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Abstract

This paper considers the grid bootstrap for constructing confidence intervals for the
persistence parameter in a class of continuous time models driven by a Lévy process.
Its asymptotic validity is established by assuming the sampling interval (h) shrinks to
zero. Its improvement over the in-fill asymptotic theory is achieved by expanding the
coefficient–based statistic around its in-fill asymptotic distribution which is non-pivotal
and depends on the initial condition. Monte Carlo studies show that the gird bootstrap
method performs better than the in-fill asymptotic theory and much better than the long-
span theory. Empirical applications to U.S. interest rate data highlight differences between
the bootstrap confidence intervals and the confidence intervals obtained from the in-fill
and long-span asymptotic distributions.

JEL classification: C11, C12
Keywords: Grid bootstrap, In-fill Asymptotics, Continuous time models, Long-span asymp-
totics.

1 Introduction

A popular model to describe the evolution of an economic time series y(t) is given by the

following Ornstein-Uhlenbeck (OU) diffusion process:

dy(t) = κ(µ− y(t))dt+ σdW (t), y(0) = y0, (1)

where κ, µ, and σ are all constant, y0 is the initial condition, and W (t) is a standard Brownian

motion. In this model, κ captures the persistence of y(t) and is the parameter of interest in the

present paper. Consider the case when a discrete sample of observations for y(t) is available

∗Yiu Lim Lui, School of Economics, Singapore Management University, 90 Stamford Rd, Singapore 178903,
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as yt with t = h, 2h, ..., Th (:= N), where h is the sample interval and T is the sample size.

Clearly N is the time span over which the discrete-sampled data is available.

Typically κ is estimated by least squares (LS) method. Denote the LS estimator by κ̂. To

make statistical inference about κ, one needs to obtain the exact finite sample distribution of

κ̂. Unfortunately, the exact finite sample distribution is not analytically available. It has to be

obtained by simulations (as was done in Yu (2014) and Zhou and Yu (2015)) or by numerical

integrations when κ ≥ 0 (as was done in Bao et al. (2017)). It generally depends on the initial

condition (whether it is fixed or random) and the random behavior of the stochastic term in the

model (whether it is a Brownian motion or a Lévy process). Not surprisingly, econometricians

often rely on asymptotic theory to approximate the exact finite sample distribution.

Three sampling schemes can be used to obtain a limiting distribution, namely “in-fill”, or

“long-span” or “double”, corresponding to the assumption of h → 0, or N → ∞, or h → 0

together with N → ∞, respectively. In practice, of course, no matter how small, h is al-

ways non-zero; and no matter how large, N is always finite. Hence, all three asymptotic

distributions are merely approximations to the finite sample distribution. Clearly, the dou-

ble asymptotic distribution cannot provide more accurate approximation than the other two

asymptotic distributions due to an added restriction.

Which of the two asymptotic distributions, the in-fill asymptotic distribution or the long-

span distribution, provides more accurate approximation to the finite sample distribution?

Yu (2014), Zhou and Yu (2015) and Bao et al. (2017) provide the answer to this question.

Yu (2014) and Zhou and Yu (2015) derived the in-fill asymptotic distribution of κ̂ when µ

is known and unknown, respectively, and approximated the exact finite sample distribution

of κ̂ by simulations. They showed when κ is reasonably close to zero, the in-fill asymptotic

distribution substantially outperforms the long-span asymptotic distribution, even when h is

not very small and N is moderately large. This is not surprising as the in-fill distribution

depends on the initial condition and is asymmetric, two features that can be found in the finite

sample distribution but not in the long-span asymptotic distribution. Moreover, Bao et al.

(2017) approximated the exact finite sample distribution of κ̂ by numerical integrations and,

based on the exact finite sample distribution, found the superiority of the in-fill asymptotic

distribution over the long-span asymptotic distribution.

This paper proposes to use the grid bootstrap method, which was initially introduced

by Andrew (1993) and then by Hansen (1999), to construct confidence intervals (CIs) for

κ. The grid bootstrap has been used extensively in the literature for constructing CIs for

the autoregressive (AR) parameter in a discrete time AR(1) model. Mikusheva (2007) shows

that it gives CIs that have correct coverage uniformly over the parameter space, including the

unit root case, in long span samples. The asymptotic justification of bootstrap methods has

traditionally been made by the long-span asymptotic scheme and asymptotic expansions have

typically been made on the long-span asymptotic distribution. For example, in the stationary
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AR(1) model, the standard bootstrap can be justified by Edgeworth-type expansions which

uses the normal distribution as the leading term (Bose, 1988). In a unit root AR(1) model,

a non-standard bootstrap method was justified by expansions which use the Dickey-Fuller-

Phillips asymptotic distribution as the leading term; see Park (2003). In the local-to-unity

AR(1) model, the grid bootstrap can be justified by expansions which use the local-to-unity

asymptotic distribution as the leading term; see Mikusheva (2015).

The present paper justifies the grid bootstrap procedure under the in-fill asymptotic

scheme by showing that CIs for κ obtained by the grid bootstrap have correct coverage uni-

formly over the parameter space, including the case where κ = 0. We use the in-fill scheme,

instead of the long-span scheme, to justify the bootstrap procedure because the in-fill distri-

bution provides a better finite sample approximation than the long-span distribution. Our

expansion uses the in-fill asymptotic distribution as the leading term.

Our setup and approach have a few attractive features. First, we can justify the bootstrap

method under the in-fill scheme. Second, consistent estimation of κ and µ is not required for

constructing a valid CI of κ under the in-fill scheme. Third, the grid bootstrap method, with

a simple modification, is applicable in the presence of heteroskedasticity. Finally, we show

that the bootstrap CIs perform better than CIs based on the in-fill asymptotic distribution

and much better than those based on the long-span asymptotic distribution.

We organize the paper as follows. Section 2 reviews some important results in the literature

on the continuous time model given by (1) and relates some of them to those in the discrete

time AR(1) model. The concept of a bootstrap CI is also reviewed. In Section 3, a more

general class of continuous time models is introduced. The LS estimator of κ and the in-fill

asymptotic distribution are also discussed. Section 4 develops the grid bootstrap method to

construct CIs for κ and provides the asymptotic justification to the procedure. Also reported

are probabilistic expansions which use the in-fill asymptotic distribution as the leading term

and how to do the grid bootstrap when there is heteroskedasticity. Simulation studies which

check the finite sample performance of the bootstrap method are carried out in Section 5.

Section 6 reports CIs for κ based on US interest rate data. Section 7 concludes. Proofs of the

main results in the paper are given in the Appendix.

We use the following notations throughout the paper, “⇒” means weak convergence, “→”

means convergence in real sequence, “=d” means equivalence in distribution “→p” and “→a.s.”

mean convergence in probability and almost surely, respectively.

2 A Literature Review

In this section, we review some important results in the literature on the continuous time

model given by (1). We also relate some of the results to those in the discrete time literature.

Then we review the concept of CI based on alternative distributions, including the bootstrap
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distributions.

Assume Y := {yth}Tt=1 is data generated from the continuous time model given by (1).

The exact discrete model corresponding to (1) is given by

yth = e−κhy(t−1)h + µ
(

1− e−κh
)

+
√

(1− e−2κh)/(2κ)εt, (2)

where εt ∼ i.i.d. N(0, σ2), t = 1, ..., T . Clearly, T can be made to go to infinity by either

increasing N (the long-span scheme) or decreasing h (the in-fill scheme) or both (the double

scheme). Dividing both sides by
√

(1− e−2κh)/(2κ) gives rise to

xth = e−κhx(t−1)h +
µ
(
1− e−κh

)√
(1− e−2κh)/(2κ)

+ εt, x0 =
y0√

(1− e−2κh)/(2κ)
, (3)

where xth = yth/
√

(1− e−2κh)/(2κ).

Model (3) has the same structure as the popular discrete time AR(1) model with ρh(κ) =

e−κh being the AR coefficient. Let the LS estimator of ρh(κ) be ρ̂h(κ) and the LS estimator

of κ be κ̂ = − ln (ρ̂h(κ)) /h. If κ = 0, then ρh(κ) = 1, implying the presence of a unit root.

If h → 0 but N is finite, then e−κh ∼ 1 + (−κh) = 1 + (−κN/T ). So the in-fill asymptotic

scheme implies that Model (3) has a root which is local-to-unity with the local parameter

being c := −κN and the initial condition x0 ∼ O(1/
√
h) if y0 6= 0 and x0 = 0 if y0 = 0. In

the local-to-unity literature, the initial condition is typically assumed to be Op(1) and the

corresponding long-span asymptotic distribution involves functionals of the OU process but

is independent of the initial condition.1 When y0 6= 0 in Model (3), it is expected that the

in-fill asymptotic distribution of ρ̂h(κ) performs better than the usual long-span asymptotic

distribution developed in the local-to-unity literature.

Phillips (1987b) developed the in-fill asymptotic distribution for ρ̂h(κ) when y0 = 0 and

µ is known (= 0). In the same paper, Phillips showed that this in-fill asymptotic distribution

is the same as the long-span asymptotic distribution in the local-to-unity model with the

initial condition of Op(1). Perron (1991) extended the results in Phillips (1987b) by allowing

for a general initial condition for y0. Yu (2014) and Zhou and Yu (2015) developed the in-

fill asymptotic distribution for κ̂ when µ is known (= 0) and unknown, respectively. Unless

y0 = 0 the in-fill asymptotic distribution explicitly depends on the initial condition, and hence

is different from the long-span asymptotic distribution in the local-to-unity model with the

initial condition of Op(1).

It is straightforward to derive the long-span asymptotic distribution for κ̂ by applying

the Delta method to the long-span asymptotic distribution for ρ̂h(κ). For example, when

κ > 0,
√
T (κ̂ − κ) ⇒ N (0, (exp(2κh)− 1) /h); see Tang and Chen (2009). When κ = 0,

1From Mikusheva (2015), it can be easily shown that as T →∞, in the local-to-unity model with intercept,
T (ρ̂ − ρ) ⇒

∫ 1

0
Jc(r)dW (r)/

∫ 1

0
Jc(r)

2dr where Jc(r) = Jc(r) −
∫ 1

0
Jc(s)ds is the de-meaned OU process with

Jc(r) =
∫ r
0

exp(−c(r − s))dW (s).
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N(κ̂−κ)⇒ −
∫ 1

0 W (r)dW (r)/
∫ 1

0 W (r)2dr with W (r) = W (r)−
∫ 1

0 W (s)ds. The discontinuity

in the long-span limit theory of κ (both in the rate and in the limiting distribution) echoes

that of ρ in the discrete time AR(1) model.

When κ is positive but reasonably close to zero (such as κ = 0.01, 0.1, 1, 10), Yu (2014)

and Zhou and Yu (2015) obtained the exact finite sample distribution of κ̂ by simulations.

Bao et al. (2017) approximated the finite sample distribution of κ̂ via numerical integrations.

All these studies find that in-fill distribution is much closer to the finite sample distribution

than the long-span and the double asymptotic distributions, even when 10 years or 50 years

of monthly data are used. The superiority of the in-fill distribution over the long-span distri-

bution is not surprising as the in-fill distribution depends explicitly on the initial condition

and is asymmetric. While these two features can be found in the finite sample distribution,

they are lost in the long-span asymptotic distribution. Unfortunately, the in-fill asymptotic

theory is infeasible as it involves κ. In practice, one can plug-in an estimated κ into the

in-fill distribution. However, κ cannot be estimated by κ̂ consistently under the in-fill scheme,

replacing it with an inconsistent estimate of κ leads to CIs with incorrect coverage.

For the discrete time AR(1) model, the in-fill scheme is not available. When the autore-

gressive coefficient is in the stationary region (that is, it is less than one in absolute value),

the long-span asymptotic distribution of the LS estimator of the autoregressive coefficient is

Gaussian. However, the finite sample distribution may be far away from Gaussianity, espe-

cially when the AR coefficient is close to one and the sample size is small or moderate. This

motivates Phillips (1977) and Tanaka (1983) to develop Edgeworth expansions to approximate

the finite sample distribution of the LS estimator of the AR coefficient. While the leading

term in Edgeworth expansions is a normal distribution, departure from normality manifests

in higher order terms. Alternatively, the finite sample distribution can be approximated by

the bootstrap method. Bose (1988) showed the linkage between Edgeworth expansions and

the bootstrap method.

When the AR(1) model has a unit root, the long-span asymptotic distribution is non-

standard. Basawa et al. (1991) and Park (2003) introduced bootstrap procedures which

improve upon the long-span asymptotic theory. In an important study, Park (2003) justified

the bootstrap procedure by obtaining expansions for the Dickey-Fuller unit root test where

the leading term is the Dickey–Fuller-Phillips distribution and showed that the bootstrap

offers a second-order asymptotic refinement for the Dickey–Fuller tests. Under the local-

to-unity AR(1) model, Hansen (1999) introduced the grid bootstrap approach. Mikusheva

(2015) obtained expansions of the t-statistic about the local-to-unity asymptotic distribution

and showed that the grid bootstrap procedure of Hansen (1999) achieves a second-order

refinement of the local-to-unity asymptotic approximation. The results of Mikusheva (2015)

are important because, when the AR(1) coefficient is less than but close to one, the local-to-

unity asymptotic distribution tends to give a much better approximation to the finite sample
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distribution than the normal asymptotic distribution even when the sample size is moderately

large. However, since the initial condition is assumed to be Op(1) in the model of Mikusheva

(2015), the local-to-unity asymptotic distribution is independent of the initial condition.

We now review the concept of CI based on alternative distributions. Assume ρ is the

parameter of interest in a statistical model. Without loss of generality, assume ρ is a scalar.

Let T denote the sample size of available data Y used to estimate parameters in the model. Let

tT (Y, ρ) be a test statistic whose exact sampling distribution is FT (x|ρ) = Pr(tT (Y, ρ) < x|ρ).

For q ∈ (0, 1), let cT (q|ρ) be the quantile function of tT (Y, ρ), that is, FT (cT (q|ρ)|ρ) = q.

Define a q-level CI for ρ by

CIq := {ρ ∈ R : cT (x1|ρ) ≤ tT (Y, ρ) ≤ cT (x2|ρ)}, (4)

where x1 = (1 − q)/2 and x2 = 1 − (1 − q)/2. If ρ0 is the true parameter value of ρ, by

definition, Pr(ρ0 ∈ CIq) = q, and hence, the coverage probability is exactly q, the intended

level.

Suppose, as T → ∞, FT (x|ρ) converges to an asymptotic distribution (call it F (x|ρ))

which is often pivotal. In this case both F and the corresponding quantile function (call

it c(q|ρ)) are independent of T . If we replace cT (xi|ρ) with c(xi|ρ) in Equation (4), we

obtain an asymptotic CI, CIAq , which has the correct coverage probability asymptotically,

i.e., limT→∞ Pr(ρ0 ∈ CIAq ) = q. For example, if the asymptotic distribution is standard

normal, then a 95% asymptotic CI is CA95% = {ρ ∈ R : −1.96 ≤ tT (Y, ρ) ≤ 1.96}.
If the asymptotic distribution of FT (x|ρ) is not pivotal, say, depending on a set of un-

known parameters θ (call the limit distribution F (x, θ|ρ) and the corresponding quantile

function c(q, θ|ρ)), replacing cT (xi|ρ) with c(xi, θ|ρ) in Equation (4) does not work because

θ is not known. If θ can be consistently estimated, say by θ̂, then we can replace cT (xi|ρ)

with c
(
xi, θ̂|ρ

)
in Equation (4) to obtain an asymptotic CI, CIAq . It is easy to show that

limT→∞ Pr(ρ0 ∈ CIAq ) = q.

If cT (xi|ρ) is approximated by the quantile function corresponding to a bootstrap distri-

bution, denoted by c∗T (xi|ρ), then the CI is called a bootstrap confidence interval (BCI), CIBq .

For example, a BCI given by the standard parametric bootstrap procedure is given by

CIBq := {ρ ∈ R : c∗T (x1|ρ̂) ≤ tT (Y, ρ) ≤ c∗T (x2|ρ̂)}, (5)

where ρ̂ denotes an estimate of ρ.

There are some advantages in using BCIs. First, BCIs are obtained by re-sampling the

data. Although asymptotic justification of bootstrap methods requires the knowledge of

asymptotic theory, generating a bootstrap distribution may “require less information” about

asymptotic theory; see Section 4.1. Second, bootstrap methods are known to provide a finite

sample refinement to asymptotic theory in the sense that the bootstrap distribution provides

a better approximation to the finite sample distribution than asymptotic distributions; see
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Hall (2013). Not surprisingly, bootstrap methods often lead to CIs that have a more accurate

coverage probability than traditional asymptotic theory.

3 The Model and In-fill Theory

The present paper extends Model (1) by allowing for non-normality in the stochastic behavior.

Such an extension makes the analytical approach of Bao et al. (2017) not applicable. We then

develop the in-fill asymptotic distribution and the long-span asymptotic distribution for the

coefficient-based statistic based on the LS estimator of κ. We show via simulations that in-fill

asymptotic distribution provides much better approximations to the finite sample distribution

than the long-span asymptotic distribution. We then propose the grid bootstrap to obtain

BCIs for κ and obtain its coverage rate under the in-fill scheme. Asymptotic expansions

for the coefficient-based statistic with in-fill asymptotic distribution as the leading term are

developed. The expansions justify the bootstrap method and also shows that the bootstrap

method offers a refinement of the in-fill asymptotic distribution.

3.1 The model

Following Wang and Yu (2016), we consider the following continuous time model:

dy(t) = κ(µ− y(t))dt+ σdL(t), y(0) = y0 = Op(1), (6)

where σ and κ are strictly positive constants, L(t) is a Lévy process defined on a probability

space (Σ,F , {Ft}t≥0, P ), with L(0) = 0 a.s., Ft = σ
{
{y(s)}ts=0

}
, which satisfies the following

properties

1. (Independent increment) For any increasing sequence of times, say t0 < t1 < . . . < tn,

L(t) has independent increments;

2. (Stationary increment) The distribution of L (t+ h)− L (t) is independent of t;

3. (Stochastic continuity) For any ε > 0, t ≥ 0, lim
h−→0

P (|L (t+ h)− L (t) | ≥ ε) = 0;

4. The initial condition, y(0) = y0, is assumed to be independent of L(t).

In this paper, we are interested in obtaining CIs for the persistence parameter κ from

discrete-sampled observations {yth}Tt=1 . µ, σ and all parameters in L(t) are being treated as

nuisance parameters.

The exact discrete time version of (6) is

yth = e−κhy(t−1)h + µ(1− exp(−κh)) + σ

∫ th

(t−1)h
exp(−κ(th− s))dL(s), (7)
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where t = 0, 1, . . . , T := N/h. Note that, the characterization of the Lévy process makes the

errors
{
σ
∫ th

(t−1)h exp(−κ(th− s))dL(s)
}N/h
t=1

an i.i.d. sequence with the distribution depending

on the specification of the Lévy measure. Let the characteristic function of L(t) be of the form

of E(exp{isL(t)}) = exp{−tψ(s)}, where i is the imaginary unit and the function ψ : R→ C

is the Lévy exponent of L(t).

Assuming that L(t) is square-integrable, Wang and Yu (2016) showed that the error term

has the following moments:

E

(
σ

∫ th

(t−1)h
exp(−κ(th− s))dL(s)

)
= σiψ′(0)

1− exp(−κh)

κ
, (8)

V ar

(
σ

∫ th

(t−1)h
exp(−κ(th− s))dL(s)

)
= σ2ψ′′(0)

1− exp(−2κh)

2κ
. (9)

To simplify notations, let

ρh(κ) := exp(−κh),

λh :=

√
1− e−2κh

2κ
,

σ2
ψ := σ2ψ′′(0),

gh :=

[
µ+

σiψ′(0)

κ

]
(1− exp(−κh)),

uth := (σψλh)−1

(
σ

∫ th

(t−1)h
exp(−κ(th− s))dL(s)− σiψ′(0)

1− exp(−κh)

κ

)
.

(10)

Note that {uth}Tt=1 is a sequence of i.i.d. variables with mean zero and variance 1. When

there is no confusion, we simply omit h in yth and uth. Using notations in (10), we can rewrite

(7) as:

yt = ρh(κ)yt−1 + gh + εt, y(0) = y0 = Op(1),

εt = σψλhut.
(11)

3.2 Estimation

In Model (7), we use the LS method to estimate ρh(κ) and then obtain the estimator of κ by

κ̂h = − ln(ρ̂h(κ))/h, (12)

where

ρ̂h(κ) =
T
∑T

t=1 yt−1yt −
∑T

t=1 yt
∑T

t=1 yt−1

T
∑T

t=1 y
2
t−1 −

(∑T
t=1 yt−1

)2 . (13)

Define

ĝh =

∑T
t=1 yt

∑T
t=1 y

2
t−1 −

∑T
t=1 yt−1

∑T
t=1 yt−1yt

T
∑T

t=1 y
2
t−1 −

(∑T
t=1 yt−1

)2 . (14)
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The coefficient-based statistic and the t statistic for ρh(κ) are, respectively

z (Y, ρ, T ) = T (ρ̂h(κ)− ρh(κ)) and t (Y, ρ, T ) =
ρ̂h(κ)− ρh(κ)

σ̂ρ̂h
, (15)

where σ̂ρ̂h =

√
1
T

∑T
t=1(yt − ĝh − ρ̂h(κ)yt−1)2 ×

(∑T
t=1 y

2
t−1 − 1

T

(∑T
t=1 yt−1

)2
)−1

is the stan-

dard error of ρ̂h(κ). The normalization in z (Y, ρ, T ) is T not
√
T ; see Phillips (1987b).

The coefficient-based statistic for κ can be constructed similarly as,

z (Y, κ, h) = N (κ̂h − κ) . (16)

Letting ςh(·) = − ln(·)/h, we have:

κ̂h − κ = ςh(ρ̂h(κ))− ςh(ρh(κ)) = ς ′h(ρ̃h(κ))(ρ̂h(κ)− ρh(κ)), (17)

where ρ̃h(κ) is a value between ρ̂h(κ) and ρh(κ). We therefore can write:

T

ς ′h(ρh(κ))
(κ̂h − κ) =

(
1 +

ς ′h(ρ̃h(κ))− ς ′h(ρh(κ))

ς ′h(ρh(κ))

)
T (ρ̂h(κ)− ρh(κ)). (18)

This implies

z (Y, κ, h) = hς ′h(ρh(κ))

(
1 +

ς ′h(ρ̃h(κ))− ς ′h(ρh(κ))

ς ′h(ρh(κ))

)
z (Y, ρ, T ) . (19)

This functional relationship is used to show that a valid CI for κ can be constructed.

Remark 3.1 Although in this paper we use the coefficient-based statistic for κ to construct

CIs, we can also define the t statistic as tT (Y, κ) = h(κ̂h − κ)/σ̂ρ̂h, and construct CIs ac-

cordingly. However, this may not be a standard t statistic as the standard error of κ̂h is not

defined clearly in the context.

3.3 In-fill asymptotic theory

We now extend the in-fill asymptotic result of Zhou and Yu (2015) to Model (6).

Theorem 3.1 For Model (6), define z (Y, κ, h) by (16). Then, as h→ 0,

z (Y, κ, h)⇒ zy0(κ, θ) := −
Υ3 −Υ2

∫ 1
0 dW (r)

Υ1 −Υ2
2

, (20)
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where θ = (µ, σ, ψ′(0), ψ′′(0)), and

Υ1 :=
exp(2c)− 4 exp(c) + 2c+ 3

2c3
b2 +

2b

c

∫ 1

0
(exp(rc)− 1)Jc(r)dr

+

∫ 1

0
J2
c (r)dr +

exp(2c)− 2 exp(c) + 1

c2
bγ0 + 2γ0

∫ 1

0
exp(rc)Jc(r) + γ2

0

exp(2c)− 1

2c
;

Υ2 :=
exp(c)− c− 1

c2
b+

∫ 1

0
Jc(r)dr +

exp(c)− 1

c
γ0;

Υ3 :=
2b

c

∫ 1

0
(exp(rc)− 1)Jc(r)dr +

∫ 1

0
Jc(r)dW (r) + γ0

∫ 1

0
exp(rc)dW (r);

Jc(r) :=

∫ r

0
exp(c(r − s))dW (s);

γ0 :=
y0

σψ
√
N

;

b :=

(
µ+

σiψ′(0)

κ

) √
−cκ
σψ

;

c := −κN.

This limiting distribution in (20) allows us to invert the coefficient-based statistic and

construct (infeasible) CIs for κ. It can be seen that when we have an error term involving a

Lévy process, the Lévy exponent enters the limiting distribution through σψ and ψ′(0). The

approach is infeasible as there are a number of unknown parameters in the limiting distribution

in (20), including κ, µ, σ, ψ′(0), ψ′′(0).

Remark 3.2 If Model (6) is driven by a standard Brownian motion (i.e. L(t) = W (t)), then

ψ′(0) = 0, ψ′′(0) = 1, and the in-fill distribution of κ̂ given in (20) is the same as that obtained

from Zhou and Yu (2015). In addition, if µ is known and equal to 0, the in-fill distribution

of κ̂ is identical to that in Perron (1991). By further assuming y0 = 0, the in-fill distribution

of κ̂ is the same as that in Phillips (1987b).

Remark 3.3 If Model (6) is driven by a standard Brownian motion, unless y0 = 0, the in-fill

distribution of κ̂ depends on the initial condition via γ0. If y0 = 0 and µ = 0, then γ0 and b

are both equal to 0 in Theorem 3.1. If y0 = µ, subtract y0 both side in equation (7), we obtain

ỹth = e−κhỹ(t−1)h + εt, with ỹth = yth − y0. In this case, Theorem 3.1 implies that

zy0(κ, θ) = −
∫ 1

0 Jc(r)dW (r)−
∫ 1

0 Jc(r)dr
∫ 1

0 dW (r)∫ 1
0 J

2
c (r)dr −

(∫ 1
0 Jc(r)dr

)2 = −
∫ 1

0 Jc(r)dW (r)∫ 1
0 Jc(r)

2dr
,

where Jc(r) = Jc(r) −
∫ 1

0 Jc(s)ds is the de-meaned OU process with Jc(r) =
∫ r

0 exp(−c(r −

s))dW (s). Similarly, if we further impose κ = 0, we obtain zy0(κ, θ) = −
∫ 1
0 W (r)dW (r)∫ 1
0 W (r)2dr

where

W (r) is the de-mean Brownian motion.
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The in-fill distribution of κ̂ (i.e. −
∫ 1

0 Jc(r)dW (r)/
∫ 1

0 Jc(r)
2dr) is closely related to the

long-span asymptotic distribution of the coefficient-based statistic for ρ̂ in the local-to-unity

model with the initial condition of Op(1); see Remark 3.1 in Mikusheva (2015). The rea-

son why the initial condition explicitly enters the asymptotic distribution is that Equation

(3) corresponds to a local-to-unity model with the initial condition diverges to infinity as

h → 0. Clearly, the in-fill distribution of κ̂ given in (20) is expected to perform better than

−
∫ 1

0 Jc(r)dW (r)/
∫ 1

0 Jc(r)
2dr when the initial condition is not zero.

To see the impact of the initial condition, we perform a small Monte Carlo experiment.

The following parameter settings are considered κ = 0.5, µ ∈ {0, 0.1}, y0 ∈ {0, 1, 2, 3}. The

number of replications is always set at 10,000. Let z0 denotes −
∫ 1

0 Jc(r)dW (r)/
∫ 1

0 Jc(r)
2dr.

Table 1: Percentile of z0 and zy0(κ, θ) when κ = 0.5

1% 5% 10% 50% 90% 95% 99%

z0 -2.007 -0.746 0.035 4.219 11.669 14.673 21.084
µ = 0, y0 = 1 zy0(κ, θ) -2.209 -0.930 -0.155 3.766 11.036 13.921 20.148
µ = 0, y0 = 2 zy0(κ, θ) -2.415 -1.264 -0.565 2.815 9.222 11.608 17.867
µ = 0, y0 = 3 zy0(κ, θ) -2.486 -1.466 -0.842 1.910 6.826 8.963 14.346

µ = 0.1, y0 = 0 zy0(κ, θ) -1.984 -0.745 0.026 4.193 11.663 14.627 21.170
µ = 0.1, y0 = 1 zy0(κ, θ) -2.303 -0.995 -0.182 3.887 11.344 14.278 20.587
µ = 0.1, y0 = 2 zy0(κ, θ) -2.542 -1.333 -0.601 2.937 9.717 12.267 18.770
µ = 0.1, y0 = 3 zy0(κ, θ) -2.585 -1.537 -0.898 2.015 7.242 9.517 15.333

Table 1 reports the percentiles of z0 and the in-fill distribution zy0(κ, θ). Making inference

from the discrete-time local-to-unity model with intercept is similar to making inference in the

continuous time model (6) by restricting µ = 0, y0 = 0 or y0 = µ. From the simulation results,

it can be clearly seen that the distribution depends on the initial condition, and it is expected

that the in-fill distribution zy0(κ, θ) should outperform the distribution z0 in finite samples, as

the finite sample distribution depends on the initial condition.

Remark 3.4 If we define the t statistic for κ as t (Y, κ, h) = h(κ̂h − κ)/σ̂ρ̂h, then as h→ 0,

t (Y, κ, h)⇒ ty0(κ, θ) := −
Υ3 −Υ2

∫ 1
0 dW (r)√

Υ1 −Υ2
2

.

Remark 3.5 By assuming N →∞ with a fixed h, it can be shown that the long-span asymp-

totic distribution of t (Y, κ, h) is N(0, 1) when κ > 0, whereas it becomes −
∫ 1
0 W (r)dW (r)√∫ 1

0 W (r)2dr
with

W (r) = W (r)−
∫ 1

0 W (s)ds being the de-meaned Brownian motion when κ = 0.

Remark 3.6 As shown in Phillips (1987b), when c→ −∞,
∫ 1

0 Jc(r)dW (r)/
√∫ 1

0 Jc(r)
2dr ⇒

N(0, 1). It implies that, when N is fixed but κ→∞, t (Y, κ, h) converges to N(0, 1), since all

the terms that involve exp(c) and 1/c vanish, and so does the initial condition.
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3.4 Finite sample performance of in-fill distribution

We design several Monte Carlo experiments to compare the accuracy of the in-fill theory

relative to the long-span theory. Discrete data with sampling interval h are generated from

Model (6) where the Lévy process is set to a variance gamma process (also known as the

Laplace motion) with v = 0.5; see Madan and Seneta (1990) and Madan et al. (1998) for

definition of the variance gamma distribution and the variance gamma process. The following

parameter settings are considered, κ ∈ {0.01, 0.1, 1}, h ∈ {1/12, 1/52}, N = 5, µ = 0.1, σ = 1,

iψ′(0) = 0.05, ψ′′(0) = 1, y0 = 0.1. The 1%, 5%, 10%, 50%, 90%, 95%, and 99% percentiles of

N(κ̂h − κ) are obtained from 10,000 replications and reported in Tables 2-4. For the purpose

of comparison, we also report the same set of percentiles of the in-fill asymptotic distribution

and the long-span asymptotic distribution.

Table 2: Percentile of N(κ̂h − κ) when κ = 0.01

h = 1/12 1% 5% 10% 50% 90% 95% 99%
Finite -1.303 0.009 0.703 4.356 11.758 14.638 22.164
In-fill -1.266 0 0.780 4.371 11.236 13.957 20.164

Long-span -0.212 -0.150 -0.117 0 0.117 0.150 0.212

h = 1/52 1% 5% 10% 50% 90% 95% 99%
Finite -1.177 0.040 0.780 4.336 11.507 14.306 21.371
In-fill -1.070 0.094 0.818 4.349 11.315 14.021 21.002

Long-span -0.102 -0.072 -0.056 0 0.056 0.072 0.102

Table 3: Percentile of N(κ̂h − κ) when κ = 0.1

h = 1/12 1% 5% 10% 50% 90% 95% 99%
Finite -1.520 -0.063 0.683 4.479 12.002 15.216 22.248
In-fill -1.419 -0.041 0.717 4.449 11.503 14.091 20.057

Long-span -0.674 -0.477 -0.371 0 0.371 0.477 0.674

h = 1/52 1% 5% 10% 50% 90% 95% 99%
Finite -1.303 -0.041 0.771 4.424 11.633 14.616 21.504
In-fill -1.197 0.019 0.784 4.419 11.448 14.325 21.256

Long-span -0.323 -0.228 -0.178 0 0.178 0.228 0.323

Table 4: Percentile of N(κ̂h − κ) when κ = 1

h = 1/12 1% 5% 10% 50% 90% 95% 99%
Finite -3.452 -1.874 -0.911 4.013 13.151 17.048 26.093
In-fill -3.376 -1.803 -0.953 3.531 11.276 14.136 19.934

Long-span -2.215 -1.566 -1.220 0 1.220 1.566 2.215

h = 1/52 1% 5% 10% 50% 90% 95% 99%
Finite -3.198 -1.750 -0.814 3.916 12.603 15.909 23.044
In-fill -3.200 -1.863 -0.953 3.755 12.062 15.161 22.121

Long-span -1.030 -0.728 -0.567 0 0.567 0.728 1.030

In terms of finite sample approximation, a sharp contrast can be seen in the performance

of the two asymptotic distributions. The long-span asymptotic distributions are always sym-
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metric, while skewness can be seen clearly in the finite sample distributions. Moreover, the

percentiles in the finite sample distributions are very different from their counterparts in the

long-span distributions. These simulation results suggest that the long-span theory performs

poorly in finite samples. The in-fill distributions, on the other hand, perform much better to

approximate the finite sample distributions. The superior performance of the in-fill asymp-

totic theory motivates us to justify the bootstrap method under the in-fill scheme and to

do expansions about the in-fill distribution zy0(κ, θ). By developing expansions about the

in-fill asymptotic distribution, we can obtain a finite sample refinement which allows us to

outperform the in-fill theory. Moreover, although the in-fill distribution provides a good finite

sample approximation, it is infeasible in practice. In our model (7), κ, µ, σ and ψ′(0) and

ψ′′(0) all enter the in-fill asymptotic distribution (20).

4 Confidence Interval for κ

In this section, we first show how to use the grid bootstrap to construct c∗T (q|κ) from which

we obtain BCIs. Then we formally provide asymptotic justification to the grid bootstrap and

show its finite sample refinement of the in-fill distribution by stochastic expansions.

4.1 Grid bootstrap confidence interval

We propose to use the grid bootstrap to obtain BCIs. The parametric grid bootstrap was

first proposed by Andrew (1993) in the context of AR(1) model with a Gaussian error while

the nonparametric grid bootstrap was first proposed by Hansen (1999) under the local-to-

unity AR(1) model. To the best of our knowledge, the grid bootstrap has never been applied

to continuous time models. Here we show how to use two grid bootstrap procedures, (a) to

generate parametric bootstrap samples and (b) to generate non-parametric bootstrap samples.

Consider generating the following AR(1) pseudo time series {y∗t }
T
t=0 with error u∗t :

y∗t = ρh(κ)y∗t−1 + g̃h + σ̂cλhu
∗
t , y
∗(0) = y0 = Op(1), (21)

where ρh(κ) = exp(−κh). Let σ̂c :=
√

1
Th

∑T
t=1(yt − ĝh − ρ̂h(κ)yt−1)2, λh :=

√
1−exp(−2κh)

2κ ,

and g̃h is obtained from regressing yt − ρh(κ)yt−1 on a constant. Note that σ̂2
c is a consistent

estimator of σ2
ψ when h shrinks to 0. This result is presented in the following lemma.

Lemma 4.1 Under Model (11), as h→ 0,

sup
σ>0

sup
κ∈R

Pr

(
σ̂2
c

σ2
ψ

− 1 > ε

)
→ 0. (22)

We obtain u∗t in the following way. We first define xt as yt/λh (conditional on a value of

κ). Then we regress xt on xt−1 plus a constant by LS. Let {ex,t}Tt=1 be the LS residuals. In
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parametric bootstrap (a), we draw u∗t from an i.i.d. N
(
0, σ̂2

x/σ̂
2
c

)
, where σ̂2

x = 1
T

∑T
t=1 e

2
x,t.

Following the strategy of proving the consistency of σ̂2
c , we can show σ̂2

x = σ2
ψ + Op(T

−1).

This implies when h is small enough, u∗t is an i.i.d. N(0, 1) sequence approximately. In

nonparametric bootstrap (b), we first scale the residual {ex,t}Tt=1 by multiplying 1/σ̂c, then

we re-center the scaled residual. Finally, we draw u∗t from the empirical distribution function

of these re-centered and scaled residuals independently with replacement. Clearly, Equation

(21) is a bootstrap version of Model (11) conditional on κ, with the same initial condition y0.

We can then apply LS to bootstrap samples to obtain ρ̂∗, κ̂∗(:= − ln(ρ̂∗)/h) and the boot-

strap coefficient-based statistic z (Y ∗, κ, h) = N (κ̂∗h − κ) where Y ∗ = {y∗th}
T
t=1 is a bootstrap

sample. We define the BCI as in (4). Since κ is our parameter of interest, we express the

BCI for κ as CI∗q = {κ ∈ R : c∗T (x1|κ) ≤ z (Y, κ, h) ≤ c∗T (x2|κ)}, and c∗T (q|κ) is the quantile

function of z (Y ∗, κ, h), x1 = (1− q)/2 and x2 = 1− (1− q)/2.

4.2 Asymptotic validity of grid bootstrap confidence interval

The following theorem shows that the grid bootstrap can produce BCIs which are asymptot-

ically valid under the in-fill asymptotic scheme.

Theorem 4.1 Let κ0 be the true value of κ, and Pr∗ be the bootstrapped distribution with

error term drawn from parametric (a) or non-parametric (b) method. Assume that

1. κ0 ∈ K, where K is a compact set in the positive half line.

2. The increment of the Lévy process L(t+h)−L(t) has a finite variance and bounded rth

moment with r ∈ (2, 4].

3. µ, σ, iψ′(0) and ψ′′(0) are all bounded by C <∞.

Under these assumptions, we have, as h→ 0,

• sup
κ∈K

sup
x

[Pr{z (Y, κ, h) < x|κ} − Pr∗{z (Y ∗, κ, h) < x|κ}]→ 0;

• inf
κ∈K

Pr{κ0 ∈ CI∗q |κ} → x2 − x1 = q.

The first assumption requires the parameter space of κ to be compact in the nonnegative

half line. In principle, obtaining in-fill asymptotic distribution does not require κ to be

nonnegative. In most economic and financial models, however, focus has been placed on cases

where κ = 0 and κ > 0. Therefore, we restrict our attention to the nonnegative region of

κ. Assumption 2 and 3 effectively regulate the error term in the exact discrete time model,

enabling us to apply the invariance principle to the sum of error terms.

Note that both results hold regardless of how the bootstrap sample is constructed, either

parametrically via (a) or non-parametrically via (b). The first result shows that the dis-

tribution of the bootstrap statistic is closer to the finite sample distribution uniformly over
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the parameter space K, when the sampling interval is smaller. In the limit of h → 0, the

bootstrap statistic behaves like a random variable whose distribution is the in-fill asymptotic

distribution. The second result shows that the coverage probability of CI∗q is closer to q when

the sampling interval is smaller. This theorem therefore justifies the grid bootstrap for being

able to build a valid CI for κ asymptotically.

While we have made the asymptotic justification to the grid bootstrap under the in-

fill asymptotic scheme, it is also possible to make the asymptotic justification of the grid

bootstrap under the long-span scheme where h assumed to be fixed (therefore ρh and λh are

also fixed) and N →∞. Hansen (1999) and later Mikusheva (2007) show that BCIs of ρ have

correct coverage asymptotically when N →∞. It is easy to show that BCIs of κ have correct

coverage asymptotically when N → ∞. We choose not to justify the bootstrap by the long-

span theory simply because the long-span distribution has a poor finite sample performance

in the continuous time model that we consider.

Remark 4.1 If we replace z (Y, κ, h) and z (Y ∗, κ, h) in Theorem 4.1 by t (Y, κ, h) and t (Y ∗, κ, h),

Theorem 4.1 remains valid. This implies that we can use the t statistic to obtain BCIs which

are also justifiable under the in-fill scheme.

Remark 4.2 In Model (6), only the consistency of σψ is required to ensure the asymptotic

validity of BCI. No consistent estimation for (κ, µ, σ, ψ′(0), ψ′′(0)) is needed for the purpose

of constructing an asymptotically valid BCI for κ as h→ 0.

4.3 Expansions and refinements

A very important advantage of bootstrap methods over asymptotic distributions is that boot-

strap methods often provide refinements in finite samples. This feature also holds true in our

model. To prove refinements, we follows Park (2003) and Mikusheva (2015) by developing the

second order probabilistic expansions of the coefficient-based test statistic around the in-fill

asymptotic distribution which is not only non-pivotal but also dependent on the initial condi-

tion. The expansions were obtained in Park (2003) for both the t statistic and the coefficient-

based statistic around their respective Dickey-Fuller-Phillips distributions which are pivotal.

The expansions were obtained for the t statistic around
∫ 1

0 Jc(r)dW/
√∫ 1

0 Jc(r)
2dr which is

non-pivotal but independent of the initial condition. Although we only report the results for

the coefficient-based test statistic, it can be shown that similar expansions can be developed

for the t statistic for κ.

Theorem 4.2 Assume that in Model (6), the assumptions in Theorem 4.1 hold, and addi-

tionally, the increment of the Lévy process L(t+h)−L(t) has a bounded rth moment for some

r ≥ 8 . We have the following probabilistic expansions for z (Y, κ, h).

z (Y, κ, h) = zy0(κ, θ) + T−1/4A+ T−1/2B + op(T
−1/2), (23)
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where the leading term zy0(κ, θ) is the in-fill asymptotic distribution given in (20), and the

full expressions of the higher order terms A and B which are all Op(1), are provided in the

appendix.

Furthermore, for the two bootstrap methods, we have the following results for distributional

expansions. For the parametric grid bootstrap (a), we have

Pr ∗(z
(
Y ∗,P , κ, h

)
< x) = Pr(zy0(κ, θ) < x) + o(T−1/2), (24)

where Y ∗,P = {y∗t }
T
t=0 is any parametric bootstrap sample.

For the nonparametric grid bootstrap (b), we have

sup
x
|Pr ∗(z

(
Y ∗,NP , κ, h

)
< x)− Pr(z (Y, κ, h) < x)| = o(T−1/2), (25)

where Y ∗,NP = {y∗t }
T
t=0 is any nonparametric bootstrap sample.

Remark 4.3 When ψ′(0) = 0, ψ′′(0) = 1, y0 = µ, κ = 0, zy0(κ, θ) = −
∫ 1

0 W (r)dW (r)/
∫ 1

0 W (r)2dr.

Equation (23) extends the result on Gn in Park (2003) from the unit root model without

intercept to the unit root model with intercept. When ψ′(0) = 0, ψ′′(0) = 1, y0 = µ,

zy0(κ, θ) = −
∫ 1

0 J(r)dW (r)/
∫ 1

0 J(r)2dr. Equation (23) extends the result on t(y, n, ρn) in

Mikusheva (2015) from the local-to-unity model with negligible initial condition to the local-

to-unity model with divergent initial condition.

Remark 4.4 According to (23), we have

Pr(z (Y, κ, h) < x) = Pr(zy0(κ, θ) < x) +O(T−1/2), (26)

uniformly in x. This suggests that our second-order asymptotic expansions of z (Y, κ, h), i.e.,

zy0(κ, θ) + T−1/4A+ T−1/2B(:= ξ), provide refinements of the in-fill asymptotic distribution

up to order o(T−1/2) since

Pr(z (Y, κ, h) < x) = Pr(ξ < x) + o(T−1/2).

Remark 4.5 Comparing (25) with (26), the nonparametric grid bootstrap provides a second-

order improvement compared with the in-fill asymptotic distribution.

Remark 4.6 According to (24) and (26), for the parametric grid bootstrap method, we have,

Pr(z (Y, κ, h) < x) = Pr ∗(z
(
Y ∗,P , κ, h

)
< x) +O(T−1/2). (27)

Comparing (27) with (26), the nonparametric grid bootstrap provides a second-order improve-

ment compared with the parametric grid bootstrap in the in-fill asymptotic approach.
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4.4 Extensions to heteroskedastic models

It is possible to extend the grid bootstrap methods to more general model specifications. Here

we discuss a model with time varying volatility given by

dyt = κ(µ− yt)dt+ σtdL(t), (28)

where σt = g(t/T ) and g is a measurable function on the interval (0, 1] such that both the

infimum and the supremum of g over (0, 1] is bounded strictly above 0 and below infinity and

g satisfies the Lipschitz condition except at a finite number of points of discontinuity. The

discrete time model is given by

yt = ρh(κ)yt−1 + µ(1− exp(−κh)) + σtλhut, (29)

As noted in Xu and Phillips (2008), a general deterministic function for g and hence uncon-

ditional heteroskedasticity is allowed in the model. However, a general stochastic volatility

process is not allowed.

The in-fill asymptotic distribution for N(κ̂h− κ) can be developed in this model. It turns

out that one can apply the wild bootstrap principle with the grid bootstrap method to generate

a bootstrap sample. Namely, we replace ε∗t in the fourth step of the bootstrap method which

will be discussed below with the product of the LS residual et and an i.i.d. random variable

(so ε∗t = etu
∗
t ). Then, following a similar strategy in proving Theorem 4.1, one can show that

this method has a correct probability coverage asymptotically. The in-fill asymptotic theory

and the justification of the bootstrap method for this model can be obtained from authors

upon request.

5 Simulation Studies

5.1 Implementation

Before we design experiments to check the performance of the grid bootstrap, we give the

following 6 steps to construct a grid bootstrap CI for κ:

1. Given the data {yth}Tt=0, we run the following regression by LS:

yth = ρ̂hy(t−1)h + ĝh + eth,

where eth is the LS residual. And use {eth}Tt=1 to construct the consistent estimator for

σ2 by 1
Th

∑T
t=1 e

2
th (denoted as σ̂2

c ).

2. Construct a grid of ρh, AG = {ρh1, ρh2, ...ρhG}, centered at ρ̂h, with the first and last

grid point being calculated from ρ̂h ± 5× se(ρ̂h).
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3. Given a point in the grid (ρhG ∈ AG), perform the second regression:

yth − ρhGy(t−1)h = g̃h + νt,

where νt is the residual of the second regression. Note that g̃h is a function of ρhG.

4. Let κG = − ln(ρhG)
h , λhG =

√
1−exp(−2κGh)

2κG
, and u∗th be an i.i.d. random variable (its

distribution depends on whether bootstrap (a) or bootstrap (b) is adopted) for t =

1, ..., T . We generate the bootstrap data {y∗bth}Tt=1 based on {u∗th}Tt=1 and the same

initial condition as the observed data, i.e.,

y∗th = ρhGy
∗
(t−1),h + g̃h + σ̂cλhGu

∗
th, y

∗
0 = y0.

5. Generate B sets of bootstrap data, such that we have
{
{y∗bth}Tt=1

}B
b=1

. For every set of

bootstrap data, obtain the LS estimator of κ (denoted by κ̂∗h) and calculate the bootstrap

coefficient-based statistic z (Y ∗, κG, h) = N(κ̂∗h − κG). Calculate the xth quantile of the

bootstrap statistic z (Y ∗, κG, h) to obtain c∗T (x|κG).

6. Following Hansen (1999), we estimate the quantile function c∗T (x|κ) by applying the

kernel regression:

c∗T (x|κ) =

∑G
g=1K

(
κ−κG
δ

)
c∗T (x|κG)∑G

g=1K
(
κ−κG
δ

) ,

where K(·) is a kernel function and δ is a bandwidth. In our application and simulation,

we use the Epanechnikov kernel (K(x) = 3
4(1−x2)1(|x| ≤ 1)) and choose the bandwidth

by LS cross-validation.

7. The CI for κ is obtained by inverting the coefficient-based statistic:

CIBq = {κ ∈ R : c∗T (x1|κ) ≤ z (Y, κ, h) ≤ c∗T (x2|κ)} .

5.2 Comparing CIs in finite samples

To evaluate the performance of the proposed bootstrap methods in the continuous time model,

we construct CIs with the 95% coverage probability using the long-span asymptotic distri-

bution, the in-fill asymptotic distribution, the parametric grid bootstrap method and the

nonparametric grid bootstrap method. To do so, we consider 3 parameter settings to gen-

erate data (called DGP1 to DGP3). In DGP1, we simulate discrete time observations with

sampling interval h from Model (1). In this case, the feasible in-fill asymptotic distribution

can be obtained by replacing the unknown κ, µ, and σ with their estimates. In DGP2 and

DGP3, we simulate discrete time observations with sampling interval h from Model (6) where

the Lévy motion is the variance gamma process with v = 0.5. In particular we set ψ′(0) = 0

and ψ′′(0) = 1 in DGP2 and iψ′(0) = 0.05 and ψ′′(0) = 1 in DGP3. The following parameter
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settings are considered, κ ∈ {0.01, 0.1, 1}, h ∈ {1/12, 1/52}, N = 5, µ = 0.1, σ = 1, y0 = 0.1.

The number of replications is always set at 10,000.

We use the following methods to construct the 95% CI for κ:

1. In-feasible in-fill asymptotic distribution. Since the in-fill distribution depends on κ, µ,

σ and the 2 derivatives of ψ, we simply set the values of these parameters to their true

values. Clearly this approach is infeasible in practice. The CIs serve as a benchmark to

evaluate the performance of other methods.

2. Feasible in-fill asymptotic distribution for DGP1. Since the in-fill distribution depends

on κ, µ, σ, we replace them with their estimates.

3. Two grid bootstrap methods: (a) parametric and (b) non-parametric. To calculate BCIs

we set the number of bootstrap iterations B = 399 with grid size G = 50.

4. Long-span asymptotic distribution, that is, N (0, (exp(2κh)− 1) /h).

The Monte Carlo average is used to calculate the empirical coverage of the true value

(κ0), i.e., 1
10000

∑10000
m=1 1

(
κ

(m)
L ≤ κ0 ≤ κ(m)

U

)
, where κ

(m)
L and κ

(m)
U are the bounds of a CI in

the mth replication, 1(·) is the indicator function which indicates whether the true value κ0 is

contained in the interval. The closer the empirical coverage to 95%, the better the performance

of the method. Tables 5-6 report the empirical coverage and the absolute difference between

the nominal coverage and the empirical coverage for alternative methods when h = 1/12 and

h = 1/52, respectively. Numbers in the bold face indicate that the corresponding methods

have the best performance (in terms of the absolute difference) in each of the parameter

settings.
Table 5: 95% and 90% Confidence Intervals (h = 1/12)

κ0 = 0.01 κ0 = 0.1 κ0 = 1

Long-span 0.018 (0.932) 0.059 (0.892) 0.265 (0.685)
In-fill (infeasible) 0.938 (0.012) 0.937 (0.013) 0.916 (0.034)

DGP1 In-fill (feasible) 0.988 (0.038) 0.986 (0.036) 0.923 (0.027)
Grid bootstrap (a) 0.954 (0.004) 0.954 (0.004) 0.948 (0.002)
Grid bootstrap (b) 0.952 (0.002) 0.952 (0.002) 0.948 (0.002)

Long-span 0.019 (0.931) 0.062 (0.889) 0.272 (0.679)
DGP2 In-fill (infeasible) 0.941 (0.009) 0.940 (0.060) 0.919 (0.031)

Grid bootstrap (a) 0.956 (0.006) 0.955 (0.005) 0.950 (0)
Grid bootstrap (b) 0.952 (0.002) 0.953 (0.003) 0.948 (0.002)

Long-span 0.020 (0.93) 0.063 (0.887) 0.270 (0.68)
DGP3 In-fill (infeasible) 0.943 (0.007) 0.940 (0.060) 0.921 (0.029)

Grid bootstrap (a) 0.954 (0.004) 0.953 (0.003) 0.950 (0)
Grid bootstrap (b) 0.953 (0.003) 0.951 (0.001) 0.949 (0.001)
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Table 6: Coverage of 95% Confidence Intervals (h = 1/52)

κ0 = 0.01 κ0 = 0.1 κ0 = 1

Long-span 0.009 (0.941) 0.027 (0.923) 0.135 (0.816)
In-fill (infeasible) 0.947 (0.003) 0.947 (0.003) 0.945 (0.005)

DGP1 In-fill (feasible) 0.992 (0.042) 0.991 (0.041) 0.948 (0.002)
Grid bootstrap (a) 0.959 (0.009) 0.957 (0.007) 0.947 (0.003)
Grid bootstrap (b) 0.957 (0.007) 0.954 (0.004) 0.948 (0.002)

Long-span 0.009 (0.941) 0.029 (0.921) 0.138 (0.812)
DGP2 In-fill (infeasible) 0.950 (0) 0.950 (0) 0.946 (0.004)

Grid bootstrap (a) 0.960 (0.01) 0.959 (0.009) 0.951 (0.001)
Grid bootstrap (b) 0.958 (0.008) 0.958 (0.008) 0.951 (0.001)

Long-span 0.009 (0.941) 0.031 (0.919) 0.138 (0.812)
DGP3 In-fill (infeasible) 0.949 (0.001) 0.950 (0) 0.948 (0.002)

Grid bootstrap (a) 0.959 (0.009) 0.959 (0.009) 0.951 (0.001)
Grid bootstrap (b) 0.960 (0.01) 0.957 (0.007) 0.950 (0)

Several interesting conclusions can be found from Tables 5-6. First, it can be seen that

CIs obtained from the long-span asymptotic distribution have very bad performance across

all DGPs. Although the difference between the nominal and the actual coverage diminishes

when κ0 increases, the problem of under-coverage is very serious. The simulation results

simply suggest that, in these empirically realistic settings, the long-span asymptotic theory

should not be used to construct a CI for κ. This conclusion echoes that in Zhou and Yu (2015)

and in Bao et al. (2017). Second, for the (infeasible) in-fill asymptotic theory, the empirical

coverage is always close to the nominal one. However, the performance is worse when h = 1/12

than when h = 1/52, which is naturally expected. Again, this conclusion echoes that in Zhou

and Yu (2015) and in Bao et al. (2017). Third, the (feasible) in-fill asymptotic theory tends

to lead to worse empirical coverage than the (infeasible) in-fill asymptotic theory. Especially,

when κ is closer to zero, the problem of over-coverage is serious. Finally, the two grid bootstrap

methods always perform well, regardless of h and κ0. In particular, when h = 1/12, they tend

to outperform the (infeasible) in-fill asymptotic distribution. When h = 1/52, the performance

of the bootstrap methods and the (infeasible) in-fill asymptotic distribution is comparable.

6 An Empirical Study

In this section, we use the proposed grid bootstrap methods to construct BCIs for κ in Model

(1) and in Model (6) based on real monthly short Federal fund effective rate. The data are

available from H-15 Federal Reserve Statistical Release and covers the period from July 1954

to December 2017. In total there are 762 observations with T = 762, h = 1/12 and N = 63.5.

Similar datasets over different sample periods were used in Aı̈t-Sahalia (1999) and Zhou and

Yu (2015).

Assuming the initial condition y0 is the same as the first observation, the LS estimator of

ρh, gh µ, and κ in Model (1) are: ρ̂h = 0.99, ĝh = 0.0005, µ̂ = 0.0493, and κ̂h = 0.1201. Four
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CIs of κ are constructed, based on the long-span asymptotic distribution, the feasible in-fill

asymptotic distribution when the model is assumed to be (1), the proposed grid bootstrap

methods under parametric and non-parametric settings, respectively. They are reported in

Table 7. It can be seen that the CI constructed from the long-span distribution is very different

from other CIs. It excludes 0, suggesting that we have to reject the null hypothesis of unit

root under the long-span scheme. However, the other three CIs all contain 0, suggesting

that we cannot reject the unit root hypothesis. The two BCIs are very close to each other,

with similar width, left endpoint and right endpoint. If the model is assumed to be (1), we

can obtain the CI by replacing the unknown κ, µ, and σ with their estimates in the in-fill

asymptotic distribution. While the corresponding CI contains 0, it is much wider than the

two BCIs. This finding is consistent with the over-coverage found in the simulation study.
Table 7: Coverage of 95% Confidence Intervals

95% C.I. 90% C.I.

Long-span (0.0852, 0.1551) (0.0908, 0.1495)
In-fill (feasible) (-0.2050, 0.2448) (-0.1505, 0.2191)
Grid bootstrap (a) (-0.0502, 0.2083) (-0.0368, 0.1868)
Grid bootstrap (b) (-0.0435, 0.2005) (-0.0319, 0.1785)

7 Conclusion

In this paper, we have established the in-fill asymptotic distribution of the coefficient-based

statistic for the persistence parameter in a Lévy-driven OU model. The in-fill asymptotic

distribution is asymmetric and dependent on the initial condition and performs better than the

long-span distribution under empirically realistic settings when they are used to approximate

the finite sample approximation. It is not pivotal as it depends on unknown parameters. To

make use of in-fill asymptotic distribution, these unknown parameters must be replaced with

estimators. The feasible in-fill asymptotic distribution performs worse than the infeasible in-

fill asymptotic distribution but still outperforms the long-span asymptotic distribution under

empirically realistic settings.

Following Park (2003) and Mikusheva (2015), we then develop probabilistic expansions to

the coefficient-based statistic around the in-fill distribution. The second-order expansions of

the coefficient-based statistic provide refinement of the infeasible in-fill distribution up to order

o(T−1/2). We then show that the nonparametric bootstrap procedure of Hansen (1999) offers

a second-order refinement of the infeasible in-fill distribution when h → 0. The asymptotic

justification of the grid bootstrap only requires the consistency of σψ which is ensured under

the in-fill scheme. No consistent estimation of other parameters in the model is needed.

Monte Carlo studies reveal several important results. First, the CIs implied by the long-

span asymptotic distribution are under coverage very seriously in all cases considered. Second,

the CIs implied by the feasible in-fill asymptotic distribution are over coverage seriously unless
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κ is large. In all cases the gird bootstrap method performs better than the feasible in-fill

asymptotic theory and much better than the long-span theory.

Empirical applications to U.S. interest rate data show that the unit root hypothesis cannot

be rejected by the bootstrap CIs and the CI obtained from the feasible in-fill asymptotic distri-

bution, but has to be rejected by the CI obtained from the long-span asymptotic distribution.

These differences can be well explained by the simulation results.

8 Appendix

8.1 Proof of Theorem 3.1 and Remark 3.4

Proof of Theorem 3.1 and Remark 3.4 can be done in the same way as in Zhou and Yu (2010).

The only difference is that in Zhou and Yu (2010) L(t) = W (t). If we divide Equation (11)

by σψλh, and let xt = yt/ (σψλh), then we have xt = ρhxt−1 + gh
σψλh

+ ut. Under the in-fill

scheme, we have

1

T 2

T∑
t=1

x2
t−1 ⇒ Υ1,

1

T 3/2

T∑
t=1

xt ⇒ Υ2,

1

T

T∑
t=1

xt−1ut ⇒ Υ3.

(30)

Let S(T, κ) = 1
σ̂2T

∑T
t=1 yt−1εt − 1

σ̂T

∑T
t=1 yt−1

1
σ̂T

∑T
t=1 εt, and R(T, κ) = 1

σ̂2T 2

∑T
t=1 y

2
t−1 −(

1

σ̂T
3
2

∑T
t=1 yt−1

)2
, where σ̂2 = 1

T

∑T
t=1 (yt − ĝh − ρ̂h(κ)yt−1)2. By construction, it can be

seen that

T (ρ̂h(κ)− ρh(κ)) =
S(T, κ)

R(T, κ)
and t (Y, ρ, T ) =

S(T, κ)√
R(T, κ)

. (31)

Hence,

T (ρ̂h(κ)− ρh(κ)) =

1
T

∑T
t=1 xt−1ut − 1√

T

∑T
t=1 εt

1
T 3/2

∑T
t=1 xt

1
T 2

∑T
t=1 x

2
t−1 −

(
1

T 3/2

∑T
t=1 xt−1

)2 . (32)

Since κ̂h = − ln(ρ̂h(κ))
h , applying the generalized Delta method (Theorem 1.12, Shao, 2003), and

using the relationship in (19), Th = N,
(

1 +
ς′h(ρ̃h(κ))−ς′h(ρh(κ))

ς′h(ρh(κ))

)
→p 1, and hς ′h(ρ̃h(κ))→p −1,

we obtain the limiting result z (Y, κ, h)⇒ −Υ3−Υ2

∫ 1
0 dW (r)

Υ1−Υ2
2

.
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For t (Y, ρ, T ) , we have

t (Y, ρ, T ) =

∑T
t=1 yt−1εt − 1

T

∑T
t=1 yt−1

1
T

∑T
t=1 εt√

σ̂2

(∑T
t=1 y

2
t−1 − 1

T

(∑T
t=1 yt−1

)2
)

=

1
σ̂2T

∑T
t=1 yt−1εt − 1

σ̂T 3/2

∑T
t=1 yt−1

1
σ̂
√
T

∑T
t=1 εt√

1
σ̂2T 2

∑T
t=1 y

2
t−1 −

(
1

σ̂T 3/2

∑T
t=1 yt−1

)2

=
σψλh

σ̂c
√
h

 1
T

∑T
t=1 xt−1ut − 1

T 3/2

∑T
t=1 xt−1

1√
T

∑T
t=1 ut√

1
T 2

∑T
t=1 x

2
t−1 −

(
1

T 3/2

∑T
t=1 xt−1

)2

 .

(33)

By Lemma 4.1,
σψλh

σ̂c
√
h
→p 1. Applying results in (30), we can obtain the limit of t (Y, ρ, T ).

To show the limit of t(Y, κ, h), similar to (19), we have

t (Y, κ, h) = ς ′h(ρh)h

(
1 +

ς ′h(ρ̃h(κ))− ς ′h(ρh(κ))

ς ′h(ρh(κ))

)
t (Y, ρ, T ) .

We will show later
ς′h(ρ̃h(κ))−ς′h(ρh(κ))

ς′h(ρh(κ))
is op(1), and ς ′h(ρh)h→ −1. Hence, t (Y, κ, h) = −t (Y, ρ, T )+

op(1) under the in-fill scheme, giving the result in Remark 3.4.

8.2 Proof of Lemma 4.1

Before we move on to prove Lemma 4.1, we need the following lemma to show that we can

obtain a consistent estimator for gh at the rate of h−1/2.

Lemma 8.1 For Model (11), let ĝh be the LS estimator. Then under the in-fill scheme, for

any κ ≥ 0, we have

h−1/2(ĝh − gh)⇒
σψ√
N

Υ1η −Υ2Υ3

Υ1 −Υ2
2

,

where η ∼ i.i.d.N(0, 1).

Proof. Using (11) and (14), we have

ĝh − gh =

∑T
t=1 y

2
t−1

∑T
t=1 εt −

∑T
t=1 yt−1

∑T
t=1 yt−1εt

T
∑T

t=1 y
2
t−1 −

(∑T
t=1 yt−1

)2

= σψλh

∑T
t=1 x

2
t−1

∑T
t=1 ut −

∑T
t=1 xt−1

∑T
t=1 xt−1ut

T
∑T

t=1 x
2
t−1 −

(∑T
t=1 xt−1

)2

 .
Therefore, we have

(
T

h

)1/2

(ĝh − gh) = σψ
λh√
h

 1
T 2

∑T
t=1 x

2
t−1

1√
T

∑T
t=1 ut −

1
T 3/2

∑T
t=1 xt−1

1
T

∑T
t=1 xt−1εt

1
T 2

∑T
t=1 x

2
t−1 −

(
1

T 3/2

∑T
t=1 xt−1

)2

 .
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Note that T = N/h, and λh/
√
h→ 1. Using (30), we therefore establish the result in Lemma

8.1.

We now prove Lemma 4.1. Let the LS residual be et = yt − ĝh − ρ̂h(κ)yt−1 and

σ̂2
c =

1

Th

T∑
t=1

e2
t =

1

Th

T∑
t=1

(εt + (gh − ĝh) + (ρh(κ)− ρ̂h(κ))yt−1)2

=
1

Th

T∑
t=1

ε2t +
1

Th

T∑
t=1

(gh − ĝh)2 + (ρh(κ)− ρ̂h(κ))2 1

Th

T∑
t=1

y2
t−1

+ 2(gh − ĝh)
1

Th

T∑
t=1

εt + 2(gh − ĝh)(ρh(κ)− ρ̂h(κ))
1

Th

T∑
t=1

yt−1

+ 2(ρh(κ)− ρ̂h(κ))
1

Th

T∑
t=1

yt−1εt.

(34)

We now investigate the five terms on the right hand side of (34) one by one.

1

Th

T∑
t=1

ε2t =
1

Th
σ2
ψλ

2
h

T∑
t=1

u2
t →p σ

2
ψ,

1

Th

T∑
t=1

(gh − ĝh)2 =
(gh − ĝh)2

h
= Op(h) = op(1), (by Lemma 8.1),

(ρh(κ)− ρ̂h(κ))2 1

Th

T∑
t=1

y2
t−1

=

(∑T
t=1 yt−1εt − 1

T

∑T
t=1 yt−1εt∑T

t=1 y
2
t−1 − 1

T (
∑T

t=1 yt−1)2

)2
1

Th

T∑
t=1

y2
t−1

=
σ2
ψλ

2
h

Th

(∑T
t=1 xt−1ut − 1

T

∑T
t=1 xt−1ut∑T

t=1 y
2
t−1 − 1

T (
∑T

t=1 xt−1)2

)2 T∑
t=1

x2
t−1

=
σ2
ψλ

2
h

Th

(∑T
t=1 xt−1ut

)2
− 2 1

T

(∑T
t=1 xt−1ut

)2
+ 1

T 2

(∑T
t=1 xt−1ut

)2

∑T
t=1 x

2
t−1 − 2 1

T

(∑T
t=1 xt−1

)2
+ 1

T 2

(
∑T
t=1 xt−1)

4∑T
t=1 x

2
t−1

=
σ2
ψλ

2
h

Th

(
1
T

∑T
t=1 xt−1ut

)2
− 2

T

(
1
T

∑T
t=1 xt−1ut

)2
+ 1

T 2

(
1
T

∑T
t=1 xt−1ut

)2

1
T 2

∑T
t=1 x

2
t−1 − 2

(
1

T 3/2

∑T
t=1 xt−1

)2
+

(
1

T3/2

∑T
t=1 xt−1

)4
1
T2

∑T
t=1 x

2
t−1

= Op(T
−1),

(gh − ĝh)
1

Th

T∑
t=1

εt = h−1/2(gh − ĝh)σψ
λh√
h

1

T

T∑
t=1

ut = Op(h
1/2),

(gh − ĝh)(ρh(κ)− ρ̂h(κ))
1

Th

T∑
t=1

yt−1 =
√
Th−1(gh − ĝh)(ρh(κ)− ρ̂h(κ))σψ

λh√
h

1

T 3/2

T∑
t=1

xt−1

= Op(h
1/2)Op(T

−1/2) = op(1).
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And finally,

(ρh(κ)− ρ̂h(κ))
1

Th

T∑
t=1

yt−1εt = (ρh(κ)− ρ̂h(κ))σ2
ψ

λ2
h

h

1

T

T∑
t=1

xt−1ut = Op(T
−1).

Thus,

σ̂2
c

σ2
ψ

− 1 =
λ2
h

h

1

T

T∑
t=1

u2
t − 1 +

1

σ2
ψ

1

Th

T∑
t=1

(gh − ĝh)2 + (ρh(κ)− ρ̂h(κ))2λ
2
h

h

1

σ2
ψ

1

T

T∑
t=1

x2
t−1

+
2

σψ
(gh − ĝh)

λh√
h

1

T

T∑
t=1

ut +
2

σψ
(gh − ĝh)(ρh(κ)− ρ̂h(κ))

1

Th

T∑
t=1

xt−1

+ 2(ρh(κ)− ρ̂h(κ))
λh√
h

1

T

T∑
t=1

xt−1ut.

Clearly, all terms on the right-hand side converge to zero in probability when h → 0 and N

is fixed.

8.3 Proof of Theorem 4.1 and Remark 4.1

Before proceeding to prove Theorem 4.1 and Remark 4.1, some notations are needed. Let us

define ε∗t = σ̂cλhu
∗
t and a pair of statistics (S∗(T, κ), R∗(T, κ)) by

(S∗(T, κ), R∗(T, κ))

=

 1

σ̂2T

T∑
t=1

y∗t−1ε
∗
t −

1

σ̂T

T∑
t=1

y∗t−1

1

σ̂T

T∑
t=1

ε∗t ,
1

σ̂2T 2

T∑
t=1

y∗2t−1 −

(
1

σ̂T
3
2

T∑
t=1

y∗t−1

)2
 .

By construction, we have z (Y ∗, ρ, T ) = S∗(T, κ)/R∗(T, κ) and t (Y ∗, ρ, T ) = S∗(T, κ)/
√
R∗(T, κ).

We first claim the following lemma.

Lemma 8.2 Suppose κ0 ∈ K, where K is a compact set in the positive half line, then for

every ε > 0, we have:

1. lim
h→0

sup
κ∈K

P {|g̃h − gh| > ε} = 0;

2. sup
κ∈K

sup
t

∣∣∣∣ 1
σ̂

(
yt√
T
− y∗t√

T

)∣∣∣∣ = o(T−
1
2

+ 1
r

+ε), a.s.;

3. sup
κ∈K

sup
t

∣∣∣∣ yt
σ̂
√
T

∣∣∣∣ = Op(1);

4.

∣∣∣∣ 1√
T

∑T
t=1 ηT

(
t
T

)
ut − 1√

T

∑T
t=1wT

(
t
T

)
u∗t

∣∣∣∣ = o(T−
1
2

+ 1
r

+ε), a.s.;

5. sup
κ∈K

∣∣∣∣ 1
σ̂T

∑T
t=1 yt−1εt − 1

σ̂T

∑T
t=1 y

∗
t−1ε

∗
t

∣∣∣∣ = o(T−
1
2

+ 1
r

+ε), a.s.;
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6. sup
κ∈K

∣∣∣∣ 1
T 2σ̂2

∑T
t=1 y

2
t−1 − 1

T 2σ̂2

∑T
t=1 y

∗2
t−1

∣∣∣∣ = o(T−
1
2

+ 1
r

+ε), a.s.;

7. sup
κ∈K

∣∣∣∣ 1
σ̂2
√
T

∑T
t=1 εt

1
T 3/2

∑T
t=1 yt−1 − 1
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∗
t

1
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∗
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1
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+ε), a.s.;

8. sup
κ∈K

∣∣∣∣ 1
σ̂T 3/2

∑T
t=1 yt−1 − 1

σ̂T 3/2

∑T
t=1 y

∗
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∣∣∣∣ = o(T−
1
2

+ 1
r
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9. lim
h→0

sup
κ∈K

Pr{|z (Y, ρ, T )−z (Y ∗, ρ, T ) | > ε} = 0 and lim
h→0

sup
κ∈K

Pr{|z (Y, κ, T )−z (Y ∗, κ, T ) | >

ε} = 0.

Proof. Note that all the results in Lemma 8.2 can be applied to both the parametric grid

bootstrap and the nonparametric grid bootstrap. To save space, we omit the proof of the

nonparametric grid bootstrap. The only difference in the proof between two bootstrap pro-

cedures is in their convergence speeds in items 1-8 above. For the parametric bootstrap, the

order is of o(T−
1
2

+ 1
r

+ε)a.s., while for the nonparametric bootstrap, the order is of o(T−δ)a.s.

with δ > 0.2

Throughout the proof, we will utilize a strong approximation argument shown in the

supplementary appendix in Lemma 2 of Mikusheva (2007). The lemma allows us to apply

Skorohod embedding scheme and use a Brownian motion to approximate the normalized

partial sum of the error term ut. We restate the lemma for the sake of readability.

Let St =
∑t

i=1 ui. Then we can construct a sequence of processes ηT (t) = 1√
T
SbtT c and

a sequence of Brownian motions wT on a common probability space. And we define
u∗i√
T

=

wT (i/T )− wT (i− 1/T ). So for every ε > 0, r > 2 we have

sup
0≤t≤1

|ηT (t)− wT (t)| = o(T−
1
2

+ 1
r

+ε), a.s.

We now prove Lemma 8.2.

1. g̃h − gh =
1

T

T∑
t=1

εt ≤ sup
κ
|σψλh|

1

T

T∑
t=1

ut →a.s. 0.

Since sup
κ
|σψλh| is bounded (by assumptions) and ut is an i.i.d. random variable with

2The subtle difference indeed lies in the difference in Lemma 6 and Lemma 2 in Mikusheva (2007).
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mean 0 and unit variance, the convergence is guaranteed by the ergodic theorem.

2.
1

σ̂

yt√
T

=
1

σ̂

1√
T

[
t∑
i=1

ρt−ih εi + ρthy0 + gh

t∑
i=1

ρih

]

=
σψλh
σ̂

1√
T

t∑
i=1

ρt−ih ui +
ρthy0

σ̂
√
T

+
gh

σ̂
√
T

t∑
i=1

ρih

=
σψλh
σ̂

t∑
i=1

ρt−ih

[
ηT

(
i

T

)
− ηT

(
i− 1

T

)]
+
ρthy0

σ̂
√
T

+
gh

σ̂
√
T

t∑
i=1

ρih

=
σψλh
σ̂

[
t∑
i=1

(
ρt−ih − ρt−i−1

h

)
ηT

(
i

T

)
+ ηT

(
t

T

)
+ ρthηT

(
0

T

)]
+
ρthy0

σ̂
√
T

+
gh

σ̂
√
T

t∑
i=1

ρih

=
σψλh
σ̂

[
(ρh − 1)

t∑
i=1

ρt−i−1
h ηT

(
i

T

)
+ ηT

(
t

T

)]
+
ρthy0

σ̂
√
T

+
gh

σ̂
√
T

t∑
i=1

ρih.

Also,

1

σ̂

y∗t√
T

=
σ̂cλh
σ̂

[
(ρh − 1)

t∑
i=1

ρt−i−1
h wT

(
i

T

)
+ wT

(
t

T

)]
+
ρthy0

σ̂
√
T

+
g̃h

σ̂
√
T

t∑
i=1

ρih.

Note that by Lemma 4.1 and the continuous mapping theorem, when N is fixed and h → 0,

we have T →∞,
σψλh
σ̂ →p 1, and σ̂cλh

σ̂ →p 1. Hence,

sup
κ

sup
t

∣∣∣∣ 1σ̂
(
yt−1√
T
−
y∗t−1√
T

)∣∣∣∣
= sup

κ
sup
t

∣∣∣∣(1 + op(1))

[
(ρh − 1)

∑t
i=1 ρ

t−i−1
h

(
ηT
(
i
T

)
− wT

(
i
T

))
+ ηT

(
t
T

)
− wT

(
t
T

)
+gh−g̃h

σ̂
√
T

∑t
i=1 ρ

i
h

]∣∣∣∣
≤ sup

κ
(1 + op(1))

∣∣∣∣
[

sup
t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣
(
ρh − 1

ρh

t∑
i=1

ρt−ih + 1

)]∣∣∣∣+ sup
κ

sup
t

∣∣∣∣gh − g̃hσ̂
√
T

t∑
i=1

ρih

∣∣∣∣
≤ (1 + op(1))

∣∣∣∣[sup
t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣ sup
κ

∣∣∣∣ρh − 1

ρh

1− ρth
1− ρh

+ 1

∣∣∣∣]+ sup
κ

∣∣∣∣gh − g̃hσ̂c
√
N

ρh(1− ρTh )

1− ρh

∣∣∣∣
≤ (1 + op(1))

∣∣∣∣[sup
t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣ sup
κ

∣∣∣∣ 1

ρh
+ 1

∣∣∣∣]+ sup
κ
|gh − g̃h|

C

σ̂c
√
N

≤ (1 + op(1))

∣∣∣∣[sup
t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣ (M + 1)

]
+ sup

κ
|gh − g̃h|

C

σ̂c
√
N

= o(T−
1
2

+ 1
r

+ε), a.s.
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Since K is compact, and 1
ρh

= eκh, there exists a C such that C > eκh for all κ ∈ K.

3. sup
κ

sup
t

∣∣∣∣ 1σ̂ yt√
T

∣∣∣∣
= sup

κ
sup
t

∣∣∣∣σλhσ̂
[

(ρh − 1)
t∑
i=1

ρt−i−1
h ηT

(
i

T

)
+ ηT

(
t

T

)]
+
ρthy0

σ̂
√
T

+
gh

σ̂
√
T

t∑
i=1

ρih

∣∣∣∣
≤ sup

κ

[
(1 + op(1))

(
ρh − 1

ρh

t∑
i=1

ρt−jh + 1

)]
sup
t
|wT (t)|+ sup

κ

∣∣∣∣ y0

σ̂c
√
N

∣∣∣∣+
G1M

σ
√
N

= Op(1).

4. See Lemma 4 c) in Mikusheva (2007).

5. Denote ǧh = gh
σψλh

and we have

1

σ̂2T

T∑
t=1

yt−1εt

=
1

σ̂2T

(
yT

T∑
t=1

εt −
T∑
t=1

(yt − yt−1)

t∑
k=0

εk

)

=
1

σ̂2T

(
yT

T∑
t=1

εt −
T∑
t=2

(yt − yt−1)
t∑

k=0

εk − (y1 − y0)ε1

)

=
σ2
ψλ

2
h

σ̂2
ch

(
xT√
T

T∑
t=1

ut√
T
−

T∑
t=2

ǧh + (ρh − 1)xt + ut√
T

t∑
k=0

zk√
T

)
− [gh + (ρh − 1)y0 + ε1]ε1

σ̂2T

=
σ2
ψλ

2
h

σ̂2
ch

(
xT√
T
ηT (1)−

T∑
t=2

ǧh + (ρh − 1)xt−1 + ut√
T

ηT

(
t

T

))
−
σψλh(ρh − 1)y0u1

σ̂2T

−
σ2
ψλ

2
h

σ̂2
ch

(
u1√
T

)2

− ghε1
σ̂2T

.

Similarly, denote ˇ̃gh = g̃h
σcλh

and we have

1

σ̂2T

T∑
t=1

y∗t−1ε
∗
t

=
λ2
h

h

(
x∗T√
T
wT (1)−

T∑
t=2

ˇ̃gh + (ρh − 1)x∗t−1 + u∗t√
T

wT

(
t

T

))

− σ̂cλh(ρh − 1)y0u
∗
1

σ̂2T
−
λ2
h

h

(
u∗1√
T

)2

− g̃hε
∗
1

σ̂2T
.

Hence,

1

σ̂2T

T∑
t=1

yt−1εt −
1

σ̂2T

T∑
t=1

y∗t−1ε
∗
t = A+B + C +D + E + F +G,
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where

A =
σ2
ψλ

2
h

σ̂2
ch

xT√
T
ηT (1)−

λ2
h

h

x∗T√
T
wT (1),

B =
λ2
h

h

ˇ̃gh√
T

T∑
t=1

wT

(
t

T

)
−
σ2
ψλ

2
h

σ̂2
ch

ǧh√
T

T∑
t=1

ηT

(
t

T

)
,

C =
(ρh − 1)λ2

h

h

T∑
t=2

x∗t−1√
T
wT

(
t

T

)
−

(ρh − 1)σ2
ψλ

2
h

σ̂2
ch

T∑
t=2

xt−1√
T
ηT

(
t

T

)
,

D =
λ2
h

h

T∑
t=2

u∗t√
T
wT

(
t

T

)
−
σ2λ2

h

σ̂2
ch

T∑
t=2

ut√
T
ηT

(
t

T

)
,

E =
(ρh − 1)σ̂cλh

σ̂2T
y0u
∗
1 −

(ρh − 1)σψλh
σ̂2T

y0u1,

F =
λ2
h

h

(
z∗1√
T

)2

−
σ2
ψλ

2
h

σ̂2
ch

(
z1√
T

)2

,

G =
g̃hε
∗
1

σ̂2T
− ghε1
σ̂2T

.

We now examine these terms one by one.

sup
κ

sup
t
|A| = sup

κ
sup
t

∣∣∣∣σ2
ψλ

2
h

σ̂2
ch

xT√
T
ηT (1)−

λ2
h

h

x∗T√
T
wT (1)

∣∣∣∣
= sup

κ
sup
t

∣∣∣∣(1 + op(1))

(
xT√
T
ηT (1)−

x∗T√
T
wT (1)

)∣∣∣∣
= sup

κ
sup
t

∣∣∣∣(1 + op(1))

(
xT√
T

(ηT (1)− wT (1)) +

(
xT√
T
−
x∗T√
T

)
wT (1)

)∣∣∣∣
≤ (1 + op(1))

[
sup
κ

∣∣∣∣ xT√T
∣∣∣∣ sup

t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣+ sup
t

∣∣∣∣ xt√T − x∗t√
T

∣∣∣∣ sup
t

∣∣∣∣wT (t)

∣∣∣∣]
= o(T−

1
2

+ 1
r

+ε), a.s.

sup
κ

sup
t
|B| = sup

κ
sup
t

∣∣∣∣λ2
h

h

ˇ̃gh√
T

T∑
t=1

wT

(
t

T

)
−
σ2
ψλ

2
h

σ̂2
ch

ǧh√
T

T∑
t=1

ηT

(
t

T

)∣∣∣∣
= sup

κ
sup
t

∣∣∣∣(1 + op(1))
ǧh√
T

(
T∑
t=1

wT

(
t

T

)
− ηT

(
t

T

))∣∣∣∣
≤ (1 + op(1)) sup

κ

∣∣∣∣ ghT

σψλh
√
T

∣∣∣∣ sup
t

∣∣∣∣wT ( t

T

)
− ηT

(
t

T

)∣∣∣∣
= (1 + op(1)) sup

κ

∣∣∣∣(µκ+ σiψ′(0))
√
N

σψ′′(0)

∣∣∣∣ sup
t

∣∣∣∣wT ( t

T

)
− ηT

(
t

T

)∣∣∣∣
= o(T−

1
2

+ 1
r

+ε), a.s.
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sup
κ

sup
t
|C| = sup

κ
sup
t

∣∣∣∣(ρh − 1)λ2
h

h

T∑
t=2

x∗t−1√
T
wT

(
t

T

)
−

(ρh − 1)σ2
ψλ

2
h

σ̂2
ch

T∑
t=2

xt−1√
T
ηT

(
t

T

)∣∣∣∣
= (1 + op(1)) sup

κ
|ρh − 1| sup

t

T∑
t=2

 x∗t−1√
T

(
wT
(
t
T

)
− ηT

(
t
T

))
+ηT

(
t
T

) (x∗t−1√
T
− xt−1√

T

) 

≤ (1 + op(1)) sup
κ
| − κh+ o(h2)|T

 sup
t

∣∣∣∣x∗t−1√
T

∣∣∣∣ sup
t

∣∣∣∣wT ( tT )− ηT ( tT )∣∣∣∣
+ sup

t

∣∣∣∣ηT ( tT )∣∣∣∣ sup
t

∣∣∣∣x∗t−1√
T
− xt−1√

T

∣∣∣∣


≤MN

[
sup
t

∣∣∣∣x∗t−1√
T

∣∣∣∣ sup
t

∣∣∣∣wT ( t

T

)
− ηT

(
t

T

)∣∣∣∣+ sup
t

∣∣∣∣ηT ( t

T

)∣∣∣∣ sup
t

∣∣∣∣x∗t−1√
T
− xt−1√

T

∣∣∣∣]
= o

(
T−

1
2

+ 1
r

+ε
)
, a.s.

sup
κ

sup
t
|D| = sup

κ
sup
t

∣∣∣∣λ2
h

h

T∑
t=2

u∗t√
T
wT

(
t

T

)
−
σ2
ψλ

2
h

σ̂2
ch

T∑
t=2

ut√
T
ηT

(
t

T

)∣∣∣∣
= sup

t

∣∣∣∣(1 + op(1))

[
T∑
t=2

u∗t√
T
wT

(
t

T

)
−

T∑
t=2

ut√
T
ηT

(
t

T

)]∣∣∣∣
= sup

t

∣∣∣∣(1 + op(1))

[
T∑
t=2

u∗t√
T

(
wT

(
t

T

)
− ηT

(
t

T

))
+

T∑
t=2

(
u∗t − ut√

T

)
ηT

(
t

T

)]∣∣∣∣
≤ sup

t

∣∣∣∣wT ( t

T

)∣∣∣∣ sup
t

∣∣∣∣wT ( t

T

)
− ηT

(
t

T

)∣∣∣∣+ sup
t

∣∣∣∣wT ( t

T

)
− ηT

(
t

T

)∣∣∣∣ sup
t

∣∣∣∣ηT ( t

T

)∣∣∣∣
= o(T−

1
2

+ 1
r

+ε), a.s.

sup
κ

sup
t
|E| = sup

κ
sup
t

∣∣∣∣(ρh − 1)σ̂cλh
σ̂2T

y0u
∗
1 −

(ρh − 1)σψλh
σ̂2T

y0u1

∣∣∣∣
= sup

κ
sup
t

∣∣∣∣κh 1

σ

λh√
h

y0√
hT

[
u1√
T

]
− κh 1

σ

λh√
h

y0√
hT

[
u∗1√
T

]∣∣∣∣+ op(h)

≤Mh
1

σ

|y0|√
N

[
sup
t

∣∣∣∣ηT ( t

T

)∣∣∣∣+ sup
t

∣∣∣∣wT ( t

T

)∣∣∣∣]+ op(1)

= op(h),

sup
κ

sup
t
|F | = sup

κ
sup
t

∣∣∣∣λ2
h

h

(
u∗1√
T

)2

−
σ2
ψλ

2
h

σ̂2
ch

(
u1√
T

)2∣∣∣∣
= sup

κ
sup
t

∣∣∣∣(1 + op(h))

[(
u∗1√
T

)2

−
(
u1√
T

)2
]∣∣∣∣

= sup
κ

sup
t

∣∣∣∣(1 + op(h))

[(
u∗1√
T

)
−
(
u1√
T

)][(
u∗1√
T

)
+

(
u1√
T

)]∣∣∣∣
≤ (1 + op(h)) sup

t

∣∣∣∣wT ( t

T

)
− ηT

(
t

T

)∣∣∣∣ [sup
t

∣∣∣∣wT ( t

T

)∣∣∣∣+ sup
t

∣∣∣∣ηT ( t

T

)∣∣∣∣]
= o(T−

1
2

+ 1
r

+ε), a.s.,

sup
κ

sup
t
|G| ≤ sup

κ

∣∣∣∣(1 + op(1))
gh
σ̂2T

sup
t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣∣∣∣∣ = o(T−
1
2

+ 1
r

+ε), a.s.
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Thus, we have established item 5.

6. sup
κ

∣∣∣∣ 1

T σ̂2

T∑
t=1

y2
t−1 −

1

T σ̂2

T∑
t=1

y∗2t−1

∣∣∣∣ = sup
κ

∣∣∣∣ 1

T σ̂2

T∑
t=2

y2
t−1 −

1

T σ̂2

T∑
t=2

y∗2t−1 +
1

T σ̂2
y2

0 −
1

T σ̂2
y2

0

∣∣∣∣
= sup

κ

∣∣∣∣σ2
ψλ

2
h

σ̂2
ch

T∑
t=2

(
xt−1√
T

)2

−
λ2
h

h

T∑
t=2

(
x∗t−1√
T

)2∣∣∣∣
= sup

κ

∣∣∣∣(1 + op(h))

[
T∑
t=2

(
xt−1√
T

)2

−
T∑
t=2

(
x∗t−1√
T

)2
]∣∣∣∣

≤ (1 + op(h)) sup
t

∣∣∣∣ xt√T − x∗t√
T

∣∣∣∣ (sup
t

∣∣∣∣ xt√T
∣∣∣∣+ sup

t

∣∣∣∣ x∗t√T
∣∣∣∣)

= o(T−
1
2

+ 1
r

+ε), a.s.

7. sup
κ∈K

∣∣∣∣ 1

σ̂2
√
T

T∑
t=1

εt
1

T 3/2

T∑
t=1

yt−1 −
1

σ̂2
√
T

T∑
t=1

ε∗t
1

T 3/2

T∑
t=1

y∗t−1

∣∣∣∣
= sup

κ∈K

∣∣∣∣σ2
ψλ

2
h

σ̂ch

1

T 3/2

T∑
t=1

xt−1

T∑
t=1

ut√
T
−
λ2
h

h

1

T 3/2

T∑
t=1

xt−1

T∑
t=1

u∗t√
T

+
σ2
ψλ

2
h

σ̂2
ch

T∑
t=1

u∗t√
T

(
1

T 3/2

T∑
t=1

xt−1 −
1

T 3/2

T∑
t=1

x∗t−1

)∣∣∣∣
≤ sup

κ∈K
sup
t

∣∣∣∣ 1

T

T∑
t=1

xt−1√
T

∣∣∣∣ sup
t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣
+

1

T
sup
t

∣∣∣∣wT ( t

T

)∣∣∣∣ sup
t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣+ oa.s.(1)

= o(T−
1
2

+ 1
r

+ε), a.s.

8. sup
κ∈K

∣∣∣∣ 1

σ̂T 3/2

T∑
t=1

yt−1 −
1

σ̂T 3/2

T∑
t=1

y∗t−1

∣∣∣∣ = sup
κ∈K

∣∣∣∣ 1

T

T∑
t=1

[
1

σ̂

(
yt−1√
T
−
y∗t−1√
T

)]∣∣∣∣
= o(T−

1
2

+ 1
r

+ε), a.s.

9. sup
κ∈K

Pr{|z (Y, ρ, T )− z (Y ∗, ρ, T ) | > ε}

= sup
κ∈K

Pr

{∣∣∣∣S(T, κ)

R(T, κ)
− S∗(T, κ)

R∗(T, κ)

∣∣∣∣ > ε

}
= sup

κ∈K
Pr

{∣∣∣∣(S(T, κ)

R(T, κ)
− S∗(T, κ)

R(T, κ)

)
+

(
S∗(T, κ)

R(T, κ)
− S∗(T, κ)

R∗(T, κ)

)∣∣∣∣ > ε

}
≤ sup

κ∈K
Pr

{
R(T, κ)−1

∣∣∣∣Sn − S∗n∣∣∣∣+ |S∗(T, κ)|
∣∣∣∣R(T, κ)−1 −R∗(T, κ)−1

∣∣∣∣ > ε

}
→ 0.

From the relationship of z (Y, ρ, T ) and z (Y, κ, h), the closeness of z (Y, ρ, T ) and z (Y ∗, ρ, T )
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implies the closeness of z (Y, κ, h) and z (Y ∗, κ, h).

sup
κ∈K

Pr{|z (Y, κ, h)− z (Y ∗, κ, h) | > ε}

= sup
κ∈K

Pr

{∣∣∣∣ς ′h(ρh(κ))h

(
1 +

ς ′h(ρ̃h(κ))− ς ′h(ρh(κ))

ς ′h(ρh(κ))

)
z (Y, ρ, T )

− ς ′h(ρh)h

(
1 +

ς ′h(ρ̃∗h(κ))− ς ′h(ρh)

ς ′h(ρh)

)
z (Y ∗, ρ, T )

∣∣∣∣ > ε

}
= sup
κ∈K

Pr {(1 + op(1))|z (Y, ρ, T )− z (Y ∗, ρ, T ) |} → 0.

The last step is due to Theorem 1 in Phillips (2012) as the sequence {ς ′h(ρh(κ))} is asymp-

totically locally relatively equicontinuous in ρ. Since (ρ̂h − ρh) = op(T
−1), let us have a

shrinking neighborhood denoted by

Bh
δ =

{
ρ̂h : |ρ̂h − ρh| <

δ

T a

}
,

where δ > 0 and a ∈ (0, 1). Note that for any ρh in Bh
δ , we have:

ς ′h(ρ̂h)− ς ′h(ρh)

ς ′h(ρh)
= −

1
hρh
− 1

hρ̂h
1
hρh

=
ρh − ρ̂h
ρ̂h

≤ δ

T a(ρh + op(1))
→ 0.

Now we are in the position to show Theorem 4.1, i.e.,

lim
h→0

sup
κ∈K

sup
x

∣∣∣∣Pr{z (Y, ρ, T ) < x} − Pr ∗{z (Y ∗, ρ, T ) < x}
∣∣∣∣ = 0;

lim
h→0

sup
κ∈K

sup
x

∣∣∣∣Pr{z (Y, κ, h) < x} − Pr ∗{z (Y ∗, κ, h) < x}
∣∣∣∣ = 0;

lim
h→0

inf
κ∈K

Pr{κ0 ∈ CIq} = x2 − x2 = q.

We only need to show that the distribution of z (Y ∗, ρ, T ) is uniformly continuous. Note

that we generate a bootstrap sample by based on the normal distribution

y∗t =
t∑
i=1

ρh(κ)t−iε∗i + ρh(κ)ty0 = σ̂cλh

t∑
i=1

ρh(κ)t−iz∗i + ρh(κ)ty0,

where y∗t is constructed to be a linear sum of the standard normal distributed variables (plus

the initial condition). This implies that both y∗t and z (Y ∗, ρ, T ) have continuous distribution

functions uniformly. Therefore, we can establish:

lim
h→0

sup
κ∈K

sup
x

∣∣∣∣Pr{z (Y, ρ, T ) < x} − Pκ{uρ∗t < x}
∣∣∣∣ = 0.
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Similarly, for z (Y, κ, h), we have

Pr(z (Y, κ, h) < x) = Pr

(
z (Y, ρ, T ) < x

1

ςh(ρh)h

(
1 +

ς ′h(ρh)− ς ′h(ρh)

ς ′h(ρh)

)−1
)

= Pr (z (Y, ρ, T ) < −xρh + op(1))

= Pr (z (Y, ρ, T ) < −x+ op(1)) .

From this, we have established that

lim
h→0

sup
κ∈K

sup
x

∣∣∣∣Pr{z (Y, κ, h) < x} − Pr ∗{z (Y ∗, κ, h) < x}
∣∣∣∣ = 0.

The final claim is a direct result from Lemma 1 in Mikusheva (2007). The result in Remark

4.1 is established based on the same argument and is omitted.

8.4 Proof of Theorem 4.2

Before we prove Theorem 4.2, we need to introduce three lemmas. All three lemmas rely on

the probabilistic embedding of the partial sum process in an expanded probability space. For

details about the embedding, see Park (2003).

Lemma 8.3 (Park (2003), Lemma 3.5(a)) Assume that zj are i.i.d. random variable

with mean 0 and variance σ2
z , and E|zj |r <∞ for some r ≥ 8. Let N(t) = W (1 + t)−W (1),

and M(t) be a Brownian motion which is independent on W . Then

1√
Tσz

T∑
t=1

ut = W (1) +
1

T 1/4
M(V ) +

1√
T
N(V ) + op(T

−1/2), (35)

where B = (W,V,U) is a Brownian motion with variance matrix Σ as

Σ =

 1 µ3/3σ
3
z µ3/σ

3
z

µ3/3σ
3
z %/σ4

z (µ4 − 3σ4
z + 3%)/6σ4

z

µ3/σ
3
z (µ4 − 3σ4

z + 3%)/6σ4
z (µ4 − σ4

z)/σ
4
z


Here, µ3 = Ez3

j , µ4 = Ez4
j , % = E(τj−σ2

z)
2. We define τj implicitly by Skorohod’s embedding

scheme (Skorohod, 1965) such that on an extended probability space, we have the distribution

equivalence given by {
1√
Tσz

j∑
i=1

zi

}T
j=1

=d

{
W

(
1

Tσ2
z

j∑
i=1

τi

)}
,

where
(

1
Tσ2

z

∑j
i=1 τi

)
is known as the stopping time.

33



Lemma 8.4 (Mikusheva (2015), Theorem 1) Suppose c ≤ 0 and zj satisfies the assump-

tion in Lemma 8.3. Let x̃t =
∑t

j=1 exp
(
c
(
t−j
T

))
zj, and zj is an i.i.d. random variable with

mean 0 and variance 1. Then we have the following results:

1

T

T∑
t=1

x̃t−1ut =

∫ 1

0
Jc(r)dW (r) +

1

T 1/4
Jc(1)M(V )

+
1√
T

(
−c
∫ 1

0

∫ r

0
ec(r−s)Jc(s)dV (s)dW (r) + Jc(1)N(V ) +

1

2
M2(V )− 1

2
U

)
+ op(T

−1/2).

(36)

1

T 2

T∑
t=1

x̃2
t =

∫ 1

0
J2
c (r)dr − 2c√

T

∫ 1

0
Jc(r)

∫ r

0
ec(r−s)Jc(s)dV (s)dr

− 1√
T

∫ 1

0
J2
c (r)dV (r) +

1√
T
J2
c (1)V − 2µ3

3
√
T

∫ 1

0
Jc(r)dr + op(T

−1/2).

(37)

1

T 3/2

T∑
t=1

x̃t =

∫ 1

0
Jc(r)dr −

c√
T

∫ 1

0

∫ r

0
ec(r−s)Jc(s)dV (s)dr − 1√

T

∫ 1

0
Jc(r)dV (r)

+
1√
T
Jc(1)V − µ3

3
√
T

+ op(T
−1/2).

(38)

Lemma 8.5 Under Model 6, if κ ≥ 0, then we have

1. 1
T

∑T
t=1 xtzt+1 = Υ3 + 1

T 1/4R3,T−1/4 + 1
T 1/2R3,T−1/2 + op(T

−1/2);

2. 1
T 2

∑T
t=1 x

2
t = Υ1 + 1

T 1/2R1,T−1/2 + op(T
−1/2);

3. 1
T 3/2

∑T
t=1 xt = Υ2 + 1

T 1/2R2,T−1/2 + op(T
−1/2);

where

R3,T−1/4 =Jc(1)N(V ) +
b

c
M(V );

R3/T−1/2 =− c
∫ 1

0

∫ r

0
ec(r−s)Jc(s)dV (s)dW (r) +

(
Jc(1) +

b

c

)
N(V ) +

1

2
M2(V )− 1

2
U ;

R2,T−1/2 =− c
∫ 1

0

∫ r

0
er(c−s)Jc(s)dV (s)dr −

∫ 1

0
Jc(r)dV (r) + Jc(1)V − µ3

3
;

R1,T−1/2 =− 2c

∫ 1

0
Jc(r)

∫ r

0
ec(r−s)Jc(s)dV (s)dr −

∫ 1

0
J2
c (r)dV (r) + J2

c (1)V

+ 2b

∫ 1

0
(erc − 1)

∫ r

0
ec(r−s)Jc(s)dV (s)dr − 2

µ3

3

∫ 1

0
Jc(r)dr.

Proof. By backward substitutions, we can write xt as

xt =

t∑
j=1

e(t−j)c/T zj +
b√
T

ect/T − 1

ec/T − 1
+ ect/Tx0 + op(T

−1/2)

=x̃t +
b√
T

ect/T − 1

ec/T − 1
+ ect/Tx0 + op(T

−1/2).

(39)
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This expression allows us to evaluate the asymptotic behavior of 1
T

∑T
t=1 xtzt+1 , 1

T 2

∑T
t=1 x

2
t

and 1
T 3/2

∑T
t=1 xt.

1. We now show the first claim in Lemma 8.5.

1

T

T∑
t=1

xtzt+1 =
1

T

T∑
t=1

zt+1

t∑
j=1

ec(
t−j
T )zj +

1

T

T∑
t=1

b√
T

etc/T − 1

ec/T − 1
zt+1 +

x0

T

T∑
t=1

etc/T zt+1

=
1

T

T∑
t=1

x̃tzt+1 +
1

T

T∑
t=1

b√
T

etc/T − 1

ec/T − 1
zt+1 +

x0

T

T∑
t=1

etc/T zt+1.

The approximation to the first term is given in Lemma 8.4(1). For the second term, we

have

1

T

T∑
t=1

b√
T

etc/T − 1

ec/T − 1
zt+1 =

b

T (ec/T − 1)

1√
T

T∑
t=1

(etc/T − 1)zt+1

=
b

c

1√
T

T∑
t=1

ect/T zt+1 −
b

c

1√
T

T∑
t=1

zt+1 + o(T−1)

=
b

c

∫ 1

0
ercdW (r) +

b

c

(
W (1) +

1

T 1/4
M(V ) +

1√
T
N(V )

)
+ op(T

−1/2).

where the last equality is due to Lemma 8.3. For the third term, we have

x0

T

T∑
t=1

etc/T zt+1 =
x0√
T

1√
T

T∑
t=1

etc/T zt+1 =
y0

σψ
√
N

1√
T

T∑
t=1

etc/T zt+1 = γ0

∫ 1

0
ercdW (r)+op(T

−1/2).

2. To show the second claim of Lemma 8.5, note that

1

T 2

T∑
t=1

x2
t =

1

T 2

T∑
t=1

x̃2
t +

1

T 2

T∑
t=1

b2

T

(etc/T − 1)2

(ec/T − 1)2
+

1

T 2

T∑
t=1

2b√
T

etc/T − 1

ec/T − 1

T∑
t=1

t∑
j=0

e(t−j)c/T zj

+
1

T 2

T∑
t=1

2b√
T

etc/T − 1

ec/T − 1
etc/Tx0 +

1

T 2

T∑
t=1

etc/Tx0

t∑
j=0

e(t−j)c/T zj +
1

T 2

T∑
t=1

e2tc/Tx2
0.

The first term is approximated by using Lemma 8.4. For the second term, as in Zhou

and Yu (2015), we can write

1

T 2

T∑
t=1

b2

T

(etc/T − 1)2

(ec/T − 1)2
=
e2c − 4ec + 2c+ 3

2c3
b2 +O(T−1).
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For the third term, we have

1

T 2

T∑
t=1

2b√
T

etc/T − 1

ec/T − 1

T∑
t=1

t∑
j=0

e(t−j)c/T zj

=
2b

T (ec/T − 1)

1

T

T∑
t=1

(ect/T − 1)
1√
T

t∑
j=1

e(t−j)c/T zj

=
2b

c

1

T

T∑
t=1

(ect/T − 1)
1√
T

t∑
j=1

e(t−j)c/T zj +Op(T
−1)

=
2b

c

∫ 1

0
(ecr − 1)Jc(r)dr +

2b

c

1

T

T∑
t=1

(ect/T − 1)
c√
T

∫ t/T

0
ec(t/T−s)Jc(s)dV (s) + op(T

−1/2)

=
2b

c

∫ 1

0
(ecr − 1)Jc(r)dr +

2b√
T

∫ 1

0
(ecr − 1)

∫ r

0
ec(r−s)Jc(s)dV (s)dr + op(T

−1/2).

Finally, for the last three terms, we have:

1

T 2

T∑
t=1

2b√
T

etc/T − 1

ec/T − 1
etc/Tx0 =

e2c − 2ec + 1

c2
bγ0 +O(T−1).

1

T 2

T∑
t=1

etc/Tx0

t∑
j=0

e(t−j)c/T zj = 2γ0

∫ 1

0
ercJc(r)dr +Op(T

−1).

1

T 2

T∑
t=1

e2tc/Tx2
0 = γ2

0

e2c − 1

2c
+O(T−1).

3. For the last claim, we have

1

T 3/2

T∑
t=1

xt =
1

T 3/2

T∑
t=1

x̃t +
T−2b

ct/T − 1

(
T∑
t=1

etc/T − T

)
+

1

T 3/2

T∑
t=1

ect/Tx0 +Op(T
−1)

=
1

T 3/2

T∑
t=1

x̃t +
b(ec(T+1)/T − ec/T )

T 2(ec/T − 1)2
− b

T (ec/T − 1)
+
ec − 1

c
γ0 +Op(T

−1)

=

∫ 1

0
Jc(r)dr −

c√
T

∫ 1

0

∫ r

0
ec(r−s)Jc(s)dV (s)dr − 1√

T

∫ 1

0
Jc(r)dV (r)

+
1√
T
Jc(1)V − µ3

3
√
T

+
ec − c− 1

c2
b+

ec − 1

c
γ0 + op(T

−1/2).

By summing all three terms, we obtain the results in Lemma 8.5.

Now we are in the position to prove Theorem 4.2. To show the probabilistic expansion,

we rewrite z (Y, ρ, T ) as:

z (Y, ρ, T ) =

1
T

∑T
t=1 xt−1ut − 1

T 3/2

∑T
t=1 xt−1

1√
T

∑T
t=1 ut

1
T 2

∑T
t=1 x

2
t−1 −

(
1

T 3/2

∑T
t=1 xt−1

)2 .
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For the numerator and the denominator, after applying Lemma 8.5, we obtain

Υ3 −Υ2W (1) +
1

T 1/4
(R3,T−1/4 −M(V )Υ2)

+
1

T 1/2

(
R3,T−1/2 −N(V )Υ2 −R2,T−1/2W (1)

)
− 1

T 3/4
R2,T−1/2M(V )− 1

T
R2,T−1/2N(V ) + op(T

−1/2),

and

Υ1 −Υ2
2 +

1

T 1/2
(R1,T−1/2 − 2R2,T−1/2)− 1

T
R2,T−1/2 + op(T

−1/2).

We now expand z (Y, ρ, T ) around the in-fill limit by the Taylor series expansion and obtain

z (Y, ρ, T ) =
Υ3 −Υ2W (1)

Υ1 −Υ2
2

+
1

T 1/4

R3,T−1/4 −M(V )Υ2

Υ1 −Υ2
2

+
1

T 1/2

 R
3,T−1/2−N(V )Υ2−R2,T−1/2W (1)

Υ1−Υ2
2

−Υ3−Υ2W (1)
(Υ1−Υ2

2)2

(
R1,T−1/2 − 2R2,T−1/2

)
+ op

(
T−1/2

)
=zy0 (ρ, θ) + T−1/4A+ T−1/2B + op(T

−1/2),

where

A =
R3,T−1/4 −M(V )Υ2

Υ1 −Υ2
2

,

B =
R3,T−1/2 −N(V )Υ2 −R2,T−1/2W (1)

Υ1 −Υ2
2

− Υ3 −Υ2W (1)

(Υ1 −Υ2
2)2

(
R1,T−1/2 − 2R2,T−1/2

)
.

Then, the expansion result of z (Y, κ, h) can be obtained from (19) and the Taylor series

expansion of hς ′h(ρh(κ)) = − exp(κh).

For the second claim, we have

Pr(z (Y ∗, κ, T ) < x) = Pr(zy0κ, θ < x) + o(T−1/2).

This result follows from Park (2003) and Remark 2 to Remark 6 of Mikusheva (2015), since,

under parametric bootstrap, V (t) = 0, and U is independent of W . When comparing the

distributional order of z (Y, κ, T ) and z (Y ∗, κ, T ), the additional term from the expansion of

z (Y ∗, κ, T ) (under the normality in the parametric bootstrap setting) is of order of o(T−1/2).

Finally, for the last claim in Theorem 4.2, following Theorem 3 in Mikusheva (2015), we

can easily show the difference between the distribution of the coefficient-based statistic and

that of the bootstrap statistic is of order o(T−1/2).
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