim

ϕ→∞
(q∗)2 Q

′′

Q
= 0

lim
ϕ→∞

L = CL

lim
ϕ→∞

Q = CQ.

Therefore,

lim
ϕ→∞

J (ϕ)

ϕ−θ−1
=
Cσ
Q

(
σ−1
σ

)σ
CLβ

θ.
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Since lim
ϕ→∞

γ̃ (ϕ) = 0 and lim
γ→∞

f (γ) = K, we can write

f (γ̃ (ϕ))

F (γD)

J (ϕ)

ϕ−θ−1
=

K

F (γD)

Cσ
Q

(
σ−1
σ

)σ
CLβ

θ + h (ϕ)

where lim
ϕ→∞

h (ϕ) = 0. The p.d.f. of ϕ is then

g (ϕ) =
f (γ̃ (ϕ))

F (γD)

J (ϕ)

ϕ−θ−1
ϕ−θ−1

=
K

F (γD)

Cσ
Q

(
σ−1
σ

)σ
CLβ

θϕ−θ−1 + h (ϕ)ϕ−θ−1.

Because

lim
ϕ→∞

h (ϕ) = lim
ϕ→∞

h (ϕ)ϕ−θ−1

ϕ−θ−1
= 0,

h (ϕ)ϕ−θ−1 converges to 0 at a faster rate than ϕ−θ−1 and thus can be neglected for large enough

ϕ. Therefore,

g (ϕ) ≈ K

F (γD)

Cσ
Q

(
σ−1
σ

)σ
CLβ

θϕ−θ−1

when ϕ is large enough.

A.3 Proof of Corollary 1

By Equation (11) and Lemma 2, we find that firm size in terms of sales s is a function of ϕ:

s = ϕσ−1Qσ

(
1− 1

σ
+ q∗

Q′

Q

)σ−1

. (48)

By Assumption 1 and Lemmas 2 and 3, there are one-to-one mappings at the tails between s→∞
and ϕ→∞, and between ϕ→∞ and γ → 0, such that limϕ→∞ s =∞. By chain rule and using

Equations (11) and (12), we further find that

∂s

∂ϕ
=
∂s

∂q∗
∂q∗

∂ϕ

=
1− 1

σ
+ q∗Q

′

Q

1
σ

(
1− 1

σ

)
− 2

(
1− 1

σ

)
q∗Q

′

Q
− (q∗)2 Q′′

Q

q∗ϕ−2 (49)

>0.
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Using (48), (49), and (11), we have

J (s) =

∣∣∣∣∂γ̃ (ϕ)

∂s

∣∣∣∣ =
J (ϕ)

ϕ−θ−1
ϕ−θ−1∂ϕ

∂s

=
J (ϕ)

ϕ−θ−1

1
σ

(
1− 1

σ

)
− 2

(
1− 1

σ

)
q∗Q

′

Q
− (q∗)2 Q′′

Q(
1− 1

σ
+ q∗Q

′

Q

)1+σ

Qσ

Q
βσ
σ−1

(
1− 1

σ
+ q∗

Q′

Q

)β
s−

θ
σ−1
−1.

By Assumption 1, Lemmas 1, 2, and 3 we know that J (s) /s−
θ

σ−1
−1 converges to a constant as s

tends to infinity. Therefore, by the same argument that shows Proposition 1, for large enough s the

firm size distribution exhibits power law

g (s) ≈ K

F (γD)

C
βσ
σ−1

Q

CL

(
σ − 1

σ

)β
θ

βσ
s−

θ
σ−1
−1.

A.4 Derivation of Equilibrium in Section 3.1

The proof comes in two steps. First, we show the uniqueness of the equilibrium. Then, we derive

the associated equilibrium outcome.

Step 1: The Uniqueness of Equilibrium
By Equations (29), (30), and (28) the expected profit is given by

E (Π) =

∫ γX

0
ΠX (γ) dF (γ) +

∫ γD

γX

ΠD (γ) dF (γ)

=
(
1 + nτ1−σ) βθ ( N

P 1−σ

) β
θ

[(
σ−1
σ

)σ
β

] β
θ ( β

σ − 1
− 1

)∫ γX

0
γ−

σ−1
θ dF (γ)− κD

∫ γX

0
dF (γ)− nκX

∫ γX

0
dF (γ)

+

(
N

P 1−σ

) β
θ

[(
σ−1
σ

)σ
β

] β
θ ( β

σ − 1
− 1

)∫ γD

γX

γ−
σ−1
θ dF (γ)− κD

∫ γD

γX

dF (γ)

=
(
1 + nτ1−σ) βθ ( N

P 1−σ

) β
θ

[(
σ−1
σ

)σ
β

] β
θ ( β

σ − 1
− 1

)∫ γX

0
γ−

σ−1
θ dF (γ) (50)

+

(
N

P 1−σ

) β
θ

[(
σ−1
σ

)σ
β

] β
θ ( β

σ − 1
− 1

)[∫ γD

0
γ−

σ−1
θ dF (γ)−

∫ γX

0
γ−

σ−1
θ dF (γ)

]
− κD

∫ γD

0
dF (γ)− nκX

∫ γX

0
dF (γ) .

Let Γz ≡
∫ γz

0
γ−

σ−1
θ dF (γ) where z ∈ {D,X}, and

RD ≡
(

N

P 1−σ

)β
θ

[(
σ−1
σ

)σ
β

]β
θ (

β

σ − 1
− 1

)
(ΓD − ΓX)
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RX ≡
(
1 + nτ 1−σ)βθ ( N

P 1−σ

)β
θ

[(
σ−1
σ

)σ
β

]β
θ (

β

σ − 1
− 1

)
ΓX .

Using (31) and recalling that γX/γD = δ, we further have

RD =κDγ
σ−1
θ

D (ΓD − ΓX)

RX =
(
1 + nτ 1−σ)βθ κDγ σ−1

θ
D ΓX .

Hence we can restate (50) as

E (Π) =κDγ
σ−1
θ

D

{
ΓD +

[(
1 + nτ 1−σ)βθ − 1

]
ΓX

}
− κDF (γD)− nκXF (γX) . (51)

Differentiating (51) with respect to γD yields

∂E (Π)

∂γD
=κD

[
f (γD) +

σ − 1

θ
γ
σ−1
θ
−1

D ΓD

]
+ κD

{[(
1 + nτ1−σ)βθ − 1

]
δ

1−σ
θ f (γX) δ +

[(
1 + nτ1−σ)βθ − 1

]
σ − 1

θ
γ
σ−1
θ
−1

D ΓX

}
− κDf (γD)− nκXf (γX) δ

=κD
σ − 1

θ
γ
σ−1
θ
−1

D ΓD + κD

[(
1 + nτ1−σ)βθ − 1

]
σ − 1

θ
γ
σ−1
θ
−1

D ΓX

+ κD

[(
1 + nτ1−σ)βθ − 1

]
δ

1−σ
θ f (γX) δ − nκXf (γX) δ

=κD
σ − 1

θ
γ
σ−1
θ
−1

D ΓD + κD

[(
1 + nτ1−σ)βθ − 1

]
σ − 1

θ
γ
σ−1
θ
−1

D ΓX

+ nκXδ
σ−1
θ δ

1−σ
θ f (γX) δ − nκXf (γX) δ

=κD
σ − 1

θ
γ
σ−1
θ
−1

D ΓD + κD

[(
1 + nτ1−σ)βθ − 1

]
σ − 1

θ
γ
σ−1
θ
−1

D ΓX

=
σ − 1

θ
γ−1
D

(
RD +RX

)
> 0.

This implies that there is an unique γD such that the free entry condition (34) holds. This estab-

lishes the uniqueness of equilibrium.

Step 2: The Equilibrium Solutions
We start with the definition of the aggregate price. Using (27) and (35), the aggregate price can
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be restated as

P 1−σ =Me

(
σ − 1

σ

)σ−1(
N

P 1−σ

)σ−1
θ

((
σ−1
σ

)σ
β

)σ−1
θ {

ΓD +
[(

1 + nτ 1−σ)φσ−1 − 1
]

ΓX
}
.

Rearranging the above equation, we have

P (1−σ)β
θ = Me

(
σ − 1

σ

)σ−1

N
σ−1
θ

((
σ−1
σ

)σ
β

)σ−1
θ {

ΓD +
[(

1 + nτ 1−σ)φσ−1 − 1
]

ΓX
}
, (52)

thus (
N

P 1−σ

)β
θ

=

N
Me

(
σ−1
σ

)1−σ
(

(σ−1
σ )

σ

β

)−σ−1
θ

ΓD + [(1 + nτ 1−σ)φσ−1 − 1] ΓX
. (53)

Because (1 + nτ 1−σ)φσ−1 = (1 + nτ 1−σ)
β
θ , we can then insert (53) into (50) to obtain

E (Π) =
N

Me

σ − 1

βσ

(
β

σ − 1
− 1

)
− κDF (γD)− nκXF (γX) .

Then, by the free entry condition we obtain Equation (38). By inserting Equation (38) into Equa-

tion (52) and rearranging along with Equation (36), we have Equation (37).

Next we derive the equilibrium productivity and its distribution. Inserting Equation (31) into

Equation (27) we obtain (39). Then the threshold productivity levels ϕD, ϕ−X , and ϕ+
X respectively

follow by inserting γD and γX into Equation (39). By change of variables and minding the fact

that the productivity distribution is conditional on γ ≤ γD, we obtain Equation (40).

A.5 Proof of Proposition 4

The proof comes in three steps. In the first step, we derive the comparative statics of γD. Then in

the second step we derive the comparative statics for the other interested variables with the result

from the first step. Finally, with the results from the previous two steps, we show our claim to the

associated FOSD (first order stochastic dominance) properties.

Step 1: The Comparative Statics of γD
Let x ∈ {κD, κX , τ}. Total differentiate E (Π) with respect to x yields

dγD
dx

= − ∂E (Π) /∂x

∂E (Π) /∂γD
.
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Recall that
∂E (Π)

∂γD
=
σ − 1

θ
γ−1
D

(
RD +RX

)
> 0,

what is left is to solve for ∂E (Π) /∂x.

Observe that

dF (γX)

dδ
=f (δγD) γD

dΓX
dδ

= (δγD)−
σ−1
θ f (δγD) γD

= (δγD)−
σ−1
θ
dF (γX)

dδ
.

we have the following results from Equation (51):

∂E (Π)

∂κD
=
RD +RX − κDF (γD)

κD
+ κDγ

σ−1
θ

D

[(
1 + nτ1−σ)βθ − 1

]
∂ΓX
∂δ

∂δ

∂κD
− nκX

∂F (γX)

∂δ

∂δ

∂κD

=
RD +RX − κDF (γD)

κD
+ κDγ

σ−1
θ

D

[(
1 + nτ1−σ)βθ − 1

]
(δγD)−

σ−1
θ
∂F (γX)

∂δ

∂δ

∂κD
− nκX

∂F (γX)

∂δ

∂δ

∂κD

=
RD +RX − κDF (γD)

κD
+
∂F (γX)

∂δ

∂δ

∂κD

[
γ
σ−1
θ

D nκXδ
σ−1
θ (δγD)−

σ−1
θ − nκX

]
=
RD +RX − κDF (γD)

κD
∂E (Π)

∂κX
=− nF (γX) + nκXδ

σ−1
θ γ

σ−1
θ

D (δγD)−
σ−1
θ
∂F (γX)

∂δ

∂δ

∂κX
− nκX

∂F (γX)

∂δ

∂δ

∂κX

=− nF (γX)

∂E (Π)

∂τ
=
β

θ
κDγ

σ−1
θ

D

(
1 + nτ1−σ)βθ−1

(1− σ)nτ−σΓX

+ nκXδ
σ−1
θ γ

σ−1
θ

D (δγD)−
σ−1
θ
∂F (γX)

∂δ

∂δ

∂τ
− nκX

∂F (γX)

∂δ

∂δ

∂τ

=− (σ − 1)
β

θ

nτ−σ

1 + nτ1−σ κDγ
σ−1
θ

D

(
1 + nτ1−σ)βθ ΓX

=− (σ − 1)
β

θ

nτ−σ

1 + nτ1−σRX .

Therefore,

dγD
dκD

=− θ

σ − 1

γD
κD

RD +RX − κDF (γD)

RD +RX

< 0

dγD
dκX

=
θ

σ − 1
γD

nF (γX)

RD +RX

> 0

dγD
dτ

=βγD
nτ−σ

1 + nτ 1−σ
RX

RD +RX

> 0.
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Note that ∂γD/∂κD < 0 because RD + RX − κDF (γD) > E (Π) = RD + RX − κDF (γD) −
nκXF (γX) > 0.

Step 2: The Comparative Statics for the Rest of the Variables
We first examine the comparative statics of γX . Let x ∈ {κD, κX , τ}. It follows that

∂γX
∂x

= δ
∂γD
∂x

+
∂δ

∂x
γD.

Therefore,

∂γX
∂κD

=− θ

σ − 1

γD
κD

RD +RX − fDF (γD)

R
δ +

θ

σ − 1
δδ−

σ−1
θ
δ
σ−1
θ

κD
γD

=
θ

σ − 1
γDδ

F (γD)

RD +RX

> 0

∂γX
∂κX

=
θ

σ − 1
γD

nF (γX)

RD +RX

δ +
θ

σ − 1
δ
−1

κX
γD

=
θ

σ − 1
γDδ

(
nF (γX)

RD +RX

− 1

κX

)
<0

∂γX
∂τ

=βγD
nτ−σ

1 + nτ 1−σ
RX

RD +RX

δ +
θ

σ − 1
δ

(1 + nτ 1−σ)
β
θ

(1 + nτ 1−σ)
β
θ − 1

β

θ

(1− σ)nτ−σ

1 + nτ 1−σ γD

=δβγD
nτ−σ

1 + nτ 1−σ

[
RX

RD +RX

− (1 + nτ 1−σ)
β
θ

(1 + nτ 1−σ)
β
θ − 1

]
<0.

Note that ∂γX/∂κX < 0 because RD + RX − κDF (γD) > E (Π) > 0, and ∂γX/∂τ < 0 since

RX
RD+RX

< 1 and (1+nτ1−σ)
β
θ

(1+nτ1−σ)
β
θ −1

> 1.

For the effect on productivity, by taking derivatives to (39) we obtain

∂ϕ̃ (γ)

∂κD
=

 1
β

F (γD)

RD+RX
κ

1
β

Dγ
σ−1
βθ

D

(
β
σ−1
− 1
)− 1

β γ−
1
θ > 0 for non-exporting firms

1
β

F (γD)

RD+RX
φκ

1
β

Dγ
σ−1
βθ

D

(
β
σ−1
− 1
)− 1

β γ−
1
θ > 0 for exporting firms

∂ϕ̃ (γ)

∂κX
=

 1
β
nF (γX)

RD+RX
κ

1
β

Dγ
σ−1
βθ

D

(
β
σ−1
− 1
)− 1

β γ−
1
θ > 0 for non-exporting firms

1
β
nF (γX)

RD+RX
φκ

1
β

Dγ
σ−1
βθ

D

(
β
σ−1
− 1
)− 1

β γ−
1
θ > 0 for exporting firms

∂ϕ̃ (γ)

∂τ
=

σ−1
θ

nτ−σ

1+nτ1−σ
RX

RD+RX
κ

1
β

Dγ
σ−1
βθ

D

(
β
σ−1
− 1
)− 1

β γ−
1
θ > 0 for non-exporting firms

−σ−1
θ

nτ−σ

1+nτ1−σ
RX

RD+RX
φκ

1
β

Dγ
σ−1
βθ

D

(
β
σ−1
− 1
)− 1

β γ−
1
θ < 0 for exporting firms

.
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The claims on the comparative statics of ϕ thus follow.

Step 3: The FOSD Property
It is easily shown that the c.d.f. of the productivity distribution G (ϕ) is given by

G (ϕ) =


1− F

(
κ
θ
β

Dγ
σ−1
β

D

(
β
σ−1
− 1
)− θ

β ϕ−θ
)

1
F (γD)

if ϕ < ϕ+
X

1− F
(

(1 + nτ 1−σ)κ
θ
β

Dγ
σ−1
β

D

(
β
σ−1
− 1
)− θ

β ϕ−θ
)

1
F (γD)

if ϕ ≥ ϕ+
X

.

An increase in κD lowers γD and raises γ̃ (ϕ) for all ϕ. As we can see from the c.d.f., this results

in a fall in G (ϕ). We can thus conclude that the new distribution after an increase in κD FOSD the

old one.

A.6 Proof of Proposition 5

Let

P 1−σ
D ≡Me

(
σ − 1

σ

)σ−1
[(

σ−1
σ

)σ
β

]σ−1
θ

N
σ−1
θ P (σ−1)σ−1

θ

[
(ΓD − ΓX) + φσ−1ΓX

]
(54)

P 1−σ
X ≡Me

(
σ − 1

σ

)σ−1
[(

σ−1
σ

)σ
β

]σ−1
θ

N
σ−1
θ P (σ−1)σ−1

θ φσ−1τ 1−σΓX , (55)

denote the average prices of domestic and foreign products respectively. The aggregate price is

P 1−σ = P 1−σ
D + nP 1−σ

X , and the expenditure share on domestic products is

λ ≡ P 1−σ
D

P 1−σ =
1 + (φσ−1 − 1) ΓX

ΓD

1 + [(1 + nτ 1−σ)φσ−1 − 1] ΓX
ΓD

. (56)

The expenditure share on the products imported from a symmetric foreign country is analogously

given by

λX ≡
1− λ
n

=
φσ−1τ 1−σ ΓX

ΓD

1 + [(1 + nτ 1−σ)φσ−1 − 1] ΓX
ΓD

. (57)

From (31) and (32) we have

d ln γD =βd lnP (58)

d ln γX =βd lnP + d ln δ. (59)
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Note that the assumption that E (Π) < ∞ ensures that ΓD and ΓX are both finite. We further

define the following short-hand notation

ηz ≡
γ

1−σ−1
θ

z f (γz)

Γz
z ∈ {D,X} .

Now we show that our model entails the ACR formula. The welfare is defined as the real

income W ≡ N/P . By (37), it follows that

d lnW

d ln τ
= − 1

β

d ln γD
d ln τ

.

Since γD is identified by (36) as

γ
σ−1
θ

D =
κe + κDF (γD) + nκXF (γX)

κD

{
ΓD +

[
(1 + nτ 1−σ)

β
θ − 1

]
ΓX

} ,
it follows that

σ − 1

θ
d ln γD =d ln (κe + κDF (γD) + nκXF (γX))− d ln

{
ΓD +

[(
1 + nτ1−σ)βθ − 1

]
ΓX

}
=

κDF (γD)

κe + κDF (γD) + nκXF (γX)

γDf (γD)

F (γD)
d ln γD +

nκXF (γX)

κe + κDF (γD) + nκXF (γX)

γXf (γX)

F (γX)
d ln γX

− 1

1 +
[
(1 + nτ1−σ)

β
θ − 1

]
ΓX
ΓD

ηDd ln γD −

[(
1 + nτ1−σ)βθ − 1

]
ΓX
ΓD

1 +
[
(1 + nτ1−σ)

β
θ − 1

]
ΓX
ΓD

ηXd ln γX

−

[(
1 + nτ1−σ)βθ − 1

]
ΓX
ΓD

1 +
[
(1 + nτ1−σ)

β
θ − 1

]
ΓX
ΓD

d ln

[(
1 + nτ1−σ)βθ − 1

]
.

Note that

κDF (γD)

κe + κDF (γD) + nκXF (γX)

γDf (γD)

F (γD)
=

κDγ
1−σ−1

θ
D f (γD)

κDΓD

{
1 +

[
(1 + nτ1−σ)

β
θ − 1

]
ΓX
ΓD

}
=

1

1 +
[
(1 + nτ1−σ)

β
θ − 1

]
ΓX
ΓD

ηD,

nκXF (γX)

κe + κDF (γD) + nκXF (γX)

γXf (γX)

F (γX)
=

nκXγ
−σ−1

θ
D γXf (γX) δ−

σ−1
θ δ

σ−1
θ

ΓX
ΓX

κDΓD

{
1 +

[
(1 + nτ1−σ)

β
θ − 1

]
ΓX
ΓD

}
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=

[(
1 + nτ1−σ)βθ − 1

]
ΓX
ΓD

1 +
[
(1 + nτ1−σ)

β
θ − 1

]
ΓX
ΓD

ηX .

Recall that (1 + nτ 1−σ)
β
θ = (1 + nτ 1−σ)φσ−1, we have

σ − 1

θ
d ln γD =−

[
(1 + nτ 1−σ)

β
θ − 1

]
ΓX
ΓD

1 +
[
(1 + nτ 1−σ)

β
θ − 1

]
ΓX
ΓD

d ln
[(

1 + nτ 1−σ)βθ − 1
]

=β
σ − 1

θ

nτ 1−σφσ−1 ΓX
ΓD

1 + [(1 + nτ 1−σ)φσ−1 − 1] ΓX
ΓD

d ln τ

=β
σ − 1

θ
(1− λ) d ln τ

⇒ d lnW

d ln τ
=− 1

β

d ln γD
d ln τ

= λ− 1. (60)

Next, we show that (60) is consistent with the ACR formula. Note that trade elasticity is

defined as d ln (λX/λ) /d ln τ , thus under the symmetric country assumption we can restate the

ACR formula as

d lnW

d ln τ
=

1

ε

d lnλ

d ln τ

=
d lnλ/d ln τ

d ln (λX/λ) /d ln τ

=
d lnλ/d ln τ

d ln
(

1−λ
λ

)
/d ln τ

= (λ− 1)
d lnλ/d ln τ

d lnλ/d ln τ

=λ− 1,

which is equivalent to (60).

For the trade elasticity, log-differentiating (56) and (57) with respect to τ yields

d ln
λX
λ

=d ln

(
φσ−1τ 1−σΓX

ΓD

)
− d ln

[
1 +

(
φσ−1 − 1

) ΓX
ΓD

]
= (1− σ) d ln τ + (σ − 1) d lnφ+ d ln

ΓX
ΓD

−
φσ−1 ΓX

ΓD

1 + (φσ−1 − 1) ΓX
ΓD

(σ − 1) d lnφ−
(φσ−1 − 1) ΓX

ΓD

1 + (φσ−1 − 1) ΓX
ΓD

d ln
ΓX
ΓD
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= (1− σ) d ln τ + (σ − 1)
1− ΓX

ΓD

1 + (φσ−1 − 1) ΓX
ΓD

d lnφ

+
1

1 + (φσ−1 − 1) ΓX
ΓD

ηXd ln δ +
1

1 + (φσ−1 − 1) ΓX
ΓD

(ηX − ηD) d ln γD

⇒ ε = (1− σ) + (σ − 1)
1− ΓX

ΓD

1 + (φσ−1 − 1) ΓX
ΓD

d lnφ

d ln τ

+
1

1 + (φσ−1 − 1) ΓX
ΓD

ηX
d ln γX

γD

d ln τ
+

1

1 + (φσ−1 − 1) ΓX
ΓD

(ηX − ηD) β (1− λ)

where d ln δ = d ln (γX/γD) by (58) and (59), and d ln γD/d ln τ = β (1− λ) by (60). It is readily

verified that
1−ΓX

ΓD

1+(φσ−1−1)
ΓX
ΓD

> 0, d lnφ
d ln τ

< 0, and d ln δ
d ln τ

< 0.

A.7 Proof of Proposition 6
Without selection to export, we always have ΠX (γ) > ΠD (γ) so all firms serve the foreign
markets on survival. As in Section 3.1, it is readily verified that

ϕκX=0 (γ) =
(
1 + nτ1−σ

) 1
θ

(
N

(PκX=0)
1−σ

) 1
θ
[(

σ−1
σ

)σ
β

] 1
θ

γ−
1
θ

(
γκX=0
D

)σ−1
θ =

1

κD

(
1 + nτ1−σ

) β
θ N

β
θ

(
PκX=0

)(σ−1) βθ [(σ−1σ )σ
β

] β
θ (

β

σ − 1
− 1

)
(61)

κe =
(
1 + nτ1−σ

) β
θ N

β
θ

(
PκX=0

)(σ−1) βθ [(σ−1σ )σ
β

] β
θ (

β

σ − 1
− 1

)
ΓκX=0
D − κDF

(
γκX=0
D

)
(62)

(
PκX=0

)1−σ
=MκX=0

e

(
σ − 1

σ

)σ−1 [(σ−1
σ

)σ
β

]σ−1
θ

N
σ−1
θ

(
PκX=0

)σ−1
θ (σ−1) (

1 + nτ1−σ
)σ−1

θ ΓκX=0
D (63)

+ nMκX=0
e

(
σ − 1

σ

)σ−1 [(σ−1
σ

)σ
β

]σ−1
θ

N
σ−1
θ

(
PκX=0

)σ−1
θ (σ−1)

τ1−σ
(
1 + nτ1−σ

)σ−1
θ ΓκX=0

D

λκX=0 =

MκX=0
e

(
σ−1
σ

)σ−1 [ (σ−1
σ )

σ

β

]σ−1
θ

N
σ−1
θ

(
PκX=0

)σ−1
θ (σ−1) (

1 + nτ1−σ
)σ−1

θ ΓκX=0
D

(PκX=0)
1−σ

=
1

1 + nτ1−σ
.

Since

d lnλκX=0 =d lnMκX=0
e +

σ − 1

θ
(σ − 1) d lnP κX=0 +

σ − 1

θ
d ln

(
1 + nτ 1−σ)

+ ηκX=0
D d ln γκX=0

D − (1− σ) d lnP κX=0
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d lnλκX=0
X =d lnMκX=0

e +
σ − 1

θ
(σ − 1) d lnP κX=0 +

σ − 1

θ
d ln

(
1 + nτ 1−σ)

+ ηκX=0
D d ln γκX=0

D + (1− σ) d ln τ − (1− σ) d lnP κX=0,

the trade elasticity is given by

εκX=0 = 1− σ < 0.

By combining (61) and (62) we have

(
γκX=0
D

)σ−1
θ =

κe + κDF
(
γκX=0
D

)
κDΓκX=0

D

. (64)

Using (61) and (63) we obtain

(
γκX=0
D

)σ−1
θ =

N σ−1
βσ

(
β
σ−1
− 1
)

κDM
κX=0
e ΓD

.

By combining the above equation with (64), the mass of entrants is given by

MκX=0
e =

N σ−1
βσ

(
β
σ−1
− 1
)

κe + κDF
(
γκX=0
D

) . (65)

Inserting (65) into (63) we have

(
P κX=0

)(1−σ)β
θ =

(
β
σ−1
− 1
)
N

β
θ

[
(σ−1

σ )
σ

β

]β
θ

(1 + nτ 1−σ)
β
θ ΓκX=0

D

κe + κDF
(
γκX=0
D

) . (66)

Log-differentiating (66) yields

(1− σ)
β

θ
d lnP κX=0 =

β

θ
d ln

(
1 + nτ 1−σ)+ d ln ΓκX=0

D − κD

κe + κDF
(
γκX=0
D

)f (γκX=0
D

)
γκX=0
D d ln γκX=0

D

=
β

θ
d ln

(
1 + nτ 1−σ)+ ηκX=0

D d ln γκX=0
D −

(
γκX=0
D

)1−σ−1
θ
f
(
γκX=0
D

)
ΓκX=0
D

d ln γκX=0
D

=
β

θ
d ln

(
1 + nτ 1−σ)+ ηκX=0

D d ln γκX=0
D − ηκX=0

D d ln γκX=0
D

=
β

θ
d ln

(
1 + nτ 1−σ)

⇒ d lnW κX=0 =− nτ 1−σ

1 + nτ 1−σ d ln τ

=
(
λκX=0 − 1

)
d ln τ.
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In Appendix A.6 we have shown that under the symmetric country assumption, the ACR formula

implies that d lnW = (λ− 1) d ln τ . Therefore, the case without firm selection to export also

belongs to the ACR class.

Finally, we show that the welfare gains from trade is lower than the case with selection to

export. This is done by simply comparing the magnitude of λ − 1. Suppose that |d lnW | >
|d lnW κX=0|. It follows that

1− λ > 1− λκX=0

⇒
nτ 1−σ (1 + nτ 1−σ)

σ−1
θ ΓX

ΓD

1 +
[
(1 + nτ 1−σ)

β
θ − 1

]
ΓX
ΓD

>
nτ 1−σ

1 + nτ 1−σ

⇒
(1 + nτ 1−σ)

β
θ ΓX

ΓD

1 +
[
(1 + nτ 1−σ)

β
θ − 1

]
ΓX
ΓD

> 1

⇒ΓX > ΓD,

which contradicts the property that γD > γX . Therefore, it must be that |d lnW | < |d lnW κX=0|.

A.8 Derivation of λMP , (46) and (47)

When ϕ follows a Pareto distribution, it is readily verified that

ϕMP
D =

[
κD
N

σ − 1(
σ−1
σ

)σ
] 1
σ−1

1

PMP
(67)

ϕMP
X =τ

[
κX
N

σ − 1(
σ−1
σ

)σ
] 1
σ−1

1

PMP
(68)

(
PMP

)1−σ
=MMP

e

(
σ − 1

σ

)σ−1

θMP

[∫ ∞
ϕMP
D

ϕσ−θ
MP−2dϕ+ nτ 1−σ

∫ ∞
ϕMP
X

ϕσ−θ
MP−2dϕ

]

=MMP
e

(
σ − 1

σ

)σ−1
θMP

θMP − σ + 1

(
ϕMP
D

)σ−θMP−1

[
1 + nτ 1−σ

(
ϕMP
X

ϕMP
D

)σ−θMP−1
]
.

(69)

Therefore,

λMP =
MMP

e

(
σ−1
σ

)σ−1 θMP

θMP−σ+1

(
ϕMP
D

)σ−θMP−1

(PMP )1−σ
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=
1

1 + nτ 1−σ
(
ϕMP
X

ϕMP
D

)σ−θMP−1
.

Using (67), (68), and (69), the price index can be expressed as follows

PMP =

MMP
e

(
σ − 1

σ

)σ−1
θMP

θMP − σ + 1

[
κD
N

σ − 1(
σ−1
σ

)σ
]σ−θMP−1

σ−1
[

1 + nτ 1−σ
(
ϕMP
X

ϕMP
D

)σ−θMP−1
]

− 1

θMP

.

The economy becomes autarky when τ → ∞, where the price index in this case is denoted as

PMP
τ→∞. Since it is well-known that MMP

e is independent of τ when productivity follows a Pareto

distribution, it follows that

WMP

WMP
τ→∞

=
PMP
τ→∞
PMP

=

[
1 + nτ 1−σ

(
ϕMP
X

ϕMP
D

)σ−θMP−1
] 1

θMP

.

Equation (47) thus follows by inserting (67) and (68) into the above equality.

As for (46), note that it is readily verified that

Me =
N

κe

σ − 1

θ

σ − 1

βσ

(
β

σ − 1
− 1

)

γD =

[
κ−1
D

(
N

P 1−σ

)β
θ
(
σ − 1

σ

)σβ
θ

β−
β
θ

(
β

σ − 1
− 1

)] θ
σ−1

(70)

P 1−σ =Me

(
σ − 1

σ

)σ−1
θ

θ − σ + 1

(
N

P 1−σ

)σ−1
θ

[(
σ−1
σ

)σ
β

]σ−1
θ

γ
1−σ−1

θ
D (71)

×

[
1−

(
γX
γD

)1−σ−1
θ

+
(
1 + nτ 1−σ)φσ−1

(
γX
γD

)1−σ−1
θ

]
.

Inserting (70) into (71) and rearranging, we obtain

P−β =Me

(
σ − 1

σ

)σ−1
θ

θ − σ + 1
N

θ
σ−1

[(
σ−1
σ

)σ
β

] θ
σ−1 (

θ

κD (σ − 1)

) θ
σ−1
−1

×

[
1−

(
γX
γD

)1−σ−1
θ

+
(
1 + nτ 1−σ)φσ−1

(
γX
γD

)1−σ−1
θ

]
.
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We denote the price index under autarky as Pτ→∞. Since Me is independent of τ , it follows that

W

Wτ→∞
=
P→∞
P

=

{
1 +

[(
1 + nτ 1−σ)φσ−1 − 1

](γX
γD

)1−σ−1
θ

} 1
β

.

Using (28) and (33), (46) follows from the above equality.
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