
Singapore Management University
Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open Access) Dissertations and Theses

12-2018

Reinforcement learning for collective multi-agent
decision making
Duc Thien NGUYEN
Singapore Management University, dtnguyen.2014@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

Part of the OS and Networks Commons, and the Theory and Algorithms Commons

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional Knowledge at Singapore Management
University. It has been accepted for inclusion in Dissertations and Theses Collection (Open Access) by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
NGUYEN, Duc Thien. Reinforcement learning for collective multi-agent decision making. (2018). Dissertations and Theses
Collection (Open Access).
Available at: https://ink.library.smu.edu.sg/etd_coll/162

https://ink.library.smu.edu.sg?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

REINFORCEMENT LEARNING FOR
COLLECTIVE MULTI-AGENT DECISION MAKING

NGUYEN DUC THIEN

SINGAPORE MANAGEMENT UNIVERSITY

2018

Reinforcement Learning for
Collective Multi-agent Decision Making

Nguyen Duc Thien

Submitted to School of Information Systems in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee:

LAU Hoong Chuin (Supervisor/Chair)
Professor of Information Systems
Singapore Management University

Akshat KUMAR (Co-Supervisor)
Assistant Professor of Information Systems
Singapore Management University

Qin ZHENG
Deputy Department Director
Institute of High Performance Computing, A*STAR

Pradeep VARAKANTHAM
Associate Professor
Singapore Management University

Singapore Management University

2018

I hereby declare that this PhD dissertation is my original work and it has been

written by me in its entirety.

I have duly acknowledged all the sources of information which have been used in

this dissertation.

This PhD dissertation has also not been submitted for any degree in any university

previously.

———————————————
Nguyen Duc Thien

6 December 2018

Reinforcement Learning for
Collective Multi-agent Decision Making

Nguyen Duc Thien

Abstract

In this thesis, we study reinforcement learning algorithms to collectively optimize

decentralized policy in a large population of autonomous agents. We notice one of

the main bottlenecks in large multi-agent system is the size of the joint trajectory

of agents which quickly increases with the number of participating agents. Fur-

thermore, the noise of actions concurrently executed by different agents in a large

system makes it difficult for each agent to estimate the value of its own actions,

which is well-known as the multi-agent credit assignment problem. We propose a

compact representation for multi-agent systems using the aggregate counts to ad-

dress the high complexity of joint state-action and novel reinforcement learning

algorithms based on value function decomposition to address the multi-agent credit

assignment problem as follows:

1. Collective Representation: In many real-world systems such as urban traffic

networks, the joint-reward and environment dynamics depend on only the number of

agents (the count) involved in interactions rather than agent identity. We formulate

this sub-class of multi-agent systems as a Collective Decentralized Partially Observ-

able Markov Decision Process (CDec-POMDP). We show that in CDec-POMDP,

the transition counts, which summarize the numbers of agents taking different lo-

cal actions and transiting from their current local states to new local states, are

sufficient-statistics for learning/optimizing the decentralized policy. Furthermore,

the dimensions of the count variables are not affected by the population size. This

allows us to transform the original planning problems to optimize the complex joint

agent trajectory into optimizing compact count variables. In addition, samples of

the counts can be efficiently obtained with multinomial distributions, which provide

a faster way to simulate the multi-agent systems and evaluate the planning policy.

2. Collective Multi-agent Reinforcement Learning (MRL): Firstly, to address

multi-agent credit assignment problem in CDec-POMDP, we propose the collective

decomposition principle in designing value function approximation and decentral-

ized policy update. Under this principle, the decentralized policy of each agent is

updated using an individualized value instead of a joint global value. We formu-

late a joint update for policies of all agents using the counts, which is much more

scalable than independent policy update with joint trajectory. Secondly, based on

the collective decomposition principle, we design 2 classes of MRL algorithms for

domains with local rewards and for domains with global rewards respectively. i)

When the reward is decomposable into local rewards among agents, by exploit-

ing exchangeability in CDec-POMDPs we propose a mechanism to estimate the

individual value function by using the sampled values of the counts and average

individual rewards. We use this count-based individual value function to derive a

new actor critic algorithm called fAfC to learn effective individual policy for agents.

ii) When the reward is non-decomposable, the system performance is evaluated by

a single global value function instead of individual value functions. To follow the

decomposition principle, we show how to estimate individual contribution value of

agents using partial differentials of the joint value function with respect to the state-

action counts. This is the basis for us to develop two algorithms called MCAC and

CCAC to optimize individual policy under non-decomposable reward domains. Ex-

perimentally, we show the superiority of our proposed collective MRL algorithms

in various testing domains: a real-world taxi supply-demand matching domain, a

police patrolling game and a synthetic robot navigation domain, with population

size up to 8000. They converge faster convergence and provide better solutions than

other algorithms in the literature, i.e. average-flow based algorithms and standard

actor critic algorithm.

Contents

1 Introduction 1

1.1 Collective Decision Making Framework 4

1.1.1 Example of Multi-agent Domain 4

1.1.2 Multi-agent Reinforcement Learning 5

1.1.3 Reinforcement Learning Classification 8

1.2 Summary of Contributions . 10

1.2.1 Count-based Representation for Collective Planning 10

1.2.2 Collective reinforcement learning algorithms 11

1.3 Thesis structure . 13

2 Representation of Collective Planning 15

2.1 Motivation . 16

2.1.1 Taxi Supply Demand problem 16

2.1.2 Goal oriented robot navigation 17

2.1.3 Police Patrolling . 17

2.2 Collective Decentralized POMDP (CDec-POMDP) framework . . . 19

2.2.1 Policy representation . 24

2.3 Count-based representation of CDec-POMDP 26

i

2.3.1 Count Sampling Process 30

2.3.2 Joint-Value Function . 31

2.4 Related works . 34

2.4.1 Count-based models . 34

2.4.2 Mean-field game theory and average flow estimations 35

2.4.3 Lifted inference . 36

2.5 Summary . 37

3 Collective Graphical Model 38

3.1 Collective Graphical Models . 39

3.1.1 Motivation . 39

3.1.2 Background . 40

3.1.3 CGM Distribution . 40

3.1.4 Relation between CGM and CDec-POMDP 42

3.2 Collective inference in CGM . 44

3.2.1 Noisy observation models 44

3.2.2 Aggregate MAP inference 44

3.2.3 Parameter estimation . 47

3.2.4 Relation between CGM inference and CDec-POMDP plan-

ning . 48

3.3 Related works . 49

3.4 Summary . 50

4 Collective Multi-agent Reinforcement Learning Framework 51

4.1 Multi-agent Planning Model . 52

ii

4.1.1 Multi-agent Dec-POMDP 52

4.1.2 CDec-POMDP as Lifted DEC-POMDP 54

4.2 Reinforcement Learning . 56

4.2.1 Reinforcement Learning Outline 58

4.2.2 Policy Gradient . 58

4.2.3 Baseline subtraction . 63

4.3 Multi-agent Reinforcement Learning 65

4.3.1 Factorization of policy in decentralized execution 65

4.3.2 Credit-assignment . 67

4.3.3 Factored critic function . 70

4.4 Collective Reinforcement Learning 75

4.4.1 Policy Gradient with Factored Collective Critic 75

4.5 Related Works . 78

4.5.1 Model-based planning . 78

4.5.2 Reinforcement Learning 80

4.5.3 Multi-agent reinforcement learning 81

4.5.4 Credit Assignment And Value Function Decomposition . . . 83

4.6 Summary . 85

5 Reinforcement Learning with Local Reward Signals 87

5.1 Decomposable reward problems 89

5.2 Count based Individual Value Function 89

5.2.1 Exchangeability of joint-trajectories 90

5.2.2 Individual value function 95

iii

5.3 Policy Gradient for CDec-POMDPs 99

5.3.1 Outline . 99

5.3.2 Training Action-Value Function 101

5.4 Evolutionary Game Theory . 102

5.4.1 Dynamics in Agent Population 103

5.4.2 Stateful dynamics in population 104

5.5 Algorithms . 110

5.6 Experiments . 111

5.6.1 Taxi Supply-Demand Matching 112

5.6.2 Robot Grid Navigation . 114

5.7 Related Works . 116

5.8 Summary . 118

6 Reinforcement Learning with Global Reward Signals 119

6.1 Collective Decentralized POMDP Model 120

6.2 Mean Collective Actor Critc . 122

6.2.1 Critic Design For Collective Policy Gradient With Global

Rewards . 123

6.2.2 Mean Collective Policy Update from the Global Critic . . . 126

6.3 Difference Rewards Based Credit Assignment 128

6.4 Experiments . 133

6.4.1 Taxi Supply-Demand Matching 134

6.4.2 Police Patrolling . 136

6.4.3 Synthetic Robot Patrolling Game 136

iv

6.5 Related Works . 137

6.5.1 Difference of Reward . 137

6.5.2 Expected Policy Update 138

6.6 Summary . 139

7 Conclusions and Future Works 141

7.1 Conclusions . 141

7.2 Future works . 142

7.2.1 Heterogeneous behaviours 142

7.2.2 Large state space . 143

7.2.3 Online Decision Making 144

A Domain description 162

A.1 Taxi fleet management . 162

A.1.1 CDec-POMDP for taxi navigation problem 163

A.1.2 Local Reward Structure 165

A.1.3 Global Reward Structure 166

A.2 Robot Grid Navigation . 166

A.3 Synthetic Robot Patrolling Game 168

A.4 Real World Police Patrolling . 169

B Neural network design 174

B.1 Hyper-parameters . 174

B.2 Network structure . 174

B.2.1 Factored value function for local rewards 175

v

B.2.2 Value function for global rewards 175

vi

List of Figures

1.1 Example of joint state-action and count table in grid navigation

problem. 4

1.2 Multi-agent Reinforcement Learning framework 6

1.3 Multi-agent Reinforcement Learning Classification. 8

1.4 Summary of Framework . 13

1.5 Chapter dependencies. Included in (·) are chapter numbers with

hyperlink. 14

2.1 Taxi navigation in zonal map. 17

2.2 Robot navigation toward single goal (red location). 18

2.3 DBN for T-step reward for CDec-POMDP with external variables . 23

2.4 D-SPAIT model . 24

2.5 Simple policy function in which each zj = ✓j ⇥ omt is a linear trans-

formation of the input omt and the output is the soft-max normaliza-

tion. This is known as shadow or no-hidden layer neural network. . 26

2.6 Generative model of the counts in CDec-POMDP 30

3.1 Example of collective graphical model in a tree model with 4 nodes 42

3.2 Collective graphical model of a independent-transition and open-

loop policy CDec-POMDP. 43

vii

4.1 Credit-assignment in multi-agent RL. 67

4.2 Credit-assignment in Collective RL. 78

4.3 Relation between collective planning and normal MDP planning.

We lift the original planning problems with joint state into collective

planning problems with collective variables (the count). 86

5.1 Example of individual value function estimation from collective sampling. 99

5.2 Solution quality with varying MaxVar in taxi domain 112

5.3 Convergence of average-flow based policy gradient and fAfC optimizing

static policy on taxi domain. 112

5.4 Convergence of different actor-critic variants on the taxi problem. 112

5.5 Solution quality with varying population size in grid domain 115

5.6 Convergence of average-flow based policy gradient and fAfC on the grid

navigation problem. 115

5.7 Convergence of different actor-critic variants on the grid navigation problem.115

6.1 Solid black lines define 24 patrolling zones of a city district 121

6.2 Convergence of different actor-critic variants on the taxi problem. The

curves for MCAC and CCAC almost overlap. 133

6.3 Different metrics on the taxi problem with different penalty weights w. . . 133

6.4 Police patrolling problem. 136

6.5 Convergence of different actor-critic variants on the grid patrolling with

varying population size N and grid size. 137

B.1 Neural Network Architecture for Taxi Problem 176

B.2 Neural Network Architecture for Patrolling Problem 177

viii

List of Tables

1.1 Summary of contributions in collective multi-agent decision making 12

2.1 Table of Notation . 19

A.1 Example of temporal state count for a sector i 170

ix

Acknowledgements

First and foremost, I thank God for His providence throughout my life, which in-

cludes this PhD. I prayed to Him from the beginning to decide on the place to do my

PhD, on my research topic, on every submission of my paper. His answers for me

have never gone wrong. I worked with the best supervisors in the most interesting

research topic to publish the best papers. In addition to all the academic achieve-

ments, God also allowed me to travel overseas several times and this made my PhD

time more than a joy.

I would like to thank my supervisor, Lau Hoong Chuin, with whom I have been

working for almost 7 years since the first day in Singapore. He gave me the opportu-

nity to work in various projects with many collaborators. He guided me through this

very important part of my career and shaped my character to become an excellent

individual and researcher.

I would also like to thank my co-supervisor, Akshat Kumar, who has been work-

ing back-to-back with me over many weekend evenings to rush for submission dead-

lines. Akshat taught me how to develop an initial idea into an interesting research

direction. We had discussed a lot of interesting concepts during coffee and lunch

times and I am sure all of these discussions will be beneficial to my research later. I

think by God’s will, I was destined to work with him in my PhD. If I had chosen to

come to a different place to do my PhD, he would also be there to help me.

I am also blessed to have many collaborators and good friends during my Ph.D.

Amongst them, I would like to thank my supervisor in A?STAR, Qin Zheng. Qin

x

has been very supportive in all of the events in my PhD process. I also always

remember William Yeoh as my additional advisor, who gave me a lot of useful tips

for my PhD. Pradeep Varakantham was always available to help me go through

difficult research challenges.

And the final version of my thesis would never be done without the help of my

good friends John and Beverly, who have helped to read every of my nearly 200

thesis pages.

Finally, I want to dedicate my PhD to my family, especially my wife. She has

been accompanying me in all the sweet and sour moments of my PhD. Without her

love and support, I would never have attempted to come to Singapore and finish this

PhD.

xi

“with God all things are possible”-Matthew 19:26

xii

Chapter 1

Introduction

Many real-world problems can be modelled as optimizing actions of autonomous

agents over time to maximize some utility or reward functions. Examples include

optimizing the movement of autonomous vehicles to serve passengers better, or op-

timizing the speed of autonomous vessels to reduce congestion in a port. We can

model the decision of each autonomous agent as a decentralized policy function

taking input as agent’s local information about the system, such as the congestion

level at its current location, and outputs an action, such as the speed or direction

to move, for that agent to execute. In this thesis, we study multi-agent reinforce-

ment learning (MRL), which is the process to learn decentralized policy function

for autonomous agents from empirical reward feedback from environments or sim-

ulation engines. The objective of MRL algorithms is to adjust the policy according

to the empirical feedback to maximize the expected total rewards over a planning

horizon [96, 88, 124]. Reinforcement learning is shown to be efficient methodology

to optimize policy in complex domains. Among the most well-studied MRL do-

mains are distributed robot systems [5], in which autonomous robots are designed

to collaborate with each other to achieve goals, for example to win a robot soccer

game [9] or to maximize the number of rescued victims in disaster response tasks

[72]. Multi-agent reinforcement learning is also studied in multiaccess broadcast

1

channel network problems, in which a decentralized controller associated to each

user needs to independently make decisions about whether to transmit the packet in

each specific time slot [42, 145, 85, 84]. In such problems, decentralized controllers

have to cooperate to avoid the network conflict and to maximize the total through-

put of the network. Other decentralized control problems are studied in power grids

[100], traffic light control [32, 142], sensor network control [125, 62], or fire fight-

ing teamwork [4]. Recently, with the availability of computing resources to train

artificial neural networks, researchers are able to train neural network policies for

multi-agent systems in complex environments such as Atari video games [120] or

strategic video game StarCraft [30]. Learning good decentralized policy is shown

to enable AI agents to even form their own language as a communicative means to

achieve a goal [29, 64].

Although multi-agent reinforcement learning problems have been studied for a

long time, the complexity of joint state-action spaces remains a challenge to over-

come. In multi-agent systems, each agent could have separate local observations of

the environment and independently take action. However their actions will jointly

affect each other’s transition and reward. For example, when many vehicles choose

to take a specific road, the congestion could slow-down the speed of all vehicles

and as a consequence, increase the cost for each vehicle. Because of the interdepen-

dence between agents, when optimizing an individual policy, we have to consider

all state-actions of the related agents. In this thesis, we use MDP terminology to

refer a local “trajectory” as a sequence of local state-actions of a agent and joint

“trajectory” as a sequence of joint state-actions of all agents. In multi-agent plan-

ning, to estimate the individual value, an agent might need access to joint trajectory

to know where all other agents are and which actions all other agents take over

planning horizon.

In multi-agent systems, the joint state-action space grows exponentially with the

number of agents. Mathematically speaking, if local state space of each agent is

2

S and its local action space is A, then the size of the joint state-action space of N

agents (|S|⇥|A|)|N |. This complexity of the joint space is one of main hurdles to run

and evaluate contemporary multi-agent reinforcement learning algorithms. Without

addressing this scalability, we are a long way from deploying MRL algorithms into

real world scenarios consisting of thousands or even millions of agents. This mo-

tivates me to develop a compact representation for multi-agent planning problems

and subsequently scalable reinforcement learning algorithms for large scale multi-

agent systems.

As the basis for scalable multi-agent reinforcement learning algorithms, I pro-

pose to use the counts to compactly model a class of multi-agent systems and ef-

ficiently optimize individual agent policy in such systems. A count is defined as

the number of agents belonging to a particular category, for example to be in a spe-

cific local state or location. Counts have been used in many graphical inference

problems in machine learning as useful sufficient-statistics [49, 17, 108, 79]. In

multi-agent systems, the counts can be used to express the collective behaviors of

agents in population and to adjust the collective behaviors according to the feedback

from the environment. For instance, the counts used in traffic domains to record the

numbers of vehicles coming into each road sector at each time period. By look-

ing at the traffic counts, one can reduce the congestion in a sector by adjusting its

heavy incoming flows. In my thesis, to formulate and generalize this count-based

decision making concept, I define a model called Collective Decentralized Partially

Observable Markov Decision Process (CDec-POMDP) and then develop reinforce-

ment learning algorithms to optimize individual policy for multi-agent planning in

CDec-POMDPs.

3

1.1 Collective Decision Making Framework

Before providing further details of our collective planning framework, we give an

example of multi-agent domain and compare two representations of the problem.

This is followed by the general concept of multi-agent reinforcement learning that

we will develop for CDec-POMDPs in this thesis later and a classification of rein-

forcement learning methods.

1.1.1 Example of Multi-agent Domain

Goal

0

1

2

3

…

…

…

…

left

left
left

up

Agent 4

Agent 1

Agent 2

Agent 3

(a) A snapshot at t = 0.

AgentID s0 a0 . . .
Agent_1 0 left . . .
Agent_2 0 left . . .
Agent_3 0 up . . .

.

(b) Joint state-action table

hst, atit nsa
t

h0, leftit=0 2
h0, upit=0 1
h1, upit=0 0

.

(c) Count table

Figure 1.1: Example of joint state-action and count table in grid navigation problem.

We consider robot grid navigation (illustrated in Figure 1.1) as an example of a

multi-agent problem. This motivating example is a common testbed for multi-agent

reinforcement learning algorithms [132, 66, 76]. In this example, a team of 4 robots

try to move in a grid of size 3⇥3 toward some goal locations while avoiding conflict

in narrow corridors. A goal could be the representative of a victim in a disaster

rescue situation or some object to be picked-up in a transportation task. At each

time period t, a robot in a location st has to choose an action as one of 5 movement

{left, right, up, down, stay}. Consider the snapshot of the grid navigation at time

t = 0. Agents 1, 2, 3 are in location 0, while agent 4 is in location 2. From their

local state, agent 1 and 2 take left-turn action while agent 3 goes up, agent 4 takes

a left-turn. This can be summarized by the joint state-action Table 1.1b, in which

we record the local state, and local action for every agent at every time step. On the

4

other hand, we can summarize agent movements by the count Table 1.1c, in which

each entry nsa
t (i, j) is the number of agents taking a specific action j from local state

i at time t. As seen in this example, when the number of agents increase, we have to

create new rows to record new agents in a joint state-action Table 1.1b. Meanwhile,

the number of entries in the count Table 1.1c is fixed with regard to the number of

agents. When the number of agents is significantly larger than the number of local

and states and actions, maintaining the count table becomes much more efficient

than maintaining the joint state-action table. In MRL, using the counts as input to

the decentralized policy and value functions could reduce the input dimensions of

those functions in comparison to original joint state-action input. As a result, the

counts could improve the scalability and convergence of MRL algorithms.

1.1.2 Multi-agent Reinforcement Learning

The overview of the MRL framework is illustrated in Figure 1.2. In general, rein-

forcement learning is a nature inspired principle to learn action selection function

from the reward feedback provided by the environment. In this MRL framework,

our goal is to learn a decentralized policy function (called “actor” in the litera-

ture) based on the approximation of system’s value (called “critic” in the literature)

[117].

At each time step, the decentralized policy function maps local observation of

an agent to a local action of that agent. Notice that the policy function can be a

stochastic function, which produces random actions under an action distribution.

After actions are made by agents, they would jointly affect the environment. The

result of interaction between joint action and environment is the joint transition to

the new joint state of agents and joint rewards.

To optimize/learn the decentralized policy, MRL estimates and assigns values

to each executed action of individuals. In single agent problems, this value can

5

be the empirical returns (or the total empirical rewards accumulated from the time

point when that action is executed). However, due to stochasticity of the problem,

empirical return is a random variable with high variance. Furthermore, in multi-

agent domains where multiple individual actions are executed at the same time,

the raw empirical return is too noisy to distinguish roles of concurrent actions. To

address this, we a) resort to an approximate value function (“critic”) trained to

estimate the empirical return (train critic), and hence resolve the high variance

problem of the empirical return, b) propose an efficient policy update to train the

policy function (train actor) by the critic.

Train critic

Environment

Approximate
Value Function

Decentralized
Policy

Train actor

critic

actor
Joint

action

Joint
transition
&reward

Joint
State

Local
observations

...

Figure 1.2: Multi-agent Reinforcement Learning framework

Shared policy

Instead of multiple decentralized policies for different agents, we consider a single

decentralized policy function shared by homogeneous agents in the system. In fact,

learning a shared (or homogeneous) policy between agents is a common objective

in multi-agent reinforcement learning literature [121, 44, 147, 131, 40]. In large

scale domains such as movement of animal flocks or a traffic network, a homoge-

neous behavior model of individuals is usually assumed [108, 57]. In our research

6

problems, by optimizing the shared policy, we can collectively shape behaviors of

individuals in favor of system quality. To extend our model to heterogeneous agents,

we can generalize shared policy by considering the type of agent as an input feature

into the policy function.

Centralized Learning-Decentralized Execution

When an autonomous agent executes its decentralized policy, it only possesses a

local view (or partial observation) of the systems. However, in CDec-POMDPs, the

dynamicity and the reward of an individual is correlated with others. Local view

is sometimes insufficient to learn a decentralized policy. An individual needs to

know or estimate behaviors of others to act accordingly [31, 64]. An example in a

navigation problem is when an agent knows the intention of another agent is to take

a narrow corridor. It could plan to not take that corridor to avoid collision.

To overcome issues of partial observation in policy learning, we would learn the

policy by a centralized planner off-line before deploying them into decentralized

agents. This centralized planning-decentralized execution paradigm is a common

practice in multi-agent reinforcement learning [56]. The centralized planner would

reason on either the complete model of the domain [12, 73, 82], or samples of global

states generated by a black-box simulator [120]. When neither of these is available,

to approximate global view, the centralized planner can aggregate local observations

from historic data to have a joint view of the system [31]. The global view in

the learning phase provides more information for the centralized planner to better

estimate value function and refine decentralized policy accordingly. In addition, we

can impose the cooperativeness in decentralized policy by the centralized planner.

In our collective planning framework, we assume the centralized learner has the

access to the joint counts and rewards of the system.

7

1.1.3 Reinforcement Learning Classification

Single Agent Multi-agent Collective System

Objective:

Maximize the single agent

accumulated reward

Objective:

Maximize the total multi-

agent accumulated reward

Objective:

Maximize the total count-

based accumulated reward

Environment
Environment Environment

Collective
System

State

Reward

Action

Joint State

Ind. Rewards

Joint Action State-action

counts

Transition

counts

Collective

rewards

Figure 1.3: Multi-agent Reinforcement Learning Classification.

In Figure 1.3, we compare a single agent reinforcement learning system, a multi-

agent reinforcement learning system and a collective learning system in a coopera-

tive setting. The goal of reinforcement learning algorithm is to optimize the system

total rewards through interacting with environment. We want to emphasize the dif-

ference in representations of state, reward, action and objective function of the three

systems.

In the single agent system, the state, action and reward are singular. The objective

in the single agent system is to maximize a single agent expected accumulative

reward when the agent interacts with an environment.

The realization of a multi-agent system at time t is represented by samples joint

state hsmt im=1:M of all agents m = 1 : M , their action hamt im=1:M and correspond-

ing joint rewards r(st = hsmt im=1:M ,at = hamt im=1:M) depending on the joint

state-action of agents. In some case, the joint reward can be represented as a sum of

8

individual reward as

r(st,at) =
X

m=1:M

rm(smt , a
m
t , st,at).

Each rm(smt , a
m
t , st,at) represents the reward of agent m receives when it takes

action amt in local state smt and given the joint state-action (st,at).

An objective in a cooperative multi-agent system is to maximize the total expected

rewards over planning horizon when multiple agents interact with an environment.

max
⇡

E
⇥X

t

r(st,at|⇡
⇤
= max

⇡
E
⇥X

t

X

m=1:M

rm(smt , a
m
t , st,at)|⇡

⇤
.

In the collective planning model, the identity of each agents is marginalized out

in collective variables (containing no agent index). The joint state hsmt im=1:M and

action hamt im=1:M are summarized into the state-action counts nsa
t . The joint reward

is a function of state-action counts as r(nsa
t). In some case, the joint reward can be

presented as a sum of individual rewards as

r(nsa
t) =

X

i2S,a2A

nsa
t (i, j)r(i, j, n

sa
t)

Each reward r(i, j, nsa
t) represents the average reward of an agent (regardless of

its identity) in state i taking action j when the joint state-action counts are nsa
t . The

joint objective value of the multi-agent reinforcement learning is re-written in the

count and average reward variables as

max
⇡

E
⇥X

t

r(nsa
t)|⇡

⇤
= max

⇡
E
⇥X

t

X

i2S,a2A

nsa
t (i, j)r(i, j, n

sa
t)|⇡

⇤
.

Later we would show that in a collective system, instead of sampling joint

trajectory hsm1:H , am1:Him, we only need to sample the state-action counts nsa
1:H . In

9

large populations, the action count sampling process of collective distribution is

generally much cheaper than joint trajectory sampling. More details of collective

distribution and sampling process are provided in Chapter 2.

1.2 Summary of Contributions

Our main contributions to the multi-agent collective decision making are two-fold.

Firstly, we propose a novel representation for the collective planning problems in

CDec-POMDP model using the count variables. Secondly, based on the new plan-

ning representation, we develop count-based reinforcement learning algorithms to

efficiently optimize individual policy for collective planning problems.

1.2.1 Count-based Representation for Collective Planning

Main research challenge: The complexity of multi-agent representation grows

when the number of agents in the system increases. This causes a big challenge

in managing the state of large population systems for planning purpose. This com-

plexity bottleneck is present in our domains of interest, i.e. traffic network and

transportation supply-demand matching, where number of agents could vary from

10 to 8000. To address this problem, we propose a compact representation using

the count variables.

Technical contributions: We are motivated by the recent advance in collective

graphical model (CGM) proposed by Sheldon and Dietterich [108] in showing the

counts to be a lifted representation of the population. Sheldon and Dietterich [108]

show that the counts are sufficient-statistics for inference of collective behaviors.

However, CGM is limited in domains where individual policy and transition func-

tion of each agent are independent from others. We generalize this notion of the col-

10

lective representation with the count to multi-agent planning problems by proposing

what we term as the CDec-POMDP model, in which the transition and reward func-

tion of an individual agent depends on the collective behaviour of the population.

We show that in CDec-POMDPs, we can marginalize joint trajectory of agents into

the count variables. In addition, we show the count variables are sufficient statis-

tics for planning in CDec-POMDP. This means that we can write the global value

function in CDec-POMDPs as a function of count variables and we can optimize

the objective value of CDec-POMDPs by changing parameters of the collective dis-

tribution of the count variables. The collective distribution of the count variables

provides a fast simulation of the collective system by sampling the counts instead

of sampling individual trajectories. This lays the foundation for latter development

of efficient planning algorithms using this count representation.

1.2.2 Collective reinforcement learning algorithms

Main research challenge: Due to the complexity of joint trajectory in multi-agent

systems, many current multi-agent reinforcement learning (MRL) algorithms are

only evaluated in small domains with few agents [58, 120, 30, 31]. We want to

exploit the compact representation with the count variables to develop count-based

multi-agent reinforcement learning algorithms scalable to large populations. The

main research challenge in designing such algorithms is how to estimate the credit

(as numeric representation of the role) of each individual action to the total reward

of the system. The credit provides the local feedback for each agent to update

its policy accordingly. In CDec-POMDPs, we have to compute the credit from

collective variables instead of the joint trajectories as in the MRL literature.

Technical contributions: Our algorithmic contributions are in development of

count-based MRL algorithms using local reward signal and count-based MRL algo-

rithms using global reward signal.

To use local reward signals to train decentralized policy, we propose fictitious play

11

based algorithms using the count representation in CDec-POMDPs. We show that

the individual value function can be estimated by sampled values of the counts and

average rewards. Then we show that we can aggregate policy updates of agents with

same state-action into a count-based policy gradient computation. Similar to other

fictitious play based algorithms [133], due to the properties inherited from fictitious

play, our solution can be also considered as an approximation to the equilibrium in

the non-cooperative setting.

When local reward is not available, we train the critic (the value function approx-

imator) by the global reward. Then to compute the gradient of the decentralized

policy, instead of directly using the global critic, we use its first order Taylor approx-

imation. By showing that first order Taylor approximation of the critic is factored

amongst agents, we propose an efficient policy gradient computation.

Area Contributions Main techniques
Representation for col-
lective planning

Representing collective
planning problems us-
ing the count CDec-
POMDPs[78, 76]

Collective distribution
and sufficient statistics
of the count

Collective reinforce-
ment learning algo-
rithms

Scalable collective
factored policy gradient
methods [76, 77]

Fictitious play, ex-
changeability theorem,
Taylor approximation

Table 1.1: Summary of contributions in collective multi-agent decision making

The relation between the components in our framework is demonstrated by the

diagram in Figure 1.4. Two new classes of RL algorithms, one with local reward and

another with global reward, are proposed based on the factorization form of actor

and critic function in CDec-POMDP. The whole framework is developed based on

the novel count representation in collective planning.

12

Count Representation of Collective Planning

Collective Factored Actor Critic

Learnt with
local reward signal

(fictitious play)

Learnt with
global reward signal
(partial differentials

of the critic)

Figure 1.4: Summary of Framework

1.3 Thesis structure

The structure of my thesis is shown in Figure 1.5. After the introduction, in Chap-

ter 2, we formulate the CDec-POMDP model and propose the new representation of

CDec-POMDP planning problems using the count variables. In Chapter 3, we intro-

duce collective graphical model (CGM) as a predecessor of our CDec-POMDP. We

discuss the connection between collective planning in CDec-POMDP and collec-

tive inference in CGM. In Chapter 4, we define collective multi-agent reinforcement

learning problems and the related works in multi-agent reinforcement learning liter-

ature. We highlight a major challenge in multi-agent reinforcement learning which

is the credit-assignment for joint action. To address credit-assignment in collective

planning domain, in Chapter 4, we show the factorization of collective policy gradi-

ent. The factorization of collective policy gradient is the principle we use to derive

collective reinforcement learning algorithms based on local rewards in Chapter 5

and global rewards in Chapter 6. We summarize the main ideas of the thesis and

propose future directions in Chapter 7.

13

Introduction (1)

Collective Models and Representation (2)

Collective Graphical Models (3)

Collective Multi-agent Reinforcement Learning (4)

RL with Lobal Rewards (5) RL with Global Rewards (6)

Figure 1.5: Chapter dependencies. Included in (·) are chapter numbers with hyper-
link.

14

Chapter 2

Representation of Collective

Planning

In this chapter, we introduce the collective decentralized (PO)-MDPs (CDec-

POMDP) framework to model multi-agent systems (MAS) where the transition and

reward of each individual agent depends on the number (count values) of agents

in different local states. First, we show examples of CDec-POMDPs in different

multi-agent domains, e.g. taxi supply-demand matching, grid navigation, and pa-

trolling (in Section 2.1). Then we formally define the CDec-POMDP model in

Section 2.2. In Section 2.3, we show that count variables are sufficient statistics for

planning in CDec-POMDPs. It implies that we can re-write the value functions of

a CDec-POMDP with respect to count variables instead of state-action trajectory of

agents. By developing the collective distribution of the counts, we propose an effi-

cient count sampling procedure to simulate the dynamics of the collective system in

Section 2.3.1.

15

2.1 Motivation

2.1.1 Taxi Supply Demand problem

We now present a motivating application for CDec-POMDPs based on the taxi

supply demand problem in a zonal city. This is based on the problem introduced

in [133]. Figure 2.1 shows the map of Singapore divided into different zones. Our

objective is to optimize taxi agent policies to maximize the total profit of the taxi

fleet. Such a setting is useful in the case of autonomous taxi fleet operations for

revenue maximization. We next describe a taxi agent’s decision making process.

At time t, a taxi agent observes its current location in a zone z and also the count

of other taxis in zone z. The agent has two actions: decide to stay in the zone to

look for passengers or move to another zone (one of 80 other zones). If the agent

stays in the current zone, its probability of picking up a passenger is dictated by

the ratio between the current demand and the count of other taxis in the zone. If

the demand is higher than the number of taxis, then the agent picks up a passenger

with a probability close to 1, else the probability is smaller than 1 (based on the

ratio of taxis and the current demand). If the agent picks up a passenger, it moves to

the passenger’s intended destination. Such transition probabilities can be encoded

into the transition function of the CDec-POMDP. The reward an agent gets upon

picking a passenger is the total profit of the trip (trip payment minus the fuel cost of

moving). If the drive moves to another zone (without a passenger), it incurs the fuel

cost for moving.

In this domain, the reward and transition function of each taxi agent is defined

by the aggregate count value rather than some specific identity.

16

Taxi Fleet Optimization

Zone z

Where to next?

Figure 2.1: Taxi navigation in zonal map.

2.1.2 Goal oriented robot navigation

Another domain studied in this thesis is the goal oriented robot navigation. This

domain is known as Grid World Problem [118] and has been a testbed for many

reinforcement learning algorithms including MAS planning [132, 66]. In this do-

main, a team of robots try to move in a grid map toward some goal locations. A goal

can be representative of a victim in a disaster rescue scenario or some object to be

picked-up in a transportation task. Figure 2.2 shows an example of 3 robots trying

to reach a single goal in a 4⇥ 4 grid. A robot receives a constant reward whenever

it reaches the goal. Corridors in the grid are narrow, so when there are many robots

crossing the same corridor, the transition probability for each robot being able to

reach the next location drops dramatically. In other words, the transition function of

each robot depends on the number of robots taking the same corridor. In this goal

oriented domain, the objective is to maximize the number of times robots reach the

goal.

2.1.3 Police Patrolling

We consider the police patrolling problem introduced in [21]. A team of homoge-

neous police personnel are stationed in predefined geographic regions to be ready

to respond to incidents. A central communications command unit is responsible for

receiving emergency calls and dispatching police cars. Responding cars are cho-

17

Up RightLe
ft

Dow

Stay

Actions to decide

Location

Narrow corridor
Goal

Figure 2.2: Robot navigation toward single goal (red location).

sen to minimize the travel time to the incident location. A police car dispatched to

attend an incident would only come back to their locations after a certain of time

including traveling and engagement time. When some car leave their stations in

critical zones to go to incidents, it is necessary for free police cars in nearby sta-

tions to re-allocate to be able to quickly respond to impending emergency. Instead

of a centralized police re-allocation, we consider autonomous police agents with

a decentralized policy to make decisions on their stations in each decision epoch.

An urgent incident is required to be attended within 10 minutes and a non-urgent

incident is needed to be attended within 20 minutes. We want to optimize the de-

centralized patrolling policy to minimize number of unsatisfied incidents. To model

this objective, we consider the penalty -10 whenever the response time requirement

of an incident is not met and 0 otherwise.

Similar to the zonal setting in the taxi domain, we also consider a finite number of

locations where police presence can be. However, different from the taxi and robot

navigation domains, the number of active agents to make decision is not constant. In

other words, only free agents are able to move to new locations. Busy agents would

have to come back from all assigned incidents before changing stations. To model

this problem with CDec-POMDPs, we extend the local state space of an agent by

including the time it would take to become free.

18

2.2 Collective Decentralized POMDP (CDec-

POMDP) framework

Table 2.1: Table of Notation

M , Number of agents
m , Agent m
H , Planning horizon
S , State space of an agent
A , Action space of an agent

smt 2 S , State of agent m at time period t
st = hsmt im , Joint state of all agents at time period t

amt 2 S , Action of agent m at time period t
at = hamt im , Joint action of all agents at time period t

dt 2 D , Global state component at time period t, e.g to model taxi
demand or victim location

omt 2 S , Local observation of agent m at time period t including cur-
rent local state smt = i of the agent and its local view of the
global state

Imt (i)2{0, 1} , if agent m is at state i at time t or smt = i
Imt (i, j)2{0, 1} , if agent m takes action j in state i at time t or (smt , amt) =

(i, j)
Imt (i, j, i0)2{0, 1} , if agent m takes action j in state i at time t and transitions

to state i0 or (smt , amt , smt+1) = (i, j, i0)
ns
t(i)2 [0;M] , Number of agents at state i at time t

nsa
t (i, j)2 [0;M] , Number of agents at state i taking action j at time t

nsas0
t (i, j, i0)2 [0;M] , Number of agents at state i taking action j at time t and

transitioning to state i0 at time t+ 1
ns
t , Count table (ns

t(i) 8i2S)
nsa
t , Count table (nsa

t (i, j) 8i2S, j2A)
nsa
t (i) , Count table (nsa

t (i, j) 8j2A)
nsas0
t , Count table (nsas0

t (i, j, i0) 8i, i02S, j2A)
nsas0
t (i, j) , Count table (nsas0

t (i, j, i0) 8i02S)
o(i, ns

t, dt) , Local observation of agent m regard to global count ns
t

when it is at state i at time period t
⇡m
t (j|i, o(i, ns

t, dt)) , Probability of agent m taking action j 2 A at state i 2 S,
time t given local observation o(i, ns

t, dt).
�m
t

�
i0|i, j, ns

t

�
, Transition probability of agent m from state i after taking

action j to state i0 conditioning on global count ns
t.

r(st,at, dt) = r(nsa
t , dt) , Global reward of system given the joint state-action input

(st,at, dt) .

19

We now formally define CDec-POMDP as a class of decentralized multi-agent

model where agent transition and reward functions are dependent on only the ag-

gregate variables. In CDec-POMDP, the identity of an agent is not important and

can be marginalized out with the counts. The framework of CDec-POMDP consists

of the following:

• A finite planning horizon H .

• The number of agents M . An agent m can be in one of the states in the state

space S. We denote a single state as i 2 S.

• A set of action A for each agent m. We denote an individual action as j 2 A.

• st,at denote the joint state and joint action of agents at time t

• We consider a global state component d 2 D. The joint state space is

⇥M
m=1S ⇥D.

• Let (s1:H , a1:H)m=(sm1 , a
m
1 , s

m
2 . . . , smH , a

m
H) denote the complete state-action

trajectory of an agent m. We denote the state and action of agent m at time t

using random variables smt , amt . Different indicator functions It(·) are defined

in Table 2.1. We define the following count given the trajectory of each agent

m 2M :

– nsas0
t (i, j, i0)=

PM
m=1 Imt (i, j, i0) 8i, i02S, j2A

– nsa
t (i, j) =

PM
m=1 Imt (i, j) 8i 2 S, j 2 A

– ns
t(i) =

PM
m=1 Imt (i) 8i 2 S

As noted in Table 2.1, count nsa
t (i, j) denotes the number of agents in state i

taking action j at time step t; other counts are interpreted analogously. We

denote count tables as ns
t = (ns

t(i) 8i2S) and nsa
t =(nsa

t (i, j) 8i2S, j2A);

table nsas0
t is defined analogously for the time step t as shown in Table 2.1.

20

• We assume a general partially observable setting wherein agents can have

different observations based on the collective influence of other agents. An

agent observes its local state smt . In addition, it also observes omt at time t

based on its local state smt , the count table ns
t, and the global component dt.

E.g., an agent m in state i at time t can observe the count of other agents

also in state i (=ns
t(i)) or other agents in some neighborhood of the state i

(={ns
t(j) 8j 2 Nb(i)}). Without loss of generality, we consider the determin-

istic observation function o(i, ns
t, dt) outputting the same local observation for

all agents in the same state i. To handle stochastic case with different possible

observations in the same state, we can extend the state space to include the

observation oi which agent receives in a state. The state count is extended to

record the number nt(i, oi) of agents in a specific state i and receiving a same

observation oi.

• The local transition function of an agent m is Pl

�
smt+1|smt , amt , nsa

t , dt). The

transition function is the same for all the agents. Notice that it is affected by

nsa
t , which depends on the collective behavior of the agent population.

• The transition function of the global component d is Pg(dt+1|dt, nsa
t). Notice

that the global component is also affected by state-action count table.

• Each agent m has a non-stationary policy ⇡m
t (j|i, o(i, ns

t, dt)) denoting the

probability of agent m to take action j given its observation (i, o(i, ns
t, dt)) at

time t. We denote the policy over planning horizon of an agent m to be ⇡m =

(⇡m
1 , . . . , ⇡

m
H). When agents have the same policy, we denote the common

policy with ⇡.

• A reward rt = r(st,at, dt) = r(nsa
t , dt) is produced for each joint state-

action (st,at, dt). Notice that the reward function depends on the collective

variables nsa.

• Initial state distribution, bo = (P (i)8i 2 S), is same for all agents.

21

• Initial distribution over global component is bgo(d)8d.

In the CDec-POMDP model, agent identities do not matter; different model compo-

nents are only affected by agent’s local state-action, and a statistic of other agents’

states-actions. We define the global component d to model the external variable

besides agents’ local states. In taxi domain, d can be used to model passenger

demands. In patrolling domain, d can be used to model the victim or incident oc-

currence.

The joint-state transition probability is:

P (st+1, dt+1|st, dt,at) = Pg(dt+1|dt, nsa
t)·

MY

m=1

Pl

�
smt+1|smt , amt , nsa

t , dt
�

(2.1)

Such an expression conveys that only the statistic nsa
t of the joint state-action, the

global value d and an agent’s local state-action are sufficient to predict the agent’s

next state.

We assume a decentralized and partially observable setting in which each agent

receives only a partial observation about the environment. Let the current joint-state

be (st, dt) after the last join-action, then the local observation for agent m is given

using the function ot(smt , dt, n
s
t). Agents in different states will get different partial

observation about the environment. An agent decides its action am based on its local

observation as ⇡

We consider a general definition of the function r(st, dt,at). In domains like

taxi navigation, this reward can be decomposed into a sum of local rewards of agents

r(st, dt,at) =
P

m r(smt ,a
m
t , dt, n

sa
t) where r(smt ,am

t , dt, n
sa
t is the local reward for

individual agent m, which depends on the agent’s local state-action and collective

variables. Given that the reward function is the same for all the agents, we can fur-

ther simplify it as
P

i,j n
sa
t (i, j)r(i, j, dt, nsat), where nsa

t (i, j) is the number of agents

in state i and taking action j given the joint state-action (st,at, dt). The algorithms

22

local observations

local states

local actions

state-action counts

external variables

state counts

m = 1 : M
om1 om1

rTsm1 sm2

am2am1

smT

amT

om2

nsa
2

ns
t

ns
2

dT

nsa
1

d2

nsa

T

ns
T

d1

Figure 2.3: DBN for T-step reward for CDec-POMDP with external variables

for decomposable rewards are studied in Chapter 5 and ones for non-decomposable

rewards are studied in Chapter 6 later.

The dynamic Bayesian Network (DBN) for reward collected at T thstep in CDec-

POMDP is demonstrated with plate notation in Figure 2.3.

Agent type: The above defined model components can also differentiate among

agents by using the notion of agent types, which can be included in the state space.

In the extreme case, each agent would be of a different type representing a fairly

general multiagent planning problem. However, the main benefit of the model lies

in settings when agent types are much smaller than the number of agents.

Policy and value function: We consider a finite-horizon problem with H time

steps. Each agent has a non-stationary reactive policy that takes as input agent’s

current state i and the observation o, and outputs the probability of the next action j

as ⇡m
t (j|i, o). Let ⇡=h⇡1, . . . , ⇡Mi denote the joint-policy.

In CDec-POMDPs, we consider the goal to find the homogeneous policy ⇡ to

maximize the total rewards over planning horizon H

max
⇡

V (⇡)=
HX

t=1

E[rt|bo, bgo, ⇡] (2.2)

23

Average flow approximation

Our model is motivated by the decentralized stochastic planning model (D-

SPAIT) for anonymous agents proposed in [131], and the framework of congestion

games [68]. In our work, we explicitly model the distribution over counts n(·) of

individuals and use this distribution as the basis for planning. In contrast, the D-

SPAIT model is based on the concept of approximating the planning problem using

expected counts of agents. Intuitively, if E[f(n)] denotes the planning objective

over counts n, then D-SPAIT model approximates this objective as f
�
E[n]

�
. Table

2.4a show the computation of such average flow; xst(i) denotes the expected num-

ber of agents in state i at time t and Figure 2.4b shows DBNs for D-SPAIT model.

Computing policies based on such average flow leads to inaccurate estimation of

the true objective function and lower quality policies, as we also demonstrate em-

pirically.

xs1(i) = M ⇥ P (i), 8i 2 S

xstat(i, j) = xst(i)⇥ ⇡(j|i, xst(i)) 8i 2 S, j 2 A

xst+1(i
0) =

X

i,j

xstat(i, j)�t(i
0|i, j, xst(i)) 8i0 2 S

(a) Average approximation of agent flow in D-SPAIT model

x2 RTxTx1

(b) Deterministic Markov chain for T-step reward

Figure 2.4: D-SPAIT model

2.2.1 Policy representation

The benefit of models such as D-SPAIT and CDec-POMDPs lies when the agent

population is large, and the agent identity does not affect the reward or the transition

function. E.g., in the taxi fleet operation optimization problem discussed earlier

24

such aggregate interactions occur. Given a large number of taxis (⇡ 8000), it is

infeasible to compute a unique policy for each taxi. Therefore, similar to the D-

SPAIT model, our goal is to compute a homogenous policy ⇡ for all the agents. As

the policy is dependent on counts nt, it allows for an expressive class of policies.

We define an open loop policy as a policy where action selection only depends on

the current local state of the agent without any dependence on the count information.

In a closed loop policy, action selection depends on counts also in addition to the

agent’s local state. Our proposed model free algorithm developed in the following

sections can train both open and closed loop policies, whereas previous average

flow based approaches are limited to open loop policy optimization.

Neural network policy

The complexity of closed loop policy would quickly increase when agent observa-

tion omt (i,n
s
t, dt) include not only the count of its current location ns

t(i) but neigh-

boring locations {ns
t(j)}j2N(i). In this case, we can consider the policy function to

be neural network ⇡m
t : Om

t ! ⌦(A) which takes the input to be possible observa-

tion vector omt 2 Om
t and output the action probability ⇡m

t (o
m
t) = h⇡m

t (j|omt)ij2A 2

⌦(A) with ⌦(A) to be the probability space where
P

j2A ⇡m
t (j|omt) = 1. To en-

sure the output of policy function to be valid probabilities, we consider the common

technique to apply the soft-max normalization for output z = hzjij2A

�(z)j =
exp(za)P

j02A exp(zj0)

An example of a simple policy function is illustrated in Figure 2.5. .

25

z1

omt

z|A|

zj �(z)j

�(z)1

�(z)|A|

Figure 2.5: Simple policy function in which each zj = ✓j ⇥ omt is a linear transfor-
mation of the input omt and the output is the soft-max normalization. This is known
as shadow or no-hidden layer neural network.

2.3 Count-based representation of CDec-POMDP

We now establish several basic properties of the CDec-POMDP model. For a fixed

population M , let (s1:T ,a1:T) = {(s1:T ,a1:T)m 8m} denote the state-action tra-

jectories of different agents sampled from the DBN in Figure 2.3. Let n1:T={(ns
t,

nsa
t , n

sas0
t 8t= 1 : T} be the combined vector of the resulting count tables for each

time step t. We first show that this combined vector is sufficient statistics in CDec-

POMDP.

Theorem 2.1. Count tables n1:T are the sufficient statistic for a sample of M state-

action trajectories from the CDec-POMDP graphical model in Figure 2.3.

Proof. Let (s1:T ,a1:T , d1:T) denote the joint trajectory. The joint-distribution

P (s1:T ,a1:T , d1:T ; ⇡) is defined as:

= bgo(d)
T�1Y

t=1

Pg(dt+1|dt, nsa
t)

MY

m=1

Y

i2S

P (i)I
m

t
(i)

T�1Y

t=1

Y

i,j,i0


⇡t(j|i, o(i, ns

t, dt))
Im
t
(i,j)

Pl(i
0|i, j, nsa

t , dt)
Im
t
(i,j,i0)

�Y

i,j

⇡T (j|i, o(i, ns
T , dT))

Im
t
(i,j)

�

We can simplify the above expression by grouping together terms from all the

26

agents. The resulting expression f(n1:T , d1:T ; ⇡) depends only on counts n1:T as:

f(n1:T , d1:T ; ⇡)

=bgo(d)
T�1Y

t=1

Pg(dt+1|dt, nsa
t)
Y

i2S

P (i)n
s

1(i)
T�1Y

t=1

Y

i,j,i0


⇡t(j|i, o(i, ns

t, dt))
nsa
t
(i,j)

Pl(i
0|i, j, nsa

t , dt)
nsas

0
t

(i,j,i0)

�Y

i,j

⇡T (j|i, o(i, ns
T , dT))

nsa
t
(i,j) (2.3)

Thus, count tables n1:T are the sufficient statistic for the population sample as the

joint-probability P (s1:T ,a1:T , d1:T ; ⇡) is a function of counts n1:T .

We next define a distribution directly over the count tables n1:T as below:

Theorem 2.2. The distribution P (n1:T , d1:T ; ⇡) is defined as:1

P (n1:T , d1:T ; ⇡) = h(n1:T)f(n1:T , d1:T ; ⇡) (2.4)

where f(n1:T , d1:T ; ⇡) is given in (2.3). The function h(n1:T) counts the total num-

ber of ordered M state-action trajectories with sufficient statistic equal to n, given

as:

h(n1:T)=
M !Q
i n

s
1(i)!

T�1Y

t=1

Y

i2S


ns
t(i)!Q

j2A nsa
t (i, j)!

nsa
t (i, j)!Q

i02S n
sas0
t (i, j, i0)!

�

⇥
Y

i2S


ns
T (i)!Q

j2A nsa
T (i, j)!

�
I[n1:T 2 ⌦1:T] (2.5)

(2.6)

27

Set ⌦1:T is the set of all allowed consistent count tables as:

X

i2S

ns
t(i)=M 8t ;

X

j2A

nsa
t (i, j)=ns

t(i) 8j, 8t (2.7)

X

i0

nsas0

t (i, j, i0)=nsa
t (i, j) 8i 2 S, j 2 A, 8t

X

i,j

nsas0

t (i, j, i0)=ns
t+1(i

0) 8i0 2 S, 8t (2.8)

Proof. For any invalid count values n1:T /2 ⌦1:T , there is no realization of joint

trajectory possessing the invalid count.

We prove the expression for n1:T 2 ⌦1:T as follows :

P (n1:T , d1:T ; ⇡) =
X

hs1:T ,a1:T i⇠n1:T

P (hs1:T ,a1:T i)

=
X

hs1:T ,a1:T i⇠n1:T

f(n1:T , d1:T ; ⇡) (2.9)

= h(n1:T)f(n1:T , d1:T ; ⇡). (2.10)

We prove the expression (2.5) for h(n1:T) by induction:

• When T = 1, (2.5) holds as h(n1) =
M !Q

i,j
nsa1 (i,j) is the total number of combi-

nations to assign M individuals to |S|⇥ |A| possibilities of state-action. The

h(n1) is equivalent to multinomial coefficient of distribution of M individuals

to |S|⇥ |A| possibilities.

• Assume that (2.5) holds for T . Given a joint trajectory s1:Ta1:T satisfying the

count table n1:T , the total number of possible joint value sT+1aT+1 satisfying

the count table nT+1 is

⇣ Y

i2S,j2A

nsaT (i, j)!Q
i02S nsas

0
T (i, j, i0)!

⌘⇣Y

i2S

nsT+1(i)!Q
i02S,j2A nsaT+1(i, j)!

⌘
(2.11)

28

Notice that in (2.11), each expression of i 2 S in first term is a multinomial

coefficient of distribution of nsa
T (i, j) individuals into |S| possibilities of next

state i0 to satisfying the count
�
nsas0
T (i, j, i0), 8i0

�
; similarly, each expression

of i 2 S in second term is a mutinomial coefficient of distribution of ns
T+1(i)

individuals in state i at time step T + 1 into |A| possibilities of action j.

Multiplying (2.11) with h(n1:T) shows that the expression of h(n1:T+1) as

in (2.5) holds for T + 1, which completes the proof.

One corollary of theorem 2.2 is we can decompose the collective distribution of

the count variables as

Corollary 2.1. The collective distribution can be represented by

P (n1:T , d1:T ; ⇡) = P (nsa
T | ns

T , dT)b
g
o(d)P (ns

1)
Y

t=1:T�1

Pg(dt+1|dt, nsa
t)P (nsa

t | ns
t, dt)P (nsas0

t | nsa
t , dt)I[n1:T 2 ⌦1:T],

in which

P (ns
1) =

M !Q
i n

s
1(i)!

Y

i2S

bo(i)
ns1(i) (2.12)

P (nsa
t | ns

t, dt) =
Y

i2S

⇣ ns
t(i)!Q

j2A nsa
t (i, j)!

Y

j2A

⇡t(j|i, o(i, dt, ns
t))

nsa
t
(i,j)
⌘

(2.13)

P (nsas0

t | nsa
t , dt) =

Y

i2S,j2A

⇣ nsa
t (i, j)!Q

i02S n
sas0
t (i, j, i0)!

Y

i02S

Pl(i
0|i, j, nsa

t , dt)
nsas

0
t

(i,j,i0)
⌘

(2.14)

The Bayesian graphical model of the collective distribution is shown in Figure

2.6.

29

d2d1 dT

ns

1

nsa

1

ns

2

nsa

2

ns

T

nsa

T

nsas
0

1 nsas
0

2

Figure 2.6: Generative model of the counts in CDec-POMDP

2.3.1 Count Sampling Process

Originally, as a summary of joint trajectory, the count variables are obtained by

aggregating values of individual variables. However, sampling individual values

would be computationally expensive in large populations. Fortunately, the collec-

tive distribution of the counts shown in corollary 2.1 can provide us a way to directly

sample the count values instead of aggregating the individual variables. As genera-

tive model of the count is a Bayesian network (in Figure 2.6), we can generate the

values of the counts by forward sampling from state-count to action count and then

transition count.

Algorithm 1 provides the pseudo code to generate the count samples for H time

periods. The state count in the first period is sampled by the multinomial distribu-

tion with a population size to be M and probabilities to be the initial distribution

bo (line 2). At each time period t, we sample action counts for agents at each lo-

cal state i by multinomial distribution with population size ns
t(i) and probabilities

⇡t(j|i, o(i, ns
t, dt)) (line 5). Analogously, to simulate the effect of the joint action

counts into the environment, we can sample the transition count for agents tak-

ing action j from the local state i by multinomial distribution with population size

nsa
t (i, j) and probabilities Pl(i0|i, j, nsa

t , dt) (line 6).

30

Algorithm 1: Collective Sampling Algorithm
1 Algorithm C-SAMPLING()
2 Sampling ns1 ⇠ Mul(M, bo)
3 Sampling d1 ⇠ b

g
o

4 for t 1 to H do
5 Sampling state-action counts: nsat (i, •) ⇠ Mul(nst(i),⇡t(•|i, o(i, dt, nst))),

8i 2 S

6 Sampling transition counts:
nsas

0
t (i, j, •) ⇠ Mul(nsat (i, j), Pl(•|i, j, nsat , dt)), 8i 2 S, j 2 A

7 Sampling external variables: dt+1 ⇠ Pg(•|dt, nsat)

8 Aggregate: nst+1(i
0) =

P
i,j n

sas0
t (i, j, i0), 8i0 2 S

9 return n1:H

2.3.2 Joint-Value Function

We next show that the joint-value for a given policy ⇡ also depends on the count

vector n. Thus, making counts as the sufficient statistic for planning in CDec-

POMDPs.

Theorem 2.3. The joint-value function of a policy ⇡ over horizon H given by the ex-

pectation of total rewards, V (⇡)=
PH

T=1 E[rT], can be computed by the expectation

over counts as:

X

n2⌦1:H

P (n1:H , d1:H ; ⇡)

 HX

T=1

rT (n
sa
T , dT)

�
(2.15)

Proof. Let sT and aT represent the joint-state and joint-action of all the agents at

the time step T ; ns
T and nsa

T represent the count vectors corresponding to (sT ,aT).

The immediate reward received for this joint-state and action is r(sT ,aT , dT) =

rT (nsa
T , dT).

We can compute the expectation of immediate reward received at time T as:

31

E[rT (⇡)]

=
X

(s1:T�1,a1:T�1,d1:T�1),sT

P (s1:T�1,a1:T�1, dT�1)P (sT |sT�1,aT�1)rT (sT , dT ;⇡)

(2.16)

using CDec-POMDP distribution, we have:

=
X

(s1:T ,a1:T ,d1:T)⇠n1:T ,d1:T

f(n1:T , d1:T)rT (n
sa
T , dT) (2.17)

Notice that in the above expression, the expected immediate reward at time step T

only depends on the counts nsa
T that arise from the joint state and action (sT ,aT).

Similar to equations (2.9) and (2.10), instead of summing over all the joint state-

action trajectories (s1:T ,a1:T , d1:T), we can sum over the space of all possible counts

vectors n1:T multiplied by the total number of joint trajectories satisfying the corre-

sponding counts vector n1:T , which results in the following expression:

E[rT (⇡)] =
X

d1:T

X

n1:T2⌦1:T

h(n1:T)f(n1:T , d1:T)

 X

nsa
T
⇠ns

T

P (nsa
T | nsa

T , dT)rT (n
sa
T , dT)

�

(2.18)

Using the above expression, the value function can be computed as:

V (⇡) =
HX

T=1

E[rT] =
HX

T=1

X

n1:T2⌦1:T ,d1:T

P (n1:T , d1:T)rT (n
sa
T , dT) (2.19)

Our goal in CDec-POMDP is to compute the policy ⇡ that maximizes (2.15).

Notice that the set of all the allowed counts ⌦1:H is combinatorially large, making

the exact policy evaluation infeasible. Therefore, our approach would be to use a

sampling based approach that can evaluate, and also optimize the policy ⇡.

Furthermore, we can define the joint state-action value function as a function of

32

joint state-action counts Q⇡
t (st,at, dt) = Q⇡

t (n
sa
t , dt) =

PH
T=t E[rT | nsa

t , dt]:

Theorem 2.4. The joint state-action value function in CDec-POMDP is defined by

Q⇡
t (n

sa
t , dt) = rt(n

sa
t , dt) +

X

nsas
0

t
,nsa

t+12⌦t+1,dt+1

P (dt+1| nsa
t , dt)

⇥ P (nsas0

t | nsa
t , dt)P (nsa

t+1 | ns
t+1 ⇠ nsas0

t , dt+1; ⇡)Q
⇡
t+1(n

sa
t+1, dt+1)

(2.20)

in which P (nsa
t | ns

t, dt), P (nsas0
t | nsa

t , dt) are defined in corollary 2.1. ⌦t+1 is the

subset of consistency constraints (2.7) linking counts for time t and t+1

Proof. We start by the general dynamic programming equation for MDP [117] with

notice rt = r(st,at, dt) = r(nsa
t , dt)

Q⇡
t (st,at, dt) = r(nsa

t , dt)

+
X

st+1,at+1,dt+1

P (st+1, dt+1|st,at, dt)P (st+1,at|st+1, dt+1; ⇡)Q
⇡
t+1(st+1,at+1, dt+1)

(2.21)

Using similar arguments as in the proof of theorem 2.2, we can aggre-

gate similar hst,at, st+1i by hns
t, n

sa
t , n

sas0
t i and consider induction hypothesis

Q⇡
t+1(st+1,at+1, dt+1) = Q⇡

t+1(n
sa
t+1, dt+1)

Q⇡
t (st,at, dt) = rt(n

sa
t , dt) +

X

nsas
0

t
,nsa

t+12⌦t+1,dt+1

P (dt+1| nsa
t , dt)

⇥ P (nsas0

t | nsa
t , dt)P (nsa

t+1 | ns
t+1 ⇠ nsas0

t , dt+1; ⇡)Q
⇡
t+1(n

sa
t+1, dt+1)

The right hand side of above equation is an expression over counts, which defines

Q⇡
t (n

sa
t , dt).

33

2.4 Related works

2.4.1 Count-based models

In many multi-agent systems (MAS), the transition and reward of each individual

in the population is affected by aggregate values rather than the identity of agents.

Among the most well-studied domains is the class of congestion games [68, 80],

in which the pay-off function of each agent is defined only by the number of other

agents traveling on the same edges. The congestion game has a wide range of

applications in modeling the delay cost of road traffic flow [112, 136], and latency

in package routing in communication network such as the Internet [95]. Besides the

aggregate-variable pay-off function, the state transition of each agent also can be

modeled as a function of aggregate values [131, 97, 113] . For example, in routing

problem, after executing a moving action, high congestion level (or high number of

agents presenting) in the same area could reduce the probability of agent arriving

the next zone [132]. Apart from the congestion game, aggregate-variable transition

functions are also defined in action graph games[47], in which the transition of

an agent depends on the aggregate value of its neighbors. In the disease control

domain, Robbel et al. [97] modelled the vulnerability to of a geological zone by the

number of its disease-infected neighbors . In riot control, Sonu et al. [113] studied

the protest intensity depending on the number of protestors and the number of police

troops presenting in a location.

Our application domains in goal-oriented robot navigation and taxi supply-

demand matching were studied previously by Varakantham et al. [131, 133]. We

consider our domain setting similar to the ones in [133, 131]. However, our count

variables provide the exact representation of CDec-POMDP while the average flow

is an approximate representation.

34

2.4.2 Mean-field game theory and average flow estimations

To deal with planning problems in large population of agents, researchers in the

current literature have been trying to estimate the planning problems with tractable

representation. One amongst these well-studied directions is the mean-field estima-

tion of population [146, 140] in continuous state-action space. Rooted in mean-field

theory in physics to estimate the distribution of individual particles in systems, the

mean-field methods quantify population behavior by the density function of dis-

tribution of agents over continuous spaces. It assumes each individual in a large

population has a very small impact on the global distribution. As a result, the dy-

namic of the population can be represented in the form of a differential equation

of continuous (flow of agents) variables. Examples of mean-field systems include

fish school, ant colonies or flocks of birds [15] in nature or swarm robotics in AI

[11, 103]. In domain of discrete state-action space, Varakantham et al. [133, 131]

explored a similar idea with mean-field by estimating average flows of agents into

each discrete state-action in a finite Markov Decision Process (MDP). By using

the average flow estimation, multi-agent planning problems are re-formulated as

network flow problems with non-linear flow splitting constraints induced from the

MDP transition function. Based on the average flow variables, Varakantham et al.

[133] proposed a individual value function estimation, which facilitated fictitious

play computation of the policy. In addition, as the average flow MDP has Varakan-

tham et al. [131] showed that the average flow MDP problem can be modeled and

solved by a mathematics programming. Average flow and mean-field methods are

empirically shown to achieve good results in some domains. However, it is worth

noting that these methods provide only an estimation of the original problem, and

this estimation can incur a high approximation error when the transition function is

highly non-linear.

35

2.4.3 Lifted inference

The sufficient statistics of the counts are exploited in probabilistic inference. Poole

[92] and Braz et al. [17] showed that the probabilistic inference problem in the

Markov Logic Network graphical model can be solved by reasoning on the count

variables instead of joint individual variables. This can be done by defining the

count distribution for each factor of the corresponding graphical model and apply-

ing a variable elimination to the count variables under the count distributions. As

the state space of count variables is much smaller than the original joint variables’,

performing exact inference with count variables is more tractable. The idea to “lift”

problems from joint variable representation to count representation is also consid-

ered to improve dynamic programming planning as shown in [97]. Specifically,

Robbel et al. [97] showed that if the Dynamic Bayesian Network is factorizable and

the state transition is function of the count. The value function can be re-written as

function of the count and the Bellman equation can be also re-written accordingly.

The count transition function is considered in many network diffusion domains [57]

such as disease outbreak where the probability for a node to be infected is dependent

on the number of its infected neighbors [97]. Although exact inference and plan-

ning operators have lower complexity under the count space, these operators are no

longer tractable in our CDec-POMDP. This is due to the dense connection between

local states and large population size in CDec-POMDP. Therefore, we approach the

collective planning problems in CDec-POMDP by reinforcement learning and use

a sampling based method rather than the exact lifted dynamic programming method

in the current research literature.

A closely related work to our CDec-POMDP model is the collective graphical

model (CGM) introduced by Sheldon and Dietterich [108]. CGM is used to model

the count distribution when agent behavior is modelled with an undirected tree-

structured graphical model. In the special case of CDec-POMDP where agents

move with open-loop policy and the state transition of each individual is inde-

36

pendent of other agents, the dynamics of CDec-POMDP can be modelled by a

chain-structured CGM. In general, a CDec-POMDP with closed-loop policy and

the transition-dependency induced by interaction amongst agents can not be mod-

elled by a CGM. Although the dynamics of CDec-POMDP is more complex than

CGM, the sampling process in CDec-POMDP is simpler than CGM because we

can sample the count by a forward sampling process based on CDec-POMDP’s

Bayesian network. More details of the relation between CDec-POMDP and CGM

are discussed in the next chapter.

2.5 Summary

We introduced CDec-POMDP as a framework to model the large population sys-

tems in which the transition and reward functions are represented by the counts. The

CDec-POMDP model has a wide range of applications in congestion domains and

logistics supply-demand matching domains. We showed one of the most important

properties of the CDec-POMDP model is that count variables are sufficient statistics

for planning. This allows us to lift the original planning model into a new planning

representation with the counts. In particular, we showed that both the global value

function and individual value function are functions of the counts. Moreover, by

showing the Dynamic Bayesian Network over the count, we proposed an efficient

method to directly sample the count from its collective distribution.

37

Chapter 3

Collective Graphical Model

In previous chapters, we have shown collective distribution over the counts of agents

in different states as a basis for multi-agent planning in CDec-POMDPs. In this

chapter, we introduce the collective graphical model proposed in [108] and discuss

the relationship between planning problem in a CDec-POMDP and inference prob-

lem in a collective graphical model.

Collective graphical model (CGM) proposed by Sheldon and Dietterich [108]

model the count statistics of a homogeneous population whose individual behav-

ior is modeled by a standard graphical model [108]. CGM is developed on the

assumption that agents behave independently from each other. This is more re-

strictive than our CDec-POMDP model where agents influence each other by their

collective behavior. However, CGM is more general than CDec-POMDP because

it can have tree-structureed representation. The CDec-POMDP can only model

chain-structured and directed graphical model. To unify our CDec-POMDP model

with its predecessor CGM, we define a generalized collective graphical model with

count-based potential function.

CGM is mainly used to study collective inference problems [108, 63, 78]. In

particular, given noisy observations of the node counts or edge counts for a CGM,

it is required to infer the underlying count table or estimate parameters of the CGM

38

model. Count inference and parameter estimation are co-related problems. Sheldon

et al. [107] showed that the parameter in a CGM can be estimated by a modified

Expectation Maximization algorithm which repeatedly finds the maximum likeli-

hood counts and uses such counts to update model parameters. As shown in the

literature, probabilistic inference and planning problem are co-related problems

[123, 101, 138], we discuss the relationship between the parameter estimation in

CGM with CDec-POMDP planning problems.

3.1 Collective Graphical Models

3.1.1 Motivation

Collective graphical models (CGMs) are a recently introduced formalism for in-

ference and learning about a population of independent and identically distributed

individuals when only noisy and aggregate observations are given [108]. In many

settings, such as in ecology, social sciences and transportation, data about each in-

dividual is rarely available due to privacy concerns or the difficulty of tracking each

individual over time. As an example, the eBird database1 contains observations

about the count of birds at different locations and time across the North American

region [106]. The data released by Census Bureau may contain count-based aggre-

gate information for privacy reasons. Similarly, the traffic data typically contains

noisy aggregate count of vehicles at different locations [71, 57]. In such scenarios,

CGMs can be used to model the individual-level behavior by doing inference and

learning based on the available noisy and aggregate data.
1http://ebird.org/

39

http://ebird.org/

3.1.2 Background

Collective graphical models (CGMs) describe the distribution of the aggregate

statistics of a population of individuals sampled from a discrete graphical model

(also known as the individual model). Let G = (V,E) denote a pairwise Markov

random field describing the individual model. Let X = (X1, . . . , X|V |) denote the

random variables associated with each node in G. The joint-probability is:

p(x;✓)=Pr(X=x;✓)=
1

Z(✓)

Y

(i,j)2E

�ij(xi, xj;✓) (3.1)

where �ij(·, ·;✓) is the potential function for the edge (i, j) in G defined as per the

parameters ✓; Z(✓) denotes the partition function. Let the domain of each variable

be denoted using X .

Consider i.i.d. samples {x1, . . . ,xM} drawn from the model G representing a

population of M individuals. We can define the counts or contingency tables for

this population as follows. Let ni=(ni(xi) :xi2X) represent the node counts, and

nij =
�
nij(xi, xj) : xi, xj 2 X

�
represent the edge counts for different edges. The

counts ni(xi) and nij(xi, xj) are defined as:

ni(xi)=
MX

m=1

I
�
X

m
i =xi

�
(3.2)

nij(xi, xj)=
MX

m=1

I
�
X

m
i =xi, X

m
j =xj

�
(3.3)

where I(·) denotes the indicator function.

3.1.3 CGM Distribution

We first describe the structure of the CGM distribution p(n;✓). The CGM distribu-

tion is defined over the junction tree T corresponding to the graph G. Each node t

of this tree is associated with a clique Ct✓V . Let C denote the set of all the cliques

40

for the tree T . If C and C 0 denote two adjacent cliques in T , then S = C \ C 0

denotes a separator. Let S denote the set of all the separators for this junction tree.

For any subset C ✓ V , and a particular assignment xC 2 X |C|, we can define the

counts nC(xC) analogous to the node and edge counts as:

nC(xC) =
MX

m=1

I
�
Xm

C =xC

�
(3.4)

Using counts nC(xC), we can define the contingency table nC similar to tables ni,

nij for nodes and edges of G. Let n = {nA : A 2 C [S} denote the combined

vector of clique and separator counts. The vector n is sufficient statistic of the pop-

ulation [63]. The distribution over this vector is denoted as the CGM distribution.

As shown in [63], the CGM distribution is given as p(n;✓)=f(n;✓)g(n) where

we have:

f(n;✓)=
1

Z(✓)M

Y

(i,j)2E

Y

xi,xj

�ij(xi, xj;✓)
nij(xi,xj) (3.5)

g(n)=M !

Q
S2S

Q
xS2X |S|

�
nS(xS)!

�⌫(S)
Q

C2C
Q

xC2X |C| nC(xC)!
(3.6)

where ⌫(S) denotes the number of times S appears as a separator or the number of

junction tree edges (t, t0) for which S=Ct \Ct0 . The distribution p(n;✓) is defined

over the following set of constraints:

X

xC2X |C|

nC(xC) = M 8C 2 C (3.7)

nS(xS) =
X

xC\S

nC(xS , xC\S) 8xS ; 8S ⇠ C 2 T (3.8)

where S ⇠ C 2 T implies that S is adjacent to C in the junction tree T . We

also have the constraint that n must be integer valued. Notice that the above two

sets of constraints are similar to the constraints defining the marginal polytope for

41

a graphical model [135]. The only difference being that the counts must sum to M

instead of 1, and counts must be integers.

A diagram of CGM of a tree model with 4 nodes is shown in Figure 3.1 using

plate notation. The undirected sub-graph inside in the plate m represents the relation

between variables Xm
1 , Xm

2 , Xm
3 , Xm

4 of individual m. The separator counts and

clique counts are computed by aggregating individual values.

separator counts

m = 1 : M

clique counts

Xm
2

Xm
3

n4n2

Xm
4

n1

Xm
1

n2,3

n3

n1,2 n2,4

Figure 3.1: Example of collective graphical model in a tree model with 4 nodes

3.1.4 Relation between CGM and CDec-POMDP

One of common application of CGM is to model animal migration or human move-

ment [108, 63, 78]. In such a domain, a geographical map is divided into sub-

areas and scientists would try to measure the counts of individuals in each sub-areas

over time. As a motivation, we consider the concrete domain of bird migration

[108, 63, 78] where a map is divided into a set Z of grid cells. We can model the

location of a bird m at time period t by node variable Xm
t taking value xt in Z. The

relation between locations of the bird from time period t to t+1 is usually assumed

to follow the Markov transition as �t,t+1(xt, xt+1) = P (xt+1|xt). We can model a

special instance of CDec-POMDP using a CGM as follows:

Proposition 3.1. In a CDec-POMDP with the individual transition function de-

pendent on only the previous local state and action as Pl(smt+1|smt , amt) and agents

42

follow open-loop policy ⇡(amt |smt), the CDec-POMDP can be modeled by a CGM.

Proof. We construct the CGM for this special case of CDec-POMDP by defining

CGM nodes to be smt for agent m’s local state at time t and amt for agent’s lo-

cal action at time t, 8t. The separators in this CGM are hsmt it and the cliques are

hsmt , amt , smt+1it. The clique potential is defined by

�t(s
m
t , a

m
t , s

m
t+1) = ⇡(amt |smt)Pl(s

m
t+1|smt , amt).

The plate notation diagram of this CGM is shown in Figure 3.2.

separator counts

clique counts

m = 1 : M

am1 am2

sm1 sm2 smT

amT

ns
1 ns

2

nsas’
1 nsas’

2

ns
T

Figure 3.2: Collective graphical model of a independent-transition and open-loop
policy CDec-POMDP.

Although a special instance of a CDec-POMDP can be modeled with CGM, its

CGM representation has not much benefit besides showing the relation between the

CGM model and the CDec-POMDP model. Advantages of CDec-POMDP over

CGM include: 1) CDec-POMDP can model the count-based transition and closed-

loop policy while CGM assumes independence between agents; 2) Multinomial

sampling process in CDec-POMDP with the directed graph is much easier than the

rejection sampling algorithm with Dobra Markov basis proposed by Sheldon and

Dietterich [108].

43

3.2 Collective inference in CGM

3.2.1 Noisy observation models

In application domains of CGM, the sufficient-statistics table n={nA : A 2 C[S}

are not fully observable but there are only some noisy observations about some sub-

set of the sufficient statistic n are provided. The most common noisy observations

in CGM are the node count observation table yi of the node counts ni and the edge

count observation table yij or the edge counts nij [78].

The probability p
�
y(·)|n(·)

�
is referred to as the noise model for the CGMs. The

typical noise model used for CGMs include the Poisson and the Gaussian noise.

It is usually assumed that p(y|n) is log-concave in n, which makes the negative

log-likelihood convex in n [78].

Given the count observations y, the main 2 inference problems in CGM are 1)

aggregate MAP inference to find the maximum likelihood n corresponding to y and

2) estimation of parameters ✓ of the potential function �.

3.2.2 Aggregate MAP inference

In the aggregate MAP inference, we are given noisy observations y about some

subset of sufficient statistic n. Our goal in this work is to find the best count vector

n that maximizes p(n|y;✓)/p(n;✓)p(y|n). That is:

n?=argmax
n

⇥
log p(n;✓) + log p(y|n)

⇤
(3.9)

To solve the above optimization problem, we first analyze the structure of

log p(n;✓) = log f(n;✓)+ log g(n), where p(·) is the CGM distribution. Using

definitions (3.5), (3.6), we have:

44

log f(n;✓) /
X

(i,j)

X

xi,xj

nij(xi, xj) log �ij(xi, xj) (3.10)

where we have ignored terms that are independent of n such as M logZ(✓). We

further have:

log g(n)/
X

S2S

X

xS

⌫(S) log
�
nS(xS)!

�
�
X

C2C

X

xC

log
�
nC(xC)!

�

As addressing integer counts n is challenging within an optimization framework

directly, we make an approximation by making counts n continuous, as also used

previously [107]. For continuous n, we can further use the Stirling’s approximation

as log n! ⇡ n lnn�n. Using these approximations, we can simplify log g(n) further

as:

log g(n) /⇠
X

S2S

X

xS

⌫(S)
⇥
nS(xS) log nS(xS)� nS(xS)

⇤
�

X

C2C

X

xC

⇥
nC(xC) log nC(xC)� nC(xC)

⇤

=
X

S2S

X

xS

⌫(S)nS(xS) log nS(xS)�
X

S2S

X

xS

⌫(S)nS(xS)

�
X

C2C

X

xC

nC(xC) log nC(xC) +
X

C2C

X

xC

nC(xC)

We can simplify the above expression by observing that as per constraints (3.7)

we have
P

xC
nC(xC) = M , and from constraints (2.8), we have

P
S nS(xS) =

P
xC

nC(xC)=M . Thus, we have the final simplified expression for log g(n) after

ignoring terms independent of n as below:

45

log g(n)/⇠
X

S2S

X

xS

⌫(S)nS(xS) log nS(xS)�
X

C2C

X

xC

nC(xC) log nC(xC)

Notice that the above expression subject to the constraints (3.7) and (3.8) is analo-

gous to the entropy of a graphical model, the only difference being that counts sum

up to M , rather than 1. We can now use the Bethe entropy [154] to approximate

this term, which is nicely decomposable along the nodes and edges of the individual

model G. We have the following approximation:

log g(n) /⇠
X

i2V

X

xi2X

�
⌫(i)� 1

�
ni(xi) log ni(xi)�

X

(i,j)2E

X

xi,xj

nij(xi, xj) log nij(xi, xj) (3.11)

where ⌫(i) denotes the degree of the node i in the graph G. The above ap-

proximation represents a significantly more tractable form of log g(n) as all the

terms are defined over the pairwise graph G, rather than the junction tree. Fi-

nally combining (3.10) and (3.11) and considering a factorized likelihood func-

tion p(y|n) =
Q

i

Q
xi
p(yi(xi)|ni(xi))

Q
ij p(yij(xi, xj)|nij(xi, xj)), we have the

approximate objective function of aggregate MAP inference as

APPROX(✓,y) : max
n

X

i2V

⇥
(1� ⌫(i))

X

xi

ni(xi)log ni(xi) + p(yi(xi)|ni(xi))
⇤

X

(i,j)2E

X

xi,xj

⇥
nij(xi, xj)[�ij(xi, xj)� log nij(xi, xj)] + p(yij(xi, xj)|nij(xi, xj))

⇤

(3.12)

The constraint set that each valid n must satisfy is given as:

46

ni(xi) =
X

xj

nij(xi, xj) 8j2Nbi, 8xi, 8i2V (3.13)

X

xi

ni(xi) = M, 8i 2 V (3.14)

The above set of constraints for CGMs are similar to the constraints that define the

local polytope for graphical models [135].

3.2.3 Parameter estimation

Given the observations y for a CGM, we can estimate the parameter ✓ by maximiz-

ing the likelihood function

max
✓

p(y|✓) =
X

n2⌦

p(y|n,✓) =
X

n2⌦

p(y|n)p(n|✓), (3.15)

in which the summation at the RHS is over the space of all feasible values of the

counts n satisfying count consistency constraints (3.7),(3.8).

The count variables have exponential-size space [107], which makes it infeasible

to compute the exact expectation in equation (3.15). Instead, an useful alternative

method is to use Expectation Maximization (EM) algorithm [24] to repeatedly max-

imize a surrogate objective

max
✓

Q(✓,✓?) = max
✓

p(y|✓?) log p(y|✓) = max
✓

X

n2⌦

p(y|n,✓?) log p(y|n,✓)

(3.16)

in which ✓ is the parameters to optimized, and ✓? is the parameters optimized in the

previous iteration and fixed in this current iteration. EM maximizes a lowerbound

of the likelihood function hence converges to a local optimum [75]. As noted in

[107], because the joint distribution p(·) of CGM is from an exponential family,

this EM objective function is simplified into maximization of log p(y|n̄,✓) with

47

n̄ = E✓? [n|y] . In general, this conditional expectation E✓? [n|y] is difficult to

estimate, Sheldon et al. [107] proposed to estimate it by solution n?
APPROX of the

aggregate MAP inference problem from solving the objective function (3.12).

3.2.4 Relation between CGM inference and CDec-POMDP

planning

Researchers have shown the relation between reinforcement learning problems and

probabilistic inference problems [138, 101]. In fact, MDP planning problems can

be cast as probabilistic inference problems and solved using probabilistic inference

algorithms such expectation maximization [123, 58]. We have shown in proposi-

tion 3.1 that CGM and CDec-POMDP in fact overlap in a special case of indepen-

dent transition. In this special case, CDec-POMDP problem can be modeled as

a collective inference problem in CGMs, consequently it can be solved by CGM

inference solvers.

Proposition 3.2. When the individual transition is only dependent on the previous

local state and action as Pl(smt+1|smt , amt) and agents follow the same open-loop

policy ⇡(amt |smt), the CDec-POMDP planning problem can be re-cast as an CGM

parameter inference.

Proof. Using proposition 3.1, we can represent the dynamic in CDec-POMDP by

a CGM nodes with a set of nodes hsmt , amt im,t for all agents over planning horizon.

Similar to Toussaint et al. [123], Kumar et al. [58], we can define a likelihood func-

tion by an auxiliary binary variables ŷ 2 {0; 1} to represent the reward received at

each time T by

p(ŷT = 1|nT , T) =
r(nsa

T)� rmin

rmax � rmin
,

in which rmax, rmin are the maximum and minimum values of the immediate re-

wards respectively.

48

Then we can re-interpret the planning objective function E[
PH

T=0 rT] as a maxi-

mization of a mixture of likelihood over time as

max p(ŷ|✓) =
HX

T=0

p(T)
X

n1:T2⌦

p(ŷT = 1|nT , T)p(n1:T |✓),

in which mixture weight p(T) = 1/H .

3.3 Related works

The count inference was first proposed as the MAP inference for CGMs by Shel-

don et al. [107] as a sub-step for parameters learning [107] within the EM frame-

work [24]. Since then, there are a number of approaches proposed for inference

in CGMs [108, 107, 63, 114]. Sheldon et al. develop a continuous convex relax-

ation of the MAP inference problem formulated over the junction tree derived from

the individual model, and solve it using a generic optimization solver. Liu et al.

develop a Gaussian approximation for CGMs and use Expectation-Propagation for

inference. Sun et al. generalize the well known belief propagation algorithm [89] to

nonlinear belief propagation (NLBP) for CGMs.

There is a close relation between MAP inference in CGMs and probabilistic in-

ference in standard graphical model [49, 135]. In particular, the marginal count

constraint and likelihood function of the count variables are equivalent to marginal

probability constraint and posteriori probability function in probability inference

[49]. This relation between count inference and probability inference was also no-

ticed previously when Liu et al. [63] and Sun et al. [114] adopted belief propagation

methods into count inference problem. This motivates us to consider other tech-

niques from standard probabilistic inference, namely Bethe entropy approximation

[154] and the concave-convex procedure (CCCP) [156, 155], to develop approxi-

mate solution for high tree-width MAP inference in CGMs.

49

3.4 Summary

In this chapter, we showed the relation between CGM inference problems and

CDec-POMDP planning problems.

The collective inference problem was introduced by Sheldon and Dietterich

[108] to infer the underlying counts from the noisy observation of the counts. To

solve the collective inference problem, Sheldon and Dietterich [108] constructed

a collective graphical model (CGM) of the counts as a lifted representation of the

population. The CGM model considers agents having transition function indepen-

dent from each other. In our CDec-POMDP model, agents are interacting with each

other and their transition functions are interdependent through the collective behav-

ior (the counts). However, we showed that our planning model and CGM overlap in

the case of independent transition and open-loop policy. Furthermore, in this special

case, the objective function in collective planning and can be re-cast as a likelihood

function in CGM.

Although we can model a special instance of CDec-POMDP planning as CGM

inference problem, this is shown only for demonstrating the relation between CDec-

POMDP and CGM. In general, sampling process for the directed graphical model

in CDec-POMDP is more efficient than rejected sampling procedure in CGM.

50

Chapter 4

Collective Multi-agent Reinforcement

Learning Framework

In this chapter, we present general frameworks to optimize agent policies individual

policy in CDec-POMDP model. First, we study the model-based approach by show-

ing the dynamic program for CDec-POMDPs as a special case of DEC-POMDPs.

We show that we can reformulate the dynamic programming in CDec-POMDP

by using the counts which have lower complexity than the dynamic programming

over joint state-action. Unfortunately, the lifted dynamic programming algorithm

in CDec-POMDP still has exponential time complexity with respect to the number

of states and actions. This motivates us to develop sampling-based planning algo-

rithms using reinforcement learning in CDec-POMDPs. To establish the basis for

efficient RL algorithms, we study decomposition of the critic and the decomposition

of policy gradient in CDec-POMDPs. For the critic decomposition, we show that

the compatible value function approximation (or critic) in CDec-POMDP is decom-

posable amongst agents. For the actor decomposition, we show that if the critic is a

linear function of the action counts, the policy gradient is decomposable. We show

that the decomposition of actor and critic functions in CDec-POMDP also addresses

the credit-assignment in MRL problems, therefore it can be used to design effective

51

CDec-POMDP algorithms with fast convergence to high quality solutions.

4.1 Multi-agent Planning Model

4.1.1 Multi-agent Dec-POMDP

Similar to [12, 58], we define a standard multi-agent decentralized partially obser-

vation Markov Decision Process (Dec-POMDP) by

• A finite planning horizon H .

• S denotes a finite set of states with initial distribution bo.

• The number of agents M .

• A set of action Am for each agent m. We denote an individual action as

jm 2 Am. The joint action space is A = ⌦M
m=1A

m.

• A finite set of observation Y m for each agent m.

• The observation model for each agent m is defined by the probability

om(ymt+1|st,at, st+1) agent m observes ymt+1 given the global states st, st+1

and joint action at.

• The transition function �t

�
st+1|st,at

�
to be the probability the system tran-

sits to new state st+1 from state st+1 and joint action at, 8st, st+1 2 S,at 2

A.

• The whole system receives the reward r = r(st,at) dependent on global state

st and joint action at.

52

Reactive policy

The reactive policy of an agent m is defined by a function ⇡m
t (j

m|ym) 2 [0, 1] to be

the probability of agent m to take action jm given its observation ym at time t. The

reactive policy is only dependent on the last observation.

Finite state controller (FSC) policy

As shown for Dec-POMDPs in [12], the optimal action of an agent m at time t

depends on its observation and action history (am1 , o
m
1 , . . . , a

m
t�1, o

m
t�1). However,

this would require agent to exhaustively maintain a large memory space to store

optimal actions for all possible history. To overcome this, we can summarize history

with a finite internal memory state qm 2 Qm. To use the finite state controller, policy

function is extended to consist of 2 components: an action distribution ⇡m(jm|qm)

to generate action based on the local memory state, and a memory state transition

function �m(qmt+1|ymt+1, q
m
t) to specify the next memory state given the last memory

state and local observation. Reactive policy could be considered as a special FSC

policy with memory state to be identical with the local observation.

We denote the joint memory state to be q 2 Q = ⌦Qm, the joint action to be

hjmt im, the joint memory state to be hqmim. The value function of FSC policy can

be defined by the dynamic programming equation as in [58]

Vt(qt, st)

=
X

hjm
t
im2A

�Y

m

⇡m(jmt |qmt)
�h
r(st,at) +

X

st+1

P (st+1|st, hjmt im)
X

yt+1

X

<qm
t+1>m

�Y

m

om(ymt+1|st,at, st+1)�
m(qmt+1|ymt+1, q

m
t)
�
V (hqmt+1im, st+1)

i

(4.1)

53

4.1.2 CDec-POMDP as Lifted DEC-POMDP

Based on the definition of the CDec-POMDP model in previous Section 2.2, we can

consider CDec-POMDP as a special case of Dec-POMDP with following proper-

ties:

• The global state s is the joint state hsmim.

• All agent have the same local state space S and local action space A.

• A single policy function ⇡ is shared amongst homogeneous agents.

• The local observation is a local view of the global state count ns
t corresponding

to the joint state hsmim.

In this thesis, we consider the reactive policy function ⇡(jm|im, om(im, ns
t)) associ-

ating with the local state and local observation of agent. This allows us to efficiently

train policy function using collective variables. Under this policy, the value function

in a CDec-POMDP can be defined by

Vt(st)

=
X

hjm
t
im2A

�Y

m

⇡(jmt |im, om(im, ns
t))
�h
r(st,at)

+
X

st+1

P (st+1|st, hjmt im)V (st+1)
i

(4.2)

Using similar manipulation as in theorem 2.3, we can aggregate agents in the same

local state-action to have the value function defined in term of the state-action count

Proposition 4.1. For CDec-POMDPs, the value function can be represented with

respect to the counts as follows:

V ⇡
t (n

s
t)

=
X

nsa
t

P ⇡(nsa
t | ns

t, ⇡)
h
r(nsa

t) +
X

nsas
0

t

P ⇡(nsas0

t | nsa
t)V (ns

t+1)
i
, 8nt 2 ⌦t (4.3)

54

in which ⌦t is the set of feasible count values and P (nsa
t | ns

t, ⇡), P (nsas0
t | nsa

t) are

the collective distributions defined in corollary 2.1 as

P (nsa
t | ns

t, ⇡) =
Y

i2S

⇣ nst(i)!Q
i2S,j2A nsa

t (i, j)!

Y

j2A

⇡t(j|i, o(i, ns
t, dt))

nsa
t
(i,j)
⌘

P (nsas0

t | nsa
t) =

Y

i2S,j2A

⇣ nsa
t (i, j)!Q

i02S n
sas0
t (i, j, i0)!

Y

i02S

�t(i
0|i, j, ns

t(i))
nsas

0
t

(i,j,i0)
⌘

Proof. The derivation to V ⇡
t (n

s
t) is similar to the proof in theorem 2.4.

When the number of agents is greater than 1, there could be more than one (per-

mutable) joint state-action stat corresponding to each value of the state count nsa
t .

As a consequence, the space of feasible counts is than the space of all possible joint

state-actions. Therefore, the value function defined by the counts as in equation

4.3 is more compact than the joint value function defined by equation 4.2. Assume

the number of agents is larger than number of the local states, we can quantify the

complexity of planning space by:

Proposition 4.2. The size of joint state space is |S|M while the size of state count

space is
�

M
|S|�1

�
.

Proof. As each agent can be in one i in S, the total number of combination of states

of M agents is |S|M . To form a feasible state count of M agents over |S| states, we

can firstly choose |S| � 1 numbers in range [0;M] and rank them in the increasing

order {x1, . . . , x|S|�1}. Then together with x0 = 0, x|S| = M , we can specify state

count n(i) at each local state i to be the number of unique integer in range [xi, xi+1).

The number of ways choose such |S| � 1 number is
�

M
|S|�1

�
, which is equivalent to

the size of state count space.

The asymptotic complexity of the state count space is ⇥
�

M
|S|�1

�
= M |S|�1. There-

fore, when the size |S| of state space is much smaller than number of agents, the

state count space has much lower complexity than the joint state space.

55

Although the count-based value function is more tractable than the joint state-

action value function, its O
�

M
|S|�1

�
complexity is exponentially large. This motivates

us to a develop sampling-based approaches for CDec-POMDP planning problems.

Notice: We can extend our model to FSC based policy by adding additional counts

for the number of agents moving from one memory state to another. However, this

requires a comprehensive study of the trade-off between the increment of the count

dimensions and the richness of FSC policy. This is beyond the scope of this thesis.

We leave it as a future research direction.

4.2 Reinforcement Learning

In this section, we introduce the general reinforcement learning (RL) framework for

the Markov Decision Process with full observation. This is the basis for us to derive

the RL framework for Dec-POMDP and CDec-POMDP problems later.

We consider the general CDec-POMDP model with global state component dt

as introduced in Chapter 2. The value function and policy function are defined as

Q(st,at, dt) and ⇡(at|st, dt) respectively. st,at denote the joint state and joint

action in Dec-POMDP or single state and single action in standard MDP. If there is

no global component, we can set dt = null.

To extend MDP results to POMDP, the partial observation o about the environ-

ment state can be included later by directly replacing ⇡(at|st, dt) with ⇡(at|o).

Consider state-action value function in a MDP under a policy function ⇡ and

transition function P

Q⇡
t (st,at, dt) = E[

X

t0�t

rt0 |st,at, dt, ⇡] (4.4)

56

Q value can be computed exactly by a dynamic program as: [117]

Q⇡
t (st,at, dt) = r(st,at, dt)

+
X

st+1,dt+1

P (st+1, dt+1|st,at, dt)V
⇡
t (st+1, dt+1), 8st 2 S,at 2 A (4.5)

V ⇡
t (st, dt) =

X

at

⇡(at|st, dt)Q⇡
t (st,at, dt), 8st 2 S (4.6)

Theoretically, after computing the value for all states and actions based on this dy-

namic program equations (4.5), (4.6), we can optimize policy for time t by:

max
⇡

X

st,dt

P (st, dt)V
⇡
t (st, dt) = max

⇡

X

st

P (st, dt)
X

at

⇡(at|st, dt)Q⇡
t (st,at, dt),

in which P (st, dt) is the frequency when the global state (st, dt) appears at time t.

Dynamic programming approach requires the enumeration of all possible states

and actions, hence is not scalable to problems with large state and action spaces, e.g.

the joint state space in a CDec-POMDP. Instead of computing the exact value func-

tion Q⇡
t (st,at, dt), reinforcement learning (RL) methods estimate an approximate

value function Q̃w(st,at, dt) ⇡ Q⇡
t (st,at, dt) and update the policy based on this

approximate Q̃ by Monte Carlo sampling. The approximate value function Q̃w can

be learnt by using regression to fit empirical returns obtained from historical data or

simulation. To update policy, a policy gradient is estimated from Q̃w to specify the

direction to adjust policy parameters.

The reinforcement learning with value function approximation is also known as

the actor-critic [117, 54] with actor referring to the policy and critic referring to the

approximate value function [117].

57

4.2.1 Reinforcement Learning Outline

In each learning iteration, to estimate Q̃w(st,at, dt), we generate samples of

hst,at, dt, rti and fit Q̃w(st,at, dt) to the corresponding empirical returns form

samples by using regression method. The policy is updated to increase the expected

value of Q̃w at the samples hst,at, rti.

Following a convention in RL community, we consider the approximate value

function Q̃ to be a function parameterized by parameters w and the policy ⇡ to be a

function parameterized by parameters ✓.

4.2.2 Policy Gradient

When the policy ⇡ is parameterized with ✓, we can optimize ⇡ by applying a pol-

icy gradient estimation computed with the critic function Q̃w. Following similar

derivation with [118], we now show how to compute policy gradientr✓V (⇡).

We denote the value function of a given policy ⇡ in an expanded form is given

as:

Vt(⇡) =
X

st,at,dt

P (st,at, dt|bo, bgo; ⇡)Q⇡
t (st,at, dt) (4.7)

where P (st,at, dt|bo, bgo; ⇡) =
P

s1:t�1,a1:t�1
P (s1:t,a1:t, d1:t|bo, bgo; ⇡) is the distri-

bution of the joint state-action (st,at, dt) under the policy ⇡.

Recall the Bellman equation of value function Q⇡
t (st,at, dt) to be

Q⇡
t (st,at, dt) =rt(st,at, dt)

+
X

st+1,at+1,dt+1

P (st+1,at+1, dt+1|st,at, dt; ⇡)Q
⇡
t+1(st+1,at+1, dt+1) (4.8)

58

The policy gradient is computed as follows:

@V0

@✓
=

X

s0,a0,d0

r✓

✓
P (s0,a0, d0|bo, bgo; ⇡)Q⇡

0 (s0,a0, d0)

◆
(4.9)

=
X

s0,a0,d0

Q⇡
0 (s0,a0, d0)r✓P (s0,a0, d0|bo, bgo; ⇡)

+
X

s0,a0,d0

P (s0,a0, d0|bo, bgo; ⇡)r✓Q
⇡
0 (s0,a0, d0) (4.10)

using the Q function definition for CDec-POMDPs and taking the derivative we get

=
X

s0,a0,d0

Q⇡
0 (s0,a0, d0)r✓P (s0,a0, d0|bo, bgo; ⇡)

+
X

s0,a0,d0

P (s0,a0, d0|bo, bgo; ⇡)r✓

h X

s1,a1

P (s1,a1, d1|s0,a0, d0; ⇡)Q
⇡
1 (s1,a1, d1)

i

If we continue unrolling out the terms in the above expression, we get

=
X

t

X

s1:t,a1:t

Q⇡
t (st,at, dt)P (st�1,at�1, dt�1|bo, bgo; ⇡)

⇥r✓P (st,at, dt|st�1,at�1, dt�1; ⇡) (4.11)

this can be re-written use the log trick

=
X

t

X

s1:t,a1:t

Q⇡
t (st,at, dt)P (st�1,at�1, dt�1|bo, bgo; ⇡)P (st,at, dt|bo, bgo; ⇡)

⇥r✓ logP (st,at, dt|st�1,at�1, dt�1; ⇡) (4.12)

=
X

t

X

s1:t,a1:t,d1:t

Est,at,dt|bo,bgo,⇡

h
Q⇡

t (st,at, dt)r✓ logP (at|st, dt; ⇡)
i

(4.13)

Compatible Value Function Approximation - Unbiased Gradients

One of desirable properties of the critic function Q̃w(st,at, dt) is that it should give

the same policy gradient as Q⇡
t (st,at, dt) as

59

X

t

X

s1:t,a1:t,d1:t

Est,at,dt|bo,bgo,⇡

h
Q⇡

t (st,at, dt)r✓ logP (at|st, dt; ⇡)
i

=
X

t

X

s1:t,a1:t,d1:t

Est,at,dt|bo,bgo,⇡

h
Q̃⇡

t (st,at, dt)r✓ logP (at|st, dt; ⇡)
i

(4.14)

Sutton et al. [118] showed a class of critic function with this prop-

erty, namely compatible value function approximation with Q̃⇡
t (st,at, dt) =

wr✓ logP (at|st, dt; ⇡). In other words, the compatible critic function to be a lin-

ear function of the derivative vector of policy function is able to provide non-bias

policy gradient.

In practice, Q̃ is considered as a neural network function instead of linear func-

tion. Nevertheless, we will show later, the compatible value function approximation

provides us some hints on designing structure of the neural network based policy in

Dec-POMDP and CDec-POMDP domains.

Actor-critic approaches

Denote ↵w and ↵✓ to be learning rates of critic and actor respectively. Based on

trajectory sample (s1:H ,a1:H , d1:H), we can update the parameterized critic and the

60

actor using standard approaches [117] as in algorithm 2.

Algorithm 2: Actor Critic Framework

1 Initialize network parameter ✓ for actor ⇡ and and w for critic Q̃w

2 repeat

3 Sample trajectory (s1:H ,a1:H , d1:H)

4 Computing empirical k-step prediction

Rk
t (st,at, dt)

=

8
>><

>>:

Pt+k�1
t0=t r(st0 ,at0 , dt0) + Q̃w(st+k,at+k, dt+k) if t+ k < H

PH�1
t0=t r(st0 ,at0 , dt0) + Q̃w(st+k,at+k, dt+k) otherwise

(4.15)

5 Critic update: Minimize the TD difference
P

t

⇣
Q̃(st,at, dt)�Rk

t (st,at, dt)
⌘2

by gradient descent

w = w � ↵wrw

X

t

⇣
Q̃w(st,at, dt)�Rk

t (st,at, dt)
⌘2

(4.16)

6 Actor update: Maximize the surrogate objective
P

t Q̃(st,at, dt) log ⇡(at|st, dt) by gradient ascent

✓ = ✓ + ↵✓r✓

X

t

Q̃w(st,at, dt) log ⇡(at|st, dt) (4.17)

7 until convergence

Notice: The surrogate objective
P

t Q̃w(st,at, dt) log ⇡(at|st, dt) in actor update

equation (4.17) comes from re-writing the expected value of policy using the log

61

derivative trick

r✓

X

a

Q̃w(s,a, d)⇡(a|s, d;✓) =
X

a

Q̃w(s,a, d)r✓⇡(a|s, d;✓)

=
X

a

Q̃w(s,a, d)⇡(a|s, d;✓)r✓ log ⇡(a|s, d;✓)

sample
⇡

X

a⇠⇡(a|s,d;✓)

Q̃w(s,a, d)r✓ log ⇡(a|s, d;✓) (4.18)

Variants

TD(�) : As proposed by Sutton [116], in TD critic update, instead of computing the

return value estimation with a fixed k, we can consider a mixture of different values

k as:

R�
t (st,at, dt) =

H�t�1X

k=1

(1� �)�k�1Rk
t (st,at, dt) + �H�t�1RH�t

t (st,at, dt) (4.19)

and update the critic to minimize TD difference with these values as

minw

P
t

⇣
Q̃(st,at, dt)�R�

t (st,at, dt)
⌘2

.

From now on, we refer Rt(•) to be either k-step prediction or � prediction, unless

specified.

REINFORCE: An earlier method used to train the actor function is the RE-

INFORCE algorithm proposed by Williams [143]. Instead of using the critic

in actor update, we can directly use the empirical returns and maximize
P

t Rt(st,at, dt) log ⇡(at|st, dt) as follows:

✓ = ✓ + ↵✓r✓

X

t

Rt(st,at, dt) log ⇡(at|st, dt)

REINFORCE is still among the most popular RL algorithms in many single agent

domains because of its advantage in providing no-bias estimation of policy gradient.

State value function: Another common method in reinforcement learning literature

62

is to use state value function Ṽw(st, dt) instead of the state-action value function

Q̃w(st,at, dt) as follows:

• Critic update:

Gk
t (st,at, dt) =

8
>><

>>:

Pt+k�1
t0=t r(st0 ,at0 , dt0) + Ṽ (st+k, dt+k) if t+ k < H

PH�1
t0=t r(st0 ,at0 , dt0) + Ṽw(st+k, dt+k) otherwise

w = w � ↵wrw

X

t

⇣
Ṽw(st, dt)�Gt(st,at, dt)

⌘2

• Actor update:

✓ = ✓ + ↵✓r✓

X

t

Gt(st,at) log ⇡(at|st, dt)

Notice: A main problem with REINFORCE and state value functions is that they

are not decomposable in a multi-agent setting. As shown later, the decomposability

of policy gradient is the important and desirable property in multi-agent RL, and it

is achievable with the use of Q-value in policy gradient computation. Therefore, in

this thesis, we focus more on designing an efficient policy update in CDec-POMDP

for Q̃ in equation (4.17).

4.2.3 Baseline subtraction

The policy gradient in the equation (4.17) is estimated by samples of state-action

values. Theoretically, the sampling based estimation of the policy gradient con-

verges to the true policy gradient when the number of samples is sufficient to

approximate the state-action space. However, in practical problems like CDec-

POMDPs, the state-action space can be exponentially large, and the convergence

of policy gradient is slow. In fact, the sampling-based estimation of the policy gra-

dient is usually a stochastic variable with high variance. To reduce the high variance

63

of the stochastic policy gradient estimation, a baseline b(st, dt) is used as a control

variate in policy gradient estimation [137, 35]. In particular, Q̃ is subtracted by the

baseline as follows:

✓ = ✓ + ↵✓r✓

X

t

[Q̃(st,at, dt)� b(st, dt)] log ⇡(at|st, dt) (4.20)

The baseline function is only dependent on state, therefore does not introduce an

bias into the expectation of policy gradient:

r✓

X

a

b(s, d)⇡(a|s, d;✓) = b(s, d)r✓

X

a

⇡(a|s, d;✓)
| {z }

= b(s, d)r✓ (1)

= b(s, d)⇥ 0

= 0

Bhatnagar et al. [14] showed that the optimal baseline in actor-critic, which results

into minimum variance of stochastic policy, is:

b⇤(s, d) =
X

a

Q̃w(s,a, d)⇡(a|s, d;✓) (4.21)

Notice: In reinforcement learning, we can unify different ways to compute the

policy gradient by considering a generic update formula:

✓ = ✓ + ↵✓r✓

X

t

A(st,at, dt) log ⇡(at|st, dt), (4.22)

in which the value A(st,at, dt) used to update policy is called the advantage func-

tion. A(st,at, dt) can be set to be [Rt(st,at, dt) � b(st, dt)], [Gt(st,at, dt) �

b(st, dt)] or [Q̃(st,at, dt)� b(st, dt)].

64

4.3 Multi-agent Reinforcement Learning

The main challenge to extend single agent reinforcement learning to multi-agent

problems like Dec-POMDP or CDec-POMDP is the large joint state and action

space. In CDec-POMDPs, the number of possible joint actions of M agents at each

decision epoch is |A|M . The exponential complexity of joint space requires our

study to find out suitable form of critic functions as well as efficient policy update

formulas in this section.

4.3.1 Factorization of policy in decentralized execution

Recall that by CDec-POMDP definition in Chapter 2, the joint policy function has

the form of P (at|st, dt) =
Q

m ⇡m(amt |om(smt , ns
t, dt)).

We consider the same observation function om(i, ns
t, dt) = o(i, ns

t, dt), 8m and

same policy ⇡m = ⇡, 8m for all the agents. Therefore we would drop the superscript

index m in the policy and observation function ⇡m, om, and the joint policy becomes

P (at|st, dt) =
Q

m ⇡(amt |o(smt , ns
t, dt)).

Under this factored form of the joint policy, we have:

Proposition 4.3.

r✓ logP (at|st, dt) =
X

m

r✓ log
⇣
⇡(amt |smt , o(smt , ns

t, dt))
⌘

(4.23)

Proof. We simplify the above gradient as following:

r✓ logP (at|st, dt) = r✓ log
⇣Y

m

⇡(amt |smt , o(smt , ns
t, dt))

⌘

=
X

m

r✓ log
⇣
⇡(amt |smt , o(smt , ns

t, dt))
⌘

(4.24)

65

Replace (4.24) into (4.20), we have a general policy gradient in CDec-POMDP

as follows:

✓ = ✓ + ↵✓r✓

X

t

A(st,at, dt)
X

m

r✓ log
⇣
⇡(amt |smt , o(smt , ns

t, dt))
⌘

(4.25)

= ✓ + ↵✓r✓

X

t

[Q̃(st,at, dt)� b(st, dt)]
X

m

r✓ log
⇣X

m

⇡(amt |smt , o(smt , ns
t, dt))

⌘

(4.26)

As shown by Peshkin et al. [90], the decomposition form (4.26) allows the de-

centralized policy to be efficiently updated by an individual action instead of a

joint action. This reduces the exponential complexity |A|M into a linear complexity

M ⇥ |A|.

In the formula (4.26), although the log of the policy function is decomposed un-

der the decentralized execution, the advantage function [Q̃(st,at, dt) � b(st, dt)]

is not decomposed amongst agents. A single number representing the non-

decomposable value of the value function does not tell much about the effect of

each individual action in the system. Consequently, as shown in experimental sec-

tion in later chapters, when the number of agents is large, the non-decomposed

global value is insufficient to update individual policy and often leads to a poor

reinforcement learning solution.

To see why using a non-decomposed global value is problematic in multi-agent

RL, let us consider a trivial example to optimize routing policy for decentralized

vehicles in a traffic network with 2 main sectors A and B. An agent can choose to

go through either sector A or B. Agents with optimized policy should be able to

avoid moving into congested sector and balance the traffic in the network. Assume

at a time step t, sector A has no congestion and sector B has heavily congested. As

a result, the system incurs a high penalty cost, saying a reward value rt = �1000,

due to the congestion at B. Without decomposing the value, we can not update the

policy to mitigate the right cause of congestion. By feeding this singleton penalty

66

Value estimation

Credit-assignment

Policy update

critic

Individual signals

Surrogate objective

Figure 4.1: Credit-assignment in multi-agent RL.

to all agents, the individual policy would be updated to reduce the probability to

neither move into B sector (which is desirable) nor move into A sector (which is

undesirable). Ideally, we should decompose the global value into a high congestion

penalty for agents in sector B and a low (or zero) congestion penalty for agents

in sector A. The process of decomposing the global value to individual signals is

called credit-assignment, which we study in the following section.

4.3.2 Credit-assignment

To effectively optimize individual policy with RL , Wolpert and Tumer [148]

showed that we have to “personalize” the value signal for each individual agent.

Specifically, the multi-agent reinforcement learning (MRL) policy update (4.25) is

re-written as

✓ = ✓ + ↵✓r✓

X

t

X

m

fm(st,at, dt)r✓ log
⇣
⇡(amt |smt , o(smt , ns

t, dt))
⌘

(4.27)

in which fm(st,a,dt) is the credit value for individual m when it participates with

action amt into the joint state-action (st,at, dt). Credit value fm is usually com-

puted from the joint value function estimator Q̃w(st,at, dt). The credit assignment

67

procedure for MRL is demonstrated by the diagram in Figure 4.1. Given the joint

state action (st,at, dt), we would use a global critic Q̃w(st,at, dt) to estimate the

value. Then we compute the credit value fm for each individual m using this global

critic. Finally, we use fm to update each individual policy ⇡(amt |•).

Desirable Properties: The credit value is designed to reflect the contribution of an

individual agent into the global value function Q̃w(st,at, dt). In expectation, the

policy gradient computed by individual credit values should be the same (or close)

to the one computed by the global value function. In other words, credit assignment

should not introduce any bias (or a low bias) into the policy gradient. At the same

time, credit assignment should be able to distinguish the roles of different agents in

the system, and hence reduce the noise in the gradient estimation of each agent.

Notice: As our objective is to learn a homogeneous policy function ⇡ instead of

multiple policy functions, we can combine policy update of all agents by a sum
P

t

P
m fm(st,at, dt)r✓ log

⇣
⇡(amt |smt , o(smt , ns

t, dt)).

Credit assignment methods

We now present the most common credit assignment methods from the literature.

Vanilla: The vanilla policy update in equation (4.25) can be considered as a dummy

credit assignment with fm(st,at, dt) = Q̃w(st,at, dt).

Expected value of individual: To estimate the value of an individual action am,

Claus and Boutilier [23] proposed that m can marginalize over all possible actions

a�m of other agents m0 6= m

fm(st,at, dt)

=
X

a�m

t
2A�m

Q(st,a
�m
t [amt , dt)

Y

m0 6=m

⇡(a�mt |sm0

t , o(sm
0

t , st, dt)) (4.28)

This type of credit assignment is applicable to multi-agent domains with small ac-

68

tion space. A recent application is shown in multi-agent patrolling by Gupta et al.

[41]. However, as the action space increases, computing exact marginalization in

(4.28) becomes infeasible.

Counterfactual value function: Wolpert and Tumer [148] proposed the credit as-

signment function to be the difference reward for each agent

fm(st,at, dt)

= Q̃(st,at, dt)�
X

a0m2Am

⇡(a0m|smt , o(smt , st, dt))Q̃w(st,a
�m
t [a0m, dt) (4.29)

In general, this formula quantifies the contribution of action amt of agent m by the

difference between the realized value Q̃(st,at, dt) and average value when agent

m takes alternative (counterfactual) actions a0m. Foerster et al. [30] showed that

the counterfactual baseline
P

a0m2Am ⇡(a0m|smt , o(smt , st, dt))Q̃(st,a
�m
t [a0m, dt) is

zero in expectation, therefore it does not introduce any bias into the policy gradient.

One of main problems with the counterfactual RL is we have to compute the

counterfactual values for all possible counterfactual actions a0m of all agents m.

In other words, in the system of M agent and the action space to be A, to per-

form credit assignment for each sample (st,at, dt), we have to compute the value

function |M | ⇥ |A| times. We would address this bottleneck in the CDec-POMDP

domain later in Chapter 6.

Local reward: In a domain where the global reward rt is the sum of local rewards

rt =
P

m rmt , we can use the local reward rmt to learn policy for an individual m.

In particular, instead of a single joint value function Q̃, [121] proposed independent

learner framework in which each agent m would maintain a separate value function

Qm(smt , a
m
t) to estimate the accumulative reward E[

PH
t0=t r

m
t0 |smt , amt] it could col-

lect. Bagnell and Ng [8] showed that learning with local rewards can improve the

convergence compared with global reward signals. Claus and Boutilier [23] showed

that learning with a local reward signal, in fact, follows the fictitious play rule [60],

69

hence can achieve a high quality solution.

However, in large populations, the independent learner method would require a

large number of learning processes (one for an agent), which is not scalable. In

Chapter 5, we address this problem by a count-based local reward RL approach.

4.3.3 Factored critic function

In a decentralized execution setting, we consider the following special form of the

approximate value function fw [115, 37, 53]:

Qt(st,at, dt) ⇡ Q̃w(st,at, dt) =
MX

m=1

fm
w (smt , a

m
t , st, dt

�
(4.30)

where each fm
w is defined for each agent m and takes as input the agent’s local state,

action and the observation. Notice that different components fm
w are correlated as

they depend on the global state st, dt. Such a decomposable form is useful as it

leads to efficient policy gradient computation. Furthermore, an important class of

approximate value function having this form for CDec-POMDPs is the compatible

value function [118] which results in an unbiased policy gradient.

Proposition 4.4. Compatible value function for CDec-POMDPs can be factorized

as:

Q̃w(st,at, dt) =
X

m

fm
w (smt , a

m
t , n

s
t, dt)

Proof. As we showed previously the result from [118], the compatible value func-

tion approximates the value function Q(st,at, dt) with linear value Q̃w(st,at, dt) =

wT�(st,at, dt), where w denotes function parameter vector and �(st,at, dt) is com-

patible feature vector computed from the policy ⇡ as

�(st,at, dt) = r✓ logP (at|st, dt) (4.31)

Applying this for CDec-POMDPs and using the result from proposition 4.3, we

70

have the linear compatible feature in a CDec-POMDP to be:

�(st,at, dt) = r✓ logP (at|st, dt) =
X

m

r✓ log ⇡
m
t (a

m|smt , o(smt , ns
t, dt)) (4.32)

We can rearrange Q̃w(st,at, dt) as follows:

Q̃w(st,at, dt) = wT�(st,at, dt) = wT
hX

m

r✓ log ⇡t(a
m|smt , o(smt , ns

t, dt))
i

=
X

m

wTr✓ log ⇡t(a
m|smt , o(smt , ns

t, dt)) (4.33)

If we set fm
w (smt , a

m
t , n

s
t, dt) = wTr✓ log ⇡t(am|smt , o(smt , ns

t, dt)), the theorem is

proved.

We can directly replace Q̃(·) in the policy gradient (4.26), which is equivalent

to a naive credit assignment of local signal to global signal. Empirically, we found

that variance using this estimator was high. We exploit the structure of Q̃w and show

further factorization of the policy gradient, which suggests us to use directly fm
w as

credit function.

Theorem 4.1. For any value function having the decomposition as:

Q̃w(st,at, dt) =
X

m

fm
w

�
smt , a

m
t , n

s
t, dt
�
, (4.34)

the policy gradient can be computed as

r✓V1(⇡) =
HX

t=1

Est,at,dt

hX

m

r✓ log ⇡
�
amt |smt , o(smt , ns

t, dt)
�
fm
w

�
smt , a

m
t , n

s
t, dt
�i

(4.35)

Proof. Substitute the approximate value function Q̃w(st,at, dt) to Q⇡(st,at, dt)

in the policy gradient formula (4.13), we have the policy gradient computed by

71

approximate value function Q̃w(st,at, dt) to be

r✓V1(⇡)

=
X

t

Est,at,dt

h
r✓ logP (at|st, dt; ✓)Q̃w(st,at, dt)

i

=
X

t

Est,at,dt

h@ log
Q

m ⇡m
�
amt |smt , o(smt , ns

t, dt)
�

@✓

�X

m0

fm0

w (sm
0

t , am
0

t , ns
t, dt)

�i

=
X

t

Est,at,dt

hX

m

r✓ log ⇡
m
�
amt |smt , o(smt , ns

t, dt)
��X

m0

fm0

w (sm
0

t , am
0

t , ns
t, dt)

�i

=
X

t

Est,at,dt

hX

m

r✓ log ⇡
m
�
amt |smt , o(smt , ns

t, dt)
�� X

m0 6=m

fm0

w (sm
0

t , am
0

t , ns
t, dt)

�i

+
X

t

Est,at,dt

hX

m

r✓ log ⇡
m
�
amt |smt , o(smt , ns

t, dt)
��
fm
w (smt , a

m
t , n

s
t, dt)

�i
(4.36)

Let us simplify the first term in (4.36) as follows:

Est,at,dt

h
r✓ log ⇡

m
�
amt |smt , o(smt , ns

t, dt)
�� X

m0 6=m

fm0

w (sm
0

t , am
0

t , ns
t, dt)

�i

Given the independence of value functions of other agents m0 6= m w.r.t. the action

amt of agent m, we have:

= Est


Eam

t
|st

✓
r✓ log ⇡

m
�
amt |smt , o(smt , ns

t, dt)
�

X

m0 6=m

Eam
0

t
|stf

m0

w (sm
0

t , am
0

t , o(sm
0

t , ns
t, dt))

◆�

= Est


Eam

t
|st

✓
r✓ log ⇡

m
�
amt |smt , o(smt , ns

t, dt)⇥ constant_to_amt

◆�

= 0

Applying this to (4.36), we can dismiss all the term of m0 6= m to simplify (4.36)

into (4.35).

72

Optimal baseline for decentralized execution

The baseline b(s, d) is used to reduce the variance of policy gradient, with the

baseline, the policy gradient would be computed in term of advantage function

A(s,a, d) = Q(s,a, d) � b(s, d) instead of Q(s,a, d). In decentralized planning

case, this is computed as:

Proposition 4.5. For any value function having the decomposition as:

Q(st,at, dt) ⇡ Q̃w(st,at, dt) =
X

m

fm
w

�
smt , a

m
t , n

s
t, dt
�
, (4.37)

the optimal baseline can be computed as:

bw(n
s
t , dt) =

X

m

bmw (s
m
t , n

s
t , dt), (4.38)

in which each

bmw (s
m
t , n

s
t , dt) =

X

am
t

⇡t(a
m
t |smt , o(smt , ns

t, dt))f
m
w

�
smt , a

m
t , o(s

m
t , n

s
t, dt)

�

Proof. Recall from [14], optimal baseline of any critic Q(st,at, dt) to reduce vari-

ance of policy gradient is:

b⇤(ns
t , dt) =

X

at

P (at|st, dt)Q(st,at, dt). (4.39)

Now, substitute (4.37) into this we have:

b⇤(ns
t , dt)

=
X

at

Y

m0

⇡t(a
m0

t |o(sm0

t , ns
t, dt))[

X

m

fm
w

�
smt , a

m
t , n

s
t, dt
�
]

=
X

a0
t
,...,aM

t

Y

m0

⇡t(a
m0

t |o(sm0

t , ns
t, dt))[

X

m

fm
w

�
smt , a

m
t , o(s

m
t , n

s
t, dt)

�
] (4.40)

73

For a specific m, denote a�m to be the joint action of all m0 6= m, we have:

X

a0
t
,...,aM

t

Y

m0

⇡t(a
m0

t |o(sm0

t , ns
t, dt))f

m
w

�
smt , a

m
t , n

s
t, dt
�

=
X

am

fm
w

�
smt , a

m
t , n

s
t, dt
�
⇥
X

a�m

Y

m0 6=m

⇡t(a
m0

t |o(sm0

t , ns
t, dt))

=
X

am

fm
w

�
smt , a

m
t , n

s
t, dt
�
⇥ 1

Notice the reason the last equation holds is due to the independence of decentralized

individual policy. Apply this simplification for each m, we can simplify (4.40) into

(4.38).

We summarize theorem 4.1 and proposition 4.5 by

Corollary 4.1. When the critic function is decomposed as:

Q̃w(st,at, dt) =
X

m

fm
w

�
smt , a

m
t , n

s
t, dt
�

the policy gradient can be computed by:

r✓

X

t

X

m

Est,at,dt

h�
fm
w

�
smt , a

m
t , n

s
t, dt
�
� bm(smt , n

s
t , dt)

�

⇥r✓ log
�
⇡(amt |smt , o(smt , ns

t, dt))
�i

(4.41)

in which bm(smt , n
s
t , dt) =

P
a0m
t

⇡t(a0mt |smt , o(smt , ns
t, dt))f

m
w

�
smt , a

0m
t , ns

t, dt
�

Notice that computing the policy gradient using the above result is not practical

for multiple reasons. The space of join-state action (st,at, dt) is combinatorial.

Given that the agent population size can be large, sampling each agent’s trajectory

is not computationally tractable. To remedy this, we later show how to compute

the gradient by directly sampling counts n⇠P (n; ⇡) similar to policy evaluation in

equation (2.15). Similarly, one can estimate the action-value function Q⇡
t (st,at, dt)

using empirical returns as an approximation. This would be the analogue of the

74

standard REINFORCE algorithm [144] for CDec-POMDPs. It is well known that

REINFORCE may learn more slowly than other methods that use a learned action-

value function [118]. Therefore, we next present a function approximator for Q⇡
t ,

and show the computation of policy gradient by directly sampling counts n.

4.4 Collective Reinforcement Learning

In general, when dealing with homogeneous agents, we can aggregate agents in

the same state by the state-actions count. The log-likelihood of the joint action

probability in proposition 4.3 can be simplified as follows:

r✓ logP (at|st, dt) =
X

i2S,j2A

nsa
t (i, j)r✓ log ⇡t(j|o(i, ns

t, dt)) (4.42)

Using the above results, the final policy gradient expression for CDec-POMDPs is

readily proved.

Theorem 4.2. For CDec-POMDPs, the policy gradient is given as:

r✓V1(⇡) =
HX

t=1

Ens
t
,nsa

t
,dt|bo,bgo;⇡


Q⇡

t (n
sa
t , dt)

X

i2S,j2A

nsa
t (i, j)r✓ log ⇡t(j|o(i, ns

t, dt))

(4.43)

Proof. This result is directly implied by substitute (4.42) into (4.13) and notice that

nsa
t , dt are sufficient statistics in CDec-POMDP.

4.4.1 Policy Gradient with Factored Collective Critic

In a population of homogeneous agents, we have the same function fm
w for each

agent, and deduce the following:

75

Q̃w(st,at, dt) =
X

i,j

nsa
t (i, j)fw

�
i, j, ns

t, dt
�

(4.44)

Theorem 4.3. For any value function having the form: Q̃w(st,at, dt) =
P

i,j n
sa
t (i, j)fw

�
i, j, ns

t, dt
�
, the policy gradient can be computed as:

En1:H2⌦1:H ,d1:H

 HX

t=1

X

i2S,j2A

nsa
t (i, j)r✓ log ⇡

�
j|i, o(i, ns

t , dt)
�
fw(i, j, n

s
t , dt)

�

(4.45)

Proof. By aggregating agents in similar state-action in theorem 4.1 and (4.44), we

have:

r✓V1(⇡) =
X

t

Est,at,dt

hX

i,j

nsa
t (i, j)

@ log ⇡
�
j|i, o(i, ns

t, dt)
�

@✓
fw(i, j, n

s
t, dt)

i

(4.46)

We can expand the above expression as:

r✓V1(⇡) =

X

s1:H ,a1:H ,d1:H

P (s1:H ,a1:H , d1:H)
h HX

t=1

X

i,j

nsa
t (i, j)

@ log ⇡
�
j|i, o(i, ns

t, dt)
�

@✓
fw(i, j, n

s
t, dt)

i

From Chapter 2, we know that the probability P (s1:H ,a1:H , d1:H) depends only on

counts n generated by the joint-state and action trajectory (s1:H ,a1:H , d1:H) and is

equal to the corresponding joint probability P (s1:T ,a1:T , d1:T) in (2.3). Using this

result, we have:

r✓V1(⇡)

=
X

s1:H ,a1:H ,d1:H

f(n1:H)
h HX

t=1

X

i,j

nsa
t (i, j)

@ log ⇡
�
j|i, o(i, ns

t, dt)
�

@✓
fw(i, j, n

s
t, dt)

i

Notice that the entire expression inside the summation above depends only on the

76

resulting counts n1:H . We also know from Chapter 2 that the multinomial coeffi-

cient h(n1:H) in (2.5) counts the total number of ordered M state-action trajectories

with sufficient statistic equal to n1:H as was stated previously. Therefore, we can

replace the summation over (s1:H ,a1:H , d1:H) by summation over all the possible

valid counts n1:H 2 ⌦1:H and multiply the inner expression by h(·) to getr✓V1(⇡):

=
X

n1:H2⌦1:H ,d1:H

h(n1:H)f(n1:H)
h HX

t=1

X

i,j

nsa
t (i, j)

@ log ⇡
�
j|i, o(i, ns

t , dt)
�

@✓
fw(i, j, n

s
t , dt)

i

=
X

n1:H2⌦1:H ,d1:H

P (n1:H)
h HX

t=1

X

i,j

nsa
t (i, j)

@ log ⇡
�
j|i, o(i, ns

t , dt)
�

@✓
fw(i, j, n

s
t , dt)

i

The above equation proves the theorem.

The above result shows that the policy gradient can be computed by sampling

count table vectors n1:H from the underlying distribution P (·) analogous to com-

puting the value function of the policy in (2.15), which is tractable even for large

population sizes. As a result of theorem 4.3, we have

Corollary 4.2. The count-based policy gradient can be estimated by a count nt as

follows:

Ent2⌦t,dt

h
r✓

X

i,j

nsa
t (i, j)

@ log ⇡
�
j|i, o(i, ns

t, dt)
�

@✓
[fw(i, j, n

s
t, dt)� b(i, ns

t, dt)]
i

(4.47)

in which b(i, ns
t, dt) =

P
j0 ⇡t(j0|i, o(i, ns

t, dt))fw(i, j, n
s
t, dt)

We find that the factorization of linear collective critic Q̃w(nsa
t , dt) =

P
i,j n

sa
t (i, j)fw(i, j, n

s
t, dt) implies the credit value fw(i, j, ns

t, dt) for an agent in

i taking action j. We demonstrate the credit-assignment process in collective plan-

ning by the diagram in Figure 4.2. By comparing the stochastic policy gradient

in collective formulas (4.47) and (4.41), we can consider the collective credit-

assignment as obtained by aggregating similar credit values of agents in the same

local state-action.

77

One of the main advantages of the count-based update over the individual update

is that the complexity of our RL is not dependent on the population size. This is the

basis for us to derive efficient count-based RL algorithms in next chapters.

Value estimation

Credit-assignment

Policy update

critic

Individual signals

Surrogate objective with the counts

Figure 4.2: Credit-assignment in Collective RL.

4.5 Related Works

4.5.1 Model-based planning

The most common technique to solve single agent (PO)MDPs is dynamic program-

ming [13, 43], which is a backward induction based on the Bellman equation to

compute the optimal accumulated reward Qt(s, a) of each state-action pair in the

current time step. However, because the exact dynamic programming requires the

enumeration over all possible state-action pairs, it is not scalable in Dec-(PO)MDPs

with exponential joint space of states and actions [12]. In a special case, when

the closed-form formula for joint value function is available, another way to scale

up the dynamic update is to search for local optimum by letting agents take turn

to perform best response to improve their policy [74]. In general, to tame the ex-

ponential enumeration in Dec-(PO)MDPs dynamic programming, there has been

78

substantial research focusing on approximating Dec-(PO)MDPs with point-based

backup approximation. In point-based backup, instead of enumerating over all be-

lief states, the dynamic programming update is only performed over a smaller set

of belief states (points). The points can be generated randomly by an online DEC-

(PO)MDPs policy [119] or using a limited number of most likely observations [105]

or basing on Bellman inequality [151]. All of these approximation approaches are

limited to small number (less than 10) of agents and are difficult to scale up to

realistic domains.

Toussaint et al. [123] proposed a novel method to recast MDP planning prob-

lems into inference problems by re-writing the reward into an auxiliary likelihood

function P (r̂ = 1|st, at) / r(st, at). One advantage of this probabilistic infer-

ence representation is that we can apply an advanced inference technique called

Expectation Maximization [25] (EM) to solve it. Standard EM algorithm involves a

backward value computation similar to dynamic programming and a forward state

frequency computation. When EM is applied to solve planning problem, Schulman

et al. [101] proved the objective of EM is equivalent to a surrogate policy loss func-

tion in reinforcement learning. Therefore, EM and RL both optimize closely related

objectives.

Kumar et al. [58] extended the approach of Toussaint et al. [123] to multi-agent

settings. They proposed an efficient EM algorithm to solve independent transition

Dec-(PO)MDPs problem in MAS, i.e. the transition of an agent is independent

of others but agents are related by some pairwise reward functions. By exploiting

the sparse graphical structure of Dec-(PO)MDPs, the EM algorithm in [58] could

be implemented as a parallelizable message-passing procedure. For general multi-

agent problems with no independent transition, due to high coupling constraints

between agents’ variables, EM updates are computationally expensive.

79

4.5.2 Reinforcement Learning

In [143], Williams derived one of the first policy gradient algorithms to train neural

network based policy called REINFORCE. The REINFORCE algorithm computes

the policy gradient directly by the empirical return values. Training with REIN-

FORCE has low bias but high variance [91], which implies a slow convergence rate

of the algorithm. One of well-known remedies for this situation is to use an approx-

imate value function in place of empirical returns to estimate value functions. This

is known as the actor-critic method [55], in which “actor” stands for policy function

and “critic” stands for approximate value function. In [118], Sutton et al. provided

the general formulas for critic-update to train the critic with the empirical returns

and actor-update to train the actor with critic values. These two works [143] and

[118] lay the foundation for development of later advanced policy gradient methods

such as natural policy gradient [14], trust region policy optimization [102], etc. The

derivation of our collective policy gradient algorithms for CDec-POMDP is also

based these two seminal works.

The biologically inspired neural network model has been known for a long time

to be able to solve difficult planning problems [10]. Recently, AI systems with

neural network model are shown to achieve human-level in complex video game

[70] or even defeat humans in the challenging game of Go [109]. This success of

neural network model is due to the progress of reinforcement learning to train neural

network based policy. Two main classes of reinforcement learning algorithms are

Q-learning, in which the system learns a value function and executes the greedy

action according to that model; and policy gradient, in which the system adjusts a

policy function by a policy gradient with regard to system value function [117]. In

congestion related domains like our goal navigation or taxi matching scenarios, we

prefer the policy gradient method to find stochastic policy rather than Q-learning

whose greedy nature could cause high levels of congestion. Hence, in this work, we

focus on developing policy gradient methods for CDec-POMDP.

80

4.5.3 Multi-agent reinforcement learning

Directly applying single agent algorithm into multi-agent systems could lead to poor

solutions because the individual could not distinguish its contribution in the entan-

gled policy and value functions [23, 121, 148]. Therefore, much effort has been

spent to derive efficient reinforcement learning algorithms for multi-agent systems

with neural network policy based policies.

Peshkin et al. [90] showed that using decentralized policy in MAS could help to

untangle the policy gradient for each individual policy. More specifically, because

the action probability function ⇡m of each agent m is independent of the parameters

of other agents, the derivative of the joint action probability could be factorized into

a sum of disjoint derivatives of independent policies. Peshkin et al. [90] exploited

this property to propose a efficient algorithm for MAS using the REINFORCE algo-

rithm [144]. Later on, Aberdeen [1] showed that learning decentralized policy using

Peshkin et al. [90]’s algorithm could outperform centralized real-time reinforcement

algorithm in job scheduling problems and also worked well in Dec-(PO)MDPs. Our

decentralized planning research inherits the policy factorization property from [90],

however we study actor-critic with a policy gradient decomposed by structural value

function approximation. When studying MAS reinforcement learning with coordi-

nation graphs, Guestrin et al. [39] proposed a factorized policy gradient method to

fine-tune the Q-learning. However, Guestrin et al. [39] used REINFORCE based

method with global reward signal and their policy method was limited mainly to

coordination graph domains where agents can freely communicate.

In large MAS, it becomes difficult for agent to discern the effect of its actions

on the global utility. As pointed out by Wolpert and Tumer [148], the difficulty

of extracting individual contributions from a global reward signal comes from the

“noise” of the activity of other concurrently active agents. In particular, because

policies could be stochastic or all agents could concurrently change their policies

in learning, the empirical global utility values could become high variance random

81

variables in the perspective of each agent. The common solution for this problem

is to let each individual agent learn an individual value function and optimize its

policy based on its own individual estimation of reward. This solution can be con-

sidered as a hybrid of fictitious play in game-theory and reinforcement learning

[23]. One of the earliest methods of this class is the independent learner proposed

for Q-learning in [121], in which each agent learns a Q-function for its local ob-

servation and action based on local reward signals and acts greedily according to

its individual Q-function. Chang et al. [20] showed that the local value function

learning with local reward signals converge faster to good solutions as opposed to

learning with global reward signal. Decentralized reinforcement learning with local

reward is successfully applied to multiple complex domains such as traffic control

[142] or coordination graph problem [53] etc. The advantage of the local reward

signal is also exploited in one of our proposed actor-critic algorithm called fAfC

showed later.

When multiple agents concurrently update their value function estimations and

are consequently changing their behaviors, the environment could become non-

stationary in the learning process of each agent. Several methods have been pro-

posed to stabilize the individual value function estimation MAS reinforcement

learning by avoiding abrupt change in the agent’s behavior. Bowling and Veloso

[16] introduced a policy hill climbing called WoLF (or Win or Learn Fast) algo-

rithm to adaptively reduce the learning rate when the expected utility is improved

(win case) and vice versa. The intuitive purpose of slowing down the learning rate

is to let agents wait on each other to arrive at a good solution. When studying

stateless MAS, Panait et al. [87] proposed an annealing learning rate scheme called

Lenient Reinforcement learning to allow agent to tolerate each other in the explo-

ration phase. Later, lenient RL is extended to sequential MAS in [139] and deep

MAS in [86]. Similar to this, we can avoid abrupt behavioral change by a setting

sufficiently small learning rate in actor-critic algorithm.

82

4.5.4 Credit Assignment And Value Function Decomposition

Although decentralized control system has lower execution complexity than cen-

tralized control, training individual policy is difficult due to the interaction between

agents. The transition of an agent depends not only on its local state and action but

also the others and the global objective involves all agents in the system. Under this

entanglement, Wolpert and Tumer [148] showed that it is vital for each individual to

determine its role in the system by an individual value function. Claus and Boutilier

[23] showed that using the noisy global value to adjust policy could mislead agent

into a bad behavior . The process of learning individual value function is also con-

sidered as the “credit assignment” problem in multi-agent reinforcement learning

literature [2]. The complexity of the credit assignment depends on the structure of

value functions to be learnt.

There is a large body of literature proposing different credit assignment schemes

to improve the global value based multiagent RL training. One of first works ad-

dressed the value function decomposition in multi-agent reinforcement learning is

[100]. When studying distributed control in a power grid problem in [100], the au-

thors showed that training policy of each individual agent with local rewards could

be better than training with global reward in some network topology. Interestingly,

the authors in [100] found out the best choice of the local reward signal to train

an agent’s policy was not just its own immediate reward but the combination of its

immediate reward with the average of its future reward and its related neighbors.

This notion of the average over related agents shares some characteristics with our

method to compute the average individual value by using the counts as in Section

5.2.2 of this thesis. The benefit of using local value function is experimentally con-

firmed in [20]. Bagnell and Ng [8] proved that the sampling complexity of local

value function learning is substantially slower than global value function learning,

which explains the faster convergence of reinforcement learning algorithm with lo-

cal value functions to RL algorithm with global value function.

83

In many MAS domains, the global reward could be represented as a sum of local

rewards, hence it is a common practice to train local value functions using the local

reward signal. One popular method is independent Q-learning [121] in which each

agent uses its own local state and local reward signal to train a local value function

and treat other agents’ actions as environmental variables. The independent Q-

learning has proved to work well in many multi-agent domains [121, 65, 157]. It

is also used in coordination graph algorithms, which update local value function by

using only a graphically related local reward [53]. Another successful application

of this local reward signal methodology is traffic light control domains, where a

decentralized traffic light controlling agent in each corner can be trained by local

reward signals of crossing-by vehicles[142, 59, 129].

It is shown in [147] that maximization of the global utility of MAS could be

obtained by letting agents optimize some local value functions given that the local

value function could well-reflect the global utility. The local reward function can be

designed to evaluate the contribution of each agent’s local action towards the global

utility. To optimize policy in stateless MAS, Claus and Boutilier [23] proposed a

method called joint action learner (JAL) in which a centralized system learns a joint

value function Q(a) and each agent m could access both this joint value function

and policies ⇡�m. The local value function Qm(am) is computed as the conditional

expectation of value function Q(a) given the local action of the agent m to be am.

Another method to derive local value function from global value function is to

use the difference-of-reward. Tumer et al. [128] proposed the individual pay-off

value function of a local action by the difference between global utility of that action

and the expected value of global utility over all possible actions of that individual

agent m. Recently, Foerster et al. exploits this idea into the actor-critic framework

to train MAS with neural-network policies [30].

We notice that in these existing methods, maintaining individual value functions

has the complexity increasing with the number of agents, hence is not efficient with

84

for large populations. One of our main contributions in this work is the proposal

of the count-based individual value function framework, which marginalizes indi-

vidual values by the counts. Our count-based approach’s complexity is not affected

by the population size, therefore is effective to solve large scale multi-agent RL

problems.

4.6 Summary

In this chapter, we studied the multi-agent planning framework for CDec-POMDP.

We showed that we could lift the dynamic programming (DP) for MDP with the

complex joint state-action variables into a more tractable DP with the count vari-

ables. However, we showed that the complexity of exact dynamic programming

with the counts is still exponential, which motivated us to develop a model-free

reinforcement learning approach.

To develop CDec-POMDP reinforcement learning, we considered policy gradient

with value function approximation as in [118]. By exploiting the decentralized ex-

ecution in CDec-POMDPs, we showed that the policy gradient for CDec-POMDPs

can be factored when the value function approximation (the critic) is decompos-

able. We justified this by showing the compatible value function approximation in

CDec-POMDPs also possesses the decomposable form. We pointed out the relation

between the value function decomposition and the credit-assignment problem. Im-

portantly, by marginalizing individual variables by the counts, we proposed a novel

count-based reinforcement learning framework to efficiently solve RL in large pop-

ulation system. The count-based RL uses count variables instead of the joint state-

action variables, therefore it is much more tractable when the number of agents is

large. We also proposed an effective policy gradient update with the linear critic

function of the counts. This establishment of count-based RL framework was the

basis for us to derive collective RL algorithms in next chapters.

85

The relationship between our CDec-POMDP framework and normal MDP is

summarized in diagram in Figure 4.3.

Figure 4.3: Relation between collective planning and normal MDP planning. We
lift the original planning problems with joint state into collective planning problems
with collective variables (the count).

86

Chapter 5

Reinforcement Learning with Local

Reward Signals

In Chapter 4, we have established the basis for collective reinforcement learning by

showing the sufficient statistics of the counts in planning. We have discussed the

necessity of decomposing the global value functions into individual credit values

to update individual policy. We showed that the credit-assignment can be done

collectively in CDec-POMDPs by using the count and the average credit functions

fw(i, j, ns
t, dt) for all agents in local states i taking local actions j. In this chapter,

we show that fw(i, j, ns
t, dt) can be estimated from the individual value function.

Updating individual policy with individual value function is, in fact, equivalent to a

fictitious play principle in which at every iteration, each agent tries to make a small

change to its policy to maximize its local reward. We show the sum of the local

value functions can be an approximation of the global value function. In addition,

the fictitious play based policy update can induce an evolution of population to an

equilibrium.

We consider the reinforcement learning problem in which the global reward is

a sum of the local rewards of individual agents. Domains with this property in-

clude traffic networks where the social welfare is computed by the sum of the delay

87

penalties of all the agents and taxi supply-demand matching where the objective

function is the total revenue of all taxis. In this problem, individual policy can be

learnt by the independent learner approach (IL) [121, 23]: each agent estimates a

local value function based on its local rewards and updates its policy based on a

local value function estimation. The IL is still among the most popular multi-agent

RL approaches and has been applied in many multi-agent decentralized learning do-

mains [142, 59, 8, 40]. Claus and Boutilier [23] showed that IL could be considered

as a fictitious play algorithm. And as shown in the literature [60], a fictitious play

principle can be applied to solve many large scale optimizations. The main problem

with IL is that it scales poorly with the number of agents. In large populations of

thousands of agents, maintaining thousands of individual value functions is a big

challenge.

In this chapter, we show how to continue using the principle of IL in the CDec-

POMDP model. We develop reinforcement learning by estimating the individual

value function with the local reward signal and using it to optimize a decentralized

policy. However, different from conventional IL, we show that individual value

functions can be estimated by the sampled values of the counts instead of joint

agent trajectory. For the policy update, we propose a count-based surrogate ob-

jective function to estimate the policy gradient. We justify the proposed method

by showing that it is, in fact, an instance of the collective reinforcement learning

framework introduced in previous chapter. Furthermore, experimentally we show

that the solutions found by our proposed fictitious play based algorithm is equiva-

lent to equilibriums found by standard evolutionary dynamics in population game

theory.

88

5.1 Decomposable reward problems

Throughout this chapter, we assume that given the joint state-action (st,at, dt) at

time t, agent m receives a local reward signal rmt = r(smt , a
m
t , n

sa
t , dt) dependent on

its local state-action (smt , a
m
t) and collective variables nsa

t .

The local objective for each agent m is to maximize its total expected reward

max
PH

t=1 E[rmt |bobgo, ⇡]. The optimum of local objective is equivalent to an equi-

librium for agents.

The global objective for the whole system is to maximize the total expected re-

wards of all agents over the planning horizon as

max
HX

t=1

X

m

E[rmt |bobgo, ⇡]

Under system with homogeneous agents with the same local reward function, the

global objective can be written in term of the counts

max
HX

t=1

E[
X

i,j

nsa
t (i, j)r(i, j, n

sa
t , dt)|bobgo, ⇡]

In this chapter, we propose algorithms to find optimum of local objective. We

show that the local objective is in fact a lower bound of the global objective, hence

local objective maximization can be used to produce good quality solution for global

objective.

5.2 Count based Individual Value Function

In the following section, we show that the counts could be used to compute the indi-

vidual value function in CDec-POMDP. In particular, our goal is to show the count

representation of the agent m’s total expected reward from time step t conditioning

89

on its observation (smt = i, amt =j) and the global values nsa
t , dt:

Qt(i, j, n
sa
t , dt) = E

 HX

T=t

rmT |smt = i, amt =j, nsa
t , dt

�

=
HX

T=t

X

nsa1:T ,d1:T

P
�
sm1:T , a

m
1:T , n

sa
1:T , d1:T |smt = i, amt =j, nsa

t , dt
�
rT
�
smT , a

m
T , n

sa
T , dT

�

(5.1)

Notice that in equation (5.1), we need to compute the joint probability

P
�
sm1:T , a

m
1:T , n

sa
1:T , d1:T |smt = i, amt = j, nsa

t , dt
�

for each agent m. In the follow-

ing section, we show how to exploit the homogeneity of agents in CDec-POMDPs

to efficiently estimate this probability and the individual value function using only

the counts.

5.2.1 Exchangeability of joint-trajectories

We start by defining full exchangeability [79]. A set of variables X={X1, . . . , Xk}

is fully exchangeable iff P (X1 = x1, . . . , Xk = xk) equals P (X1 = x↵(1), . . . , Xk =

x↵(k)) for all permutations ↵ of {1, . . . , k}. E.g., a sequence of independent coin

toss is fully exchangeable. Let (s1:T ,a1:T)={(s1:T ,a1:T)m 8m} denote the T-step

trajectories of all the agents. Clearly, (s1:T ,a1:T) is not fully exchangeable as an

agent’s next state depends on its previous state. A tractable generalization of full

exchangeability is partial exchangeability [27], which variables (s1:T ,a1:T) would

satisfy.

Definition 5.1. Let Di be the domain of Xi, and let T be a finite set. A set of

variables X is partially exchangeable w.r.t. the statistic T : D1 ⇥ · · ·⇥Dk ! T if

and only if:

T (x)=T (x0) implies P (x)=P (x0)

We next show the following for the CDec-POMDP model.

90

Proposition 5.1. The joint state-action trajectories of agents, (s1:T ,a1:T), are par-

tially exchangeable w.r.t. the count statistic n1:T 2 ⌦1:T .

where ⌦1:T is the space of allowed counts satisfying constraints (2.7)-(2.8). This

result follows directly from theorem 2.1 in Section 2.3. Next we use the exchange-

ability theorem that relates the joint-distribution P (X) over variables X with the

distribution over sufficient statistic.

Proposition 5.2. The distribution P (s1:T ,a1:T , d1:T) is defined as:

P (s1:T ,a1:T , d1:T) =
X

n1:T2⌦1:T ,d1:T

P (n1:T , d1:T ; ⇡)
In1:T (s1:T ,a1:T)

|Sn1:T |

where In1:T (s1:T ,a1:T) denotes if (s1:T ,a1:T) is consistent with statistic n1:T ; Sn1:T

is the set of all possible joint-trajectories (s1:T ,a1:T) having sufficient statistic n1:T .

This result is a direct corollary of the exchangeability theorem in [28, 79]. No-

tice that |Sn1:T | equals to the function h(n1:T) (2.5). Let Is1:Ta1:T (s
m
1:T , a

m
1:T) denote

if agent m’s trajectory (sm1:T , a
m
1:T) is consistent with the joint-trajectory s1:Ta1:T .

Using this result, the joint probability P (sm1:T , a
m
1:T ,n1:T) is:

X

s1:T ,a1:T ,d1:T

P (s1:T ,a1:T , d1:T)In1:T (s1:T ,a1:T)Is1:Ta1:T (s
m
1:T , a

m
1:T)

In the above expression, we can use proposition 5.2 to compute P (s1:T ,a1:T , d1:T).

Upon further simplification, we get the following result:

Theorem 5.1. The joint probability P (sm1:T , a
m
1:T ,n1:T , d1:T) is given by the follow-

ing expression:

= P (n1:T , d1:T)
ns
1(s

m
1)

M

 T�1Y

t=1

nsas0
t (smt , a

m
t , s

m
t+1)

ns
t(s

m
t)

�
nsa
T (s

m
T , a

m
T)

ns
T (s

m
T)

(5.2)

Proof. According to proposition 5.2, we have

91

P (s1:T ,a1:T , d1:T) =
X

n1:T2⌦T

P (n1:T , d1:T)
In1:T (s1:T ,a1:T)

|Sn|

where Sn is the set of all the assignments (s1:T ,a1:T) which result in the counts

n1:T . The total number of all such assignments (|Sn|) is given by theorem 2.2

|Sn| = h(n1:T) =

Y

i

nsT (i)!Q
j2A nsaT (i, j)!

� T�1Y

t=1

Y

i

nst(i)!Q
i02S,j2A nsas

0
t (i, j, i0)!

�
M !Q

i2S ns1(i)!

�

(5.3)

Let us consider the joint probability P (sm1:T , a
m
1:T ,n1:T , d1:T). It can be computed as

follows:

=
X

s1:T ,a1:T ,d1:T

⇥
P (s1:T ,a1:T , d1:T)⇥ In1:T (s1:T ,a1:T)Is1:Ta1:T (s

m
1:T , a

m
1:T)

⇤

=
X

s1:T ,a1:T ,d1:T

⇥X

n0
1:T

P (n01:T , d1:T)
In0

1:T
(s1:T ,a1:T)

|Sn1:T |
⇥ In1:T (s1:T ,a1:T)Is1:Ta1:T (s

m
1:T , a

m
1:T)

⇤

The terms In0
1:T

(s1:T ,a1:T) and In1:T (s1:T ,a1:T) imply that n1:T ⌘ n01:T . Hence, we

can further simplify the above expression as:

= P (n1:T , d1:T)⇥
X

s1:T ,a1:T ,d1:T

In1:T (s1:T ,a1:T)

|Sn1:T |
Is1:Ta1:T (s

m
1:T , a

m
1:T)

= P (n1:T , d1:T)⇥
P

s1:T ,a1:T ,d1:T
In1:T (s1:T ,a1:T)Is1:Ta1:T (s

m
1:T , a

m
1:T)

|Sn1:T |
(5.4)

Notice that the numerator in the above equation counts the total number of state-

action trajectories of M � 1 individuals when combined with the given trajectory

(sm1:T , a
m
1:T) of the agent m results in sufficient statistic being n1:T . This count is

given as follows:

92

X

s1:T ,a1:T ,d1:T

In1:T (s1:T ,a1:T)Is1:Ta1:T (s
m
1:T , a

m
1:T)

=
(M � 1)!Q

i2S(n
s
1(i)� Ism1 (i))!

⇥
Y

i

�
nsT (i)� Ism

T
(i)
�
!

Q
j2A

�
nsaT (i, j)� Ism

T
am
T
(i, j)

�
!

⇥
T�1Y

t=1

hY

i

�
nst(i)� Ism

t
(i)
�
!

Q
i02S,j2A

�
nsas

0
t (i, j, i0)� Ism

t
am
t
sm
t+1

(i, j, i0)
�
!

i
(5.5)

Substitute (5.5) and (5.3) into (5.4), we prove the theorem.

One important corollary of theorem 5.1, which will be used to compute individ-

ual value function, is:

Corollary 5.1. The joint conditional probability of the counts and individual tra-

jectory can be computed as

P
�
sm1:T , a

m
1:T ,n1:T , d1:T |sm1 = i, am1 =j, nsa

1 , d1
�

= P (n1:T , d:T |nsa
1 , d1)

nsas0
1 (sm1 , a

m
1 , s

m
2)

nsa
1

 T�1Y

t=2

nsas0
t (smt , a

m
t , s

m
t+1)

ns
t(s

m
t)

�
nsa
T (s

m
T , a

m
T)

ns
T (s

m
T)

(5.6)

Proof. Using Bayesian theorem, we have the conditional probability to be:

P
�
sm1:T , a

m
1:T ,n1:T , d1:T |sm1 = i, am1 =j, nsa

1 , d1
�

= P (n1|nsa
1 , d1)P

�
sm1:T , a

m
1:T ,n1:T , d1:T |sm1 = i, am1 =j,n1, d1

�

= P (n1|nsa
1 , d1)

P
�
sm1:T , a

m
1:T ,n1:T , d1:T

�

P
�
sm1 , a

m
1 ,n1, d1

� (5.7)

By applying theorem 5.1 for T = 1, the denominator in LHS of (5.7) is:

P
�
sm1 , a

m
1 ,n1, d1

�
= P (n1, d1)

ns
1(s

m
1)

M

nsa
1 (s

m
1 , a

m
1)

ns
1(s

m
1)

(5.8)

93

Apply (5.8) and (5.2) into (5.7) and notice

P
�
n1:T , d1:T |nsa

1 , d1
�
= P (n1|nsa

1 , d1)P
�
n1:T , d1:T |n1, d1

�
=

P
�
n1:T , d1:T

�

P (n1, d1)
,

we have (5.6).

Another corollary of theorem 5.1, which will be used later in section 5.4, is:

Corollary 5.2. The joint probability of the counts and individual state-action can

be computed as:

P
�
smT , a

m
T ,n1:T , d1:T

�
= P (n1:T , d:T)

nsa
T (s

m
T , a

m
T)

M
(5.9)

Proof. We have

P
�
smT , a

m
T ,nT , dT

�

=
X

sm1:T ,am1:T

P
�
sm1:T , a

m
1:T ,n1:T , d1:T

�

=
X

sm1:T ,am1:T

P (n1:T , d1:T)
ns
1(s

m
1)

M

 T�1Y

t=1

nsas0
t (smt , a

m
t , s

m
t+1)

ns
t(s

m
t)

�
nsa
T (s

m
T , a

m
T)

ns
T (s

m
T)

= P (n1:T , d1:T)
X

sm1:T ,am1:T

ns
1(s

m
1)

M

 T�1Y

t=1

nsas0
t (smt , a

m
t , s

m
t+1)

ns
t(s

m
t)

�
nsa
T (s

m
T , a

m
T)

ns
T (s

m
T)

(5.10)

Given n1:T , we set

P n(smT , a
m
T) =

X

sm1:T ,am1:T

nsas0
1 (sm1 , a

m
1 , s

m
2)

nsa
1

 T�1Y

t=2

nsas0
t (smt , a

m
t , s

m
t+1)

ns
t(s

m
t)

�
nsa
T (s

m
T , a

m
T)

ns
T (s

m
T)

.

(5.11)

We prove by induction that P n(smT , a
m
T) =

nsa
T
(sm

T
,am

T
)

nsa1
.

With T = 1, P n(sm1 , a
m
1) =

nsa
T
(sm

T
,am

T
)

nsa1
obviously holds.

94

Assume P n(smT , a
m
T) =

nsa
T
(sm

T
,am

T
)

nsa1
holds for T � 1, we prove it for T +1 as follows:

P n(smT+1, a
m
T+1) =

X

sm
T
,am

T

P n(smT , a
m
T)

ns
T (s

m
T)

nsa
T (s

m
T , a

m
T)

nsas0
T (smT , a

m
T , s

m
T+1)

ns
t(s

m
T)

nsa
T+1(s

m
T+1, a

m
T+1)

ns
T+1(s

m
T+1)

=
X

sm
T
,am

T

P n(smT , a
m
T)

nsas0
T (smT , a

m
T , s

m
T+1)

nsa
T (s

m
T , a

m
T)

nsa
T+1(s

m
T+1, a

m
T+1)

ns
T+1(s

m
T+1)

using induction hypothesis, we have

=
X

sm
T
,am

T

nsa
T (s

m
T , a

m
T)

M

nsas0
T (smT , a

m
T , s

m
T+1)

nsa
T (s

m
T , a

m
T)

nsa
T+1(s

m
T+1, a

m
T+1)

ns
T+1(s

m
T+1)

=
X

sm
T
,am

T

nsas0
T (smT , a

m
T , s

m
T+1)

ns
T+1(s

m
T+1)

nsa
T+1(s

m
T+1, a

m
T+1)

M

(5.12)

Notice that
P

sm
T
,am

T

nsas
0

T
(sm

T
,am

T
,sm

T+1)

ns
T+1(s

m

T+1)
= 1, we prove the induction hypothesis for

T + 1.

Now, using P n(smT , a
m
T) =

nsa
T
(sm

T
,am

T
)

M into (5.10), we have (5.9).

5.2.2 Individual value function

Based on theorem 5.1, we now show how to compute the value function

Qt(i, j, nsa
t , dt). Substituting the expression for joint probability in theorem 5.1 into

value function in (5.1) for t = 1, we have:

95

Q1(i, j, n
sa
1 , d1)

= r1
�
sm1 , a

m
1 , n

sa
1 , d1

�
+

HX

T=2

X

nsa1:T ,d1:T

X

sm1:T ,am1:T

P
�
sm1:T , a

m
1:T , n

sa
1:T , d1:T |sm1 = i, am1 =j, nsa

1 , d1
�
rT
�
smT , a

m
T , n

sa
T , dT

�

= r1
�
sm1 , a

m
1 , n

sa
1 , d1

�
+

HX

T=2

X

nsa1:T ,d1:T

X

sm1:T ,am1:T

P (n1:T , d1:T |nsa
1 , d1)

⇥ nsas0
1 (sm1 , a

m
1 , s

m
2)

nsa
1

 T�1Y

t=2

nsas0
t (smt , a

m
t , s

m
t+1)

ns
t(s

m
t)

�
nsa
T (s

m
T , a

m
T)

ns
T (s

m
T)

rT (s
m
T , a

m
T , n

sa
T , dT)

(5.13)

For t > 1, by scrolling the start-time t0 = 1 forward we can have the expression

Qt(i, j, n
sa
t , dt)

= rt
�
smt , a

m
t , n

sa
t , dt

�
+

HX

T=t+1

X

nsa
t:T ,dt:T

X

sm
t:T ,am

t:T

P
�
smt:T , a

m
t:T , n

sa
t:T , dt:T |smt = i, amt =j, nsa

t , dt
�
rT
�
smT , a

m
T , n

sa
T , dT

�

= rt
�
smt , a

m
t , n

sa
t , dt

�
+

HX

T=t+1

X

nsa
t:T ,dt:T

X

sm
t:T ,am

t:T

P (nt:T , dt:T |nsa
t , dt)

⇥ nsas0
t (smt , a

m
t , s

m
2)

nsa
t

 T�1Y

t0=t+1

nsas0
t0 (smt0 , a

m
t0 , s

m
t+1)

ns
t0(s

m
t0)

�
nsa
T (s

m
T , a

m
T)

ns
T (s

m
T)

rT (s
m
T , a

m
T , n

sa
T , dT)

(5.14)

Exactly computing the above expression is intractable due to the combinatorial

space of counts n. Therefore, we consider the Monte-Carlo approximation of the

above expression by a set of samples {n1:T , d1:T ⇠ P (n1:T , d1:T |nsa
1 , d1)}. For each

96

sample n of the counts, we compute the sampled value of (5.14) as

Qn,d
t (i, j, nsa

t , dt) = rt
�
smt , a

m
t , n

sa
t , dt

�
+

HX

T=t+1

X

nsa
t:T ,dt:T

X

sm
t:T ,am

t:T

nsas0
t (smt , a

m
t , s

m
2)

nsa
t

⇥
 T�1Y

t0=t+1

nsas0
t0 (smt0 , a

m
t0 , s

m
t+1)

ns
t0(s

m
t0)

�
nsa
T (s

m
T , a

m
T)

ns
T (s

m
T)

rT (s
m
T , a

m
T , n

sa
T , dT) (5.15)

In the above result, it appears that computing the function Qn,d(·) is intractable due

to the summation over (smt:T , amt:T). Fortunately, we show that it can be computed

efficiently using dynamic programming.

Theorem 5.2. Given a sample n, we can compute Qn,d
t (i, j) function by a dynamic

programming as follows:

Qn,d
H (i, j)=rn,dH (i, j) (5.16)

Qn,d
t (i, j)=rn,dt (i, j) +

X

i02S

�n,d
t (i0|i, j)V n,d

t+1 (i
0)8i, j (5.17)

V n,d
t (i0) =

X

j02A

⇡n,d
t (j0|i0)⇥Qn,d

t (i0, j0), 8j0 (5.18)

where

�n,d
t (i0|i, j) = nsas0

t (i, j, i0)

nsa
t (i, j)

; ⇡n,d
t (j|i) = nsa

t (i, j)

ns
t(i)

(5.19)

P n,d
1 (i) =

ns
1(i)

M
; rn,dt (i, j)=rt(i, j, n

sa
t , dt) (5.20)

Proof. Given a fixed time horizon H , we prove this theorem by induction for t =

H ! 0.

For t = H: As there is no future reward, Qn,d
H (i, j) = rn,dH (i, j).

Induction hypothesis: assume (5.16), (5.17), (5.18) hold for t  H . We prove they

97

also hold for t� 1. According to equation (5.14), we have

Qn,d
t�1(i, j) = rt�1

�
i, j, nsa

t�1, dt�1
�
+

HX

T=t

X

nsa
t�1:T ,dt�1:T

X

sm
t�1:T ,am

t�1:T

nsas0
t�1(i, j, s

m
t)

nsa
t�1

 T�1Y

t0=t+1

nsas0
t0 (smt0 , a

m
t0 , s

m
t+1)

ns
t0(s

m
t0)

�
nsa
T (s

m
T , a

m
T)

ns
T (s

m
T)

rT (s
m
T , a

m
T , n

sa
T , dT)

(5.21)

by re-arrage the sum, we have

= rt�1
�
i, j, nsa

t�1, dt�1
�
+
X

sm
t
,am

t

nsas0
t�1(i, j, s

m
t)

nsa
t�1(i, j)

nsa
t (s

m
t , a

m
t)

nsa
t (s

m
t)

rt
�
smt , a

m
t , n

sa
t , dt

�

+
HX

T=t+1

X

nsa
t:T ,dt:T

X

sm
t:T ,am

t:T

nsas0
t (smt , a

m
t , s

m
t+1)

nsa
t

 T�1Y

t0=t+1

nsas0
t0 (smt0 , a

m
t0 , s

m
t+1)

ns
t0(s

m
t0)

�

nsa
T (s

m
T , a

m
T)

ns
T (s

m
T)

rT (s
m
T , a

m
T , n

sa
T , dT)

!
(5.22)

= rt�1
�
i, j, nsa

t�1, dt�1
�
+
X

sm
t
,am

t

nsas0
t�1(i, j, s

m
t)

nsa
t�1(i, j)

nsa
t (s

m
t , a

m
t)

nsa
t (s

m
t)

Qn,d
t (smt , a

m
t)

= rt�1
�
i, j, nsa

t�1, dt�1
�
+
X

sm
t
,am

t

⇡n,d
t (amt |smt)�

n,d
t (smt |i, j)Q

n,d
t (smt , a

m
t). (5.23)

The last expression (5.23) shows the theorem holds also for t� 1, which concludes

our induction proof.

To summarize, we have:

Proposition 5.3. The individual value function can be computed as:

Qt(i, j, n
sa
t , dt) = Ent:H ,dt:H

⇥
Qn,d

t (i, j)| nsa
t , dt

⇤
(5.24)

An example of individual value function estimated from the collective sample

is given by Figure 5.1. Assume that the rewards are only collected at the planning

horizon H = 2. The red color numbers illustrate samples of the count values. Indi-

vidual values at the ending period are set to be directly the immediate rewards. The

values are recursively updated in a back-propagation manner based on the counts.

98

!"

#$%& #$%

'(
3

4

2 1…

… !(

!)

1
…

*(+ !(, '(= 3/"+ !(+ 1/"+ !(
4

/"+ !" = 1*"+ !" , '" + 2*"+ !" , '"4
3

"+ !" , '" = #$%"+ !" , '"4 = #$%&

Figure 5.1: Example of individual value function estimation from collective sampling.

5.3 Policy Gradient for CDec-POMDPs

5.3.1 Outline

Policy gradient

Recall from Chapter 4 that for the general MDP, under a policy ⇡, the value function

Q⇡
t (st,at, dt) is defined as expected accumulative reward from time t forward given

the current joint state-action to be hst,at, dti.

Q⇡
t (st,at, dt) = E[

X

T�t

rT |st,at, dt; ⇡] (5.25)

The objective value is

V (⇡) = E[
X

T�0

rT |bo, bgo; ⇡] (5.26)

To find the policy to maximize V (⇡), we consider the actor-critic method [118] to

update the critic (an approximation of value function) and actor (the policy function)

based on trajectory sample (s1:H ,a1:H , d1:H) as follows:

99

• Critic update: to refine parameters w of the value function approximation

Q̃w based on the empirical return Rt:

Rt(st,at, dt) =
HX

t0=t

r(st,at, dt) (5.27)

w = w �rw

X

t

⇣
Q̃w(st,at, dt)�Rt(st,at, dt)

⌘2
(5.28)

• Actor update: to refine parameters ✓ of the policy function ⇡ based on the

sample of value function:

✓ = ✓ +r✓

X

t

Q̃w(st,at, dt) log ⇡(at|st, dt) (5.29)

Local reward signals

To apply actor-critic method with local reward signals, we consider the factored

critic function

Q̃w(st,at, dt) =
X

i,j

nsa
t (i, j)fw

�
i, j, ns

t, dt
�

(5.30)

As shown in theorem 4.3, the policy gradient r✓V1(⇡) of factored critic function

can be computed as:

En1:H2⌦1:H ,d1:H

 HX

t=1

X

i2S,j2A

nsa
t (i, j)r✓ log ⇡

�
j|i, o(i, ns

t , dt)
�
fw(i, j, n

s
t , dt)

�

In this section, we show that the individual value Qn,d
t (i, j) in theorem 5.2 can be

used to estimate critic component fw
�
i, j, ns

t, dt
�
.

100

5.3.2 Training Action-Value Function

In our approach, after count samples n1:H are generated to compute the policy gra-

dient, we also need to adjust the parameters w of our critic Q̃w. Notice that as

per (5.30), our factored critic function Q̃w(st,at, dt) depends only on the counts

generated by the joint-state and action (nsa
t , dt). Training Q̃w can be done by taking

a gradient step as in (5.28) to minimize the following loss function:

min
w

X

s1:H ,a1:H ,d1:H

HX

t=1

⇣
Q̃w(st,at, dt)�Rt(st,at, dt)

⌘2
(5.31)

where Rt(st,at, dt) is the total empirical return for time step t computed us-

ing (5.27).

However, we found that the loss in (5.31) did not work well for training the

critic Q̃w for larger problems. Several count samples were required to reliably train

Q̃w which adversely affects scalability for large problems with many agents. It is

already known in multiagent RL that algorithms that solely rely on the global reward

signal (e.g. Rt in our case) may require several more samples than approaches that

take advantage of local reward signals [8]. Motivated by this observation, we next

develop a local reward signal based strategy to train the critic fw.

Individual Value Function: Let n1:H be a count sample and the individual value

Qn,d
t (i, j) as shown in theorem 5.2. Based on this value function, we next show an

alternative reparameterization of the global empirical reward Rt in (5.27):

Lemma 5.1. The empirical return Rt for the time step t given the count sample

n1:H can be re-parameterized as: Rt =
P

i2S,j2A nsa
t (i, j)Q

n,d
t (i, j).

Proof. We know from theorem 5.2 that the individual value function Qn,d
t for a

count sample n is given by the following expectation:

Qn,d
t (i, j) = E

h HX

t0=t

rmt0 |smt = i, amt = j,n1:H

i
(5.32)

101

By definition, the total empirical return Rt is given by the summation of individual

value function for all the agents m:

Rt =
X

m

Qn,d
t (smt , a

m
t) =

X

i2S,j2A

nsa
t (i, j)Q

n,d
t (i, j) (5.33)

For the last equation, we have used the fact that agents which are in the same state i

and and take the same action j, they have the same value function (as all the agents

are identical).

Individual Value Function Based Loss: Given lemma 5.1, we next derive an

upper bound on the on the true loss (5.31) which effectively utilizes individual value

functions:

X

t

⇣
Q̃w(n

sa
t , dt)�Rt

⌘2

=
X

t

⇣X

i,j

nsa
t (i, j)fw(i, j, n

s
t, dt)�

X

i,j

nsa
t (i, j)Q

n,d
t (i, j)

⌘2

=
X

t

✓X

i,j

nsa
t (i, j)

⇣
fw(i, j, n

s
t, dt)�Qn,d

t (i, j)
⌘◆2

(5.34)

M
X

t,i,j

nsa
t (i, j)

⇣
fw(i, j, n

s
t, dt)�Qn,d

t (i, j)
⌘2

(5.35)

where the last relation is derived by Cauchy-Schwarz inequality. We train the critic

using the modified loss function in (5.35). Empirically, we observed that for larger

problems, this new loss function resulted in much faster convergence than the orig-

inal loss function.

5.4 Evolutionary Game Theory

In this section, we show the relationship of our algorithm to evolutionary game

theory. We consider the class of population game [99], in which policy of homo-

geneous (or symmetric) agents in a population evolve over time until they reach an

102

equilibrium or stable states. The evolution of the policy can be defined by a dy-

namic equation to update policy in favor of some individual value functions. We

consider the two well-known dynamics, which are Gradient Ascent (GA) [111] and

Replicator dynamics [122]. These evolutionary dynamics are popular methods to

find equilibriums in game theory. By studying GA and Replicator dynamics for

CDec-POMDP, later we can justify the converged solutions found by our methods

in the perspective of the equilibrium notion in game theory.

5.4.1 Dynamics in Agent Population

Let us start by considering a stateless population game [99]. A population game is

defined for M individuals with a distribution h⇡(j)ij2A over a set of discrete action

A. Each agent in the population chooses an action j with the probability ⇡(j). As

agents in the population are symmetric and share a homogeneous policy, we can

define a pay-off function Q⇡(j) for an anonymous agent choosing action j when the

population policy is ⇡. Under the policy ⇡ and individual pay-off function Q⇡, each

agent perceives its total expected pay-off as:

V (⇡, Q⇡) =
X

j

⇡(j)Q⇡(j) (5.36)

At each iteration, each agent follows an fictitious play [18] assumption that other

agents follow the stationary policy ⇡, therefore it presumes that its individual Q⇡

would be unchanged. Then, agents replace policy ⇡ with a policy ⇡0 to improve the

individual expected pay-off V (⇡0, Q⇡) as

X

j

⇡0(j)Q⇡(j) >
X

j

⇡(j)Q⇡(j) (5.37)

103

In general, we can write the policy update in such apopulation game as:

⇡0 = project
�
⇡ + ↵�(⇡, Q)

�
, (5.38)

in which ↵ is the learning rate, �(⇡, Q) is the change of policy depending on

⇡, Q and project is the projection of updated parameters to probability space

(
P

j ⇡
0(j) = 1).

We denote �⇡(j) to be component of � corresponding to element ⇡(j). The

Gradient Ascent [111] update can be defined as:

�⇡(j) =
@V (⇡, Q)

@⇡(j)
= Q(j)�

X

j02A

Q(j0)⇡(j0). (5.39)

Notice that
P

j02A Q(j0)⇡(j0) plays the role as a baseline (as in RL), which does not

introduce any bias in the policy gradient.

On the other hand, the Replicator dynamic, as introduced by [122], is:

�⇡(j) = ⇡(j)
@V (⇡, Q)

@⇡(j)
= ⇡(j)

⇥
Q(j)�

X

j02A

Q(j0)⇡(j0)
⇤
. (5.40)

As noted by Kaisers et al. [50], Replicator dynamic update can be considered as

a weighted (by the action probability) gradient update.

5.4.2 Stateful dynamics in population

Hennes et al. proposed an extension of Replicator dynamics to stateful environ-

ment. Without loss of generality, we consider a population game in an MDP with

joint state st over a planning horizon H . The total expected pay-off of an agent is

replaced by the value function:

V (⇡, Q) =
X

t

X

st

P ⇡(st)⇡t(j|st)Qt(j, st), (5.41)

104

in which P ⇡(st) is the probability of joint state st appearing at time t under the pop-

ulation policy ⇡. The state-action value function Qt(j, st) specifies the cumulative

expected rewards of an anonymous agent when it takes action j under the joint state

st:

Qt(j, st) = r(j, st, ⇡) +
X

st+12S,j02A

P (st+1|st, j)⇡t+1(j
0|st+1), (5.42)

in which P (st+1|st, j) is the transition probability when this agent takes action j

and others follow the policy ⇡t.

The stateful Gradient Ascent dynamics for an MDP over planning horizon H are

defined as [45]:

�⇡t(j|st) =
@V (⇡, Q)

@⇡t(j|st)

= P ⇡(st)[Qt(j, st)�
X

j0

Qt(j
0, st)⇡t(j

0|st)], 8j 2 A, st 2 S, t 2 [1 : H],

(5.43)

in which the state-action policy ⇡t(j|st) denotes the probability an individual taking

action j at time period t (in a planning horizon) when the system joint state to be st.

The whole policy can be represented as ⇡ = (⇡1, . . . , ⇡H).

Correspondingly, the stateful Replicator dynamics for an MDP over planning

horizon H are defined as [45]:

�⇡t(j|st) = ⇡t(j|st)
@V (⇡, Q)

@⇡t(j|st)

= ⇡t(j|st)P ⇡(st)[Qt(j, st)�
X

j0

Qt(j
0, st)⇡t(j

0|st)], 8j 2 A, st 2 S, t 2 [1 : H],

(5.44)

105

Extension to CDec-POMDP

Similar to the state-coupled extension in [45], we can consider the extension of

Replicator dynamics in (5.44) into the partial observation setting of CDec-POMDPs

by:

�⇡t(j|i, ot) = ⇡t(j|i, ot)
@V (⇡, Q)

@⇡t(j|i, ot)

=
X

ns
t
,dt

I
�
ot = o(i, ns

t, dt)
�
P ⇡(i, ns

t, dt)⇡t(j|i, ot)
@
P

j0 ⇡t(j0|i, ot)Qt(i, j0, ns
t, dt)

@⇡t(j|i, ot)

=
X

ns
t
,dt

I
�
ot = o(i, ns

t, dt)
�
P ⇡(i, ns

t, dt)⇡t(j|i, ot)[Qt(i, j, n
s
t, dt)

�
X

j0

Qt(i, j
0, ns

t, dt)⇡t(j
0|i, ot)], 8i 2 S, j 2 A, ot 2 O, t 2 [1 : H], (5.45)

with Qt(i, j, ns
t, dt) to be the cumulative reward of an anonymous agent when it is

in local state i, observes ot and takes a local action j. P ⇡(i, ns
t, dt) is the prob-

ability that an agent is in local state i and the global state is (ns
t, dt). The base-

line
P

j0 Qt(i, j0, ns
t, dt)⇡t(j0|i, ot) is used correspondingly to the stateless baseline

in (5.39).

Analogously, we can define the Gradient Ascent dynamics in CDec-POMDPs

as:

�⇡t(j|i, ot) =
@V (⇡, Q)

@⇡t(j|i, ot)

=
X

ns
t
,dt

I
�
ot = o(i, ns

t, dt)
�
P ⇡(i, ns

t, dt)
@
P

j0 ⇡t(j0|i, ot)Qt(i, j0, ns
t, dt)

@⇡t(j|i, ot)

=
X

ns
t
,dt

I
�
ot = o(i, ns

t, dt)
�
P ⇡(i, ns

t, dt)[Qt(i, j, n
s
t, dt)

�
X

j0

Qt(i, j
0, ns

t, dt)⇡t(j
0|i, ot)] (5.46)

106

Parameterized policy

As in CDec-POMDPs, we consider policy function ⇡ to be parameterized by ✓, the

policy parameter gradients follow the chain rule:

@V (⇡, Q)

@✓
=

@V (⇡, Q)

@⇡

@⇡

@✓
(5.47)

Based on equation (5.47), we propose the corresponding parameter dynamics for

population as follows:

�✓ = �⇡ ⇥ @⇡

@✓
(5.48)

Replace the Gradient Ascent dynamics in (5.46) and Replicator dynamics in (5.45)

into (5.48) we have the following parameter updates at each time t:

Replicator Dynamics:

�✓ =
X

i,j

⇡t(j|i, ot)
@V (⇡, Q)

@⇡t(j|i, ot)
@⇡

@✓

=
X

ns
t
,dt

X

i

P ⇡(i, ns
t, dt)

X

j2A

⇡t(j|i, o(i, ns
t, dt))[Qt(i, j, n

s
t, dt)

�
X

j0

Qt(i, j
0, ns

t, dt)⇡t(j
0|i, o(i, ns

t, dt))]
@⇡t(j|i, o(i, ns

t, dt))

@✓
(5.49)

Gradient Ascent Dynamics:

�✓ =
X

i,j

@V (⇡, Q)

@⇡t(j|i, ot)
@⇡

@✓

=
X

ns
t
,dt

P ⇡(i, ns
t, dt)

X

j2A

[Qt(i, j, n
s
t, dt)

�
X

j0

Qt(i, j
0, ns

t, dt)⇡t(j
0|i, o(i, ns

t, dt))]
@⇡t(j|i, o(i, ns

t, dt))

@✓
(5.50)

We notice that the joint individual probability P ⇡(i, ns
t, dt) can be computed us-

107

ing corollary 5.2 as

P ⇡(i, ns
t, dt) =

X

j

X

n0
1:t,d

0
1:t

P
�
i, j,n01:t, d

0
1:t

�
I(n0 st = ns

t, d
0
t = dt)

=
X

j

X

n0
1:t,d

0
1:t

P (n01:t, d
0
1:t)

n0 sat (i, j)

M
I(n0 st = ns

t, d
0
t = dt)

=
X

n0
1:t,d

0
1:t

P (n01:t, d
0
1:t)

n0 st (i)

M
I(n0 st = ns

t, d
0
t = dt) (5.51)

Analogously, we have

P ⇡(i, j, ns
t, dt) =

X

n0
1:t,d

0
1:t

P (n01:t, d
0
1:t)

n0 sat (i, j)

M
I(n0 st = ns

t, d
0
t = dt) (5.52)

Equations (5.51) and (5.52) give us a way to estimate P ⇡(i, ns
t, dt) and

P ⇡(i, j, ns
t, dt) by sampling the counts instead of the individual trajectory.

To compute Qt(i, j, ns
t, dt), we apply proposition 5.3 to have

Qt(i, j, n
s
t, dt) =

X

nsa
t

P (nsa
t | ns

t, dt)Qt(i, j, n
sa
t , dt)

=
X

nsa
t

P (nsa
t | ns

t, dt)Ent:H ,dt:H

⇥
Qn,d

t (i, j)| nsa
t , dt

⇤

= Ent:H ,dt:H

⇥
Qn,d

t (i, j)| ns
t, dt
⇤

(5.53)

Equation (5.53) gives us a way to estimate Qt(i, j, ns
t, dt) by sampling Qn,d

t (i, j)

from the conditional collective probability P (nt:H , dt:H | ns
t, dt). We can approxi-

mate Qt(i, j, ns
t, dt) by the individual critic critic fw(i, j, ns

t, dt) trained by the loss

function (5.35).

Applying (5.51) and Qt(i, j, ns
t, dt) ⇡ fw(i, j, ns

t, dt) into (5.49) and (5.50), we

can estimate the parameter updates of Replicator Dynamics and Gradient Ascent

Dynamics as follows:

108

Gradient Ascent Dynamics �✓:

= Ent2⌦t,dt

hX

i,j

ns
t(i)

M

h
fw(i, j, n

s
t, dt)

�
X

j0

fw(i, j
0, ns

t, dt)⇡t(j
0|i, o(i, ns

t, dt))
i@⇡t(j|i, o(i, ns

t, dt))

@✓

i

(5.54)

Replicator Dynamics �✓:

= Ent2⌦t,dt

hX

i,j

ns
t(i)

M
⇡
�
j|i, o(i, ns

t, dt)
�h
fw(i, j, n

s
t, dt)

�
X

j0

fw(i, j
0, ns

t, dt)⇡t(j
0|i, o(i, ns

t, dt))
i
⇥ @⇡t(j|i, o(i, ns

t, dt))

@✓

i

(5.55)

Equivalence between Gradient Ascent Dynamics and Factored Actor Update

With notice of log-trick

@
P

j0 ⇡t(j0|i, ot)Qt(i, j0, ns
t, dt)

@✓
= ⇡t(j|i, ot)Qt(i, j

0, ns
t, dt)

@ log ⇡t(j0|i, ot)
@✓

,

we can also re-write equation (5.50) of the Gradient Ascent dynamics as:

�✓ =
X

ns
t
,dt

P ⇡(i, ns
t, dt)⇡t(j|i, o(i, ns

t, dt))
X

j2A

[Qt(i, j, n
s
t, dt)

�
X

j0

Qt(i, j
0, ns

t, dt)⇡t(j
0|i, o(i, ns

t, dt))]
@ log ⇡t(j|i, o(i, ns

t, dt))

@✓

using the fact P ⇡(i, ns
t, dt)⇡t(j|i, o(i, ns

t, dt)) = P ⇡(i, j, ns
t, dt), we have

=
X

ns
t
,dt

P ⇡(i, j, ns
t, dt)

X

j2A

[Qt(i, j, n
s
t, dt)

�
X

j0

Qt(i, j
0, ns

t, dt)P
⇡(i, j, ns

t, dt)]
@ log ⇡t(j|i, o(i, ns

t, dt))

@✓
(5.56)

109

Applying (5.52) by (5.52) and Qt(i, j, ns
t, dt) ⇡ fw(i, j, ns

t, dt) into (5.56), we

can estimate the parameter updates of Gradient Ascent Dynamics as follows:

= Ent2⌦t,dt

hX

i,j

nsa
t (i, j)

M

h
fw(i, j, n

s
t, dt)

�
X

j0

fw(i, j
0, ns

t, dt)⇡t(j
0|i, o(i, ns

t, dt))
i@ log ⇡t(j|i, o(i, ns

t, dt))

@✓

i

(5.57)

This Gradient Ascent Dynamics formula is equivalent to factored actor update in

equation (4.47).

5.5 Algorithms

Algorithm 3: Actor-Critic RL for CDec-POMDPs
1 Initialize network parameter ✓ for actor ⇡ and and w for critic fw

2 ↵ actor learning rate
3 � critic learning rate
4 repeat
5 Sample count vectors n1:H ⇠ P (n1:H ;⇡)
6 Update critic as:
7 C : w =

w � �rw

hP
t

⇣P
i,j n

sa
t (i, j)fw(i, j, nst, dt)�

P
i,j n

sa
t (i, j)Qn,d

t (i, j)
⌘2i

8 fC : w = w � �rw

hP
t,i,j n

sa
t (i, j)

⇣
fw(i, j, nst, dt)�Q

n,d
t (i, j)

⌘2i

9 Update actor as:
10 A : ✓ = ✓ +

↵r✓
P

t

hP
i,j n

sa
t (i, j) log ⇡

�
j|i, o(i, nst, dt)

�ihP
i,j n

sa
t (i, j)fw(i, j, nst, dt)

i

11 fA : ✓ = ✓ + ↵r✓
P

t

hP
i,j n

sa
t (i, j) log ⇡

�
j|i, o(i, nst, dt)

�
fw(i, j, nst, dt)

i

12 gA : ✓ = ✓ + ↵r✓
P

t

hP
i,j n

s
t(i)⇡

�
j|i, o(i, nst, dt)

�
fw(i, j, nst, dt)

i

13 rA : ✓ =

✓ + ↵
P

t

hP
i,j n

s
t(i)⇡

�
j|i, o(i, nst, dt)

�
fw(i, j, nst, dt)r✓⇡

�
j|i, o(i, nst, dt)

�i

14 until convergence
15 return ✓, w

Algorithm 3 shows the outline of our AC approach for CDec-POMDPs. Lines 7

110

and 8 show two different options to train the critic. Line 7 represents critic update

based on local value functions, also referred to as factored critic update (fC). Line 8

shows update based on global reward or global critic update (C). Line 10 shows the

policy gradient computed using theorem 4.1 (fA). Line 11 shows how the gradient

is computed by directly using fw from eq. (4.30) in eq. 4.43.

In addition, we consider the gradient descent dynamics update (gA in line 12) and

Replicator dynamics update (rA in line 13). Both gA and rA policy updates use the

critic estimation fC.

5.6 Experiments

This section compares the performance of different actor critic algorithms with in-

dividual rewards in a taxi fleet management domain and grid navigation domain.

We consider closed loop policy as a policy where action selection depends on the

current local state of the agent as well as the counts and global component values

(the demand counts in taxi domain) at its local state and its adjacent states. In our

domains, the local state is the current location of agent, i.e. in one of a zone in an

urban area or one of the node in a grid network. The adjacency relation between

locations is defined by the domain map.

To make comparisons between average-flow estimation and collective sampling

estimation, we consider open loop policy where action selection only depends the

agent’s local state. We use the Soft-Max based flow update (SMFU) algorithm [133]

and an average-flow based policy gradient (“fA+avg-flow”) to optimize open loop

policy. In “fA+avg-flow” algorithm, the individual value is estimated by average

flows and the policy gradient is computed by using this individual value estimation.

To benchmark against average-flow methods, we design an factor-actor-factor-critic

algorithm to optimize the open loop policy, which is called fAfC�0 in our experi-

ment.

111

5.6.1 Taxi Supply-Demand Matching

-300

-200

-100

0

100

200

1 3 5 7 10 12 14 16 18 20

O
bj
ec
tiv
e

Agent	Number

fA+avg-flow fAfC-0 fAfC SMFU

9.E+04

2.E+05

0 1 2 3 4 5 6 7 8 9 10

O
bj
ec
tiv
e

MaxVar

fA+avg-flow fAfC-0 fAfC SMFU

Figure 5.2: Solution quality with varying MaxVar in taxi domain

(a) MaxV ar = 0 (b) MaxV ar = 1 (c) MaxV ar = 5 (d) MaxV ar = 10

Figure 5.3: Convergence of average-flow based policy gradient and fAfC optimizing static
policy on taxi domain.

(a) MaxV ar = 0 (b) MaxV ar = 1 (c) MaxV ar = 5 (d) MaxV ar = 10

Figure 5.4: Convergence of different actor-critic variants on the taxi problem.

We test our approach on this real-world domain described in section (2.1.1), and intro-

duced in [133]. In this problem, the goal is to compute taxi policies for optimizing the total

revenue of the fleet. The data contains GPS traces of taxi movement in a large Asian city

over 1 year. We use the observed demand information extracted from this dataset. On an

112

average, there are around 8000 taxis per day (data is not exhaustive over all taxi operators).

The city is divided into 81 zones and the plan horizon is 48 half hour intervals over 24 hours.

For details about the environment dynamics, we refer to the appendix A.1.

Previous work only considers a fixed expected taxi demand in each city zone. To make the

problem more realistic, we address stochastic taxi demand. While sampling demand, we

multiply the given expected demand in a zone z with vz⇠N̂ (1,�z), where N̂ is a truncated

normal distribution between [0, 2]. We generate several problem settings by sampling the

variance �z uniformly from [0,MaxVar] and varying MaxVar from 1 to 10. Intuitively,

with higher value of �z , multiplier vz tends to follow a uniform distribution over [0, 2]; with

lower value of �z , vz is close to constant (⇡ 1). Figure 5.2 shows the solution quality of

different approaches for varying MaxVar. We observe that collective sampling approaches

fAfC and fAfC�0 outperform average-flow approaches (SMFU and fA+avg-flow). No-

tably, when the MaxVar parameter increases, it increases the stochasticity in the problem.

With increasing stochasticity, closed loop policy optimized by fAfC is significantly better

than open loop policy optimized by fAfC�0 and average-flow methods. This highlights

the benefit of using collective sampling to optimize closed loop policy which average-flow

methods can not optimize.

Furthermore, we investigate the convergence of average-flow based method fA+avg-

flow and collective flow methods in figures 5.3. The “true value” of the objective function is

estimated by collective sampling of the counts and the rewards. Meanwhile, the “avg-flow

value” is the estimation of objective value using the average-flow method. We observe that

when MaxV ar = 0, the transition and reward functions are in linear form, therefore, the

‘true value” and “avg-flow value” of fA+avg-flow are almost identical. When the MaxV ar

increases, the increased stochasticity widens the gap between these 2 values. This implies

the average-flow estimation is highly inaccurate and not suitable with stochastic environ-

ment.

Figures 5.4 show the quality Vs. iterations for different variations of our actor critic

approach—fAfC, AC, AfC, fAC, rA, gA to optimize closed loop policy. These figures

clearly show that using factored actor and the factored critic update in fAfC, rA and gA is

the most reliable strategy over all the other variations and for all the observation models.

113

Variations such as AC and fAC were not able to converge at all despite having exactly the

same parameters as fAfC. These results validate different strategies that we have developed

in our work to make vanilla AC converge faster for large problems. The convergences of

fAfC, rA and gA are almost identical, which shows the relation of our fAfC solution to the

equilibrium in population game.

5.6.2 Robot Grid Navigation

We also tested on a synthetic benchmark. The goal is for a population of robots (= 20) to

move from a set of initial locations to a goal state in a 5x5 grid. If there is congestion on

an edge, then each agent attempting to cross the edge has higher chance of action failure.

Similarly, agents also receive a negative reward if there is edge congestion. On successfully

reaching the goal state, agents receive a positive reward and transition back to one of the

initial state. We set the horizon to 100 steps. More details of the domain are provided in the

appendix A.2.

In the robot grid navigation domain, we compare performance of different algorithms

with varying the number of agents from 1 to 20. Figure 5.5 shows the solution quality

comparisons among different approaches. Overall, when the congestion increases with the

number of agents, the closed loop policy optimized by fAfC becomes significantly bet-

ter than the open loop policy. Among open loop policy optimizers, we observe collective

sampling method (fAfC�0) is better than average-flow methods. Figures 5.6 compare con-

vergence of average-flow method and collective sampling methods. We observe that when

the population size is small N = 1, average-flow estimation is close to the true value, which

explains the high quality of average-flow methods. When the number of agents increase,

the stochasticity becomes higher, as a result, average-flow estimation is no longer accurate.

As the average-flow objective estimation becomes far from the “true value”, fA+avg-flow

method converges to poor solutions.

We show the convergence of different variations of our actor critic approach—fAfC, AC,

AfC, fAC, rA, gA to optimize closed loop policy in figures 5.7. Similar to the observation

in taxi domain,fAfC, rA and gA behave similarly and produce the best solution quality.

114

Among other variants, fAC has comparable solution with fAfC, rA and gA, however it

becomes worse when the number of agents increases.

-300

-200

-100

0

100

200

1 3 5 7 10 12 14 16 18 20

O
bj
ec
tiv
e

Agent	Number

fA+avg-flow fAfC-0 fAfC SMFU

9.E+04

2.E+05

0 1 2 3 4 5 6 7 8 9 10

O
bj
ec
tiv
e

MaxVar

fA+avg-flow fAfC-0 fAfC SMFU

Figure 5.5: Solution quality with varying population size in grid domain

(a) N = 1 (b) N = 5 (c) N = 10 (d) N = 20

Figure 5.6: Convergence of average-flow based policy gradient and fAfC on the grid navi-
gation problem.

(a) N = 1 (b) N = 5 (c) N = 10 (d) N = 20

Figure 5.7: Convergence of different actor-critic variants on the grid navigation problem.

115

5.7 Related Works

It has been shown in both model-based planning and model-free learning that value decom-

position facilitates multi-agent algorithms. One of the earliest works in decomposing value

function in MDPs planning is by Schneider et al. [100] who showed that the decompos-

ing value function can reduce the complexity of computing joint policy. Later, Guestrin

et al. [38] showed that the optimal joint centralized policy in MDPs with factored transition

and reward functions can be efficiently computed by using the factored value function in

approximate dynamic programs. Using a similar idea for model-based factored value func-

tion in [38], Kok and Vlassis [53] proposed a model-free counterpart where value function

components are learnt by local rewards. For Dec-(PO)MDPs with independent-transition,

Kumar et al. [58] proposed individual value functions to be computed by a factored dynamic

program based on a sparse interaction structure. The main problem with model-based value

function decomposition is that they assume the sparse interaction between agents, mean-

while in our CDec-POMDP domains an agent can interact with all other agents along its

trajectory. Recently, in parallel to our work, Sunehag et al. [115] proposed to approximate

the global value function by a sum of local value functions one for each agent. Agent de-

composition in [115] requires maintaining value function for every agent and the training

of value function uses global rewards, which is not effective in CDec-POMDPs with large

number of agents.

In large multi-agent systems, computing equilibrium is sometimes easier than global op-

timum, hence there is a large body of literature in multi-agent planning focusing on finding

equilibrium solutions. When studying network distributed POMDPs modeling interaction

of sensor agents in the network, Nair et al. [74] proposed the best response algorithm to

optimize an individual policy while fixing other agent policies. The best response algorithm

in [74] is equivalent to local search and able to converge equilibrium with a high-quality.

However, best response method by Nair et al. [74] is a synchronous algorithm and produce

heterogeneous policies, hence it is difficult to scale-up to large population system in CDec-

POMDP. Fictitious play [60] is an asynchronous version of best response. In fictitious

play, instead of each agent taking turn to update its values and policy, every agent would

116

compute value at the same time. Fictitious play in reinforcement learning context is used

in independent learner algorithms [121, 23] in which each agent maintains an independent

value function based on its observed local rewards and updates its policy based on its value

function. Independent learner is shown to be effective in many domains, e.g. traffic light

controls [142, 59], and multi-agent pursuit-evader [40]. Analogously, the main issue with

traditional methods is that maintaining value function for every agent is not tractable in large

populations. Our proposed algorithms address this by estimating a single individual value

function shared by all agents and the shared individual value function is centrally updated

using the counts.

The scalability of our individual value function approach is attributed to marginalizing

agent state-action trajectories into the sufficient-statistics counts. This idea is also explored

in different research problems in the literature. Robbel et al. [97] extended Guestrin et al.

[38]’s idea to large graphical model planning by considering the count-based value functions

for nodes in the graph. The complexity of the algorithm in [97], however, is exponential

to the tree-width of the problem. Computing individual value function as an expectation

over the counts is also studied in action graph game [48]. In action graph game studied

in [48], all agents have the same mixed strategy to choose their actions and the congestion

based individual reward of an agent only depends on the number of other agents choosing

the same action with it. To exploit the homogeneity, the individual value function can

be computed by the counts. Upon individual value function computation, fictitious play

method or Replicator dynamic can be used to compute an equilibrium [141]. Although the

action graph game shares some similarity with our methods, it can only solve a special class

of single time period problem with open loop policy.

Our work is related to congestion games [136, 98] where the equilibrium of path choos-

ing agents is computed with the flow (or number) of agents in each link (or road). A con-

ventional congestion game is defined as a one-shot deterministic planning problem where

agents deterministically choose their paths as a sequence of links (or roads) to travel from

origin to destination and there is a flow-based delay penalty in each link imposed on agents

crossing that link. The routing agents in a congestion game is usually assumed to be homo-

geneous [98]. Equilibrium is obtained when the delay penalty of any path B is not smaller

117

than a path A’s if we change a flow unit (corresponding to a change in the path of one agent)

from path A to path B . In other words, any agent in path A is not better off by switching to

a path B. As the equilibrium is determined by the flow balance, the identities of agents can

be ignored. Varakantham et al. [133] extended the congestion game into sequential setting

with multi time steps by estimating an average-flow of agents in each time step. For sequen-

tial multi-agent domains, Varakantham et al. [133], Ahmed et al. [3] proposed to compute

the individual value function by the approximate average-flow of agents in the system. As

shown in the experiment with SMFU, the average-flow approaches can only find open-loop

policy which is insufficient for agents to well behave in dynamic environment.

5.8 Summary

In this chapter, we have shown that the individual value function in CDec-POMDPs can

be estimated from samples of the counts. An efficient count-based computation of the in-

dividual value function was proposed by exploiting exchangeability properties of agents in

CDec-POMDP. Using the individual value function and applying fictitious play principle

into CDec-POMDPs, we derived a fictitious play based policy gradient method to optimize

individual policy. In addition, we justified our fictitious play based algorithms by showing

that optimizing the individual value function is equivalent to optimizing a lower bound of

global value function, which theoretically explains our high quality solutions in experiment.

118

Chapter 6

Reinforcement Learning with Global

Reward Signals

In Chapter 4, we have shown that distinguishing the values of different agents through

credit-assignment is vital to learn and optimize individual policy. The credit-assignment can

be considered as the process of decomposing the joint feedback into individual feedbacks.

In Chapter 5, we show that if the global reward is the sum of local rewards, we can consider

the decomposable value function as a sum of individual value functions trained by local

reward signals. Training individual policy with a decomposable value function can converge

to an equilibrium with high global quality. However, the decomposability of values is not

applicable to many real-world domains where the reward function is non-decomposable.

An example is in a patrolling game, when an incident is attended late, a penalty is given

to the whole team instead of single agent. Even when the reward is decomposable, the

transition of agents’ states are interdependent, consequently the value functions of agents

are not separable. In such cases, a decomposable value function is insufficient to capture

the interdependency between agents. In this chapter, we would address this problem by

studying multi-agent reinforcement learning algorithms using non-decomposable critics.

To develop collective actor-critic RL approaches using non-decomposable critics, we

show in this chapter how to i) address the problem of multiagent credit assignment, and ii)

compute low variance policy gradients that result in faster convergence and better solutions

119

than previous methods. In particular, we propose a method to estimate policy gradients by

an expectation of critic value. In addition, we extend the previous technique of counterfac-

tual based credit assignment to the collective setting. Empirically, when comparing with

previous methods, our new approaches provide significantly better solutions in the presence

of global rewards on a real world police re-allocation problem, a taxi fleet optimization

problem and a grid patrolling synthetic benchmark. We also show that our approaches are

competitive even with a centralized online planning approach.

6.1 Collective Decentralized POMDP Model

We recall the CDec-POMDP model with transition as defined in Chapter 2

• Finite planning horizon H .

• M denotes the total number of agents.

• An agent m can be in one of the states i 2 S. The joint state space is ⇥M
m=1S.

• An agent m can take an action j 2 A. The joint action space is ⇥M
m=1A.

• Let (s1:H , a1:H)m = (sm1 , a
m
1 , s

m
2 . . . , s

m
H , a

m
H) denote the complete state-action trajec-

tory of an agent m. The state and action of agent m at time t are denoted using random

variables smt , amt .

• The environment is partially observable wherein agents can have different observations

based on the collective influence of other agents. An agent observes its local state s
m
t .

In addition, it also observes omt at time t based on its local state s
m
t and the count table

nst. E.g., an agent m in state i at time t can observe the count of other agents also in state

i (=nst(i)) or other agents in some neighborhood of the state i (={nst(j) 8j 2 Nb(i)}).

• The transition function is �t
�
s
m
t+1= i

0|smt = i, a
m
t =j, nst

�
. The transition function is the

same for all the agents. Note that it is affected by nst, which depends on the collective

behavior of the agent population.

• Each agent m has a non-stationary policy ⇡
m
t (j|i, omt (i, nst, dt)) denoting the probability

of agent m to take action j given its observation (i, omt (i, nst, dt)) at time t. We denote

the policy an agent m to be ⇡
m = (⇡m

1 , . . . ,⇡
m
H).

120

• The system receives a global reward rt = r(nsat , dt) dependent on the joint count

actions nsat .

• Initial state distribution, bo = (P (i)8i 2 S), is same for all agents.

Figure 6.1: Solid black lines
define 24 patrolling zones of a
city district

Global rewards: The key difference from previous

works in Chapter 5 is that in our model we have a global

reward signal rg that is not decomposable among indi-

vidual agents, which is crucial to model real world ap-

plications. Consider a real world multiagent patrolling

problem in Figure 6.1. A set of homogeneous police

patrol cars (or agents) are stationed in predefined geo-

graphic regions to respond to incidents that may arise

over a shift (say 7AM to 7PM). When an incident comes,

the central command unit dispatches the closet patrol car to the incident location. The dis-

patched car becomes unavailable for some amount of time (including travel and incident

service time). To cover for the engaged car, other available patrol cars from nearby zones

may need to reallocate themselves so that no zones are left vulnerable. The reward in this

system depends on the response time to incidents (e.g., threshold to attend to urgent inci-

dents is 10 min, non-urgent in 20 min). The goal is to compute a reallocation policy for

agents to minimize the number of unsatisfied incidents where the response time was more

than the specified threshold. To model this objective, we award penalty -10 whenever the re-

sponse time requirement of an incident is not met and 0 otherwise. In this domain, the delay

penalty is non-decomposable among patrol cars. It is not reasonable to attribute a penalty

in an incident to its assigned agent because the delay is due to the intrinsic system-wide

supply-demand mismatch. Furthermore, individual agent penalties may even discourage

agents to go to nearby critical sectors, which is undesirable (we observed it empirically).

Indeed, in this domain, all rewards are global, therefore, previous approaches that require

local rewards for agents are not applicable. This is precisely the gap our work targets, and it

significantly increases the applicability of multiagent decision making to real world appli-

cations. Previous approaches in Chapter 5 specifically exploit the additive decomposition

of the reward signal among agents to perform multiagent credit assignment (that is, to com-

121

pute the relative contributions of different agents to the total reward). In the presence of

global rewards, techniques like fAfC for doing credit assignment in Chapter 5 are no longer

theoretically justified and as shown empirically, perform poorly. This is precisely the gap

our work targets as we develop two new techniques to perform effective multiagent RL.

6.2 Mean Collective Actor Critc

We follow an actor-critic approach for optimizing the CDec-POMDP policy ⇡ [55]. Recall

from Chapter 2, we have the value function for a CDec-POMDP model as follows:

Q
⇡
t (n

sa
t , dt) = rt(n

sa
t , dt)

+
X

ns
t+1,n

sa
t+12⌦t+1,dt+1

P (nst+1, dt+1| nsat , dt)P (nsat+1 | nst+1, dt+1;⇡)Q
⇡
t+1(n

sa
t+1, dt+1)

where ⌦t+1 is the subset of consistency constraints (2.7) linking counts for time t and t+

1. Notice that the action-value function is defined over count tables directly and does not

require sampling individual agent trajectories. We define P (nsat | nst, dt;⇡) as the collective

distribution of the action counts given the action probabilities ⇡ and state counts:

=
Y

i2S

h nst(i)!Q
j2A nsat (i, j)!

Y

j2A
⇡
�
j|i, o(i, nst, dt)

�nsa
t
(i,j) (6.1)

Notice that the above formula is essentially a multinomial distribution—for each state i, we

perform nst(i) trials independently. Each trial’s outcome is one of the action j 2 A with

the probability of falling in category j given by ⇡(j|i, o(i, nst, dt)). We can similarly define

another multinomial distribution for P ⇡(nst+1 | nsat , dt).

We can estimate Q⇡
t (n

sa
t , dt) using empirical returns, but it has high variance. To address

this, in actor-critic approaches, we use a function approximation Qw for Q⇡ and learn its

parameters w during the training process. Next we show how to design the critic Qw for

our setting.

122

6.2.1 Critic Design For Collective Policy Gradient With Global

Rewards

The key requirements for designing the critic structure are the following. First, the critic

should be trainable with global rewards which is non-decomposable among agents. Second,

the critic design should address the problem of multiagent credit assignment [30, 115, 26].

One of the key challenges for effective multi-agent reinforcement learning is to assign

“credit” value to each individual agent’s actions so that we can know which action of which

agent is more preferable in the policy update. The credit value should appropriately reflect

the contribution of an agent’s action towards the global reward. Finally, we also require the

policy gradient computed using the critic to have low variance for effective training. We

next detail the design of such a critic for our collective setting that addresses such require-

ments. We start by showing the policy gradient expression for CDec-POMDPs.

Proposition 6.1. For CDec-POMDPs, the policy gradient is given as:

r✓V (⇡) = r✓

HX

t=1

En1:H2⌦1:H ,d1:H


Q

⇡
t (n

sa
t , dt)

�

=
HX

t=1

Ens
t


r✓Ensa

t
⇠P⇡(nsa

t
| ns

t
)

h
Q

⇡
t (n

sa
t , dt)

i�
(6.2)

Proof. Recall from theorem 4.2 that the policy gradient in CDec-POMDPs can be computed

as:

r✓J(✓) =
HX

t=1

Edt,nsat |bo,bgo,⇡


Q

⇡
t (n

sa
t , dt)

✓ X

i2S,j2A
nsat (i, j)r✓ log ⇡t(j|i, o(i, dt, nst))

◆�

(6.3)

123

We notice that inner summation in (6.3) can rewritten as:

X

i2S,j2A
nsat (i, j)r✓ log ⇡t(j|i, o(i, dt, nst))

=r✓ log

✓Y

i2S

h nst(i)!Q
j2A nsat (i, j)!

Y

j2A
⇡
�
j|i, o(i, nst)

�nsa
t
(i,j)
i◆

=r✓ logP
⇡(nsat | nst) (6.4)

where we used the fact that the gradient of the factorial terms is zero. Using this above

result:

r✓J(✓)=
HX

t=1

Edt,nst |bo,b
g

o,⇡

X

nsa
Q

⇡
t (dt, n

sa)P ⇡(nsa | nst)r✓ logP
⇡(nsa | nst)

�
(6.5)

=Edt,nst |bo,b
g

o,⇡

X

nsa
Q

⇡
t (dt, n

sa)r✓P
⇡(nsa | nst)

�
(6.6)

Taking gradient r✓ outside of the summation proves the proposition.

In the next section, we address two concerns with the critic design—low variance and

multiagent credit assignment. Recent work has shown that computing the inner expectation

r✓Ensa
t

h
Q

⇡
t (n

sa
t , dt)

i
in closed form (rather than using sampling) results in lower variance

of the gradient [22, 104, 6]. Furthermore, as shown by Asadi et al., a baseline is not needed

in the expected case to reduce the variance of the gradient. Therefore, we would also show

computation of expected (or mean) collective policy gradient.

Factorization form

A major challenge in multi-agent RL is to assign “credit” values to each individual agent’s

actions so that we know which action is more preferable in the policy update. One solution

studied in [115, 77] for this problem is to consider a factored critic function among all the

agents:

Q̃w(st,at, dt) =
MX

m=1

f
m
w

�
s
m
t , a

m
t , nst, dt

�
, (6.7)

Such a factored critic structure is particularly suited for the credit assignment problem

124

as we are explicitly assigning (and learning) fm
w as an agent m’s contribution to the global

critic value. Crucially, we show later, the policy gradient computed using such a critic also

gets factored among agents, which is essentially credit assignment at the level of gradients

among agents. In the collective setting, counts are the sufficient statistic for planning, and

we assume a homogenous stochastic policy. Therefore, the above equation simplifies as

Q̃w(n
sa
t , dt) =

X

i2S,j2A
nsat (i, j)fw

�
i, j, o(i, nst, dt)

�
(6.8)

Intuitively, there are nsat (i, j) agents which are in state i and taking action j, and the contri-

bution of each of such agents is fw
�
i, j, o(i, nst, dt)

�
. Another property of such a factored

action-value function is that it is consistent with the form of compatible value functions for

CDec-POMDPs [118, 77].

Mean collective gradient: Once we have set the factored design of the critic in (6.8)

which helps in the multiagent credit assignment, the next step is to compute the expectation

r✓Ensa
t

h
Q̃w

i
. Previous work computed this expectation using Monte-Carlo sampling [77].

However, as mentioned earlier, computing this expectation in the closed form helps reduce

the variance [22, 6]. Therefore, we next develop techniques to compute this expectation in

the closed form. We start by the following result from [63]:

Proposition 6.2. The collective distribution P
⇡(nsat | nst) has mean n? sat which is a vector

of length |S|⇥ |A| with n? sat (i, j) = nst(i)⇥⇡t(j|i, o(i, nst, dt)) and the co-variance matrix

is a square matrix with each element given as ⌃̃t(i, j, i0, j0) = 0 8i 6= i
0; ⌃̃t(i, j, i, j0) =

nst(i)⇡t(j|i, o(i, nst, dt))⇡t(j0|i, o(i, nst, dt)) otherwise.

Using the above result, we prove the following theorem. We also use a more general

definition of fw which can depend on the whole count table nst:

Theorem 6.1. Linear collective critic function Q̃w(nsat , dt)=
P

i,j n
sa
t (i, j)fw(i, j, nst, dt)+

b(nst) has the expected policy gradient under the collective distribution P
⇡(nsat | nst) and the

125

policy ⇡
✓ as:

r✓Ensa
t
Q̃w(n

sa
t , dt)=r✓

X

i2S,j2A
nst(i)⇡

✓
t (j|i, o(i, nst, dt))⇥

fw(i, j, n
s
t, dt) (6.9)

Proof. Let fw(nst) be the vector (fw(i, j, nst, dt))i,j . Notice that f and b(nst) are both

independent of action counts nsat and ✓ under the given state counts nst . The expected

policy gradient has the form:

r✓Ensa
t

h
nstat · fw(nst) + b(nst)

i

= r✓

�
fw(nst) · Ensa

t
[nstat]

�
+r✓Ensa

t
[b(nst)]

using proposition 6.2 and noticing that the last term is zero:

= r✓

�
fw(nst) · n? sa

�

= r✓

X

i,j

nst(i)⇡t(j|i, o(i, nst, dt))fw(i, j, nst, dt)

The above result shows that computing the inner expectation in the collective policy

gradient (6.2) using an approximate action-value function fw can be computed in the closed

form, and hence the variance of the gradient is reduced. Furthermore, the gradient is also

decomposable among agents, which makes its computation fast and efficient using only

count samples.

6.2.2 Mean Collective Policy Update from the Global Critic

To highlight, we have two contrasting objectives to achieve: (i) We would like to have a de-

composable critic (that results in a decomposable policy gradient) among agents that helps

in the multiagent credit assignment, and (ii) learn such a critic with global rewards which

are not decomposable among agents. We next outline how to achieve these objectives. Our

key insight is that instead of learning a decomposable critic, we learn a global critic which

is not factorized among agents. This addresses the problem of learning from global rewards;

126

as the critic is defined over the input from all the agents (count tables n in our case), we can

learn from global rewards. However, instead of computing the policy gradient directly from

the global critic, we compute policy gradients from a linear approximation to the global

critic using first-order Taylor approximation. Actor update using linear approximation of

the critic was studied previously in [22, 110]. As noted by researchers in their continuous

action single agent domains, given the small step size, the linear critic approximation is

sufficient to estimate the direction of the policy gradient to move towards a higher value.

The key usefulness of the linear critic in our case is its relationship with that of multiagent

credit assignment which we show next.

Consider the global Q̃w(nsat , dt), we consider its first order Taylor expansion at the mean

value of action counts n? sat = E[nsat | nst, dt] = hnst(i)⇡(j|i, o(i, dt, nst))8i, ji (Proposition

6.2) with ⇡
⇤ as the current policy:

Q̃w(n
sa
t , dt) ⇡ Q̃w(n

? sa
t , dt)+

(nsat � n? sat)|(rnsaQ̃w|=n? sa
t

) (6.10)

We next show that the above linear approximation fits into the factored critic in theorem 6.1

by re-writing this Taylor expression as:

=
X

i,j

nsat (i, j)
@Q̃w

@ nsa(i, j)
(n? sat , dt) +

h
Q̃w(n

? sa
t , dt)� (n? sat)|(rnsaQ̃w|=n? sa

t
)
i

Using the above expression, we can see the relation:

fw(i, j, n
s
t, dt) =

@Q̃w

@ nsa(i, j)
(n? sat , dt)

b(nst) = Q̃w(n
? sa
t , dt)� (n? sat)|(rnsaQ̃w|=n? sa

t
)

Applying theorem 6.1, we have:

Corollary 6.1. Using the first-order Taylor approximation of the critic at the expected state-

action counts n? sat =E[nsat | nst, dt;⇡], the collective policy gradient is:

127

r✓J(✓)⇡
HX

t=1

Ens
t
,dt|bo,bdo

h X

i2S,j2A
nst(i)r✓⇡t(j|i, o(i, dt, nst))

@Qw

@ nsa(i, j)
(n? sat , dt)

i
(6.11)

Intuitively, credit assignment is done using the term @Q̃w

@ nsa
t
(i,j)(n

? sa
t , dt). When the ex-

pression @Q̃w

@ nsa
t
(i,j)(n

? sa
t , dt) has a high value, it implies that a higher count of agents in state

i and taking action j would increase the overall critic value Q̃. This will encourage more

agents to take action j in state i. Thus, this term assigns appropriately the gradient for

different actions of agents in different states.

6.3 Difference Rewards Based Credit Assignment

Difference rewards provide a powerful way to perform credit assignment when there are

several agents, and have been explored extensively in the MRL literature [128, 2, 126, 127,

26]. Difference rewards (DR) are shaped rewards that help individual agents filter out the

noise from the global reward signal (which includes effects from other agents’ actions),

allowing them to assess their individual contribution to the global reward. We will discuss

two popular types of DRs—wonderful life utility (WLU) and aristocratic utility (AU) [128].

Wonderful Life Utility (WLU): Let s,a denote the joint state-action; and r(s,a, d) be the

system reward. The WLU based DR for an agent m is rm=r(s,a, d)�r(s,a�m, d) where

a�m is the joint-action without the agent m. The WLU DR compares the global reward to

the reward received when agent m is not in the system. Agent m can use this shaped reward

r
m for its individual learning. However extracting such shaped rewards from the simulator

is very challenging and may not be feasible for a large number of agents. Therefore, we

apply this reasoning to the critic (or action-value function approximator) Qw(nsa, d). We

assume that Qw is differentiable in all input parameters. Similar to WLU, we define WLQ

(wonderful life Q-function) for an agent m as Q
m = Qw(nsa, d)� Qw(nsa�m, d) where

nsa�m is the state-action count table without the agent m.

For a given (nsa, d), we show how to estimate Q
m. Assume that the agent m is in some

state i 2 S and performing action j 2 A. As agents do not have identities, we use Q
ij

128

to denote the WLQ for any agent in state-action (i, j). Let eij be a vector with the same

dimension as nsa; all entries in e
ij are zero except value 1 at the index corresponding to

state-action (i, j). We have Q
ij = Qw(nsa, d) � Qw(nsa�eij , d). Typically, critic Qw is

represented using a neural network; we normalize all count inputs to the network (denoted

as ñsa = nsa
/M) using the total agent population M . We now estimate WLQ assuming that

M is large:

Q
ij ⇡ lim

M!1

⇥
Qw
�
nsa
/M, d

�
�Qw

�
(nsa�eij)/M, d

�⇤

= lim
�=1/M!0

⇥
Qw
�
ñsa, d

�
�Qw

�
ñsa �� · eij , d

�⇤

= �1 · lim
�=1/M!0

⇥
Qw
�
ñsa �� · eij , d

�
�Qw

�
ñsa, d

�⇤
(6.12)

= �1 ⇤ (��)
@Qw

@ñsa(i, j)
(ñsa, d) (by definition of total differential)

Q
ij ⇡ 1

M

@Qw

@ñsa(i, j)
(ñsa, d) (6.13)

Thus, upon experiencing the tuple (nst, dt, n
sa
t , nsast , dt+1, rt), global reward rt is used to

train the global critic Qw. An agent m in state-action (i, j) accumulates the gradient term

Q
ijr✓ log ⇡t(j|i, o(i, dt, nst)) as per the standard policy gradient result [118](notice that

policy ⇡ is the same for all the agents). Given that there are nsat (i, j) agents performing

action j in state i, the total accumulated gradient based on WLQ updates (6.13) by all the

agents for all time steps is given as:

rwlq
✓ J(✓) =

HX

t=1

Edt,nsat |bo,bgo

 X

i2S,j2A
nsat (i, j)Qij

t (n
sa
t , dt)r✓ log ⇡t(j|i, o(i, dt, nst))

�

(6.14)

We can estimate rwlq
✓ J(✓) by sampling counts and the state dt for all the time steps.

Aristrocratic Utility (AU): For a given joint state-action (s,a, d), the AU based DR for an

agent m is defined as rm = r(s,a, d) �
P

am ⇡
m(am|om(s, d))r(s,a�m [a

m
, d) where

a�m [a
m is the joint-action where agent m’s action in a is replaced with a

m; om is the

observation of the agent; ⇡m is the probability of action a
m. The AU marginalizes over all

129

the actions of agent m keeping other agents’ actions fixed.

In the context of deep multi-agent policy gradient with value function approximation, Fo-

erster et al. [30] show that computing the counterfactual value for each agent i can be

computed by subtracting an agent-dependent baseline from the critic. In particular, given

a centralized critic function Q̃w(s,a, d), where (s,a, d) denote the joint state, action of

agents), the advantage value of sampled action a
m of an agent m is computed as:

A
m(s,a, d) = Q̃w(s,a, d)�

X

a0m

⇡
m(am|om(s, d))Q̃w(s,a

�m [a
0m
, d) (6.15)

in which a�m[a0m is the joint action obtained by replacing sampled action a
m of the agent

m in the sample a by a
0m. Then for each sampled joint trajectory (st,at)t=1:H , the policy

gradient is computed as:

r✓

X

t

X

m

A
m(st,at, dt) log ⇡

m(amt |omt (st, dt)) (6.16)

The agent-dependent baseline in the right hand side of (6.15) helps to reduce the variance

of policy gradient. We next extend this counterfactual computation to our collective setting.

We first notice that in the collective setting, by aggregating agents taking the same action in

the same state into sampled counts nstat
, we have:

Proposition 6.3. The counterfactual (COMA) policy gradient in CDec-POMDPs can be

computed as:

r✓

X

t

X

i2St,j2At

A
i,j
t (nsat , dt) n

sa
t (i, j) log ⇡

�
j|i, o(i, nst, dt)

�

where we have:

A
ij(nsat , dt) = Qw(n

sa
, d)�

X

j0

⇡
�
j
0|i, o(i, ns, d)

�
Qw(n

sa�eij + e
ij0
, d) (6.17)

where vectors eik are defined as for WLQ.

Notice that computing collective COMA policy gradient is expensive in CDec-POMDPs

because we have to evaluate all possible changes in action counts. Therefore, we use

130

a similar technique as for WLQ by normalizing counts, and computing differentials

lim�=1/M!0

⇥
Qw(ñsa, d)�Qw(ñsa+� · (eij0 � e

ij), d)
⇤

to have:

Lemma 6.1. We can approximate COMA advantage A
i,j
t (nsat , dt) as:

A
ij
t (n

sa
t , dt) ⇡

1

M

h
@Q̃w

@ñsa(i, j)
(ñsat , dt)�

X

j0

⇡
�
j
0|i, o(i, dt, nst))

@Q̃w

@ñsa(i, j0)
(ñsat , dt)

i

(6.18)

Proof. We show how to estimate Aij in equation (6.17) in assuming agent population M is

large. Similar to WLQ, we have count inputs normalized for Qw.

A
ij ⇡ lim

M!1

⇥
Qw(n

sa
/M, d)�

X

j0

⇡
�
j
0|i, o(i, d, ns)

�
Qw((nsa�eij + eij

0
)/M, d)

⇤

=
X

j0

⇡(j0|i, o(i, d, ns)) lim
�=1/M!0

⇥
Qw(ñ

sa
, d)�Qw(ñ

sa +� · (eij0 � e
ij), d)

⇤

(6.19)

=
X

j0

⇡(j0|i, o(i, d, ns))
⇥
� · @Qw

@ñsa(i, j)
(ñsa, d)�� · @Qw

@ñsa(i, j0)
(ñsa, d)

⇤

A
ij
t (n

sa
t , dt) ⇡

1

M

h
@Q̃w

@ñsa(i, j)
(ñsat , dt)�

X

j0

⇡
�
j
0|i, o(i, dt, nst))

@Q̃w

@ñsa(i, j0)
(ñsat , dt)

i

where we used total differential similar to WLQ to derive (6.18) from (6.19).

Crucially, the above computation is independent of agent population M , and is thus

highly scalable. Using the same reasoning as WLQ, the gradient rau
✓ is exactly the same

as (6.14) with Q
ij
t replaced by advantages A

ij
t in (6.18). Empirically, we observed that

using advantages Aij resulted in better quality because the additional term
P

j0 in A
ij acts

as a baseline and reduces variance.

Another way to derive the approximate COMA advantages is by using the first order

Taylor expansion of the critic Q̃w:

Lemma 6.2. By approximating the critic Q̃w with its first-order Taylor approximation at

the sampled count nsat , we can approximate COMA advantage A
i,j
t (nsat , dt) as:

@Q̃w

@ nsa(i, j)
(nsat , dt)�

X

j0

⇡
�
j
0|i, o(i, nst, dt)

@Q̃w

@ nsa(i, j0)
(nsat , dt)

131

Algorithm 4: Policy Gradient with Global Rewards
1 Initialize network parameter ✓ for actor ⇡ and and w for critic Q̃w

2 � actor learning rate
3 � critic learning rate
4 repeat
5 Sample count vectors n1:H ⇠ P (n1:H ;⇡) and empirical reward r1:H
6 Update critic by n1:H ⇠ P (n1:H ;⇡) and r1:H with learning rate �
7 Computing the policy gradient �✓ by:

8 MCAC:r✓

P
t

hP
i,j

ns
t
(i)⇡

�
j|i, o(i, dt, nst)

�
@Q̃w

@nt(i,j)
(n? sa

t
, dt)

i

9 CCAC:r✓

P
t

hP
i,j

nsa
t
(i, j) log ⇡

�
j|i, o(i, dt, nst)

�

10
�

@Q̃w
@nt(i,j)

(nsa
t
, dt)�

P
j0 ⇡

�
j0|i, o(i, dt, nst)

�
@Q̃w

@nt(i,j0)
(nsa

t
, dt)

i

11 Update actor ✓ ! ✓ + ��✓ .
12 until convergence
13 return ✓, w

Proof. The first-order Taylor expansion of the critic function Q̃(n0 sat , dt) at the sampled

action counts nsat is:

⇡ Q̃w(n
sa
t , dt) + (n0 sat � nsat)rnsaQ̃w|=nsa

t

Using this approximation in the second term of right hand side of (6.17), we have:

Q̃w(n
sa
t �eij + e

ij0)

⇡ Q̃w(n
sa
t , dt) + (�eij + e

ij0)rnsaQ̃w|=nsa
t

= Q̃w(n
sa
t , dt) +

⇣
� @Q̃w

@ nsa(i, j)
(nsat , dt) +

@Q̃w

@ nsa(i, j0)
(nsat , dt)

⌘
(6.20)

Replace (6.20) into the (6.17), we prove the lemma.

Empirically, we noticed that in problems with a small number of agents, mean collective

actor critic (MCAC) worked better. Intuitively, the reason is because by using the mean of

action counts, n? sat , and computing the expectation r✓Ensa
t
Q̃w(nsat , dt) in closed form, the

policy gradient variance is lower than the variance in the collective COMA case where we

use sampled action counts nsat . For domains with a large number of agents, sampled action-

counts are much closer to the mean action-counts. Therefore in such domains, collective

COMA performed similar to the MCAC approach. The MCAC and collective counterfac-

tual actor critic (CCAC) are summarized in algorithm 4.

132

(a) w = 0 (b) w = 1 (c) w = 10

Figure 6.2: Convergence of different actor-critic variants on the taxi problem. The curves
for MCAC and CCAC almost overlap.

0 1 10

Penalty Weight

−200.0E+3

−100.0E+3

0.0E+0

100.0E+3

200.0E+3

O
bj

ec
tiv

e
va

lu
e

(a) Objective value

0 1 10

Penalty Weight

-50

0

50

100

150

200

In
di

vi
du

al
 P

ro
fit

(b) Average profit per taxi

0 1 10
Penalty Weight

0

20

40

60

80

100

120

140

160

Un
se

rv
ed

 D
em

an
ds

(c) Average unserved
Figure 6.3: Different metrics on the taxi problem with different penalty weights w.

6.4 Experiments

In this section, we experimentally show the effectiveness of our two proposed approaches,

mean collective actor critic (MCAC) and collective counterfactual actor critic (CCAC), for

a real world inspired taxi supply-demand matching problem [77], a real-world police pa-

trolling benchmark and a synthetic robot patrolling in a grid domain. We represent policies

using neural networks. Their design and other experiments settings are described in the

appendix.

We compare the performance of MCAC and CCAC against the following ap-

proaches:

• Standard actor critic (‘vanilla AC’) which fits the critic using global rewards and com-

putes policy gradients from the global critic (without the linear Taylor approximation of

critic).

• The factored actor critic (‘fAfC’) approach of [77] which is the previous best RL ap-

proach for CDec-POMDPs with decomposable rewards. In our domains (specifically

the taxi problem), we have both local and global rewards. The local rewards are incor-

porated in ‘fAfC’ as before; for global rewards, we change the training procedure of the

133

critic in ‘fAfC’.

The exact actor and critic updates for both ‘vanilla AC’ and ‘fAfC’ are provided in the

appendix.

6.4.1 Taxi Supply-Demand Matching

We test our approach on this real-world motivated problem (described in Section 6.1). In

particular, we consider a fleet of 8000 taxis (or agents) in the city divided in 81 zones. In

addition to individual revenues, we also have global rewards to maintain a quality-of-service

(QoS) above some threshold for selected zones which cover the central business district and

residential areas. We analyzed the demand data and selected the topmost 15 busiest zones

for such global rewards. To enforce QoS level ↵=95% for each zone i and time t, we add

penalty terms w ⇥
�
d̂t(i)� ↵dt(i)

�
where w is the penalty weight, d̂t(i) is the total served

demand at time t, and dt(i) is the total demand at time t. We test the effect of QoS penalty by

using different penalty weights w 2 {0, 1.0, 10.0}. Intuitively, w=1 implies the (average)

penalty for missing a customer is the negative of (average) reward for serving a customer

in zone i; w=10 implies missing a customer is 10 times more expensive than the average

reward from serving 1 customer. Notice that even though the total profit is decomposable

among agents, the QoS penalty is not.

In addition to comparisons against ‘Vanilla AC’ and ‘fAfC’, we also compare against a

strong online centralized planner (which fully observes all taxi locations, current demand)

based on the online anticipatory approach (‘OAA’) [67]. Details of this online planner are

in the appendix.

Convergence: Figure 6.2 shows the convergence of different actor-critic approaches on the

taxi problem with different weights w, and QoS (↵) being 95%. We use QoS penalty for all

the 48 time steps for busiest 15 zones. Figures 6.2(a-c) clearly show that both MCAC and

CCAC have much better convergence rate than the previous best ‘fAfC’ approach which is

slow to converge due to the presence of global rewards. Furthermore, ‘Vanilla AC’ performs

poorly on these instances as it does not explicitly takes into account the issue of multiagent

credit assignment and low variance gradient estimates. Given that the agent population is

134

high (8000), this results in worst performance by ‘Vanilla AC’. These results illustrate that

the linear approximation of the critic is effective in doing multiagent credit assignment and

moves the policy in the right direction in both MCAC and CCAC.

Quality: Figure 6.3(a) shows final quality (that includes both the total fleet profit and

the penalty term) comparisons among different actor-critic approaches and the centralized

‘OAA’ planner (we exclude ‘vanilla AC’ as it does not learn any useful policy). As expected,

‘OAA’ provides best quality. However, MCAC and CCAC are competitive with ‘OAA’ in

the final objective value. For w=0 (i.e., the objective is just profit maximization), the final

quality by CCAC and MCAC is about 89% of the ‘OAA’ quality and for w=1, it is about

81%. The ‘fAfC’ achieves about 85% of the quality by MCAC for both w=1 and w=0,

confirming the superior handling of global rewards by our approaches. For higher penalty

w = 10, we see that all the RL approaches are worst off mainly because the penalty term

w ⇥
�
d̂t(i) � ↵dt(i)

�
overshadows the fleet profit term due to high w. We next show that

a higher value of w does not necessarily benefit RL approaches and a lower value of w is

preferable to keep a balance between QoS and overall profit.

Effectiveness with global rewards: Figures 6.3(b,c) together show the tradeoff between

the overall fleet profit (figure 6.3(b) shows the average profit per taxi per day) and the QoS

(figure 6.3(c) shows unserved demand below the QoS threshold or (↵ · dt(i)� d̂t(i)) aver-

aged over all 15 zones and all the time steps). From these two figures, we can see that when

the penalty increased from w=0 to 1 in Figure 6.3(b), the average profit remains almost the

same for both MCAC and CCAC. However, Figure 6.3(c) shows that the unserved demand

decreased significantly (by 32%) for both MCAC and CCAC from w=0 to w=1. Increas-

ing the weight w to 10 did not significantly decrease the unserved demand (in Figure 6.3(c))

but led to the drop in profit (as shown in 6.3(b)) for both MCAC and CCAC. Interest-

ingly, ‘fAfC’ fails to achieve such a balance between profit and the unserved demand. The

unserved demand by ‘fAfC’ does not decrease much from w = 0 to w = 1. Intuitively

this is because the QoS penalty constitutes global rewards whereas ‘fAfC’ is optimized for

decomposable rewards and cannot learn effectively from global reward signals.

135

6.4.2 Police Patrolling

(a) Algorithm convergence

−140

−120

−100

−80

−60

−40

−20

0

O
bj

ec
tiv

e
va

lu
e

MIP MCAC CCAC AC

(b) Objective value

0

5

10

15

20

Un
sa

tis
fie

d
In

ci
de

nt
s

(%
) MIP MCAC CCAC AC

(c) Unsatisfied Percentage

Figure 6.4: Police patrolling problem.

The problem is introduced in Section 6.1. There are 24 city zones, and 16 patrol cars

(or agents). We have access to real world data about all incidents for 31 days in 24 zones.

Roughly 50-60 incidents happen per day (7AM-7PM shift). The goal is to compute reallo-

cation policy for agents such that the number of incidents with response time more than the

threshold is minimized (further details in appendix). This domain has only global rewards.

Therefore, we compare MCAC, CCAC and AC (Note: fAfC, AverageFlow are unable to

model this domain). As a baseline, we compare against a static allocation of patrol cars that

is optimized using a stochastic math program [21], denoted as ‘MIP’. Figure 6.4(a) shows

the convergence results. MCAC performs much better than CCAC. This is because this

problem is sparse with sparse tables nsa, resulting in higher gradient variance for CCAC;

MCAC marginalizes out nsa, thus has lower variance. Figure 6.4(b) shows overall objective

comparisons (higher is better) among all three approaches. It confirms that MCAC is the

best approach. MCAC has 7.8% incidents where response time was more than the threshold

versus 9.32% for MIP (figure 6.4(c)). Notice that even this improvement is significant as it

allows⇡25 more incidents to be served within the threshold over 31 days (assuming 55 avg.

incidents/day). In emergency scenarios, improving response time even by a few minutes is

potentially life saving.

6.4.3 Synthetic Robot Patrolling Game

Next, we consider a synthetic grid world problem to test the sensitivity of our proposed

algorithms (MCAC and CCAC) with respect to different population sizes. The goal is for

a population of robots to move from a depot to find a victim in an MxM grid. At each time

136

step, there would be a victim at a uniformly distributed location in the grid. Robots have to

cooperate with each other to cover the whole grid to maximize the total number of rescued

victims. A global reward to the whole team is given when the victim is rescued by any agent.

The reward is not decomposable among agents because regardless of the number of agents

reaching the victim’s location, only a fixed team reward is given. In this domain, as only

global reward signal given, ‘fAfC’ is not applicable; we only compare against the ‘vanilla

AC’. Figure 6.5 shows the convergence results among different approaches for varying pop-

ulation size and grid dimensions. In this setting, MCAC is significantly better than CCAC

as the domain is sparse with a small number of agents. Intuitively, MCAC computes pol-

icy gradient directly from mean action counts; where CCAC computes the policy gradient

using sampled actions counts (which are sparse as number of agents is small). Therefore,

the variance of the gradient estimate is high for CCAC, and as also highlighted in section

4, CCAC does not work well in such sparse domains.

(a) N=5 in (5x5) (b) N=20 in (5x5) (c) N=50 in (5x5) (d) N=20 in (9x9) (e) N=50 in (9x9)

Figure 6.5: Convergence of different actor-critic variants on the grid patrolling with vary-
ing population size N and grid size.

6.5 Related Works

6.5.1 Difference of Reward

To derive our CCAC algorithm for CDec-POMDP domains, we base our model on the

notion of difference reward proposed by Wolpert and Tumer [149] with Wonderful Life

Utility (WLU) and Aristocrat Utility (AU) algorithms. The difference of reward addresses

the credit assignment problem by estimating the contribution of an agent by the difference

of system utility between with and without that agent cases. Difference rewards (DR) are

shaped rewards that help individual agents filter out the noise from the global reward signal

(which includes effects from other agents’ actions), and assess their individual contribution

137

to the global reward [149]. [128] showed WLU andAU can efficiently solve multi-agent

sequential planning problems by considering the difference of value functions. Later on,

Foerster et al. [30] extended AU algorithm into policy gradient algorithm by considering a

counterfactual difference of critic value into individual policy update. In addition, Foerster

et al. [30] proved that their counterfactual difference method introduced no bias into the

policy gradient computation. These methods, however, are not scalable to large populations.

Our main contribution in designing CCAC is to show how to apply difference-of-reward

into CDec-POMDP settings.

6.5.2 Expected Policy Update

One remedy for the high variance of stochastic policy gradient is to compute an analytic ex-

pression of the policy gradient. The idea was first suggested to apply to tabular Q-learning

in the book of Sutton and Barto [117] as expected Sarsa. Instead of a Q-value update

based on a deterministic action at+1, Sutton and Barto [117] proposed that value could be

computed by an expectation over all possible actions. Seijen et al. [104] later proved the

benefit of expected Sarsa in reducing the variance of Sarsa algorithm. Recently, Asadi et al.

[6] and Ciosek and Whiteson [22] proposed expected policy gradient methods which have

lower variance than stochastic policy gradient. Instead of updating the policy by sampled

action, expected policy gradient approaches directly compute policy gradient by an expec-

tation over all possible action. Asadi et al. [6] showed this expectation can be easily done

in discrete and finite actions problem. In continuous action domains, the expectation can

be computed under a closed-form formula if the policy and value functions have Gaussian

form [22]. In case of non-Gaussian value function, Ciosek and Whiteson [22] suggested

that we can use a Taylor approximation of value function instead. In our multi-agent deci-

sion making in CDec-POMDPs, the action space is discrete (hence method in [22] is not

applicable) and has exponential size due to joint value (it is impossible to use method in [6]

to compute the expectation over all possible joint actions).

Our MCAC algorithm uses the mean of the action count to estimate the policy gradient.

The action mean is also used in some RL algorithm in the literature. Gu et al. [36] and

138

Ciosek and Whiteson [22] used the action mean to compute Taylor approximation for value

function of single agent. Tumer and Agogino [126] and Wu et al. [150] used mean action to

estimate the difference of reward. Our MCAC approach is different from these work in its

use of mean joint action to estimate policy gradient of multi-agent policy in CDec-POMDP

domains. Our policy is decentralized and the value function depends on the joint-count

of agents (in different states and actions) rather than the single-agent setting considered

in [22, 36].

6.6 Summary

In this work, we addressed the problem of collective multiagent RL with global rewards.

Our main contributions include developing techniques for multiagent credit assignment and

computing low variance gradient estimates in the presence of global rewards. In such set-

tings, we showed that an effective critic which is trainable using global rewards is not de-

composable among agents. To use non-decomposable critic in multi-agent settings, we

addressed the credit assignment problem by proposing MCAC and CCAC algorithms.

To derive MCAC, we highlighted a general structure of the critic in the multiagent RL

setting that is suited for the credit assignment problem, but unfortunately is difficult to train

using global rewards. Therefore, we developed techniques based on approximation of the

critic that can resolve such contrasting requirements. For lower variance of the gradients,

we showed how to compute expected or mean collective policy gradients by exploiting the

special feature of CDec-POMDPs.

To derive CCAC algorithm, we used the notion of difference-of-reward/utility [126, 30]

in multi-agent RL. We showed how difference-of-reward can be used in CDec-POMDP

planning without agent identity. As the number of agents and joint action space are large,

we derived an approximation of difference-of-reward using total differential. In large pop-

ulation, the contribution of one agent to the whole population becomes small, which makes

the differential adequately approximate the difference-of-reward function.

We tested our approaches on a synthetic multirobot grid navigation domain, and a real

139

world supply-demand taxi matching problem in a large Asian city with 8000 taxis and a

police re-allocation problem. Thanks to our techniques for multiagent credit assignment

and low variance policy gradients, our multiagent RL algorithms converge to high quality

solutions faster than the standard policy gradient method and the best factored actor-critic

approach from Chapter 5. Our approaches are also competitive even with a strong central-

ized online planner based on anticipatory algorithms [67] despite decentralized and partially

observable environment in our case.

140

Chapter 7

Conclusions and Future Works

7.1 Conclusions

This thesis contributed to the literature of multi-agent systems by a “lifted ” multi-agent

planning framework using the count variables. Our framework allows us to develop multi-

agent reinforcement learning algorithms to optimize decentralized policy of a large popula-

tion (up to 8000 agents). In particular, we addressed the high complexity of joint trajectory

by proposing a novel representation with agent counts. The counts are more compact than

the joint trajectory as their dimensions depend only on the size of the local state spaces

rather than the population size. Based on this count-based representation, we proposed

collective reinforcement learning algorithms to solve large scale multi-agent planning prob-

lems with sampled values of the count variables. In local reward optimization problems,

we proposed collective algorithms combined with fictitious play rule to be able to optimize

individual policy. As inherited from fictitious play, our algorithms were also applicable to

non-cooperative settings. Our fictitious play based algorithms could converge to a symmet-

ric equilibrium in population game. However, similar to other fictitious play algorithms,

convergence to equilibrium cannot be guaranteed in general. In global reward optimization

problems, we addressed the credit-assignment problem in multi-agent system by proposing

collective algorithms based on the notion of “difference of reward” and “approximation by

differentials”. We showed that our algorithms can efficiently optimize decentralized policy

141

in multiple cooperative multi-agent domains.

Our planning framework is based on two key ideas: the collective distribution of the

counts in planning and the count-based value functions. These ideas were inspired by the

counting formulas for lifted inference in Markov Logic Network [17], [69] and collective

inference in Collective Graphical Model (CGM) [108]. The lifted inference technique was

first proposed to compute marginal probability of individual state rather to learn individual

behavior as in our case. Recently, there were research works extending the counting formu-

las in lifted inference to compute value functions in MDP planning [97], [113]. However,

these works focused on finding policies of heterogeneous agents in domains with sparse in-

teraction graph. On the contrary, our count-based planning framework considered domains

where agents fully interact with each other. Second, although the collective distribution

in CGM shares some similarities with ours, it is only applicable to domains where there

are typically no interactions between agents. Our work is the first one that considers agent

interactions and applying collective distribution of counts in multi-agent planning domains.

7.2 Future works

We believe that the contribution of this thesis is an important step to apply AI planning

into real world domains such as traffic network controls with thousands or millions of au-

tonomous vehicles. Nevertheless, there are important questions to be addressed in our future

works, which include: 1) how to extend the CDec-POMDP algorithms to learn heteroge-

neous behaviors of agents; 2) how to handle the large state-action spaces; 3) how to use our

CDec-POMDP solutions to aid centralized decision making. We provide a discussion on

these questions in the next section.

7.2.1 Heterogeneous behaviours

In this thesis, we focus on systems of homogeneous agents. Under the homogeneity as-

sumption, agents in a same local state have the same behaviour, i.e. an identical distribution

over local actions. Because the optimal solution in multi-agent planning is not always ho-

142

mogeneous policy, optimality is traded for scalability.

One of common method to resolve this problem of shared policy in multi-agent re-

inforcement learning is to embed identities to agents to break the behavioural symmetry.

When an agent enquires the shared policy to decide which action to take, the shared policy

takes input of not only local state and local observation (which can be similar amongst some

agents) but also the identity of the enquirer (which is unique to that agent). The identity of

an agent can be in the form of a randomly generated feature vector [153, 152] or an inte-

ger index [83] of that agent. Although the identity can break the behavioural symmetry in

shared policy, it makes the population completely heterogeneous. In other words, the num-

ber of agent types is equal to the number of agents. Consequently, the count tables have

sparse values of {0; 1} and the collective planning loses the compactness advantage.

One of our future works is to find a trade-off between optimality and scalability in col-

lective planning. We plan to explore methods to break the behavioural symmetry but at

the same time preserve the compactness of the count representation. We can pre-define a

number of agent types. An agent is assigned to a type at the beginning so that it can behave

differently from agents in other types. The pre-defined number of agent types is smaller

than the number of agents, hence it is more tractable than the agent identity. Main research

questions include how to assign type to agent an how to determine the optimal number of

type. We leave these non-trivial research problems to the future work.

7.2.2 Large state space

Our collective planning framework with count representation assumes the number of local

states is smaller than the number of agents, so the count tables can compactly represent the

joint state of multi-agent systems. However, when the number of local states is large, the

count tables become sparse. In the case when agents are in completely different local states,

all values in the count table are in {0; 1}. This can happen, for example, in video game

domains where the local state is the location of agent in a spatial map with high resolution

or continuous space. It can also happen when the recurrent neural network is used and the

memory state is represented by a vector. It is important to handle such scenarios.

143

Deep learning is known for the ability to reduce the dimension of the data [46], which

can be used to regain the effectiveness of the counts. In particular, we can use a neural

network to take high-dimensional features of local state as an input and output the abstract

representation of that state. The abstract representation can be designed to be in finite space

which is much smaller than the original space. We can define the count table over the ab-

stract state instead of the original state. One example of a neural network abstraction is the

convolutional neural network (CNN) [61] which constructs the abstract state representation

by scanning through the 2D spatial feature by filters [34]. A filter in CNN is used to ag-

gregate information of sub-regions in a big spatial map. In a special case when the filter

size is similar to the stride (the jumping step in scanning the feature), applying CNN to the

collective domains can be considered to be similar to divide the big map into a finite number

of regions and count the number of agents in each region. Developing a general framework

to combine neural networks with the count-based representation for collective planning is

one of the future research avenues.

7.2.3 Online Decision Making

Decentralized execution is shown to be more tractable than centralized execution [19] be-

cause at a decision epoch, each decentralized controller considers a small number of local

actions a 2 A instead of joint action space A
M which is exponential to the number of

agents M . With the advantage of scalability, decentralized control can quickly make deci-

sions on the actions for agents, which is critical to domains such as vehicle driving which

requires requiring real-time decisions. On the other hand, although centralized solvers us-

ing linear programs (LPs), mixed integer programs (MIPs) or centralized MDP approaches

take time (in minutes or sometimes hours) to determine the joint action, the solution qual-

ity is provably optimal or near to the optimum. To preserve optimality, centralized solvers

are preferable in domains allowing planning time. For example, in logistics domains, the

daily delivery routes of trucks can be planned one day in advance. Stochasticity can be con-

sidered in planning by using methods such as Sample Average Approximation [52, 134].

When the environment state changes from the expected state, one can re-solve the planning

problem with the realized state to get dynamic action. However, the significant run-time of

144

centralized planning methods hinders the real-time re-solving. It is interesting to see a hy-

brid method combining the benefits of a centralized solver and decentralized reinforcement

learning.

A centralized solver can be combined with decentralized reinforcement learning by value

function approximation. Value function approximation (VFA) is a common technique to

estimate the value of a joint state or joint decision. A centralized solver can resort to a

compact VFA instead of generating and considering all possible future scenarios, which

can reduce the complexity and consequently the run-time. The use of VFA in MIPs was

studied before in 2-stage scheduling for inventory management [93], fleet management [33],

etc. The method is also known as Approximate Dynamic Program (ADP) in Operations

Research (OR) literature [94]. However, learning VFA for ADP using classical methods in

OR can take a great deal of run-time. On the contrary, learning the critic as VFA using our

CDec-POMDP RL algorithms is shown to be fast and accurate. For future works, we would

like to try to use the critic function learnt by CDec-POMDP RL algorithms as a VFA for

ADP to solve centralized online decision making problems.

145

Bibliography

[1] Aberdeen, D. (2006). Policy-gradient methods for planning. In Advances in Neural

Information Processing Systems, pages 9–16.

[2] Agogino, A. K. and Tumer, K. (2004). Unifying temporal and structural credit as-

signment problems. In Proceedings of the Third International Joint Conference on Au-

tonomous Agents and Multiagent Systems-Volume 2, pages 980–987. IEEE Computer

Society.

[3] Ahmed, A., Varakantham, P., and Cheng, S.-F. (2012). Uncertain congestion games

with assorted human agent populations. arXiv preprint arXiv:1210.4848.

[4] Amato, C., Oliehoek, F. A., et al. (2015). Scalable planning and learning for multiagent

pomdps. In AAAI, pages 1995–2002.

[5] Arai, T., Pagello, E., and Parker, L. E. (2002). Advances in multi-robot systems. IEEE

Transactions on robotics and automation, 18(5):655–661.

[6] Asadi, K., Allen, C., Roderick, M., Mohamed, A.-R., Konidaris, G., and Littman, M.

(2017). Mean Actor Critic. In eprint arXiv:1709.00503.

[7] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint

arXiv:1607.06450.

[8] Bagnell, J. A. and Ng, A. Y. (2005). On local rewards and scaling distributed reinforce-

ment learning. In International Conference on Neural Information Processing Systems,

pages 91–98.

146

[9] Balch, T., Stone, P., and Kraetzschmar, G. (2001). RoboCup 2000: Robot Soccer World

Cup IV. Springer.

[10] Barto, A. G., Sutton, R. S., and Anderson, C. W. (1988). Neuronlike adaptive ele-

ments that can solve difficult learning control problems. Neurocomputing: foundations

of research, pages 535–549.

[11] Bayındır, L. (2016). A review of swarm robotics tasks. Neurocomputing, 172:292–

321.

[12] Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein, S. (2002). The complex-

ity of decentralized control of markov decision processes. Mathematics of operations

research, 27(4):819–840.

[13] Bertsekas, D. P. (1999). Nonlinear Programming. Athena Scientific, Cambridge, MA,

USA.

[14] Bhatnagar, S., Ghavamzadeh, M., Lee, M., and Sutton, R. S. (2008). Incremental

natural actor-critic algorithms. In Advances in neural information processing systems,

pages 105–112.

[15] Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm intelligence: from natu-

ral to artificial systems. Oxford university press.

[16] Bowling, M. and Veloso, M. (2001). Rational and convergent learning in stochastic

games. In International joint conference on artificial intelligence, volume 17, pages

1021–1026. LAWRENCE ERLBAUM ASSOCIATES LTD.

[17] Braz, R. D. S., Amir, E., and Roth, D. (2005). Lifted first-order probabilistic inference.

In Proceedings of the 19th international joint conference on Artificial intelligence, pages

1319–1325. Citeseer.

[18] Brown, G. W. (1951). Iterative solution of games by fictitious play. Activity analysis

of production and allocation, 13(1):374–376.

[19] Buffet, O. and Aberdeen, D. (2009). The factored policy-gradient planner. Artificial

Intelligence, 173(5):722–747.

147

[20] Chang, Y.-H., Ho, T., and Kaelbling, L. P. (2004). All learning is local: Multi-agent

learning in global reward games. In Advances in neural information processing systems,

pages 807–814.

[21] Chase, J., Du, J., Fu, N., Le, T. V., and Lau, H. C. (2017). Law enforcement resource

optimization with response time guarantees. In IEEE Symposium Series on Computa-

tional Intelligence, pages 1–7.

[22] Ciosek, K. and Whiteson, S. (2018). Expected policy gradients. In (AAAI) Conference

on Artificial Intelligence. AAAI.

[23] Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in coop-

erative multiagent systems. AAAI/IAAI, 1998:746–752.

[24] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977a). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical society, Series B,

39(1):1–38.

[25] Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977b). Maximum likelihood from

incomplete data via the em algorithm. Journal of the royal statistical society. Series B

(methodological), pages 1–38.

[26] Devlin, S., Yliniemi, L., Kudenko, D., and Tumer, K. (2014). Potential-based dif-

ference rewards for multiagent reinforcement learning. In Proceedings of the 2014 in-

ternational conference on Autonomous agents and multi-agent systems, pages 165–172.

International Foundation for Autonomous Agents and Multiagent Systems.

[27] Diaconis, P. and Freedman, D. (1980a). De Finetti’s generalizations of exchangeabil-

ity. Studies in Inductive Logic and Probability, 2:233–249.

[28] Diaconis, P. and Freedman, D. (1980b). Finite exchangeable sequences. The Annals

of Probability, 8(4):745–764.

[29] Foerster, J., Assael, Y. M., de Freitas, N., and Whiteson, S. (2016). Learning to com-

municate with deep multi-agent reinforcement learning. In Advances in Neural Informa-

tion Processing Systems, pages 2137–2145.

148

[30] Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S. (2018). Coun-

terfactual multi-agent policy gradients. In (AAAI) Conference on Artificial Intelligence.

AAAI.

[31] Foerster, J., Nardelli, N., Farquhar, G., Torr, P., Kohli, P., Whiteson, S., et al. (2017).

Stabilising experience replay for deep multi-agent reinforcement learning. arXiv preprint

arXiv:1702.08887.

[32] Gartner, N. (1983). Opac: A demand-responsive strategy for traffic signal control.

Transportation Research Record, Journal of the Transportation Research Board, No.

906:75–81.

[33] Godfrey, G. A. and Powell, W. B. (2002). An adaptive dynamic programming al-

gorithm for dynamic fleet management, ii: Multiperiod travel times. Transportation

Science, 36(1):40–54.

[34] Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning,

volume 1. MIT press Cambridge.

[35] Greensmith, E., Bartlett, P. L., and Baxter, J. (2004). Variance reduction techniques

for gradient estimates in reinforcement learning. Journal of Machine Learning Research,

5(Nov):1471–1530.

[36] Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., and Levine, S. (2017). Q-prop:

Sample-efficient policy gradient with an off-policy critic. In 5th International Confer-

ence on Learning Representations (ICLR 2017).

[37] Guestrin, C., Koller, D., and Parr, R. (2002a). Multiagent planning with factored

MDPs. In Advances in Neural Information Processing Systems, pages 1523–1530.

[38] Guestrin, C., Koller, D., and Parr, R. (2002b). Multiagent Planning with Factored

{MDPs}. In Advances in Neural Information Processing Systems 14, pages 1523–1530.

[39] Guestrin, C., Lagoudakis, M., and Parr, R. (2002c). Coordinated reinforcement learn-

ing. In ICML, volume 2, pages 227–234.

149

[40] Gupta, J. K., Egorov, M., and Kochenderfer, M. (2017). Cooperative multi-agent

control using deep reinforcement learning. In International Conference on Autonomous

Agents and Multiagent Systems, pages 66–83. Springer.

[41] Gupta, T., Kumar, A., and Paruchuri, P. (2018). Planning and learning for decentral-

ized mdps with event driven rewards. In (AAAI) Conference on Artificial Intelligence.

AAAI.

[42] Hajek, B. and van Loon, T. (1982). Decentralized dynamic control of a multiaccess

broadcast channel. IEEE transactions on automatic control, 27(3):559–569.

[43] Hansen, E. A. (1998). Solving POMDPs by searching in policy space. In International

Conference on Uncertainty in Artificial Intelligence, pages 211–219.

[44] Haynes, T. and Sen, S. (1995). Evolving behavioral strategies in predators and prey.

In International Joint Conference on Artificial Intelligence, pages 113–126. Springer.

[45] Hennes, D., Tuyls, K., and Rauterberg, M. (2009). State-coupled replicator dynam-

ics. In Proceedings of The 8th International Conference on Autonomous Agents and

Multiagent Systems-Volume 2, pages 789–796. International Foundation for Autonomous

Agents and Multiagent Systems.

[46] Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data

with neural networks. science, 313(5786):504–507.

[47] Jiang, A. X. and Leyton-Brown, K. (2010). Bayesian action-graph games. In Advances

in Neural Information Processing Systems, pages 991–999.

[48] Jiang, A. X., Leyton-Brown, K., and Bhat, N. A. (2011). Action-graph games. Games

and Economic Behavior, 71(1):141–173.

[49] Jordan, M. I. and Weiss, Y. (2002). Probabilistic inference in graphical models. Hand-

book of neural networks and brain theory.

[50] Kaisers, M., Bloembergen, D., and Tuyls, K. (2012). A common gradient in multi-

agent reinforcement learning. In Proceedings of the 11th International Conference on

150

Autonomous Agents and Multiagent Systems-Volume 3, pages 1393–1394. International

Foundation for Autonomous Agents and Multiagent Systems.

[51] Karkus, P., Hsu, D., and Lee, W. S. (2017). Qmdp-net: Deep learning for planning un-

der partial observability. In Advances in Neural Information Processing Systems, pages

4697–4707.

[52] Kleywegt, A. J., Shapiro, A., and Homem-de Mello, T. (2002). The sample average

approximation method for stochastic discrete optimization. SIAM Journal on Optimiza-

tion, 12(2):479–502.

[53] Kok, J. R. and Vlassis, N. (2006). Collaborative multiagent reinforcement learning by

payoff propagation. Journal of Machine Learning Research, 7(Sep):1789–1828.

[54] Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in

neural information processing systems, pages 1008–1014.

[55] Konda, V. R. and Tsitsiklis, J. N. (2003). On actor-critic algorithms. SIAM Journal on

Control and Optimization, 42(4):1143–1166.

[56] Kraemer, L. and Banerjee, B. (2016). Multi-agent reinforcement learning as a re-

hearsal for decentralized planning. Neurocomputing, 190:82–94.

[57] Kumar, A., Sheldon, D., and Srivastava, B. (2013). Collective diffusion over net-

works: Models and inference. In International Conference on Uncertainty in Artificial

Intelligence, pages 351–359.

[58] Kumar, A., Zilberstein, S., and Toussaint, M. (2015). Probabilistic inference tech-

niques for scalable multiagent decision making. Journal of Artificial Intelligence Re-

search, 53(1):223–270.

[59] Kuyer, L., Whiteson, S., Bakker, B., and Vlassis, N. (2008). Multiagent reinforce-

ment learning for urban traffic control using coordination graphs. Machine learning and

knowledge discovery in databases, pages 656–671.

[60] Lambert Iii, T. J., Epelman, M. A., and Smith, R. L. (2005). A fictitious play approach

to large-scale optimization. Operations Research, 53(3):477–489.

151

[61] LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and

time series. The handbook of brain theory and neural networks, 3361(10):1995.

[62] Lesser, V., Ortiz Jr, C. L., and Tambe, M. (2012). Distributed sensor networks: A

multiagent perspective, volume 9. Springer Science & Business Media.

[63] Liu, L., Sheldon, D., and Dietterich, T. (2014). Gaussian approximation of collective

graphical models. In International Conference on Machine Learning, pages 1602–1610.

[64] Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P., and Mordatch, I. (2017). Multi-

agent actor-critic for mixed cooperative-competitive environments. In Advances in Neu-

ral Information Processing Systems, pages 6382–6393.

[65] Matignon, L., Laurent, G. J., and Le Fort-Piat, N. (2012). Independent reinforcement

learners in cooperative markov games: a survey regarding coordination problems. The

Knowledge Engineering Review, 27(1):1–31.

[66] Melo, F. S. and Veloso, M. (2011). Decentralized mdps with sparse interactions. Ar-

tificial Intelligence, 175(11):1757–1789.

[67] Mercier, L. and Van Hentenryck, P. (2007). Performance analysis of online antic-

ipatory algorithms for large multistage stochastic integer programs. In IJCAI, pages

1979–1984.

[68] Meyers, C. A. and Schulz, A. S. (2012). The complexity of congestion games. Net-

works, 59:252–260.

[69] Milch, B., Zettlemoyer, L. S., Kersting, K., Haimes, M., and Kaelbling, L. P. (2008).

Lifted probabilistic inference with counting formulas. In Aaai, volume 8, pages 1062–

1068.

[70] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C.,

Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Has-

sabis, D. (2015). Human-level control through deep reinforcement learning. Nature,

518(7540):529–533.

152

[71] Morimura, T., Osogami, T., and Idé, T. (2013). Solving inverse problem of markov

chain with partial observations. In Advances in Neural Information processing Systems,

pages 1655–1663.

[72] Murphy, R. R. (2000). Marsupial and shape-shifting robots for urban search and res-

cue. IEEE Intelligent Systems and their applications, 15(2):14–19.

[73] Nair, R., Tambe, M., Yokoo, M., Pynadath, D., and Marsella, S. (2003). Taming

decentralized pomdps: Towards efficient policy computation for multiagent settings. In

IJCAI, volume 3, pages 705–711.

[74] Nair, R., Varakantham, P., Tambe, M., and Yokoo, M. (2005). Networked distributed

POMDPs: A synthesis of distributed constraint optimization and POMDPs. In AAAI

Conference on Artificial Intelligence, pages 133–139.

[75] Neal, R. M. and Hinton, G. E. (1998). A view of the em algorithm that justifies

incremental, sparse, and other variants. In Learning in graphical models, pages 355–

368. Springer.

[76] Nguyen, D. T., Kumar, A., and Lau, H. C. (2017a). Collective multiagent sequential

decision making under uncertainty. In AAAI Conference on Artificial Intelligence, pages

3036–3043.

[77] Nguyen, D. T., Kumar, A., and Lau, H. C. (2017b). Policy gradient with value function

approximation for collective multiagent planning. In The Thirty-first Annual Conference

on Neural Information Processing Systems. NIPS.

[78] Nguyen, D. T., Kumar, A., Lau, H. C., and Sheldon, D. (2016). Approximate inference

using DC programming for collective graphical models. In International Conference on

Artificial Intelligence and Statistics, pages 685–693.

[79] Niepert, M. and Van den Broeck, G. (2014). Tractability through exchangeability: A

new perspective on efficient probabilistic inference. In AAAI Conference on Artificial

Intelligence, pages 2467–2475.

153

[80] Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V. (2007). Algorithmic game

theory, volume 1. Cambridge University Press Cambridge.

[81] Oh, J., Singh, S., and Lee, H. (2017). Value prediction network. In Advances in Neural

Information Processing Systems, pages 6114–6124.

[82] Oliehoek, F. A., Vlassis, N. A., et al. (2007). Q-value heuristics for approximate

solutions of dec-pomdps. In AAAI Spring Symposium: Game Theoretic and Decision

Theoretic Agents, pages 31–37.

[83] Omidshafiei, S., Pazis, J., Amato, C., How, J. P., and Vian, J. (2017). Deep decentral-

ized multi-task multi-agent rl under partial observability. In ICML.

[84] Ooi, J. M. and Wornell, G. W. (1996). Decentralized control of a multiple access

broadcast channel: Performance bounds. In Decision and Control, 1996., Proceedings

of the 35th IEEE Conference on, volume 1, pages 293–298. IEEE.

[85] Pajarinen, J., Hottinen, A., and Peltonen, J. (2014). Optimizing spatial and temporal

reuse in wireless networks by decentralized partially observable Markov decision pro-

cesses. IEEE Trans. on Mobile Computing, 13(4):866–879.

[86] Palmer, G., Tuyls, K., Bloembergen, D., and Savani, R. (2017). Lenient multi-agent

deep reinforcement learning. arXiv preprint arXiv:1707.04402.

[87] Panait, L., Sullivan, K., and Luke, S. (2006). Lenient learners in cooperative multia-

gent systems. In Proceedings of the fifth international joint conference on Autonomous

agents and multiagent systems, pages 801–803. ACM.

[88] Papadimitriou, C. H. and Tsitsiklis, J. (1982). On the complexity of designing dis-

tributed protocols. Information and Control, 53(3):211–218.

[89] Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann

Publishers Inc.

[90] Peshkin, L., Kim, K.-E., Meuleau, N., and Kaelbling, L. P. (2000). Learning to co-

operate via policy search. In Proceedings of the Sixteenth conference on Uncertainty in

artificial intelligence, pages 489–496. Morgan Kaufmann Publishers Inc.

154

[91] Peters, J. and Schaal, S. (2008). Reinforcement learning of motor skills with policy

gradients. Neural networks, 21(4):682–697.

[92] Poole, D. (2003). First-order probabilistic inference. In IJCAI, volume 3, pages 985–

991.

[93] Powell, W. and Godfrey, G. (2001). An adaptive, distribution-free approximation

for the newsvendor problem with censored demands, with applications to inventory and

distribution problems. Management Science, 47(8):1101–1112.

[94] Powell, W. B. (2007). Approximate Dynamic Programming: Solving the curses of

dimensionality, volume 703. John Wiley & Sons.

[95] Qiu, L., Yang, Y. R., Zhang, Y., and Shenker, S. (2003). On selfish routing in internet-

like environments. In Proceedings of the 2003 conference on Applications, technologies,

architectures, and protocols for computer communications, pages 151–162. ACM.

[96] Radner, R. (1962). Team decision problems. The Annals of Mathematical Statistics,

33(3):857–881.

[97] Robbel, P., Oliehoek, F. A., and Kochenderfer, M. J. (2016). Exploiting anonymity in

approximate linear programming: Scaling to large multiagent MDPs. In AAAI Confer-

ence on Artificial Intelligence, pages 2537–2543.

[98] Roughgarden, T. (2005). Selfish routing and the price of anarchy, volume 174. MIT

press Cambridge.

[99] Sandholm, W. H. (2015). Population games and deterministic evolutionary dynamics.

In Handbook of game theory with economic applications, volume 4, pages 703–778.

Elsevier.

[100] Schneider, J., Wong, W.-K., Moore, A., and Riedmiller, M. (1999). Distributed value

functions. Robotics Institute, page 264.

[101] Schulman, J., Heess, N., Weber, T., and Abbeel, P. (2015a). Gradient estimation

using stochastic computation graphs. In Advances in Neural Information Processing

Systems, pages 3528–3536.

155

[102] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015b). Trust

region policy optimization. In International Conference on Machine Learning, pages

1889–1897.

[103] Schweitzer, F. (2007). Collective decisions in multi-agent systems. In Advancing

Social Simulation: The First World Congress, pages 7–12. Springer.

[104] Seijen, H. V., van Hasselt, H., Whiteson, S., and Wiering, M. (2009). A theoretical

and empirical analysis of expected sarsa. In IEEE Symposium on Adaptive Dynamic

Programming and Reinforcement Learning, pages 177–184.

[105] Seuken, S. and Zilberstein, S. (2012). Improved memory-bounded dynamic pro-

gramming for decentralized pomdps. arXiv preprint arXiv:1206.5295.

[106] Sheldon, D., Elmohamed, M. A. S., and Kozen, D. (2007). Collective inference

on markov models for modeling bird migration. In Advances in Neural Information

Processing Systems, pages 1321–1328.

[107] Sheldon, D., Sun, T., Kumar, A., and Dietterich, T. G. (2013). Approximate inference

in collective graphical models. In International Conference on Machine Learning, pages

1004–1012.

[108] Sheldon, D. R. and Dietterich, T. G. (2011). Collective graphical models. In Ad-

vances in Neural Information Processing Systems, pages 1161–1169.

[109] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Master-

ing the game of go with deep neural networks and tree search. Nature, 529(7587):484–

489.

[110] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014).

Deterministic policy gradient algorithms. In International Conference on Machine

Learning, pages 387–395.

156

[111] Singh, S., Kearns, M., and Mansour, Y. (2000). Nash convergence of gradient dy-

namics in general-sum games. In Proceedings of the Sixteenth conference on Uncertainty

in artificial intelligence, pages 541–548. Morgan Kaufmann Publishers Inc.

[112] Smith, M. J. (1979). The existence, uniqueness and stability of traffic equilibria.

Transportation Research Part B: Methodological, 13(4):295–304.

[113] Sonu, E., Chen, Y., and Doshi, P. (2015). Individual planning in agent populations:

Exploiting anonymity and frame-action hypergraphs. In International Conference on

Automated Planning and Scheduling, pages 202–210.

[114] Sun, T., Sheldon, D., and Kumar, A. (2015). Message passing for collective graphical

models. In International Conference on Machine Learning, pages 853–861.

[115] Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg, M.,

Lanctot, M., Sonnerat, N., Leibo, J. Z., Tuyls, K., et al. (2017). Value-decomposition

networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296.

[116] Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.

Machine learning, 3(1):9–44.

[117] Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduction,

volume 1. MIT press Cambridge.

[118] Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (1999). Policy gradient

methods for reinforcement learning with function approximation. In International Con-

ference on Neural Information Processing Systems, pages 1057–1063.

[119] Szer, D. and Charpillet, F. (2006). Point-based dynamic programming for dec-

pomdps. In AAAI, volume 6, pages 1233–1238.

[120] Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J., Aru, J., and

Vicente, R. (2017). Multiagent cooperation and competition with deep reinforcement

learning. PloS one, 12(4):e0172395.

157

[121] Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative

agents. In Proceedings of the tenth international conference on machine learning, pages

330–337.

[122] Taylor, P. D. and Jonker, L. B. (1978). Evolutionary stable strategies and game dy-

namics. Mathematical biosciences, 40(1-2):145–156.

[123] Toussaint, M., Harmeling, S., and Storkey, A. (2006). Probabilistic inference for

solving (PO)MDPs. Technical report, University of Edinburgh, Edinburgh, UK.

[124] Tsitsiklis, J. and Athans, M. (1985). On the complexity of decentralized decision

making and detection problems. IEEE Transactions on Automatic Control, 30(5):440–

446.

[125] Tsitsiklis, J. N. et al. (1993). Decentralized detection. Advances in Statistical Signal

Processing, 2(2):297–344.

[126] Tumer, K. and Agogino, A. (2007). Distributed agent-based air traffic flow manage-

ment. In International Joint Conference on Autonomous Agents and Multiagent Systems,

pages 255:1–255:8.

[127] Tumer, K. and Agogino, A. K. (2009). Multiagent learning for black box system

reward functions. Advances in Complex Systems, 12(4-5):475–492.

[128] Tumer, K., Agogino, A. K., and Wolpert, D. H. (2002). Learning sequences of ac-

tions in collectives of autonomous agents. In Proceedings of the first international joint

conference on Autonomous agents and multiagent systems: part 1, pages 378–385. ACM.

[129] Van der Pol, E. and Oliehoek, F. A. (2016). Coordinated deep reinforcement learners

for traffic light control. In NIPS’16 Workshop on Learning, Inference and Control of

Multi-Agent Systems.

[130] van Hasselt, H., Guez, A., Hessel, M., Mnih, V., and Silver, D. (2016). Learning

values across many orders of magnitude. arXiv preprint arXiv:1602.07714.

158

[131] Varakantham, P., Adulyasak, Y., and Jaillet, P. (2014). Decentralized stochastic plan-

ning with anonymity in interactions. In AAAI Conference on Artificial Intelligence, pages

2505–2511.

[132] Varakantham, P., Kwak, J.-y., Taylor, M. E., Marecki, J., Scerri, P., and Tambe, M.

(2009). Exploiting coordination locales in distributed pomdps via social model shaping.

In ICAPS.

[133] Varakantham, P. R., Cheng, S.-F., Gordon, G., and Ahmed, A. (2012). Decision sup-

port for agent populations in uncertain and congested environments. In AAAI Conference

on Artificial Intelligence, pages 1471–1477.

[134] Verweij, B., Ahmed, S., Kleywegt, A. J., Nemhauser, G., and Shapiro, A. (2003).

The sample average approximation method applied to stochastic routing problems: a

computational study. Computational Optimization and Applications, 24(2-3):289–333.

[135] Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families,

and variational inference. Foundations and Trends® in Machine Learning, 1(1-2):1–305.

[136] Wardrop, J. (1900). Some theoretical aspects of road traffic research. In Inst Civil

Engineers Proc London/UK/.

[137] Weaver, L. and Tao, N. (2001). The optimal reward baseline for gradient-based

reinforcement learning. In Proceedings of the Seventeenth conference on Uncertainty in

artificial intelligence, pages 538–545. Morgan Kaufmann Publishers Inc.

[138] Weber, T., Heess, N., Eslami, A., Schulman, J., Wingate, D., and Silver, D. (2015).

Reinforced variational inference. In Advances in Neural Information Processing Systems

(NIPS) Workshops.

[139] Wei, E. and Luke, S. (2016). Lenient learning in independent-learner stochastic

cooperative games. The Journal of Machine Learning Research, 17(1):2914–2955.

[140] Weintraub, G. Y., Benkard, C. L., and Van Roy, B. (2005). Oblivious equilibrium: A

mean field approximation for large-scale dynamic games. In NIPS, pages 1489–1496.

159

[141] Wiedenbeck, B., Yang, F., and Wellman, M. P. (2018). A regression approach for

modeling games with many symmetric players. In (AAAI) Conference on Artificial In-

telligence. AAAI.

[142] Wiering, M. (2000). Multi-agent reinforcement learning for traffic light con-

trol. In Machine Learning: Proceedings of the Seventeenth International Conference

(ICML’2000), pages 1151–1158.

[143] Williams, R. J. (1992a). Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine learning, 8(3-4):229–256.

[144] Williams, R. J. (1992b). Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine Learning, 8(3):229–256.

[145] Winstein, K. and Balakrishnan, H. (2013). Tcp ex machina: Computer-generated

congestion control. In Proceedings of the ACM SIGCOMM 2013 Conference, SIG-

COMM ’13, pages 123–134.

[146] Wiszniewska-Matyszkiel, A. (2014). Open and closed loop nash equilibria in

games with a continuum of players. Journal of Optimization Theory and Applications,

160(1):280–301.

[147] Wolpert, D. H. and Tumer, K. (1999). An introduction to collective intelligence.

arXiv preprint cs/9908014.

[148] Wolpert, D. H. and Tumer, K. (2001). Optimal payoff functions for members of

collectives. Advances in Complex Systems, 4(02n03):265–279.

[149] Wolpert, D. H. and Tumer, K. (2002). Optimal payoff functions for members of

collectives. In Modeling complexity in economic and social systems, pages 355–369.

World Scientific.

[150] Wu, C., Rajeswaran, A., Duan, Y., Kumar, V., Bayen, A. M., Kakade, S., Mordatch,

I., and Abbeel, P. (2018). Variance reduction for policy gradient with action-dependent

factorized baselines. In International Conference on Learning Representations.

160

[151] Wu, F., Zilberstein, S., and Chen, X. (2010). Point-based policy generation for de-

centralized pomdps. In Proceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems: volume 1-Volume 1, pages 1307–1314. International

Foundation for Autonomous Agents and Multiagent Systems.

[152] Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., and Wang, J. (2018a). Mean field

multi-agent reinforcement learning. In ICML.

[153] Yang, Y., Yu, L., Bai, Y., Wang, J., Zhang, W., Wen, Y., and Yu, Y. (2018b). An

empirical study of ai population dynamics with million-agent reinforcement learning. In

Proceedings of the 2018 international conference on Autonomous agents and multi-agent

systems. International Foundation for Autonomous Agents and Multiagent Systems.

[154] Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2005). Constructing free-energy ap-

proximations and generalized belief propagation algorithms. IEEE Transactions on In-

formation Theory, 51(7):2282–2312.

[155] Yuille, A. L. (2002). CCCP algorithms to minimize the bethe and kikuchi free en-

ergies: Convergent alternatives to belief propagation. Neural Computation, 14(7):1691–

1722.

[156] Yuille, A. L. and Rangarajan, A. (2001). The concave-convex procedure (CCCP). In

Advances in Neural Information Processing Systems, pages 1033–1040.

[157] Zawadzki, E., Lipson, A., and Leyton-Brown, K. (2014). Empirically evaluating

multiagent learning algorithms. arXiv preprint arXiv:1401.8074.

161

Appendix A

Domain description

A.1 Taxi fleet management

Taxi dataset: Our dataset contains the taxi trips of 8000 taxis in Singapore for 1 year. Each

taxi call in the dataset is defined by the start time (1 in 48 periods), the origin zone and

the destination zone (1 in 81 zones). Because the spatial and temporal dimensions have

discrete values, the taxi calls are summarized by the taxi demand counts dt(i, j) to be the

number of taxi passengers at time period t to go from a zone i to another zone j. From the

dataset, we have the complete taxi demand tables hdt(i, j), 8t 2 [1, 48], i, j 2 [1, 81]i for

12 months. In simulation, we randomly choose a month data and extract the corresponding

statistic demand table hdt(i, j), 8t 2 [1, 48], i, j 2 [1, 81]i.

Autonomous taxi movement: We consider the planning problem of 8000 taxis over 48

half-hour periods. The goal is to learn a moving policy for taxis so that they can re-allocate

themselves in each time period to match to the dynamic demands. The decision making and

action execution of taxis in each time period t are as follows:

• At the beginning of the time period t, each taxi driver m in a zone z has the obser-

vation o(z, dt, nst) to be the number of taxis and passengers in that zone and/or in the

surrounding zones.

• Based on the local observation, a taxi in a zone z decides to either stay in z or relocate

162

to one of neighboring zones z0 2 N(z).

• After deciding the relocating movement, all taxis concurrently execute their actions.

As we consider half-hour period, we assume the taxis reach their destinations z
0 in

the same time period t. In its destination zone a
m
t = z

0 at time t, a taxi m will :

– With the probability min{ dt(z0)
n̂s(z0) , 1} to pick a passenger and receive a payment,

which is proportional to the ratio between the number of passengers dt(z0) and

the total number n̂st(z
0) =

P
z n

sa
t (z, z0) of taxis moving into zone z

0. If a

taxi has passenger in z
0 , it will move to passenger destination zone z

00. The

distribution of passenger’s destination is dt(z0,z00)
dt(z0)

which is the flow ratio of

passengers from z
0 to z

00. A taxi receives a payment payment(z0, z00) from its

passenger in time t.

– With the probability 1 �min{ dt(z0)
n̂s(z0) , 1} to stay in z

0 until the beginning of the

next time period t+1. A taxi without passenger does not receive any payment.

A.1.1 CDec-POMDP for taxi navigation problem

• H = 48,M = 8000.

• A set of action A for taxi m to be moving to either one of neighbouring zones z0 2

N(z) from its current zone z or staying in the current zone z.

• The local state of a taxi m is defined by its current zone z at beginning of each time

period t.

• The global state component dt at time t is the passenger demands over the whole city.

It is determined also by a count table whose each component dt(z, z0) is the number

of passengers moving from zone z to z
0 in time period t. However, taxi can only

observe the demand counts at zones level dt(z) =
P

z0 dt(z, z
0) rather than the exact

flows.

• The counts in each time t include:

– nst(z) =
PM

m=1 I(smt = z), 8z 2 Z to be the number of taxis in each zone z.

163

– nsat (z, z0) =
PM

m=1 I(smt = z, a
m
t = z

0), 8z, z0 2 Z to be the number of taxis

from zone z deciding to move to zone z
0.

– nsas
0

t (z, z0, z00) =
PM

m=1 I(smt = z, a
m
t = z

0
, s

m
t+1 = z

00), 8z, z0, z00 2 Z to be

the number of taxis moving from z to z
0 and being in zone z

00 at the beginning

of next time period.

• At decision state s
m
t = z, we assume a taxi agent m will have the observation

about the demand counts dt(z0) =
P

z00 dt(z
0
, z
00) and taxi zone counts nst(z

0),

8z0 2 Nb(z) [{z} of the current zone z and its neighboring zones Nb(z).

• After deciding the next zone amt = z
0, a taxi agent will deterministically transit to z

0.

The taxi agent m will stay in z
0 until the next time period t + 1 or move to another

zone depending on whether it has passenger or not. We use the indicator variable

b
m
t = {0; 1} to denote whether a taxi m has passenger or not in time period t. The

local transition of a taxi m is defined as:

Pl

�
s
m
t+1|smt , a

m
t , nsat , dt

�
=

X

bm
t
2{0;1}

P (bmt |amt , nsat , dt)P (smt+1|amt , b
m
t , dt) (A.1)

where

– The probability of a taxi to have passenger is

P (bmt = 1|amt = z
0
, nsat , dt) = min{ dt(z0)P

z n
sa
t (z, z0)

; 1}

– And taxi has no passenger with the probability

P (bmt = 0|amt = z
0
, nsat , dt) = 1�min{ dt(z0)P

z n
sa
t (z, z0)

; 1}

164

– The local state of a taxi in next time period t+ 1 depends on its status:

P (smt+1 = z
00|amt = z

0
, b

m
t = 1, dt) =

dt(z0, z00)

dt(z0)
(A.2)

P (smt+1 = z
00|amt = z

0
, b

m
t = 0, dt) =

8
>><

>>:

1 if z0 = z
00

0 otherwise.
(A.3)

(A.4)

• Each agent m has a non-stationary policy ⇡
m
t (j|i, o(i, nst, dt)) denoting the proba-

bility of agent m to take action j given its observation (i, o(i, nst, dt)) at time t. We

denote the policy over planning horizon of an agent m to be ⇡
m = (⇡m

1 , . . . ,⇡
m
H).

When agents have the same policy, we denote the common policy with ⇡.

• A taxi agent moving from z to z
0 will incur a roaming cost �cost(z, z0). When a

taxi has a passenger to travel from z
0 to z

00, it will receive a trip payment p̄(z0, z00).

Hence, the local reward r
m
t (smt = z, a

m
t = z

0
, nsat , dt) of a taxi moving from z to z

0

is

= �cost(z, z0) + P (bmt = 1|amt = z
0
, nsat , dt)

X

z00

dt(z0, z00)

dt(z0)
p̄(z0, z00)

A.1.2 Local Reward Structure

When taxi m pick-ups a passenger in zone z at time t and move to the destination z
0, it

receives a reward p̄(z, z0) to be the profit of that trip. A taxi with no passenger incurs

a roaming cost c. However, we notice that the roaming cost is similar among all zones,

therefore, we shape the reward by ignoring the cost and consider only the reward p̄(z, z0)

for taxi agent with passenger. The total local reward of all taxis getting passengers from a

zone z at the time period t is

R
trip
t (z, nsat , dt) =

X

z2Z
n̂st(z)min{dt(z)

n̂st(z)
; 1}

X

z02Z

dt(z, z0)

dt(z)
p̄(z, z0) (A.5)

Recall that in the above formula (A.5), n̂st(z) =
P

z0 n
sa
t (z0, z) is the incoming taxi flow

into zone z, min{ dt(z)
n̂s
t
(z) ; 1} is the probability a taxi picking-up passenger in zone z and

165

P
z02Z

dt(z,z0)
dt(z)

p̄(z, z0) is the average reward of a taxi with passenger in zone z.

To maximize the total local reward E
⇥PH

t=1

P
z R

trip
t (z, nsat , dt)

⇤
, the policy should bal-

ance the movement of taxis with the expected demand in each city zone at different time

periods. If more taxis are present in a zone than the aggregate demand in that zone, then

unhired taxis incur loss of revenue. Therefore, a good policy would direct taxis to different

city zones to match demand with supply.

A.1.3 Global Reward Structure

We can extend the reward structure in taxi domain to consider the QoS component for a

zone z as follows:

R
QoS
t (z, nsat , dt) = wz min{0, n̂st(z)� ↵ · dt(z)} (A.6)

in which ↵ 2 [0; 1] specifies the percentage of demand dt(z) we target to serve. n̂st(z) =
P

z0 n
sa
t (z0, z) is the total number of taxis moving in zone z at time t. The min operator

ensures that the penalty function is activated only when the number of available taxi nst(z)

at z below the target. The function is ignorable when wz = 0, and it is emphasized when

wz increases.

The objective function in taxi domain under this QoS components is

E
 HX

t=1

X

z

⇥
R

trip
t (z, nsat , dt) +R

QoS
t (z, nsat , dt)

⇤�

= E
 HX

t=1

X

z2Z

⇣
wz min{0, n̂st(z)� ↵ · dt(z)}+ n̂st(z)min{dt(z)

n̂st(z)
; 1}

X

z02Z

dt(z, z0)

dt(z)
p̄(z, z0)

⌘�
.

(A.7)

A.2 Robot Grid Navigation

For a grid of size L ⇥ L with M agent, we consider the probability of an agent to firstly

appear in one of the edge locations h(0, l), 8l 2 [0;L � 1]i to be 0.1. An agent receives a

penalty�1 when the number of agents crossing the same corridor is greater than the corridor

166

capacity (= 2). When the total number of agents simultaneously crossing an edge is less

than its capacity, then each agent has a higher probability of moving to the next location

(=0.8); this probability decreases sharply if total agents crossing the edge are more than the

capacity. When an agent reaches the goal (L� 1, L� 1), it receives the reward 1 and reset

back uniformly to one of edge locations. The CDec-POMDP for Robot Grid Navigation is

defined as follows:

• The local state s
m
t of an agent m is defined by its current location i in a grid L⇥ L.

• An agent m can select its action from either staying in the same location i or taking

one of four directional movements (left, right, up, down). Therefore, the local action

space is A = {stay, left, right, up, down}.

• The sufficient statistics counts in each time t include:

– nst(i) =
PM

m=1 I(smt = i), 8z 2 Z to be the number of agents in a location i.

– nsat (i, j) =
PM

m=1 I(smt = i, at(m) = j), 8i 2 S, j 2 A to be the number of

agents from i deciding to taking action j.

– nsast (i, j, i0) =
PM

m=1 I(smt = i, at(m) = j, s
m
t+1(m) = i

0), 8i, i0 2 S, j 2 A

to be the number of agents take from i taking action j and arriving i
0 in the next

time step.

• An agent m will have the observation about zone counts nst(i0), 8i0 2 Nb(i) [{i} of

the current zone i and its neighboring zones Nb(i).

• We denote dest(i, j) to be the heading zone of an agent in location i taking movement

j. The transition function P (smt+1|smt , a
m
t , nsat) is defined as follows:

P (dest(i, j)|i, j, nsat (i, j)) =

8
>><

>>:

0.8 if nsat (i, j)  2 ^ i 6= (L� 1, L� 1)

0.8⇥ 2
nsa
t
(i,j) if nsat (i, j) > 2 ^ i 6= (L� 1, L� 1)

(A.8)

And the probability that agent fails to arrive its intended location and stay in the

current location is

P (i|i, j, nsat (i, j)) = 1� P (dest(i, j)|i, j, nsat (i, j)) if i 6= (L� 1, L� 1).

167

When an agent reach the goal location igoal = (L � 1, L � 1), it is reset to one of

edge location by

P (l|i, j, nsat (i, j)) =
1

L
if i = (L� 1, L� 1) ^ l 2 h(0, l), 8l 2 [0;L� 1]i

• The reward function is defined as follows:

rt(i, j, n
sa
t (i, j)) =

8
>>>>>><

>>>>>>:

0 if nsat (i, j)  2 ^ i 6= (L� 1, L� 1)

�1 if nsat (i, j) > 2 ^ i 6= (L� 1, L� 1)

1 otherwise.

(A.9)

A.3 Synthetic Robot Patrolling Game

For a grid of size L⇥ L with N agent, we consider the initial location of all agents to be at

the center of the grid (bL/2c, bL/2c). Each time, there is exactly one target available. The

fixed location of each target is generated uniformly in the grid. When the target is reached

by at least 1 robot, the whole team receives a reward value to be 1, the old target disappears

and the new target is generated. Notice that the team would receive reward 1 even though

there is more than 1 robot that reaches the target, hence the reward is nondecomposable

among the agents.

Each agent can observe other agents and target in its current location and its adjacent loca-

tions. In each time step, the agent can choose to deterministically move to one of adjacent

locations or to stay in its current location. The state, action space and observation function

of synthetic patrolling game is similar to robot navigation domain. We define additional

components in CDec-POMDP model for robot patrolling game as follows:

• The global state dt 2 L⇥ L is the location of the current target.

• The transition is deterministic P (dest(i, j)|i, j) = 1.

• When target is reached by at least one agent
P

i n
sa
t (i, dt) > 0, the target’s location

dt+1 is uniformly reset to one of grid cell as P (dt+1 = i
0|
P

i n
sa
t (i, dt) > 0) = 1

L⇥L .

Otherwise, P (dt+1 = dt|
P

i n
sa
t (i, dt) = 0) = 1.

168

• The global reward function rt(nsat , dt) = 1 if
P

i n
sa
t (i, dt) > 0 and rt(nsat) = 0

otherwise.

A.4 Real World Police Patrolling

We consider a police division in an Asian city with 24 sectors and 16 police vehicles. When

an incident happens in a sector, a command center would assign the nearest police to the

incident. Incident features include urgency indicator, service time required, incident loca-

tion and incident time. After a police is assigned to an incident, the remaining police would

autonomously determine whether to stay in the current sector or re-allocate to a neighbor-

ing sector. We do not consider the reallocation at every time step but the reallocation only

happens when an incident happens. This re-allocating decision of police is given by the

neural network policy function ⇡. An action of police, either attending to an incident or re-

allocating to another sector, could take more than one time step. To model this, we extend

the local state s
m = i, originally to be the current sector i of police agent, into s

m = hi, ci

including the time c for the police agent m returns the base sector i if it is still executing an

action. We consider the simplest case where the travel time between sectors is pre-computed

by a map service and used in the simulation as deterministic travel time.

The state counts are also extended into spatial-temporal dimensions accordingly. The

spatial-temporal state counts at time t are hnt(i, c)ii,c, in which each hnt(i, c)ii,c is the

number of police agents completing their current actions and station in sector i in c time

periods ahead from t. We consider the local observation of an agent to be the spatial-

temporal state counts of its current sector and neighboring sectors. An example of the

extended state count for a sector i is given by Table A.1. Based on this state count table,

there is no police current available to patrol in sector i, but there is a police arriving this

sector at the next time period and there is a police arriving this sector at the next 3 period.

Notice that this table only summarizes based on incidents happening by time t. It will be

changed when there is a new incident happening in time t
0 � t+ 1.

We discretize the planning horizon into 5-minute periods and consider the response time

threshold for urgent incident to be 10 minutes (within 2 time periods) and for non-urgent to

169

c 0 1 2 3 4
nt(i, c) 0 1 0 1 0

Table A.1: Example of temporal state count for a sector i

be 20 minutes (within 4 time periods). When the real response time exceeds the threshold,

the whole team receives a global reward �10, otherwise it is 0.

The CDec-POMDP model for police patrolling domain is defined as follows:

• The local state smt = hlmt , c
m
t i of agent m is determined by its current base sector lmt

and c
m
t is the time it takes for agent m to be available at lmt . When m is not assigned

any incident, cmt = 0.

• The global component dt = hdst , dut , d�t i is the incident call appearing in time t,

which is defined by incident location d
s
t , urgency d

u
t 2 {0; 1} and engagement dura-

tion d
�
t 2 N. If there is no new incident in time time t, dt = ;.

• A set of action A for police m to be moving to either one of neighbouring sectors

i
0 2 Nb(lmt) from its current sector lmt or staying in the current sector lmt . An agent

only makes relocating action after it is back to its current base sector. When the agent

is busy in an incident, it can not make relocating action, hence we also include the

null action a
m
t = ;.

• The counts in police patrolling domain include:

– nst(i, c) =
P

m Imt (lmt = i, c
m
t = c) to be the number of police becoming free

in sector i in c time periods.

– nsat (i, c = 0, j) =
P

m Imt (lmt = i, c
m
t = c = 0, amt = j) to be the number of

free police deciding to re-allocate from sector i to a new sector j.

• An agent m will have the observation about temporal-spatial counts nst(i0, c), 8i0 2

Nb(lmt) [{lmt } of the current zone l
m
t and its neighboring zones Nb(lmt). In addi-

tional, all agents are informed about whether there is a new incident dt 6= ; appearing

at time t.

170

• We consider that an agent only makes decision on relocation when there is a new

incident happening, therefore the individual policy function is

⇡t(a
m
t |smt = hi, ci, o(i, nst, dt))

=

8
>><

>>:

⇡̃(amt = i
0|smt = i, o(i, nst, dt)) if dt 6= ; \ c = 0

I(amt = ;) otherwise.
(A.10)

in which ⇡̃(amt = i
0|smt = i, o(i, nst, dt)) is a decision function (soft-max output of

an neural network) called only when there is new incident happening and the agent

is already at the base sector.

• The transition of an agent from time t to t + 1 depends on whether there is a new

incident appear in time t + 1 (then an agent would be assigned to attend that inci-

dent). Denote �(i, i0) to be the travel time between 2 sectors i and i
0. To define the

transition function P

⇣
s
m
t+1 = hi0, c0i|smt = hi, ci, amt

⌘
, we distinguish 2 cases (with

new incident and without new incident):

– When there is no new incident at time t+ 1:

- For busy policy agent with c
m
t > 0, it can not re-allocate, therefore, its transi-

tion is determined by

P
�
s
m
t+1 = hlmt+1 = l

m
t , c

m
t+1 = c

m
t �1i|smt = hlmt , c

m
t i, amt = ;, dt+1 = ;

�
= 1

(A.11)

- For free police agent with c
m
t = 0, after deciding to re-allocate to a new sector

j, its transition is determined by

P
�
s
m
t+1 = hlmt+1 = j, c

m
t+1 = �(i, j)� 1i|smt = hi, 0i, amt = j, dt+1 = ;

�
= 1

(A.12)

– When there is a new incident dt+1 = hdst+1, d
u
t+1, d

�
t+1i in time t + 1, it

will be assigned to the nearest sector {(dt+1, nst) = argmini0
⇥
�(i0, dst+1) +

minc0|(nt(i0,c0)>0)

⇤
, in which minc0|(nt(i0,c0)>0) is the earliest time there is a free

vehicle in sector i0. We denote �̄(i, dt+1) to be the total time for an agent in a

171

sector i to complete incident dt+1 and come back to its base. The transition of

earliest available agents smt = hlmt = {(dt+1, nst), c
m
t = minc0|(nt(lmt ,c0)>0)i in

the assigned sector {(dt+1, nst) is defined as:

* If this agent is an busy agent cmt > 0, it could be assigned to the incident

dt+1 with probability 1
ns
t
(i,c) . Therefore its transition is

P (smt+1 = hlmt+1 = l
m
t , c

m
t � 1 + �̄(lmt , dt+1)i|smt = hlmt , c

m
t i, amt , dt+1)

=
1

nst(l
m
t , c

m
t)

with l
m
t = {(dt+1, n

s
t), c

m
t = min

c0|(nt(lmt ,c0)>0)
(A.13)

and

P (smt+1 = hlmt+1 = l
m
t , c

m
t � 1i|smt = hlmt , c

m
t i, amt , dt+1)

= 1� 1

nst(l
m
t , c

m
t)

with l
m
t = {(dt+1, n

s
t), c

m
t = min

c0|(nt(lmt ,c0)>0)
(A.14)

in which (A.13) is the probability for this agent to be assigned to the inci-

dent and (A.14) is the probability for this agent to be not assigned to the

incident.

* Similarly, the transition of a free agent cmt = 0 in assigned sector is de-

fined as

P
�
hlmt+1 = j, c

m
t+1 = �(lmt , j) + �̄(j, dt+1)� 1i|hlmt , c

m
t i, amt = j, dt+1

�

=
1

nst(l
m
t , c

m
t)

with l
m
t = {(dt+1, n

s
t), c

m
t = 0 (A.15)

P
�
s
m
t+1 = hlmt+1 = j, c

m
t+1 = �(lmt , j)� 1i|hlmt , c

m
t i, amt = j

�

= 1� 1

nst(l
m
t , c

m
t)

with l
m
t = {(dt+1, n

s
t), c

m
t = 0 (A.16)

in which (A.15) is the probability for this agent to attend incident dt+1

after arriving the new sector j and (A.16) is the probability that this agent

is not assigned to incident dt+1.

For other agents who are not the earliest available ones in the assigned sector,

their transition function is similar to the case of no new incident.

• The global reward function is determined by the waiting time �({(dt, nst), dst) for

172

incident dt to be attended as follows:

rt(n
sa
t , dt) =

8
>><

>>:

0 if �({(dt, nst), dst)  QoS(dut)

�1 otherwise.
(A.17)

in which QoS(dut) = 10 if the incident is urgent (dut = 1) and QoS(dut) = 20

otherwise.

173

Appendix B

Neural network design

B.1 Hyper-parameters

To optimize the policy and value function network, we use Adam optimizer with the

learning rate chosen from {10�5, 10�4, 10�3} for the best performance of algorithms.

As observation of the count can have different magnitude in grid navigation and taxi

domain, we use layer normalization [7] for all the networks. To address the different

magnitude of rewards, i.e. the grid navigation having maximum reward 1 and taxi domain

having maximum reward 100, we normalize the advantage value of f(i, j, dt, nst) by

adaptively rescaling targets method as in [130] before feeding them into the policy gradient

computation.

For actor-critic update, we consider the batch size to be 100 for synthetic robot navigation

and 48 for taxi navigation. For the police patrolling, we consider the batch to be whole

incidents in one day.

B.2 Network structure

In all of our neural networks, we use relu unit for all hidden layers and softmax unit for

output of policy and linear output for value function.

174

Policy networks: are dense neural networks with the hidden size (18 ⇥ 18) for the taxi

domain and grid navigation. In patrolling domains, we consider the network of size

(32⇥ 32).

B.2.1 Factored value function for local rewards

In Chapter 5, we consider the factorization form of the critic in the form Q̃(nsat , dt) =
P

i,j n
sa
t (i, j)f(i, j, nst, dt) to optimize individual policy with a local reward. Because we

expect the value of each state to be different, we construct a neural network f(i, •) for each

state i. We consider each neural network f(i, •) to have a similar structure to the policy

network, i.e. dense-net with hidden layers to be (18 ⇥ 18) or (32 ⇥ 32) depending on the

studied domain. Theoretically f(i, •) can take the input of the complete state counts nst,

however the complete state counts contain redundant information which causes noise in the

local value function estimation. Therefore, we consider the input of f(i, •) to be the partial

observation (of relevant neighboring locations) similar as input of policy network. f(i, •)

outputs the values of all actions j 2 A available to take in state i.

B.2.2 Value function for global rewards

The non-decomposable critic function is designed for MCAC, CCAC and AC algorithms in

Chapter 6. Motivated by recent advances in combining model-based RL and model-free RL

in value network [81, 51], we design global critic function to consist of different components

to predict both immediate reward and accumulative value. The network is also designed

based domain knowledge. In particular, in both grid patrolling and taxi domain, we use

a deterministic transition function f
trans(nsat) to estimate the next state count n̂st+1 by the

incoming flow to each location from its neighboring locations. Using n̂st+1 = f
trans(nsat),

we design the the critic network having the form

Q̃w(n
sa
t , dt) = f

reward
w (n̂st+1) + f

value
w (n̂st+1)

175

In taxi domain: We refer to the taxi setting described in Section A.1. The neural

n"#$ n%"#

&"

×min &*"

+"",-./

&*"00
1

+ n%"34#

5",67-,8 9

∑ ;<7(n"#$, &")

(18x18x81)

5"@-AB6 9

Figure B.1: Neural Network Architecture for Taxi Problem

network architecture for critic function in taxi domain is demonstrated by Figure B.1.

Given the state, state-action count nsat and the demand counts at zone level dt, we firstly

compute the incoming state state n̂st(z) =
P

z0 n
sa
t (z0, z), 8z. Then we compute the

counts of served demands d̂t(z) = min{dt(z), n̂st(z)}, 8z. The predicted passenger flows

d̂
zz0
t (z, z0) = d̂t(z)⇥w

trans
t (z, z0) are obtained by the weight wtrans

t as output of a softmax

function (to ensure
P

z0 w
trans
t (z, z0) = 1). The predicted next state counts are computed

as

n̂st+1(z) = n̂st(z)�
X

z0

d̂
zz0
t (z, z0) +

X

z0

d̂
zz0
t (z0), 8z.

Notice that d̂zz0 provides estimated values for the transition count of taxis with passengers.

n̂st(z) �
P

z0 d̂
zz0
t (z, z0) provides estimated value for the transition count of taxis without

passenger.

Given the demand count dt, the immediate reward component in the critic is defined as

f
reward
w (n̂st+1) =

X

z

[p̄z min(n̂st+1(z), dt(z)) + wz min{0, n̂st+1(z)� ↵dt(z)}]

in which p̄z is learnable parameter corresponding to the average trip payment of zone z and

dt(i) is corresponding to the total demands in zone i at time t.

The value predictor is fvalue
w (n̂st+1) = (H � t)

P
z f

value
w (z, n̂st+1) with (H � t) to be

remaining time and each f
value
w (z, n̂st+1) to be dense neural network with (18⇥ 18) hidden

units to estimate the average (over remaining periods) reward collected in zone z given the

176

predicted state count n̂st+1. Each f
value
w (z, n̂st+1) is trained by rewards at zone z as follows:

min
X

t

||(H � t)fvalue
w (z, n̂st+1)

�
X

t0=t:H

⇣ X

dest2Z

dt(z, dest)

dt(z)
[rt(z, dest) + c] min(nst+1(z), dt(z))

+ wz min{0, nst0(z)� ↵ · dt0(z)}
⌘
||2 (B.1)

In police patrolling domain: The predicted state counts are deterministically computed as

n"#$ n%"&'# ∑

(32x32)

(32x32)

)*+(n"#$)

."/0+1/2

."31450

Figure B.2: Neural Network Architecture for Patrolling Problem

by the incoming flows n̂st+1(z) =
P

z0 n
sa
t (z0, z), 8z.

We design f
reward
w and f

value
w to be dense neural networks with hidden size (32 ⇥ 32).

f
value
w is trained directly by the global empirical returns.

In synthetic robot patrolling domain: We encode location of target at time t by

one-hot vt(i) and define the immediate value function component as f
reward
w (n̂st+1) =

P
imin(n̂st+1(i), vt(i)). The value predictor f

value
w is a neural network with (32 ⇥ 32)

hidden units. fvalue
w is trained directly by the global empirical returns.

177

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2018

	Reinforcement learning for collective multi-agent decision making
	Duc Thien NGUYEN
	Citation

	Introduction
	Collective Decision Making Framework
	Example of Multi-agent Domain
	Multi-agent Reinforcement Learning
	Reinforcement Learning Classification

	Summary of Contributions
	Count-based Representation for Collective Planning
	Collective reinforcement learning algorithms

	Thesis structure

	Representation of Collective Planning
	Motivation
	Taxi Supply Demand problem
	Goal oriented robot navigation
	Police Patrolling

	Collective Decentralized POMDP (CDec-POMDP) framework
	Policy representation

	Count-based representation of CDec-POMDP
	Count Sampling Process
	Joint-Value Function

	Related works
	Count-based models
	Mean-field game theory and average flow estimations
	Lifted inference

	Summary

	Collective Graphical Model
	Collective Graphical Models
	Motivation
	Background
	CGM Distribution
	Relation between CGM and CDec-POMDP

	Collective inference in CGM
	Noisy observation models
	Aggregate MAP inference
	Parameter estimation
	Relation between CGM inference and CDec-POMDP planning

	Related works
	Summary

	Collective Multi-agent Reinforcement Learning Framework
	Multi-agent Planning Model
	Multi-agent Dec-POMDP
	CDec-POMDP as Lifted DEC-POMDP

	Reinforcement Learning
	Reinforcement Learning Outline
	Policy Gradient
	Baseline subtraction

	Multi-agent Reinforcement Learning
	Factorization of policy in decentralized execution
	Credit-assignment
	Factored critic function

	Collective Reinforcement Learning
	Policy Gradient with Factored Collective Critic

	Related Works
	Model-based planning
	Reinforcement Learning
	Multi-agent reinforcement learning
	Credit Assignment And Value Function Decomposition

	Summary

	Reinforcement Learning with Local Reward Signals
	Decomposable reward problems
	Count based Individual Value Function
	Exchangeability of joint-trajectories
	Individual value function

	Policy Gradient for CDec-POMDPs
	Outline
	Training Action-Value Function

	Evolutionary Game Theory
	Dynamics in Agent Population
	Stateful dynamics in population

	Algorithms
	Experiments
	Taxi Supply-Demand Matching
	Robot Grid Navigation

	Related Works
	Summary

	Reinforcement Learning with Global Reward Signals
	Collective Decentralized POMDP Model
	Mean Collective Actor Critc
	Critic Design For Collective Policy Gradient With Global Rewards
	Mean Collective Policy Update from the Global Critic

	Difference Rewards Based Credit Assignment
	Experiments
	Taxi Supply-Demand Matching
	Police Patrolling
	Synthetic Robot Patrolling Game

	Related Works
	Difference of Reward
	Expected Policy Update

	Summary

	Conclusions and Future Works
	Conclusions
	Future works
	Heterogeneous behaviours
	Large state space
	Online Decision Making

	Domain description
	Taxi fleet management
	CDec-POMDP for taxi navigation problem
	Local Reward Structure
	Global Reward Structure

	Robot Grid Navigation
	Synthetic Robot Patrolling Game
	Real World Police Patrolling

	Neural network design
	Hyper-parameters
	Network structure
	Factored value function for local rewards
	Value function for global rewards

