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Modeling Movement Decisions in Networks:
A Discrete Choice Model Approach

Larry Lin Jun Jie

Abstract

In this dissertation, we address the subject of modeling and simulation

of agents and their movement decision in a network environment. We

emphasize the development of high quality agent-based simulation models

as a prerequisite before utilization of the model as an evaluation tool for

various recommender systems and policies. To achieve this, we propose a

methodological framework for development of agent-based models, combining

approaches such as discrete choice models and data-driven modeling.

The discrete choice model is widely used in the field of transportation,

with a distinct utility function (e.g., demand or revenue-driven). Through

discrete choice models, the movement decision of agents are dependent on

a utility function, where every agent chooses a travel option (e.g., travel

to a link) out of a finite set. In our work, not only do we demonstrate

the effectiveness of this model in the field of transportation with a multi-

agent simulation model and a tiered decision model, we demonstrate our

approach in other domains (i.e., leisure and migration). where the utility

function might not be as clear, or involve various qualitative variables.

The contribution of this dissertation is therefore two-fold. We first

propose a methodological framework for development of agent-based models

under the conditions of varying data observability and network model scale.

Thereafter, we demonstrate the applicability of the proposed framework

through the use of three case studies, each representing a different problem

domain.
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Chapter 1

Introduction

1.1 Motivation

Movement is an essential part of everyday life. People move for multiple

reasons, such as getting from an origin to destination (e.g., home to workplace),

or for livelihood purposes (e.g., taxi drivers in search of passengers). Additionally,

movement can occur at different frequencies, whether its continuous movement

in matter of seconds (when driving), to ad-hoc movement which requires a

contemplation period of years (e.g., migration).

Agent-based models have been developed to model the movement of

agents in a network environment. There could be various reasons to model

the movement of agents in networks, such as utilizing agent-based models

as an economical approach to evaluate various recommender systems and

policies. Therefore, it allows policy makers to evaluate the effectiveness of

such systems before an actual system-wide implementation.

The development of such agent-based models involves a bottom up

approach, which traditionally suffers from issues such as data observability.

This is mitigated with the proliferation of mobile devices and applications,

which increased the ease of obtaining spatio-temporal data for analysis

and modeling. Such spatio-temporal data generally suffer from another

1



CHAPTER 1. INTRODUCTION

problem: it could be hard to figure out users intentions and decisions from

the raw data which usually involves a < time, location > tuple. Other

than the challenge of inferring intent, most of such agent-based models

often involve rule-based movement decisions, or representation of movement

through transitional origin-destination matrices, which suffers from a lack

of robustness in dealing with changes in the network environment.

Discrete choice models have been proposed to model the movement

of agents in the transportation domain, where the utility form is distinct

(e.g., driven by revenue or demand). The discrete choice model is a good

candidate for modeling of movement decisions as it represents the movement

decision of an agent well (i.e., agent selects from a set of alternative links,

roads, or zones to travel to). Additionally, the movement decision satisfies

the requirements of the discrete choice model: (1) alternatives are collectively

exhaustive (e.g., links or nodes), (2) alternatives are mutually exclusive

(choosing to travel to link B means that the agent does not travel along

any other links), and (3) set contains a finite number of alternatives (set

of links or nodes to travel).

On the other hand, the discrete choice model is less utilized in other

domains where the utility form is less distinct (e.g., consisting of qualitative

factors). In this dissertation, we make the contributions as follows:

• Representation of movement decision via discrete choice

model. Previous works have adopted the discrete choice model for

domains (e.g., transportation) where the utility takes on a distinct

form (e.g., revenue or demand driven). We show that the discrete

choice model can also be used in domains (leisure, migration) where

the utility form might not be as distinct (i.e., qualitative).

• Propose methodological framework for development of agent-

based models. We propose a framework on how a user can build

high quality agent-based models involving movement in a network

2



CHAPTER 1. INTRODUCTION

environment. We first define problem domains under different conditions

of network model scale and data observability. Thereafter, we provide

guidelines on dealing with potential domain-specific issues and steps

for developing agent-based models in these problem domains.

• Illustration of applicability. We illustrate how the proposed framework

could be utilized by applying it in three concrete case studies, each

representing a problem domain.

• Adoption of data-driven approach for development of agent-

based simulation models, even in the scenario of partial data observability

(e.g., leisure). In the event of partial data observability, instead of

creating a small scale model of a sampled sub-population (previous

approaches), we make use of (1) data collected from a sample population

to train the decision model, and (2) use of simulation model as a

ground truth generator for generating the mobility traces of an entire

population.

Summary of the use cases introduced in chapter 4, 5 and 6 is as shown

in table 1.1. In particular, the table shows the network type, movement

type and utility function of the agent-based and network models. This will

be further discussed in the individual chapters.

3



CHAPTER 1. INTRODUCTION

Table 1.1: Problem Domains: networks/movement types and utility model.

Area Network Type Movement Type Utility Function
Leisure Network of

attractions in
theme park

Non-recurring, ad hoc
movement behavior.
Visitors at a theme
park are less likely
to visit attractions
that they have visited
before.

Consists of thrill,
dark, wet level of
attractions.

Transport Road network:
consists of
zones, links and
junctions

Continuous; drivers
seek passengers
continuously when in
roaming (i.e., free)
mode.

Historical demand
at zones, along with
probability of a
passenger pickup at
road links.

Migration Country
networks:
migration,
economic
disparity, etc.

Movement from one
node (country) to
another. Movements
here are typically
a one-off type of
movement, which
requires more
contemplation and
consideration as
opposed to the
previous two forms of
movement.

Country indicators
such as economic
disparity,
alliance/hostility,
migrants network,
just to name a few.

1.2 Organization of Dissertation

The rest of this dissertation is organized as follows. In chapter 2, we

describe the methodological framework that is proposed as a guideline

for users in development of agent-based models involving movement in a

network environment. In chapter 3, we first discuss some research that are

relevant to the overarching topics of behavioral and agent-based modeling.

In chapters 4, 5, and 6, we present our research works in the problem

domains of leisure, transportation, and human migration respectively. Lastly,

we summarize the contributions and highlight some future directions in

chapter 7.
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Chapter 2

Methodological Framework:

Foundation to Building

Agent-Based Models

In this chapter, we describe our proposed methodological framework that

provides a guideline to users on the development of high quality agent-

based models involving movement in a network environment. We describe

how users can develop their models under different data observability and

network model scales. To provide illustrations on how this framework could

be applied to different application domains, we provide three case studies

in chapter 4, 5 and 6, each representing a unique setting.

2.1 Agent-Based Model

2.1.1 Model Characteristics

For clarity, within the scope of this dissertation, the term agent-based

models refers to models with the following characteristics. Agents are

initialized to be associated with nodes within a given network environment,

and move around from node to node at every discrete time interval. The
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movement decisions are based on application-specific utility functions, where

agents are probabilistically more likely to travel to nodes which gives a

higher utility.

This makes the discrete choice model a viable option for modeling the

decision model of agents, i.e., selecting a travel alternative (e.g., link) out

of a set of possible alternatives based on a utility function. From an agent’s

perspective, the utility obtained is essentially the reward (quantitative or

qualitative), minus the cost of action (e.g., distance to travel). Additionally,

there is the concept of congestion-awareness in the networks. In the case

of positive network externalities, an agent’s utility would increase with

more agents making the same decision. In the case of negative network

externalities, it would be a congestion function, where an agent’s utility

would decrease with increasing number of agents making the same movement

decision. What this means is that agent’s movement decisions are not

independent of one another.

Last but not least, time is discretized; at every discrete time interval

(could vary from minutes to years), agents make movement decisions by

considering either historical or current network-level observations.

2.1.2 Model Design

When developing an agent-based model (with characteristics specified), it

is important to consider the following series of questions, which will help

in the initial model design:

1. What is the scale of network that we are trying to model? (i.e., macro

or micro-level)

2. What is the data observability? (i.e., partial or fully observable)

3. What are the agents in the model? Are the agents individuals,

entities, corporations, just to name a few.
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4. What are the factors or variables that might affect an agent’s movement

decision, i.e., the utility function?

Answering these questions are essential in order to come up with an

initial agent-based model design for development.

2.2 Notations

We highlight some common notations in the class of agent-based models

described in section 2.1.1. We define a common set of travel options by N ,

which is commonly used for representing the set of nodes in a network,

although it could also represent travel options at other levels, such as

links. The origin node (agent’s current node at a discrete time interval

t) is represented as node i, while the destination node (node that agent

is considering to travel to) is represented by node j. Movement in the

network is represented by P t
i,j, which is the probability of moving from a

node i to j at discrete time interval t. Note that i and j could also take in

other forms, such as moving from zone i to j, edge or road i to j, just to

name a few. U t
i,j is utilized for modelling the utility that an agent gets by

travelling from node i to j at discrete time interval t, which corresponds to

P t
i,j. The utility function could consist of various factors such as historical

or current node-level observations, along with the distance to travel from

node i to j.

Another form of movement representation would be P t
d,n, which is the

probability of an agent d travelling to node n at discrete time interval

t. This utility here is represented by U t
d,n, which considers 1) node-level

information (similar to U t
i,j), as well as 2) agent-level information (e.g.,

agent’s preferences). For clarity, the agents movement model in chapter

4 takes on the P t
d,n form (node and agent-specific), while the movement

model in chapters 5 and 6 takes on the P t
i,j form. This will be further
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elaborated in the individual chapters.

2.3 Proposed Methodological Framework

In this section, we describe the proposed methodological framework for

developing high quality agent-based models in various problem domains

under the conditions of network model scale (micro or macro) and data

observability (partial or full observation). For each problem domain, we

describe the potential issues surrounding them, and provide ways to overcome

these domains-specific problems. Then, in chapters 4, 5 and 6, we provide

concrete use cases for each problem domain, and illustrate our proposed

methodological framework in these use cases. The mapping of use cases to

problem domains are as illustrated in figure 2.1. However, these guidelines

are definitely non-exhaustive; certain components such as the utility function

(factors contributing to the agents movement) would differ on a case-by-

case scenario, even for the same problem domain as specified. Additionally,

it is important to note in figure 2.1 that the ’Macro-level, Fully Observable’

problem domain is left blank (indicated in grey); to the best of our knowledge,

there is no use case that falls in this category.

Figure 2.1: Problem domains: network model scale and data observability.
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2.3.1 Micro-Level, Partially Observable (MiPO)

For the first problem domain (MiPO), the main challenge faced would

be data observability, where data is observable for only a small subset

of population that we are trying to model. In this case, the question here

would be whether the agent-based models built from the small set of micro-

level data would be representative of the entire population.

The process flow for users developing agent-based models in this problem

domain is as follows:

1. Calibrate utility-driven decision model based on a small set of (observable)

micro-level data.

2. The utility-driven decision model will be input to an agent-based

simulation model.

3. Make use of the agent-based simulation platform as a ground truth

generator to generate the movement data for an entire simulated

population.

4. Compare or validate the aggregate-level observations from the simulation

model against that of actual ground truth data. Some common

approaches would be to validate via sum of errors or weighed sum

of errors.

In addition to the following points, a user would also need to consider

the factors that might contribute to the utility function of an agent. A

concrete example of the application of this approach is in chapter 4.

2.3.2 Micro-Level, Fully Observable (MiFO)

The micro-level, fully observable (MiFO) problem domain is defined by two

conditions: (1) micro-level network model, and (2) data is observable for

the entire population that we are modeling. In such instances, the data
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collected, while being of a larger quantity vis-à-vis that of MiPO, might

not be as qualitatively similar.

The process flow for users developing agent-based models in this problem

domain is as follows:

1. To deal with the noisier set of data, we will introduce some pre-

processing steps, either for 1) cleaning of data or 2) intent inference.

A concrete example of this will be elaborated in chapter 5.

2. Calibrate utility-driven decision model based on the processed data.

3. The utility-driven decision model will be input to an agent-based

simulation model.

4. Compare or validate the aggregate-level observations from the simulation

model against that of actual ground truth data. Some common

approaches would be to validate via sum of errors or weighed sum

of errors.

In addition to the following points, a user would also need to consider

the factors that might contribute to the utility function of an agent. A

concrete example of the application of this approach is in chapter 5.

2.3.3 Macro-Level, Partially Observable (MPO)

The macro-level, partially observable (MPO) problem domain is a special

scenario where it is impossible to model the movement decisions of individual

agents in the model. This can be explained from a computational perspective,

where there are too many agents and their decisions to compute, as well as

from a data perspective, where it is impossible to get the individual-level

data.

The process flow for users developing agent-based models in this problem

domain is as follows:
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1. Model simulation agents as entities, which could be corporations,

countries, just to name a few. In this case, the flow between the

agents (i.e., entities) would be people from one entity to another.

2. Calibrate utility-driven decision model based on the macro-level data.

3. The utility-driven decision model will be input to an agent-based

simulation model. A thing to note about the agent-based model here

is that while it is a macro-level model, it is by no means a simplistic

representation of the movement and underlying dynamics. This is

ensured by having sub-populations at agents-level. In this case, the

user would need to consider what kind of sub-populations to model,

such as departments, sections, race or language speakers, just to name

a few. A concrete example of this will be applied in chapter 6.

4. Compare or validate the aggregate-level observations from the simulation

model against that of actual ground truth data. Some common

approaches would be to validate via the sum of errors or the weighed

sum of errors.

In addition to the following points, a user would also need to consider

the factors that might contribute to the utility function of an agent. A

concrete example of the application of this approach is in chapter 6.
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Chapter 3

Related Work

3.1 Agent-Based Models

One of the classical use of agent-based model (ABM) would be the segregation

model [67] by Thomas C Schelling. It involves simple rule-based mechanisms

that is based on the Cellular Automata (CA) model [31], where agents

would move out of their current dwelling zone if the proportion of racially

similar neighbors exceed a certain threshold. It was a simple but representative

example of how agents with simple rule-based decisions can produce complex

emergent phenomenon at aggregate levels. Since then, ABMs have evolved

a lot in terms of complexity, and is utilized in many fields, ranging from

political science, sociology, epidemiology, finance, environmental science,

and economics [77]. In this dissertation, we are interested in agent-based

models involving movement. This is defined as movement of agents moving

from a node i to j.

In the previous chapter, we propose a methodological framework for

modeling movement decisions of agents in a network environment. We

further discussed the use of the discrete choice model approach under

various problem domains, by exploring the interaction of network model

scale and data observability (illustrated in figure 2.1). In this chapter, we
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review several modeling works according to the relevant categories (MiPO,

MiFO, MPO) in our framework. We then highlight the main differences

between the existing literature and our approach for modeling under the

three different categories as specified in figure 2.1.

For the relevant domain-specific (i.e., leisure, transportation, and migration)

references, they will not be discussed in this chapter. Instead, they will be

as discussed subsequently in chapters 4, 5, and 6.

3.2 Micro-Level, Partially Observable Domain

Example of models in the Micro-Level, Partially Observable (MiPO) category

would be epidemic models (e.g., smallpox containment models [28]), civil

violence models [28], and revolution models [29], e.g., the 2011 Arab Spring.

Another example would be crowd simulation models, such as for modeling

of egress in emergency events [62], which adopts a multi-tiered agent behavior,

ranging from locomotion, to steering and social (in increasing complexity).

For the aforementioned models, common approaches would be to (1) use

the existing data to model a small scale network that is not representative

of the entire population, or (2) skip the data completely, and create purely

”illustrative” models to highlight various phenomenons under certain network

conditions. This differs from our approach whereby we (1) collect data from

a sampled population, (2) use an agent-based model as a ground truth

generator, and (3) validate aggregate-level observations from simulation

runs against that of actual ground truth. This results in high agent-based

simulation models that serve as realistic ground truth generators that is

based on data from a small set of the entire population.

A relevant recent project worth pointing out would be the Ground

Truth program [24] by the Defense Advanced Research Projects Agency

(DARPA). As mentioned in [23], the social science field has long been faced

13



CHAPTER 3. RELATED WORK

with technical and logistical limitations when it comes to studies of large,

representative populations. What the Ground Truth program aims to do

is to validate the effectiveness of various social science modeling methods

through the use of artificial computational social system simulations with

built-in ”ground truth” causal rules [24].

Essentially, this means that simulation models are used as ground truth

generators, in the hope that it can effectively ’reverse engineer’ artificial

social systems through accurate identification of the causal rules in the

simulation itself [24]. This is similar to our approach for modeling under

the MiPO category, where we utilize a small set of sample data from a

subpopulation, and utilize the utility-driven decision model calibrated from

the sample data as input to a simulation model that models the movements

for an entire representative population. With this, we hope create models

that serve as effective ground truth generators in the event that micro-level

data is not observable for an entire representative population.

3.3 Micro-Level, Fully Observable Domain

Models in the Micro-Level, Fully Observable (MiPO) category mainly revolve

around domains where (1) data is readily observable and/or (2) sensors are

present and can easily capture data of an entire population. It is made

possible through the ubiquitousness of mobile and sensing devices, which

allows researchers to develop smartphone applications (e.g., for Android

and iOS) to capture user Global Positioning System (GPS) locations without

major human interventions. This allows models to be built revolving

around traffic simulation [8] and train transportation networks [66].

A common concept revolving around such models would be the Origin-

Destination (OD) matrix and flows, which is essentially a representation

of the flow of traffic or vehicles travelling from an origin to destination
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location. A normalized representation would be through transition

probabilities matrix, which is the probability of travelling from an origin

to destination. In our work, we adopt a two-tiered decision model for

modeling the movement of taxis in a road network. While this increases

the realism of the system, having a more complex representation (compared

to a single-tier OD representation) also leads to the challenge of figuring

the intent of drivers, especially at the zonal level decision. This will be

further discussed in chapter 5.

3.4 Macro-Level, Partially Observable Domain

A common macro-modeling approach would be through the use of Dynamic

Programming (DP) models [7]. It is a mathematical optimization and

computer programming method that simplifies complicated problems by

breaking them into simpler sub-problems in a recursive manner. In such

an approach, systems within the environment are modeled as a whole,

without any individual elements.

Another way of modeling macro-level models is through Principal-Agent

Models [42], which generally is applied in the area of political science

and micro-economics. Actors in the system are divided into agents and

principals, where agents appoint the principals to make decisions on their

behalf. This is generally used in modeling of high level macro phenomenon,

such as the interactions between politicians (agent) and voters (principal),

corporate management (agent) and shareholders (principal).

A major difference between the aforementioned approaches and our

work is that the models mainly model group and actors as homogeneous

entities, with no individual elements. In our work, even though we model

agents as entities, we incorporate some form of individual element via

several distributions, for example, age and origin-destination distributions.
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This means that we model heterogeneity through the modeling of sub-

populations, instead of having homogeneous population pools. Not only

does this help in creation of realistic models, it also serves as useful information

for policy makers, where they can observe shifts in the distribution of

entities (which could be corporations or countries) through certain policies

or implementations.

16



Chapter 4

Micro-level, Partially

Observable: Leisure Domain

Overview

In this chapter, we look into the development of high quality agent-based

simulation models in the micro-level, partially observable domain. A

representative use case here would be the leisure domain, in particular the

modeling of agents at theme parks. Theme parks are a major driver of

the global leisure and tourism sector. However, theme parks are known

to suffer from congestion problems, where visitors could spend up to two

hours waiting for popular attractions. This can be attributed to lack of

(1) global queue time information, and (2) central congestion management

mechanism, which can be costly to implement and test on a theme park

wide scale.

An alternative would be a simulation-based approach, which serves as

an economical approach to evaluate congestion management strategies,

but these models often face the challenge of low data availability, where

micro-level movement data are obtained via sample-based mobility studies

- raising questions on the representativeness of such data. To this end, we
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collected movement of patrons at a theme park to build a baseline visitor

movement model. Then, utilizing an agent-based simulation model as a

ground truth generator, we tested out a sample-based approach, similar

to that on-the-ground. By comparing with a baseline approach (diffusion

dynamics model), our results have shown that even with a small sampling

rate of 1%, the sample-based approach is able to capture the movement of

patrons at a theme park fairly well, which supports the use of sample-based

mobility studies. Through two additional case studies, we demonstrated

the effectiveness of an agent-based simulation model as an evaluation tool

for (1) a dynamic route guidance application and (2) effect of spatial layout

on crowd distribution.

4.1 Introduction

Theme parks play an important role in the global tourism and entertainment

industry. However, with the rise of theme parks as an important driver of

tourism, this has also led to congestion and an increase in queue times

at theme park attractions, which could be as long as two hours for the

popular attractions. Consequently, this has led to a decrease in experience

for theme park visitors.

Congestion at theme parks can be attributed to: (1) a small set of

popular (or star) attractions being preferred by all visitors, (2) the spatial

layout of theme parks that leads to bottlenecks at several path segments,

and (3) lack of global information on attraction wait times.

Different strategies have been adopted by theme park operators to

deal with the long waiting lines. An example would be the FASTPASS

(implemented at Disney parks), which incentifies visitors to visit popular

attractions at a later time of the day - through the use of express passes

as a reward. Another example would be the Express Pass implemented
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at Universal Studios parks, which allows visitors to utilize priority queues

by paying for it, thereby reducing their wait time at attractions. Other

ways includes having street shows and character greetings, so as to prevent

visitors travelling from different directions to converge at potential bottleneck

(congested) regions.

While there has been experience management strategies in place to deal

with congestion and crowd management, it is often costly to test out and

evaluate such measures at a large scale prior to implementation, due to

logistic and financial reasons. An alternative to this would be simulation-

based approaches, where we could make use of agent-based simulation

models as an evaluation tool for testing out such experience management

strategies prior to implementation. However, a challenge here would be

data availability, as it is often costly and logistically impossible to obtain

comprehensive micro-level data at a large scale (entire theme park). To

this end, we introduce SimLeisure, a agent-based simulation model for two

purposes: (1) to serve as a ground truth generator in the scenario of a

lack of individual agent-level trajectory based data, and (2) to serve as an

evaluative tool to test out a experience management strategies, as well as

the effect of spatial layout on crowding.

Our approach is as follows. Firstly, we conducted mobility surveys

to collect micro-level visitor data, which includes raw Global Positioning

System (GPS) trajectories and QR scan records. Then, with the combination

of micro and macro level (i.e., queue time at attractions) obtained from

our theme park operator, we developed a baseline behavioral model for

movement around the theme park. As micro-level data is not available for

the entire theme park visitor population, we input the behavioral model

into an agent-based model, and made use of the agent-based model as a

ground truth generator. We then proceed to evaluate the sample-based

approach by comparing with a baseline approach, the diffusion dynamics
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model.

Lastly, we included two additional case studies to demonstrate the

effectiveness of an agent-based simulation model as an evaluation tool for

a dynamic route guidance application, and the effects of spatial layout on

crowding.

4.2 Literature Review

In this section, we review some of the existing literature in the area of

agent-based models and congestion management for theme parks, and how

our work differs from them.

4.2.1 Agent-Based Model as Ground Truth Generator

In our work, in order to deal with the issue of low data availability, we

made use of an agent-based simulation model as a ground truth generator,

where we investigate the effectiveness of a sampled-based approach (i.e.,

sampling of population in the selection of participants) which exists in

typical ground surveys. A similar effort would be the the Ground Truth

(GT) program ([21] and [22]) by the Defense Advanced Research Projects

Agency (DARPA), where the aim is to ”develop models that accurately

‘reverse engineer’ an artificial social system by correctly identifying the

causal rules designed into the simulation”. Another notable project from

DARPA is the Next Generation Social Science (NGS2) program ([20] and

[19]).

4.2.2 Modeling and Optimization: Theme Park Domain

[58] gave a overview of agent-based models and their advantages, as well

as how they can be applied in the tourism industry. They also included a

survey of applications of Agent-Based Modeling in Tourism. [82] adopted
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a mixed methods approach combining statistical and spatial analyses to

examine theme park visitors movement - done through utilizing theories on

intuitive and rational choice, and looked into both attraction attributes and

spatial layout attributes. [72] implemented an ACS-ILS algorithm to find

best locations of RFID readers. [12] looks into crowd control mechanism,

through the use of mobile devices. [65] looks at the impact of recession to

national parks visitation. [83] focuses on the theme park carrying capacity.

4.2.3 Behavioral Modeling: Theme Parks and Beyond

[4] focuses on the aspect of revisiting intention, which could be an interesting

aspect to explore in future. [69] looks into amusement park attributes by

patrons of theme parks, which is similar to the thrill, dark and wet aspects

of attractions that we implemented in our model. [9] and [26] are also

similar works on the utility model that we are using for visitors attraction

attendance. [56] looks into behavioral modeling for Scottish theme park

visitors. [1] evaluates of the attractiveness of a new theme park. [53] looks

into factors affecting attendance. [39] predicts how long theme park visitors

would spend at attractions, through the use of a ordered logit model.

4.3 Methodology

In this section, we describe the data that is utilized in building the behavioral

model for theme parks visitors, followed by the processing, and evaluation

of the sample-based approach as proposed.

4.3.1 Data Collection

For the purposes of this study, we partnered with a theme park operator

at a major Asian city. The attraction-specific attributes (thrill, dark and

wet) were also decided in consultation with the theme park operators. Data
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utilized in this study is divided into two categories, micro and macro-level

data.

Macro-level data is directly obtained from our partner, which consists

of attraction wait time collected at 30 to 90 minutes interval (time period of

September 2011 to August 2012). This data is utilized in the dynamic route

guidance application, as well as utilized by the diffusion dynamics model

(discussed subsequently) for estimating visitor transition probabilities.

For micro-level data, we do not have comprehensive data on visitors and

their preferences, along with their decisions (e.g., queuing up at attractions,

movement, etc.) - all of which is required for us to construct the visitors

behavioral model. To do this, we conducted a mobility survey (December

2012) for a total of 50 participants, where they would download a mobile

application (developed in-house) prior to a visit to the theme park. The

interface of the mobile application is as illustrated in figure 4.1.

Figure 4.1: Interface of Mobile Application for Logging of Visitor Activities.

With the mobile application, we collect the GPS (Global Positioning

System) traces of the participants throughout the theme park, along with

attraction attendance (participants would scan a QR code prior to entering

an attraction). We would also collect other details such as the group type
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(individual or family) and preference (towards thrill, dark, wet rides - on a

scale of 0 to 3).

4.3.2 Data Processing

With the data collected, we would still require some processing to infer

other information which is not available in the existing dataset. Additionally,

we processed filtering to retain only 17,534 data points (for analysis) out

of the 86,376 data points collected, with data points removed for reasons

such as duplication, out-of-bounds error (due to poor GPS reception and

other reasons), as well as those with timestamps that were outside of the

theme park operating hours.

As mentioned previously, we captured the participants entry into an

attraction via means of QR scans, where participants will have to scan a

QR code before they entering an attraction. However, while we do have

information on the entry to attractions, we do not have information on

whether a visitor joined the queue for an attraction. More specifically,

in the event that a participant joins the queue for an attraction, but

subsequently decides to leave the queue, there will be no data captured on

our end (as no QR scan is performed). In order to infer this information,

we first divide the trajectories into thirty minutes intervals, and get the

region (i.e., zone) that a participants spends the most time in (for that time

interval). We subsequently perform a match between the attraction that

the patron spends the most time during that time interval, and the actual

QR scans that is performed by that patron. If there is a match, it means

that the patron went to queue at the attraction, and entered the attraction.

Otherwise, it meant that the patron did queue at the attraction, but left

after waiting for some time. This is an important piece of information that

is subsequently used in the behavioral model (logit choice model).
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4.3.3 Behavioral Model for Theme Park Visitors

In this subsection, we describe the behavioral model for theme parks visitor

agents. To model the movement decisions of visitors at theme parks, we

used a form of discrete choice model, the logit model. The logit choice

probability model is one of the most widely used discrete choice model,

and chosen as the formula for the logit choice probability model takes a

closed form and is readily interpretable [71]. Following consultations with

the theme park operators, we decided on the factors thrill, dark, wet levels,

along with distance (to travel) for an agent’s movement decision.

Formally, the utility obtained by a visitor v going to attraction n is

defined as:

Uv,n = β1Tv,n + β2Dv,n + β3Wv,n + β4δv,n + εv,n

where εv,n denotes unobserved factors that contribute to visitor’s decision.

Also, δv,n represents the distance a visitor has to travel from his/her current

location to the attraction n, while Tv,n, Dv,n, and Wv,n represents the

absolute difference in thrill, dark and wet preferences between the visitor

and that of an attraction. For example, for a thrill level Tv and Tn for a

visitor v and attraction n, the difference is formally defined as:

Tv,n = |Tv − Tn|

With the utility level Uv,n defined, the probability of visitor v choosing

to travel to an attraction n is then formally defined as:
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Pv,n =
eUv,n∑
j∈NeUv,j

,∀v, n

We then proceed to generate the itineraries for the agents as follows.

As the preference for an entire theme park population is unknown to us, we

proceed to generate C number of visitors class, with each class representing

a (randomly generated) user preference (thrill, dark, wet). Thereafter, with

the logit choice model defined previously, we generate the itineraries of

visitors sequentially (attraction-by-attraction), up till a time threshold is

exceeded. In this case, an attraction is randomly selected, and probability

of the attraction being added would be as defined by the probability Pv,n

defined previously. Also, we set a time budget of 320 minutes, which is the

average time that a participant spends in the theme park, and the total

time incurred per itinerary should not exceed the (expected) time spent

visiting all attractions. We proceeded to generate Nc itineraries per visitor

class, and the final number of itineraries generated would be Nc×C. During

the course of simulation, an agent would then select at random one of the

itineraries at the point of initialization.

4.3.4 Agent-Based Model as a Ground Truth Generator

As mentioned previously, it is practically (logitically and financially) impossible

to obtain comprehensive data of an entire theme park patron population

- which is why we used an agent-based simulation model ([16] and [45])

as a ground truth generator to evaluate the sample-based approach. The

agent-based model is developed in NetLogo 5.1, and includes additional

customization (Java extensions and external files) for agents behavior and

changing of physical environment (e.g., distance matrix generation) in the

simulation. This makes the model highly configurable, and it can be
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changed easily to fit the landscape and spatial layout of other theme parks.

The interface of the model is as shown in figure 4.2, where the colored bars

are used as indication of the level of crowding at attractions.

Figure 4.2: Graphical interface of simulation model at (left) initialization
and (right) during course of simulation. Colored bars are indicative of
crowding at attractions.

Some additional details and features of the simulation model is as

follows:

• The model allows for intervention schemes such as street shows (similar

to that found in theme parks) and break down of attractions. This

allows policy makers to test out various what-if scenarios via the

simulation model.

• Every agent has its agent-level attributes, such as profile (individual,

family), preference (thrill, dark, wet), time spent waiting at attractions,

number of attractions visited, as well as (depending on agent type)

a list of attractions to follow. These allow us to easily track the

performance of agents subsequently.

• Every attraction has its attraction-specific attributes, such as service

rate, service capacity, as well as queues. Each attraction would

manage a queue, which is essentially a list of visitor ID that are

waiting in line, managed in a FIFO (first in, first out) manner. Also,
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depending on the queue length and service rate, this would allow us

to compute the estimated waiting time at attractions, similar to that

on-the-ground.

• Additionally, the model allows for priority or express queues, similar

to that found in theme parks. Under the express queue scheme, we

could customize certain groups of visitors (who purchased express

tickets) to utilize a separate queue, while other visitors would utilize

the normal queue. It could also potentially be used in certain incentive

schemes, where patrons who follow recommendations from a central

system could be rewarded with express queue tickets.

It is also important to position the agent-based model as a mesoscopic

model, between that of a macroscopic and microscopic model. This means

that it captures some of the micro-level details such as agent-level decision

and queues at attractions, while other details such as movement along

links (i.e., streets at theme park) and visiting of restaurants/restrooms

are excluded, so as to reduce the model complexity. With the agent-level

decision and queue at attraction incorporated, it would then allow us to

observe emergent behaviors, such as congestion at attractions, which is a

classic reason for utilization of agent-based modeling and simulation ([11])

techniques. This also separates our work from previous works ([54] and

[55]) in theme park operations simulation, which utilizes only macro-level

data for the simulation model.

4.3.5 Comparison Baseline: Diffusion Dynamics Model

As mentioned previously, we compare the results of the sample-based approach

to that of the diffusion dynamics model, which is utilized to derive flow

patterns using observed congestion (i.e., visitor queues) at attraction nodes

[27]. The diffusion dynamics model is an optimization model that learns
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the probability of a visitor going from node i to node j by utilizing waiting

times at attractions. This allows us to overcome the issue of a lack of actual

on-the-ground movement data for comparison purposes (with the sample-

based approach). Additionally, the output (time-dependent transition matrix

P t
i,j) from the diffusion dynamics model is identical to our approach. Last

but not least, the diffusion dynamics model has been shown to provide

prediction accuracy of up to 80% for the popular attractions, making it a

good baseline comparison approach.

28



CHAPTER 4. MICRO-LEVEL, PARTIALLY OBSERVABLE: LEISURE DOMAIN

The diffusion dynamics approach ([27]) models the movement of visitors

as a multinomial distribution based diffusion model, which is a form of

dependent cascade model. Formally, the likelihood is defined as:

L(p;x, n) =
∏
d∈D

∏
i∈A

∏
t∈T

(
∑

j xd,t,i,j)!∏
j∈A

xd,t,i,j!

∏
j∈A

p
xd,t,i,j
t,i,j , (4.1)

where the total outflow of visitors from attraction node i at time t is∑
j xd,t,i,j, which corresponds to the total number of trials in the multinomial

distribution.

Variable Description

D observed cascades
A set of all attractions in the theme park
T set of time slices
Si service rate at attraction i
nd,t,i number of visitors waiting at node i, time t in cascade d
xd,t,i,j corresponds to the number of people moving from node i to j
pt,i,j probability of a visitor moving from node i to node j at time t

Through the modeling of visitors movement, the probability of a visitor

moving from node i to j at time t (P t
i,j)) is then estimated (through a

maximum likelihood estimation) from aggregate (queue-time) observations,

which are an output of the simulation model (ground truth generator).

The final probability matrix P t
i,j for all approaches (sample-based and

diffusion dynamics) is then evaluated for performance comparison. This

is as discussed subsequently.

4.3.6 Performance Measure

To compare the performance of that of the sample-based approach versus

that of the diffusion dynamics model, we would first define two performance

measures, a sum of errors, as well as a weighted sum of errors. Formally,

the sum of errors performance metric is defined as:
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SEa =
∑
i,j,t

|P t
i,j − P

a,t
i,j |

where SEa represents the sum of error for an approach a, which could

be (1) the diffusion dynamics model, (2) 5% sampling approach, or (3) 1%

sampling approach. Correspondingly, P a,t
i,j represents the time-dependent

transition probability of going from an attraction node i to j at discrete

time interval t, for one of the three approaches a. P t
i,j represents the

time-dependent transition probability for the entire population (generated

ground truth).

The next measurement is weighted sum of errors. It is a weighted

variant of the sum of errors, where we multiply the error for a < i, j, t >

tuple with the flow F t
i,j of the entire population (generated ground truth),

which penalizes errors that are made at links with high transition flows.

Therefore, this places higher emphasis on prediction accuracy for links with

high visitor flow between them. Formally, the weighted sum of error for an

approach a is defined as:

WSEa =
∑
i,j,t

|P t
i,j − P

a,t
i,j | × F t

i,j

Similar to the sum of errors, approach a could take any one of the three

approaches (mentioned previously). Results for both measurements will be

presented subsequently in section 4.4.
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Input Variables Description / Values

Thrill, Dark, Wet [0,3]
Number of Visitor Classes 10
Number of Itineraries per Visitor Class 10
Number of Visitor Agents 15,000
Detour Threshold 320 minutes

Dependent Variables Description / Values

Transition Matrix P t
i,j.

Number of Replications 30

4.4 Results

4.4.1 Sum of Errors and Weighted Sum of Errors

The results of both the sum of errors and weighted sum of errors at varying

time intervals (30 minutes, 1 hour, 2 hours) is as shown in table 4.1. From

table 4.1, we can observe that the sample-based approach (both 5% and 1%

sampling rate) outperforms that of the diffusion dynamics model, although

the 5% sampling rate approach gives the best results.

Additionally, not only does the sample-based approach outperform that

of the diffusion dynamics model, it does so especially well at the links with

high visitor flows, as observed by the lower weighted sum of errors in table

4.1. This is even at a low sampling rate of 1%, where the sample-based

approach outperforms that of the diffusion dynamics model.

An additional point to note here would be the performance of the

sample-based approach dropping with decreasing time interval (from 2

hours to 1 hour to 30 minutes), which can be explained by a decrease in data

points available per time interval, thereby resulting in poorer prediction

accuracy.

To further illustrate the performance of the sample-based approach

against that of the diffusion dynamics model, we adopt a heat map visualization

for comparing the results obtained for all approaches. This is done by

representing the transition probabilities obtained for an approach a, for
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Table 4.1: Sum of Errors (SE) and Weighted Sum of Errors (WSE) result
at different time intervals (30 minutes, 1 hour, 2 hours). Best performing
approach for each setup indicated in bold, and standard deviation in
brackets.

5% Sampling 1% Sampling Diffusion Dynamics

SE
30 min 49.77 (0.04) 101.08 (0.06) 362.82 (0.11)

1 hr 16.02 (0.02) 35.25 (0.04) 176.85 (0.1)

2 hrs 5.6 (0.01) 12.04 (0.02) 85.54 (0.11)

WSE
30 min 18,260.35 (0.04) 38,106.3 (0.06) 170,084.54 (0.11)

1 hr 12,889.96 (0.02) 26,096.17 (0.04) 169,722.64 (0.1)

2 hrs 9,068.67 (0.01) 18,476.5 (0.02) 173,172.33 (0.11)

< i, j > tuple as P a
i,j. This is essentially an aggregation of the time-

dependent transition matrix P a,t
i,j , and is formally defined as P a

i,j =
∑

t P
a,t
i,j .

Figure 4.3: Heat map of transition probabilities for full, sampled and
diffusion dynamics model. Darker shades indicates higher transition
probabilities.

Figure 4.3 shows the visualization for the (1) full population, (2) sample-
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based approach, as well as the (3) diffusion dynamics model. Attractions

with high transition probabilities are indicated in darker shades of gray,

and vice versa. From figure 4.3, we can observe that the sample-based

approach performs well in representing the transition movements of the

entire population, as observed by the closer color representation. This

further confirms the usefulness of sample-based mobility surveys in capturing

the movement decisions of theme park visitors.

4.4.2 Sensitivity Analysis: Sampling Rate

As noted in table 4.1, having a sampling rate of 5% would yield a better

prediction accuracy as opposed to just having a sampling rate of 1%. This

is an expected outcome, as a larger sample population would definitely

represent an (entire) population better. However, given that sample-based

mobility studies often involve huge logistical and financial costs, it would

be beneficial for researchers to find a ”good sampling rate”, one which gives

them the best value in terms of (1) data representativeness and (2) financial

and/or logistical costs involved.

To this end, we conducted sensitivity analysis tests to further look

into the effect of sampling rate on the performance of the sampling-based

approach. Virtual experiments were conducted with sampling rates of 1%

to 9% (increments of 1%), followed by 10% to 90% (increments of 10%).

Results of the virtual experiments are as summarized in figure 4.4.

From figure 4.4, we can observe that when increasing the sampling

rate from 1% to 10%, we get the greatest gain in terms of performance

(sharpest decrease in sum of errors and weighted sum of errors). From 10%

onwards to 90%, we continue to obtain gains in performance, but the rate

of performance increase is not as pronounced as that before 10%. This

is an important finding for researchers conducting sample-based mobility

studies, and are looking to make informed decisions on the sampling rate.
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Figure 4.4: Sensitivity analysis results for (left) sum of errors and (right)
weighted sum of errors under varying sampling rates.

4.5 Case Studies: Agent-Based Model as an

Evaluation Tool

In this case study section, we present two case studies on the use of an

agent-based model to evaluate (1) a dynamic route guidance application

and (2) effect of spatial layout on crowds in theme parks. These will be

further elaborated in the subsequent subsections.

4.5.1 Case Study 1: Evaluation of Dynamic Route

Guidance App

In the first case study, we provide a use case for an agent-based simulation

model in theme park visitor experience management, where it serves as

an evaluation tool ([16]) for a dynamic route guidance application that is

developed in-house. This case study serves as an illustrative example for

future works on the usage of agent-based models as an economical approach

to evaluate various experience and congestion management strategies, in

both theme park and other crowd simulation scenarios.

4.5.1.1 Motivation: Attraction Wait Times

We first present some findings from the attraction wait times obtained

(period of September 2011 to August 2012) from our theme park operator
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partner, which subsequently serves as a motivation for the development of

the dynamic route guidance application. The first finding is as summarized

in table 4.2, which contains the average wait times at attractions during

peak days, sorted (descending) by wait times. From figure 4.2, we can

observe the disproportionate wait times at attractions, where the most

popular attraction (attraction T) experiences 67% higher wait times than

the second most (attraction C) popular attraction.

Table 4.2: Average wait time (in minutes) at attractions on peak days.

Attraction Avg wait time

T 82.0
C 49.1
H 40.0
J 37.0

BH 31.4
BC 26.2
S 26.1
M 25.8
D 24.9
L 22.7
R 20.7
A 12.2
E 11.7
P 10.2
K 7.8

To offer another perspective, figure 4.5 shows the wait times for the four

most popular attractions throughout the day. Combining the results from

table 4.2 and figure 4.5, we can observe that while attraction T experiences

67% higher (on average) wait times that the second-most popular attraction,

there are times of the day where the wait time drops, not just lower than

the second-most popular attractions, but even lower than the fourth-most

popular attraction (J). This is an important finding, as not only does this

confirm on the strategies adopted by theme parks (e.g., FASTPASS by

Disney parks to encourage visitors to visit popular attractions at later times

of the day), it also supports the usefulness of a dynamic route guidance
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application in this case, so as to exploit the peak and non-peak periods of

attractions at various times of the day.

Figure 4.5: Wait time for four most popular attractions throughout the
day.

4.5.1.2 Visitor Experience Management: Dynamic Stochastic

OP

In order to design an application for visitor experience management in

theme parks, we first look at the aim of providing personalized route

guidance to theme park visitors as a Dynamic Stochastic Orienteering

Problem (DSOP) ([43]). Applying a standard Orienteering Problem (OP)

([73]) to the case of theme park visitors, the aim here would be to find

a series of nodes (i.e., attractions) in a graph to traverse that gives the

maximum reward (to the visitor), while ensuring that the total distance or

time taken to traverse those nodes does not exceed a threshold level. In this

case, the user reward gained is dependent on the user-specific preferences

(profile), as well as the total time spent (1) queuing at attractions and (2)

traveling between attractions.

The DSOP is a (single-agent) variant of the OP, with the difference

being that the attraction queue times and travel times from attraction
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to attraction are non-deterministic and dynamic (varies with time). Also,

each attraction has a attraction-specific operating time window and status,

which is dynamic and may change according to weather, technical failures,

just to name a few. The aim here is similar to that of the OP scenario, while

ensuring that the time period of visiting an attraction node falls within the

attraction-specific operating time period.

The dynamic route guidance application comes in two modes, a generation

mode (for generating an initial list of attractions to visit), as well as an

intervention mode, where, as a feedback to a change in the environment

(e.g., ride breakdown and other anomalies) - will result in a new list of

attractions being regenerated. Additionally, it is important to point out

that this model adopts a slightly different variant of the visitors movement

model (as opposed to that in section 4.3), which involves 17 zones, each

of which represents a major attraction at the theme park. The visitor

movement model is then simply a Markovian representation P t
i,j of visitors’

movement from a current zone i to the next zone j - and is dependent

only on the current zone of a visitor. This is as opposed to the logit choice

model itinerary generator that was discussed in section 4.3.

4.5.1.3 Virtual Experimental Design

The design of the virtual experiment is as follows. First, we define two key

performance indices that will ultimately affect a visitor’s experience in a

theme park: (1) total time spent waiting at attractions, and (2) number of

attractions visited. Also, we define two types of agents, a guided one (i.e.,

visitors following a list of recommended attractions from the dynamic route

guidance app), as well as an unguided one (following the visitor movement

model - for comparison with the guided agents). Simulation instances were

run with 15,000 agents, and we conducted sensitivity analysis to evaluate

the performance of the dynamic route guidance application under various
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percentages of guided visitors.

4.5.1.4 Virtual Experimental Results

Figure 4.6: Total wait time (left) and number of visited attractions (right)
per visitor type (on average).

Results of the virtual experiment is as summarized in figure 4.6. From

figure 4.6, we can observe that at lower percentages of guided visitors (e.g.,

up to 35%), we do observe a better performance (lower wait times and

higher number of attractions visited) for the guided visitors as opposed to

the unguided ones. However, at higher percentage of guided users, we start

to observe a decrease in performance of the guided visitors, especially from

35% onwards for the total wait time.

This observation of deteriorating performance (of guided agents) with

increasing percentage of guided agents is in line with existing dynamic route

guidance research in the transportation literature. A plausible explanation

for this, which is also a limitation of the current dynamic route guidance

model, is that the wait times at attractions are not a function of the routes

generated. At lower guidance percentages (percent of guided visitors), this

will not be an issue, as attraction wait times will not be significantly

affected by the guided visitors movement. However, at higher guidance

percentages, the attraction wait times (throughout the course of day) would

most probably be significantly affected by the routes of the (larger) group

of guided visitors, and not factoring this in the planning of visitors routes

will most definitely result in a deterioration of guided visitors performance.

This could potentially be an interesting direction for future works to consider,

38



CHAPTER 4. MICRO-LEVEL, PARTIALLY OBSERVABLE: LEISURE DOMAIN

by factoring generated visitor routes into the attraction wait times throughout

the day.

4.5.2 Case Study 2: Impact of Spatial Layout

The second case study was inspired by a recent work on effect of spatial

layout in theme park. In the work by ([82]), the theme park attributes that

the authors looked into are distance between attractions, path network,

entrance location, and attraction distribution ([82]). For the purpose of

our investigation, we do not consider attributes such as distance between

attractions. Instead, we focus on one of the key findings, where the authors

mentioned was that the ”beginning and midpoints of the main visit route

(either direction) in a theme park with a circular path” would be more

”likely to face greater capacity pressure than attractions in other locations”

([82]).

The reason why we chose to focus on this particular finding was due

to the fact that the theme park that we were working with happens to

have a circular path, and therefore it would be easy (as well as interesting)

for us to test out such a finding via a simulation-based approach. Figure

4.7 shows the spatial layout of the theme park, where the attractions are

indicated in yellow (popular attractions) and blue (normal attractions)

stars. Intersection nodes are indicated by the green spheres, while the

entrance is represented by the orange cone. From figure 4.7, we can observe

that the popular attractions are spatially located near the entrance, with

3 out of 4 popular attractions (connected via intersection node 23) located

near the entrance.

To evaluate the effect of proximity to entrance on crowding at theme

parks, we introduce three different scenarios for comparison purposes. The

first scenario is the baseline scenario, which is just as indicated in figure

4.7, where attractions are located in the same manner as that in the actual
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Figure 4.7: Spatial layout of attractions in theme park. Popular attractions
are indicated in yellow.

theme park. The second and third scenario are added to evaluate the

findings from [82], where scenario 2 represents popular attractions located

further from entrance, and scenario 3 represents popular attractions located

nearer to the entrance. Scenarios 2 and 3 are as illustrated in figure 4.8.

Figure 4.8: Spatial layout of attractions for scenario 2 (left) and scenario
3 (right). Popular attractions are indicated in yellow.

4.5.2.1 Performance Comparison and Results

To compare the results of various scenarios of spatial layout of attractions,

we measure the performance of each scenario via an entropy measure for

distribution of crowds. Formally, the entropy for distribution of crowds at

attractions is defined as:
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H(N) = −
∑
n∈N

p(n) log2 p(n)

where p(n) represents the normalized crowd distribution at an attraction

n. As we are measuring the entropy of distribution of crowds in the theme

park, a higher entropy value would equate to a relatively even distribution

of crowd, which indicates better performance.

The results of the virtual experiments are as summarized in table 4.3,

which represents the entropy of average crowd distribution at attractions

through the entire day. From table 4.3, we can observe that having popular

attractions further from entrance would yield better results (than the baseline),

while having popular attractions nearer to the entrance would yield poorer

results, as observed by the entropy values. This concurs with the findings

as mentioned by ([82]).

Table 4.3: Entropy results for scenario (1) baseline scenario, (2) popular
attractions further from entrance, and (3) popular attractions near
entrance. Best performance is indicated in bold.

scenario-1 scenario-2 scenario-3

entropy 3.209763 3.255398 3.131249

An additional result is as illustrated in figure 4.9, which shows the

entropy values by hour of day for a single replication of simulation. From

the figure, we can observe that other than a single hour of the day, the

second scenario generally outperforms that of the first scenario. This

further confirms the finding by ([82]). Another interesting observation

is that scenario 3 outperforms the baseline towards the end of day (last

3 hours). A possible explanation could be that the initial crowding (i.e.,

popular attractions near entrance) has cleared by that time of day, and

visitors are spread more evenly to the remaining attractions (current model

does not allow revisiting of attractions).
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Figure 4.9: Entropy for different scenarios by hour.

It is important to point out here that this is but just one of the findings

that is mentioned by ([82]) - and is used as a simple case study on how

an agent-based simulation model can be used as a evaluation tool for

spatial layout strategies. Future research could involve other findings (or a

combination thereof) to further investigate the effect of spatial layouts on

congestion at attractions.

4.6 Discussion

In this section, we discuss the practical implications of the result obtained

from our work, along with some future research directions.

4.6.1 Practical Implications

The usage of sample-based mobility studies for crowd simulation related

research has long been established, especially in the transportation domain.

This work aims to answer the question on the representativeness of such

sample-based mobility studies, particularly in the theme park domain.

While it is practically impossible to collect large scale mobility traces of

theme park patrons and their attraction attendance decision, we overcome
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this by utilizing an agent-based simulation model as a ground truth generator,

and compared the sample-based approach with a baseline method (diffusion

dynamics). The findings support the usage of sample-based mobility studies,

which confirms its use in various crowd simulation domains as a means of

data collection. Additionally, it also demonstrates the potential of agent-

based models as a ground generator in the event of low data availability.

Additional takeaway for researchers conducting sample-based mobility

studies is as discussed in the sensitivity analysis results, where an increase

in sampling rate up till 10% improves the rate of increase in performance,

following which increasing the sampling rate further leads to smaller increases

in performance. This helps researchers to make informed decisions in

determining the sampling ratio prior to conduct of their mobility studies.

4.6.2 Future Research

This work is a combination of our exploration on the utilization of agent-

based models in a particular scenario of crowd simulation (theme park

visitors), where we have a group of heterogeneous agents with ad hoc

objectives, differing preferences, and the flow between attraction are uneven.

We hope that our work will inspire future works in this domain, with several

examples as listed below:

• Use of agent-based models in evaluation of impact of spatial layout on

congestion in theme parks ([82]). ([82]) concluded on the effects that

path network and entrance location on waiting times at attractions.

Therefore, it would be an interesting direction to look into spatial

layout of popular attractions to reduce congestion, such as avoiding

the start and midpoint of a popular visit trajectory for a theme park

with circular path (one of the findings from [82]).

• Use of agent-based models to evaluate queue management strategies.

43



CHAPTER 4. MICRO-LEVEL, PARTIALLY OBSERVABLE: LEISURE DOMAIN

For example, theme park operator could set various queue time threshold,

and redirect visitors to other less crowded attractions when the popular

attractions are experiencing long wait times.

4.7 Conclusion

This study attempts to establish the usefulness of sample-based mobility

studies in a special class of crowd simulation, where agents are heterogeneous

with differing preferences and ad hoc goals. Also, our work attempts

to establish the use of agent-based simulation models as a ground truth

generator, in the event of low data availability. For the domain of crowd

simulation (in particular simulation of theme park visitors), it is often

impractical (logistically and financially) to carry out comprehensive studies

on visitor decisions on an entire population level, and researchers often have

to resort to sample-based mobility studies, where a sampled population are

recruited as participants for a mobility survey, leading to the question of

whether the decisions of the sampled population is representative of that

of the entire population. The issue is further exacerbated by the fact that

ground truth data (i.e., micro-level decisions made by entire population)

is not available, rendering any form of ground truth-based validation and

comparison impossible.

We answered this by first conducting sample-based mobility surveys

to produce a baseline visitor movement model. Next, we made use of

an agent-based simulation model as a ground truth generator, so as to

evaluate the effectiveness of a sampled-based approach (similar to that on-

the-ground, vis-a-vis that of sample-based mobility studies). This was done

by comparing with a diffusion dynamics model, which is shown to provide

a prediction accuracy of approximately 80% for the popular attractions

([27]). Our approach outperforms the diffusion dynamics model, even
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when the sampling rate is as low as 1%. This establishes the usefulness

of sample-based mobility studies in scenarios such as that in theme parks,

where the flow between (attraction) nodes are shown to be uneven. It also

demonstrates (1) the usefulness of mobility studies in behavioral modeling

in the leisure domain, as well as (2) the capabilities and usefulness of agent-

based simulation models as a ground truth generator in the event of low

data availability.

We further looked into the sampling rate as a means of controlling the

performance, by varying it through the conduct of a sensitivity analysis

test. Our results show that the biggest gains are made when increasing

the sampling rate from 1% to 10%, following which the rate of increase in

performance starts to deteriorate (from 10% to 90% sampling rate).

Last but not least, we included two additional case studies to further

illustrate the effectiveness of agent-based models in investigation of a visitor

experience management application and effect of spatial layout on crowding.

Our work paves the way for future investigation of (1) building highly

accurate crowd simulation models, (2) use of agent-based models as a

ground truth generator in the event of low data availability, and (3) use

of agent-based simulation models in investigation of theme park crowd

management strategies and policies.
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Chapter 5

Micro-level, Fully Observable:

Transportation Domain

Overview

In this chapter, we look in development of high quality agent-based simulation

models in the micro-level, fully observable domain. A representative use

case here would be the transportation domain, in particular taxis. Taxis

play a fundamental role in many cities around the world, providing a

faster alternative to public transportation modes, such as buses and trains.

However, taxis have been shown to suffer from efficiency problems, i.e.,

supply-demand imbalances at various times of the day. This can be mainly

attributed to a lack of a central coordination guidance mechanism, where

drivers rely only on local knowledge to get to places at various times of the

day. While various approaches have been proposed to deal with this issue,

such as through guidance systems, such approaches are often expensive to

implement and test, especially on an island wide scale.

An alternative would be a simulation-based approach, where it is imperative

to develop highly realistic simulation models that are capable of emulating

the actual movement decisions of taxi drivers on the ground. This will
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serve as economical approach to effectively test the performance of such

guidance systems. To this end, we propose a two-tiered decision model for

modeling the roaming movement decisions of taxi drivers. The proposed

model consists of link and zonal level decisions, where agents would switch

between the two levels based on roaming dwell time. Additionally, through

the use of case studies, we demonstrate how we can utilize such highly

realistic agent-based simulations to investigate the effectiveness of a driver

guidance system, that is currently under the field trial phase. The results

conclude that by adhering to recommendations from the driver guidance

system, drivers will experience an increase in performance, across various

times of day and adoption ratios. The proposed approach provides a

promising way to produce highly accurate multi-agent simulations in the

transportation domain.

5.1 Introduction

Taxis are an important mode of transportation in many urban cities, where

it serves as a faster and more reliable alternative to traditional public

transportation modes (e.g., buses and trains). It also accounts for a significant

number of daily transportation services in cities such as Singapore, where it

represents 13.3% of total public transportation trips [49]. However, despite

the benefits that it brings, taxi services are traditionally known to suffer

from efficiency problems, as observed by the supply-demand imbalances

during the peak and non-peak periods. This can be mainly attributed to

the lack of a global coordination mechanism. As a result, the movement of

taxi drivers are purely based on local information or past experience.

Recently, approaches have been proposed to coordinate the movement

of taxi drivers in an Uber-like manner [38], where they leverage on the

availability of real-time streaming data to perform demand prediction and
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driver guidance with consideration of future supply and demand movements.

While such approaches could potentially increase the efficiency of drivers

and solve the issue of supply-demand imbalances, they are often logistically

and economically costly to implement and test on a city-wide scale - involving

field trials with thousands or potentially tens of thousands driver participants.

To enable the rapid evaluation of such approaches, one way would be

to make use of simulation models as an economical approach to first test

out the effectiveness of various approaches and recommendation models

prior to actual field trials. In this case, it is imperative to develop highly

realistic simulation models that gives a close representation of the taxi

drivers movements, similar to that observed on-the-ground.

To this end, the focus of this work is on the modeling of movement

behavior of taxi drivers. Due to the job nature of taxi drivers, it is subjected

to two types of movements: voluntary (when searching for customers),

and involuntary (when driving passengers to their destination). Taxis,

in the hired state (i.e., after a street pickup or booking), are subject to

involuntary movements, where their movements are constrained mainly

by the passengers’ objectives (i.e., getting to the passenger’s choice of

destination), with little or no variation in the route traveled, often by the

path of shortest distance or the least travel cost incurred.

On the other hand, when in the roaming state (i.e., ”free” status), taxi

drivers make their own travel decisions, which involves traveling to places

with potentially greater revenue or passenger demand. For this reason,

the voluntary movement is of greater interest to us. In particular, we

propose the development of a two-tiered decision model to emulate the

actual movement decisions made by taxi drivers in the roaming state. The

two-tiered decision model proposed consists of zone and link level decisions,

where drivers would switch between the movement levels based on zonal

dwell time.
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Our approach is as follows:

• We perform statistical analysis on a dataset that is obtained for taxi

fleets across Singapore. This allows us to test how factors such as

distance and historical demand can have an effect on the taxi drivers

zonal movement model.

• We utilize TaxiSim 2.0 (works on previous [17]) as a simulation platform

to evaluate the performance of a two-tiered decision model against

that of a traditional single-tiered decision model. TaxiSim 2.0 is a

multi-agent simulation platform that combines (1) data-driven modeling,

(2) tiered decision modeling and (3) agent-based modeling techniques

to emulate actual on-the-ground movement of taxi fleets.

• We compare aggregated output (e.g., trip accumulation and zone

visitation) of the two-tiered decision model against that of a traditional

single-tiered model to demonstrate the performance of the two-tiered

decision model. Results show that the two-tiered decision model

outperforms the single-tiered decision model, supporting the usage

of a two-tiered decision model in modeling the movement decision of

taxi drivers.

• We further introduce two case studies to demonstrate the effectiveness

of TaxiSim 2.0 as an evaluation tool for a Driver Guidance System

(DGS), which was developed to improve the operations of taxi drivers.

We believe that the two-tiered decision model would make for a better

decision model that captures the movement of taxi drivers - resulting in

highly realistic simulation models.
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5.2 Related Work

Our work is motivated by existing literature in the domains of data-driven

agent-based modeling, tiered decision modeling and applications of multi-

agent simulation. These concepts and models may or may not be applied

in the application area of transportation, in particular taxis. However,

to the best of our knowledge, there is no existing work that combines all

three elements in the development of a data-driven, multi-agent simulation

model with a two-tiered decision model. On top of that, we showed the

usefulness and applicability of the model developed by introducing case

studies involving the utilization of the model as an evaluation tool for a

driver guidance system that is currently under the field trial phase. This

is the main contribution and novelty of our work.

5.2.1 Data-Driven Agent-Based Models

In the area of data-driven agent-based models, [81] adopted a data-driven

approach in the development of an agent-based model for rooftop solar

adoption, where the authors make use of actual data from the Center

for Sustainable Energy to define an adoption model based on peer effects

and Net Present Value (NPV). [44] developed a data-driven agent-based

model for the purpose of crowd simulation, where the movement of agents

are dependent on their environment and other nearby agents, which is

learned from actual movement dynamics (i.e., trajectories) derived via

video processing.

Both work by [81] and [44] differs from traditional agent-based simulation

models, where the action or movement of agents is often based on simple

rule-based mechanism, without consideration of actual ground truth data.

In our work, we adopt a data-driven approach in the development

of TaxiSim 2.0, where we make use of existing dataset available, along
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with some inferred data (discussed in section 5.9.1) for both the decision

and simulation model. This includes multiple aspects, which ranges from

initialization of supply and demand, to link and zonal level movements, to

the decision of making a zonal jump.

5.2.2 Tiered Decision Modelling

The tiered decision model is not a new concept. In [62], a 3-tiered decision

model was proposed for crowd simulation, with the 3 tiers being (from

lowest to highest) locomotion, steering and social. Unlike the hierarchical

decision model proposed by [62], focus on the locomotion aspect is not

within the scope of this thesis.

In the work by [79], the authors introduced a two-stage approach for

modeling the movements of vacant taxis, which we define as taxi drivers

behavior in roaming mode. The first stage model proposed by the authors

involves sequential, independent zone-based decisions, modeled with a multi-

nomial logit model (MNL) whereby a taxi decides whether to (1) stay in

a current zone or (2) move to an adjacent zone in search of passengers.

This is similar to our strategic (zone) level movement, except that we

allow for zonal transitions to non-adjacent zones as well. This is a major

differentiating factor, as only 46.1% of zonal movements are to adjacent

zones (based on our pre-processing by zone-specific dwell time), which

is why we include non-adjacent zones into the zonal transition model.

Another distinction would be that the second stage is modelled cell-based,

whereas our second (operational) level movement is modeled as a link-based

movement. Additionally, the two-stage model proposed by [79] works with

data from a fleet of 460 taxis, while TaxiSim 2.0 (our model) works with

data from more than 26,000 taxis.

Another work by [78] introduces a bi-level decision for taxi drivers in

roaming mode as well. In this work, the levels of decision are (1) whether
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to travel to a nearest taxi stand after dropping off a passenger and (2)

whether to join the queue at the nearest taxi stand once they have reached

there. For the purpose of this work, we do not consider movements to and

fro taxi stands, but rather focus on link and zone-based movements.

5.2.3 Multi-Agent Simulation in Transportation

Multi-agent simulations have been shown to be useful in the domain of

transportation. [5] covers the usage of multi-agent simulations done by

various works in the area of traffic management and traffic control. It is

also used in general vehicular simulations such as [60], which is used for

modeling the dynamics of vehicles and their surrounding vehicles.

Agent-based modeling and simulation (ABMS) techniques are also used

extensively in modeling the movement of taxis [36] [35] [10] [50]. A major

benefit of this is that agent-based models (ABM) serves as an economical

approach for evaluating intervention or coordination approaches, without

having to implement them on the ground. In our case, we utilize the

simulation model for evaluation of a Dynamic Guidance System (DGS).

This is done in preparation of a upcoming field trial, where we use the

simulation model as a test-bed of the effectiveness of such as system in

improving the supply/demand imbalances at zones at various times of the

day.

An existing vehicular simulation model would be SUMO (Simulation

of Urban MObility) by [6] [41]. While SUMO does include additional

features such as traffic lights and even pedestrians [6], this do not fall

within our scope of investigation of the effectiveness of a two-tiered decision

model. Additionally, as mentioned by the authors, SUMO requires a

explicit definition of a vehicle’s route, i.e., the ”complete list of connected

edges between a vehicle’s start and destination. This means that the

movement is essentially of a deterministic, one-tiered (link-level) nature,
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which differs from ours, which is a stochastic, two-tiered level decision

model, allowing us to test the effectiveness of a two-tiered versus single tier

decision model.

Another example of vehicular simulation model would be [52] [51]. In

this work by [52] [51], the focus is more on modeling of movement of drivers

to-and-fro taxi ranks (also known as taxi stand or designated spots where

taxis wait for passengers). This differs from our work, where we focus on

movement along links and zones, guided via the two-tiered decision model.

5.3 TaxiSim 2.0: A Data-Driven Multi-Agent

Simulation Platform

In this section, we first discuss various features in TaxiSim 2.0 that are

relevant to the virtual experiments that we are conducting. TaxiSim 2.0

(builds on existing [17]) is utiliyed as an evaluation testbed on the effectiveness

of a two-tiered decision model for representing the movement decision of

taxi drivers (sections 5.4 and 5.5). For additional details on the TaxiSim

and its usage, refer to [17].

TaxiSim 2.0 is developed in Java 1.7, along with customized Java extensions.

The road network data is based on OpenStreetMaps [61], with the movement

of taxis specified by the two-tiered decision model (discussed further in

section 5.4). Figure 5.1 shows the interface of TaxiSim 2.0 during the

course of simulation. Several aspects of the virtual experimental setup and

TaxiSim 2.0 components are as discussed in subsequent subsections.

Models in transportation can generally be classified as microscopic,

macroscopic and mesoscopic models. Microscopic models look into agent or

individual-level details, such as dynamics of queues and vehicles overtaking.

Macroscopic models, on the other hand, looks into traffic and vehicular

movements at an aggregated level, example of which would be equilibrium
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Figure 5.1: Interface of TaxiSim 2.0.

network flows [18]. TaxiSim 2.0 is designed as a mesoscopic simulation

model, in that it differs from other microscopic and macroscopic models.

For example, TaxiSim 2.0 includes queues (e.g., at taxi stands), which are

characteristics of a microscopic model, but the queues are not at traffic

junctions or for purposes of traffic flow (e.g., vehicles at traffic lanes and

overtaking). This substitutes some level of granularity for performance.

5.3.1 Simulation Agents: Taxis

In this subsection, we discuss various attributes and behaviors pertaining to

taxi agents in the TaxiSim 2.0 simulation model, ranging from initialization

to operation mode to roaming behavior.

5.3.1.1 Supply Generation

For initialization of taxis (supply generation), we could either (1) initialize

all taxis at the start of simulation or (2) initialize the taxis in batches (i.e.,

various times of the day), reflecting the work shifts of drivers. In our case,

we do not have explicit information on shifts of drivers, as only taxi ID
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(and not driver ID) is available in the data provided by the operators. A

proxy for this would be a change in status to ”Change Shift”, although this

might not be adopted by all drivers, causing the data to be incomplete.

Considering the set of data available, we decided to take up the first

option, where we adopted a data-driven approach for initializing all taxis

at the start of simulation. The initialization of taxis are based on actual

distribution across different zones throughout the island at the start of

day. While this is slightly different from actual on-the-ground operations

of drivers, we found that the number of taxis that were initialized (24,000)

matches the total number of ”active taxis” (i.e., non-stationary taxis)

throughout the day.

This is illustrated in figure 5.2, where we generated the number of

”active taxis” for the month of November 2016 as follows. For each hour,

we retrieved the total number of unique taxi IDs with at least one data

point with an ”active status” (i.e., not offline). From the results generated

in figure 5.2, we can observe that the number of active taxis (i.e., active

supply) per hour is approximately around 24,000, which matches the number

of simulated taxis in our virtual experiments.
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Figure 5.2: Number of active supply and demand by hour of day (Month:
November 2016).
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5.3.1.2 Mode of Operation

We currently assume two modes of operation (”hired” and ”free”) for the

taxis in TaxiSim 2.0. The behavior of drivers under these two modes are as

discussed subsequently. The overview of the movement model is as shown

in figure 5.3. In the hired mode, the taxi will make its way from the origin

to destination of a trip based on shortest path [30]. In actual situations,

passengers would usually make route choices based on shortest path or

lowest fare. However, given that we do not have fare information associated

with the logs, taking shortest path from origin to destination would be

a reasonable assumption. The movement of taxis in the roaming state

(”free” status) is then defined according to the two-tiered decision model

that is defined earlier. In the case of the single-tiered decision model, taxis

will move according to only link-level decision model (discussed further in

section 5.4).

Figure 5.3: Sequence of Decision in Roaming Mode.

5.3.1.3 Roaming Behavior

TaxiSim 2.0 currently allows for three modes of roaming behaviors: (1)

1-tier or link-level (2) 2-tier or zone+link level and (3) replay of historical
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movements. The single and two-tiered roaming behavior will be further

elaborated in section 5.4. For the purpose of this work, we focus on the use

of roaming behaviors (1) and (2) only.

5.3.2 Simulation Agents: Passengers

In this subsection, we discuss various attributes and behaviors pertaining

to passenger agents in the TaxiSim 2.0 simulation model.

5.3.2.1 Demand Generation

For demand generation, we adopt a data-driven approach, where we utilize

a Poisson model for initialization of passengers. First, we divide the trips

data by their origin zone z (i.e., zone that pickup/booking occured). We

then derive for each zone z and discrete time interval t an average number

of pickups that occured, defined as λz,t. The λz,t obtained is then input

to the poisson demand generation model. Formally, the probability of k

demand (i.e., passenger agents) being generated in a zone z at a discrete

time interval t is defined as:

P t
k,z = e−λz,t

(λz,t)
k

k!
, ∀z ∈ Z

A caveat here will be that using the trips information only gives us the

true positives (passengers that “appeared” at zone z and boarded a taxi),

but not the false positives (passengers that “appeared” at zone z, but did

not manage to board a taxi), as this information is not available in our

data.

For destination of every demand or passenger, we also adopt a data-

driven approach, where the destination is generated in a stochastic mannner

following that of actual trip Origin-Destination distributions. Note that
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initialization of a passenger may or may not equate to an actual trip (i.e.,

fulfilled trip), depending on whether there’s any available taxis nearby.

5.3.2.2 Demand Type

Taxi jobs in the simulator are divided into two types: booking and street

pickup. For street pickups, taxis will pickup passengers that are on the same

road link, similar to that on-the-ground. For booking jobs, a passenger will

make a booking, and the job information will be disseminated to taxis in

”free” mode that are within a search radius (discussed subsequently) from

the passenger’s location. We adopt a data-driven approach here as well,

where the poisson demand generator (discussed previously) is distinct for

both types of demand (i.e., each demand type has their own λz,t value).

5.3.2.3 Waiting Behavior

TaxiSim 2.0 incorporates a waiting behavior into the demand, which serves

as a job expiry period. Therefore, after passengers are initialized, they will

wait at the point of initialization for a certain amount of time, after which

they will be removed from the simulation. This will constitute towards a

miss scenario, or an unfulfilled service request. This behavior is similar to

that on-the-ground, where passengers do not wait indefinitely for a taxi

to arrive. As mentioned previously, as we do not have information on

unfulfilled demand, we assign a value of 15 minutes for the waiting time

threshold, which is a reasonable assumption.

5.3.3 Matching of Supply to Demand

In this subsection, we discuss the matching mechanism of supply to demand

within the TaxiSim 2.0 simulation model. This will be discussed subsequently.
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5.3.3.1 Demand Type: Booking

For booking jobs, a passenger will make a booking, and the job information

will be disseminated to taxis in ”free” mode that are within a search radius

from the passengers location. To improve the performance of the simulation

model, we currently employ a grid-based distance measure (where each grid

is 500 by 500 meters), instead of a radius-based distance measure. The

booking process is as illustrated in figure 5.4. For every booking that is

initialized, the passenger will reach out to cabs in search zones 1, 2, and

followed by 3, depending on (1) whether there’s taxis in ”free” mode in the

search zone and (2) whether the booking job was accepted (probabilistic

acceptance by drivers).

Figure 5.4: Illustration of Radius Concept for Booking. Each grid is 500
meters by 500 meters.

5.3.3.2 Demand Type: Street Pickup

For street pickup demand, it follows a similar grid-based matching mechanism,

but with only a single grid (unlike the three search zones for bookings

illustrated in figure 5.4), and a smaller granularity of 200 meters by 200

meters. This is to simulate a similar mechanism on-the-ground, where

drivers can only observe potential passengers that are within their line of
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vision (e.g., exists on the same link or adjacent link). Similar to the booking

demand, the taxi has to be in ”free” status before a passenger pickup.

5.3.3.3 Probabilistic Acceptance

On top of the matching via the search radius (for bookings) and link-level

matching (for street pickups), TaxiSim 2.0 also incorporates probabilistic

acceptance of (1) taxis accepting booking calls and (2) passengers cancelling

booking jobs after driver accepts the job. As actual numbers are not

available in our existing dataset, we assign a value of 5% for the supply

(taxis) and demand (passengers) cancellation probability/rate. This percentage

is used in both the virtual experiment and case studies, with results presented

in section 5.5 and 5.6.

5.4 Methodology: Designing the Two-Tiered

Decision Model

The two-tiered decision model proposed for taxi drivers is as illustrated

in Figure 5.5. A driver will begin roaming by traveling at link-to-link

(operational) level. With increasing time without a success passenger

pickup, the driver will then make a decision on whether to make a ”zonal

jump” (i.e., zonal transition that could be to non-adjacent zones).

Subsequently, the driver will then need to make a strategic (zone) level

decision, where it decides on the zone to travel to based on factors such as

distance and historical demand (at destination zone vis-a-vis the driver’s

current zone). After the driver has moved to the destination zone, it will

then revert back to the operational level decision. Further details of the

decision model will be discussed in the subsequent sub-sections.
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Figure 5.5: Two-Tiered Decision Model for Taxi Drivers

5.4.1 Strategic: Zone Level Movement

The first level that we’ll look at is the strategic level (zonal) movement.

That is, an individual taxi driver will make a decision to go from an origin to

a destination zone based on several factors, such as distance and historical

demand at the destination zone. Figure 5.6 supports the motivation for the

construction of this level of strategy. In figure 5.6, we illustrated the (zonal)

distribution of demand for taxis at two time periods on a typical weekday

in September 2015. The demand is normalized against total demand for

that hour, and highlighted on a red-yellow-green scale, indicating high-

medium-low demand. From figure 5.6, we can observe that the demand

distribution of taxis at different zones varies at times of the day (7am and

7pm). Therefore, it is intuitive that taxi drivers will choose to go to different

zones at different times of the day, depending on the demand. Note that

demand here is defined as number of trips originating from a zone, which

is a subset of actual demand at a zone, which also includes the unfulfilled

demand, which cannot be observed in our data.

After a driver has decided to make a zonal transition (discussed in the

next subsection), he or she would then need to make a decision regarding

which zone to move to, with the set of zone choices being discrete and

finite - this decision is best modeled using a discrete choice model. In this

case, the driver makes a ”zonal jump”, with the zonal selection decision
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Figure 5.6: Distribution of demand (trips starting) at times of day: (top)
7am and (bottom) 7pm. Demand is normalized against total demand for
the hour.

being dependent on the utility that driver gets by going from a zone u to

a zone v is a combination of the distance (defined as du,v) and the demand

at destination zone vis-a-vis the origin zone.

There are a number of potential functions that we can use in converting

utility values to the probability distribution over choices. In our study, we

adopt the logit function in modeling discrete choices made by taxi drivers

in selection of zones. The logit choice probability model is one of the most

widely used discrete choice model, and chosen due to the fact that the

formula for the logit choice probability model takes a closed form and is

readily interpretable [71]. As mentioned earlier, the second component of
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the utility definition is a comparison of the demand at destination and

origin zone.

We first define the demand at zone z (part of zone set Z) at time interval

t to be Dt
z. In order to better cater for differences in total demand at

various times of the day (peak and non-peak), we incorporated a normalized

demand, and define it as:

δtz =
Dt
z∑

w∈Z D
t
w

,∀z ∈ Z, t ∈ T.

Thereafter, we define the normalized demand attraction level, αtu,v.

That is, how attractive zone v is to a driver who is at zone u at time

t. Formally, this is defined as:

αtu,v =
(δtv − δtu)
(δtv + δtu)

,∀u, v ∈ Z, t ∈ T.

The utility obtained from travelling from zone u to v at time interval t

is then defined as:

U t
u,v = β0 + β1du,v + β2α

t
u,v,∀u, v ∈ Z, t ∈ T.

Given the set of zones Z, the probability of migrating from zone u to v

at time interval t is then defined as:

P t
u,v =

eU
t
u,v∑

z∈Z e
Ut
u,z
, ∀u, v ∈ Z, t ∈ T.

To provide support for the logit model that is proposed for the strategic-

level decision, we conducted a simple logit regression for the zonal movement
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model. For the regression, we selected the zonal transition records for a

typical weekday. Results of the logistic regression is as shown in table 5.1.

From table 5.1, we can see that the regression results provide support for

our proposed model, as shown by the significance level and coefficients of

the variables.

Table 5.1: Logistic regression result for zonal decision model, with the
probability of moving from zone u to v at discrete time interval t as
independent variable, and the distance between zone u and v and demand
attraction as dependent variable.

Estimate Std. Error z value

(Intercept) -2.862 *** 0.004319 -662.6
distance -0.16 *** 5.234E-07 -312.5
demandAttraction 0.5847 *** 0.004909 119.1

Observations 185,984

Significance Level: * p <0.05; ** p <0.01; *** p <0.001

As mentioned previously, one of the components of the two-tiered decision

model is the concept of a zonal jump, where taxi agents (with increasing

dwell time at a zone) would choose to make a zonal transition. To the best

of our knowledge, existing works which models taxi driver movements (e.g.,

[79]) only includes adjacent zones into the zone transition model.

While the ”non-adjacent” zonal transition is one of the novelty of our

approach, a valid question here would be whether this makes an impact to

the decision model for taxi drivers, particularly to the zonal level decision.

The support for this zone movement is as illustrated in figure 5.7, which

is the CDF distribution of zone transition distance (obtained via pre-

processing described in section 5.9.1). From figure 5.7, we can observe

that there’s a significant amount of zone transitions that spans across a

long distance (from origin to destination zone). To further put this into

perspective, only 46.1% of all zone transitions were to adjacent zones. This

supports the importance of incorporating a zonal transition that spans
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across non-adjacent zones.
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Figure 5.7: CDF Distribution of Zone Transition Distance (in km).

5.4.2 Operational-to-Strategic: Dwell Time Driven

In designing the zone-level movement, we would expect the decision to

make a zone transition to be correlated with dwell time. That is, the

longer a taxi spends searching for passenger in a zone, the more likely we

would expect the taxi driver to make a ”zonal jump” (i.e., zonal transition).

Figure 5.8 shows the cumulative distribution function for dwell time before

taxi drivers make a zonal transition.

From figure 5.8, we can observe that the zonal transition decision function

takes on a logarithmic shape, whereby even at a dwell time of 20 minutes,

we have approximately 80% of taxi drivers who have made a zonal transition.

Therefore, we model the decision as a logarithmic function, which we define

formally as:

P (transitZone) = β0 + β1 log(dwellT ime)

Table 5.2 shows the OLS regression result for the zonal transition decision.

From the results, we can observe that the model represents the decision to
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Table 5.2: Individual OLS regression result for the zonal transit decision
model, with the probability of making a zonal jump transition as
independent variable, and the log of dwell time spent at zone as dependent
variable.

Estimate Std. Error t value

(Intercept) -0.21992 *** 0.03884 -5.663
log(dwellTime) 0.32016 *** 0.01169 27.393

Residual Std. Error 0.06554 Observations 185,984
Multiple R2 0.9306 Adjusted R2 0.9293
F-statistic 750.4 p-value <2.2e-16

Significance Level: * p <0.05; ** p <0.01; *** p <0.001

make a zonal jump very well, as observed from the significance values and

R2 values. An additional illustration of the fitted curve is as shown in figure

5.8, where the dotted line represents the cumulative distribution function

(cdf), and the fitted curve is represented by the blue line. From figure 5.8,

we can observe that the fitted log function (in blue) represents the actual

zonal transition decision (in black) very well.
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Figure 5.8: Cumulative Distribution Function: Dwell Time.

5.4.3 Operational: Link Level Movement

The operational decision is defined as link-to-link movement decisions.

This link-to-link decision is represented by P t
i,j, which is the probability
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of moving from a link i to j at time interval t. As mentioned in the

previous section, we derive link-level information by making use of the

Map Matching algorithm [57] that is based on GraphHopper [34]. The

algorithm essentially uses a Hidden Markov Model (HMM) representation

for the road segments and their transitions across time. The Viterbi-based

algorithm then computes the best path through the HMM latice.

From the link-level information derived (described in section 5.9.1), we

then obtain the flow F t
i,j, which is the number of drivers going from link

i to link j at a discrete time interval t. With the flow information, link

transition probability (denoted P t
i,j) is derived according to the formula

shown below. Since P t
i,j refers to transition probability,

∑
j∈L P

t
i,j = 1.

P t
i,j =

F t
i,j∑

k∈L F
t
i,k

,∀i, j ∈ L, t ∈ T.

5.4.4 Analysis: Two-Tiered Decision Model

In the previous subsections, we give a layer-by-layer perspective of the two-

tiered decision model that is proposed, from the zonal level movement, to

the link-to-zonal switch, and finally to the link level movement. This is

done via several regression analysis, where we demonstrated the soundness

of individual levels of movement decision.

To provide support for the two-tiered decision model though, we would

need to demonstrate the soundness of the two-tiered decision model in

its entirety. This is in spite of the fact that we do not have explicit data

regarding the zonal level decision of drivers (i.e., indication of when a driver

makes a conscious zonal movement decision) - which makes it impossible to

perform any form of statistical analysis on the ground truth data available.

To achieve this, we make use of TaxiSim 2.0 as an evaluation testbed

for comparing the performance of the two-tiered decision model as opposed
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to a traditional single-tiered decision model. The approach is as follows.

We first keep track of of zonal transitions P t
u,v and time spent in each zone

(i.e., dwell time) by performing the pre-processing as specified in 5.9.1.

Thereafter, we make use of the microscopic movement model (single or two-

tiered decision model) to generate the transition between zones (defined by

P̂ t
u,v and P̃ t

u,v for the single and two-tiered model respectively). Finally,

we compute the average of errors for the single tier (ÂSE) and two-tiered

(ÃSE) decision model.

Formally, the average of errors for the single-tier (ÂSE) and two-tier

(ÃSE) decision model are defined as:

ÂSE =

∑
u,v∈Z,t∈T |P t

u,v − P̂ t
u,v|

|Z| × |Z| × |T |

ÃSE =

∑
u,v∈Z,t∈T |P t

u,v − P̃ t
u,v|

|Z| × |Z| × |T |

Additionally, we introduce a weighted average of errors, which penalizes

the errors for high probability transitions. Formally, the weighted average

of errors for the single-tier (ŴASE) and two-tier (W̃ASE) decision model

are defined as:

ŴASE =

∑
u,v∈Z,t∈T |P t

u,v − P̂ t
u,v| × P t

u,v

|Z| × |Z| × |T |

W̃ASE =

∑
u,v∈Z,t∈T |P t

u,v − P̃ t
u,v| × P t

u,v

|Z| × |Z| × |T |

The results of the average of errors and weighted average of errors are
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as shown in table 5.3 and 5.4 respectively. From the table, we can observe

that the two-tiered model gives a better representation of the inferred on-

the-ground zonal transition, as represented by the lower average of errors,

and especially so for the weighted average of errors, which means that the

two-tier model is performing better for the zone transitions with higher

probabilities. This gives an initial confirmation of our intuition on the

use of a two-tiered model in modeling the behaviors of taxis in roaming

mode. To further demonstrate the performance of the two-tiered decision

model proposed, we introduce additional performance measures, which will

be subsequently discussed in section 5.5. We then introduce three case

studies in section 5.6, two on utilization of the model for evaluating a Driver

Guidance System (DGS), and an additional case study on investigating

the zonal jump that is proposed in the two-tiered decision model, which

differs from some of the existing literature. This will be elaborated in the

subsequent sections.

Table 5.3: Zone transition comparison using average of errors.

Single-Tier Model Two-Tier Model

Average of Errors 2.68% 2.58%
Standard Deviation 6.41% 5.59%

Table 5.4: Zone transition comparison using weighted average of errors.

Single-Tier Model Two-Tier Model

Weighted Average of Errors 28.37% 24.69%
Standard Deviation 145.73% 113.08%

5.5 Virtual Experiments: Results

As mentioned previously, in order to evaluate the performance of the two-

tiered decision model, we compare to a single-tiered decision model. To do

this, we run TaxiSim 2.0 under both decision models. In the single-tier
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Input Variables Description / Values

Number of Driver Agents 24,000
Detour Threshold 320 minutes

Dependent Variables Description / Values

Cumulative Trip Rt

Zone Visitation V t
z

Number of Replications 30

mode, movements of taxis in roaming mode will be guided by just the link-

level decision model. In the two-tier mode, movements of taxis in roaming

mode will be guided by link-level decisions first. When the zone-specific

dwell time threshold is reached (without a successful passenger pickup), a

”zonal jump” will be triggered, and the taxi will pick another zone based on

historical zone transitions. The aggregate level outputs (under both modes)

from TaxiSim 2.0 are then compared with actual ground truth data, which

is discussed subsequently.

5.5.1 Virtual Experiment Setup

TaxiSim 2.0 is run under two different movement models, a two-tiered

decision model and a single-tiered decision model. The single tiered model is

where the agents move about via the link-level transition model. We setup

the virtual experiments with 24,000 agents per replication, with a total of

30 replications per setup (single or two-tiered agents). Other aspects of the

model are as discussed subsequently.

5.5.2 Evaluation Method 1: Cumulative Trip

The first method of comparison is the cumulative trip curve of drivers.

From the predicted cumulative trip curve of drivers, we then compare

against that of the actual cumulative trip curve of drivers throughout a

day. To make the comparison, we make use of two metrics, namely the
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area between curves, as well as the maximum difference. We first define the

trip accumulation variable Rt, which is the accumulated trip for drivers at a

time interval t. Note that the trip accumulation is normalized against total

number of trips for the day. The ground truth trip accumulation variable

is then compared against that for the one-tier decision model (defined as

R̃t), and the two-tier decision model (defined as R̂t).

The cumulative distribution function (CDF) curve for both one and

two-tiered decision model is as shown in figure 5.9. The CDF of the

ground truth, single-tier and two-tier model are represented by red, blue,

and green lines respectively. From the figure, we can observe how closely

the two-tiered decision model (green) to that of the ground truth (red), as

opposed to that of the single-tiered decision model (blue). Additionally,

the maximum error for the two-tiered model is 2.48%, as opposed to a

maximum error of 6.22% for the single-tiered decision model. This shows

that the two-tiered decision model performs better in representing the trip

accumulation throughout the day.

5.5.3 Evaluation Method 2: Zone Visitation

The second output we are comparing is the zone visitation. Note that

zone visitation here refers to zone visitation by taxis in ”free” mode only.

We define zone visitation by notation V t
z , which is the number of vehicles

entering zone z at time interval t, and compare the difference between one-

tier decision model (defined as Ṽ t
z ) and two-tier decision model (defined

as V̂ t
z ) against that of the ground truth data. In this case, we assess the

performance of both decision models based on two criteria, the average of

errors, and the weighted average of errors.

71



CHAPTER 5. MICRO-LEVEL, FULLY OBSERVABLE: TRANSPORTATION DOMAIN

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time of day

cd
f

Ground Truth
Single−Tier
Two−Tier

Figure 5.9: CDF: Trip accumulation for ground truth (red), single-tiered
(blue) and two-tiered decision model (green).

5.5.3.1 Metric 1: Average of Errors

The average of errors measure the difference in zone visitation for the single

and two-tiered decision model against that of the ground truth. We use

the notation ÃE and ÂE to denote the average of errors for the single-tier

and two-tiered decision model respectively. Formally, the average of errors

are defined as:

ÃE =

∑
z,t |V t

z − Ṽ t
z |

|Z| × |T |

ÂE =

∑
z,t |V t

z − V̂ t
z |

|Z| × |T |

Table 5.5 shows the results of the average of errors. From the table, we

can observe that the two-tiered decision model performs better in representing

the zone visitation on the ground, as observed by the lower average of error
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and standard deviation.

Table 5.5: Zone visitation comparison using average of errors.

Single-Tier Model Two-Tier Model

Average of Errors 1.00% 0.65%
Standard Deviation 1.50% 0.64%

The results for the zonal visitation is also as illustrated in figures 5.10

and 5.11. Figures 5.10 and 5.11 represent the zone visitation for a particular

non-peak and peak hour respectively. Zones with higher visitation are

indicated with darker shades of gray, and vice versa. From the figures,

we can observe that the zone visitation from the two-tiered decision model

represents that of the ground truth better, at both peak and non-peak

hours of the day.

Figure 5.10: Zone visitation at non-peak hour: ground truth (left), single-
tier (middle) and two-tier model (right).

Figure 5.11: Zone visitation at peak hour: ground truth (left), single-tier
(middle) and two-tier model (right).
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5.5.3.2 Metric 2: Weighted Average of Errors

The weighted average of errors is a weighted variant of the average of

errors, where we multiply the absolute error with the actual (ground truth)

zone visitation, V t
z . We use the notation W̃AE and ŴAE to denote the

weighted average of errors for the single-tier and two-tiered decision model

respectively.

Formally, the weighted average of errors are defined as:

W̃AE =

∑
z,t |V t

z − Ṽ t
z | × V t

z

|Z| × |T |

ŴAE =

∑
z,t |V t

z − V̂ t
z | × V t

z

|Z| × |T |

Table 5.6 shows the results of the weighted average of errors. From the

table, we can observe that the two-tiered decision model performs better

in representing the zone visitation on the ground. This further confirms

the performance of the two-tiered model in not only representing the zone

visitation well, but especially for the zones with high visitation rates.

Table 5.6: Zone visitation comparison using weighted average of errors.

Single-Tier Model Two-Tier Model

Weighted Average of Errors 1.41% 0.95%
Standard Deviation 2.87% 1.71%

5.6 Case Studies: Evaluation of DGS System

In the previous section, we have presented our work on a two-tiered decision

model for improving the modeling of taxi drivers and their movement

decisions. In the case study section, we present three case studies. The first

two case studies will focus on utilization of TaxiSim 2.0 as an evaluation

testbed on the impact of a Driver Guidance System (DGS) for improving

74



CHAPTER 5. MICRO-LEVEL, FULLY OBSERVABLE: TRANSPORTATION DOMAIN

the performance of taxi drivers. TaxiSim 2.0 was used recently [38] to

evaluate the effectiveness of the DGS system developed, but it was for a

single day demand scenario (i.e., November 2, 2016) under various penetration

ratios. In our case, we perform a comprehensive set of virtual experiments

to further investigate the effectiveness of DGS under different scenarios,

over an extended period of time (i.e., single month used for training and

testing each). In particular, we make use of TaxiSim 2.0 to (1) evaluate

the effectiveness of the DGS system at various times of the day (e.g., peak

and non-peak), and (2) conduct sensitivity analysis on the effectiveness of

the DGS system at different penetration ratio. More details of the DGS

system and virtual experimental setup will be as discussed subsequently.

5.6.1 Driver Guidance System

The driver guidance system is a centralized decision support system. The

model provides recommendation to taxi drivers to move to a potential

location in order to fetch a demand. The recommendation model utilizes

the information of the current supply of taxis in each region (the size of a

region is 1km x 1 km based on the cluster of demand) gathered using the

real-time stream of taxi-logs along with the estimated passenger demand

for a fixed time horizon. The recommendation model uses a multi step

stochastic optimization formulation based on the models proposed in [47]

[48]. It maximizes the total expected revenue obtained by taxi drivers

(after deducting the movement cost) over a set of demand samples subject

to following constraints:

• At any timestep, for any region, the number of taxis going out of a

region is equal to number of taxis available in the region.

• At any timestep, for any demand sample, between any pair of regions

i and j, the number of requests served is less than the number of
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requests available between regions i and j.

Formally, the objective function for the optimization model is defined

as:

max(−
∑
i∈Z

∑
j′∈Z

Cost1ij′·)

In the current system, we only consider street bookings where for any

demand sample a trip is assigned to taxi if and only if it is present in

the same region as the pickup location. But the optimization formulation

can also handle booking requests, where taxis can be assigned to customer

requests from nearby regions.

The optimization formulation groups the taxi drivers in a region and

provides recommendation in the form of number of taxi drivers which

should move from region i to region j for the current timestep. The

multistep optimization model is run at every timestep in a rolling horizon

fashion in order to provide the real-time recommendations.

If only a subset of taxi drivers are guided using the recommendation

model: The recommendation model formulation optimizes the total expected

revenue of the guided taxis. If all the taxis in the system are not guided,

the recommendation model first simulates the behaviour of unguided taxis

by using the historical probabilities for transitioning from one region to

another. Based on the movement of unguided taxis, they are assigned

trips from the demand samples with a fixed probability (say 0.5). The

demand samples are then modified to exclude the trips which are assigned

to unguided taxis. The optimization formulation is executed for the guided

taxis using the modified demand samples.
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5.6.1.1 Simulation and Virtual Experimental Setup

To prepare for the evaluation, we introduce a new mode of taxi navigation:

the dynamic route guidance, which is linked to the simulator to compute

itineraries for routed visitor agents. We vary the fraction of agents having

this technology (defined as penetration ratio), and assume that all other

agents would follow the default two-tiered decision model described earlier.

Additional, we have various time periods where DGS movement takes over

from the normal roaming mode (i.e., two-tiered decision model), which

allows us to test the effectiveness of DGS application at various times of

the day. This will be further discussed in subsequent subsections.

5.6.2 Use Case 1: Performance at various times of

day

For the first use case, we look into the performance of the driver guidance

system at various times of the day/week, which includes (1) weekday peak,

(2) weekday non-peak, and (3) weekends. For each scenario, we include

various multiple time period for virtual experimental purposes.

Figure 5.6 explains the motivation for including multiple peak/non-peak

period for virtual experimental purposes. From figure 5.6, we can observe

distinct differences in the Origin-Destination travel patterns of passengers

at different peak time periods of the day. It would therefore be important

for us to not only evaluate the performance of DGS at various scenarios

(peak/non-peak), but also at different time periods with varying Origin-

Destination travel patterns.

We define the following time periods for evaluation of the DGS system

under various demand scenarios, which is illustrated in 5.12. Figure 5.12

shows the demand on a typical weekday, with the peak and non-peak period

indicated in red and orange respectively. The time periods are: M-Peak
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(morning peak: 6am to 9am), A-Peak (afternoon peak: 12pm to 3pm), E-

Peak (evening peak: 6pm to 9pm), M-Non-Peak (morning non-peak: 9am

to 12pm), and A-Non-Peak (afternoon non-peak: 3pm to 6pm). Multiple

peak/non-peak periods are added due to difference in demand ”hotspots”

at various times of the day. Additionally, we compared the effectiveness of

using the application on weekdays and weekends for an entire day (defined

as 6am to 9pm). To ensure fairness, we have an equal duration (3 hours

per time period) for comparison purposes.
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Figure 5.12: Peak (red) and non-peak (orange) periods on a typical weekday
in November 2016.

5.6.2.1 Virtual Experiment Evaluation

We define a couple of KPIs (Key Performance Indices) for evaluating the

performance of the DGS application at various times of the day. Firstly,

we have fulfilment rate, which is essentially the proportions of trips that

were fulfiled within an virtual experiment time period (e.g., 9am to 12pm).

Formally, this is defined as:

fulfilmentRate =
fulfilledTrips

fulfilledTrips+ unFulfilledTrips
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Thereafter, we define another KPI: zonal imbalance. The rationale for

this is to test if the DGS application does indeed resolve imbalances in

supply and demand during the DGS guidance period. Formally, this is

defined as:

zonalImbalance =
∑
t∈T

∑
z∈Z

|demandtz − supplytz|

Additionally, we included another performance indicator for zonal starvation,

which is essentially measuring zonal imbalance, but only if the demand is

greater than supply. This serves as another perspective on the performance

of the DGS system. Formally, it is defined as:

starvationtz =


(demandtz − supplytz) if demandtz ≥ supplytz

0 otherwise

zonalStarvation =
∑
t∈T

∑
z∈Z

starvationtz

5.6.2.2 Virtual Experiment Results

Results of the virtual experiments is as shown in table 5.7.

Table 5.7: Performance of DGS application at various times of the day.

Time Interval 6am-9am 9am-12pm 12pm-3pm 3pm-6pm 6pm-9pm

Fulfilment Rate 91.8% 92.8% 90.9% 90.5% 89.5%
Zonal Imbalance 208.5 171.3 185.3 178.2 189.59
Zonal Starvation 34 51 75 44.5 58.1
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5.6.3 Use Case 2: Performance under various penetration

ratio

To evaluate the performance of the guided vehicles under different penetration

ratios, we utilized the following KPIs for evaluation: (1) fulfillment rate,

(2) inter-job time, and (3) trips per taxi. Details of the virtual experiment

results will be discussed subsequently.

5.6.3.1 KPI 1: Fulfillment Rate

The first key performance index is the fulfilment rate. Similar to the first

use case, it is formally defined as:

fulfilmentRate =
fulfilledTrips

fulfilledTrips+ unFulfilledTrips

Figure 5.13 shows the fulfillment rate under different penetration ratios

of DGS taxis. From the figure, we can observe that the fulfillment rate

increases from 90.01% to 93.7% at 80% DGS, after which there’s a slight

drop thereafter (93.25% at 100% DGS).
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Figure 5.13: KPI: Fulfillment Rate
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5.6.3.2 KPI 2: Inter-Job Time and Percentage

The next key performance index that we adopt is the inter-job time/percentage.

Given that time spent roaming do not generate revenue for the driver

agents, we would want to reduce this roaming time (defined as inter-job

time) across all drivers. Formally, the Inter-Job Percentage is defined as:

interJobPercentage =

(
freeModeT ime

freeModeT ime+ hiredModeT ime
× 100

)
%

Figure 5.14 provides an illustration for the computation of inter-job

time and percentage for a single driver, with active or working hours from

t0 to t5. The time period where the driver spends time in job mode (i.e.,

status = ”hired”) is indicated by the shaded time periods. The Inter-Job

Time (IJT) would therefore be the periods of time where driver spends

searching for passengers (indicated by “Free Mode”), while the Inter-Job

Percentage (IJP) normalizes this against the total active time period.

Figure 5.14: KPI: Illustration of Inter Job Time/Percentage Computation

Figure 5.15 and 5.16 shows the average inter-job time (under different

penetration ratios of DGS taxis). From the figure, we can observe that the

performance (defined as least inter-job time) for the DGS taxis is the best

at 5% DGS (i.e., penetration ratio), following which the performance drops

subsequently.
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Figure 5.15: KPI: Inter-Job Time for Street Hail.
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Figure 5.16: KPI: Inter-Job Time for Bookings.

5.6.3.3 KPI 3: Trips per Taxi

Last but not least, we use the average number of trips per taxi as the third

key performance index, which is defined as:

averageTrips =
numberOfTrips

numberOfTaxis

Figure 5.17 shows the trips per taxi under different penetration ratios

of DGS taxis. Similar to the figures for inter-job time, we can observe that

the performance (defined as a higher number of trips) is the best at 5%,
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following which it decreases with an increase in penetration ratio. We can

observe that the trips per taxi for DGS vehicles is higher than non-DGS

vehicles, which applies under different penetration ratios (from 5% to 90%

penetration ratio). Additionally, we can observe that the average trips per

taxi for the entire population (i.e., DGS and non-DGS taxis) increases till

about 60% (illustrated by red line in figure 5.17), after which it decreases

slightly.
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Figure 5.17: KPI: Trips per Taxi

5.7 Future Directions

This work is just the beginning of our research in the application of hierarchical

decision models in building realistic multi-agent simulation systems in the

transportation domain. In this section, we discuss some future directions

that we could potentially look into.

Firstly, in this work, we look into hierarchical decision models in terms

of road network levels, particularly in terms of link and zone level. For

future work, we look into hierarchies in terms of various levels of thinking

and reasoning sophistication. Example of such a model would be the

Cognitive Hierarchy Model by [14]. Given that we do not expect drivers

to think at the same level of sophistication, it would be interesting to
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test out such a model with the existing data and model available. Such

a model is intuitive and can be observed in the actual data, where there

is differing revenues earned by drivers who worked for a same amount of

time. Successful implementation of such a model could further increase the

realism of the existing model.

Additionally, another future direction could be application of the two-

tiered decision model in other sub-domains of transportation, where individual

agents seek to maximize their gained utility.

5.8 Conclusion

A lot of effort has been directed to research in the area of transportation.

Similarly, a lot of work has been done in building agent-based simulation

models that seek to mimic the behavior of agents in transportation. However,

many of these existing models often make over-simplifying assumptions, or

are mainly used for visualization purposes, with lesser emphasis on the

calibration efforts.

With increasing research efforts in AI being applied in the area of

transportation, it becomes imperative to create realistic simulations that

serve as an economical approach for evaluating agent strategies, in order

to solve problems in transportation that includes congestion and inefficient

utilization of resources. To this end, we introduce a two-tiered decision

model that mimics the decision-making process by taxi drivers that seek

to maximize individual utilities (i.e., revenue). On top of that, we utilized

TaxiSim 2.0 as a simulation platform, and compared the performance of a

two-tiered decision model against that of a single-tiered decision model.

Our initial results show great promises, supporting the usage of tiered

decision models in the transportation domain.
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5.9 Appendix

5.9.1 Data and Pre-Processing

In this section, we describe the data utilized for the model, as well as some

data pre-processing that was done to obtain the intermediate variables that

is required for the two-tiered decision model and analysis.

5.9.1.1 Data Description

To illustrate the two-tiered decision model, we worked with operational data

from all taxi operators in Singapore. Every taxi in Singapore is equipped

with a Mobile Data Terminal (MDT) that is designed to provide basic GPS

functionalities and transmit current vehicle positions every 30 to 60 seconds

to the central server, along with other information such as taxi status. For

the purpose of this study, we worked with time period of November 2016

(26,026 unique taxi ids) and December 2016 (26,072 unique taxi ids) for

training and testing respectively.

Some fields in the taxi logs data obtained are as shown in table 5.8.

As observed in table 5.8, the raw data only contains basic information

such as latitude, longitude and status, which is not sufficient for our link

and zonal transition model (discussed in section 5.4 subsequently). We

therefore proceed to infer links/zones/trips information, as discussed in

the subsequent subsections.

Table 5.8: Description of Fields in Logs Data.

Variable Description

timestamp Date and time of log (sent every 30 to 60 seconds)
taxi-id Anonymized ID of taxi vehicle
longitude Longitude of vehicle at the time of log
latitude Latitude of vehicle at the time of log
speed Speed of vehicle at the time of log
taxi-status Status of taxi: Free, Hired, Busy, On Call or Offline
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5.9.1.2 Pre-Processing: Obtaining Link and Junction Information

As mentioned previously, link/junction information is missing in the raw

GPS taxi logs that is obtained. A simple approach here would be to map

each lat/lon data point to the nearest link/junction. However, such an

approach suffers from inaccuracies of GPS data, which occurs for various

reasons e.g., when going through a tunnel. To better infer the link and

junction information, we made use of the Map Matching algorithm [57]

that is based on GraphHopper [34], which maps the latitude and longitude

information of every taxi log to a series of links (defined as a path). The

algorithm essentially uses a Hidden Markov Model (HMM) representation

for the road segments and their transitions across time. The Viterbi-based

algorithm then computes the best path through the HMM latice. The final

output will then be a most probable path of links traversed by a driver.

5.9.1.3 Pre-Processing: Obtaining Zonal Information

With the link information derived, it then becomes easier to obtain zonal

information. Zonal definition is obtained from URA’s website [75], where

postal sectors refer to the first one or two digits of postal code of an area

(which can be five or six digits long). The zone defintion is as illustrated

in figure 5.18. To derive the zonal information, we get the polygon for

every zone in Singapore, and links (derived previously) that fall within the

polygon are determined as such.

5.9.1.4 Pre-Processing: Obtaining Trips Information

As trip information is not available in the raw data, we would have to infer

trip-level information by tracking change in status. The trips information

derived would then be used for purposes such as determining zonal demand.

That is, when the status of a taxi changes from ”free” or ”busy” to hired,

this is considered as the start of a trip. Similarly, when the status changes
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Figure 5.18: Zone Definition of Singapore. Boundaries are indicated by
white lines.

from ”hired” to ”free”, this indicates the end of a trip. After the initial

trips are generated, we remove anomalies by additional filters: (1) Trips

with only one data point (e.g., system error caused temporary change in

status) and (2) Trips where the taxi did not move at all. Further details of

the trips information inference is as summarized in table 5.9.

Table 5.9: Summary of Trips Inferred from Change in Status

Status Change Trip Type Inferred

Free ->Hired ->Free Street Hail
Free ->On Call ->Hired ->Free Normal Booking
Free ->Busy ->Hired ->Free Third Party Booking

From the inference of trips via change in status, we then proceed to

derive other information such as the trip duration, distance travelled, etc.

A thing to note here is that as the trips-specific information are inferred

(instead of obtaining directly from the operators), we do not have trip

information such as revenue (collected from a trip). Therefore, in the

designing of the zonal level movement (discussed further in section 5.4),

we only make use of number of trips (i.e., demand) as a proxy for ”zonal

attractiveness”. As an example, some trip-level information that are inferred
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is as shown in table 5.10.

Table 5.10: Description of Fields in Trips Data.

Variable Description

taxi-id Anonymized ID of taxi vehicle
start-time Start time of the trip
end-time End time of the trip
duration Duration of the trip
start-latitude Latitude of vehicle at the start of trip
start-longitude Longitude of vehicle at the start of trip
end-latitude Latitude of vehicle at the end of trip
end-longitude Longitude of vehicle at the end of trip
distance Distance travelled
start-zone Zone that the driver started the trip
end-zone Zone that the driver ended the trip

5.9.1.5 Pre-Processing: Obtaining Zonal Dwell Time and Transition

Subsequently discussed in section 5.4, one of the key concepts of the two-

tiered decision model is the zonal jump, where a taxi would decide to travel

to a zone (could be adjacent or not) based on a discrete choice zonal-level

decision model. As the current set of pre-processed data only contains

movement of agents moving through links/zones, we do not have actual

data on agents making a conscious decision to make a ”zonal jump”.

More specifically, we are not interested in the zonal movements where

(1) drivers move into another zone due to roaming at link-to-link level and

(2) driver is ”passing by” other zones (defined as transient zones) when

getting to their destination zone in search of passengers. This raises the

problem of how we can better understand the zonal movement intention

in a coherent manner, i.e., correctly identify the zone origin-destination

decisions made by taxi drivers.

One way to do this is to determine the dwell time spent in zones. That

is, the longer the time spent in a zone, the more likely that the zone was

the drivers destination zone. Therefore, we introduce a zone-specific dwell

time threshold, which filters out zonal transitions where a taxi does not
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spend a minimum period of dwell time at a zone. With the zone-specific

dwell time threshold introduced, it then allows us to effectively filter out

the zonal transitions that are transient, i.e., the zones that a taxi would

”pass by” when getting from its origin to destination zone.

Figure 5.19: Obtaining Zonal Transition with Zone-Specific Dwell-Time
Threshold.

An illustration of the zone-specific dwell time threshold filtering is as

shown in figure 5.19. From the individual logs of taxis, we derive the zone

that a taxi spends most of its time in for every 5 minutes interval, as well

as the dwell time. For zone dwell time records that are less than the zone-

specific dwell time threshold value (indicated in gray), the zone transition

will be taken as an invalid or transient zone movement. An example would

be the transition from period t2 to t4, which we assume to be less than

the threshold for now. Therefore, this renders the transitions in gray as

invalid. The final record will therefore be a transition from zone 1 to zone

4, with a dwell time of t2 − t0 at zone 1 before transiting.

Below are the steps followed to derive the zone-specific dwell-time threshold :

• We first filter by taxis in ”Hired” mode.

• We then computed the time taken for taxis in hired mode to ”cross”

the zones, and generate a cumulative distribution for them. Example

of the cumulative distribution function for a single zone for a peak

hour is as illustrated in figure 5.20.

• From the cumulative distribution generated, we then took the 95th

percentile value as the zone-specific dwell-time threshold. What this
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Figure 5.20: Zone-Specific Threshold Time Illustration.

means is that at this dwell time value, 95% of taxi would have crossed

or moved out of the zone. Using figure 5.20 as a reference, we could

observe that a significant number of taxis would have ”crossed” zones

even at 5 minutes.
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Chapter 6

Macro-level, Partially

Observable: Migration Domain

Overview

In this chapter, we look into development of high quality agent-based

simulation model in the macro-level, partially observable domain. This

is achieved through the use of a country-level agent-based dynamic network

model to examine shifts in population given network relations among countries,

which influences overall population change. Some of the networks considered

include: alliance networks, shared language networks, economic influence

networks, and proximity networks. Validation of model is done for migration

probabilities between countries, as well as for country populations and

distributions. The model developed provides a way to explore the interaction

between climate change and policy factors at a global scale.

6.1 Introduction

Human migration is an important research topic, with major economic

effects [59]. At the same time, the decision to migrate is also determined

by economic factors [63]. This intertwining effect is best captured by agent-
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based models, where agents interact with their environment, and changes

in the environment affects the decisions of agents.

Previous studies on human migration generally make simplistic assumptions

about the decision model of migration, or do not consider fluctuations

in birth/death rates, age distributions as well as networks ties between

countries. With recent economic trends [33], birth policy changes [13] and

climate trends in mind, it is important to develop an agent-based model

that is sensitive to these changes. In this work, we developed a country-

level agent-based model which aims to mimic the agent’s decision-making

process for migration. This is done through consideration of a range of

country networks, ranging from alliances to linguistic similarities to climate

and migrant networks, just to name a few.

Additionally, we initialize the age distributions of countries according

to actual data [76]. The age distribution is then shifted throughout the

simulation through an aging process, as well as actual births and deaths

in population. We then validate our model against data for migration

probabilities, and country-level observations (population and age distributions).

The results are promising, as we illustrate through performance measures

such as average of prediction error.

6.2 Motivation

Our work is mostly motivated by recent trends. Given news on possible

major shifts in population [2], this presents huge opportunities and risks

[2]. Also, with international migration contributing to more than half of

population growth in developed nations [64], it is important to understand

the dynamics involved in migration, as well as build models that capture

the complex interactions leading to these shifts in population. Building

these models will in turn help policymakers to make better decisions. For

92



CHAPTER 6. MACRO-LEVEL, PARTIALLY OBSERVABLE: MIGRATION DOMAIN

this purpose of this work, we do not model domestic migration, as it does

not lead to shifts in population of countries, which is the main output of

the model that we are developing. We do however, refer to previous work

done on domestic migration, and incorporate some of the features into our

model, including network externality effects.

The use of an agent-based and other models (e.g., flow-based models) for

modeling migration is not a new research topic or area. However, many of

them have in place simplifying assumptions, or do not consider a sufficient

number of country networks, which we felt led to less-than-realistic models,

especially if we are looking at migration on a global scale.

For example, [40] developed a comprehensive framework (including cost

of moving, pay at different states) on the factors that affects domestic

migration. The authors [40] cited data limitations as a reason for working

on domestic migration. Such a framework could be used for international

migration as well, where economic disparity network between countries

would serve as a driver of migration. However, international migration

would also require looking at other networks such as linguistic similarities

(e.g., English speakers would prefer to move to English speaking countries),

which does not apply for domestic migration.

[68] looks into rainfall as a predictor of migration decision, as well as

network effects such as network peers affecting the propensity of migration.

It works well in the area that the simulation is run, where livelihood of

farmers is dependent on rainfall, which affects crops. However, we felt that

more networks need to be considered if modeling migration at a global

level, such as economic networks, where there are stylized facts on more

developed nations drawing more immigrations [64].

[25] developed a flow-based, spatial-interaction model, which simulates

domestic migration as a function of distance between origin and destinations.

A distinction between the flow-based model and what we are working is

93



CHAPTER 6. MACRO-LEVEL, PARTIALLY OBSERVABLE: MIGRATION DOMAIN

that migrants to a destination are not placed into a common homogeneous

population pool. Instead, they are placed into separate sub-populations, in

a Origin-Destination Migrant format, where they have a positive network

externality effect for future migrants (further discussed in section 6.3).

[3] came up with an interesting multi-evolutionary agent-based model,

where agents undergo a cognitive procedure to migrate given certain age,

happiness and wage criterions.

Therefore, considering the strengths and limitations of the previous

works, we develop an country-level agent-based dynamic network model

that takes into consideration a range of country networks (discussed in

Section 6.3). It is also important to note here that our approach can be

replaced with a system dynamics approach, although it would be cumbersome

[32] to model the numerous population stocks involved (discussed in Section

6.3). Some characteristics of the ABM includes:

• Mesoscopic modeling: contrary to previous works on migration involving

microscopic (agents as individuals) or macroscopic (homogeneous population

pools within countries) models, we adopt a mesoscopic model approach,

where agents are countries, and we model sub-populations within

countries, where there are network externalities effect on potential

migrants in future. Sub-population here refers to migrants networks,

or migrants from country i residing in country j. These migrant

networks would have a positive externality effect, thereby increasing

the propensity of migrating. This will be further discussed in section

6.3.

• Heterogeneity amongst agents: Every country has their own migration

policies, with differing ”openness” towards immigrants [46]. While

the policies are not publicly available, we used previous migration

numbers as proxies for migration policies of countries. These are
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further discussed in section 6.3. Every country also has their own age

distribution, which is initialized using actual data [76].

• Interactions amongst agents: Decisions made by agents will affect

other agents. For example, migration of population from country i to

j will alter the age distribution and Origin-Destination Migrant Stock

of country j (further discussed in section 6.3), which has an effect on

future migration. For future implementations, we could even look at

language distributions (e.g., number of Spanish speaking citizens in

a country), and investigate shifts as a result of immigrants arriving

at a country.

• Decision Model for Migration: We took into consideration previous

works that were mentioned, and modeled the decision to be dependent

on several country networks. We believe that this would make for a

better decision model, as opposed to only considering climate [68] or

economy [40] networks.

We believe that this would make for a better model which is sensitive to

economic, climate trends, as well as considering other network ties between

countries.

6.3 Agent-Based Model for Human Migration

We developed an Agent-Based Model (ABM) using NetLogo 3D 5.2.0. The

interface of the ABM at initialization and during simulation is as shown in

Figure 6.1. Various components of the simulation model are as mentioned

in the sub-sections below.
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Figure 6.1: Interface of ABM at (left) initialization and (right) during
simulation. Lines colored in red/yellow/green indicate high/medium/low
migration numbers.
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6.3.1 Data and Processing

Our core database consists of 194 countries, with static variables such as

country name, code, as well as latitude and longitude. Yearly country

statistics (e.g., GDP) is obtained from [80] [37], as well as official government

[76] sites. When data is not available , we make approximations based on

the indices of ”similar” countries, as well as linear interpolation of data.

We made use of data from years 2000 and 2010 (bilateral migration data

available) for calibration of ABM, and years 2011 to 2013 for testing.

6.3.2 Countries Network

Several types of countries network are considered in this work. These are

as discussed subsequently:

6.3.2.1 Alliance and Hostility Network

For constructing the alliance and hostility network between countries, we

gathered data from the Global Database of Events, Language, and Tone

(GDELT) [70]. Events that occurred between countries are mapped to a

CAMEO (Conflict and Mediation Event Observations) scale ranging [-10,

10] specified by [15]. The average of these ”interactions” between countries

is then converted to [-1, 1] scale, where -1 indicates a negative (hostile)

relationship, and 1 indicates a positive (alliance) relationship between two

countries. A value of 0 represents a neutral relationship between two

countries.

6.3.2.2 Linguistic Similarity Network

For the linguistic similarity network, countries are tied by their dominant

or major languages, and individuals are more likely to migrate to those

countries which are linguistically similar. Also, as observed in Table 6.1,

having more than one language in common does not provide better prediction
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Table 6.1: OLS regression results: common language (integer and binary)
as independent variable; migration probability as dependent variable.

Estimate Pr(< |t|)

Integer
(Intercept) 0.023678 9.55e-07 ***
Common.Language 0.104941 <2e-16 ***

Binarized
(Intercept) 0.027132 2.94e-08 ***
Common.Language 0.100437 <2e-16 ***

accuracy in estimating the migration probability. The linguistic similarity

ties between countries is defined as CommonLangi,j, where a value of 1

refers to country i and j having at least one common language, and 0

otherwise.

6.3.2.3 Proximity Network

A proximity network is computed by taking the distance (computed through

the haversine formula) Using the center latitude/longitude of the 194 countries

in our core database, a proximity network is developed, withDisti,j representing

the distance (computed through haversine formula) between countries i and

j.

6.3.2.4 Sea-Level Network

For modeling sea-level networks, we used the ”population below 5 meters”

data from [80], represented as PopBelow5mt
i, which shows the percentage

of population in country i that is below 5 meters in year t. Do note that

this data is aggregated at country-level, so for some of the larger countries,

there might be disparity in various regions of the nation (e.g., coastal and

inland regions), which is not captured here. Each network tie between

countries i and j represents the difference in this factor, which is defined

as:

PopBelow5mt
i,j = PopBelow5mt

j − PopBelow5mt
i
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6.3.2.5 Economic Influence Network

We used the Gross Domestic Product per Capita of countries (obtained

from [80]) as a measure of economic influence, or GDP t
i,j, which is formally

defined as:

GDP t
i,j =

(GDP t
j−GDP t

i )

(GDP t
j+GDP

t
i )

Where GDP t
i and GDP t

j represents the GDP of countries i and j in year

t. This economic influence network will then be used to model citizens of

countries with lower GDP displaying a higher propensity of migrating to

countries with higher GDP [63].

6.3.2.6 Migrant Network

Last but not least would be migrant network. In the work done by [68], the

authors developed an ABM whereby an individual is connected to 10 other

individuals, and the propensity of migration depends on their networked

peers. In our work, we emulate a similar network externalities effect, where

increase in migrants from a origin country i residing at a destination j will

increase the propensity of others (from country i) migrating to country j.

This is formally defined as:

ODProportionti,j =
ODt

i,j

Popti

Where ODt
i,j refers the OD (origin-destination) migrant stock in year

t, and Popti refers to population of country i in year t. ODProportionti,j

is just the normalized version of ODt
i,j. Thus, an example here would be

more Mexicans residing in the US will have a positive externality effect on

future migrants, increasing the propensity of migrating.

Model-wise, what this means is that when there are individuals from

multiple origin countries migrating to a destination country, they will not

be placed into a homogeneous population pool. Instead, they are placed
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into separate sub-populations, and undergo births/deaths, similar to the

native population. While the granularity of model is unlike that of [68]

(with the networks of individuals), these ”sub-populations” residing in

the destination country create a similar positive externalities effect. The

OD migrant stock is initialized with actual data obtained from [74], and

updated at every time interval of simulation when migration occurs. Similar

to the native population, the OD migrant stock undergoes births and aging.

6.3.3 Migration Decision Model

For modeling the decision to migrate, we considered various countries

networks (as discussed previously). We define the migration decision as

P t
i,j, the probability of migrating from country i to j at year t, and is

formally defined as:

P t
i,j =

F (GDP t
i,j, PopBelow5mt

i,j, CommonLangi,j, Disti,j, Alliancei,j,Migrantti,j)

In this work, we take the migration decision to be a linear combination

of the various indicators, although it could take on other forms as well (e.g.,

Logit model). For calibrating the migration decision model, we take the

bilateral migration numbers between countries i and j in year t, and express

it over the native (non-migrant) population of a country i at year t to obtain

the migration probability P t
i,j. We currently assume that migrants do not

partake in future migration, which we feel is a reasonable assumption, given

the time frame we are looking at. Formally, this is defined as:

P t
i,j =

Migti,j
Popti

Validation of the simulation results will be further discussed in section

6.4.
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Table 6.2: Individual OLS regression result for migration decision
model, with the individual network ties as independent variable, and the
probability of migrating as dependent variable. *** indicates significance
at the 0.1% level; ** indicates significance at the 1% level; * indicates
significance at the 5% level

Estimate Pr (>|t|)

GDP t
i,j 0.049680 <2e-16 ***

PopBelow5mt
i,j -0.09710 4.49e-16 ***

Migrantti,j 1.003172 <2e-16 ***
CommonLangi,j 0.116152 <2e-16 ***
Disti,j -0.215794 <2e-16 ***
Alliancei,j 0.069994 <2e-16 ***

Table 6.2 shows the individual OLS regression results of the decision

model, which supports why the individual country networks were selected.

For future works, we could perform network analysis such as Multicollinearity

Robust QAP (MRQAP) to explore the network effects involved.

6.3.4 Age Distribution

This is one of the important features of the model. The purpose of the

age distribution is two-fold; not only does it help in the validation process

(discussed subsequently), it also serves as a way for policy makers to project

possible shifts in age distributions of a country.

The age distribution of countries are initialized using actual population

and international migrant stock numbers from [80], as well as age distribution

figures from [76]. Shifts to the distribution are introduced through aging

(shift to the right), births (addition), deaths (removal), as well as migration

(moved from source to destination country).

The age distribution for all countries are separated into migrants (in

blue) and native/non-migrants population (in orange), as illustrated in

Figure 6.2. For citizens migrating to another country, they are placed into

the migrant population of the new country, where they do not partake in

future migration decision process. This ensures that every citizen migrates
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only once, which we felt is a reasonable assumption given the time frame

(for testing) that we are looking at.

Figure 6.2: Age distribution for country at initialization. Distributions for
migrants and native (non-migrants) are in orange and blue respectively.

6.3.5 Limit on Migration

As mentioned previously, migration policies vary greatly across different

countries. For example, Canada has foreign-born population making up

21.3% of its population, while Japan has a much lower 1.7% foreign-born

population [46]. While exact migration policies (i.e., exact numbers allowed

for immigrants) are not publicly available, this is an important feature

that would make for a realistic ABM. Thus, we used previous bilateral

migration numbers and population data as a proxy for the openness of a

country towards immigrants. The migration limit for a country j is formally

defined as:

MigrationLimitj = max
t

(MigrationProportiontj) ,∀j

MigrationProportiontj =
Immigrantstj

Poptj
,∀j, t

where Immigrantstj refer to the number of immigrants arriving at country

j in year t.
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Input Variables Description / Values

Country Networks Described in section 6.3
Migration Limits
Age Distribution

Dependent Variables Description / Values

Population Popti
Age Distribution Measured at end of simulation.

Number of Replications 30

6.4 Model Validation

Model validation is done by validating the simulated populations, age

distributions, as well as the migration probabilities. This is done using

average of errors as a performance measure. It is imperative to note that we

are not developing a migration prediction model that perfectly fits against

historical events. Instead, the focus here is on building an ABMS (Agent-

Based Model and Simulation) that is sensitive to real-world trends and the

evolution of country networks (mentioned in section 6.3). It is also worth

noting that the data for the less developed countries might suffer from

poorer data accuracies [64], which might affect the projections for these

group of countries.

6.4.1 Migration Probabilities

For validating the migration probabilities, the actual migration probabilities

is compared against simulated migration probabilities. The average of error

(AE) for migration probabilities is formally defined as:

AE =

∑
i,j,t
|P t

i,j−P̂ t
i,j |

|I|×|J |×|T |

where P t
i,j and P̂ t

i,j represents the actual and simulated probability of migration

between country i and j at year t.

Table 6.3 shows the results of validation for migration probabilities

between all countries, as well as between the top 50 most populous countries
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Table 6.3: Validation Results: Flow Probabilities between all countries
and populous countries. Populous countries refer to top 50 countries by
population at initialization.

Populous Countries All Countries

Average Error 0.037 % 0.057 %
Standard Deviation 0.253 % 1.346 %

(at initialization). From the table, we can observe that the model is able

to capture the migration movement of countries fairly well. Also, noting

the better accuracy (lower average error) for the populous countries, this

means that the model makes relatively better estimates for the populous

countries, which is good, as poor estimates for the populous countries will

have a bigger impact as opposed to the less populous countries.

6.4.2 Population Validation

For validating the simulated population numbers, we compare the simulated

population numbers against actual population numbers obtained from [80],

and normalize against the actual population numbers. The average of error

here is defined as:

AE =

∑
i,t

|Popti−P̂ opt
i
|

Popt
i

|I|×|T |

where Popti and p̂opti represents the actual and simulated population of

country i at year t.

Figure 6.3 shows the average error over time for (in orange) all countries

and (in blue) top 50 populous countries. First observation here is that the

error increases over time, which is not surprising, due to the compounding

of errors [64]. Also, we can observe that the average error for the top 50

populous countries remains significantly lower than that of all countries

over time. This shows the performance of the model in predicting the

population, especially for the populous nations.
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Figure 6.3: Average Error (Validation of Population) Over Time for
(orange) all countries and (blue) top 50 populous countries.

Table 6.4: Validation Results: Age Distribution of Countries, for
populations within the age range of 0 to 14 years.

0 to 14 years

Average Error 2.91%
Standard Deviation 5.47%

6.4.3 Age Distribution Validation

Last but not least, we validated the age distribution of countries. As

mentioned previously, we initialized the age distribution using actual data

obtained from [76], and the age distribution is shifted as a confluence of

migration, births and deaths in population. In this case, we validated

against the proportion of population within the 0 to 14 years age group

(data available on [80]). The average error is defined the same as the

average error for country population, except that we now subset the population

to those within the range of 0 to 14 years. Table 6.4 shows the results of

validation. This shows that the model performs well in modeling the age

distribution, given assumptions of shifts, migration and birth/death rates

that we are introducing in the model.

105



CHAPTER 6. MACRO-LEVEL, PARTIALLY OBSERVABLE: MIGRATION DOMAIN

6.5 Strengths and Limitations

In this section, we discuss some of the strengths and limitations of the

model. Strengths of the model include:

• Modeling of network and ties amongst countries, ranging from economy

to alliances to linguistic similarities. To the best of our knowledge,

no previous work done in simulation of migration has considered such

a wide range of country networks affecting migration.

• Simple linear decision model serves as a good starting point for rapid

examination of factors affecting population movement, though this

could be replaced with other models in future works.

• Age distribution added to allow policy makers to identify shifts in

age distributions of countries as result of fertility, mortality, as well

as international migration.

Limitations of the model include:

• Data for the less developed nations might suffer from poor data

quality [64]. Thus this might affect the results obtained for those

countries involved.

• The migration decision model currently does not consider major events,

such as conflicts or war within or amongst countries, which could serve

as a driver of migration out of a country.

• The model is more suited for short-term simulation of possible shifts

in population instead of simulating over longer period of time. For

longer term predictions, it could suffer from poorer accuracies as a
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result of compounding of errors over time [64].

6.6 Conclusion

Agent-based models and simulation have increasingly become an important

tool for explaining and generating human behaviors. In the areas of human

migration, the agent-based paradigm has been used successfully to explain

migration movements as a result of climate, economic and peer effects.

Our work follows these trends, with a focus on international migration, as

we attempt to explain migration and population shifts as a confluence of

country networks, along with actual fertility and mortality rates.

The first major contribution of this chapter would be the development of

country networks that were incorporated into the agent’s migration decision

model, ranging from alliances to linguistic similarity to economic disparity

networks. To the best of our knowledge, previous works in migration do not

consider such a wide range of country networks for the migration decision

model. We believe that this would result in a more realistic model. The

next major contribution would be incorporation of age distributions of

countries (initialized with actual data), which is then shifted as a result

of births, deaths and migration. The reason for incorporating this is two-

pronged; not only does it allow policy makers to identify possible shifts in

age distributions, it also allows for additional validation.

Migration is a complex decision which could incorporate various hard-to-

capture components (e.g., emotional aspects). With the networks that were

developed, as well as adoption of the agent-based paradigm, we provided a

good explanation of country-level observations (population and age distribution)

as a confluence of migration movements, as well as fertility and mortality.

Improving the realism of the model remains one of the major research
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directions in the future.
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Chapter 7

Conclusion

In this chapter, we (1) summarize the contributions made in this dissertation,

(2) highlight some research directions for future work, and (3) discussion

of policy implications of each study.

7.1 Dissertation Summary

In summary, our work is mainly motivated by the need to develop high-

quality agent-based simulation model that is able to mimic the movement

dynamics of agents in a network environment. In this case, we do not

look at development of high quality agent-based models as an end in itself.

Rather, it’s a prerequisite for subsequent usage of the agent-based model

as an evaluation tool for various recommender systems and policies. To

achieve this, we propose a methodological framework for modeling agents

movement in a network environment, combining approaches such as data-

driven modeling and discrete choice models. While the individual concepts

are not new, we demonstrated through our framework a systematic approach

for modeling under different problem domains as specified in figure 2.1.

Additionally, we demonstrate the applicability of our proposed methodological

framework in three concrete use cases, each representing a problem domain.

This is the main contribution and novelty of our work - the combination
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of various techniques in a micro (behavioral model) to macro (aggregate

observations arising from agents decisions) multi-level modeling approach.

The first problem domain is described in chapter 4. In the leisure

or theme park setting, we define the utility of going to an attraction

based on that of the patron’s preference and travel distance. Additionally,

we included case studies to illustrate the use of agent-based models for

evaluating (1) a dynamic route guidance application and (2) effect of spatial

layout on crowding. With a model that is able to capture the aggregated

movement dynamics through the use of a small sample data, this would

allow policy makers to better come up with various crowd management

strategies, through the use of such computational models as an evaluation

testbed.

The second problem domain is described in chapter 5. In this case, we

are faced with the problem of a huge amount of ”noisy” data. Noise in

this case refers to (i) inaccuracies in GPS readings of taxis and (ii) figuring

out the true intention of drivers when making zone-level decisions. To deal

with this, we first utilize MapMatching to map the raw lat-lon readings

from GPS records to links via a viterbi-based algorithm. From there, we

then define a minimum traversing time for traversing a zone, and filter

out records where taxis are passing through ”transient zones”. A utility

model for zone level movement is developed considering historical demand

at zones, along with distance between zones. Our virtual experiments show

that such an approach performs better than a traditional transition-matrix

based (defined as single-tier model) one. We then utilized the agent-

based model as an evaluative tool for a DGS system, where we looked

into the performance of the DGS at (1) various times of the day and (2)

under different penetration ratio of guided visitors. The model could be

effectively utilized by policy makers to test out various supply and demand-

side regulation policies.
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The third problem domain is described in chapter 6. In this case,

the time interval granularity is much coarse (in years) as opposed to the

previous two areas, and we have a much more complex decision making

process requiring far more contemplation. In this case, we define a utility

model for migration that considers a wide range of networks, ranging from

migrant to economic disparity. The model could be effectively utilized by

policy makers looking into immigration and population projection, especially

on impacts of such policies on various distributions, e.g., age distribution.

7.2 Future Work

We conclude this dissertation by highlighting several research directions

that would further improve the current work. In chapter 4, we included

a simple case study to demonstrate the usage of an agent-based model

in evaluating the effect of spatial layout, in particular the placement of

popular attractions proximity to the theme park entrance. For future work,

it would be interesting to explore other findings (e.g., in the work by [82]),

or a combination thereof.

Also, in chapter 5, we showed the usefulness of a tiered decision model

in modelling the movement behaviors of taxi drivers in the roaming mode

(i.e., in search of passengers). For future work, we look into hierarchies

in terms of various levels of thinking and reasoning sophistication, instead

of a zone-link level. Example of such a model would be the Cognitive

Hierarchy Model by [14]. Given that we do not expect drivers to think

at the same level of sophistication (as observed by differing revenues by

different drivers), it would definitely be interesting to test this out on the

existing data and model.
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