
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Economics School of Economics

12-2018

Mild-explosive and local-to-mild-explosive
autoregressions with serially correlated errors
Yiu Lim LUI
Singapore Management University, yl.lui.2015@phdecons.smu.edu.sg

Weilin XIAO
Zhejiang University

Jun YU
Singapore Management University, yujun@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/soe_research
Part of the Econometrics Commons

This Working Paper is brought to you for free and open access by the School of Economics at Institutional Knowledge at Singapore Management
University. It has been accepted for inclusion in Research Collection School Of Economics by an authorized administrator of Institutional Knowledge
at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LUI, Yiu Lim; XIAO, Weilin; and YU, Jun. Mild-explosive and local-to-mild-explosive autoregressions with serially correlated errors.
(2018). 1-26. Research Collection School Of Economics.
Available at: https://ink.library.smu.edu.sg/soe_research/2222

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/200255069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/soe?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/soe_research?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/342?utm_source=ink.library.smu.edu.sg%2Fsoe_research%2F2222&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


 

 

 

 

 

 

 

 

 

Mild-explosive and Local-to-mild-explosive 

Autoregressions with Serially Correlated Errors 

Yiu Lim Lui, Weilin Xiao, Jun Yu 

December 2018 

 

 

 

 

 

 

 

 

Paper No. 22-2018 

 

 

 

ANY OPINION EXPRESSED ARE THOSE OF THE AUTHOR(S) AND NOT NECESSARILY THOSE OF 
THE SCHOOL OF ECONOMICS, SMU 



Mild-explosive and Local-to-mild-explosive

Autoregressions with Serially Correlated Errors∗

Yiu Lim Lui
Singapore Management University

Weilin Xiao
Zhejiang University

Jun Yu
Singapore Management University

December 15, 2018

Abstract

This paper firstly extends the results of Phillips and Magdalinos (2007a) by allow-
ing for anti-persistent errors in mildly explosive autoregressive models. It is shown that
the Cauchy asymptotic theory remains valid for the least squares (LS) estimator. The
paper then extends the results of Phillips, Magdalinos and Giraitis (2010) by allowing
for serially correlated errors of various forms in local-to-mild-explosive autoregressive
models. It is shown that the result of smooth transition in the limit theory between
local-to-unity and mild-explosiveness remains valid for the LS estimator. Finally, the
limit theory for autoregression with intercept is developed.

JEL classification: C22
Keywords: Anti-persistent, unit root, mildly explosive, limit theory, bubble, fractional
integration, Young integral

1 Introduction

The autoregressive (AR) model with a mildly explosive root was first studied in Phillips

and Magdalinos (2007a) (PMa hereafter). It allows for the development of an invariance

principle for the least squares (LS) estimator of the AR parameter. The limit distribution

is Cauchy which is the same as that developed in White (1958) and Anderson (1959) for the

pure explosive AR models with independent and identically distributed (i.i.d.) Gaussian

errors and the zero initial condition.

The AR model with a mildly explosive root considered in PMa takes the form of

yt =
(

1 +
c

nα

)
yt−1 + ut, (1)

∗Yiu Lim Lui, School of Economics, Singapore Management University, 90 Stamford Rd, Singa-
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where y0 = op(n
α/2), ut

iid∼ (0, σ2), t = 1, ..., n, c > 0 and α ∈ (0, 1). Let ρn = 1 + c
nα . PMa

showed that as n→∞,
nα

2c
ρnn (ρ̂n − ρn)⇒ C, (2)

where ρ̂n denotes the LS estimator of ρn and C is a standard Cauchy variate. The model

and the asymptotic theory have been used extensively in the literature on identifying

rational bubbles in asset prices; see Phillips et al. (2011), Phillips and Yu (2011), Phillips

et al. (2015a, 2015b).

Considerable efforts have been made in the literature to extend the results in PMa to

dependent errors with the following a linear structure

ut =
∞∑
j=0

cjεt−j . (3)

For example, Phillips and Magdalinos (2007b) (PMb hereafter) considered the case where

εt is an i.i.d. sequence and
∑∞

j=0 j |cj | <∞ which imply a weakly dependent error process.

Magdalinos (2012) assumed that εt is a martingale difference sequence (MDS) and consid-

ered a general class of weakly dependent errors with a weaker summability condition on

(cj), that is,

∞∑
j=0

|cj | <∞, and
∞∑
j=0

cj 6= 0. (4)

He also considered the error process where

cj = L(j)j−1+d, (5)

for some memory parameter d ∈ (0, 0.5) with L(j) being a slow-varying function at infinity.

If we let ψ(k) be the kth order autocovariance for ut, it can be shown that ut does not

have absolutely summable autocovariances (i.e.
∑∞

k=1 ψ(k) =∞) when d ∈ (0, 0.5). This

range of d therefore corresponds to the long-range-dependent (or long-memory) behavior

and covers stationary AFRIMA processes. Both PMb and Magdalinos (2012) showed that

the asymptotic result in (2) remains valid. However, it is unknown if the asymptotic result

in (2) remains valid when d ∈ (−0.5, 0), that is, the error process is anti-persistent.

It is interesting to note that the rate of convergence in (2) bridges that of the local-

to-unity model and that of the pure explosive model. However, there is a discontinuity in

the form of the limit distributions when the root transits from the local-to-unity to the

pure explosive root. Phillips, Magdalinos and Giraitis (2010) (PMG hereafter) showed

that the mildly explosive model of PMa is strongly linked to the local-to-unity model, if

one partitions the data with sample size n to m blocks containing K observations, and

replacing ρn in model (1) with ρn,m = 1 + cm
n , c > 0, that is

yt =
(

1 +
cm

n

)
yt−1 + ut, (6)
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where ut
iid∼ (0, σ2).1 Under a sequential-asymptotic approach by first letting n → ∞

and then letting m → ∞, one obtains 1
2c

n
me

cm(ρ̂n − ρn,m) ⇒ C. By letting n → ∞
with m fixed, one obtains the local-to-unity asymptotic distribution as in Chan and

Wei (1988) and Phillips (1987) with n(ρ̂n − ρn,m) ⇒
∫ 1

0 JcmdW (s)/
∫ 1

0 J
2
cm(s)ds where

Jcm(t) =
∫ t

0 exp(−cm(t − s))dW (s) and W is a standard Brownian motion. Therefore,

a smooth transition from the local-to-unity distribution to the Cauchy distribution is

achieved. However, it is unknown if this smooth transition continues to hold under seri-

ally correlated errors.

Fei (2018) considered the mildly explosive AR model with intercept and i.i.d. errors.

He showed that the asymptotic distribution of the LS estimator of the intercept is Gaus-

sian, and somewhat surprisingly, that the asymptotic distribution of the LS estimator of

the AR coefficient is also Gaussian. It is unknown if the limit theory remains valid under

serially correlated errors.

This paper contributes to this burgeoning literature in three aspects. First, we show

that the asymptotic Cauchy theory developed in (2) remains valid when d ∈ (−0.5, 0) in

(5). Second, we show that the smooth transition result of PMG continues to hold when the

error process is weakly dependent, or long-range-dependent, or anti-persistent. Third, we

show that the limit theory of Fei (2018) does not necessarily hold under serially correlated

errors.

Long-range dependence is widely found in economic and financial time series; see

Cheung (1993) and Baillie et al. (1996). Empirical relevance of anti-persistent processes

in financial time series was recently documented in Gatheral et al. (2018) and Xiao et al.

(2018). Hence, it is important to generalize the results of PMa, PMG and Fei (2018) by

allowing for long-range-dependent or anti-persistent errors.

The paper is organized as follows. Section 2 presents our main assumptions and briefly

reviews several forms of serially dependent error processes. Section 3 introduces the mildly

explosive AR model with anti-persistent errors and derives the asymptotic theory. Section

4 develops asymptotic theory in the PMG model with serially correlated errors using a

sequential-asymptotic approach. Section 5 obtains the asymptotic theory for a model with

intercept. Proofs of the main results in the paper are given in the Appendix.

We use the following notations throughout the article:
p→, a.s.→ ,⇒, a∼ and

iid∼ denote con-

vergence in probability, convergence almost surely, weak convergence, asymptotic equiva-

lence, and independent and identical distribution, respectively.

2 Assumptions of Errors

As our paper aims to extend model in PMa, PMG and Fei (2018) with a serially dependent

error process, to fix ideas and facilitate discussions, we impose the following 3 distinct

assumptions on {ut}nt=1 within the linear process (LP) as in (3). These assumptions

induce weak-dependent (WD), long-memory (LM) or anti-persistent (AP) property to the

1If c < 0, this model is the exactly same as the weak unit root model of Park (2003).
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error process.

Assumption 1 (LP) We assume εt
iid∼ (0, σ2), c0 = 1, and we impose the following three

different assumptions to the coefficients {cj}:

• (WD)
∑∞

j=0 |cj | <∞,
∑∞

j=0 cj 6= 0.

• (LM) for j ≥ 1, cj = L(j)j−1+d, d ∈ (0, 0.5).2

• (AP) for j ≥ 1, cj = L(j)j−1+d, d ∈ (−0.5, 0) and
∑∞

j=0 cj = 0.

where L(·) is a slow-varying function at infinity.

The autocovariance function of {ut} is very different under these three assumptions.

Under LP-WD, one can show that {ut} has absolutely summable autocovariances and the

summation is non-zero, i.e.,
∑∞

k=1 |ψ(k)| ∈ (0,∞). Under LP-AP, {ut} also has absolutely

summable autocovariances but the summation is zero, i.e.,
∑∞

k=1 ψ(k) = 0. Under LP-

LM, the autocovariances are not absolutely summable, i.e.,
∑∞

k=1 |ψ(k)| =∞, indicating a

slow decaying autocovariance function, demonstrating the long-memory property of {ut}.
For an anti-persistent process, although

∑∞
j=0 |cj | < ∞ when d ∈ (−0.5, 0), {ut} is not

weakly dependent due to the restriction
∑∞

j=0 cj = 0, violating LP-WD. Moreover, as

the autocovariance function of {ut} asymptotically has the same sign as d. A negative

value for d implies that the jth autocovariance is negative, suggesting the anti-persistent

property of {ut}, (see Giraitis et al. (2012), Proposition 3.2.1 (3), p. 39).

Assumption LP is also general enough to include stationary ARFIMA(p, d, q) processes

where ut = (1 − L)−dφ(L)−1θ(L)εt =
∑∞

j=0 cjεt−j .With d = 0, a stationary ARMA(p, q)

process has an absolutely summable autocovariance function. Thus, it is covered by LP-

WD. With d ∈ (−0.5, 0)∪(0, 0.5), LP-AP or LP-LM is applicable, it can be shown that for

j ≥ 1, cj can be asymptotically approximated by θ(1)
φ(1)Γ(d)j

−1+d. When d ∈ (−0.5, 0), the

stationary ARFIMA process has zero sum linear coefficients, i.e.,
∑∞

j=0 cj = 0. It is well-

known that ut corresponds to a fractional Brownian motion (fBM) with Hurst parameter

H = 1/2+d; see Giraitis et al . (2012). An fBM with H ∈ (0, 0.5) has a rough sample path

and is anti-persistent, while H ∈ (0.5, 1) corresponds to an fBM with a smooth sample

path.

3 Mildly Explosive Model

This section studies the mildly explosive model with an anti-persistent error process.

Consider the AR model given by (1) and (3) with {cj} satisfying LP-AP.

We are now in a position to develop the asymptotic theory for the centered LS esti-

mator, that is

ρ̂n − ρn =

∑n
t=1 yt−1ut∑n
t=1 y

2
t−1

, (7)

2Note that LP-WD and LP-LM are the same as Assumption LP(i) and LP(ii) in Magdalinos (2012).
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where ρ̂n = (
∑n

t=1 yt−1yt)(
∑n

t=1 y
2
t−1)−1. Following Magdalinos (2012), we define the fol-

lowing two terms Yn(d) and Zn(d),

Yn(d) =
1

n( 1
2

+d)α

τn(β)∑
t=1

ρ−tn un+1−t, (8)

Zn(d) =
1

n( 1
2

+d)α

τn(β)∑
t=1

ρ−tn ut, (9)

where τn(β) = bnβ/2c, and β ∈ (α,min{3α/2, 1}). By construction, these two terms

have the same variance. We now introduce the following lemma and theorem. The lemma

obtains the asymptotic variance of Zn(d) (and thus that of Yn(d)) and the joint convergence

of Yn(d) and Zn(d).

Lemma 3.1 Let y0 = op

(
n( 1

2
+d)αL(nα)

)
and {cj} satisfy Assumption LP-AP. As n →

∞,

1. 1
L(nα)2

E
[
Zn(d)2

]
→ σ2c−(1+2d) Γ(d)2

2 cos(πd) ;

2. 1
L(nα) [Yn(d), Zn(d)]⇒ [Yd, Zd],

where Yd and Zd are independent N(0, Vd) random variable with Vd = σ2c−(1+2d) Γ(d)2

2 cos(πd) .

Theorem 3.1 Under the same set of assumptions as in Lemma 3.1, as n→∞, we have

nα

2c
ρnn (ρ̂n − ρn)⇒ C, (10)

where C is a standard Cauchy variable.

Remark 3.1 If we replace the i.i.d. assumption for {εt}nt=1 in Assumption LP with the

martingale difference sequence {εt,Ft}nt=1, where Ft is the natural filtration and E[ε2t |Ft−1] =

σ2, Lemma 3.1 and Theorem 3.1 remain valid.

Remark 3.2 Lemma 3.1 and Theorem 3.1 extend Lemma 1 (ii), Lemma 3, and Theorem

1 of Magdalinos (2012) from the case when d ∈ (0, 0.5) to that when d ∈ (−0.5, 0). Note

that the convergence rate of the LS estimator does not depend on d.

4 Local-to-mild-explosive Model

Now we consider the model given by (6) which is a local-to-mild-explosive model. As

suggested in PMG (2010), one way of thinking of the model specification is that the

total number of observations (n) is partitioned into m blocks with K samples so that

n = m×K. Thus, the chronological time for yt becomes t = bKjc+ k, for k ∈ {1, ...,K}
and j ∈ {0, 1, ...m− 1}. When ut

iid∼ (0, σ2), it is easy to see that as n→∞ with fixed m,
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this is a local-to-unity model and hence the standard local-to-unity asymptotic theory is

applicable. However, if one assumes n→∞ followed by m→∞, (6) is a mildly explosive

AR model as the root is in a larger neighborhood of unity compared to the local-to-unity;

see Park (2003) and PMG for detailed discussions.

To be more specific, with fixed m, we have

n(ρ̂n − ρn,m)⇒
∫ 1

0
Jcm(s)dW (s)/

∫ 1

0
J2
cm(s)ds.

With the sequential asymptotics, we have

1

2c

n

m
ecm (ρ̂n − ρn,m) ⇒

e−cm
∫ 1

0 Jcm(s)dW (s)

2ce−2cm
∫ 1

0 J
2
cm(s)ds

, as n→∞ with fixed m

=
e−cm

∫m
0 J̃c(s)dW̃ (s)

2ce−2cm
∫m

0 J̃2
c (s)ds

⇒ C, as m→∞, (11)

where W̃ (t) =
√
mW (t/m) and J̃c(t) =

∫ t
0 e

c(t−s)dW̃ (s). To see the link between this

sequential-asymptotic result in (11) and the asymptotic result in (10), we can replace nα

by n
m and note that ecm = exp

(
cm
n

)n ≈ ρnn,m.

Before we develop our limit theory, we first review the functional central limit theorem

due to Giraitis et al. (2012) which extends Donsker’s theorem.

Lemma 4.1 (Corollary 4.4.1 in Giraitis et al. (2012)) Suppose ut =
∑∞

j=0 cjεt−j,

and εt
iid∼ (0, σ2). Assume cj

a∼ γj−1+d with γ being a constant, as j → ∞, and further-

more, either one of the following conditions is satisfied,

1. d ∈ (0, 0.5);

2. d ∈ (−0.5, 0), E|εt|p <∞ with p > (0.5 + d)−1 and
∑∞

j=0 cj = 0.

Then we have

n−( 1
2

+d)
bnrc∑
t=1

ut ⇒ ςBH(r), (12)

in D[0, 1] with the uniform metric, where H = 1
2 + d, ς =

√
σ2γ2 B(d,1−2d)

d(1+2d) with B(x, y) =
Γ(x)Γ(y)
Γ(x+y) , BH(r) being an fBM with Hurst parameter H.

An fBM with Hurst parameter H ∈ (0, 1) is a Gaussian process with zero mean and

the following covariance,

E(BH(r)BH(s)) =
1

2

(
|r|2H + |s|2H − |r − s|2H

)
.

Clearly, if H = 1/2, BH(t) becomes a standard Brownian motion, W (t). Unlike W (t),

fBM is not a semi-martingale whenever H 6= 1/2. Therefore, we cannot interpret the
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stochastic integral with respect to fBM as an Itô integral. In this paper, following El

Machkouri et al. (2016) and Xiao and Yu (2018a, 2018b), we interpret the stochastic

integral with respect to fBM as a Young integral when we study the asymptotic theory

for the error process under LP-LM or LP-AP. This interpretation is in contrast to PMG

where J̃c(t) =
∫ t

0 e
c(t−s)dW̃ (s) is viewed as an Itô integral. Moreover, we need a different

asymptotic theory to obtain the sequential limit.

We are now ready to extend the result of PMG with a serially dependent error process.

We first study the error process with weak dependence, then we consider the case with

long memory and anti-persistence.

4.1 Weakly dependent errors

Lemma 4.2 In model given by (6) and (3) with {cj} satisfying LP-WD. Let y0 = op(n
1/2)

and E|εt|β+ε <∞ for some β > 2 and ε > 0. As n→∞, with fixed m, we have:

n (ρ̂n,m − ρn,m)⇒
∫ 1

0 Jcm(r)dW (r) + 1
2

(
1− υ

λ2

)∫ 1
0 (Jcm(r))2 dr

,

where υ = σ2
∑∞

j=0 c
2
j and λ = σ

∑∞
j=0 cj .

Note that the above result can be directly obtained from Theorem 1 of Phillips (1987).

Theorem 4.1 Under the same set of assumptions as in Lemma 4.2, as n→∞ followed

by m→∞, we have:

1

2c

n

m
ecm (ρ̂n − ρn,m) ⇒

e−cm
∫ 1

0 Jcm(s)dW (s) + e−cm 1
2

(
1− υ

λ2

)
2ce−2cm

∫ 1
0 J

2
cm(s)ds

, as n→∞ with fixed m

=
e−cm

∫m
0 J̃c(s)dW̃ (s)

2ce−2cm
∫m

0 J̃2
c (s)ds

+Op(e
−cm)⇒ C, as m→∞. (13)

Note that the difference between (13) and (11) is the extra term e−cm 1
2

(
1− υ

λ2

)
in

(13). This term vanishes when m→∞.

Remark 4.1 The limit theory given in Theorem 4.1 is the same as that in (11). Hence

a smooth transition between the local-to-unity theory and the mild-explosive theory holds

under weakly dependent errors.

4.2 Long-range-dependent errors

Lemma 4.3 In model given by (6) and (3) with {cj} satisfying LP-LM. Let y0 = op
(
n1/2+d

)
.

As n→∞ with fixed m, we have:

1. 1
nH
ybnrc ⇒ ςJHcm(r);

2. 1
nH+1

∑n
t=1 yt ⇒ ς

∫ 1
0 J

H
cm(r)dr;
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3. 1
n2H+1

∑n
t=1 y

2
t ⇒ ς2

∫ 1
0 (JHcm(r))2dr;

4. 1
n2H

∑n
t=1 yt−1ut ⇒ ς2

(
cmZ(1)

∫ 1
0 e

cmsdBH(s) +R(1)
)
.

where

JHcm(r) =

∫ r

0
ecm(r−s)dBH(s), ς =

√
σ2L2(∞)

B(d, 1− 2d)

d(1 + 2d)
,

L(∞) = lim
j→∞

L(j), Z(1) =

∫ 1

0
e−cmsBH(s)ds,

R(1) =
1

2

[
BH(1)

]2 − cm∫ 1

0
(BH(s))2ds+ (cm)2

∫ 1

0

∫ s

0
ecm(r−s)BH(r)BH(s)drds.

Since BH(s) is not a semimartingale, we treat JHcm(r) as a Young Integral in the

present paper. By the self-similarity property of fBM, we have BH
(
t
m

)
=
(

1
m

)H
BH(t).

Let B̃H(t) := mHBH
(
t
m

)
, we now introduce the following corollary.

Corollary 4.2 Under the same set of assumptions as in Lemma 4.3 , when n→∞ with

fixed m, we have:

1. 1
n2H+1

∑n
t=1 y

2
t ⇒ ς2

m2H+1

∫m
0

(
J̃Hc (s)

)2
ds;

2. 1
n2H

∑n
t=1 yt−1ut ⇒ ς2

m2H

(
c
∫m

0 e−crB̃H(r)dr
∫m

0 ecsdB̃H(s) + R̃(m)
)

;

where

J̃Hc (r) =

∫ r

0
ec(r−s)dB̃H(s),

R̃(m) =
1

2

[(
B̃H(m)

)2
− 2

∫ m

0

(
B̃H(s)

)2
ds+ c2

∫ m

0

∫ r

0
ec(r−s)B̃H(r)B̃H(s)drds

]
.

To build the link between the mild-explosive model and the local-to-mild-explosive

model, we allow m→∞ and have the following lemma.

Lemma 4.4 In model (6), under the same set of assumptions as in Lemma 4.3 , when

m→∞, we have

1. e−2cm
∫m

0

(
J̃Hc (s)

)2
ds⇒ c

2

(∫∞
0 e−csB̃H(s)ds

)2
;

2. e−cmc
∫m

0 e−crB̃H(r)dr
∫m

0 ecsdB̃H(s)⇒ c
(∫∞

0 e−csB̃H(s)ds
)√

HΓ(2H)
c2H

η;

3. e−cmR̃(m)→ 0,

where η follows a standard normal distribution.
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Theorem 4.3 Under the same set of assumptions as in Lemma 4.3, when n→∞ followed

by m→∞, we have
1

2c

n

m
ecm (ρ̂n − ρn,m)⇒ C . (14)

Remark 4.2 The limit theory given in Theorem 4.3 is the same as that in (11). Hence a

smooth transition between the local-to-unity theory and the mild-explosive theory continues

to hold under long-range-dependent errors.

4.3 Anti-persistent errors

Lemma 4.5 In model given by (6) and (3) with {cj} satisfying LP-AP. Let y0 = op
(
n1/2+d

)
and E|εt|p <∞ with p > (0.5 + d)−1. As n→∞ with fixed m, we have

1. The first three results in Lemma 4.3 remain valid.

2. 1
n2H

∑n
t=1 yt−1ut

a∼ ς2
[
cmZ(1)

∫ 1
0 e

cmsdBH(s) +R(1)
]

+ n−2d

2 E(u2
t ).

Comparing the second result in Lemma 4.5 with the fourth result in Lemma 4.3, we

can see that there is an extra term n−2d

2 E(u2
t ) which is due to a strong convergence result,

1
n

∑n
t=1 u

2
t
a.s.→ E(u2

t ) and n−1−2d
∑n

t=1 u
2
t = n−2d 1

n

∑n
t=1 u

2
t . To obtain a smooth transition

between the local-to-unity theory and the mild-explosive theory, we have to strengthen

the assumption and make the extra term asymptotically negligible as m→∞.

Theorem 4.4 Under the same set of assumptions as in Lemma 4.5, if n→∞ following

by m → ∞ and n1−2H

exp(δm) → 0 for some δ ∈ (0, c), then all the results in Lemma 4.4 and

Theorem 4.3 continue to hold.

Remark 4.3 The smooth transition between the local-to-unity theory and the mild-explosive

theory continues to hold under anti-persistent errors.

5 Mild-explosive Model with Intercept

While PMa and Magdalinos (2012) showed that the LS estimator enjoys a Cauchy limit

theory under the mildly explosive model, Fei (2018) showed that when an intercept is

added to a mildly explosive AR(1) model the LS estimator is asymptotically normal.

Considering the following model:

yt = µ+ ρnyt−1 + ut, ρn =
(

1 +
c

nα

)
, α ∈ (0, 1), µ 6= 0, (15)

where ut
iid∼ (0, σ2), and y0 = o(nα/2). Under this model, Fei (2018) proved that the

centered LS estimator µ̂ and ρ̂n converge to a normal distribution: n1/2(µ̂−µ)⇒ N(0, σ2)

and ρnn(ρn−1)−3/2(ρ̂n−ρn)⇒ N(0, 2σ2/µ2). Now we introduce the three forms of serially

correlated errors to model (15).
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5.1 Weak-dependent errors

The results are summarized in the following lemma and theorem.

Lemma 5.1 In model given by (15), (3) with {cj} satisfying LP-WD. Let y0 = op(n
α/2).

As n→∞, we have

1. ρ−nn
nα yn

p→ µ
c ;

2. ρ−nn
n2α

∑n
t=1 yt−1

p→ µ
c2

;

3. (ρ2
n − 1)ρ

−2n
n

n2α

∑n
t=1 y

2
t−1

p→ µ2

c2
;

4. ρ−nn
L(nα)n3α/2

∑n
t=1 yt−1ut ⇒

(µ
c

)
Y0,

where Y0 is a N(0, λ2/2c) variate and λ = σ
∑∞

j=0 cj .

Theorem 5.1 Under the same set of assumptions as in Lemma 5.1, as n→∞, we have

n1/2(µ̂− µ)⇒ N(0, λ2), (16)

ρnnn
α/2

(ρ2
n − 1)

(ρ̂n − ρn)⇒ N

(
0,
cλ2

2µ2

)
. (17)

Remark 5.1 Theorem 5.1 implies

ρnn(ρn − 1)−3/2(ρ̂n − ρn)⇒ N

(
0,

2λ2

µ2

)
(18)

Remark 5.2 Since we have weakly dependent errors in model (15), we need to estimate

the long run variance λ2. One can apply the Newey-West estimator of Newey and West

(1987) to the LS residual ût to obtain a consistent estimate of the long run variance,

denoted by λ̂2. A feasible 100(1-a)% confidence interval can be constructed as:

ρ̂n ± Za ×
√

2λ̂(ρ̂n − 1)3/2

ρ̂nnµ̂
,

where Za = Φ−1
(
1− a

2

)
, and Φ is the CDF of the standard normal distribution.

Remark 5.3 If cj = 0 for j ≥ 1, then ut = εt. In this case λ = σ, and Theorem 5.1 is

the same as Theorem 2.7 in Fei (2018).

5.2 Long-range-dependent errors

We now move on to study model (15) with a long-memory error term, and introduce the

following lemma.

Lemma 5.2 In model given by (15) and (3) with {cj} satisfying LP-LM. Let y0 =

op
(
n(1/2+d)αL(nα)

)
. As n→∞,

10



1. the first three results in Lemma 5.1 remain valid.

2. ρ−nn
L(nα)n(3/2+d)α

∑n
t=1 yt−1ut ⇒ µ

c Yd,

where Yd is defined in Lemma 3.1.

Theorem 5.2 Under the same set of assumptions as in Lemma 5.2, as n→∞, we have

n1/2−d(µ̂− µ)⇒ ςBH(1), (19)

ρnnn
(1/2−d)α

L(nα)(ρ2
n − 1)

(ρ̂n − ρn)⇒ N

(
0,
σ2c1−2d

µ2

Γ(d)2

2 cos(πd)

)
. (20)

where ς is defined in Lemma 4.3.

5.3 Anti-persistent errors

Theorem 5.3 In model given by (15) and (3) with {cj} satisfying LP-AP. Let y0 =

op
(
n(1/2+d)αL(nα)

)
. As n → ∞, the results in Lemma 5.2 and Theorem 5.2 continue to

hold.

Without intercept, whether the error process is i.i.d., long-memory or anti-persistent,

the convergence speed of the LS estimator and its limit distribution are the same. However,

when a non-zero intercept µ is added to the model, as shown in Theorem 5.2 and 5.3, the

convergence rates for µ̂ and ρ̂n and their asymptotic variances depend on d explicitly.

Note that in model (15) and under LP, there is no smooth transition between the

local-to-unity asymptotics and the mild-explosive asymptotics. Suppose that in model

(15), we replace ρn by ρn,m = 1 + cm
n . Following Wang and Yu (2015), we can write

yn = µ
cmn(ρnn,m− 1) + ρnn,my0 +

∑n
i=1 ρ

n−i
n,mui. Under LP, one can easily show that if we let

n→∞ with m being fixed, and y0 = op(n
ϑ), we have

1

n
yn =

µ

cm
(ρnn,m − 1) +

1

n
nϑ

 1

nϑ
(ρnn,my0 +

n∑
j=1

ρn−jn,muj)


=

µ

cm
(cm) + nϑ−1

exp(cm)op(n
ϑ)

nϑ
+

1

nϑ

n∑
j=1

ρn−jn,muj

+ o(1)

= µ+ nϑ−1G(1) + op(1) = µ+ op(1) .

It is straightforward to see that G(1) = λJcm(1) and ϑ = 1/2 under LP-WD whereas

G(1) = ςJHcm(1) and ϑ = 1/2+d under LP-LM or LP-AP. As 1
nyn converges in probability

to µ, it does not depend on m and therefore we do not need the sequential asymptotic.

This explains the difference between the model with intercept and that without intercept.

However, if we let µ in model (15) be µn = op(n
ϑ−1), the intercept is asymptotically

negligible. From Lemma 1(a) in Phillips (1987), Lemma 4.3 or 4.5, we obtain 1
nϑ
yn ⇒

G(1). And the smooth transition as in Theorem 4.1, Theorem 4.3 or Theorem 4.4 can be

recovered.
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Remark 5.4 If ut = εt, then s = σ, BH(1) = W (1) ∼ N(0, 1) and the asymptotic theory

of µ̂ becomes that of Fei (2018).

Remark 5.5 Theorem 5.2 and Theorem 5.3 imply that

ρnn
L(nα)

(ρn − 1)−3/2+d(ρ̂n − ρn)⇒ N

(
0,
σ2

µ2

2Γ(d)2

cos(πd)

)
. (21)

If d is known, a confidence interval for ρn can be constructed based on (21). If d is

unknown, a two-step approach can be introduced below to construct a feasible confidence

interval for ρn.

Remark 5.6 (Feasible Confidence Interval) For model (6), as the LS estimator con-

verges to a standard Cauchy variable and the convergence rate does not depend on d,

one can construct a confidence interval based on Cauchy distribution (see Phillips et al.

(2011) for discussion). In model (15), as d and σ appear in equation (21), constructing

a confidence interval for ρn based on this equation is infeasible as these two parameters

are unknown. In the case when (1 − L)dut = εt, we can utilize a two-step approach to

obtaining a feasible confidence interval. In the first step, we approximate the error term

{ut}nt=0 by the LS residuals {ût}nt=0. We can show that

ût − ut = yt − µ̂− ρ̂nyt−1 − (yt − µ− ρnyt−1)

= (µ̂− µ) + (ρn − ρ̂n) yt−1

= Op(n
d−1/2) +Op

(
ρ−(n−t)
n

tα

n1−da

)
= op(1).

In the second step we can estimate d using the local Whittle (LW) method of Robinson

(1994). Denote the LW estimator of d by d̂LW . For σ, since ut is ergodic and stationary

with variance ϕ = E[u2
t ] = σ2 Γ(1−2d)

(Γ(1−d))2
. This implies σ2 = ϕ × (Γ(1−d))2

Γ(1−2d) . Denote ϕ̂ =

1
n

∑n
t=1 û

2
t . A natural estimator of σ is σ̂ =

√
ϕ̂× (Γ(1−d̂LW ))

2

Γ(1−2d̂LW )
. Therefore, a feasible

100(1-a)% confidence interval of ρn is:

ρ̂n ± Za ×
(ρ̂n − 1)3/2−d̂LW

ρ̂nn

σ̂

µ̂

√
2Γ(d̂LW )2

cos(πd̂LW )
. (22)

6 Conclusion

In this paper, we have filled several gaps in the rapidly growing literature on explosive

time series. First, we show that the limit Cauchy theory of PMa is applicable to the

mildly explosive AR(1) model with an anti-persistent error process. Hence, our result

complements that of Magdalinos (2012) where it was shown that the limit Cauchy theory

is applicable to the mildly explosive AR(1) model with a weakly dependent or a long-

range-dependent error process. The empirical relevance of anti-persistent process was

established recently in Gatheral et al. (2018) and Xiao et al. (2018).
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Second, we derive the asymptotic distribution of the LS estimator under a local-

to-mild-explosive set up with either weak-dependent, or long-range-dependent or anti-

persistent errors. Two asymptotic schemes are considered. In the first scheme, only

n→∞. Whereas in the second scheme, n→∞ is followed by m→∞. With the sequen-

tial asymptotic scheme, we have obtained the same Cauchy asymptotic distribution as in

the mildly explosive model. We demonstrate a smooth transition between the asymptotics

of a local-to-mild-explosive model and those of a mild-explosive model. Hence, our results

extend those of PMG from i.i.d. errors to serially correlated errors.

Finally, we study the mildly explosive model with intercept. It is shown that the

convergence rate of intercept depends explicitly on the memory parameter of the error

process, and the AR coefficient has a asymptotic normal distribution. Finally, we discuss

how to obtain a feasible confidence interval for the AR coefficient.

A Appendix

Throughout the appendix, we follow the notations of Magdalinos (2012) by letting κ = 1−d
and utilize the following lemmas.

Lemma A.1 (Lemma A.2(i) in Magdalinos (2012)) As n→∞, we have

sup
1≤t≤τn(β)

∣∣∣ρ−tn − e− c
nα

t
∣∣∣ = O

(
n−

nα

2

)
.

Lemma A.2 (Lemma 2.3 in El Machkouri et al. (2016)) Suppose we have the fol-

lowing stochastic differential equation:

dX(t) = cX(t)dt+ dG(t), X(0) = X0 = 0,

where G(t) is a Gaussian process and c > 0. Further assuming the following two assump-

tions hold for G = (G(t), t ≥ 0).

1. The process G has Hölder continuous paths of order δ ∈ (0, 1];

2. For every t ≥ 0, E(G2(t)) ≤ ct2γ for some positive constants c and γ.

Then, for every t ≥ 0, we have

1

2
X2(t) = c

∫ t

0
X2(s)ds+ cZ(t)

∫ t

0
ecsdG(s) +R(t),

where

Z(t) =

∫ t

0
e−csG(s)ds,

R(t) =
1

2
G2(t)− c

∫ t

0
G2(s)ds+ c2

∫ t

0

∫ s

0
e−c(s−r)G(s)G(r)drds.

13



Proof of Lemma 3.1.1

To avoid confusion, note that Zn(d) and Yn(d) now become Zn(κ) and Yn(κ). We can

write the variance of Zn(κ) as

V ar(Zn(κ)) =
1

n(3−2κ)α

τn(β)∑
t=1

ρ−2t
n γu(0) + 2

τn(β)∑
t=1

ρ−2t
n

τn(β)−t∑
h=1

ρ−hn ψ(h)

 , (23)

where ψ(h) = σ2
∑∞

j=0 cjcj+h is the auto-covariance function for the error term.

Note that we can have an asymptotic approximation for V ar(Zn(κ)). For any positive

and finite integer K, equation (23) can be rewritten as a truncated version:

V ar(Zn(κ)) =
1

n(3−2κ)α

τn(β)∑
t=1

ρ−2t
n γu(0) + 2

τn(β)∑
t=K

ρ−2t
n

τn(β)−t∑
h=K

ρ−hn σ2

τn(β)∑
j=K

cjcj+h

+ o(1).

(24)

Now following Magdalinos (2012) (Equations (6), (13) and (14)), and letting ‖.‖r be

the Lr norm (‖x‖r = (E|x|r)
1
r ), we can show

∥∥∥∥Zn(κ)

L(nα)

∥∥∥∥2

2

=
σ2

c

1

λ2
h

τn(β)∑
h=K

ρ−hn

τn(β)∑
j=K

cjcj+h + o(1) , (25)

where λn = n(1−κ)αL(nα). With cj+h = L(j+h)(j+h)−κ and Lemma A.1, we can rewrite

the right hand side of (25) as

σ2

c

1

λ2
n

τn(β)∑
h=K

e−
c
nα

h

τn(β)∑
j=K

L(j)j−κL(j + h)(j + h)−κ + o(1). (26)

Note that e−
c
nα

h∑τn(β)
j=1 L(j)j−κL(j + h)(j + h)−κ is a decreasing function in h. We can

have the following inequality

LB ≤
∥∥∥∥Zn(κ)

L(nα)

∥∥∥∥2

2

≤ UB,

where

LB :=
σ2

c

1

λ2
n

∫ τn(β)+1

K
e−

c
nα

x

∫ τn(β)+1

K
L(y)y−κL(y + x)(y + x)−κdydx+ o(1), (27)

UB :=
σ2

c

1

λ2
n

∫ τn(β)

K−1
e−

c
nα

x

∫ τn(β)

K−1
L(y)y−κL(y + x)(y + x)−κdydx+ o(1). (28)

We now work on the lower bound (27). Letting mn = c(τn(β)+1)
nα , u = cx

nα and z = cy
nα , we

obtain:

σ2

c

1

λ2
n

∫ τn(β)+1

K
e−

c
nα

x

∫ τn(β)+1

K
L(y)y−κL(y + x)(y + x)−κdydx
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=
σ2

c

1

n2α(1−κ)

∫ mn

cK
nα

e−u [In1(u) + In2(u)]

(
n2α(1−κ)

c2−2κ

)
du

= σ2c2κ−3

∫ mn

cK
nα

e−u [In1(u) + In2(u)] du, (29)

where In1(u) =
∫ 1
cK/nα gn(u, z)dz, In2(u) =

∫mn
1 gn(u, z)dz and

gn(u, z) = L(nα)−2L

(
nα

c
z

)
L

(
nα

c
(z + u)

)
z−κ(u+ z)−κ.

Note that we can rewrite In2(u) as

In2(u) =

∫ mn

1
gn(u, z)dz

=

∫ mn

1
L(nα)−2L

(
nα

c
z

)
L

(
nα

c
(z + u)

)
z−κ(u+ z)−κdz

=
1

L(nα)

∫ mn

1

(
L
(
nα

c z
)

L(nα)
− 1 + 1

)
L

(
nα

c
(z + u)

)
z−κ(z + u)−κdz

=
1

L(nα)

∫ mn

1

(
L
(
nα

c z
)

L(nα)
− 1

)
L

(
nα

c
(z + u)

)
z−κ(z + u)−κdz

+
1

L(nα)

∫ mn

1
L

(
nα

c
(z + u)

)
z−κ(z + u)−κdz. (30)

As n→∞, the first term in the above expression is bounded by

sup
z∈[1,∞)

∣∣∣∣∣L
(
nα

c z
)

L(nα)
− 1

∣∣∣∣∣ sup
x∈[1,∞)

∣∣∣∣∣L
(
nα

c x
)

L(nα)

∣∣∣∣∣
∫ ∞

1
z−2κdz = o(1), (31)

uniformly in u. Therefore, as n→∞, we have

sup
u>0

∣∣∣∣∣In2(u)−
∫ mn

1

L
(
nα

c (z + u)
)

L(nα)
z−κ(z + u)−κdz

∣∣∣∣∣ = o(1). (32)

Since L(.) is a slow-varying function, it can be seen that as n→∞∫ mn

cK/nα
e−uIn2(u)du→

∫ ∞
0

e−u
∫ ∞

1
z−κ(u+ z)−κdzdu =

∫ ∞
1

ezz−κ
∫ ∞
z

e−xx−κdxdz.

(33)

Now we go back to In1(u). By using the substitution x = z + u, we have∫ mn

cK/nα
e−uIn1(u)du

=

∫ mn

cK/nα
e−u

∫ 1

cK/nα
L(nα)2L

(
nα

c
z

)
L

(
nα

c
(z + u)

)
z−κ(u+ z)−κdzdu
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=

∫ 1

cK/nα
ez
L
(
nαz
c

)
L(nα)

z−κ
∫ z+mn

z+cK/nα
e−x

L
(
nαx
c

)
L(nα)

x−κdxdz

→
∫ 1

0
ezz−κ

∫ ∞
z

e−xx−κdxdz. (34)

The last result is justified by the property of slow-varying function and the dominated

convergence theorem.

From (29), (33) and (34), we obtain the asymptotic expression of the lower bound (27),

which is σ2c2κ−3
∫∞

0 ezz−κΓ(1 − κ, z)dz, where Γ(κ, z) =
∫∞
z uκ−1e−udu is the upper in-

complete gamma function. Since Magdalinos (2012) showed that
∫∞

0 ezz−κΓ(1−κ, z)dz =
Γ(1−κ)2

2 cos{π(1−κ)} , we have obtained the limit of lower bound. As K is arbitrary, the result holds

for K − 1 as well. Therefore, by obtaining the limit of LB, we can also obtain the same

limit of UB. Consequently, by applying the squeeze theorem, we obtain the result of the

lemma.

Proof of Lemma 3.1.2

Following Magdalinos (2012), we decompose Zn(κ) and Yn(κ) as a sum of two uncor-

related components, such that Zn(κ) = Z
(1)
n (κ) +Z

(2)
n (κ), and Yn(κ) = Y

(1)
n (κ) + Y

(2)
n (κ),

which are defined as

Z(1)
n (κ) = n−( 3

2
−κ)α

τn(β)∑
t=1

ρ−tn

t∑
j=0

cjεt−j ,

Z(2)
n (κ) =

∞∑
j=1

Bnjε−j , Bnj = n−( 3
2
−κ)α

τn(β)∑
t=1

ρ−tn ct+j ,

Y (1)
n (κ) =

τn(β)∑
k=1

Cnkεn+1+k, Cnk = n−( 3
2
−κ)α

k∑
t=1

ρ−tn ck−t,

Y (2)
n (κ) = n−( 3

2
−κ)α

∑
k>τn(β)

τn(β)∑
t=1

ρ−tn εn+1+k . (35)

Using the truncation argument as in (24) and the squeeze theorem, we first show the

limit of
∥∥∥ 1
L(nα)Z

(1)
n (κ)

∥∥∥2

2
. By virtue of the truncation argument and changing the order of

summation, we can express Z
(κ)
n (1) as

Z(1)
n (κ) =

1

n( 3
2
−κ)α

τn(β)∑
j=K

cjρ
−j
n

τn(β)−j∑
k=K

ρ−κn εk.

Magdalinos (2012) showed that

∥∥∥∥ 1

L(nα)
Z(1)
n (κ)

∥∥∥∥2

2

a∼ 1

2c

 1

λn

τn(β)∑
j=K

cjρ
−j
n

2

. (36)
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Similar to proving Lemma 3.1, we write the upper bound and the lower bound for the

right hand side of equation (36) as

1

λn

∫ τn(β)

K−1
L(t)t−κe−

c
nα

tdt ≤ 1

λn

τn(β)∑
j=K

cjρ
−j
n ≤

1

λn

∫ τn(β)+1

K
L(t)t−κe−

c
nα

tdt. (37)

By changing variable and the dominated convergence, we obtain

1

λn

∫ τn(β)+1

K
L(t)t−κe−

c
nα

tdt =
1

L(nα)nα(1−κ)

∫ c(τn(β)+1)
nα

cK
nα

L

(
nα

c
u

)(
u
nα

c

)−κ
e−u

( c

nα

)
du

=
1

L(nα)nα(1−κ)

∫ mn

cK
nα

e−uu−κL

(
nα

c
u

)(
nα(1−κ)

c1−κ

)
du

= cκ−1

∫ mn

cK
nα

e−uu−κ
L
(
nα

c u
)

L(nα)
du

→ cκ−1

∫ ∞
0

e−uu−κdu = cκ−1Γ(1− κ).

By the squeeze theorem, we obtain the limit of 1
λn

∑τn(β)
j=K cjρ

−j
n . This result combined

with (36) implies that ∥∥∥∥ 1

L(nα)
Z(1)
n (κ)

∥∥∥∥2

2

→ c2κ−3

2
Γ(1− κ)2.

After pinning down the asymptotic result for Z
(1)
n (κ), since Zn(κ) = Z

(1)
n (κ) +Z

(2)
n (κ), we

can show the limit of Z
(2)
n (κ):∥∥∥∥ 1

L(nα)
Z(2)
n (κ)

∥∥∥∥2

2

→ c2κ−3Γ(1− κ)2{[2 cos{π(1− κ)}]−1 − 1/2} .

Now we show Y
(2)
n →p 0. Letting i = κ− τn(β) and s = τn(β)− t in (35), we have

∥∥∥Y (2)
n (κ)

∥∥∥2

2
= σ2n−(3−2κ)α

τn(β)−1∑
s,t=0

ρ−(τn(β)−s)
n ρ−(τn(β)−t)

n

∞∑
i=1

ci+sci+t

≤ σ2n−(3−2κ)α

τn(β)−1∑
s,t=0

ρ−(τn(β)−s)
n ρ−(τn(β)−t)

n

( ∞∑
i=1

c2
i+s

)1/2( ∞∑
i=1

c2
i+t

)1/2

.

Note that ci = L(i)i−κ. This implies the inequality:
∑∞

i=1 c
2
i+s ≤ supi L(i)2

∑
i>s i

−2κ.

And for any p > 1,
∑∞

j=n
1
jp = O(n1−p) as n → ∞. Therefore, for some constant C, we

have

∥∥∥Y (2)
n (κ)

∥∥∥2

2
≤ Cn−(3−2κ)α

τn(β)∑
s=0

ρ−(τn(β)−s)
n s(1−2κ)/2

2
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≤ Cn−(3−2κ)α

τn(β)∑
s=0

e−
c
nα

(τn(β)−s)s(1−2κ)/2

2

+2Cn−(3−2κ)α

τn(β)∑
s=0

e−
c
nα

(τn(β)−s)s(1−2κ)/2

τn(β)∑
j=0

n−
α
2 j

1−2κ
2


+Cn−(3−2κ)α

τn(β)∑
s=0

n−
α
2 s

1−2κ
2

2

= Cn−(3−2κ)α

τn(β)∑
s=0

e−
c
nα

(τn(β)−s)s(1−2κ)/2

2

+O

(
n(3−2κ)(β−α)

nα

)

≤ Cn−(3−2κ)α

(∫ τn(β)

0
e−

c
nα

t(τn(β)− t)(1−2κ)/2

)2

+ o(1)

= O
(
n−(2κ−1)(β−α)

)
= o(1).

We apply Lemma A.1 to obtain the second inequality. Since β < 3α
2 and 3 − 2κ ∈ (0, 1),

we have (3 − 2κ)(β − α) < (3 − 2κ)(3α
2 − α) = (3 − 2κ)α2 < α. To show the order of

the integrand in the last expression, we can apply the arguments in proving proposition

3.2.3 as in Magdalinos (2012). Since
∥∥∥Y (2)

n (κ)
∥∥∥2

2
= o(1), so we can obtain the result that

V ar(Yn(κ)) = V ar(Y
(1)
n (κ)). Since Yn(κ), and Zn(κ) share the same variance, Lemma 3.1

is applicable to Yn(κ).

After deriving the limit of the variance of Y
(1)
n (κ), Z

(1)
n (κ) and Z

(2)
n (κ), we apply the

proof in proposition 3.2.4 in Magdalinos (2012) to obtain the desired result.

Proof of Theorem 3.1

The proof of Theorem 3.1 is omitted due to similarity to Lemma 5 in Magdalinos

(2012).

Proof of Lemma 4.3 and 4.5

Note that by backward substitutions, we can obtain

yt = ρtn,my0 +
t∑

j=1

ρt−jn,muj

= ρtn,mop(n
1/2+d) +

t∑
j=1

ρt−jn,m(Sj − Sj−1), where Sj =

j∑
i=1

ui.

Following the approach in Phillips (1987) and noting that exp
(
cm
n

)
= ρn,m +O(n−2),

after applying Lemma 4.1, we have

1

nH
ybnrc = ρ−1

n,m

{
1

nH
Sbnrc + cm

∫ bnrc/n
1/n

exp
(

(bnrc − bnsc)cm
n

) 1

nH
Sbnrcds

}
+ op(1)
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⇒ ς

(
BH(r) + cm

∫ r

0
exp(cm(r − s))BH(s)ds

)
= ςJHcm(r).

Note that the second to the fourth claims are direct results after applying the contin-

uous mapping theorem (Billingsley, 1968, p. 30). For the last result, after squaring and

summing the process yt, we have

n∑
t=1

y2
t =

(
1 +

2cm

n
+

(cm)2

n2

) n∑
t=1

y2
t−1 + 2

(
1 +

cm

n

) n∑
t=1

yt−1ut +

n∑
t=1

u2
t ,

which leads to

y2
n =

2cm

n

n∑
t=1

y2
t−1 + 2

n∑
t=1

yt−1ut +
n∑
t=1

u2
t +

(cm)2

n2

n∑
t=1

y2
t−1 +

2cm

n

n∑
t=1

yt−1ut.

Hence, we can write

2

n2H

n∑
t=1

yt−1ut =
1

n2H
y2
n −

2cm

n2H+1

n∑
t=1

y2
t−1 −

1

n2H−1

1

n

n∑
t=1

u2
t + op(1)

= ς2

[(
JHcm(1)

)2 − 2cm

∫ 1

0

(
JHcm(r)

)2
dr

]
− n1−2HE(u2

t ) + op(1).

This implies

1

n2H

n∑
t=1

yt−1ut = ς2

[
1

2

(
JHcm(1)

)2 − cm∫ 1

0
(JHcm(r))2dr

]
− n1−2H

2
E(u2

t ) + op(1)

= ς2

[
cmZ(1)

∫ 1

0
ecmsdB̃H(t) +R(1)

]
− n1−2H

2
E(u2

t ) + op(1),

where for the last equality we have applied Lemma A.2.

Note that if d ∈ (0, 0.5), 1−2H < 0 and n1−2HE(u2
t ) = oas(1). If d ∈ (−0.5, 0), we have

an extra term n1−2H

2 E(u2
t ). This explain the difference between Lemma 4.3 and Lemma

4.5.

Proof of Corollary 4.2

We only need to show the following results are correct:

1. Z(1) =
∫ 1

0 e
−cmsBH(s)ds = 1

mH+1

∫m
0 e−csB̃H(s)ds;

2.
∫ 1

0

(
BH(s)

)2
ds = 1

m2H

∫m
0

(
B̃H(s)

)2
ds;

3.
∫ 1

0 (JHcm(r))2dr = 1
m2H+1

∫m
0

(
J̃Hc (s)

)2
ds;

4. m2
∫ 1

0

∫ s
0 e

cm(r−s)BH(r)BH(s)drds = 1
m2H

∫m
0

∫ s
0 e

c(r−s)B̃H(r)B̃H(s)drds.
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As the steps to prove the above results are similar, we shall only prove the last two

claims. For the third result, we have∫ 1

0

(
JHcm(r)

)2
dr =

∫ 1

0

(∫ r

0
ecm(r−s)dBH(s)

)2

dr

=

∫ 1

0
e2cmr

(∫ r

0
e−cmsdBH(s)

)2

dr

=

∫ 1

0
e2cmr

(∫ mr

0
e−cvdBH

( v
m

))2

dr

=
1

m2H

∫ 1

0
e2cms

∫ mr

0
e−cvd

(
mHBH

( v
m

))2
dr

=
1

m2H

∫ m

0
e2cu

(∫ u

0
e−cvdB̃H(v)

)2

d
( u
m

)
=

1

m2H+1

∫ m

0

(∫ u

0
ec(u−v)dB̃H(v)

)2

du

=
1

m2H+1

∫ m

0

(
J̃Hc (u)

)2
du.

For the fourth result, we have

m2

∫ 1

0

∫ s

0
ecm(r−s)BH(r)BH(s)drds = m2

∫ 1

0
e−cms

(∫ s

0
ecmrBH(r)dr

)
BH(s)ds

= m2

∫ 1

0
e−cms

(∫ ms

0
ecrBH

( r
m

)
d
( r
m

))
BH(s)ds

=
m

mH

∫ m

0
e−cv

(∫ ms

0
ecrB̃H(r)dr

)
BH

( v
m

)
d
( v
m

)
=

1

m2H

∫ m

0
e−cv

(∫ v

0
ecrB̃H(r)dr

)
B̃H(v)dv

=
1

m2H

∫ m

0

∫ v

0
ec(r−v)B̃H(r)B̃H(v)drdv.

Proof of Lemma 4.4 The proof of the first three items in this Lemma can be found

in Lemma 2.2, the proof of Theorem 2.2 and expression (3.17) in El Machikouri et al.

(2016).

Proof of Theorem 4.3 and Theorem 4.4

To avoid confusion, we now refer n → ∞ with m fixed as “fix-m asymptotics”, and

n→∞ followed by m→∞ as “sequential asymptotics”. Note that the fix-m asymptotics

lead us to the following expression:

necm (ρ̂n − ρn,m)

= necm
∑n

t=1 yt−1ut∑n
t=1 y

2
t−1

= ecm
1

n2H

∑n
t=1 yt−1ut

1
n2H+1

∑n
t=1 y

2
t−1
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a∼ ecm
1

m2H

(
c
∫m

0 e−crB̃H(r)dr
∫m

0 e−csdB̃H(s) + R̃(m)
)

+ n1−2H

2 E(u2
t )

1
m2H+1

∫m
0

(
J̃Hc (s)

)2
ds

=

1
m2H e

−cm
(
c
∫m

0 e−crB̃H(r)dr
∫m

0 e−csdB̃H(s) + R̃(m)
)

+ e−cm n1−2H

2 E(u2
t )

1
m2H+1 e−2cm

∫m
0

(
J̃Hc (s)

)2
ds

=

1
m2H e

−cm
(
c
∫m

0 e−crB̃H(r)dr
∫m

0 e−csdB̃H(s) + R̃(m)
)

1
m2H+1 e−2cm

∫m
0

(
J̃Hc (s)

)2
ds

+
e−cm n1−2H

2 E(u2
t )

1
m2H+1 e−2cm

∫m
0

(
J̃Hc (s)

)2
ds
, (38)

where we have applied Corollary 4.2 to obtain the equality. As in Lemma 4.3, we do not

have the second term
e−cm n1−2H

2
E(u2t )

1

m2H+1 e
−2cm

∫m
0 (J̃Hc (s))

2
ds

when d ∈ (0, 0.5) which implies 1−2H < 0.

The second term only shows up when d ∈ (−0.5, 0).

For the first term in (38), we utilize Lemma 2.2 and Lemma 2.4 in El Machkouri et al.

(2016) to obtain the following three results as m→∞:

1. e−2cm
∫m

0

(
J̃Hc (s)

)2
ds⇒ c

2

(∫∞
0 e−csB̃H(s)ds

)2
;

2. e−cmc
∫m

0 e−crB̃H(r)dr
∫m

0 ecsdB̃H(s)⇒ c
(∫∞

0 e−csB̃H(s)ds
)√

HΓ(2H)
c2H

η;

3. e−cmR̃(m)→ 0.

For the second term in (38), we have

e−cm n1−2H

2 E(u2
t )

1
m2H+1 e−2cm

∫m
0

(
J̃Hc (s)

)2
ds

=
e−cmn1−2H

1
m2H+1

1
2E(u2

t )

e−2cm
∫m

0

(
J̃Hc (s)

)2
ds

= m
n1−2H

exp (δm)

m2H

exp ((c− δ)m)

1
2E(u2

t )

e−2cm
∫m

0

(
J̃Hc (s)

)2
ds
,

where δ ∈ (0, c).

Under the assumption that n1−2H

exp(δm) → 0 as m→∞, we have

1

2c

n

m
ecm (ρ̂n − ρn,m) ⇒ 1

2c

c
∫∞

0 e−csB̃H(s)ds
√

HΓ(2H)
c2H

η

c
2

(∫∞
0 e−csB̃H(s)ds

)2

=
1

c

√
HΓ(2H)
c2H

η∫∞
0 e−csB̃H(s)ds

=

√
HΓ(2H)
c2H

η√
HΓ(2H)
c2H

ω
= C,
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where ω and η are two independent standard normal random variables.

Proof of Lemma 5.1 Note that the proofs under a long-memory or an anti-persistent

error process are similar. The former one utilizes Lemma 1 in Magdalinos (2012) while

the later utilizes Lemma 3.1. Therefore, we only prove the claims under anti-persistence.

The results of this Lemma are similar to those in Theorem 2.6 of Fei (2018). However,

since the assumptions on {ut}nt=1 and y0 are different, the proofs are different. To show the

first result, note that from equation (4) in Fei (2018), we can write yn = µ
cn

α(ρnn−1) + ỹn,

where ỹn = ρnny0 +
∑n−1

j=0 ρ
j
nun−j . Therefore, we have

ρ−nn
n(3/2−κ)αL(nα)

ỹn =
y0

n(3/2−κ)αL(nα)
+

1

n(3/2−κ)αL(nα)

n∑
j=1

ρ−jn uj = op(1)+
Zn(κ)

L(nα)
= Op(1).

Consequently, we have

ρ−nn yn
nα

=
µ

c

(
1− 1

ρnn

)
+Op

(
L(nα)n(3/2−1−κ)α

)
=
µ

c
+ op(1). (39)

For the result of ρ−nn
n2α

∑n
t=1 yt−1, we can write

c

nα

n∑
t=1

yt−1 = yn − y0 − µn−
n∑
t=1

ut

= Op(ρ
n
nn

α)− op
(
L(nα)n(3/2−κ)α

)
−O(n)−Op

(
n3/2−κ

)
= Op(ρ

n
nn

α).

To obtain the second equality above, we apply the first claim in this Lemma and

Proposition 4.4.4 in Giraitis et al. (2012) to obtain that yn = Op(ρ
n
nn

α) and
∑n

t=1 ut =

Op
(
n3/2−κ). It is clear the first term plays a dominant role asymptotically. Combined

with (39), we obtain ρ−nn c
n2α

∑n
t=1 yt−1 = µ

c + op(1) and therefore establish the result.

For the next term,

ρ−nn
L(nα)n(5/2−κ)α

n∑
t=1

yt−1ut

=
ρ−nn

L(nα)n(5/2−κ)α

[
n∑
t=1

(µ
c
nα(ρt−1

n − 1) + ỹt−1

)
ut

]

=
ρ−nn

L(nα)n(5/2−κ)α

[
µ

c
nα

n∑
t=1

ρt−1
n ut −

µ

c
nα

n∑
t=1

ut +
n∑
t=1

ỹt−1ut

]

=
µ

c

1

L(nα)n(3/2−κ)α

n∑
t=1

ρ−tn un+1−t −
µ

c

ρ−nn n(3/2−κ)(1−α)

L(nα)

1

n3/2−κ

n∑
t=1

ut

+
L(nα)n(3/2−κ)α

nα
ρ−nn

L(nα)2n(3−2κ)α

n∑
t=1

ỹt−1ut

=
µ

c

Yn (κ)

L(nα)
−Op

(
ρ−nn n(3/2−κ)(1−α)

L(nα)

)
+
L(nα)n(3/2−κ)α

nα

(
Yn (κ)

L (nα)

)(
Zn (κ)

L (nα)

)
+ op(1)
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⇒ µ

c
Yd.

Note that we apply Lemma 3.1 to establish the last result. For the final claim, we have

(
ρ2
n − 1

) n∑
t=1

y2
t−1 = y2

n − y2
0 − µ2n−

n∑
t=1

u2
t − 2µρn

n∑
t=1

yt−1 − 2d
n∑
t=1

ut − 2ρn

n∑
t=1

yt−1ut.

As the first term has the highest order, we obtain the desired result.

Proof of Theorem 5.2 and Theorem 5.3

To analyze the asymptotic behavior of the LS estimator, we can express the centered

LS estimator in matrix form:[
n(1/2−d)(µ̂− µ)

ρnnn
(1/2−d)α

L(nα)(ρ2n−1)
(ρ̂n − ρn)

]
=

 1 L(nα)ρ−nn (ρ2n−1)

n(3/2−d)α+1/2+d

∑n
t=1 yt−1

ρ−nn
L(nα)n(3/2+d)α+1/2−d

∑n
t=1 yt−1

ρ−2n
n (ρ2n−1)

n2α

∑n
t=1 y

2
t−1

−1

×

[
n−(1/2+d)

∑n
t=1 ut

ρ−nn
L(nα)n(5/2−d)α

∑n
t=1 yt−1ut

]

⇒

[
1 op(1)

op(1) µ2

c2

]−1 [
ςBH(1)(µ
c

)
Yd

]
.

Note that when d < 0.5, (3/2+d)α+1/2−d > 2α; when d > −0.5, (3/2−d)α+1/2+d > 2α.

Based on Lemma 5.2, the two off-diagonal elements of the inverse matrix converge in

probability to 0 as n → ∞, and we have the result for the limiting distribution of µ̂ and

ρ̂n.

Proof of Remark 5.5

We can directly obtain the result of Remark 5.5 based on the result of Theorem 5.2 or

5.3. Note that

ρnnn
(1/2−d)α

L(nα)(ρ2
n − 1)

(ρ̂n − ρn)⇒ N

(
0,
σ2c1−2d

µ2

Γ(d)2

2 cos(πd)

)
,

which implies
ρnnn

(3/2−d)α

L(nα)2c
(ρ̂n − ρn)⇒ c1/2−dN

(
0,
σ2

µ2

Γ(d)2

2 cos(πd)

)
,

which in turn implies

ρnn
L(nα)

(ρn − 1)−3/2+d (ρ̂n − ρn)⇒ N

(
0,
σ2

µ2

2Γ(d)2

cos(πd)

)
.
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