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Social Software Development: Insights and Solutions
Abhishek SHARMA

Abstract

Over last few decades, the way software is developed has changed drastically. From

being an activity performed by developers working individually to develop stan-

dalone programs, it has transformed into a highly collaborative and cooperative

activity. Software development today can be considered as a participatory culture,

where developers coordinate and engage together to develop software while contin-

uously learning from one another and creating knowledge.

In order to support their communication and collaboration needs, software de-

velopers often use a variety of social media channels. These channels help software

developers to connect with like-minded developers and explore collaborations on

software projects of interest. However, developers face a lot of challenges while

trying to make use of various social media channels. As the volume of content

produced on social media is huge developers often face the problem of information

overload while using these channels. Also creating and maintaining a relevant net-

work among a huge number of possible connections is challenging for developers.

The works performed in this dissertation focus on addressing the above challenges

with respect to Twitter, a social media popular among developers to get the latest

technology updates, as well as connect with other developers. The first three works

performed as a part of this dissertation deal with understanding the software en-

gineering content produced on Twitter and how it can be harnessed for automatic

mining of software engineering related knowledge. The last work aims at under-

standing what kind of accounts software developers follow on Twitter, and then

proposes an approach which can help developers to find software experts on Twit-

ter. The following paragraphs briefly describe the works that have been completed

as part of this dissertation and how they address the aforementioned challenges.



In the first work performed as part of the dissertation, an exploratory study

was conducted to understand what kind of software engineering content is popular

among developers in Twitter. The insights found in this work help to understand the

content that is preferred by developers on Twitter and can guide future techniques

or tools which aim to extract information or knowledge from software engineering

content produced on Twitter. In the second work, a technique was developed which

can automatically differentiate content related to software development on Twitter

from other non-software content. This technique can help in creating a repository

of software related content extracted from Twitter, that can be used to create down-

stream tools which can do tasks such as mining opinions about APIs, best practices,

recommending relevant links to read, etc. In the third work, Twitter was leveraged

to automatically find URLs related to a particular domain, as Twitter makes it possi-

ble to infer the network and popularity information of users who tweet a particular

URL. 14 features were proposed to characterize each URL by considering web-

page contents pointed by it, popularity and content of tweets mentioning it, and the

popularity of users who shared the URL on Twitter.

In the final work of this dissertation, an approach has been proposed to address

the challenge developers face in finding relevant developers to follow on Twitter.

A survey was done with developers, and based on its analysis, an approach was

proposed to identify software experts on Twitter, provided a given software engi-

neering domain. The approach works by extracting 32 features related to Twitter

users, with features belonging to the categories such as Content, Network, Profile,

and GitHub. These features are then used to build a classifier which can identify a

Twitter user as a software expert of a given domain or otherwise. The results show

that our approach is able to achieve F-Measure scores of 0.522-0.820 on the task of

identifying software experts, achieving an improvement of at-least 7.63% over the

baselines.
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Chapter 1

Introduction

This chapter discusses the motivation of the problems which are addressed in this

dissertation. The chapter provides a summary of works completed, and the structure

of this dissertation proposal.

1.1 Motivation

The increased adaptation of Internet and widespread rise of various social media

channels over past decade has revolutionized the way people access and share in-

formation. The social media revolution has also changed the way software devel-

opers communicate, collaborate, and learn. The availability of various social media

channels and tools has given rise to the emergence of social programmer [109, 93],

who actively engages with social media channels in order to learn new things, com-

municate ideas, and collaborate with other programmers to develop software.

Software developers make use of a variety of social media channels. These in-

clude domain specific channels such as Stack Overflow1, GitHub2, etc., as well as

domain agnostic channels such as Twitter3, Reddit4, HackerNews5, etc. Storey et

1https://stackoverflow.com/
2https://github.com/
3https://twitter.com/
4https://www.reddit.com
5https://news.ycombinator.com/

1

https://stackoverflow.com/
https://github.com/
https://twitter.com/
https://www.reddit.com
https://news.ycombinator.com/


al. have examined in detail the role social media channels play in software develop-

ment [96, 94]. They found that software developers use social media channels for

supporting various activities such as staying up-to-date, find answers to technical

questions, coordinate with other developers on projects, learn new skills, discover

and connect with other developers, display skills and accomplishments etc. By sup-

porting such activities various social media channels promote a participatory culture

of software development, where the software is co-developed by developers spread

across the globe, who continuously interact with each other through social media

channels.

As discussed above developers derive a lot of benefits from various social media

channels in order to support their software development activities. However, using

such social media channels has its own set of challenges. As explored in [96] some

of these challenges are information overload, constant distraction, collaboration and

participation hurdles, etc. In this dissertation, techniques have been proposed to

address some of these challenges with respect to Twitter, a microblog based so-

cial medium, which is also popular among software development community [96].

The insights found and techniques proposed in this dissertation in order to solve

challenges software developers face in using Twitter, would also be applicable in

addressing similar problems in other social media used by developers. In next para-

graph, a description is provided of how developers use Twitter and the challenges

faced by them whose possible solutions have been proposed in this dissertation.

Microblogs such as Twitter are the fifth most popular social media used by de-

velopers [96]. A recent study by Singer et al. found that software developers use

Twitter to “keep up with the fast-paced development landscape” [89]. Unfortu-

nately, due to the general purpose nature of Twitter, it’s challenging for developers

to use Twitter for their development activities. Singer et al. found that consuming

content and maintaining a relevant network are the two main challenges developers

face while using Twitter for software development [89]. Twitter being a platform

open to domains other than software development, has content which is large in

2



variety as well as volume. This results in the problem of information overload for

developers who use Twitter for gaining knowledge related to software development

only. Further, Twitter supports a wide variety of user accounts such as personal

accounts, organizational accounts, bot accounts etc. Also, the number of accounts

present on Twitter is very large. Due to these reasons, it becomes very challenging

for developers to decide which accounts to follow and which not to. In this dis-

sertation, some approaches have been proposed which help in mitigating these two

challenges. In the following sections, an overview is given of the works completed

as part of this thesis.

1.2 Contribution Summary

As discussed in previous section, Singer et al. had found that the two main chal-

lenges faced by software developers are information overload and deciding which

accounts to follow [89]. In this dissertation, we propose four works which try to

address the two aforementioned challenges. The first three works aim at solving

the problem of information overload. In the first work, we did an exploratory study

to identify what are the popular events related to software engineering on Twitter.

In the second work, we propose an approach that can identify software relevant

tweets on Twitter. In the third work, we propose a set of features that can be used

to characterize web links related to software engineering shared on Twitter. These

features were then evaluated for their classification performance using supervised

and unsupervised methods. In the final work, we propose a technique that can help

developers to find expert users relevant to a given software engineering domain,

which they can then follow on Twitter. We give a brief summary of each of the

completed works below.

3



Understanding Popular Software Engineering Content Produced in Social Net-

works

In this work, we performed an exploratory study on software engineering related

events in Twitter. A large set of Twitter messages was collected over a period of

8 months that were made by 90,883 Twitter users and then filtered on five pro-

gramming language keywords. To the best of our knowledge, no previous work

in software engineering domain has analyzed such a huge amount of content re-

lated to software engineering tweets. A state-of-the-art Twitter event detection al-

gorithm [24] borrowed from the Natural Language Processing (NLP) domain was

then run on the data. Next, using the open coding procedure, 1,000 events that

are identified by the NLP tool were manually analyzed, and eleven categories of

events (10 main categories + “others”) created. It was found that external resource

sharing, technical discussion, and software product updates are the “hottest” cat-

egories. These findings shed light on hot topics in Twitter that are interesting to

many people and they provide guidance to future Twitter analytics studies that de-

velop automated solutions to help users find fresh, relevant, and interesting pieces of

information from Twitter stream to keep developers up-to-date with recent trends.

Automatic Identification of Software Relevant Content in Social Media

In this work, to help developers cope with noise, we propose a novel approach

named NIRMAL, which automatically identifies software relevant tweets from a

collection or stream of tweets. The approach is based on language modeling which

learns a statistical model based on a training corpus (i.e., set of documents). A

subset of posts from Stack Overflow, a programming question and answer site, was

used as a training corpus to learn a language model. A corpus of tweets was then

used to test the effectiveness of the trained language model. The tweets were sorted

based on the rank the model assigned to each of the individual tweets. The top

200 tweets were then manually analyzed to verify whether they are software related

4



or not, and then an accuracy score was calculated. The results of our experiments

show that NIRMAL can achieve accuracy@K scores of up to 0.900, beating a ran-

dom baseline by 192%. Also when NIRMAL is combined with a keyword based

approach, it improves the performance by up to 31% of the keyword only approach.

Mining Informative Online Resources Shared by Developers on Social Media

Developers often rely on various online resources, such as blogs, to keep themselves

up-to-date with the fast pace at which software technologies are evolving. Singer et

al. found that developers tend to use channels such as Twitter to keep themselves

updated and support learning, often in an undirected or serendipitous way, com-

ing across things that they may not apply presently, but which should be helpful in

supporting their developer activities in future. However, identifying relevant and

useful articles among the millions of pieces of information shared on Twitter is a

non-trivial task. In this work to support discovery of relevant and informative re-

sources to support developer learning, an unsupervised and a supervised approach

was proposed to find and rank URLs (which point to web resources) harvested from

Twitter based on their informativeness and relevance to a domain of interest. 14 fea-

tures were proposed to characterize each URL by considering contents of webpage

pointed by it, contents and popularity of tweets mentioning it, and the popularity of

users who shared the URL on Twitter. To evaluate the performance of the proposed

methods we make use of Normalized Discounted Cumulative Gain (NDCG) [39].

The value of the NDCG metric varies from 0 to 1, with 1 representing the ideal

ordering. The results of our experiments show that the proposed unsupervised and

supervised approaches can achieve NDCG scores of 0.719 and 0.832 respectively.

As these scores are not very far off from 1, the approaches do show promise in

showing the relevant articles at higher ranks.
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Recommending Experts in the Software Engineering Twitter Space

As highlighted by Singer et al. in [89], a common challenge faced by developers

on social networks such as Twitter is to maintain a relevant network. Developers

often connect with new people and disconnect with accounts which they think are

not helping them much in supporting their software development related activities.

In this work, to help developers in finding relevant people to follow and connect

with, we propose an approach to identify specialized software gurus. To under-

stand the type of accounts developers like to follow, we conducted a survey with 36

developers who use Twitter in their development activities. The results of the sur-

vey highlighted that developers are interested in following specialized software ex-

perts who share relevant technical tweets. Based on the survey results, an approach

has been designed which first extracts different kinds of features that characterize

a Twitter user. It then employs a two-stage classification approach to generate a

discriminative model, which can differentiate specialized software gurus in a par-

ticular domain from other Twitter users that generate domain-related tweets (aka

domain-related Twitter users). The effectiveness of the proposed approach in find-

ing specialized software gurus was evaluated for four different domains (JavaScript,

Android, Python, and Linux). The results show that proposed approach can differ-

entiate specialized software experts from other domain-related Twitter users with

an F-measure of up to 0.820, beating baseline approaches by at least 7.63%.

1.3 Structure of this Dissertation

The outlines of next chapters are described here. In Chapter 2 a review of some

previous work related to social media in software engineering present in literature

has been performed. Chapter 3 describes a study in which we explored the popular

content related to software engineering in Twitter. Chapter 4 describes NIRMAL, a

technique which helps to automatically identify tweets related to software engineer-
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ing on Twitter. In Chapter 5 we describe an approach to mine informative URLs

and links related to software engineering shared on Twitter. Chapter 6 presents an

approach to recommend experts on Twitter related to a specialized software domain

(e.g., Python). Chapter 7 concludes this dissertation and presents the presents some

future directions.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter, we discuss the work in literature related to software engineering and

social media. The chapter has 2 sections. In Section 2.2 we describe studies which

have explored how software developers use various social media to support software

development. In Section 2.3 we discuss various tools, and/or techniques that have

been proposed in the literature which extract software engineering knowledge from

various social media and help software developers better utilize such channels.

2.2 Social Media and Software Development

In the past few years, a lot of attention has been given in research on how soft-

ware developers use social media channels to aid their day to day work. Storey

et al. in [95] advocated for increased research to understand the benefits, risks,

and limitations of social media use by software developers. Begel et al. discuss

some potential future directions for research in social media for software engineer-

ing in [8]. In [94] Storey et al. found how social media has revolutionized the way

software development is done. In their recent work, Storey et al. have also inves-

tigated how usages of various social and communication channels affect software

8



development [96]. Inspired by the guidelines and findings based on these works

there have been many studies which have analyzed various social media channels.

We describe some of the works below.

Stack Overflow, a social question and answering website related to software

engineering questions, is one of the most researched social channels in software

engineering research. Treude et al. examined the question asking and answering

behavior of developers and their evolution in [108, 109]. User behavior in Stack

Overflow has also been examined in several other studies such as [31, 7, 35, 10].

In [121] the authors studied the representation and social impact of gender in Stack

Overflow. Barua et al. applied LDA to discover topics and trends present in ques-

tions and answers on StackOverflow [6]. The content in Stack Overflow has been

analyzed in various other works such as [139, 118, 126, 22, 9, 124].

Another social media channel that has received a lot of attention is GitHub, a

social coding website. Thung et al. [101] analyzed GitHub developer network to un-

derstand characteristics of influential projects and developers. In [42], the authors

discussed the benefits and challenges of mining GitHub. How developers code so-

cially and collaborate in GitHub has been evaluated in [111, 23, 112]. Vasilescu

et al, collected thousands of projects from GitHub, in order to understand the re-

lationship between context-switching and productivity of developers [120]. There

have been other works which have evaluated the productivity of developers based on

GitHub data such as [123, 66, 40, 78, 79]. Developer behavior across the platforms

Stack Overflow and GitHub has been studied in [122, 5].

Developers’ usage of microblogs such as Twitter has been explored by a number

of prior studies. Singer et al. surveyed 271 and interviewed 27 active developers

on Github [89]. They found that many developers are using Twitter to “keep up

with the fast-paced development landscape”. Specifically, developers use Twitter

to get awareness of people and trends, extend their technical knowledge, and build

connections with other developers. They also found that information overload, i.e.,

few useful information hidden in thousands of useless tweets, is one of the biggest
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challenges faced by developers in using Twitter.

A number of researchers have analyzed microblogs posted in Twitter (aka

tweets) or built tools to support developers to better use Twitter for their day-to-

day work. Bougie et al. analyzed 11,679 tweets posted by 68 developers from three

open source projects [11]. They observed that software engineers leverage Twitter

to communicate and share information. They also conducted a qualitative study

on 600 tweets and group them into four categories: software related, gadgets and

technological topics, non-technical topics, and daily chatter. Wang et al. analyzed

568 tweets posted by developers from the Drupal open source project [129]. They

found that Drupal developers use Twitter to coordinate efforts, share knowledge,

encourage potential contributors to join, etc. Tian et al. analyzed behaviours of

software microbloggers on a large dataset that contains more than 13 million tweets

posted by 42 thousand microbloggers [104]. They used 100 software related words

to identify software related tweets and found that software related tweets often con-

tain more URLs and hashtags, but fewer mentions than non-software related tweets.

They also find that some of the microbloggers are very active on Twitter and have

contributed many software related tweets. In another work, Tian et al. manually

categorized 300 tweets that contain software related hashtags, e.g., “java”, “csharp”

into ten groups [103]. These ten groups include commercial, news, tools and code,

question and answer, events, personal, opinion, tips, job, and miscellaneous.

The topics discussed on Twitter by end users of software, and the implications

it can have for requirements engineering and software evolution has been explored

in some recent works. Zampetti et al. did a quantitative analysis of about 153,853

URLs extracted from GitHub pull requests in order to analyze what external refer-

ences are used by developers in documenting pull requests [140]. They found that

the references to microblogs are quite low (0.68%). However, when they manually

coded a small subset of pull requests, they found that URLs that refer to microblog-

ging (e.g., Twitter) have a substantial impact on pull requests not directly related

to source code, such as documentation updates or license updates. Mezouar et al.
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proposed an approach to map tweets to bug fixing reports, and also did an empirical

study the usefulness of Twitter in the bug fixing process [25]. They found that at

least 33% of Firefox bugs and Chrome bugs can be discovered earlier by tracking

the tweets from end-users, which may allow developers to discover and fix issues

early. Guzman et al. have done an exploratory study about the potential of automat-

ing tweet analysis to support requirements engineering [32, 33]. Williams et al.

have also explored the potential of Tweets for mining user requirements [133].

There have also been recent studies that explore some new social media chan-

nels. Macleod et al. did an analysis of how developers use screencasts to share

and document software knowledge [55, 54]. An analysis of user comments on cod-

ing video tutorials present on YouTube was performed in [71]. Lin et al. recently

studied how developers use slack to help them in their software development activi-

ties [50]. The developers’ user of news aggregators such as Reddit and HackerNews

has been explored in [3].

2.3 Mining Social Software Repositories

As discussed in Section 2.2 many studies have explored how developers use social

media channels. Based on the outcome of these studies many techniques have been

proposed which can make it easy for developers to use these media, and/or provide

them with important insights which can help them in their software development

activities. We discuss some of such works below.

Tag prediction for questions in Stack Overflow is a popular area in software

engineering research and many approaches have been proposed for solving this

problem [127, 144, 128]. Recently Uddin et al. proposed methods to identify

opinionated sentences from Stack Overflow data and then mine aspects from such

sentences [117, 116, 115]. Stack Overflow data has been used to build various au-

tomated tools to support software development [110, 14, 107, 63]. Techniques to

mine knowledge graphs, and recommend analogical libraries based on Stack Over-
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flow discussion were proposed in [16, 17, 18].

Many tools and techniques have been proposed to help developers better use

GitHub. Thung et al. proposed a library recommendation system based on 1,008

GitHub projects [102]. Project and repository recommendation techniques were

proposed in [142, 137, 138]. Techniques have also been proposed recently which

can categorize projects and artifacts on GitHub [84, 53].

Researchers have also built tools to support developers to better use Twitter for

their day-to-day work [1, 76, 85]. Achananuparp et al. build a tool that visualizes

trends based on a number of software related tweets [1]. Sharma et al. proposed

NIRMAL which builds a language model based on the publicly available Stack

Overflow data and use it to compute a likelihood score of a tweet being software re-

lated or not [85]. Guzman et al. proposed ALERTme, an approach to automatically

classify, group and rank tweets about software application [34]. Recently Sharma

et al. proposed an approach to extract URLs from Twitter for software developers

which can help in their learning and knowledge updates [87]. Recently some tools

have been proposed to aid discovery and usage of videos related to software engi-

neering. Ponzanelli et al. proposed an approach to extract relevant fragments from

software development videos tutorials [73, 74, 72]. Text retrieval based tagging of

software engineering video tutorials has been proposed in [26, 69].

.

2.4 Summary

In this chapter, we did a brief discussion of the works performed as a part of this

dissertation. As seen in the previous sections social media channels have become

imbibed in the day-to-day workflow of software development, and these channels

support software developers in a number of ways. Twitter is also one of such social

media and is quite popular among software developers. The works in this disser-

tation try to solve challenges that developers face while using Twitter for activities
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related to software development. Although the techniques developed in this disser-

tation primarily focus on Twitter, we believe that some of them should be general-

izable enough for other social media channels also.
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Chapter 3

Understanding Popular Software

Engineering Content Produced in

Social Networks

3.1 Introduction

Twitter is currently the most popular microblogging service in the world. Apart

from using Twitter to connect with friends and family, people also use Twitter daily

to share news and knowledge and discover latest information and updates about

various topics of interest. Recent studies have found that software developers also

use Twitter for their personal, as well as professional pursuits. Singer et al. [89]

survey 271 GitHub developers and interview 27 of them to better understand their

Twitter usage. They find that software developers use Twitter quite extensively

in their professional activities. Developers use Twitter to stay aware of the latest

software trends and practices, to extend their software knowledge by learning new

stuffs and to maintain relationships with fellow software developers.

In this work, we extend Singer et al.’s study by investigating events in software

engineering Twitter space. An event corresponds to a set of topically-coherent mi-

croblogs that are shared by many Twitter users at a point in time. It can be viewed

14



as a popular trending topic in the software engineering Twitter space happening at

a particular point in time. By studying events, we can discover hot topics that inter-

est many developers. Different from Singer et al.’s work which focuses on getting

insight of developer’s use of Twitter by interviewing developers, this work analyzes

contents of tweets about popular topics that developers generate. Moreover, while

Singer et al. reported that developers use Twitter to get up-to-date with the latest

trends and consume knowledge, this work drills deeper by investigating the kinds

of popular trends and knowledge that get disseminated widely.

To find events, we first monitor a set of 90,883 users who are potentially in-

terested in software development. We collect microblogs that are generated by

these users over an 8 month period which amounts to 48,889,030 microblogs in

total. Next, we need to identify software engineering related tweets among these

48.9 million tweets. Unfortunately, this will require a prohibitive amount manual

effort since automated solutions still cannot identify software engineering tweets

with high accuracy (c.f., [85, 76]). To make the identification of software engineer-

ing related tweets practical, in this work we only study microblogs that mention

each of the following popular programming languages, i.e., C#, Java, Python, Scala

and Ruby. We leave the study of other software engineering related tweets as future

work. We then apply a state-of-the-art Twitter event detection algorithm [24] on

each of the five sets of microblogs to find events related to each of these program-

ming languages.

We sort the identified events based on their popularity (i.e., number of tweets

involved in the event), and selected the top 200 events for each of the programming

language. These 1,000 events are then manually analyzed using the open coding

procedure [97, 82] to create event categories. We then investigate three research

questions: 1) What are some hot software engineering related events in Twitter

space? 2) What are the categories of software engineering related events in Twitter

space? 3) How hot is each event category?

Our study is the first step towards a deeper understanding of tweets that interest
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developers. A good understanding of interesting tweets will guide our future work

on the construction of a recommendation system that can highlight fresh, relevant,

and interesting pieces of information from the Twitter stream to keep developers

up-to-date with recent trends and gain new knowledge. Such a solution will address

challenges that prevent developers from using Twitter, e.g., information overload,

etc. [89].

The contributions of this work are as follows:

1. We are the first to investigate events or trending topics that appear in the

software engineering Twitter space.

2. We perform an open coding procedure on 1,000 events to group them into

categories, and answer three research questions that shed light to topics that

interest many people in software engineering Twitter space.

The structure of the remainder of the chapter is as follows. In Section 3.2 we

give some background on Twitter and the event detection approach used in this

work. In Section 3.3, we describe the methodology that we follow in this ex-

ploratory study. We describe findings of our study in Section 3.4. Finally, we

conclude and mention future work in Section 3.5.

3.2 Background

In this section, we briefly describe Twitter and the state-of-the-art NLP algorithm

that we use for detecting events in Twitter.

3.2.1 Twitter

Twitter is the most popular microblogging and social media platform with more

than 300 million active users generating more than 500 million microblogs daily.

Each registered user in Twitter can post microblogs (popularly known as tweets)

with a maximum length of 140 characters. As the amount of text that users can post
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is limited, users can include in their tweets URL links to the actual blogs, articles,

news, etc., which contain detailed information about the topic that the users are

intended to share. Twitter supports the concept of hashtags; a user can use the

symbol “#” in front of a word to emphasize that the tweet being posted is associated

with a particular topic described by the word.

Twitter also allows one user to follow other user with the former (known as a

follower) subscribing to all the tweets of the latter (followee). Instead of sharing

their original tweets, a user can also share tweets made by others by retweeting ex-

isting tweets. This retweeting process broadcasts an existing tweet received by a

user to all his/her followers. Additionally, users can reply to other users’ tweets or

favourited other users’ tweets. Furthermore, while writing a tweet a user can explic-

itly mention another user by using the “@” sign followed by the user’s username.

Tweets mentioning a user will be forwarded to the user.

Figure 3.1: A Sample Microblog (i.e., Tweet) on Twitter.

Figure 3.1 shows a tweet which was posted by user “jonskeet”. The sam-

ple tweet contains a hashtag #NorDevCon. This tweet also shares an URL,

i.e., http://www.infoq.com/presentations/developer-passion,

which points to a webpage where detailed information about the user’s keynote is

made available. The tweet has been retweeted 13 times and favourited 32 times.
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Also, some users (e.g., “bembengarifin”) have replied to the tweet.

3.2.2 Event Detection in Twitter

Event detection in Twitter is becoming a hot research topic recently, as it can help

individuals or organizations to better understand what is trending from large real-

time data. In this work, to detect software-related event on Twitter, we select one

of the latest and promising Twitter event detection approach proposed by Diao and

Jiang [24], and apply it on software-related tweets.

Diao and Jiang design a unified model which combines a topic model to model

user interest, a dynamic non-parametric model to model events, and a probabilis-

tic matrix factorization component to capture the relationship between events and

topics. The unified model tries to separate personal from event-related tweets, iden-

tify tweets that belong to the same event, and penalize long-term events since most

events are short-lived. It accepts as input a stream of tweets and produce a series of

events along with tweets that belong to each event.

3.3 Proposed Approach

Figure 3.2 shows the methodology we follow in our study which contains 3 major

steps: Twitter Data Extraction, Event Identification, and Open Coding.

Figure 3.2: Empirical Study Methodology

In Step 1, we identify a set of 90,883 Twitter users who are potentially interested

in software development. This identification was done following the methodology

used in our previous work [104, 85]. We start with a seed set of 100 users who
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are well-known in software development1 and include other users that follow or are

followed by at least five of the seed users. We then periodically crawl all tweets

of these users for an 8 month period between September 2012 to April 2013 and

we collect in total of 48,889,030 tweets. From these tweets, we identify 5 sets of

tweets; each set consists tweets that mention one of the following 5 programming

languages: C#, Java, Python, Ruby and Scala. After this keyword filtering process,

we have sets of C#, Java, Python, Ruby, and Scala tweets of sizes 27,102, 117,385,

54,862, 104,528 and 35,634 respectively. At the end of this step, we order tweets in

each set based on the time they were posted.

In Step 2, for each series of tweets for a programming language extracted in Step

1, we identify events in them by running a state-of-the-art Twitter event detection

technique by Diao and Jiang [24]. Diao and Jiang design a unified model which

combines a topic model to represent user interest, a dynamic non-parametric model

to represent events, and a probabilistic matrix factorization component to capture

the relationship between events and topics. The unified model tries to separate

personal from event-related tweets, identify tweets that belong to the same event,

and penalize long-term events since most events are short-lived. The precision of

Diao and Jiang’s technique has been shown to be high (precision@5=100% and

precision@30=90%). After processing each of the 5 series of tweets, the technique

produces a ranked list of the events and we take the top-200 events sorted based on

their sizes (i.e., the number of tweets in the event). At the end of this step, we have

a set of 1,000 events that we need to group into categories.

In Step 3, we follow the open coding procedure [97, 82] to generate event cate-

gories. Open coding is performed in three iterations. In the first iteration, each event

and tweets contained in it is read and a short code (i.e., description) is assigned to

it. In the second iteration, the codes are analyzed to create higher-level concepts

by merging similar codes together. In the final iteration, the concepts are analyzed

1http://noop.nl/2009/02/twitter-top-100-for-software-developers.
html
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to create a small set of categories. After the categories have been identified, the

categories are sorted based on how “hot” they are (i.e., how many events belong to

each category).

3.4 Experiments & Analysis

Our study aims at answering the following three research questions. This knowl-

edge can be used to build an automatic recommendation system which can find

interesting software engineering related events from Twitter stream.

3.4.1 RQ1: What are some hot software engineering related

events in Twitter space?

By answering this question, we want to highlight some of the hot or popular soft-

ware engineering events for the time period we consider. Table 3.1 shows sample

hot events found for each of the 5 languages we consider.

The example hot event for Java is a security bug that affected Java based web

browsers in Jan 2013 which was shared by at least2 369 Twitter users. This was an

important advisory to developers as well as general public to disable or not use Java

based web browsers until the issue is resolved. For C#, the hot event is the release

of a viral blog specifying benefits of using C# for mobile development, which was

shared by at least 181 Twitter users. This blog may inspire many developers who

work on mobile development to use C# rather than other languages. For Python, it

is a trademark dispute which was shared by at least 382 Twitter users. This dispute

was a call-to-arms for Python developers and enthusiasts to join forces in a legal

battle to keep the name Python. For Ruby, it is the release of Ruby 2.0.0, an event

that many Ruby developers were likely to be waiting for, and this event was shared

by at least 842 Twitter users. For Scala, the joining of Rod Johnson (creator of

2We only monitor a subset of all Twitter users.
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Table 3.1: Hot Software Events for Each Programming Language

Language
Date of

First
Tweet

Event
Description

Sample Tweets
Tweet
Count

Java 11/01/2013 Security vulner-
ability found in
Java

•Feds warn PC users to
disable Java
•security vendors warn
users to disable java after
zero day exploit is found

369

C# 02/01/2013 A blog speci-
fying reasons
why C# is the
best language
for mobile
development
was posted.

•post by xamarin why c# is
the best language for mobile
development
•They’ve got a horse in the
race, but yes. RT @xamar-
inhq: Eight reasons C# is the
best language for mobile de-
velopment

181

Python 14/02/2013 A company in
United King-
dom applied
to trademark
“Python” for
all software and
services.

•unbelievable, some random
software company in Eu-
rope is trying to trademark
“Python”
•Python trademark at risk in
Europe: We need your help!

382

Ruby 24/02/2013 Ruby 2.00 was
released

•Ruby 2.0.0-p0 was re-
leased
•Ruby 2.0.0-p0 is released
Come and get it! Boosts to
language support, perfor-
mance, debugging, and built
in libs.

842

Scala 01/10/2012 Rod John-
son, creator
of Spring
Framework
in Java join-
ing Typesafe
Inc.(founded by
authors of Scala
team)

•Excited to be getting in-
volved with @typesafe. I
love Scala more and more
and it’s a gr8 team with Mar-
tin, Jonas & crew & now
Mark Brewer
•Proud to welcome Rod
Johnson (@springrod) to the
Typesafe board: @typesafe
#akka #scala #playframe-
work

150
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Java Spring framework) to Typesafe Inc. (the firm mainly responsible for pushing

Scala’s commercial adaptation) is a hot event. This event was shared by at least

150 Twitter users. This event was an exciting news for Scala developers and it may

motivate many other developers to learn and use Scala.

3.4.2 RQ2: What are the categories of software engineering re-

lated events in Twitter space?

In this research question we want to group software engineering events into cat-

egories. Following the open coding procedure described in Section 3.3, we have

been able to determine 11 categories of events (10 main categories + “Others”) in

Table 3.2.

Tweets occurring in category Article and Multimedia Sharing such as: “func-

tional programming principles in scala starts again next monday still time to en-

roll” helps interested developers by exposing them to learning resources available.

For category Technical Discussion tweets such as: “Scala protip lazy val is not×

free (or even cheap). Use it only if you absolutely need laziness for correctness,

not for optimization” can help developers in their programming activities. Tweets

like: “Feels so good @ScalaIDE: Scala IDE 3.0.0 is out With semantic highlight-

ing, Scala debugger” occurring in New Releases category can be extremely helpful

for developers who are on lookout for such tool. “Dropbox Hires Away Google’s

Guido Van Rossum, The Father Of Python” is an example of a tweet in the cate-

gory News, which the users may find interesting. Tweets such as: “ebook dealday

think python $1599 save 50% use code deal” in the category Product Promotions

help developers to be aware of latest deals and promotion on books and products

they might be interested in. “I‘ll be kicking off Build with style and rocking C#

on 2.5 billion devices at @xamarinhq’s #bldwin Welcome Party!” is an example of

tweet in the category Community events. This was used to attract and encourage

software developers to join Microsft Build Devekoper Conference. Tweets in se-
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curity updates category such as “sql injection vulnerability in ruby on rails affects

all versions” help to quickly disseminate security related information to developers.

Additionally, tweets such as: “Seeking Contributors for the Facebook C# SDK” in

the Crowdsourcing Request category can be extremely helpful for developers look-

ing for such opportunities. Similarly tweets that fall under the Career category can

be helpful to software developers hunting for jobs, while tweets that fall under the

Satires category can help developers to de-stress.

3.4.3 RQ3: How hot is each event category?

In this research question, we analyze the popularity of each event category. For each

event category, we count the total number of events in the category. We then plot a

heat map showing the hottest event categories (categories with the most tweets) for

each programming language and overall in Figure 3.3.

From the figure, we can note that the top-3 hottest event categories are: Article

and Multimedia Sharing, Technical Discussions, and New Releases. To help de-

velopers keep up-to-date with recent trends, we encourage future studies to build

automated solutions which are able to find, recommend, and summarize tweets that

fall under the ten categories, especially the hotter ones.

Another interesting observation to note is that for the 8 month period, popu-

lar security updates occurred only for Java and Ruby. Java security updates are

retweeted by a large number of Twitter users and one eighth of all popular Java

event tweets are about security updates. Another observation is that the number of

popular community events are higher for Python, Ruby and Scala as compared to

C# and Java. Another thing to notice is that for Java, the Satire category is more

popular than the other languages, on the other hand, no events occur in the Product

Promotions category.
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Table 3.2: Categories of Events in Software Engineering Twitter Space

Category
Name

Description

Article and
Multimedia
Sharing

Tweets sharing articles, blogs, tuto-
rials, or videos related to software
development.

Technical Dis-
cussions

Tweets discussing some technical
issues related to software develop-
ment.

New Releases Tweets announcing the release of a
new software version, tool, etc.

Satires Tweets sharing jokes and funny
quotes generally related to software
bugs or issues.

News Tweets sharing news items related
to software development such as
joining of a new CEO for a large
software company, etc.

Product Pro-
motions

Tweets promoting commercial
books and tools related to software
development.

Community
Events

Tweets about conferences, coding
events, anniversaries, etc.

Security
Updates

Tweets about latest security issues
and fixes affecting software prod-
ucts and frameworks.

Career Tweets about job openings and can-
didates sharing their availability for
hire.

Crowdsourcing
Requests

Tweets requesting users to con-
tribute to open source projects, sur-
veys, petitions, etc. related to soft-
ware development.

Others All other events which do not fall
into one of the above categories
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Figure 3.3: Hotness of event categories across languages (red = most popular, green
= least popular). Numbers represent the ratios of the total number of tweets of an
event category to the total number of tweets (in percentages).

3.4.4 Threats to Validity

Similar to other exploratory studies, there are some threats that may affect the va-

lidity of our study. First, we only study 90,883 Twitter users and their 48,889,030

microblogs which we collect over an 8 month period. Second, the event detection

algorithm by Diao and Jiang [24] may wrongly identify events. Third, we only

manually analyze 1,000 events using the open coding procedure. Fourth, the open

coding procedure involves subjectivity and most of the labeling decisions are made

by one person. Still, 48 million (microblogs) and 1,000 (events) are large num-

bers. Also, Diao and Jiang’s algorithm is a state-of-the-art algorithm and has been

shown to perform well. Furthermore two researchers other than author reviewed the

author’s labels to improve them.

3.5 Conclusion

Today, Twitter is one of the most popular mediums for information and resource

sharing. Software developer also use Twitter a lot in their career related activities

especially for remaining updated with the latest happenings, gaining new knowl-
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edge, and maintaining a community network [89]. In this work, we perform an ex-

ploratory study of events (or trending topics) in software engineering Twitter space

which have attracted the interest of many developers. We collect more than 48 mil-

lion tweets made by close to 90,000 Twitter users over a period of 8 months, filter

them based on 5 programming language names, and identify events by running a

state-of-the-art Twitter event detection algorithm [24]. We manually analyze 1,000

identified events and group them into categories using the open coding procedure.

At the end, we analyze how hot each of these event categories is. Our exploratory

study shows that most events that attract the interest of many Twitter users relate

to: article and multimedia sharing, technical discussion, new releases, satires, news,

product promotions, community events, security updates, career, and crowdsourc-

ing request. The first three categories in particular are the hottest ones.

In the future, we plan to expand this study to include tweets about other pro-

gramming languages, libraries, software development methodologies, etc. in order

to gain a good understanding of features of noteworthy tweets in the software en-

gineering Twitter space. Our eventual goal is to build a recommendation system

that can identify tweets that interest many developers (e.g., tweets that fall into

categories identified in this study) to help developers keep up-to-date with recent

trends and learn new knowledge from Twitter stream. Such a solution will help

solve challenges that prevent developers from using Twitter, e.g., information over-

load, etc. [89], potentially resulting in an increased adoption of Twitter to improve

software development activities.
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Chapter 4

Automatic Identification of Software

Relevant Content in Social Media

4.1 Introduction

Twitter, as one of the largest and popular on-line social network sites, provides

a platform to let people share news, disseminate opinions, and connect with one

another. It is growing fast in the recent years and is reported to have more than

600 million registered users. Along with the rapid increase in the number of users,

there is also a dramatic increase in the number of microblogs (i.e., tweets) posted

every day. Many Twitter users who follow a large number of other users1 receive

thousands of tweets daily. This causes an information overload problem which

makes it hard for users to find relevant and interesting tweets among the mass of

tweets that they receive.

A large number of software developers also use Twitter quite frequently, even

for their professional activities, e.g., to share and obtain latest technical news, to

support project and community management, etc. Unfortunately, as is the case with

other normal Twitter users, they find hard to extract useful information from tweets,

especially those that can help them in their professional activities. Singer et al. sur-

1In Twitter, a user will receive tweets generated by users that they follow.
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veyed 271 and interviewed 27 active developers and found that although developers

are using Twitter for their professional activities and development, they often find

it a challenge to deal with the many irrelevant tweets (i.e., noise) in their Twitter

streams [89]. Bougie et al. found that many of the tweets that are generated even

by software developers are related to “daily chatter” [11]. Indeed, it is common

for people to spread personal yet inconsequential information in Twitter, e.g., “Yay!

Today is Friday”, “It’s cloudy today”, etc. To make Twitter a better tool for software

engineers, there is a need for a technique that can help developers identify software

related tweets from the mass of other tweets. This automated approach should be

able to prioritize or rank tweets for software developers’ professional use (e.g., get-

ting latest technical news) so that more relevant tweets (i.e., software related tweets)

can be ranked higher than irrelevant tweets (e.g., daily chatter). Additional benefits

of identifying software related tweets are elaborated in Section 4.2.1.

Prior studies on Twitter have proposed two basic approaches to identify software

related tweets. One is a support vector machine (SVM) based approach proposed

by Prasetyo et al. that requires a training set of tweets labeled as software related

and non software related [76]. Unfortunately, building a representative set of tweets

for training an SVM classifier requires much manual effort and to the best of our

knowledge no such representative training data is available till date. Another ap-

proach is a keyword based approach proposed by Achananuparp et al. and Tian et

al. that takes as input a list of software related keywords and identifies a tweet as

software related if it contains at least one of the keywords [1, 104]. Both Achananu-

parp et al. [1] and Tian et al. [104] make use of a list containing 100 software related

words. However, this list is not comprehensive and many software related tweets do

not contain any of the 100 words. Furthermore, software related contents on Twitter

might change over time. Unfortunately, it is hard for both the SVM and keyword

based approaches, which rely on a static set of training data or a list of keywords, to

keep with this change without much effort (e.g., continuous labeling effort). Addi-

tional limitations of the existing approaches are elaborated in Section 4.2.2.
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To deal with the limitations of existing approaches, in this work we propose

NIRMAL, which is a language model based approach to identify software related

tweets. A language model can be regarded as a statistical tool to capture regula-

tions in a text corpus. It is widely used in natural language processing (NLP) area

to help machine translation, speech recognition, etc. [141, 59, 47, 57]. Recently, it

was also adopted by researchers in software engineering to capture the naturalness

of source code and support code suggestion and completion tasks [36, 65, 2, 113].

With a language model, we can take a corpus (i.e., a set of documents), model its

regularities and use the resultant model to predict if another document is related

to the documents in the corpus. To build a language model, our approach namely

NIRMAL takes a large number of contents from StackOverflow, the largest site for

developers to post questions and get answers. By doing this, we can capture the

regularities among documents that are software related. Given a new tweet, we cal-

culate the probability of the tweet to be software related, using the model learned

from StackOverflow content. The probability calculated corresponds to the compu-

tation of the similarity between the given tweet and the software related contents on

StackOverflow. If a tweet receives a higher probability using the model, it means

that it has a higher chance of being a software related tweet. To improve the perfor-

mance further, we have also extended a standard language model by considering the

repetitiveness of contents in a tweet that can often differentiate between informative

tweets and meaningless tweets.

Note that compared to the previous two approaches (i.e., SVM based [76] and

keyword based [1, 104]), our approach is more useful as it does not require a repre-

sentative set of manually labeled tweets which takes much manual effort to create,

and it does not suffer the same limitations as the keyword based approach. To cap-

ture new trends and developments in software development, the language model can

also be incrementally updated with new contents from StackOverflow easily ,which

requires no/little manual effort (i.e., no manual labeling effort is needed).

To evaluate the effectiveness of our approach, we have trained NIRMAL on a
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large set of contents from the StackOverflow data dump. We then used NIRMAL

to rank 6,294,015 tweets posted by 90,883 micro bloggers that we had collected in

April 2013. We manually evaluated the top-ranked tweets and determined whether

they are software related or not. The results were evaluated using a measure accu-

racy@K, which is defined as the proportion of tweets in the top-K positions that are

software related. The metric accuracy@K has also been used to evaluate past stud-

ies such as [38, 130, 136]. We found that NIRMAL can achieve an accuracy@10,

accuracy@50, accuracy@100, accuracy@150, and accuracy@200 of 0.900, 0.820,

0.720, 0.707 and 0.695, respectively. On the other hand, a random model can only

achieve an accuracy@10, accuracy@50, accuracy@100, accuracy@150, and ac-

curacy@200 of 0.400, 0.280, 0.280, 0.220 and 0.240, respectively. Thus, NIR-

MAL can improve the random model by 125%, 192.86%, 157.14%, 221.21% and

189.58%, in terms of accuracy@10, accuracy@50, accuracy@100, accuracy@150,

and accuracy@200 respectively. We have also integrated our approach with the

keyword based approach by Achananuparp et al. and Tian et al. and found that

we can improve the accuracy@10, accuracy@50, accuracy@100, accuracy@150,

and accuracy@200 of the keyword based approach by 11.11%, 31.43%, 28.38%,

28.32% and 29.14%, respectively.

The contributions of this work are as follows:

1. We propose a new approach, named NIRMAL, that can automatically identify

software related tweets. Our approach makes use of a language model to cap-

ture the regularities of software related documents by leveraging the mass of

data available in StackOverflow. Our approach also measures the repetitive-

ness of contents to differentiate between meaningful tweets and meaningless

ones. Different from the existing approaches, NIRMAL does not require a

representative training set of labeled tweets or a long list of representative

keywords.

2. We have used NIRMAL to rank 6,290,415 tweets from 90,883 microbloggers
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that were collected in April 2013. The experiment results show that NIRMAL

can achieve a high accuracy@K scores (i.e., up to 0.900) and also improve the

keyword based approach by up to 31%. We have also investigated the impact

of different settings to determine the effectiveness of NIRMAL.

The structure of the remainder of this chapter is as follows. In Section 4.2, we

elaborate the motivation of our work further. In Section 4.3, we present the back-

ground information about Twitter and language modeling. In Section 4.4, we de-

scribe our proposed language-based approach that can automatically identify soft-

ware related tweets. In Section 4.5, we present our experiment settings and the

results of our experiment. We finally conclude and mention future work in Sec-

tion 4.6.

4.2 Motivation

In this section, we first describe the benefits of identifying software related mi-

croblogs in more detail. We then elaborate limitations of the two basic approaches

that have been used to extract software related tweets and how these limitations are

addressed by NIRMAL.

4.2.1 Why identify software related tweets?

As microblogging services have become very popular in recent years, more and

more developers are using microblogs to share news and connect with one another.

Software engineering researchers also noticed this trend among developers, and

have started to analyze how do microbloggging sites, e.g., Twitter, help develop-

ers in their professional activities. Several studies have analyzed the contents of

microblogs that developers post on Twitter [11], investigated behaviors of software

microbloggers on Twitter [129, 104], and surveyed developers on how they use

Twitter [89].
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Researchers who conducted the above studies found that developers indeed use

Twitter a lot to support their professional activities by sharing and discovering vari-

ous information from microblogs, e.g., new features of a library, new methodologies

to develop a software system, opinions about a new technology or tools, etc. They

also find that developers use Twitter to post contents to support project management

and coordinate activities inside a community. However, software microbloggers

also post a lot of microblogs that are not relevant to software development, e.g.,

microblogs about non-technical news, personal events, jokes, etc. Since software

microbloggers are creating some amount of software related knowledge together

with a larger amount of non software related contents, it becomes a challenge to

discover interesting software related information from microblogs that a developer

receives. In fact, this is reported as one of the major challenges faced by software

microbloggers who are using Twitter and is one of the barriers to the adoption of

Twitter [89]. Therefore, an automated approach that can identify interesting mi-

croblogs, e.g., software related tweets, is needed.

Besides the above-mentioned practical need, automatic identification of soft-

ware related tweets, can also open up a new avenue of research: it can be used to

extract a new type of software repository that can be mined to support various soft-

ware development and evolution tasks. Some potential tools that can be built from

the identified software related tweets include:

1. Tools that discover and visualize trends of software related contents on Twit-

ter.

2. Tools that recommend contents on Twitter that are specific to a developer’s

specific needs and interests.

3. Tools that mine opinions about APIs, IDEs, programming languages, techni-

cal solutions, etc., from contents on Twitter.
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4.2.2 Why a new language model based approach?

In the literature, researchers have proposed two basic approaches to identify soft-

ware related microblogs, i.e., Support Vector Machine (SVM) based approach and

keyword based approach. We elaborate the details of these two existing approaches

as well as their limitations below:

SVM based approach. Prasetyo et al. proposed to use SVM to predict if a tweet

is software related or not [76]. They manually labeled 300 tweets as either software

related or not and used a part of the labeled tweets as a training data to learn a

classifier using SVM, and applied the classifier on another set of tweets to predict

whether they are software related or not. However, their approach only considered

300 tweets from the millions of tweets. To generalize the SVM based approach,

researchers need to label a large and representative sample of tweets on Twitter,

which takes a lot of time. The 300 tweets are selected by checking the presence of

nine software related hashtags, and therefore they have a nearly balanced data set:

47% of the tweets are software related while the other 53% are non software related.

In reality, the majority of tweets do not have hashtags and there are much more non

software related tweets than software related tweets. The extremely unbalanced

data is likely to impact the effectiveness of the SVM classifier. In addition, contents

on Twitter are evolving as new technologies and tools are introduced to the market;

this means that the model might need to be updated based on new labeled tweets.

Unfortunately, this would require a continuous effort to label new tweets as either

software related or not which would be costly.

Keyword based approach. Achananuparp et al. and Tian et al. used a list of

keywords to identify software related tweets [1, 104]. Different from the SVM

based approach, the keyword based approach does not require labeled tweets. It

simply takes a set of software related words as input and identifies a given tweet

as software related if it contains any of the words in the provided set of words.

Unfortunately, there are a number of limitations with this approach. First, it is
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hard to construct a comprehensive list of software related words that could identify

whether a tweet is software related or not. For instance, tweet How To: Use the

Entity Framework Designer http://t.co/SteQkWAKfN is talking about a new

resource that a developer wants to share with other developers, however it does not

contain any of the keywords considered by Achananuparp et al. and Tian et al.

Second, some words can have multiple meanings and not all of the meanings will be

software related, e.g., Java, eclipse, etc. The problem is aggravated with the fact that

tweets can be written in multiple languages. In English, a word might correspond

solely to a software related concept; however, it can correspond to a completely

unrelated concept in another language (e.g., Ada is a programming language and the

same word means “there is (are)” in Indonesian). Third, similar to the SVM based

approach, the keyword based approach cannot automatically update itself when new

technologies or tools are introduced. Someone needs to manually update the list of

keywords to make the approach adapts to new technological updates.

To address the challenges faced by the existing two approaches, we propose

a new approach namely NIRMAL to identify software related tweets leveraging

language model learned from StackOverflow. The benefits of NIRMAL include: 1)

it does not require labeled software related and non software related tweets, 2) it

does not require manually defined keyword list, 3) it takes the context of a word

into consideration. We describe our approach in detail in Section 4.4.

4.3 Background

In this section, we first describe the two platforms that we consider in this study,

namely Twitter and Stack Overflow. We then provide a brief introduction of lan-

guage model.
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4.3.1 Twitter

Twitter is the most popular and largest microblogging site worldwide. It already has

more than 600 million registered users generating over 500 million tweets daily 2.

The number of active Twitter users is growing rapidly, it increased from around 167

millions in the 3rd quarter of 2012 to 284 millions in the 3rd quarter of 2014. 3

Twitter allows a user to post text messages, referred to as “tweets”, with a max-

imum length of 140 characters. To address the limitation on the length of tweets,

many Twitter users include url links in their tweets pointing to webpages such as

blogs, news, etc. that contains more information. Twitter users can also include

hashtags, which typically start with a “#” symbol. If a user clicks on a hashtag,

Twitter will show other tweets with the same hashtag. In Twitter, one can follow

another user; a user (follower) who follows another user (followee) will subscribe

to all tweets that are posted by the followee. Besides composing new tweets, Twitter

allows users to perform other activities. This includes retweeting an existing tweet

that are posted by other users. A user that retweets a tweet will broadcast the tweet

to all of his/her followers. Retweets typically start with the keyword “RT”. Users

can also reply to an existing tweets or tweeting directly to a user. A reply or direct

tweet contains “@Username” to identify the user the tweet is intended for. Twitter

also supports users to favorite a tweet to show their interest in the content of a tweet.

Figure 4.1 shows a sample tweet posted by “C# Corner”. The sample tweet

contains two hashtags, i.e., csharp and csharpcorner. This tweet specifies another

Twitter user using the “@” symbol. It also contains a url link that points to a blog

that talks about how a number can be converted to a string in C#.

4.3.2 Stack Overflow

Stack Overflow, created in 2008, is the most popular question answering sites spe-

cially designed for developers. Stack Overflow provides a platform for developers

2https://about.twitter.com/company
3http://www.statista.com/statistics/282087/number-of-monthly-active-twitter-users/
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Figure 4.1: A sample microblog (i.e., tweet) on Twitter.

to help one another by asking and answering software related questions. It has

become a large knowledge source with more than 2 million registered users con-

tributing over 7 million questions.4 The large amount of software related question-

and-answer threads in Stack Overflow is a good source of information to mine and

study. Past research works have used Stack Overflow data to: discover develop-

ment topics and trends [6], build software-specific word similarity database [105],

automatically generate code comments [134], etc.

Figure 4.2 shows a sample question-and-answer thread extracted from Stack

Overflow. Each question-and-answer thread in Stack Overflow contains three types

of information: title, body, and comments. The title of a thread is a short summary

of the question. The body of a thread contains the description of the question and

one or more answers if the question has been answered. The comments of a thread

could be comments to the question or comments to any of the answers. These

three different types of contents have different properties: title and comments con-

tain more natural language text, while body is usually a mixture of text and pieces

of code. Furthermore, comparing title and comments, title usually contains more

technical words while comments might contains some non technical sentences or

phrases, such as “thank you”, etc.

4.3.3 Language Model

A statistical language model is a probability distribution over word sequences. It

assigns a probability to any sequence of words to present the likelihood of the se-

4http://en.wikipedia.org/wiki/Stack_Overflow#cite_
note-soUSERS-17
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Figure 4.2: A sample question-and-answer thread on Stack Overflow.

quence occurring in the language it models. For example, a good language model

learned from English corpus will assign higher probability scores to sentences in

English than sentences in other languages.

More formally, given a word sequence S = t1t2t3 . . . tn, a language model esti-

mates the probability of this sequence to be represented by the model as:

P (S) = P (t1)
n∏

i=2

P (ti|t1, . . . , ti−1) (4.1)

In the Equation 4.1, the probability for a sequence S is defined as a product

of a series of conditional probabilities. Conditional probability P (ti|t1, . . . , ti−1)

represents the likelihood that word ti follows the words that appear before it (i.e.,

t1, . . . , ti−1).

In practice, it is not practical to store all P (ti|t1, . . . , ti−1) since there is a huge

number of possible prefixes. Therefore, researchers have proposed methods to sim-

plify this probability by including some assumptions. N-gram language model is
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one of such simplifications, which has been proven to be effective in practice. The

N-gram language model assumes that the probability of a word ti to appear after

a series of words t1, . . . , ti−1 could be estimated by considering only the previous

N − 1 words rather than all previous words. More formally, the following equality

is assumed.

P (ti|t1, . . . , ti−1) = P (ti|ti−N+1, . . . , ti−1) (4.2)

The probability on the right hand side of Equation 4.2 can be estimated from a

training corpus (i.e., a set of textual documents) by computing the ratio of the num-

ber of times word ti follows the prefix sequence ti−N+1, . . . , ti−1 and the number

of times the prefix sequence ti−N+1, . . . , ti−1 appears in the training corpus. More

formally, we can compute the probability as follows:

P (ti|ti−N+1, . . . , ti−1) =
count(ti−N+1, . . . , ti−1, ti)

count(ti−N+1, . . . , ti−1)
(4.3)

Consider the sample tweet shown in Figure 4.1 which is a sequence of words. If

we use a bigram language model (N=2), the probability of “convert numeric number

to string in C#” could be calculated as

P (convert, numeric, number, to, string, in, C#) =

P (convert|〈s〉)P (numeric|convert)P (number|numeric)

P (to|number)P (string|to)P (in|string)

P (C#|in)P (〈/s〉|C#)

In the above equation, 〈s〉 denotes the start-of-sentence marker and 〈/s〉 denotes

the end-of-sentence marker. Since the probability of each word in a sentence is

often small, and the multiplication of many small numbers can cause underflow

problem, rather than computing the probability of a sentence, the logarithm of this
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probability is often computed. The negation of this logarithm normalized by the

number of words is often referred to as the perplexity of the sentence. In this work,

we denote the perplexity of a sentence S as PP (S). It is defined more formally

below:

PP (S) =
−1
n
log(P (t1t2t3 . . . tn)) (4.4)

Note that a low perplexity score corresponds to a high probability score. Thus,

the lower the perplexity score of a sentence is, the more closely the language model

captures the sentence.

One problem of applying N-gram model ]in real tasks is that it assigns a zero

probability to a sentence if an N-gram in the sentence does not appear in the training

corpus. To deal with this problem, many smoothing techniques have been proposed

in the literature. A smoothing technique assigns a small but non-zero probability

to an N-gram that does not appear in the training corpus. One of the well known

smoothing technique is the Katz backoff model [43]. It replaces the probability a

word w considering the prior N − 1 words, with the probability of w considering

the priorM−1 words (whereM < N ), if the earlier probability is zero. In effect, it

reduces a N-gram model to a M-gram model, where M is less than N, if an N-gram

does not exist in the training corpus.

4.4 Proposed Approach

Figure 4.3 shows the overall framework of NIRMAL. The approach includes three

major phases: the model creation phase, tweet ranking phase, and evaluation phase.

In the model creation phase, NIRMAL learns a language model from StackOverflow

data. In the tweet ranking phase, NIRMAL first uses the learned model to compute

the perplexity score of each tweet. The lower the perplexity score, the more likely

the tweet is software related. NIRMAL then ranks the tweets in ascending order of
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Figure 4.3: Framework of the proposed approach - NIRMAL

their perplexity scores and returns this ranked list. The three phases are described

in more detail in the following subsections.

4.4.1 Stack Overflow Data Acquisition & Preprocessing

We used the Stack Overflow data dump that is provided in the following website:

archive.org/download/stackexchange. In the website, there are many

files corresponding to contents from various StackExchange websites (including

StackOverflow). We use the following two files: Posts.7z5 and Comments.7z6.

Posts.7z contains the title and body (i.e., question and answers) of posts that ap-

pear in StackOverflow. Comments.7z contains comments that people give to the

questions and answers in StackOverflow. These files contain contents posted in

Stack Overflow from July/September 2008 to September 2014. There are a total

of 7,990,787 titles, 21,736,594 bodies (i.e., questions + answers), and 32,506,636

comments.

Since there are too many bodies (i.e., questions + answers) and comments, to

5https://archive.org/download/stackexchange/stackoverflow.com-Posts.7z
6https://archive.org/download/stackexchange/stackoverflow.com-Comments.7z
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reduce the time it takes to learn a language model, we only used 8,000,000 of them.

We randomly selected 8,000,000 bodies and comments from the data dump. We

also performed simple text pre-processing. We removed all punctuation marks and

URLs from the sentences in the titles, bodies, and comments. We also changed all

words to their lower case.

4.4.2 Language Model Building

We used SRILM [92], a popular language modelling toolkit, to create an N-gram

language model. SRILM takes as input a set of documents, a parameter N, and

outputs an N-gram language model that characterizes the regularities of text in the

input set of documents. SRILM performs smoothing following the Katz backoff

model [43]. Thus, it reduces a N-gram model to a M-gram model, where M is less

than N, if an N-gram does not exist in the training corpus.

4.4.3 Twitter Data Acquisition & Preprocessing

To collect tweets, we first obtained a set of microbloggers that are more likely

to generate software related contents. We started with a collection of 100 seed

microbloggers who are well known-software developers7. Among these seed mi-

crobloggers we have codinghorror which is the Twitter alias of Jeff Atwood,

the founder of StackOverflow. Next, we analyzed the follow links of these mi-

crobloggers on March 1, 2013, to identify other microbloggers that follow or are

followed by at least 5 seed microbloggers. We added these other microbloggers to

the set of seed microbloggers to get a set of 90,883 microbloggers. After, we had

identified the target microbloggers, we downloaded tweets that are generated by

these microbloggers from April 1 to April 31, 2013. We downloaded these tweets

using the Twitter REST API. We have a Twitter whitelist account that allows us to

make 20,000 API calls every hour. In total, we collected 6,294,015 tweets.

7http://www.noop.nl/2009/02/twitter-top-100-for-softwaredevelopers.html
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We performed simple pre-processing on the collected tweets. We removed punc-

tuation marks and URLs, and also changed all words into their lowercase.

4.4.4 Ranking of Tweets

To rank tweets, we made use of two sources of information: first, we used the per-

plexity score that is output by the language model; second, we computed a scaling

factor based on the repetitiveness of words in a tweet. We found that many tweets

with repetitive contents, e.g., “1 1 1 1 1 1 1”, “a a a a a a”, are rather meaningless.

Most meaningful tweets do not have a high number of repetition. We computed the

scaling factor of a sentence S using the following equation:

St(S) =
wct(S)

wcu(S)
(4.5)

In the above equation, wct(S) is the number of words in the sentence S and

wcu(S) is the number of unique words in the sentence S. Note that the lower the

scaling factor the less repetitive a tweet is and the more likely it is meaningful.

Given a sentence S after we have computed its perplexity score (i.e., PP (S))

and its scaling factor (i.e., St(S)), we can compute its revised perplexity score,

denoted by PPR(S), as follows:

PPR(S) = PP (S)× St(S) (4.6)

The lower the ranking score of a tweet the higher is the likelihood of it to be soft-

ware related and not meaningless. Note that due to smoothing using Katz backoff

model, although both “1 1 1 1 1 1 1”, “a a a a a a” do not appear in the StackOverflow

data, SRILM will assign a relatively low perplexity score to both sentences since

“1” and “a” appears often in the StackOverflow data. Thus, we need to leverage

the repetitiveness of contents in a tweet to increase the score of these meaningless

tweets.
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4.5 Experiments & Analysis

In this section, we describe our dataset and experimental settings, followed by our

evaluation metric. We then present our four research questions and the results of

our experiments.

4.5.1 Dataset and Settings

The detailed statistics of the Twitter and StackOverflow datasets that we use in this

experiment are shown in Table 4.1. The number of words in the tweets that we

collected amounts to more than 77 million. The number of words in the titles,

bodies (i.e., questions + answers), and comments that we collected amounts to,

slightly more than 39 thousand, 725 million and 200 million, respectively.

Table 4.1: Statistics of Twitter Data and Stack Overflow Data.
Corpus #Documents #Words
Twitter 6,294,015 77,491,505

StackOverflow (Title) 7,990,787 39,786
StackOverflow (Body) 8,000,000 725,449,601

StackOverflow (Comment) 8,000,000 200,584,369

NIRMAL accepts two inputs: the dataset used to learn a language model and the

parameter N of N-gram. By default, unless otherwise stated, we use the StackOver-

flow (Title) corpus (i.e., the titles of the StackOverflow posts) to learn a language

model, and set the value of N to 4. We run the experiment using the following

machines: Preprocessing and tweet ranking steps are run on Intel Core i5-4570 3.2

GHz CPU, 8 GB RAM desktop running Windows 7 64 bit. All SRILM related steps

are performed on a 7 core Intel(R) Xeon(R) CPU E5-2667 0 @ 2.90GHz, 64 GB

RAM server running CentOS release 6.5.

4.5.2 Evaluation Metrics

We use NIRMAL to sort the 6.2 million tweets and we manually inspect the top-K

tweets that are returned by NIRMAL. We evaluate the effectiveness of our approach
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using accuracy@K. accuracy@K is defined as the proportion of tweets in the top-

K positions that are software related. accuracy@K has also been used to evaluate

other past studies [38, 130, 136].

4.5.3 Research Questions

Our experiments aim to answer following four research questions that assess the

strengths and limitations of NIRMAL and several baseline approaches.

RQ1: How effective is our approach in identifying software related tweets?

In this question, we want to evaluate how effective is NIRMAL in ranking tweets

such that the software related ones are ranked higher than the non software related

ones. To answer this research question we simply run NIRMAL with the default

setting on the 6.2 million tweets and manually evaluate the top-K tweets that are

returned by NIRMAL. We report the accuracy@K scores that are achieved by NIR-

MAL. We compare the performance of NIRMAL with the performance of a random

model that randomly labels K tweets as software related.

RQ2: What are the effects of varying NIRMAL inputs on its effectiveness?

NIRMAL accepts two kinds of inputs: the value N for the N-gram model, and

the dataset used to train the N-gram model. In this research question, we want to

investigate the impact of using different values of N and different datasets on the

overall effectiveness (i.e., accuracy@K scores) of NIRMAL. We investigate four

different N values, i.e., 1,2,3, and 4, and five different datasets: StackOverflow (Ti-

tle), StackOverflow (Body), StackOverflow (Comment), StackOverflow (Title)
⋃

StackOverflow (Body), StackOverflow (Title)
⋃

StackOverflow (Body)
⋃

Stack-

Overflow (Comment).

RQ3: How efficient is our approach?

Many new tweets are continuously generated every second. For our approach to

work in practice, it needs to be able to process new tweets efficiently. In this research

question, we investigated the time it takes for NIRMAL to learn a language model
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and the time it takes to compute the revised perplexity score of a tweet. Since

a trained language model can be used to label many tweets before it needs to be

retrained, the time NIRMAL takes to learn a language model can be long (e.g., a

few hours) but cannot be excessively long (e.g., a few months). On the other hand,

the time NIRMAL takes to compute the revised perplexity score of a tweet needs to

be very short (i.e., less than a second).

RQ4: Could our approach improve the effectiveness of the keyword based ap-

proach?

Achananuparp et al. and Tian et al. have used a set of keywords to detect if a

tweet is software related or not. However, many tweets that contain one or more

of the keywords are not software related. In this research question, we investi-

gated whether we can use NIRMAL to effectively sort tweets that have been filtered

such that the software related ones appear in the top of the list. To answer this re-

search question, we first filtered the 6.2 million tweets using the 100 keywords that

Achananuparp et al. and Tian et al. used. In total, among the 6.2 million tweets,

we have 227,225 tweets that contain at least one of the keywords.We then selected

a random sample of 200 tweets and calculated the accuracy@K scores for keyword

only approach. We then applied NIRMAL to sort all the 227,225 keyword contain-

ing tweets and manually evaluated the top-K tweets to compute the accuracy@K

score to check if NIRMAL is able to improve the accuracy of keyword based ap-

proach.

4.5.4 Research Results

In this section, we present our experiment results that answer each of the research

questions raised in the previous section.

RQ1: Effectiveness of Our Approach

The results of our experiment are shown in Table 4.2. From the results we

can note that the accuracy@K of NIRMAL ranges from 0.695 to 0.900 using the
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default setting. When we investigated the top-10 tweets, we found that 90% of

them are software related. When we investigated the top-200 tweets, we found that

69.5% of them are software related when NIRMAL is used. On the other hand for

a random model only 24% of the top-200 tweets were software related. This shows

that NIRMAL is accurate, and also that the tweets ranked higher in the list are more

likely to be software related than those ranked lower in the list.

Table 4.2: acc@K (i.e., accuracy@K) of NIRMAL for Various K
Approach acc@10 acc@50 acc@100 acc@150 acc@200
NIRMAL 0.900 0.820 0.720 0.707 0.695

Random 0.400 0.280 0.280 0.220 0.240

RQ2: Effectiveness of Various Parameter Settings and Learning Resources

Varying the parameter N of the N-gram model. The results of our experiment are

shown in Table 4.3. From the results we note that if we increase N for N-gram lan-

guage model the accuracy@K increases for all values of K, e.g., The accuracy@200

increases from 0.120 to 0.695 as we move from 1-gram to 4-gram model.

Table 4.3: Effect of Varying N on the Performance of NIRMAL
N acc@10 acc@50 acc@100 acc@150 acc@200
1 0.000 0.140 0.140 0.127 0.120
2 0.500 0.460 0.460 0.473 0.485
3 0.600 0.640 0.680 0.660 0.630
4 0.900 0.820 0.720 0.707 0.695

Varying the training corpus. The results of our experiment are shown in Table 4.4.

From the results we note that for any N-gram language model the highest values

of accuracy@K were achieved when the training corpus containing only Titles was

used. This can be explained as the Titles will generally contain less noise, i.e.,

natural language text not related to software. However the Body and Comments

contain a lot of normal language text, as well as code samples and fragments, which

should explain the relatively lower accuracy scores attained by language models

created using their corpus.
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Table 4.4: Effect of Using Different Training Corpus on the Performance of NIR-
MAL. T = Title, B = Body, C = Comment, TB = Title + Body, TBC = Title + Body
+ Comment.

Corpus acc@10 acc@50 acc@100 acc@150 acc@200
T 0.900 0.820 0.720 0.707 0.695
B 0.300 0.560 0.530 0.500 0.475
C 0.500 0.380 0.280 0.227 0.200

TB 0.400 0.640 0.560 0.540 0.500
TBC 0.400 0.600 0.540 0.447 0.435

RQ3: Efficiency of Our Approach

The results of our experiment is shown in Table 4.5. We show the time NIRMAL

takes to create a language model from the StackOverflow title data (i.e., Model Cre-

ation Time), and the average time NIRMAL takes to compute the revised perplexity

score of a tweet (i.e., Model Compu. Time), for various values of the N parameter.

All the times are shown in seconds. We can observe that as N increases the time to

create a model also increases. This is pretty evident because the model will need

to consider a higher number of N-grams (word pairs) when N increases. However

change in N seems to have a negligible effect on the time required to calculate re-

vised perplexity score for a new tweet. Please note that perplexity score calculation

time has been averaged over score calculation time for all 6,294,015 tweets.

Table 4.5: Efficiency of NIRMAL
N Model Creation Time (in Sec.) Score Compu. Time (in Sec.)

1-gram 14 0.000268827
2-gram 46 0.000261518
3-gram 101 0.000261359
4-gram 175 0.000278042

RQ4: Integration with Keyword Based Method

The experiment results are shown in Table 4.6. We can clearly observe that

applying the NIRMAL to the keyword approach improves the accuracy@K for all

values of K. Our results show that NIRMAL can be used to improve the accuracy

score up to 31%. The lowest observed increase of about 11.11% for accuracy@10

value. But this should be seen as a positive result as it was the maximum increase
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possible at K=10. The new value achieved i.e., 1 (obtained after applying NIR-

MAL) is the highest value possible value for the parameter accuracy@K. Thus, we

can deduce that applying NIRMAL to a keyword approach seems to result in an

improved performance.

Table 4.6: Keyword VS. NIRMAL + Keyword
Approach acc@10 acc@50 acc@100 acc@150 acc@200

Key. 0.900 0.700 0.740 0.753 0.755
NIRMAL + Key. 1.000 0.920 0.950 0.967 0.975

4.5.5 Threats to Validity

In this section, we discuss threats to three types of validity, i.e., internal, external,

and construct validity.

Threats to internal validity. Threats to internal validity relate to errors in our ex-

periments and our labelling. Most of our experimental process is based on SRILM,

a commonly used language model learning and application tool. We believe the

code of SRILM is stable and reliable. To label the tweets as software related or not,

we asked one PhD student with more than 5 years of experience in software industry

and more than 10 years of experience in programming to manually label the tweets.

We believe the PhD student has enough expertise to decide if a tweet is software

related or not. When labeling the tweets, the PhD student not only reads the tweets

but also opens the URLs contained in the tweets (if needed). The labeling process

might be subjective, however, since one person labels all tweets the judging criteria

used remains consistent.

Threats to external validity. Threats to external validity relates to the generaliz-

ability of our approach and evaluation. In this work, to reduce threats brought by

using a small training corpus, we have downloaded and used millions of titles, ques-

tions, answers, and comments from the official StackOverflow dump which contains

contents posted in Stack Overflow from 2008 to 2014. We have used NIRMAL to

rank more than 6.2 million tweets that are generated by more than 90 thousand
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microbloggers over a two month period. We have manually labeled the top-200

tweets generated by NIRMAL. In the future, to reduce the threats to external valid-

ity, we plan to use NIRMAL to rank a larger number of tweets generated by more

microbloggers. We also plan to manually label a larger number of tweets.

Threats to construct validity. Threats to construct validity relates to the suitability

of our evaluation metric. In this work, we use accuracy@K to measure the effective-

ness of our approach. This metric is intuitive and it has been used in many previous

studies, e.g., [38, 130, 136]. Thus, we believe there is little threat to construct va-

lidity.

4.6 Conclusion

Twitter has become a popular means to share and disseminate information. To date,

there are hundreds of millions of Twitter users generating billions of microblogs

(aka tweets). Software developers are also using Twitter, even for their professional

activities. Singer et al. found that software developers use Twitter to get awareness

of people and trends, extend their technical knowledge, and build connections with

other developers [89]. Unfortunately, developers often find it a challenge to deal

with the many irrelevant tweets (i.e., noises) in their Twitter streams. Many devel-

opers follow many people that generate many tweets (many of which are irrelevant)

that get broadcasted to them every day.

To make Twitter a better tool for developers in their professional activities, we

propose a new approach that can help developers identify software related tweets

from the mass of other irrelevant tweets. Our approach, named NIRMAL, trains

a language model from a corpus of software related contents on Stack Overflow.

The trained language model infers the regularities of software related contents and

use these regularities to compute the likelihood of a tweet to be software related.

To improve the performance further, NIRMAL also considers the repetitiveness of

words in a tweet that can be used to differentiate between informative and meaning-
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less tweets. In our experiment, we have used NIRMAL to rank a set of 6.2 million

tweets generated by more than 90 thousands microbloggers. Most of the tweets are

not software related while only a minority of them are software related. The experi-

ment results show that NIRMAL can achieve an accuracy@200 score of up to 0.695

which is greater than the accuracy@200 score of a random model by up to 192%.

Furthermore, NIRMAL can be used to improve the accuracy score of a keyword

based approach by up to 31%.

As a future work, we plan to build N-grams with larger N and evaluate how

they perform w.r.t parameters of accuracy and computational performance. We plan

to investigate the effect on performance of current models by adding more pre-

processing steps such as stemming and stop word removal. We also plan to propose

an approach that can summarize the identified software related tweets to help devel-

opers better manage the large number of tweets that they receive daily.
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Chapter 5

Mining Informative Online

Resources Shared by Developers on

Social Media

5.1 Introduction

Software development is a field which evolves rapidly, so software developers al-

ways need to keep themselves up to date with new knowledge and methodologies.

Learning continuously and serendipitously may help them to solve new, unseen

and/or complex challenges that they may encounter during their software develop-

ment tasks. Storey et al. found that keeping up with new technologies is a major

challenge faced by software developers today [96]. They also found that develop-

ers use media such as Twitter to keep them up to date with the latest trends and to

extend their software knowledge [89].

In this work, we present an approach to support the serendipitous learning of de-

velopers by harnessing Twitter as a knowledge repository. Past research has shown

that Twitter is used by software developers to share important information with

other fellow developers [89, 11, 103]. Sharing links in the form of URLs (Uniform

Resource Locators) of various software related articles and multimedia is a popu-
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lar activity in software engineering Twitter space [86]. Twitter has been found to

be better at serendipitously exposing developers to latest updates and developments

in technology when compared to search engines [89]. Also, consideration of the

URLs on Twitter allows us to reduce the search space for finding popular and rele-

vant URLs, and also to infer the social approval of links shared. Unfortunately, even

on Twitter, finding URLs to relevant and useful articles for a particular domain of

interest (e.g., Java) is not an easy task. Developers need to identify many relevant

Twitter users to follow, and sieve through a large amount of tweets that they may

generate, which often result in information overload. These challenges have been

validated by Singer et al. in their survey with developers [89].

To address the above mentioned challenges, we propose an unsupervised and a

supervised approach to harvest and rank URLs linked to contents that are popular

and relevant to a particular domain of interest from Twitter. Both output a sorted list

of URLs sorted based on their likelihood to be popular and relevant to the domain of

interest, where domain is characterized by a set of keywords (e.g., {“Java”}). The

supervised approach also requires as an input a small training set, which contains

URLs that are manually assigned with relevance ratings ranging from 0 (highly

irrelevant) to 3 (highly relevant). Both of the two approaches characterize a URL in

terms of 14 features that are grouped into three families: content features, popularity

features, and network features. Our unsupervised approach makes use of Borda

count [4], a popular data fusion technique, to rank URLs based on their features.

Our supervised approach makes use of Learning to Rank [51], a popular information

retrieval technique, to build a ranking model from the labeled URLs, which can then

be applied to rank a set of URLs based on their likelihood to be informative.

In this preliminary study, we evaluate the two proposed approaches on a dataset

of 577 unique URLs found among 2,104 tweets posted by people potentially in-

terested in software development. These 2,104 tweets were filtered from about

3,980,397 tweets posted in November 2015 based on the condition that they contain

the keyword “Java”. We measure the effectiveness of our approaches in ranking
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these URLs in terms of Normalized Discounted Cumulative Gain (NDCG) [39].

NDCG scores are computed based on the relevance ranks of the URLs which were

manually labeled by two study participants. The participants label the data inde-

pendently and then resolve their differences in order to create the final ground truth.

The URLs in our ground truth data have been assigned relevance ratings in the range

0 (highly irrelevant) to 3 (highly relevant). NDCG was designed for settings such

as in our work where the relevance ratings are non-binary [39]. NDCG score is

between 0 and 1, with 1 indicating an ideal ranking algorithm. The experiments

show that our proposed unsupervised and supervised approaches can achieve a high

NDCG score of 0.719 and 0.832 respectively.

The contributions of this work are as follows:

1. We propose an unsupervised and supervised approach to support developer

serendipitous learning using Twitter by ranking URLs to online resources.

To the best of our knowledge, no prior study has helped developers in this

task. Our approaches sieve through a large number of tweets to automati-

cally extract and rank URLs relevant to a particular domain of interest. Our

preliminary evaluation shows that they can achieve reasonably high Normal-

ized Discounted Cumulative Gain (NDCG) scores on a dataset of 577 URLs

related to the keyword ‘Java’.

2. We propose 14 features from three categories, i.e., content features, popularity

features, and network features, to comprehensively characterize a URL given

a set of keywords describing a domain of interest.

The structure of the remainder of this work is as follows. In Section 5.2, we

describe our proposed approach that extracts and ranks informative URLs from

Twitter. In Section 5.3, we present our experiment settings and results. We finally

conclude and mention future work in Section 5.4.
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5.2 Approach

Our approach has four steps, i.e., Data Acquisition, Feature Extraction, Unsuper-

vised Recommendation and Supervised Recommendation, as shown in Figure 5.1.

Figure 5.1: Approach Overview

5.2.1 Data Acquisition

We first identify some users on Twitter who are potentially interested in software

development. We start with a set of well known software developers who are also

present on Twitter. We then process the profile of these seed users to find all the

other users who follow or are followed by at least n of these seed users. The ap-

proach has been used in several previous works [104, 85, 86]. We then download

and process the tweets of these identified Twitter users on a period of time, filter-

ing tweets using keywords that characterize a domain of interest. Next, we extract

URLs shared in these tweets. These URLs are typically shortened by Twitter itself

or by users using a URL shortening service, e.g., https://goo.gl/. If a URL

has been shortened by Twitter, it maintains a reference of the expanded URL in the

tweet’s meta data. In case the Twitter user had used an external service to shorten the

URL, we use a browser to expand the short URLs to their expanded forms. Then

we remove the duplicates among expanded URLs. We also remove URLs which

correspond to broken links and error pages. In the end, we have a set of valid URLs

along with the other associated information such as tweet content and user data.
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5.2.2 Feature Extraction

which help us to find useful URLs w.r.t. a particular domain of interest represented

by a set of keywords. We have categorized the features into three broad categories:

Content Features, Popularity Features, and Network Features. We briefly explain

the features for each category below.

• Content Features. These features are based on the similarity between the

input keywords, which characterize the domain of interest, and various tex-

tual contents that are linked to a URL. These textual contents can come from

various sources including the tweet mentioning the URL, the text of the web-

page pointed to by the URL, and the text contained in the profile of the user

sharing the tweet containing the URL. We consider the set of keywords as a

document, and the various textual contents as documents too.

– CosSimT: This feature corresponds to the cosine similarity between the

keywords related to our domain of interest and the combined text of all the

tweets which mention a particular URL. Generally, when users share an

important URL on Twitter, they give a brief description of the URL they

are sharing, so as to ensure that their subscribers have an idea about the

importance as well as the background of the URL being shared. Thus the

text in the tweets can serve as an important pointer to assess the relevance

of the URL being shared in the tweets.

For each URL, we collate the text of all the tweets that mentioned the

URL in one document and calculate the cosine similarity score of the

keywords with the collated document. The resultant score is the value

of the CosSimT feature. Intuitively, this score represents the degree of

relevance between the tweets which mentioned the URL and the keywords

(representing the domain) being queried. A higher score indicates that the

URL is more relevant to the domain of interest.
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– CosSimW: Through this feature, we measure the cosine similarity score

between the keywords and the text contents on the webpage which a URL

link resolves to. The information present on the webpage is an important

input in defining the relevance of the page w.r.t. the keywords. For

calculating the value of this feature, we download each URL’s web data as

text. We then compute the similarity score between the keywords and the

text document consisting of text extracted from the webpage of the URL.

A high score for CosSimW suggests that the URL is highly relevant to the

domain of interest.

– CosSimP: This feature measures the cosine similarity between the input

keywords and the combined text from all the profile data of users who

posted a particular URL. URLs shared by software developers often re-

late to a particular software domain that the developers are interested in.

Generally, Twitter users provide some information about their interests and

jobs in the profile section of their Twitter page. To compute the value of

this feature, we combine the profile data of all the users who posted an

URL in one document, and then calculate the similarity score between the

keywords and the document. If the CosSimP score of a URL is high, it

suggests that users who posted this URL are likely to be knowledgable in

the domain of interest.

• Popularity Features. These features measure the popularity of a URL Link.

Many people share URLs that they find informative on Twitter. Others help

to broadcast these URLs by retweeting those they think are informative and

relevant to their domain of interest, and which also might be helpful to other

people in their network. Intuitively, URLs that are shared by many are likely

to be highly informative. URL popularity can be measured in various ways,

e.g., number of tweets mentioning an URL, number of users who mention an
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URL, etc.We consider 4 features to measure the popularity of an URL which

are briefly described below.

– NumOfT: This feature counts the number of tweets or retweets generated

by a community of software enthusiasts on Twitter (i.e., users tracked in

the data acquisition step) which contain a particular URL. A higher score

for this feature means the URL has been shared widely in the software

community and thus should be more popular as compared to other URLs

which have not been shared much. This feature score serves as the most

basic and intuitive way of measuring the popularity of an URL.

– NumOfU: This feature counts the number of unique users in a community

of software enthusiasts who have shared a particular URL in their tweets.

This feature differs from NumOfT feature as a user may post the same URL

link in multiple tweets. For calculation of NumOfU we only consider a user

once.

– NumOfRT: This feature counts the sum of the retweet counts of all the

original tweets that contain the URL link. Retweeting is a feature on Twit-

ter through which a user can broadcast to their followers a tweet published

by somebody else. Most users express their liking for a particular tweet by

retweeting it. For computing this feature we identify all the original tweets

that were retweeted and contain the URL. Then the sum of retweets of all

such original tweets constitutes the value of this feature. For this feature,

the contribution for the retweet count can come from any user in Twitter

network and is not limited to users in our dataset. Thus through NumOfRT

we try to infer the global popularity of the URL.

– NumOfF: This feature counts the sum of the favourite counts of all the

tweets and retweets that contain the URL link. For computing this fea-

ture we first identify all tweets and retweets containing the URL in our

dataset. Next, we compute the sum of the favourite counts of these tweets
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and retweets. A higher value of this metric also suggests high popularity of

the URL.

• Network Features. We take the network of all Twitter users in our dataset

who have posted at least a tweet containing the domain related URL and

then infer the network importance of each user present, considering each

user as a network node. To measure the importance of user, we use popu-

lar centrality metrics proposed in web and social network mining commu-

nities [132, 12, 67, 27]. We compute the features by using Jung (http:

//jung.sourceforge.net/). We provide a brief description below.

(For a complete description please refer [131]).

– Barycenter Centrality: This feature is computed by taking the reciprocal

of the sum of shortest distance of a node to each other node in a network.

The barycenter centrality of a Twitter user u is computed as:

BaryC(u) =
1∑

v 6=u sdist(u, v)

In the equation, sdist(u, v) calculates the shortest distance from user u to

user v .

– Betweenness Centrality: This feature counts the number of shortest paths

from all nodes to all others that pass through a node. The betweenness

centrality of a Twitter user u is computed as follows:

BetweenC(u) =
∑

a6=b 6=u

spath(a, b, u)

spath(a, b)

In the equation, spath(a, b, v) computes the number of shortest paths be-

tween user a and user b that pass through user u. Similarly, spath(a, b)

computes the number of shortest paths between user a and user b.

– Closeness Centrality: This feature is computed by taking the reciprocal of
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the average shortest distance of a node to all the other nodes in a network.

The closeness centrality of a Twitter user u is defined as follows:

CC(u) =
n− 1∑

v 6=u sdist(u, v)

In the equation, n is the total number of users in the network. sdist(u, v)

computes the shortest distance from user u to user v .

– Eigenvector Centrality: This feature measures the importance of a node

based on the importance of its neighboring nodes. The values of eigenvec-

tor centrality for nodes in the network is computed as follows:

α(I − βR)−1R1

In the above equation, α is a scaling vector for normalizing the score, I is

the identity matrix, R is the adjacency matrix representing the network, β

is the weighting factor for the adjacency matrix, and R1 is a matrix where

the contents of all its cells are ones. Since the value of this metric is often

very small, in this work we compute the reciprocal of this metric. We use

the default values of α and β in Jung.

– Hubs and Authorities: Hubs and Authorities are two scores to measure

node importance in network. They are computed based on the Hyperlink-

Induced Topic Search (HITS) algorithm proposed by Kleinberg [46]. These

two scores of a Twitter user u are computed as follows:

Hub(u) =
n∑

i=1

Auth(u),

Auth(u) =
n∑

i=1

Hub(u)

In the equation, n is the total number of users in a network, Hub(u) com-
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putes the hub score for node u, and Auth(u) computes the authority score

for node u.

– PageRank: PageRank (PR) is a node importance measurement proposed

by Brin and Page [67]. The PR algorithm computes a probability to rep-

resent the likelihood of a particular node being visited while randomly

traversing edges. The PR algorithm runs iteratively. At a iteration i, the

PR score of a Twitter u is defined as follows:

PR(u, i) =
1− d
N

+ d
∑

v∈B(u)

In the equation, d is the probability that a random walker continues to visit

other users (aka the damping factor), N is the number of users in the net-

work, B(u) refers to the set of users that link to u, and L(v) is the set

of users that v links to. The iteration stops when PR score of each user

converge.

5.2.3 Unsupervised Recommendation

Based on the 14 feature scores, we use Borda Count [4] to arrive at a combined

score for a URL and then rank the URLs based on this combined score.

Borda Count works by first assigning a rank for each feature score to a URL.

For each feature score, we create a list of all URLs that we have harvested in the

data acquisition step, and sort them in descending order of their feature scores. The

rank of a URL for a feature is then defined as the position of the URL in the sorted

list. Next, for each feature score, after we have the rank of a URL, we can compute

its ranking point. It is calculated by subtracting the rank of the URL from the total

number of URLs. After we have the ranks and ranking points for all URLs and

features, we can compute the URL’s combined score. Let ui denotes the ith URL

and rpj(ui) denotes the ranking point assigned to ui for the j th feature. Also, let Nf
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denotes the number of feature scores per URL and Nu denotes the total number of

URLs in our data set. The combined score of a URL ui can be calculated as follows:

BordaScore(ui) =

∑Nu

j=1(rpj(ui))

Nf ×Nu

In the above equation, the combined score is the summation of all the ranking

points divided by the product ofNf andNu. After obtaining the combined score, we

rank the URLs in the descending order of their combined scores. The URL having

the highest combined feature score is considered the most relevant, and the URL

having the lowest score is considered as the most irrelevant.

5.2.4 Supervised Recommendation

We use Learning to Rank [51] approach to train a supervised model which is then

used to assign ranks to URLs. In the learning phase of our supervised approach,

we consider a set of URLs as training data and based on the feature scores of these

URLs and their corresponding manually assigned labels, we learn a ranking func-

tion f(u). This function f(u) can be considered as the weighted sum of all the

features of a URL u, and during the learning phase it tries to learn these weights

or parameters of the features through optimization. This ranking function when ap-

plied to unseen test URLs (also represented as their corresponding feature vectors)

assigns scores to the URLs. Based on the scores provided by f(u), all the test URLs

can be ranked in the descending order. This sorted list is considered as the recom-

mended result. In this work, we make use of a popular off-the-shelf implementation

of a learning to rank algorithm, SVM rank, which is made available from https:

//www.cs.cornell.edu/people/tj/svm_light/svm_rank.html.
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5.3 Experiments and Results

In this section, we first present the process of creating ground truth set. Next, we

describe our experiment setting and evaluation metric. Finally, we present our re-

search questions and the results of our experiments which answer the questions.

5.3.1 Dataset

In the data acquisition step, as the seed set of Twitter users, we use a list of top

100 popular developers on Twitter given in: http://noop.nl/2009/02/

twitter-top-100-for-software-developers.html. We set n as 5

(i.e., we find all other users who follow or are followed by at least 5 of these seed

users). Moreover, we collect tweets made on November 2015, and filter tweets us-

ing keyword “Java”. We are able to extract 2,104 of such tweets and 577 unique and

valid URLs along with their associated information. More URLs could be gathered

if we expand our Twitter user base and the period of time the tweets were made. We

leave the gathering of an extended dataset for a more comprehensive evaluation as

future work.

Next, we manually assign relevance score labels on a scale of 0 to 3 for each

of the selected 577 unique URLs we extracted. The data is labeled by 2 persons,

both having more than 4 years of professional programming experience in Java.

The labellers are provided with the 577 URLs and asked to browse the websites

pointed to by the URLs and then have to assign a score to the URL, with a score of

3 being assigned if the content linked with the URL is highly relevant and shareable,

2 being assigned if the content is relevant but not worth sharing, 1 being assigned

if URL content was marginally relevant and not shareable, and 0 being assigned

if the content is highly irrelevant. For the URLs where the two labellers have a

disagreement, they have to sit down together to discuss and agree to a final label.

Table 5.1 shows the distribution of the labels for the 577 URLs.
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Table 5.1: Distribution of Scores for the 577 URLs
Label

Assigned
0 1 2 3 Total

#URLs 115 77 184 201 577

5.3.2 Experiment Setting and Evaluation Metrics

By default, we perform 10-fold cross validation to investigate the effectiveness of

our approach. As an evaluation metric, we make use of Normalized Discounted

Cumulative Gain (NDCG). NDCG measures the performance of a recommendation

system by evaluating its capability to recommend more relevant URLs as the top

results and less relevant ones as the bottom results. NDCG gives a score between

0 and 1 to the recommender system it evaluates. The closer the NDCG score of a

system is to 1, the more effective it is at recommending informative URLs. We use

the following formula to calculate NDCG:

NDCG =
DCG−WDCG

IDCG−WDCG

In the above formula, DCG is a Discounted Cumulative Gain score [51] of the

URL relevance, IDCG is the ideal DCG score (i.e., informative URLs are listed

before less informative ones), and WDCG is the worst DCG score (i.e., all less

informative URLs are listed before more informative ones). The following equation

is used to compute DCG, where reli is the rating assessment for the URL at position

i in the ranking:

DCG = rel1 +
n∑

i=2

reli
log(i)

The main concept of DCG is that relevant documents (in our case, relevant

URLs) appearing lower in a search result list corresponds to a poorer result.
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5.3.3 Research Questions

RQ1: How effective are our unsupervised and supervised approaches in rec-

ommending informative URLs?

In this research question, we investigate the effectiveness of our two approaches

based on the NDCG metric. Table 5.2 shows the NDCG scores of our approaches.

The NDCG score for the unsupervised approach is 0.719 while that for the super-

vised approach is 0.832. The supervised approach can outperform the unsupervised

one by 15.71%. Table 5.3 shows some examples of URLs that are recommended by

our approach.

Table 5.2: NDCG Scores of Our Proposed Approaches
Approach NDCG Score

Unsupervised 0.719
Supervised 0.832

Table 5.3: Some Examples of Recommended URLs
URL
www.infoq.com/articles/Java-The-Missing-Features
http://github.com/zeroturnaround/java-fundamentals
www.adam-bien.com/roller/abien/entry/java_8_
infinite_stream_of

RQ2: How sensitive is our supervised approach on the amount of training

data?

In this research question, we investigate the impact of reducing the amount of

training data on the effectiveness of our supervised approach by performing k-fold

cross validation and varying the value of k from 2 to 10. From Table 5.4, we can

see that the performance of our supervised approach remains stable across various

values of k, and is not overly sensitive.

64

www.infoq.com/articles/Java-The-Missing-Features
http://github.com/zeroturnaround/java-fundamentals
www.adam-bien.com/roller/abien/entry/java_8_infinite_stream_of
www.adam-bien.com/roller/abien/entry/java_8_infinite_stream_of


Table 5.4: NDCG Scores for Different k
k NDCG k NDCG k NDCG

10 0.832 7 0.845 4 0.837
9 0.825 6 0.834 3 0.847
8 0.833 5 0.842 2 0.843

5.3.4 Threats to Validity

Threats to internal validity refer to experimenter biases. We have tried to mitigate

this threat by asking two persons to independently rate the relevance of the web-

pages pointed to by the URLs, and later meet to resolve their disagreements. Threats

to external validity refer to the generalizability of our findings. For this preliminary

work, we have considered one domain of interest, namely Java programming lan-

guage, using the keyword “Java” to characterize this domain. In the future, we plan

to reduce this threat further by considering other domains and/or keywords in ad-

dition to Java domain. Threats to construct validity correspond to the suitability of

our evaluation metric. In this work, we make use of Normalized Discounted Cumu-

lative Gain (NDCG) which is a standard information retrieval metric and has also

been used in many past software engineering studies, e.g., [80, 29]. Therefore, we

believe that threat to construct validity is minimal.

5.4 Conclusion and Future Work

Software developers using channels such as Twitter serendipitously learn about

new methodologies and keep their skills and knowledge up to date. Unfortunately,

given the huge number of choices developers have at their disposal, identifying

which resources and channels to follow and what to ignore is a major challenge for

them [96].

We propose two approaches, one unsupervised and one supervised, to search and

rank URLs harvested from Twitter which can support developers in their serendip-

itous learning tasks. These approaches are based on 14 features which characterize
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a URL’s relevance and informativeness from three dimensions: 1) content features

which capture similarity of the input domain specific keyword with the textual con-

tents of tweets, webpages pointed to by the URLs, and user profiles, 2) popular-

ity features which characterize the popularity of the tweets containing the URL on

Twitter, 3) network features which characterize the importance of the user post-

ing the URL on Twitter. In our preliminary experiments, we evaluate the two ap-

proaches on a set of 577 URLs. The experiments show that our unsupervised and

supervised approaches can achieve a reasonably high Normalized Discounted Cu-

mulative Gain (NDCG) score of 0.719 and 0.832 respectively.

As a future work, we plan to improve the effectiveness of our approach further

by the incorporation of additional features and the design of more sophisticated al-

gorithms. We would also like to enlarge the scale of our experiments to consider

more tweets collected over a longer period of time and also to add more channels to

mine URLs. Moreover, we plan to build a site that shares URLs of informative re-

sources that are harvested by our proposed approach and gets continuously updated

in real time.
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Chapter 6

Recommending Experts in the

Software Engineering Twitter Space

6.1 Introduction

Twitter is a popular social media platform and is continuously gaining traction and

users. As of July 2017, Twitter has a total of more than 328 million active monthly

users who generate about 500 million short messages (aka tweets or microblogs)

daily [114]. Twitter allows users to post short messages that are broadcasted to other

users who have chosen to follow them. These messages can be further retweeted

(i.e., propagated) to reach even a larger number of Twitter users. Additionally, users

can mention other users (by specifying user names prefixed by the “@” symbols),

or attach hashtags (keywords prefixed by the “#” symbols) in their tweets. Twitter

allows users to get fast up-to-date information about recent events and is a powerful

platform for information sharing, having characteristics at the intersection of news

media and social networks[48].

Twitter and general social media channels have revolutionized the way develop-

ers work and interact with one another. Singer et al. surveyed 271 GitHub devel-

opers and found that Twitter “helps them keep up with the fast-paced development

landscape” [89]. Among their respondents, more than 70% of them used Twitter
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to help them stay current about the latest technologies, practices, and tools they

use, and learn things that they aren’t actively looking for. Furthermore, a majority

of the respondents used Twitter to connect to and build trust with other develop-

ers, and a significant percentage of respondents used Twitter to build communities

around software development projects. The survey highlighted the increasing role

that Twitter plays in the professional activities of software developers.

Despite the benefit brought by Twitter, its enormous size poses a number of

challenges for its users, including software developers. Singer et al. highlighted

that a central challenge faced by developers is to maintain a relevant network. Due

to the fact that following other users is the preferred way of getting information from

Twitter (besides search), not carefully curating the network might make it hard for

developers to find relevant information that is interesting and useful. To validate this

challenge, Singer et al. surveyed developers for their experience in using Twitter.

Seventy-two percent of the respondents in their survey agree that they carefully

consider whom they would want to follow. Unfortunately, finding suitable users to

follow among the more than 328 million users in Twitter is not an easy feat.

In this work, we would like to help developers find interesting people to follow.

To accomplish this goal, we first surveyed about 38 developers to better understand

developers’ needs. For 36 of them who actively use Twitter in their development

activities, we asked them about the kinds of Twitter accounts they would like to

follow (see Section 6.2). Our survey questionnaire was open ended and developers

were free to enter any type of account that they wanted to follow. We find that more

than 75% of the 36 respondents prefer to follow specialized software gurus in their

domains of interest. Our finding is in line with that of Singer et al. which observed

that many developers follow thought leaders from their technological niches [89].

To follow up on this finding, we propose an automated approach that can identify

specialized software gurus from a large number of Twitter users. Our criteria for a

specialized software guru is: he/she must be an experienced software developer

in a specialized domain, and he/she must have shared useful information for other
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developers in the specialized domain. We include the last criterion since a guru

(meaning teacher, in Sanskrit) must have imparted knowledge to others. Also, it

would be pointless to follow an expert developer who never shares something useful.

Our guru recommendation system identifies software gurus by first finding a

subset of Twitter users that are potentially interested in software development and

who generate domain-related tweets (i.e., tweets mentioning a particular domain of

interest, e.g., Python). Our approach then extracts different kinds of features from

each user in this set of domain-related users (i.e., users that generate domain-related

tweets). These features can be grouped into four families: Content, Network, Profile

and GitHub. Based on these features, this candidate user set is then further analyzed

by a two-stage classification process which generates a discriminative model (aka a

classifier) that differentiates specialized software gurus from other domain-related

users.

To evaluate the main contribution of this work, which is a new approach that

identifies specialized software gurus on Twitter, we have considered four domains

of interest (JavaScript, Android, Python, and Linux) and analyzed a collection of

5,517,878 tweets. These tweets were generated by 86,824 Twitter users and were

collected over a one month period. The evaluation results show that our approach

can differentiate between specialized software gurus and other domain-related users

with an F-measure score of 0.820 (for JavaScript gurus), 0.681 (for Android gurus),

0.602 (for Python gurus), and 0.522 (for Linux gurus) respectively. Our approach

outperforms the state-of-the-art domain-specific Twitter expert recommendation ap-

proaches by Pal and Counts [68], as well as Klout [77], and achieves higher scores

on metrics of precision, recall, and F-Measure. The improvement in F-Measure

scores is by at least 7.63% (for Linux gurus). The effectiveness of our approach has

been evaluated based on following research questions which have been discussed in

detail in Section 6.5:

• RQ1: How effective is our specialized software guru recommendation ap-
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proach?

• RQ2: Can our approach outperform existing Twitter expert recommendation

approaches?

• RQ3: What are important features that better differentiate specialized soft-

ware gurus from non-gurus?

• RQ4: Which feature values have the best predictive power across each do-

main?

• RQ5: What is the cross domain performance of our approach?

6.2 Who to Follow: Developers’ Perspective

To guide and motivate the design of our automated recommendation system, we

conducted an open ended online survey with developers who have already made

use of Twitter in their software development activities. We investigated the kinds of

users they would like to follow on Twitter. The survey details are described below.

Survey Design and Analysis: The primary objective of our survey is to understand

what categories of Twitter users do software developers like to follow. To under-

stand this, we designed an open ended survey. Our survey consisted of three key

questions:

• The first question asks whether a respondent develops software systems and

uses Twitter in his/her software development activities. People who have not

developed software systems or not used Twitter in their software development

activities may not have sufficient background to respond to our survey. This

question aims to validate the reliability of the answers that we receive for the

subsequent questions.

• The second question asks a respondent for their years of experience as a soft-

ware developer (less than 5 years, 5-10 years, or more than 10 years).
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• The third question asks a respondent to indicate the types of Twitter accounts

they like to follow for the purpose of helping them in software development

activities. This question was open ended and the respondent was asked to give

a text description of accounts they follow or would like to follow.

We then analyzed the responses provided by developers using grounded theory

methodology [82, 21]. Specifically, we used open card sort [37] in order to develop

categories of Twitter accounts that software developers like to follow. Two PhD

students were involved in the open card sort process. Our card sorting process has

three phases. In the preparation phase, each response is read, and cards are cre-

ated based on the user responses. Some users mentioned more than one type of

account they would like to follow; for such cases, we create multiple cards. Next,

in the execution phase, all the cards are clustered into meaningful groups. Finally,

in the analysis phase, based on the clusters we get from the last phase we formed

higher level theme and categories to come up with the final categories. In the card

sort process, we ignore responses such as “I look for accounts that are insightful

or informative” as they are too general to be put into a specific category. Addi-

tionally, we merge categories that are mentioned by less than 3 respondents into

a special category Others. The open card sort process was performed together by

two people, one of them being the author of this dissertation and other being a PhD

student in computer science. Our process is similar to negotiated agreement tech-

nique described in [15]. As the card sorting has been performed together, there is

no inter-rater agreement number. Many previous studies involving card sorting have

also followed a similar process [52, 90, 45, 44, 3].

Survey Participants: We targeted software developers who are present on Twitter.

Following [1, 104, 85, 86], we collect a set of 161,067 Twitter users who are poten-

tially interested in software development – see Section 6.5.1 for details. Next, we

identify from this set, a subset of users who satisfy two criteria: (1) they are recently

active (i.e., those who had posted tweets after February 2017), and (2) they allow
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anyone to send them Twitter direct messages1. Users who have not been recently

active on Twitter may not respond to our survey requests – and thus the first crite-

rion. The second criterion is there since we need to use Twitter direct messaging

service to connect to our potential survey participants. This service allows us to

send a detailed personalized message to users, which would not have been possible

if we had contacted the users by sending tweets as they are limited to 140 charac-

ters. After creating this subset of users, we randomly select users from it to contact.

The author of this dissertation has send personalized Twitter direct messages to hun-

dreds of these users, requesting them to fill the survey. In total we have contacted

213 developers, out of which 38 developers responded back by filling the survey.

This translates to a response rate of 17.84%. We discarded the responses of two

respondents since they did not use Twitter in their software development activities

(i.e., they respond with a “No” for the first survey question). We performed an open

card sort on the remaining 36 responses.

Figure 6.1: Graph showing saturation of CosSimn score

After the card sort, in order to decide whether the survey responses are ade-

quate, we checked if the responses have reached saturation. According to Strauss

and Corbin [98], sampling for a survey can be terminated when collecting new data

does not generate any new information. During the survey we observed that after we

1https://support.twitter.com/articles/14606
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got about 25 responses, new responses were not leading to any new insights or in-

formation. This observation suggested that theoretical saturation had been reached

so we decided to stop the survey and perform card sort. We had already received 36

responses by the time we stopped the survey, so we went on to perform the card sort

on all the 36 responses. To further validate and check for saturation, we used the

following steps. We first represented the nth survey response as a vector Rn of size

equal to the number of categories we developed through card sort. Each element of

Rn represents a category, with the default value of the element being 0. The element

corresponding to a category is assigned a value of 1 if the response mentioned the

category. Then, for the nth response we calculated the average mean response for

the first n responses An as follows:

An =

∑n
i=1Rn

n

The intuition behind using the vector An is to validate if getting a new response

helps us to get any new information (category in our case). The An vector does

not change much when the new response does not mention new information (or

category). This can be captured by measuring cosine similarity between subsequent

vectors An and An+1. After computing An for the 36 valid responses, we then

compared pairs of vectors An and An+1 using cosine similarity [58]. The cosine

similarity CosSimn between the nth and (n+ 1)th responses is computed as:

CosSimn =
An · An+1

‖An‖‖An+1‖

In the above equation, · is the dot operation between vectors and ‖Ai‖ is the size

of vector Ai. Saturation can be observed when the value of CosSimn stabilizes and

does not change much when a new response is added. The value of CosSimn is

shown in Figure 6.1. We can note that CosSimn stabilizes after the 23rd response.

So based on this observation we decided not to send out any further requests to

developers for filling out our survey.
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Survey Results: By analyzing the responses to the first question of the survey, we

found that 94.73% of the respondents (i.e., 36) have developed software systems

and use Twitter for their software development activities.

Table 6.1: Categories of Twitter Users/Accounts Developers like to Follow on Twit-
ter

Code Category

I Accounts of domain experts (includes well-known developers,
library & framework authors etc.)

II Accounts which provide technology related news
III Accounts of software organizations/companies/firms related to

a particular domain
IV Accounts of CTOs/CEOs of software/technology companies of

a particular domain
V Accounts of software frameworks/tools/libraries related to a

particular domain
VI Others

Figure 6.2: Infograph displaying what types of Twitter accounts developers across
different experience levels prefer to follow. For descriptions of categories I-V,
please refer to Table 6.1.

After performing the open card sort on the responses provided by the 36 respon-

dents, we were able to identify 5 prominent categories apart from Others. These

categories are shown in Table 6.1. Figure 6.2 shows the percentage of our survey

respondents who mention a particular category in their response to the third question

of our survey. From the figure, we can note that only one category, i.e. accounts

of domain experts, is preferred by more than 70% of respondents. The choice of
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this category is consistent among developers across all experience levels. Based on

this result, in the rest of this work, we focus on building an automated tool to rec-

ommend domain experts who generate specialized domain contents that others can

benefit from (i.e., specialized software gurus), and evaluate our results by asking

people to label whether a recommended Twitter account belongs to such domain

experts. We do not consider the other five categories as a substantial majority of

respondents (62.50% to 100%) are not interested in following users belonging to

them.

6.3 Domain-Specific Characterization of Twitter Ac-

counts

In this section, we describe the features that we use to characterize a Twitter user

(i.e., a registered account on Twitter) given a particular specialized domain of inter-

est. In this work, a domain corresponds to a software engineering concept of interest

and is represented by a keyword. In particular, we consider two programming lan-

guage keywords (i.e., JavaScript and Python) and two operating system keywords

(i.e., Android and Linux). We pick these keywords as they are popular, well repre-

sented in our dataset, and known well to participants we hired for labeling experts.

We consider four feature families Content, Network, Profile, and GitHub, each of

which is described in the following subsections.

6.3.1 Content Features

Content features characterize how often a Twitter user generates tweets about a

specialized domain or topic of interest and the impact of his/her tweets on other

users. Users who frequently post about a domain are likely to have expertise in the

given domain. Among such users those who interact frequently with other domain-

related users are more likely to be specialized software gurus.
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We reuse a set of features first proposed by Pal and Counts to recommend do-

main experts on Twitter [68]. Before we present the features, we need to first in-

troduce some feature components and terminology related to them. These feature

components are then combined to arrive at scores for content features.

Terminology: Given a particular domain which is represented by a keyword, e.g.,

Python, we define the following concepts:

• Domain-related tweets are tweets that contain the representative keyword.

• Domain-related hashtag is a word that starts with the # symbol and contains

the representative keyword, e.g., #Python for keyword Python.

• Domain-related Twitter users are Twitter users who have posted 10 or more

domain-related tweets.

The tweets generated by a user can be categorized into following three categories:

• Conversational tweets (CT) are tweets that mention at least one Twitter user.

• Retweeted tweets (RT) are tweets that are originally generated by someone

else and the Twitter user copies, or forwards them, in order to spread the

information, to his/her followers.

• Original Tweet (OT) are the non RT and CT tweets that are produced by a

Twitter user.

Based on the above concepts, Table 6.2 presents feature components that can be

calculated for each Twitter user. These feature components are used to construct

more complex content features later. The concept of “friend” is used to calculate

G2 and G4. A user A and user B are friends of each other, if both A and B follow

each other, and thus get automatically subscribed to each other’s tweets.

Features:

We consider a total of 10 content features as proposed in [68]. These features are

based on the feature components introduced in Table 6.2. All of them are calculated

for each user with respect to a particular domain. We further sub categorize the
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Table 6.2: A List of Feature Components
Component Name Component Description

OT1(u,d) Number of original tweets related to domain d
posted by a user u

OT2(u,d) Number of URL links shared in tweets related to
domain d posted by a user u

OT3(u,d) Number of hashtags related to domain d used in
tweets posted by a user u

CT1(u,d) Number of conversational tweets related to domain
d posted by a user u

CT2(u,d) Number of conversational tweets related to domain
d where conversation is initiated by a user u

RT1(u,d) Number of times a user u retweets tweets related
to domain d of other users u

RT2(u,d) Number of unique original domain-related tweets
of a user u that are retweeted by other domain-
related users, where domain is d

RT3(u,d) Number of unique domain-related users who
retweet original domain-related tweets of a user u,
where domain is d

M1(u,d) Number of mentions of other domain-related users
by a user u in his/her domain-related tweets, where
domain is d

M2(u,d) Number of unique domain-related users mentioned
by a user u in his/her domain-related tweets, where
domain is d

M3(u,d) Number of mentions of a user u by other domain-
related users in their domain-related tweets, where
domain is d

M4(u,d) Number of unique domain-related users mention-
ing a user u in their domain-related tweets, where
domain is d

G1(u,d) Number of domain-related followers of a user u,
where domain is d

G2(u,d) Number of domain-related friends of a user u,
where domain is d

G3(u,d) Number of domain-related followers generating
domain-related tweets after a user u generated a
domain-related tweet, where domain is d

G4(u,d) Number of domain-related friends generating
domain-related tweets before a user u generates a
domain-related tweet, where domain is d

content features into categories of Content Strength and Content Popularity. We

describe the sub categories and their respective features below:
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Content Strength: The features under this category measure how closely related

the content generated by a Twitter user is to a given domain.

• Topical Signal: Topical Signal (TS) estimates how much a user u is involved

with the domain d irrespective of the types of tweets posted by him/her. The

TS score of a Twitter user u for a domain d is defined as:

TS(u, d) =
OT1(u, d) + CT1(u, d) +RT1(u, d)

#AllTweets(u)

In this equation, #AllTweets(u) refers to the total number of tweets gener-

ated by user u whether or not they are domain related tweets. This feature can

take values in the interval [0,1].

• Signal Strength: Signal Strength (SS) indicates how strong a user’s topical

signal is, such that for a true authority this score should approach 1. This

feature can take values in the interval [0,1]. The SS score of a Twitter user u

for a domain d is defined as:

SS(u, d) =
OT1(u, d)

OT1(u, d) +RT1(u, d)

• Non-Chat Signal: Non-Chat Signal (NCS) captures how much a user posts

on the domain and how much he/she digresses into conversations with other

users. The NCS score of a Twitter user u for a domain d is defined as:

NCS(u, d) =
OT1(u, d)

OT1(u, d) + CT1(u, d)
+ λ

CT1(u, d)− CT2(u, d)
CT1(u, d) + 1

As discussed in [68] the intuition behind adding the second fraction in the

above formulation is to discount cases when the account did not start the

conversation but simply replied back out of courtesy. This is desirable as we

wish to find real experts rather than organizations who are somewhat more

social. The second fraction accounts for such cases. We have used the λ
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value as 0.05, as also used by [68], The second fraction contains 1 in the

denominator to account for cases where CT1(u,d) is 0. This feature can take

values in the interval (0,1).

• Self-Similarity: Self-Similarity (SelfS) indicates how similar is a user’s recent

tweet w.r.t. to his/her previous tweets. To compute SelfS for a user u, first,

from each tweet i of the user u, commonly used words are removed based on

a stop word list2. Then each tweet i is represented as a vector of words si

which contains the remaining non stop words. Then, the similarity S between

two tweet vectors si and any previous tweet sj is calculated as follows:

S(si(u), sj(u)) =
|(si(u) ∩ sj(u)|
|si(u)|

The self-similarity score for a user u is computed as the average similarity

scores for all pairs of tweets:

SelfS (u) =
2 ·

∑n
i=2

∑i−1
j=1 S(si(u), sj(u))

(n− 1)n

In this equation, n is the total number tweets generated by u irrespective of

the domain. This feature can take values in the interval [0,1].

• Link Rate: Link Rate (LR) for a user u considering domain d is the ratio of

the number of URL links a user u shared in his/her domain-related tweets, to

the total number of domain-related tweets made by user u:

LR(u, d) =
OT2(u, d)

OT1(u, d)

Since a tweet is short and deep technical contents cannot be elaborated in 140

characters, higher LR score might improve the likelihood of a topic-related

tweet being useful to other developers. Twitter has a limit of 140 characters
2http://www.ranks.nl/stopwords
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per tweet and each URL shared consumes 23 characters, so a tweet can at

the maximum contain 5 URL links. Thus, this feature can take values in the

interval [0,5].

• Domain-Hashtag Rate: Domain-Hashtag Rate (HR) is similar to link rate, but

it considers the proportion of domain-related tweets that contain a domain-

related hashtag. HR score of a Twitter user u for a domain d is defined as:

HR(u, d) =
OT3(u, d)

OT1(u, d)

Hashtags in a tweet are created by adding ’#’ before any character other than

space or punctuation. So any hashtag will atleast contain two characters (in-

cluding the ’#’). Twitter has a limit of 140 characters per tweet, and if a single

character preceded by ’#’ is used as a hashtag, then a tweet can contain a max-

imum of 47 hashtags (94 characters for hashtags and 46 for spaces in between

hashtags). So, this feature can take values in the interval [0,47].

Content Popularity: The features under this category measure how popular and

impactful is the domain related information generated by a user.

• Retweet Impact: Retweet Impact (RI) indicates the impact of the contents

generated by the user. RI of a Twitter user u for a domain d is computed as:

RI(u, d) = RT2(u, d) · log(RT3(u, d))

The retweet impact is primarily captured by RT2, which measures how many

times a user u has been retweeted. However, for some users the values of

RT2 can be high just because some of their devoted followers always retweet

the content. To dampen the impact of such users the multiplication by loga-

rithm of RT3 is done, as RT3 only captures the unique followers who retweet

content of a user. This feature can take values in the interval [0,∞).
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• Mention Impact: Mention Impact (MI) indicates how much an account is

mentioned with regards to the domain of interest. MI score of a Twitter user

u for a domain d is defined as:

MI(u, d) =M3(u, d) · log(M4(u, d))−M1(u, d) · log(M2(u, d))

MI is measured as a difference of two components mentioned below:

* The first component is a product of M3 and logarithm of M4. Mainly,

M3 gives a good estimate of this component. However in order to ac-

count for mentions being received from people known to a user, M3 is

multiplied by logarithm of M4. As M4 consists of only unique users its

logarithm helps to dampen the impact of M3.

* The second component is a product of M1 and logarithm of M2, which

measures how much a user is mentioning other users in Twitter. Again,

logarithm of M2 is used to dampen the impact of people frequently men-

tioned by the user. Sometimes a user may also receive mentions back

only because of the fact that they mention others. To account for this

factor we need to subtract the second component (which estimates how

often the user mentions others) from first component.

The above steps ensure that the Mention Impact(MI) we calculate for a user is

based on his/her merit and not as a result of him/her mentioning other users.

This feature can take values in the interval [0,∞).

• Neighbor Score: Neighbor Score (NS) captures the raw number of domain-

related users for a domain d around a user u. The network score of a user u

for a domain d is computed as:

NS(u, d) = log(G1(u, d) + 1)− log(G2(u, d) + 1)
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Instead of using the absolute values of G1 and G2 their logarithms have been

used here to avoid issues with clustering as the distribution of G1 and G2

follows a long tail distribution [68]. This feature can take values in the interval

[0,∞).

• Information Diffusion: Information Diffusion (ID) estimates how much influ-

ence is diffused by the user in its network. We define the ID score of a Twitter

user u for a domain d as:

ID(u, d) = log(G3(u, d) + 1)− log(G4(u, d) + 1)

Similar to NS, logarithms have been used here. This feature can take values

in the interval [0,∞).

6.3.2 Network Features

In Twitter, one user is connected to other users via the follow relationship. For each

Twitter user, we can thus form a network of other users that are connected to it

via this follow relationship (either directly or indirectly). In this network, we can

estimate the importance of a user in the network. A software guru who shares many

gems of knowledge with others is likely to be followed by many other developers

that benefit from his/her microblogs and thus is expected to have a high importance

score among other users in the network.

To capture the above-mentioned intuition we create a network for each domain

where nodes correspond to domain-specific users and edges correspond to the fol-

low relationships among these users. The edges in our network are directed, e.g., an

edge from user A to user B in our graph means that the user A follows user B on

Twitter. We then evaluate the importance of each user in this network.

To measure the importance of a user, we build upon various studies in web and

social network mining communities which have proposed various metrics [132, 12,
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67, 27]. We use some of the centrality indicators proposed in [132, 12], which

are widely used in network analysis and graph theory to identify the most important

nodes and vertices in a graph or a network. We also use PageRank proposed by Page

et al. which gives authority scores of important nodes in a network [67]. Intuitively,

software domain experts are typically known by many people in the domain and

expected to interact with others. Thus, it is expected that the nodes representing

experts would be important and centrally located. The network features have been

further categorized into of Centrality Scores and Absolute Scores. We describe the

sub categories and their respective features below. Using the features mentioned

below would help in identifying the experts.

Centrality Scores: Features in this category are metrics based on research in

social and network mining communities and they measure how central (important)

a node (user) is in a network (Twitter).

• Betweenness: Betweenness is defined based on the number of shortest paths

from all nodes to all others that pass through a node. A high score for this

measure means that very often this node (equivalent to a user in Twitter net-

work) serves as a bridge between other nodes. We believe that many software

gurus act as knowledge brokers and help to facilitate information flow be-

tween various parties. Singer et al. also observe that thought leaders also

mention and retweet contents generated by others [89]. Betweenness score

helps us to identify such broker nodes in the Twitter network and thus we

have used it as a network feature in this work.

• Closeness: Closeness is defined as the reciprocal of the average shortest dis-

tance of a node to all the other nodes in a network. The intuition behind this

feature is that gurus are expected to be directly or indirectly connected to a

large number of other users a few hops (edges) away, and hence on an aver-

age are closer and easily reachable by others. The closeness scores help us to

identify such potential gurus.
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• Degree Centrality: Degree Centrality for a user u is the ratio of users to which

it is connected, to the total users in the network. The number of users con-

nected to a user u includes the users who follow u, and the users who are

followed by u. A user who is a domain expert in Twitter generally has a large

number of followers resulting in a relatively large value of this feature.

• OutDegree Centrality: OutDegree Centrality for a user u is ratio of number

of other users it follows to the total number of users in the network. Intu-

itively experts on Twitter have large number of followers but do not follow a

large number of accounts, so the value of the OutDegree Centrality feature is

expected to be low for experts.

• PageRank: PageRank (PR) is a node importance measurement method pro-

posed by Page and Brin [67]. The PR algorithm computes a probability to

represent the likelihood that a walker arriving at a particular node by ran-

domly traversing edges in a network. The PR algorithm runs iteratively. At

iteration i, the PR score of a node u is defined as follows:

PR(u, i) =
1− d
N

+ d
∑

v∈B(u)

PR(v, i− 1)

|L(v)|

In the equation, d is the probability that a random walker continues to visit

other nodes (aka the damping factor), N is the number of nodes in the net-

work, B(u) refers to the set of nodes that link to u, and L(v) is the set of

nodes that v links to.

We use the PageRank method mentioned above to measure the importance

of a user in a Twitter network, considering the importance of other users.

Intuitively, a user that is followed by many credible users is more likely to

be credible. Highly credible users are likely to be software gurus who are

followed by possibly many other gurus, or at least credible Twitter users who

are highly interested in software engineering contents, in a particular domain
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of interest.

Absolute Scores: Features in this category are based on are based on the abso-

lute number of users who follow or are followed by a user on Twitter.

• Followers: This feature indicates the number of people who follow a user on

Twitter. If a user u has high number of followers, it intuitively means that

many other users are interested in the tweets generated by the users. Such

users are expected to be highly popular and generally high probability of be-

ing experts in some domain.

• Followed: This feature indicates the number of people followed by a user

on Twitter. If a user u follows a huge number of other users intuitively it is

expected to be not of an expert or human, as generally a single person cannot

comprehend the information from tweets generated from a huge number of

users they follow. Most of the times such users represent some organizational

or bot accounts which are interested in monitoring the information generated

from other users. Thus the value of this feature can be an important factor in

discerning domain experts.

• NExpertFollowers: This feature indicates the number of experts of a particular

domain who follow a user. If a user u is followed by a lot of users who are

experts in a particular domain then most likely the user uwill also be an expert

in the domain. Thus, this feature value can be an important signal in finding

experts in a particular domain.

• NExpertsFollowed: This feature indicates the number of experts of a particu-

lar domain followed by a given user u. A user u who follows a large number

of experts of a particular domain is expected to be a user related to a do-

main. This feature when combined with other features should strengthen our

approach in order to find users related to a particular domain.

85



6.3.3 Profile Features

A Twitter user can specify his/her biodata and include a reference to his/her web-

page in his/her Twitter account. This information can help us to better character-

ize a Twitter user. Keywords such as developer, architect, consultant, etc. in

the biodata and webpage of users can help to identify software experts or gu-

rus among other domain-related users. On the other hand, keywords such as

recruiter, headhunter, etc. help to identify and eliminate accounts related to hir-

ing firms. These accounts are not preferred by most developers as discussed in

Section 6.2.

To collect information from a Twitter user’s biodata and webpage, we perform

three steps: biodata and URL extraction, webpage preprocessing, and text prepro-

cessing. In the first step, we process information from a Twitter account to extract

the user’s biodata and the URL to his/her webpage (if available). In the second step,

if the URL to a user’s webpage is specified, we download the webpage and extract

textual contents from the webpage using a Python package called BeautifulSoup3.

The Python package will remove HTML related keywords and scripts that exist in

the downloaded webpage. In the third step, we perform standard text preprocessing

on the biodata and the webpage text which includes the following sub-steps:

1. Tokenization: We split the biodata/webpage text into tokens where each token

corresponds to a word that appears in the text.

2. Stop Word Removal: We remove common English stop words, such as “is”,

“are”, etc, since they appear very often and thus have little discriminative

power. We use the list of English stop words provided on http://www.

ranks.nl/stopwords.

3. Stemming: We reduce a word to its root form (e.g., “reading” and “reads”

are both reduced to “read”) using a popular stemming algorithm, i.e., Porter

stemmer [75]
3http://www.crummy.com/software/BeautifulSoup/
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In the end, for each user, we construct two feature vectors; one to represent

his/her biodata and the other to represent his/her webpage. Each feature corresponds

to a pre-processed word that appears in the biodata (or webpage), and the value of

the feature is the number of times the word appears in the biodata (or webpage). We

call the biodata feature vector as Biodata, and webpage feature vector as Webpage.

These feature vectors are converted into four probabilities that represent the likeli-

hood of a Twitter user being a specialized guru and the process is discussed in detail

in Section 6.4.2. We denote the four probabilities as PosBio, NegBio, PosWeb, and

NegWeb. Apart from the above four probability scores there are a few more profile

related features that are mentioned below

• IsVerified: Verified accounts on Twitter represent accounts maintained by

users who are popular in key interest areas such as music, sports etc. and

whose authenticity has been confirmed 4. A verified account related to a soft-

ware domain and which is human also has a very high probability of being an

expert in the domain.

• AccountAge: This feature measures indicates from how long the user has been

present on Twitter. A user who is present on Twitter for a long period of time

and also generates domain related tweets is likely be an expert developer.

• CosSimWeb: This feature measures the cosine similarity between the keyword

representing the domain of interest and the Webpage feature vector. Users

who have more domain related text on their webpage are expected to be more

close to the domain.

• CosSimTweetText: This feature measures the cosine similarity between the

keyword representing the domain of interest and the text of all the original

tweets made by the user. Users who tweet more on a particular domain have

a higher probability of being an expert. This score is expected to be higher

for such users.
4https://support.twitter.com/articles/119135
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6.3.4 GitHub Features

Some Twitter users include links to their GitHub profiles in their webpages. GitHub

is one of the popular code and repository holding website having over 21.1 million

repositories held by over 9 million users [28]. The presence of a GitHub account

and high activity in GitHub can be important factors in identifying software experts.

In this work we use the following 5 basic GitHub features.

• IsGhMentioned: This feature indicates whether a Twitter user includes a link

to his/her GitHub profile in his/her webpage. Intuitively a software expert will

want to publish a link to his/her GitHub profile on his/her webpage to high-

light his/her work and possibly to find interested people to join the projects

he/she is championing on GitHub. A newbie or a non-expert developer is

likely not to have a GitHub profile and even if he/she has one he/she may

not have any/many projects to display or promote. Thus, newbies are less

likely to highlight their GitHub profiles on their webpages. We set the value

of this feature to 1 if a valid GitHub profile link is present in a Twitter user’s

webpage, otherwise it is set to 0.

• GhFollowers: This feature indicates the number of people who follow a user

in GitHub. The more the number of followers a user has, the more popular

the user is, and thus the user has a higher likelihood of being an expert. This

feature is assigned a value of 0 if IsGhMentioned = 0.

• GhRepos: This feature indicates the number of public repositories owned by

a user in GitHub. More repositories implies that the user has worked on more

projects, and thus this feature can be a good way to measure the expertise of

the user. This feature is assigned a value of 0 if IsGhMentioned = 0.

• GhGists: This feature indicates the number of public Gists shared by a user

in GitHub. Gists in GitHub are a way for developers to share useful code
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snippets or scripts. They are different from a GitHub repositories which are

generally entire projects in themselves. A user who has a large number of

public GitHub Gists, can be taken as an indicator of their experience in cre-

ating reusable solutions for common tasks or problems. It also suggests their

willingness to share such information with other fellow developers. This fea-

ture can be a good way to find experienced developers who are also willing to

share their experience with other developers. This feature is assigned a value

of 0 if IsGhMentioned = 0.

• GhUserType: This feature indicates the type of GitHub Account. GitHub

accounts can be of various types such as individual accounts or those of or-

ganizations. This feature is assigned a value of 1 if the values returned by

account type is “User” else the feature is assigned a value of 0.

6.4 Software Guru Recommendation

In this section, we first introduce the overall architecture of our prediction approach.

We then describe in detail the key steps in the approach.

6.4.1 Approach Overview

Figure 6.3 shows the overview of our approach, which contains five major steps

(candidate set creation, training set creation, feature extraction, classifier construc-

tion, and classifier application). Our approach takes as input a keyword specifying a

domain of interest and users in Twitter and eventually produces a set of specialized

software gurus.

In the first step, we select Twitter users that are potentially interested in software

development out from hundreds of millions of users. This helps us reduce the search

space of finding specialized software gurus. We follow the approach used in [1,

85, 104], wherein initially we create a seed list of popular Twitter users who are
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Figure 6.3: Framework of Our Recommendation System

software developers, by collating developers who are mentioned on technical blogs.

We then expand this list by using the follow links of users present in seed list. Next

as we need to find users who are related to a domain, we filter Twitter users who post

less than 10 domain-related tweets for the month of December, 2016. This gives us

a candidate set of specialized software gurus related to a domain. The process is

described in detail in Section 6.5.1.

In the second step, among the candidates identified in the first set, we manually

label some of them as specialized software gurus or other users (details in Sec-

tion 6.5.1), and this set of labeled users forms the training set. In the third step,

we extract various features (i.e., content, network, profile, and GitHub features) de-

scribed in Section 6.3 for all users in the candidate set. In the classifier learning step,

the features of the users in the training set are used to learn a discriminative model

(aka a classifier) that is able to differentiate specialized software gurus and other

users based on their features. In the classifier application step, we apply the classi-

fier on other candidate users who are not in the training set, and predict those who

are specialized software gurus. We describe the detail of our classifier construction

step in the next subsection.
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6.4.2 Classifier Construction

To construct a classifier, our approach first processes thousands of profile features

and then merges them with the other features to construct a unified discriminative

model. We describe the detailed process below.

Processing Profile Features:

Different from content, network, and GitHub features, the profile features based

on biodata and webpage are not metrics but thousands of preprocessed words. The

number of these profile features is large as compared with the number of fea-

tures from the other families. Therefore, to make profile features based on bio-

data and webpage more comparable to other features, we convert these profile fea-

tures into four probabilities that represent the likelihood of a Twitter user being

a specialized guru. These four probabilities include: the probability of a Twit-

ter user to be a specialized guru given his/her biodata (i.e., P (Guru|Biodata)),

the probability of a Twitter user to be not a specialized guru given his/her bio-

data (i.e., P (¬Guru|Biodata)), the probability of a Twitter user to be a spe-

cialized guru given his/her webpage (i.e., P (Guru|Webpage)), and the proba-

bility of a Twitter user to be not a specialized guru given his/her webpage (i.e.

P (¬Guru|Webpage)).We denote the four probabilities as PosBio, NegBio, PosWeb,

and NegWeb respectively.

To obtain the four probabilities, we train two text classifiers from the biodata

and webpages of users in the training set. We then apply these classifiers on all

candidate users to generate the four probabilities for all users. By default, we use

Naive Bayes Multinomial (NBM) as the default classifier to transfer profile features

to the four probabilities. The NBM classifier is fast and has shown its discriminative

power in similar situations, e.g., [135].

Constructing a Unified Discriminative Model:

After we have processed the profile features, we combine the 4 probabilities

with the 10 content features, 4 other profile features, 9 network features and the 5
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GitHub features to characterize a Twitter user. We then take the features of users

in the training data to learn a unified discriminative model (a classifier) that can

differentiate specialized gurus from other users based on all of their features. After

combining all the features we again apply the Naive Bayes Multinomial (NBM) on

the 32 features from the four families (i.e., content, network, profile and GitHub).

6.5 Experiments and Results

In this section, we first describe our dataset and experiment settings. Next, we

introduce our research questions and present our experiment results that answer

each of the research questions. At the end of this section, we present the threats to

validity.

6.5.1 Dataset

The input dataset for our experiments is a set of a few million tweets that we col-

lected in December 2016. To collect these tweets, we first created a seed list of

popular Twitter users of software developers. To create this list, we first collected

100 Twitter users who are also popular software developers as mentioned in a tech-

nical blog5; this list of seed users was used by previous studies [1, 85, 104]. As

this list is quite old, we also collected Twitter users who are popular software de-

velopers as mentioned in several other more recently published technical blogs6789.

From these blogs, we are able to extract 48 unique users. These 48 users were then

merged with the previous 100 users that results in a final set of 139 users (after

removing duplicates) which we refer to as uSeed.

5http://www.noop.nl/2009/02/twitter-top-100-for-softwaredevelopers.
html

6https://www.untapt.com/blog/2015/11/25/developers-to-follow-on-twitter/
7https://www.thebalance.com/programmers-on-twitter-2072010
8http://zartis.com/ten-software-developers-follow-twitter/
9http://www.techworld.com/picture-gallery/social-media/

people-all-developers-should-follow-on-twitter-3644265/
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Table 6.3: Dataset Statistics
Dataset Period #Tweets #TotalUsers #FilteredUsers
All December 2016 5,517,878 86,824 -
JavaScript December 2016 27,466 9,369 293
Android December 2016 20,655 6,951 247
Python December 2016 11,074 3,710 127
Linux December 2016 12,344 4,805 118

We than expanded the seed set by adding Twitter users who follow or are fol-

lowed by at least N of the seed users in uSeed. In Twitter, if a userB follows another

user A it means any tweets published by A will be available to B. If B follows N

users in uSeed, intuitively B is likely to be interested in software engineering con-

tent. Also in caseB is followed byN already identified software developers present

in uSeed, then B has a very high probability of being a user producing contents re-

lated to software engineering. We refer to this expanded set as uBase and it contains

161,067 users. In our study, we pick the value of N to be 5. We then collect tweets

that are generated by the users in uBase over a one-month period (i.e., December

1-31, 2016). We were then able to download 5,517,878 tweets generated by 86,824

of the total 161,067 users in uBase for the month of December 2016.

The approach that we use in this work of using a seed network and extending it

based on follow links helped us to expand our relevant user base (i.e., Twitter users

who are likely to generate software engineering contents) quickly. An alternative

way of doing this might be to search for LinkedIn pages, identify software devel-

opers based on their job titles, and search if their Twitter handles are mentioned in

those pages. This may result in a cleaner dataset, since we are sure that those Twitter

users are really corresponding to software developers. However, not all LinkedIn

pages contain Twitter handles. Additionally, software developers have different job

titles. Most importantly, LinkedIn restricts us from crawling its pages10.

We evaluated the effectiveness of our approach by recommending software gu-

rus for four domains: JavaScript, Android, Python and Linux. Javascript and Python

10https://techcrunch.com/2016/08/15/linkedin-sues-scrapers/
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Table 6.4: Inter Rater Agreement
Q4 Q5

Domain Users Cohen’s
Kappa

Agreement Cohen’s
Kappa

Agreement

Javascript 293 0.61 substantial 0.51 moderate
Android 247 0.53 moderate 0.67 substantial
Python 127 0.41 moderate 0.47 moderate
Linux 118 0.25 fair 0.33 fair

are programming languages while Android and Linux are operating systems. We

chose these domains since among tweets in our dataset, these domains were well

represented. Indeed, in our dataset, JavaScript-related tweets are more than any

other domain related tweets. Another consideration was that we were easily able

to find people to label the data as gurus and non-gurus for these domains. Since a

domain-related user that generates too few domain-related tweets may not be inter-

esting to follow, as an additional step, we filter Twitter users who have tweeted less

than 10 domain related tweets in a month. We also chose only those users whose

Twitter profile mentioned English as their preferred language. We show the total

number of filtered domain-related tweets and Twitter users in Table 6.3. For these

domain-related Twitter users we also crawled their biodata from their Twitter pro-

files, and downloaded the websites whose URLs are mentioned in the users’ Twitter

profiles. Table 6.3 summarizes basic statistics of our dataset.

Next, we asked 6 PhD students majoring in Computer Science and 2 experienced

software developers to label our dataset which contains 293 JavaScript-related, 247

Android-related, 127 Python-related, and 118 Linux-related Twitter users. Each of

the participants had more than five years of experience in programming and some

experience in the respective technology domain whose users they labeled. The par-

ticipants were hired by word-of-mouth approach and email requests, and none of

them had any insights into how our algorithm works or the features that we used.

For each domain, the data was labeled by 2-3 persons independently. A partici-

pant was assigned to a domain only if he/she had some experience in the domain

whose users were to be labeled. In the labeling task each labeler had to answer some
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questions with respect to each user in the given domain. Then, on the basis of the

answers to these questions it was determined if the user is an expert in the domain

under consideration. After the data for a domain was labeled independently by the

labelers, we computed the inter-rater agreement. For cases that they disagree, the

labelers sat down together to discuss and decide final labels.

To better support the labeling process, we provided a web-based labelling sys-

tem for the participants. Figure 6.4 shows the main page of our labelling system,

which contains a list of Twitter users who need to be labeled. For each user, the par-

ticipant had to click the “display” button to enter to an evaluation page. Figure 6.5

shows the evaluation page for a Twitter user. This page contained five parts: I) user

account name; II) details from the user’s Twitter profile which include the user’s

biodata; III) all domain-related tweets that were posted by the user in our dataset;

IV) contents of the webpage whose URL is specified in the user’s account profile;

V) evaluation questions.

Figure 6.4: Main Page of Our Labelling System

We asked participants to answer five questions in part V based on the informa-

tion shown in parts I-IV. The first question asked a participant if the user shown

on screen is a software practitioner. The second question evaluated whether the

user shown is a practitioner in the particular domain of interest, e.g., if he/she is

a JavaScript practitioner. The third question asked whether the Twitter user is an

experienced software practitioner. Finally, the fourth question asked whether the

Twitter user is an experienced practitioner on the particular domain of interest. The

last question asked whether tweets posted by the user could be useful for developers

who are working on the specific domain of interest. For each question, a participant
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Figure 6.5: Evaluation Page for a Twitter User

needed to provide one of the three answers: “Yes”, “No”, or “Can’t Determine”.

The answers to questions 4 and 5 determined the label of a Twitter user (i.e.,

“Specialized gurus” or “Others”). For twitter users for which both questions 4 and

5 were answered as “Yes”, we labeled them as “Specialized gurus”. These users are

experienced developers in the domain of interest who post contents in Twitter that

potentially benefit other developers in the same domain. For users who received

answer for question 4 as “Yes” and answer for question 5 as “No”, we labeled them

as “Others”. For users where answer to question 4 is “No”, we labeled them also as

“Others”. We omitted the rest of users from final dataset, since their labels cannot

be reliably determined.

The inter-rater agreement scores for answers to question 4 and 5 over all do-

mains are shown in Table 6.4. We used Cohen’s Kappa [20] to measure inter-rater

reliability for the labeling task. A Cohen’s Kappa score less or equal to zero is con-

sidered as no agreement, between 0.01-0.20 is considered as none to slight agree-

ment, between 0.21 and 0.40 is considered as fair agreement, between 0.41 and
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0.60 is considered as moderate agreement, between 0.61 and 0.80 is considered as

substantial agreement, and between 0.81 and 1.0 is considered as almost perfect

agreement [125, 60]. We can see from Table 6.4 that except for the Linux dataset

the agreement is at least moderate. For the Linux dataset, the agreement is still fair.

Table 6.5: Number of Specialized Software Gurus
Domain #Guru #Others
JavaScript 98 87
Android 44 184
Python 26 65
Linux 38 72
All 206 408

Table 6.5 shows the results of our labeling process after all the initial labeling

and disagreement resolution. In the end, we have a total of 614 domain-related Twit-

ter users who are labeled as “Specialized gurus” or “Others”. About 33.55% of the

total users in our dataset were labeled as gurus. The proportion of gurus is not very

small as they are identified among Twitter users who post at least 10 domain-related

tweets in a one month period, and whose labels can be reliably determined. For

example, for “Python” domain, initially a total of 3,710 Twitter users had posted at

least 1 tweet having the keyword “Python”. Out of these only 127 users had posted

at least 10 domain-related tweets. Further, during annotation, labels were reliably

determined only for 91 of these users, out of which 26 were labeled as “Special-

ized gurus”. Thus, the two steps of filtering and labeling, result in an increased

proportion of gurus in our final dataset. For “JavaScript” domain the number of

“Specialized gurus” is more than 50% of the total users of that domain. This can

be explained by the fact that “JavaScript” is currently the most popular program-

ming language11 so the number of “JavaScript” gurus on Twitter are also expected

to be more. We use these 614 users to evaluate the effectiveness of our approach in

differentiating specialized domain gurus from other domain-related users.

11https://insights.stackoverflow.com/survey/2017#technology
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6.5.2 Experiment Setting

Implementation-Details: We use the implementation of Multinomial Naive Bayes12

provided as part of sklearn [13, 70].

Evaluation Metrics: We use three standard metrics, namely precision, recall, and

F-Measure, which have been used in many past studies, e.g., [106, 135]. They are

calculated based on four possible outcomes of a Twitter user in an evaluation set:

the user is a specialized software guru and he/she is correctly predicted as such

(true positive, TP); the user is not a specialized software guru, however he/she is

wrongly predicted as a specialized software guru (false positive, FP); the user is a

specialized software guru, however he/she is not predicted as such (false negative,

FN); or the user is not a specialized software guru, and he/she is correctly predicted

as such (true negative, TN). Based on these possible outcomes, precision, recall and

F-measure are defined as:

Precision is the proportion of correctly predicted specialized software gurus

among those predicted as specialized software gurus, i.e., Precision = TP
TP+FP

Recall is the proportion of specialized software gurus that are correctly predicted

as specialized software gurus, i.e., Recall = TP
TP+FN

.

F-Measure is the harmonic mean of precision and recall, and it is used as a sum-

mary measure to evaluate if an increase in precision (recall) outweighs a reduction

in recall (precision), i.e., F-Measure = 2×Precision×Recall
Precision+Recall

.

Evaluation Procedure: We apply 10-fold cross validation on each of the four

datasets. In this way, a dataset of size n will be partitioned into 10 folds each of

size n/10. Nine folds are used for training a classification model, which is then eval-

uated on the rest 1 fold data. The training and evaluation processes are repeated 10

times and a mean score is taken for precision, recall, and F-measure.

Baseline Approaches: We consider the following two baselines approaches

12http://scikit-learn.org/stable/modules/generated/sklearn.
naive_bayes.MultinomialNB.html
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• Our first baseline is the approach proposed by Pal and Counts [68] as the

baseline approach. Their approach uses only content features. They employ

the Gaussian mixture model to cluster Twitter users into two groups, and then

pick one of the two groups as experts. They also rank Twitter users in this

group based on their likelihood to be an expert. The Python package Gaussian

Mixture13 [70] is used for clustering in our experiments. We consider the

following settings with respect to this baseline approach.

* (PCEv): In this setting we run Pal and Counts approach to cluster all

users in the evaluation data (the test data in our supervised approach) by

ignoring the training data in the clustering process.

* (PCTr+Ev): In this setting we run Pal and Counts we run Pal and Counts

to cluster all users in the training and evaluation data (basically the com-

plete dataset used in our supervised approach).

• Our second baseline is based on Klout14. Klout is a system which calculates

influence score of social accounts across multiple social networks [77]. It uses

a hierarchical combination of various feature scores aggregated over multiple

social networks to calculate an influence score of a user, known as KloutScore.

Klout offers a web API15 through which we can obtain the KloutScore of a

given Twitter user for a specific topic or domain. The score calculation is

based on the approach outlined in [91, 77] and is an estimate of the percentile

rank of a user’s expertise for a given topic or domain. In this work, we con-

sider any user with a KloutScore greater than 0.99 as an expert for that do-

main. These are users rated as those among the top 1% Twitter users with

expertise on the domain. We refer to this baseline as KL.
13http://scikit-learn.org/stable/modules/mixture.html
14https://klout.com/home
15https://klout.com/s/developers/research
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6.5.3 Research Questions and Results

RQ1: How effective is our specialized software guru recommendation approach?

Motivation and Approach: The more accurate a recommendation system is, the

more beneficial it will be. To answer this research question we investigate the effec-

tiveness of our approach following the experiment setting described in Section 6.5.2.

Results: Table 6.6 shows the precision, recall, and F-measure of our approach on

four different domains. From Table 6.6, we observe that our approach can achieve

an average F-Measure of 0.656 on the four domains. The average precision, recall,

and F-measure of our approach are 0.678, 0.690, and 0.656 respectively.

Also from Table 6.6 we can see that the F-Measure for Linux domain is low,

achieving a value of 0.522. To identify the reasons for low F-Measure for Linux,

we discussed with the labelers of our data and found that Linux experts are harder

to identify than other experts. The reason is the people who are Linux experts

share tweets across a wide range of topics, e.g., linux kernel, linux/unix administra-

tion, linux security, etc., and their scope is wider than those of other domains (e.g.,

JavaScript, etc.). This can be seen from the fact that the agreement among labelers

although still being fair, is lower for Linux than for other domains.

There have been many past studies which show results with F-Measure in the

range of 0.5-0.7 [19, 83, 144, 115, 119]. The F-scores of our solution are also

in this range. Higher F-measures for domains such as JavaScript indicate better

recommendation with less false positives and false negatives. Different users would

have different tolerance for recommendation quality. Our results suggest that users

would be happier when they use our approach for JavaScript than Linux. In any

case, our results are better for all domains than those of baselines (as seen in RQ2).

RQ2: Can our approach outperform existing Twitter expert recommendation ap-

proaches?

Motivation and Approach: Our approach extends Pal and Counts’ work [68] by

proposing new features (i.e., 9 network, 8 profile features and 5 GitHub features)
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Table 6.6: Precision, Recall, and F-measure of Our Approach.
Domain Precision Recall F-Measure
JavaScript 0.759 0.905 0.820
Android 0.655 0.755 0.681
Python 0.750 0.533 0.602
Linux 0.550 0.566 0.522
Average 0.678 0.690 0.656

and by using a two-stage classification process instead of a clustering technique.

Since we extend this prior work, we need to demonstrate that our approach outper-

forms it. Also, we have compared our approach against Klout, which is a system

that recommends users to follow given a particular topic or domain. To answer this

research question, we follow the experimental settings described in Section 6.5.2 to

compute the precision, recall, and F-Measure of Pal and Counts’ approach [68] and

Klout approach [77]. We then compare and contrast their evaluation scores with

those of ours.

Table 6.7: Precision, Recall, and F-Measure of the Baseline Approach Variants
Domain Approach Precision Recall F-Measure Improvement

JavaScript PCEv 0.740 0.465 0.563 45.61%
PCTr+Ev 0.366 0.451 0.379 116.35%
KL 0.898 0.561 0.690 18.79%

Android PCEv 0.870 0.181 0.297 129.68%
PCTr+Ev 0.202 0.354 0.256 166.10%
KL 0.659 0.426 0.518 31.47%

Python PCEv 0.933 0.278 0.423 42.33%
PCTr+Ev 0.577 0.322 0.372 61.89%
KL 0.808 0.356 0.494 21.86%

Linux PCEv 0.925 0.332 0.485 7.63%
PCTr+Ev 0.211 0.469 0.270 93.33%
KL 0.500 0.339 0.404 29.21%

Results: Table 6.7 shows the performance of the two variants of Pal and Counts’

approach and the Klout baseline on the four different domains. From Table 6.7,

we observe that our approach (shown in Table 6.6) can consistently achieve better

F-Measure than the baseline variants. In terms of F-Measure, which is a summary

measure to evaluate if an increase in recall (precision) outweighs a reduction in
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precision (recall), our approach outperforms the Pal and Counts baseline variants

for all domains by 7.63-166.10%. The Klout baseline is also outperformed by our

approach on all domains by 18.79%-31.47%.

RQ3: What are important features that better differentiate specialized software

gurus from non-gurus?

Motivation and Approach: In our approach we use 32 different features to charac-

terize a Twitter user, i.e., 10 content features, 9 network features, 8 profile features,

and 5 GitHub features. In this research question, we want to evaluate the importance

of each of the feature categories in predicting whether a Twitter user is a specialized

software guru or not. To answer this research question, we take the dataset that we

use to evaluate the performance of our approach in RQ1. We initially start with all

the feature categories used in our dataset and ran experiments using our approach

on various subsets of features. After that we removed one feature category at a time

and repeated the experiments.

Results: Table 6.8 shows the various feature combinations that we have evaluated.

The F-Measure scores shown in table are averaged across all domains. Each row in

the table corresponds to a set of features that is evaluated. The first row corresponds

to the setting ALL, where we used all the features namely Content, Profile, Network,

and GitHub features. Profile, Network, and GitHub features are the new categories

of features that we propose in this work. Content features are the ones that were

proposed by [68]. Next to measure the strength of each category of features, we

remove one category at a time and then calculate the corresponding F-Measures.

ALL-GitHub row refers to the setting where we use all features except those be-

longing to GitHub category. Similarly, the rows ALL-Content, ALL-Network, and

ALL-Profile refer to the settings where Content, Network and Profile features were

dropped and remaining features evaluated. In order to evaluate the performance of

using only a single category of features we also add settings where features from

only a single category are used for evaluation. The last four rows in Table 6.8 are
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Table 6.8: Average F-measure for various Feature Combinations
Feature Setting F-Measure Performance Loss
ALL 0.656 -
ALL-GitHub 0.638 2.74%
ALL-Content 0.608 7.32%
ALL-Network 0.606 7.62%
ALL-Profile 0.451 31.25%
Only GitHub 0.180 72.56%
Only Content 0.167 74.54%
Only Network 0.271 58.69%
Only Profile 0.585 10.82%

related to it.

The results show that using a combination of all features achieves the maximum

F-Measure of 0.656. Of the new categories of features we propose in this work

Profile features have the strongest predictive power. When we remove this feature,

the F-Measure drops down by 31.25% to 0.451. Also when we consider each fea-

ture category independently, the Profile features can achieve the highest F-measure

(i.e., 0.585), which shows its importance in predicting experts. The Content and

Network features cause a drop of 7.32% and 7.62% respectively when removed. In-

dividually Network and Content features achieve an F-Measure of 0.271 and 0.167

respectively. GitHub features have positive but very small contribution as removing

them causes a drop of only 2.74%. Also when we use GitHub features alone, only

an F-Measure of 0.180 can be achieved.

The results above show that Profile features have the strongest discriminative

power in discerning accounts of software Gurus from others. As Profile features

are based on text from external profile pages and Twitter bio of users, they contain

words which can be used to identify experts. Also in Profile category there are fea-

tures which capture how long an account is present on Twitter and if it is a verified

account. Such information is expected to strengthen the discriminative performance

of Profile features and makes it perform better than other features. We also notice

that GitHub features have the weakest performance as compared to all other fea-

ture categories. This is the case since in many cases developers do not share their
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GitHub profile links on Twitter, resulting in the value of GitHub features being zero.

RQ4: Which feature values have the best predictive power across each domain?

Motivation and Approach: In our approach we use 32 different features to charac-

terize a Twitter user, i.e., 10 content features, 9 network features, 8 profile features,

and 5 GitHub features. In this research question, we want to evaluate the impor-

tance of each of the feature values in predicting whether a Twitter user is a special-

ized software guru or not. To answer this research question, we take the dataset that

we use to evaluate the performance of our approach in RQ1. We use the procedure

similar to what has been used in RQ3. We initially started with all the features used

in our dataset and ran the experiments using our approach. After that we removed

one feature at a time and repeated the experiments using our approach. For each do-

main, the F-Measure we obtained after removing each feature was compared to the

domain’s F-Measure obtained in Table 6.6 and the percentage drop was computed.

The features which on removal cause the highest percentage drop in F-Measure are

considered as the most important. These top-10 features for each domain are shown

in Table 6.9.

Results: In Table 6.9, for each domain, we report the top-10 features identified

based on the percentage drop in F-Measure caused when the feature is removed.

We also construct another list of important features based on the frequency they

appear in the top-10 lists of the four domains. Table 6.10 shows the features that

have appeared in the top-10 lists of at least two domains.

From Table 6.10, we can note that features across the four families, i.e., Net-

work, Content, Profile, and GitHub are important in differentiating specialized soft-

ware gurus from others. The features PosBio, SS(Signal Strength), NExpertFollow-

ers, GhRepos, and NegWeb are present across at-least 3 domains. However, only

the Profile feature PosBio is present in top-5 ranks across the 3 domains. In addi-

tion to Pos Bio and NegWeb, other important Profile features are NegBio, and Cos-

SimTweetText. Network features NExpertsFollowed and Friends are also present in
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Table 6.9: Top-10 Most Important Features for Each Domain.
Rank JavaScript Android Python Linux
1 NegBio PosBio NCS PosBio
2 CosSimWeb PosWeb NExpertsFollowed NegBio
3 PageRank NExpertsFollowed IsGhMentioned GhGists
4 AccountAge SelfS GhUserType SS
5 PosBio NCS OutDegree Cen-

trality
GhFollowers

6 GhRepos CosSimTweetText Degree Centrality NExpertFollowers
7 LR IsVerified SS CosSimTweetText
8 NExpertFollowers NegWeb NExpertFollowers NegWeb
9 NegWeb SS NS GhRepos
10 Friends PageRank GhRepos Friends

Table 6.10: Most Important Features Across the Four Domains.
#Top-10 Lists Feature Name Dimension
3 PosBio Profile
3 SS Content
3 NExpertFollowers Network
3 GhRepos GitHub
3 NegWeb Profile
2 NegBio Profile
2 NExpertsFollowed Network
2 NCS Content
2 CosSimTweetText Profile
2 PageRank Network
2 Friends Network

the list for at-least 2 domains.

From Table 6.9 it can be observed the Profile features are the most frequent

among Top-10 features and at relatively higher ranks. This is in line with the results

observed in Table 6.8 where removing the Profile category had caused the highest

drop in F-Measure. The probabilities extracted from user’s webpage and biodata

seem to have more discriminative power as compared to other features. Among

Network features NExpertFollowers has the strongest impact. This makes sense as

a user who is followed by other experts is expected to have a high probability of

being an expert.

RQ5: What is the cross domain performance of our approach?
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Table 6.11: F-measure of Our Approach when Evaluated on Cross-Domain Setting
Test Domain Setting Train Domain F-Measure

JavaScript cross-domain

Android 0.777
Python 0.784
Linux 0.742
Average 0.768

within-domain JavaScript 0.820

Android cross-domain

JavaScript 0.658
Python 0.615
Linux 0.588
Average 0.620

within-domain Android 0.681

Python cross-domain

JavaScript 0.616
Android 0.604
Linux 0.479
Average 0.566

within-domain Python 0.602

Linux cross-domain

JavaScript 0.485
Android 0.388
Python 0.466
Average 0.446

within-domain Linux 0.522

Average cross-domain - 0.600
within-domain - 0.656

Motivation and Approach: There are many other software engineering domains

aside from the four considered in this work. Thus, we need to check if a model

learned from one domain can possibly be used to identify experts from another

domain. To answer this research question we perform experiments in which we

train our model based on training data from one domain and then use this model to

identify gurus in other domains.

Results: Table 6.11 shows the performance of our model when trained on each

domain and tested on each of the other three domains. We refer to this setting as

cross-domain setting. On average we are able to achieve an F-Measure of 0.600 in

the cross-domain setting. Note that our approach was able to achieve an average

F-Measure of 0.656 when the test and train data is from the same domain – see

Table 6.6 (we refer to as within-domain setting). Thus, there is only a small drop in

F-measure (i.e., 0.056), which shows that our approach is effective for cross-domain
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setting. Labeled data from one domain can be used to build an effective model to

predict experts from other domains with only a small penalty in performance. In

order to check if the F-Measure obtained in cross-domain result is significantly dif-

ferent from F-Measure obtained in within-domain setting we performed the Mann-

Whitney U test [56] on the means of F-Measures obtained in cross-domain setting

and within-domain setting. The test gave a p-value of 0.055, which is greater than

0.05, based on which we can say that there is no statistical difference between the

within-domain and cross-domain results.

For cross-domain setting, it can be observed that the performance of our ap-

proach for domain Linux when it is trained using data from domain Android is quite

low, despite both being operating systems. To understand the reason behind this ob-

servation, we compare the contents of tweets in our Linux and Android datasets.

We find that the vocabulary used by Linux experts is rather different than that used

by Android experts. Most Android tweets are at the application level (e.g., how to

validate Android in-app subscription purchase) while Linux tweets are at the system

level (e.g., how to enable AES-NI advanced encryption on Linux system).

6.5.4 Threats to Validity

Threats to internal validity relate to errors in our experiments and our labeling. We

have checked our code multiple times, still there could have been errors that we

did not notice. At times it is hard for our user study participants to decide whether

someone is an experienced domain-specific practitioner or whether a set of tweets

is helpful for others or not. To deal with such cases, we allow participants to choose

the “Can’t Determine” option and omit those cases from our dataset to improve the

quality of the ground truth labels. We also measure the agreement rate among the

participants. To do this, we have computed inter-rater agreement for the labeling

task using the measure of Cohen’s Kappa [20]. As can be seen from Table 6.4, ex-

cept for the Linux dataset, the agreement is at least moderate. For the Linux dataset,
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the agreement is still fair. These results show that the raters in general agree with

one another; thus, the threat introduced due to disagreement among raters is mini-

mal. Our strategy of omitting “Can’t Determine” cases may bias the evaluation to

easier cases. To investigate this threat, we have relooked into these “Can’t Deter-

mine” cases. We found that many of these cases are less interesting ones, e.g., such

users often only post a few domain-related tweets, include little information in their

profile, etc. They are less likely to be interesting domain-experts to be followed.

Threats to external validity relate to the generalizability of our approach. To

mitigate this threat, in this work, we have evaluated our approach on Twitter

users belonging to two domain types, i.e., programming languages (which include

JavaScript and Python domains), and operating systems (which include Android

and Linux domains). We have also run experiments to check for cross domain per-

formance to evaluate the generalizability of our approach. In the future, to further

reduce the threats to external validity, we plan to evaluate our approach on even

more domains and domain types.

The generalizability of our results may also be impacted by the use of GitHub

features. Some developers may not be using GitHub and for them we will not have

their GitHub features. For such cases the performance of our approach may be

slightly lower, as removing the GitHub features causes a drop of about 2.74% (see

Table 6.8). It is possible to extract similar features from other coding websites such

as BitBucket which we leave as future work. We focus on GitHub in our work as it

is currently the most popular social coding platform and is also growing fast16. In

our dataset of Twitter users used for experiments, 18.89% (116/614) of them have

GitHub links in their profiles. On the other hand, only 1.14% (7/614) users have

BitBucket links in their profiles. Note that the collection of users in our dataset is

not biased in any way towards GitHub17. Many past studies have also focused on

16https://octoverse.github.com/
17The users in our dataset are collected by initially merging several seed lists of popular software

developers present on Twitter. The resultant combined set is then expanded to include users who are
followed or follow a certain number of users in the combined set - c.f., Section 6.4
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GitHub due to its popularity [122, 120, 96, 93, 89, 84].

Another factor that may impact the generalizability of our results may be the

use of threshold values that are used to determine domain experts. As mentioned

in Section 6.5.1, in this work we identify gurus among users who post more than

10 domain-related tweets. To check the impact of this number we evaluated the

performance of our expert identification approach among users who post more than

20 or 30 domain-related tweets. We find that there is only small change in the F-

Measure (an increase in F-Measure by 0.5-4.3% when we increase the threshold to a

higher number) provided that the remaining number of data points left after filtering

at higher threshold levels is at least 50. If we have few data points left after filtering,

then the classifier is not able to learn a good model -- which is as expected. Also,

by default for Klout we use a KloutScore threshold of 0.99. We checked for change

in its performance if the threshold is decreased below 0.99. We found little change

in performance (a decrease in F-Measure by 0-1.21%) when we vary the threshold

from 0.75 to 0.99 (using a step of 0.03).

The generalizability of our results may also be impacted in case we wanted to

give recommendations to users who are from a particular geography, or whose pri-

mary language of communication is other than English. The language of our survey

request and response, as well as final user study, was in English, and the persons

who labeled the data for experiments were also English-speaking users. This may

limit our approach to be usable only for English users. However, the three feature

categories namely Content, Profile, and Network should still be helpful in finding

experts when the constraints of language or geography are applied. On the other

hand, the feature category of GitHub may need to be expanded to include websites

which may be more popular in a given geography, e.g. https://coding.net/

is very popular in some geographies such as China. We plan to address this threat

in future work, by accounting for the user language as well as the geography of the

user while giving the final recommendation.

Threats to construct validity relates to the suitability of our evaluation metric. In
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Table 6.12: Feature Strength vs Classification Approach

Classification Approach Features
All Features Content Only

2-Stage Classification 0.656 0.167
PCEv 0.497 0.452
PCTr+Ev 0.403 0.304

this work, we use precision, recall, and F-Measure. These metrics are well-known

and have been used in many past studies, e.g., [49, 135, 145]. To further investigate

the effectiveness of our proposed approach, we perform a user study among some

Android developers, to check if they accept the recommendations generated by our

approach and the baselines. The details of the study are discussed in Section 6.6.2.

The study finds the recommendations provided by our approach are at least 25.93%

more accurate than the baselines.

6.6 Discussion

6.6.1 Benefits of Adding New Features and Employing Our New

Classification Method

In our work, we have proposed three new categories of features as well as a two-

stage classification approach. Here, we perform experiments to evaluate the indi-

vidual contribution of the set of new features and the new classification approach

in achieving better performance over baselines. Specifically, we check the perfor-

mance of our two-stage classification approach on only the Content features, and

also the performance of baseline approach on all features combined.

Table 6.12 shows the results of our experiments. From Table 6.12 we observe

that a combination of our two-stage classification approach and all the features can

achieve an F-Measure of 0.656. However, when we run our two-stage classifica-

tion approach on only Content features the F-Measure drops down to 0.167. This

shows without the new category of features our two-stage classification approach
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is not able to achieve good performance. Next, we evaluate the performance of

two variants of [68] approach using features from all categories. Table 6.12 shows

that the F-Measure drops down to 0.497 for PCEv baseline variant and 0.403 for

PCTr+Ev variant. This shows that our two-stage classification approach is able to

achieve better performance over the baseline approach of [68] when all the features

are used.

6.6.2 Do developers follow recommendations provided by our

approach?

We conduct a user study to compare the performance of our approach with the

baseline approaches. For this purpose, we use a dataset of Twitter users belonging

to “Android” domain that we have collected earlier – see Table 6.5. We divide

this dataset into 2 approximately equal-sized subsets. We randomly choose one of

them for training and the other one to generate recommendations from. We ran

our proposed approach and the baselines, i.e., Klout , PCEv, and PCTr+Ev, on this

dataset

After we have the results from all the 4 approaches, we chose the top-3 users

returned by each approach and randomly mixed them together and removed dupli-

cates. These users were then shown to some Android developers. For each user, the

user’s Twitter profile as well as latest tweets were shown to the developers. A single

question was asked about each user to each developer; the question being: “Are you

interested in following the above Twitter account, so that following it may help you

in getting updated information related to Android programming?”. As an answer

to this question, each developer was asked to choose one out of the following three

options: “(A) NO, I am not interested to follow the account shown above”, “(B)

YES, I am interested to follow the account shown above”, and “(C) I already follow

the account shown above”. To get Android developers as participants of our user

study, we randomly browsed for relevant accounts on Twitter. Next, the author of
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the dissertation personally contacted each of them through Twitter messaging ser-

vice. This process is similar to the process used for contacting developers for the

initial survey as described in Section 3. We managed to attract 10 developers who

agreed to participate in our user study.

Table 6.13: Converting Answers to Ratings

Answer Chosen Rating

NO, I am not interested to follow the account shown above 0

I already follow the account shown above 1

YES, I am interested to follow the account shown above 1

Table 6.14: User Study Results

Approach NDCG@3

KL 0.43

PCEv 0.54

PCTr+Ev 0.54

Our 0.68

The answers provided by each user were converted into binary ratings following

the conversion table shown in Table 6.13. To evaluate the results of our user study,

we make use of Normalized Discounted Cumulative Gain (NDCG) [39]. NDCG

is commonly used to measure the performance of information retrieval and recom-

mendation systems [51]. The value of the NDCG metric varies from 0 to 1, with 1

representing the ideal ordering. The following equation is used to compute NDCG,

where reli is the rating assessment provided by a user at position i in the ranking:

NDCG@3 =
1

IDCG

3∑
i=1

reli
log(i+ 1)

Table 6.14 shows the results of our user study for each of the four approaches

(ours and the 3 baselines). We can see from Table 6.14 that the NDCG score of
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our proposed approach is 0.68 which is the highest when compared to baselines. In

terms of NDCG, our approach outperforms Klout, PCTr+Ev, and PCEv by 58.14%,

25.93%, and 25.93% respectively. The results of the user study further highlight the

effectiveness of our proposed approach in recommending domain experts.

6.6.3 Lessons Learned

We share some points below that may be helpful to researchers interested in explor-

ing problems similar to what has been done in this work:

• Design effective and comprehensive features: Every dataset, platform, and

problem is different. To recommend experts on Twitter, we designed a com-

prehensive set of features by analyzing the nature of the problem and data that

we have. This results in the construction of a more effective recommendation

system. Based on this experience, we recommend future studies, especially

those that build recommendation systems for a new dataset or problem, to

look into unique characteristics of the data and problem. A good understand-

ing of these characteristics is needed to create new features that would be

instrumental in construction of effective recommendation systems. Having

effective features can be more important than deploying more powerful ma-

chine learning algorithms in terms of their impact on recommendation quality.

• Incorporate external resources: In our study, we find that features extracted

from linked external resources such as personal web pages of users and

GitHub profiles help in improving recommendation quality. Thus, researchers

interested in solving similar problems may want to go beyond data coming

from one source. Linked external resources can provide additional insights

into the problem at hand.

• Disseminate survey strategically: Researchers often email their surveys to de-

velopers present on GitHub [89, 96, 143]. While this method may work well
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and can result in response rates greater than 15%, but sometimes in cases

where the study focus is a specific software engineering community, the re-

sponse rates may go down. This is the case of a recent study focusing on

Slack [50] where the response rate was 7.84% (51/650). In our initial survey,

we received a poor response rate of less than 10% when we contacted GitHub

developers randomly sampled from GHTorrent [30]. This may have happened

as the sample chosen from GitHub may not have been representative of devel-

opers who use Twitter. Based on this outcome, we started a brand new survey

and contacted developers who were actually present on Twitter, using person-

alized Twitter messages. The procedure is described in Section 3. This time

the response rate improved to 17.84%. Thus, one of the takeaways from our

work is that if the research problem being addressed caters to a specific soft-

ware engineering community, sampling should be done from a population of

that specific community only. Additionally, instead of mass-mailing develop-

ers, personally contacting developers using channels often used by members

of the target community, e.g., Twitter direct messaging in our case, also helps

in achieving more responses.

6.7 Conclusion and Future Work

Twitter is becoming increasingly popular these years and has changed the way peo-

ple share information and collaborate with one another. Singer et al. report that

software developers use Twitter to get awareness of people and trends, extend their

technical knowledge, and build connections with other developers. They also report

that it is challenging for developers to find interesting users to follow [89]. To better

understand developers’ needs, we first conduct an online survey with 38 developers.

For those who use Twitter in their software development activities, we ask the kinds

of users they would like to follow to help in their software development activities.

The results of our survey show that most developers would like to follow special-
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ized software gurus, e.g., experts in Python. Based on the survey result, we propose

a new approach that can automatically recommend software gurus of a specialized

domain (e.g., Python).

Our approach makes use of 32 features from four dimensions (i.e., Content,

Network, Profile and GitHub) to characterize a Twitter user. It then uses a two-

stage classification technique which analyzes a set of labeled training data to create

a discriminative model that can differentiate specialized software gurus from other

domain-related Twitter users. In our experiment, we have evaluated our approach

to classify domain-related Twitter users from four domains, i.e., JavaScript, An-

droid, Python, and Linux, into two categories (specialized gurus and others). The

experiment results show that our approach can achieve F-measure scores of 0.522-

0.820 on the four domains. Our approach can improve the F-measures achieved by

baseline approaches [77, 68] by at least 7.63%.

As a future work, we plan to consider more tweets and domain-related users,

and evaluate our model on more domains in addition to the four considered in this

work. We also plan to build and deploy a live system (e.g., as a website or an An-

droid app) that can continuously extract data from Twitter and recommend domain-

specific experts and promote this system to developers. We also plan to do studies to

understand what kind of Twitter accounts developers tend to unfollow after follow-

ing them for some time. Understanding characteristics of such accounts can help

us build a system to recommend potential accounts to unfollow and thus better help

developers in carefully curating the list of accounts they follow. Also we plan to

conduct further user studies to understand the difference in perspectives of develop-

ers based on their language and/or geography and incorporate that into the current

approach to make it more robust.
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Chapter 7

Conclusion and Future Work

7.1 Summary of Contribution

Software developers use various social media channels and tools to support their

software development activities. However, developers face some challenges when

they use these channels. Some examples of these challenges are information over-

load, maintaining relevant connections, continuous distraction, etc. This disserta-

tion tries to address some of these challenges with respect to Twitter, a popular

social media channel used by developers [89, 96]. The first three works deal with

understanding the popular software engineering content on Twitter and helping de-

velopers discover such content. The last work is focused on how to find software

experts who produce such content. A summary of completed works is described

below.

• Understanding Popular Software Engineering Content Produced in So-

cial Networks: This work is an exploratory study in which the trending topics

in Twitter related to software engineering [86] were explored. It was found

that article and multimedia sharing, technical discussion, and new version

releases are the top-3 most popular categories related to software engineer-

ing on Twitter. The categories developed in this work add to the theory of

knowledge in programming and can be put into the category of externalized
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knowledge [64]. The findings of this study can help guide the research in

systems and techniques which focus on mining information and knowledge

related to software engineering from Twitter.

• Automatic Identification of Software Relevant Content in Social Media:

This work proposed a novel approach named NIRMAL, which can auto-

matically identify software relevant tweets from a collection or stream of

tweets [85]. The approach was able to achieve accuracy@K scores of up

to 0.900, and performed better than keyword based approach by up to 31%.

This approach can help developers to easily discover interesting and relevant

software related information from microblogs that a developer gets exposed

to. This work tries to address the challenge of information overload which

is considered a major barrier to adoption of Twitter among software develop-

ers [89].

• Mining Informative Online Resources Shared by Developers on Social

Media: In this work, Twitter was leveraged to find informative and relevant

resources related to a particular domain of interest [87]. The work proposed

14 features to characterize each URL by considering contents of webpage

pointed by it, contents and popularity of tweets mentioning it, and the pop-

ularity of users who shared the URL on Twitter. Also, evaluation of an un-

supervised and a supervised approach was performed to find and rank URLs

harvested from Twitter. The results of our experiments on tweets generated

by a set of 85,171 users over a one-month period highlight that the proposed

unsupervised and supervised approaches can achieve a high Normalized Dis-

counted Cumulative Gain (NDCG) score of 0.719 and 0.832 respectively.

• Recommending Experts in the Software Engineering Twitter Space: In

this work an approach has been proposed to identify software experts on Twit-

ter [88]. First, an open-ended online survey was conducted with developers

who use Twitter to support their software development activities. A quali-
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tative analysis of the survey responses showed that developers are interested

in following specialized software experts, who also generate technical con-

tent. Based on this insight, an approach based on 32 features was designed to

classify a given Twitter user as a Software Expert or Others. For evaluation,

a binary labeled dataset of 614 users with labels being Software Expert and

Others was created, and the proposed approach achieves F-Measure scores of

0.522-0.820 (for four domains i.e., JavaScript, Python, Android, and Linux)

on the task of finding software experts among users in this dataset. Also when

compared to baseline approaches the proposed method is able to achieve an

improvement of at least 7.63% over the baselines. The proposed approach

can help developers to address the challenge of finding specialized accounts

on Twitter highlighted in [89]. Also, the approach can be used to strengthen

information mining techniques such as those proposed in [87, 85] to recom-

mend more relevant content.

7.2 Future Directions

Despite the benefit brought by Twitter, its enormous size poses a number of chal-

lenges for its users, including software developers. Singer et al. highlighted infor-

mation overload and finding relevant accounts to follow as the two main challenges

faced by developers when using Twitter to support their software development activ-

ities [89]. The works done as part of this dissertation try to address these challenges.

The techniques described in Chapters 4 and 5 of this thesis show promise in extract-

ing software related content from Twitter. In its current form, the content extracted

is general in nature so there is scope of future research on developing techniques

to classify the extracted content into fine grained categories which can be used to

support various software evolution processes. The Chapter 6 of this thesis focuses

on helping developers to identify experts they can follow on Twitter. This work can

be complemented by a study of what kind of accounts software developers like to
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unfollow on Twitter. Based on this, an approach may be developed to recommend

accounts to unfollow on Twitter, helping them to maintain a more software engi-

neering relevant network on Twitter. Some of these directions are briefly discussed

below.

7.2.1 Automated Cataloging of Software Engineering Tweets

The works performed as a part of current thesis mainly focus on mining software

relevant information from Twitter. However, the information extracted can be re-

lated to many categories. The tweets may be related to categories such as arti-

cles, technical discussions, promotions, opinions etc. [76, 86]. As many tweets

relate to discussion and opinions, one future research direction is to develop tech-

niques which summarize such discussions and/or opinions about various software

artifacts such as software libraries, API’s, packages etc. Tweets related to API’s

may also be used to support automated API documentation techniques such as en-

visaged in [110, 99, 81]. Previous studies have also found that many software

related tweets relate to various stages of software evolution, such as software re-

quirements [32, 133], bug fixing [25] etc. Thus, an interesting direction to work

in future is to develop a general classifier which can categorize the software en-

gineering information extracted from Twitter into various such categories. One

other dimension that can be looked into future is the use of latest techniques such

as Word2Vec [61, 62], to improve the accuracy of techniques such as NIRMAL

which was proposed in Chapter 4. A recent work in this direction has been pro-

posed in [100]. Overall, such techniques can contribute to developing an automatic

cataloging system which categorizes software engineering tweets into various cate-

gories.
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7.2.2 Understanding the Unfollow Behavior of Developers in

Software Engineering Twitter Space

Singer et al. had found that one of the ways software developers maintain a relevant

network on Twitter is to regularly unfollow users [89]. Bases on this intuition,

further research can be conducted to understand what kind of accounts do software

developers unfollow. One of the ways to do this is to conduct a survey similar

to those performed in [89, 88]. In this survey developers on Twitter can be asked

about their unfollow preferences. One other way is doing an observational study of

unfollow behaviour of some identified software developers on Twitter, as has been

done in [41]. Insights gathered from such studies can be used either to develop an

approach which can recommend accounts to developers which they may unfollow

on Twitter, or to use the insights to strengthen the expert recommendation technique

that has been proposed in Chapter 6.

.
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