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Analyzing and Modeling Users in Multiple Online Social Platforms

by

Roy Ka-Wei Lee

Abstract

This dissertation addresses the empirical analysis on user-generated data from

multiple online social platforms (OSPs) and modeling of latent user factors in

multiple OSPs setting.

In the first part of this dissertation, we conducted cross-platform empiri-

cal studies to better understand user’s social and work activities in multiple

OSPs. In particular, we proposed new methodologies to analyze users’ friend-

ship maintenance and collaborative activities in multiple OSPs. We also apply

the proposed methodologies on real-world OSP datasets, and the findings from

our empirical studies have provided us with a better understanding on users’

social and work activities which are previously not uncovered in single OSP

studies.

In the second part of this dissertation, we developed user modeling tech-

niques to learn latent user factors in multiple OSPs setting. In particular, we

proposed generative models to learn the user topical interests, topic-specific

platform preferences and influences in multiple OSPs setting. The proposed

models are also applied to real-world OSPs datasets to profile user topical

interests and identify influential users in multiple OSPs. The designed gener-

ative models are also generalizable and can be applied to different cross-OSP

datasets.
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Chapter 1

Introduction

1.1 Motivation

With the proliferation of online social platforms (OSPs), users today find them-

selves engaging and connecting with each other on OSPs [24]. For example,

users may ”like” the posts of their friends on Facebook, retweet users whom

they have followed on Twitter or share photos on Instagram. Besides engaging

each other in social activities, users also leverage on OSPs for collaborative

works. For example, software engineers have used social collaborative plat-

forms such as GitHub, a platform that allows sharing of software codes with

other users, and Stack Overflow, a community-based website for asking and

answering questions relating to software engineering, for software development

[15, 70].

The users’ participation in multiple OSPs generates voluminous and rich

data about the users. Some of these user-generated data include:

• Profile Attributes: These are attributes that describe a user’s pro-

file in an OSP. Examples of such attributes include username, short bio

description, etc.

• Activities: These are social and work activities performed by users in

OSPs. An example of a social activity is the like a Facebook user gives to

1



CHAPTER 1. INTRODUCTION

some post. In Stack Overflow, a user-answer-question is a work activity

example.

• Relationships: These are the directed or undirected connections be-

tween users in OSPs. Examples include users follow other users in Twit-

ter and friends between users in Facebook. These connections serve

either social or information purposes. Social connections are meant for

users to establish friendships. Information connections, in contrast, are

meant for receiving content of interests to the users.

• Content: These are media content generated by users for self-journaling

or sharing. The media content may exist in the text form (e.g., tweets

in Twitter) or multimedia form (e.g., photos in Instagram).

Analyzing and modeling these user-generated data across multiple OSPs

are essential tasks in many real-world applications. Firstly, a multi-platform

approach to analyze user-generated data allows us to profile users more ef-

fectively. Consider a user who publishes political-related posts and follows

politicians in Twitter. Suppose the user also publishes music-related posts in

Tumblr. Based on the user’s tweet data only, one could infer his interests in

politics but not music. By profiling user interest using both his Twitter and

Tumblr data, such a drawback can be avoided. Moreover, one can learn the

platform preferences of users as they decide to share content and interact with

others. Secondly, the multi-platform approach also enables us to build better

recommender systems. For example, when an active Facebook user joins In-

stagram, we can recommend her to connect with her friends on Facebook who

also have accounts on Instagram or recommend her topic-specific influential

users to follow in Instagram considering her topical interests across platforms.

We can also make other similar recommendations when users are active on

multiple social collaborative platforms. For instance, if a user commits to a

Java-related repository in GitHub, we can recommend her Java-related ques-

2
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tions to answer in Stack Overflow. The above scenarios assume that the users

act similarly in different OSPs. When the assumption no longer holds, it is

crucial to learn the behavioral characteristics of individual users in different

OSPs for better recommendations.

1.1.1 Challenges

Despite the many real-world applications, there are also challenges in the anal-

ysis and modeling of user-generated data across multiple OSPs.

Lack of cross-platform datasets. While there are abundant user-generated

data from multiple OSPs, there are little information on user- user linkage, i.e.,

not many users declare the different OSP accounts they own. Consequently,

it is difficult to collect cross-platform datasets where multiple OSP accounts

belonging to the same user are linked. To tackle this challenge, many user

identity linkage methods to find the OSP accounts belonging to the same user

have been proposed [136, 137, 75, 60, 92, 121, 88, 27]. As this itself is a vibrant

research topic, this dissertation does not seek to address it but instead uses the

methods to match user accounts before we apply our analysis and modeling

techniques to the user-generated data from multiple OSPs.

Lack of analysis and modeling techniques. Many of the previous

research work on user activities, relationships, and content in OSPs, are re-

stricted to the single OSP setting. Their analysis and modeling techniques are

inadequate when applied to multiple OSPs. Firstly, there are new latent user

factors unique to multiple OSPs setting which existing single OSP methods

are unable to model and analyze. For example, users who have accounts on

multiple OSPs may have platform preferences when posting content or forming

relationships, which could not be modeled by single OSP methods. The plat-

form preferences may also be specific to the certain activity, relationship and

content types. For example, a user may prefer to maintain friendship in Face-

book while keeping work relationships (e.g., colleagues) in LinkedIn. Secondly,
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there is a need to match the different types of users’ activities, relationships

and content across multiple OSPs to perform comparative studies and cross-

platform analysis. For example, Twitter has follow relationship while Facebook

has friendship between users. Thus, new methods will need to be proposed

to match the different relationship types in Twitter and Facebook before an-

alyzing the cross-platform social relationships of users who have accounts on

Twitter and Facebook. Furthermore, the learning of such multiple OSPs la-

tent user factors is also non-trivial as it is difficult to model their interactions

leading to the observed user-generated data.

Lack of ground truth. The lack of ground truth labels used for evaluat-

ing latent user factors in OSP is a known challenge even for studies in single

OSP setting. However, the analysis and modeling in multiple OSP setting

complicate it further because of (i) the introduction of new latent user fac-

tors, and (ii) the interaction between new factors and other latent user factors

studied in single OSP setting. For example, on identifying influential users

across multiple OSPs, it is difficult to evaluate the influence of users because

the ground truth is not available. New evaluation approaches and synthetic

datasets need to be proposed to overcome this limitation, and such tasks are

also non-trivial.

1.2 Research Objectives

In this dissertation, we aim to address the user-generated data analysis and

modeling gaps and challenges in multiple OSPs research by adopting the re-

search framework shown in Figure 1.1. The research framework consists of

three inter-linked components, namely: (i) user-generated data, (ii) empirical

analysis, and (iii) user modeling.

User-generated data. We aim to collect user-generated data from users

who have accounts on multiple OSPs. To achieve this goal, we will first gather
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Figure 1.1: Research Framework

users and their profile attributes such as a short biography description of a spe-

cific platform. From their short biography descriptions, we will identify users

who have declared their user accounts in other OSPs. Subsequently, we will

collect the user-generated data such as relationship and content of the identi-

fied user accounts in multiple OSPs using the respective OSP’s APIs. As there

may not be many users who declared their accounts in multiple OSPs, existing

state-of-the-art user profile linkage techniques can also be applied to find the

OSP accounts belonging to the same user. The collected user-generated data

will be used in cross-platform empirical studies and user modeling tasks.

Empirical analysis. We aim to conduct cross-platform empirical stud-

ies on the user-generated data collected from multiple OSPs. In particular,

we will focus on analyzing and comparing how users manage their activities,

relationships, content across multiple OSPs. For example, we can study how

users distribute and maintain their social relationships across different OSPS.

The complementary and substitution relations between OSPs may also be ex-

plored. For example, we can analyze how a user performs substituting or

complementing work activities in different OSPs to achieve a specific task. As

the existing methods proposed on single OSP setting are not able to perform

such cross-platform analysis, novel methods will also be introduced to ana-
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lyze user-generated data in the multiple OSP setting. The insights gathered

from the cross-platform empirical studies may be used in designing user mod-

eling tasks. For example, after analyzing how a user performs work activities

in different OSPs, we can develop methods to model the latent users’ work

preferences in multiple OSP setting.

User modeling. We aim to model latent user factors in multiple OSPs

setting. To achieve this goal, we will propose new methods to handle het-

erogeneous user-generated data from multiple OSPs. Also, novel modeling

techniques will also be proposed to learn new latent user factors unique to

multiple OSPs context. For example, a user may prefer to post about music-

related topics in an OSP while sharing politics-related posts in another OSP.

This topic-specific platform preference is unique to multiple OSP setting, and

novel modeling techniques will need to be proposed to learn such latent user

factors. The proposed user modeling techniques and methodologies can also

be utilized in the cross-platform empirical analysis. For instance, we apply the

model which learns the users’ topic-specific platform preference to study the

similarity between user topical interests in multiple OSPs.

1.3 Contributions

In this dissertation, we aim to contribute to the state-of-the-art by conducting

two empirical studies on user-generated data in multiple OSPs and performing

two user modeling tasks to learn latent user factors in multiple OSP setting.

1.3.1 Empirical Studies

We aim to conduct empirical studies to better understand user’s social and

work behaviors in multiple OSPs. In particular, we study users’ (i) friendship

maintenance and (ii) collaborative activities in multiple OSPs.

Empirical Study 1. On analyzing user friendships in multiple OSPs, we
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propose novel measures that quantify the similarity and evenness of a user’s

friendship in multiple OSPs. These measures will be used to empirically an-

alyze the friendships of users who have accounts on Twitter and Instagram.

Interestingly, we find that most users prefer to maintain different friendships

in Twitter and Instagram while keeping only a small clique of common friends

across the two OSPs. Also, most users prefer to have roughly the same number

of friends in the two OSPs. The findings from our empirical study provide us

with a better understanding of users’ social activities and relationships which

are previously not uncovered in single OSP studies. The insights from our

user’s friendship maintenance empirical study can also be used to derive novel

user features which can improve friendship link prediction in multiple OSP

setting.

Empirical Study 2. On analyzing collaborative activities in multiple

OSPs, we propose novel measures to quantify the similarity in users’ topical

interests inferred from their collaborative activities within and across multiple

OSPs. We collect large datasets from GitHub and Stack Overflow, which are

two popular OSPs used by the software engineering communities for collabora-

tive works and apply our proposed measures to study the users’ collaborative

activities in the two OSPs. Interestingly, we find that users with accounts on

GitHub and Stack Overflow do display some similar topical interests in their

collaborative activities across the OSPs. Furthermore, users share similar top-

ical interests with other users who perform collaborative activities together

in the two OSPs. We also demonstrate that we able to predict a user’s col-

laborative activities in one OSP (e.g., GitHub) using the same user’s topical

interests inferred from his or her collaborative activities in another OSP (e.g.,

Stack Overflow). Our empirical study is the first work that study users’ topical

interests across GitHub and Stack Overflow and the findings from our study

help to better on understanding user’s work activities in multiple OSPs.
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1.3.2 User Modeling Tasks

We aim to model the latent user factors in multiple OSP setting considering

the platform-specificity of the latent user factors. In particular, we model the

(i) user topical interests and (ii) user influences in multiple OSP setting.

Modeling Task 1. On modeling user topical interests in multiple OSPs,

we propose MultiPlatform-LDA (MultiLDA), which is a generative model that

learns users’ latent topical interests in multiple OSPs and their topic-specific

platform preferences. Through experiments on real-world datasets, we show

that MultiLDA can model user topical interests in multiple OSPs and we

demonstrate the predictive power of our model by predicting the platform

which a user will publish for a given generated post by him or her. Empirically,

we apply MultiLDA to learn user topics on Twitter, Instagram, and Tumblr.

The proposed MultiLDA model can improve user profiling in multiple OSPs.

Modeling Task 2. On modeling user influence in multiple OSPs, we

propose two novel generative models, Hub and Authority Topic model (HAT)

and Multiple Platform Hub and Authority Topic model (MPHAT), to iden-

tity topic-specific influential users in single and multiple OSP settings. We

apply HAT and MPHAT on real-world datasets and demonstrate that HAT

and MPHAT performed well in (a) topic modeling, (b) platform prediction,

and (c) user link recommendation, for both single and multiple OSP settings.

Empirically, we also show that HAT and MPHAT can identify topic-specific

hubs and authorities within and across Instagram and Twitter. The proposed

HAT and MPHAT models can improve recommendation systems in OSPs.

1.4 Organization of the Dissertation

The rest of this dissertation is structured as follows. Chapter 2 surveys related

work. We present our empirical studies on user friendships and collaborative

activities in Chapter 3 and 4 respectively. In Chapter 5, we present the Mul-
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tiLDA model for learning user topical interests and platform preferences in

multiple OSPs. The HAT and MPHAT models for learning topic-specific hub

and authority users in single and multiple OSPs are described in Chapter 6.

Finally, we conclude this dissertation and discuss some directions for future

work in Chapter 7.
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Chapter 2

Related Work

In this chapter, we survey five threads of previous literature that are closely

related to this dissertation research and highlight the differences between our

works and the existing ones. Firstly, we review studies on user identity linkage

in multiple online social platforms (OSPs). Although user identity linkage

research is out of the dissertation scope, we want to be able to leverage on

the solution methods which can be used to link accounts of the same users.

Secondly, we examine previous studies on user relationships in multiple OSPs,

which focus on: (i) research on structural properties in OSPs, and (ii) link

predictions in OSPs. Thirdly, we review existing studies on user activities in

multiple OSPs. In particular, we examine the studies on user collaborative

activities in OSPs used by the software engineering community. Fourthly, we

survey works on modeling user topics in single and multiple OSPs. On the

context of multiple OSPs, we also examine works that study user platform

preferences. Finally, we review works on identifying influential users in single

and multiple OSPs. These include (i) topic oblivious and (ii) topic-specific

influential users.
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2.1 User Identity Linkage

To study user-generated data across multiple OSPs, we first need to find the

OSPs accounts that belong to the same user. The matching of user accounts

across multiple OSPS, also known as user identity linkage or network linkage,

is a widely studied topic [136, 137, 75, 60, 92, 121, 88, 27]. We can broadly

categorize these work into (i) attribute based and (ii) network-based methods.

Attribute-based methods derive features from attributes such as emails, names,

location, content, usernames, etc., to match user accounts across multiple OSPs

[136, 121, 75, 88, 98, 111, 89]. Zafarani and Liu derived over 400 features

from usernames and used them for matching users across multiple OSPs [136].

Vasilescu et al., in their empirical study on GitHub and Stack Overflow, utilized

email addresses to match users on the two social collaborative platforms [119].

Network-based methods utilize network structures to perform user linkage [143,

82, 77, 90]. Narayanan et al. in a study to analyze user privacy and anonymity

in OSPs, proposed a framework to link and identify different accounts of a user

using the network structures of users [90]. There are also works that utilized

a combination of both attributes and network structures [97, 140, 110, 63].

Kong et al. in particular have proposed to use user attributes, users’ ego

networks and other spatial, temporal and content information of user accounts

in user identity linking[60]. It is important to note that matching user account

pairs returned by user identity linkage methods have to be manually examined

before they are used as ground truths. In this dissertation, our focus is not on

proposing new user identity linkage methods. Instead, we would leverage on

these methods to find matching user accounts across multiple OSPs and use the

matched user accounts for conducting cross-platform analysis and modeling of

user-generated data.
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2.2 User Relationships in Online Social Plat-

forms

2.2.1 Structural Properties in online Social Platforms

Since the proliferation of OSPs, there had been a lot of studies that analyzed

the structural properties OSPs. Arnaboldi et al. [9], did a study on Twitter

and found that a user’s social network in Twitter shares similar structural

properties with offline social network proposed by Dunbar [33]; i.e., offline

social networks are formed by circles of relationships having different social

characteristics (e.g., intimacy, contact frequency, and size). Although these

works compared users’ friendships in OSPs, they are limited to single OSPs.

We extend this research to study users’ friendships across multiple OSPs.

The study on structural properties and user behaviors in multiple OSPs is

an emerging topic gaining the attraction of researchers in recent years. Mag-

nani and Rossi [81] conducted a study on the structural properties in multiple

OSPs and proposed to represent multiple OSPs as a multi-layer network. They

extended the degree and closeness centrality measures to multi-layer networks.

Nevertheless, they did not consider other structural properties or behaviors

such as friendship similarity and evenness across networks, which will be dis-

cussed in Chapter 3 of this dissertation.

A particular structural property which is closely related to our work is the

triadic closure property in social platforms. Triadic closure is the property

among three nodes A, B, and C, such that if a strong tie exists between A-B

and A-C, there will be a weak or strong tie between B-C [113]. The triadic

closure property has been widely even before the rise of online social platforms

[126]. In recent years, many researchers have studied and attempted to model

the process of triadic closure in OSPs. For example, Romero and Kleinberg

empirically analyzed the triadic closure process in the Twitter network [104].

Lou et al. performed prediction of reciprocal relationships and triadic closure
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process in Twitter. They also developed a model to predict 90% of the recip-

rocal relationships in Twitter accurately and to predict the links among users

[80].

The structural properties in social platforms for the software engineering

community have also been studied in recent years [74, 116, 124, 23, 30, 117].

Lima et al. [74] did an extensive macro-level study on the interaction between

users in GitHub and found that the number of users involved in repositories

follows power-law. Casalnuovo et al. [23] performed an analysis on the role of

prior social links on users’ collaboration and productivity in GitHub. Thung

et al. [116] performed a structural analysis of the user-user and project-project

relationships in GitHub and found that software development OSPs are fun-

damentally different from other OSPs. In software social platforms, users are

connected through code while in typical social networks, users are connected

directly to each other (i.e., ”friends” or ”follower” relationship). Similar stud-

ies were also conducted in Stack Overflow. Wong et al. [124] in their empirical

study on user interactions in Stack Overflow found that most users only answer

a few questions and tend to ask and answer questions in similar topics.

Our study in Chapter 3 builds on the existing works and focuses on how

similarity and evenness of friendship across social platforms affect the likeli-

hood of triadic closure. On analyzing links in collaborative OSPs, our work

in Chapter 4 expands on existing research to investigate the similarity of topi-

cal interest among users who are linked by performing collaborative activities

together in Stack Overflow and GitHub.

2.2.2 Link Prediction in Online Social Platforms

Link prediction in single OSPs has been a well-studied research problem. Net-

work structural properties are commonly used features to predict links between

users [72, 91, 2, 42, 118, 32, 20]. An example would be the neighborhood fea-

tures, where common neighbors between a pair of users are used to derive some
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affinity score which can be used to estimate the likelihood of a link between

the two users. [91, 2].

There were also few link prediction studies done on multidimensional net-

works, where two nodes may be connected by more than one dimension, ex-

pressing either different types of relationship (e.g., friends, colleagues, rela-

tives), or different quantitative values of the same kind of relationship (e.g.,

different ranks, or different publication venues for the same co-authorship rela-

tion). Rossetti et al. performed supervised and unsupervised multidimensional

link predictions on the DBLP and IMDb networks [107]. They proposed to

use neighborhood features such as Common Neighbors and Adamic-Adar to

predict user collaboration in the different dimensions of a network, e.g., they

predicted the collaboration of authors in publishing papers at some venues.

Unlike the previous study, we predict friendship of users in different OSPs in-

stead of different dimensions in the same OSP. Multiple OSPs is different from

multidimensional networks as only the former requires user identity linkage

to be performed. Furthermore, our friendship link prediction methods con-

sider not only friendship neighborhood features but also cross-OSP friendship

maintenance features. Our friendship prediction study in Chapter 3 thus in-

vestigates beyond structural properties of a user’s network in one OSP to cover

cross-OSP friendship maintenance features.

2.3 Collaborative Activities in Online Social

Platforms

There are many types of user activities in OSPs. For example users may like

each other posts in Facebook or retweet content of other users on Twitter. In

this section, we focus on reviewing the existing works on collaborative activities

in OSPs used by the software engineering community.

Collaborative activities in OSPs are defined as user activities performed
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with the goal of completing a task. For example, in Stack Overflow, users

collaboratively ask and answer software development related questions. Simi-

larly, in GitHub, users can work on repositories together by performing activ-

ities such as watch, fork (i.e., make a copy), pull-request (i.e., review codes),

commit codes, etc.. User collaborative activities in OSPs are widely studied

Most of these studies focus on learning the users’ topical interests from their

collaborative activities, which we will discuss in Section 2.4.1.

There are also few works on analyzing user collaborative activities across

multiple OSPs used by the software engineering community. Vasilescu et al.

performed a study on users’ involvement and productivity in Stack Overflow

and GitHub [119]. They found that users who are more active on GitHub

(in terms of GitHub commits), tend to ask and answer more questions on

Stack Overflow. Badashian et al. [10] conducted an empirical study on the

correlation between different types of user activities in the two platforms. Their

findings supported the findings of the earlier work by Vasilescu et al., that is:

users who actively contributed to GitHub, also actively answered questions

in Stack Overflow. They observed an overall weak correlation between the

activity metrics of the two networks and concluded that user activities in one

network are not strong predictors for activities on another network. Both

the works, however, did not consider intrinsic interests of the users, although

Vasilescu et al. did mention the possibility of extending their work to consider

topic interests of the users. Our work in Chapter 4 fills this gap by examining

users’ topic interests inferred from the users’ collaborative activities across

Stack Overflow and GitHub. To our best of knowledge, our work is the first

cross-platform study that examines user topical interests in the two OSPs.

Prediction and recommendation of collaborative activities in OSPs have

been widely studied. These work can be further categorized into two groups:

(i) finding experts to perform a certain platform tasks or collaborative activi-

ties [102, 132, 29, 129, 122, 48, 135, 5, 134, 100] and (ii) recommending content
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or collaborative activities to users in the OSPs [31, 125, 123, 41, 138, 53]. For

work in group (i), there were work which proposed methods to find experts to

answer questions in Stack Overflow [102, 132, 29, 129, 122], while for GitHub,

experts are predicted if they will review pull-requests and software code for

repositories [133, 134, 100]. For work in group (ii), Wang et al.[125] conducted

a study in Stack Overflow to recommend questions and answers concerning

API issues to users. De Souza et al. [31] conducted an experiment to rec-

ommend Stack Overflow question-answer pairs relevant to selected software

programming problems. Zhang et al. [138] predict and recommend relevant

repositories to users based on the users’ past collaborative activities (e.g., fork,

watch, etc.) in the platform. In a more recent work, Jiang et al. [53] proposed

to use user programming language preferences and one-class collaborative fil-

tering to improve prediction of which GitHub repositories are relevant to a

user. Our study in Chapter 4 adds on to the state-of-the-art in group (ii) by

proposing a novel method that uses user-generated data from multiple OSPs

to predict users’ collaborative activities in individual OSP.

2.4 User Topics and Platform Preferences in

Online Social Platforms

2.4.1 Modeling User Topics in Single Online Social Plat-

form

Topic analysis of OSP users’ content is an important research topic for user

profiling and recommender systems. Jang et al. proposed to characterize and

detect Instagram user age group by applying LDA model [19] to learn the topic

interests of teens and adult users [51]. Ferrara et al. conducted an empirical

study and analyzed the topic interests of Instagram users using hashtags in

the captions of Instagram posts [34].
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A similar empirical study was also conducted in Tumblr by Xu et al. using

the tags on Tumblr posts [130]. On modeling user interests in Tumblr, Chang

et al. applied LDA model on content from Tumblr user posts to discover

Tumblr users’ latent topic interests [26].

Michelson et al. derived the topic interests of Twitter users by examining

the entities mentioned by users in their tweets [85]. Researchers have also

proposed to model the topics of tweets and their associated posting activities

(e.g., retweet) in Twitter [99, 45]. Hong et al. applied the LDA model and

author-topic model [106] to discover the topic interests among Twitter users

[46]. Further research works were also done to improve the performance of LDA

model by experimenting with different ways of forming documents using tweets

[83]. Other works also proposed to model individual user and community topic

interests [44] jointly. Our study in Chapter 5 extends these work by jointly

learning the user topics across OSPs.

In [141] the researchers proposed TwitterLDA model which is a variant of

LDA, in which (a) tweets of the same user are aggregated to form documents;

(b) each user has a topic distribution; (c) users share a common background

topic; and (d) a topic is assigned to each tweet. It is important to note that

TwitterLDA was designed to learn topics from a single OSP, which is different

from our proposed model in Chapter 5 where we take into consideration the

topic distributions for different OSPs.

There are issues in applying standard topic models, which are designed for

single OSP setting, on multiple OSP setting. Suppose we apply the standard

topic models on a combined user-generated data from multiple OSPs, the exist-

ing models may be able to learn the collective topical interests of a user across

multiple OSPs but not the platform-specific topical interests. For example, ap-

plying TwitterLDA on combined user-generated data from two OSPs, p1 and

p2, we may learn that a user u1 is interested in music and politics. However, u1

prefers to discuss her music interests in p1 while only discuss politics in p2, and
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these platform-specific topical interests are not learned by the existing topic

models designed for single OSP setting. Our proposed model in Chapter 5 is

designed to address this gap and learn the platform-specific topical interests

of users in multiple OSP setting.

The modeling of user topics in OSPs used by the software engineering

community was also extensively studied. For example, there are research works

that focused on discovering questions topics asked by Stack Overflow users

[14, 11, 144, 105]. Similarly, there are also works on mining programming

languages used by the users in GitHub [101]. Our work in Chapter 4 extends

this field of work by examining the topic interests of users who have accounts

on both Stack Overflow and GitHub.

2.4.2 Modeling User Topics in Multiple Social Platforms

There are also works that apply topic models on multiple OSPs. Guo et al.

proposed a model that considers social-relationship among users for topic mod-

eling and applied their model on Sina Weibo and Twitter datasets [43]. Cho et

al. designed a model that incorporates users’ social interactions and attributes

for topic modeling and applied their model on six OSPs [28]. However, these

works do not link the users across OSPs but perform the topic analysis on each

platform independently. Our research differs from such studies by analyzing

topical interests of a set of common users with accounts on multiple OSPs.

2.4.3 User Platform Preferences

Despite the increase in cross-OSPs studies, there are relatively few studies

on user cross-platform content publishing behaviors. Meo et al. presented a

macro-level analysis of users sharing activities on Flickr, Delicious and Stum-

bleUpon [84]. Ottoni et al. studied the users’ activities across Twitter and

Pinterest and found that users tend to post items to Pinterest before posting

them on Twitter [94]. Similar observations were made by Lim et al. who also
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found that users exhibited varied information sharing activities on different

OSPs[73]. While both [94] and [73] investigate the posting of same content

across multiple OSPs, i.e., the duplication of posts across different OSPs, the

topic interests and the diverse types of content are however neglected. For in-

stance, a user may not simply duplicate and share a post across OSPs. Instead,

she may share different types of content that share the same topic interests

across different OSPs. For example, a user may share a text post in Twitter

and a photo on Instagram. Although the types of content shared on the two

OSPs are different, both the text and photo may share the same topic (e.g.,

Food). Our study in Chapter 5 attempts to bridge this gap in the state-of-

the-art works by examining the topic interest of the diverse types of content

published by users on multiple OSPs. Furthermore, we also attempt to study

how the topic interests of a post could influence the user’s platform choice to

publish the post. For example, a user who is interested in architecture design

and fashion may choose to share his architecture design posts in Tumblr while

sharing the fashion posts on Instagram.

2.5 User Influence in Online Social Platforms

2.5.1 Identifying Topic-Oblivious Influential Users in On-

line Social Platforms

Many previous works apply network centrality measures to identify topic-

oblivious influential users in an OSP [56, 54, 61]. Kayes et al.[56] aggregated

network centrality measures such as degree [36], betweenness [35], closeness

[36] and eigenvector [21] to measure and identify influential bloggers. There

are also works which extended HITS algorithm [58] to find influential users in

OSPs. Romero et al. [103] proposed the influence-passivity (I-P) algorithm

to measure Twitter users’ influence and passivity from their retweet activities.

Gayo-Avello [37] applied HITS on Twitter follow links to identify and differen-
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tiate influential users from spammers. Shahriari and Jalili [109] modified the

HITS and PageRank [95] algorithms to analyze and rank users in signed OSPs.

Besides user relationships, user activities, e.g., retweet and mention in

Twitter, can also be used to determine influential users in OSPs. Khrabrov

and Cybenko [57] adapted PageRank [95] algorithm to Twitter mention ac-

tivities to identify influential Twitter users. Silva et al. [112] employed a

similar approach to find and recommend influential users based on other users’

retweet activities. Aral and Walker [8] conducted a randomized experiment on

Facebook to identify influential and susceptible users based on users’ product

sharing and adoption activities.

Some studies have also identified influential users by analyzing both user

relationships and activities. Agarwal et al. [3] proposed a model that utilizes

the page-linking activities to measure the influence of bloggers. Ghosh and

Lerman [38] applied centrality measures on Digg users’ friendship and voting

activities to identify influential users. Cha et al. [25] evaluated the influence of

Twitter users using follower, mentions and retweets counts. Other works have

also analyzed both user ego networks and tweet activities to find influential

users in Twitter [131, 62, 7, 50, 71].

2.5.2 Identifying Topic-Specific Influential Users in On-

line Social Platforms

Many existing works have the modeling and extraction of topics as the first and

separate step in the identification of topic-specific influential users. Commonly,

the topics of user-generated content are first determined by performing keyword

matching with a topical lexicon [12, 96, 47, 79, 67, 87, 93]. For example,

in a study to identify topic-specific authorities in Twitter, Pal and Counts

[96] first extracted tweets covering three topics: “oil spill”, “world cup” and

“iphone” using simple substring matching before applying models to determine

the topic-specific authorities from the users’ retweet activities. Oro et al. [93]
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proposed social media authoritative user (SocialAU) model which includes a

three-layer network (i.e., user-item-lexicon) for finding authority and hub users

of a pre-defined selected topic by extending the TOPHITS, a model proposed

by Kolde et al [59] to analyze a semantic graph that combines anchor text with

the hyperlink structure of the web. Instead of pre-defined topics, some studies

use topic modeling such as Latent Dirichlet Allocation (LDA) [19] in the first

step [127, 55, 4, 45, 49, 6]. For example, Weng et al. [127] first applied LDA

to learn the latent topics from users’ tweets before applying a PageRank-like

model called TwitterRank to measure the topic-specific influence of Twitter

users. Huang et al. [49] also similarly applied LDA before applying their

graph partitioning model to find influential users on Twitter. Hoang and Lim

[45] learned the latent topics using Twitter-LDA [141], a model which extends

LDA to short-text messages, before analyzing the virality and susceptibility of

Twitter users.

There are relatively very few works that jointly model user topical inter-

ests and influence altogether. Liu et al. [78] proposed a two-step model which

consists of a generative model to learn the direct influence between users and

a topic-level influence propagation method to mine the indirect and global in-

fluence. In the generative step, the researchers modeled the generation of a

user’s posts, which is assumed to be either influenced by his or her friends who

have the same interests or generated depending on his or her topical interests.

Bi et al. [17] introduced FLDA, a Bernoulli-Multinomial mixture model which

models the users’ topic-specific influence and content-independent popularity.

Barbieri et al. [13] proposed the WTFW model, which models topical and

social relationships of users. The model learns the authoritative and suscepti-

ble users for each topic, and it considers a topic-specific susceptible user to be

one who is interested in the topic (e.g., posting topic-related content), and a

topic-specific authority user to be one who is followed by many topic-specific

susceptible users. In Chapter 6, we extended HITS and proposed a novel
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model to jointly models the users’ topical interests, hub and authority scores

simultaneously. We also propose a multiple platform version of our proposed

model, where it can identify topic-specific hubs and authorities across multi-

ple OSPs by jointly learning the users’ topical interests, platform preferences,

topic-specific hubs and authorities scores from user-generated data in multiple

OSPs.
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Empirical Studies
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Chapter 3

Analyzing Friendships in

Multiple Online Social

Platforms

In this chapter [64], we analyze how users maintain friendship in multiple

online social platforms (OSPs) by studying users who have accounts in both

Twitter and Instagram. Specifically, we measure the similarity of a user’s

friendship and the evenness of friendship distribution in multiple OSPs. Based

upon our empirical study, we conduct link prediction experiments to predict

missing friendship links in multiple OSPs using the neighborhood features,

neighborhood friendship maintenance features, and cross-platform features.

3.1 Introduction

The participation in multiple OSPs implies that users have to stretch and

spread their already limited time and attention over the different OSPs, which

results in new dynamics in the maintenance of friendships. For instance, a user

may choose to connect to the same group of friends in multiple OSPs for ease

of social interaction. On the other hand, another user may partition his friends

into groups and connect to different groups of friends in different OSPs except
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very few close friends he maintains across multiple OSPs. In this chapter, we

propose two friendship maintenance measures, namely, friendship similarity,

which measures the amount of overlap between a user’s friendship networks in

multiple OSPs, and friendship evenness, which measures the evenness of user’s

friendship distribution in multiple OSPs. The proposed friendship maintenance

measures are applied to empirically analyze how users maintain friendship in

multiple OSPs by studying users who have accounts in both Twitter and In-

stagram. We also address the research question of how one conducts friendship

prediction in the context of multiple OSPs. In particular, we explore using the

friendship maintenance measures as features to improve the friendship predic-

tion accuracy.

The study on users’ friendship maintenance will provide some new insights

into other user-generated data studies on multiple OSPs. Lim et al. con-

ducted an empirical study on user’s information sharing activities in six OSPs

and found users exhibited varied information sharing activities on different

OSPs [73]. They postulated that this was due to the difference in user’s usage

for different OSPs. From friendship maintenance perspective, a possible ex-

planation could be the users were varying their sharing of information to cater

for the different groups of “audience” (i.e., friends) in different OSPs. Thus,

research on friendship maintenance of users can potentially help to provide

new insights to other user-generated data in these OSPs.

The study on friendship in multiple OSPs has real-world applications. In

the second part of this chapter, we extend our empirical research on user’s

friendship maintenance in multiple OSPs and propose friendship maintenance

related features to predict missing links (i.e., friendship) in multiple OSPs.

There have been few recent link prediction studies done on multidimensional

networks which refers to networks with multiple types of links between nodes.

Some of them applied neighborhood features such as Common Neighbors and

Adamic-Adar on a type of links in the network to predict another type of
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user’s links within the same network [107]. However, it is important to point

out that there are differences between multidimensional networks and in mul-

tiple OSPs. For example, user accounts need to be matched across OSPs in

the multiple OSPs setting, while users account matching is not required in

multidimensional networks. In the multiple OSPs setting, user-generated data

of a user account in one OSP is only observed by the user’s neighbors in the

same OSP but not the same user’s neighbors in another OSP. On the other

hand, in multidimensional networks, user-generated data are observed by all

neighbors of the multi-dimensional network. As such, the link prediction in

our study is different from that in multidimensional networks.

The study in this chapter is conducted on a large real-world dataset con-

sisting of about 100,000 users on both Twitter and Instagram with tens of

millions online friends. This chapter is divided into two main parts addressing

different research questions. In the first part, the research question is how

users maintain friendship across OSPs. We focus on friendship maintenance

measures that allow us to quantify friendship overlapping and friendship dis-

tribution. In the second part of our study, we address the research question

of how one conducts friendship prediction in the context of multiple OSPs. In

particular, we would like to explore using the friendship maintenance measures

as features to improve the friendship prediction accuracy.

As shown in Figure 3.1, our proposed research framework begins with data

crawling from both Twitter and Instagram to assemble a dataset of base users.

For this set of users, we perform cross-platform friend matching to identify

the Twitter and Instagram friends of the same users. We then propose several

measures to quantify their friendship maintenance. Finally, we use our findings

to design both unsupervised and supervised friend prediction methods.

The work in this chapter improves the state-of-the-art of OSP analysis and

link prediction in multiple OSPs. We establish a novel research framework to

compare friends in two OSPs. Included in the framework are the measures for
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Figure 3.1: Research framework for multiple OSPs friendships analysis

evenness of friendship distribution and similarity of friendship across multiple

OSPs, as well as the prediction of links in the multiple OSP setting.

The rest of this chapter is organized as follows: Section 3.2 describes the

construction of our Twitter and Instagram datasets. We propose measures

that quantify the evenness of user’s friendship distribution and similarity of

friendship in multiple OSPs in Section 3.3. We then conduct an empirical

study in Section 3.4 by applying the proposed measures to analyze the users’

friendship maintenance in Twitter and Instagram. Subsequently, we describe

the friendship link prediction experiments conducted using friendship features

and present the results in Section 3.5. Finally, we conclude this chapter in

Section 3.6.

3.2 Data Preparation

To study the user friendships in multiple OSPs, we first need to construct

a dataset of users who have accounts with both Twitter and Instagram, a

popular microblogging site and a photo-sharing social media site respectively.

As the two selected OSPs serve different purposes, it is unlikely that the two

OSPs cannibalize each other’s users. Furthermore, the two OSPs are highly
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complementary and popular among teen users [24]. We, therefore, expect

a user on both Twitter and Instagram would generally have the interest to

include the same friends in both OSPs.

3.2.1 Dataset

We begin by gathering a set of 100,000 Twitter users who have declared

their Instagram accounts in their Twitter biography description from Follower-

wonk 1, a Twitter analytics platform. Subsequently, the Twitter and Instagram

followers and followees of these 100,000 users were crawled using the Twitter

and Instagram APIs. However, as some of these Twitter and Instagram ac-

counts have set their privacy settings to “private”, we are not able to obtain

all the followers and followees of the users. We are also only interested in an-

alyzing friendship of average OSPs users; thus we further filter away celebrity

or popular users who have more than 2,000 followers. In the end, we manage

to obtain 97,978 users who have declared both their Twitter and Instagram

accounts, and these users constituted the base user set.

Figure 3.2: Twitter and Instagram friendship distributions

Next, we retrieve the Twitter and Instagram friends of the users in base user

set. As Twitter and Instagram only capture follower and followee relationships,

we define the friend of a user to be someone who follows and is followed by the

user [128, 52]. In total, we obtained an estimated 17 million Twitter friends

and 24 million Instagram friends. Figure 3.2 shows the Twitter and Instagram

1https://moz.com/followerwonk/
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friendship degree distributions. The average Twitter and Instagram friendship

degrees for these users are 171 and 245 respectively.

3.2.2 User Accounts Matching

Before we can study how the users maintain friendships in their Twitter and

Instagram accounts, we are required to match the friend accounts in the two

OSPs. Unfortunately, very few of the friends have declared both their Twitter

and Instagram accounts. Hence, in this section, we present a few simple but

effective ways to match users between OSPs by adapting the methods proposed

by Zafarani and Liu [136] and Vosecky et al. [121], which are quite effective

in this context. We match the Twitter and Instagram friends of our base user

set using three levels of user matching methods:

1. Self-Report Matching. This method matches the Twitter and In-

stagram friends of the base user set if these friends declare both their

Twitter and Instagram accounts.

2. Username Matching. Past research has reported that 59% of users

prefer to use the same username repeatedly on different OSNs for easy

recall [136]. Instead of matching all our Twitter and Instagram users

by their usernames, we match Twitter users with Instagram users by

username when they are the friends of the same user in our base set.

Doing so minimizes the possibility of two users being matched because

they adopt a more popular username.

3. Username Bigram Matching. Users may tweak their usernames

slightly across different OSNs due to the unavailability of their usual

usernames. To cater for such situations, we introduce an approximate

method which matches the Twitter and Instagram friends of the base

users using username bigrams. Each username is represented by a vector

of bigram weights each of which is the number of occurrences of the bi-
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gram in the username. Cosine similarity is then applied to two username

bigram vectors to determine if the two usernames are sufficiently similar.

If the cosine similarity score exceeds a threshold, the two usernames are

considered matched. We adopt a threshold value of 0.63 which is derived

by taking the median cosine similarity values of Twitter and Instagram

username bigrams of the base users.

Table 3.1: Number of users and friends matched using different methods

Methods Self- Username Username Total
Report Bigram

# Users Matched 17,236 1,473,217 1,546,645 3,037,098

# Friends Matched 22,234 1,735,719 1,798,457 3,556,410

Table 3.1 shows the number of friends matched using the above three

methods. As expected, the self-report method returns the smallest number

of matched friends. A total of 22,234 friends were matched using this method

giving an average of 22,234
97,978

= 0.23 matched friends per user. In other words, the

vast majority of base users do not have their Twitter and Instagram friends

matched using self-report. Username matching method, on the other hand,

can match a total of 1,735,719 friends (in addition to those matched by self-

report) or an additional 17.72 friends per user, representing 17.72
171

= 10.4%

and 17.72
245

= 7.2% of all Twitter and Instagram friends of the base users re-

spectively. Finally, the username bigram matching method returns yet an

additional 1,798,457 matched friends, or 18.36 matched friends per user. This

corresponds to 10.7% and 7.5% of all Twitter and Instagram friends respec-

tively. Combining all methods, we can match 3,556,410 friends or 36.3 matched

friends per user. Henceforth, we will use all these matched friends in the sub-

sequent analysis.

As there is no ground truth for the validation of the matched friends, we

randomly inspected Twitter and Instagram profiles of 100 pairs of matched

friend pairs using the username matching and another 100 pairs of matched

friends using the combined method. We then looked at the visual cues such
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as their profile photos to assess whether the matching methods are accurate.

Among the inspected 100 pairs of matched friends using the exact username

matching method, we observed that 77 of the pairs have (i) matching profile

photos for their Twitter and Instagram accounts, or (ii) their Twitter profile

photos matched with some of the photos posted by the Instagram accounts.

Majority of the non-matched friend profiles are due to the users not setting

profile picture for their Twitter accounts; thus the actual number of matched

pairs could be higher than 77. For the username bigram method, 68 of the pairs

meet the matching profile photos criteria. This suggests that the user matching

methods were able to match the user friends with reasonable accuracy.

3.3 Friendship Maintenance Measures

Before we study how users maintain friendship in Twitter and Instagram, we

first propose two measures, friendship similarity and friendship evenness, to

quantify the similarity of user’s friendship and the evenness of user’s friendship

distribution in multiple OSPs respectively.

3.3.1 Friendship Similarity

To ease friendship maintenance, users may choose to overlap their friendships

in multiple OSPs. We modified the D-Correlation approach by Berlingerio

et al. [16] to measure this overlap or similarity of friendship across multiple

OSPs. D-Correlation was originally designed for multi-dimensional networks

where it measures how redundant are two dimensions for the existence of a

node or an edge.

We use N to denote a set of OSPs {N1, N2, · · · , Nn}. We denote the set

of friends of a user x in a OSP Ni by FR(x,Ni). We define the friendship

similarity of user x among these OSPs, FSim(x,N), to be the ratio of common

friends of x across all OSPs as shown in Equation 3.1.
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Fsim(x,N) =
| ∩Ni∈N FR(x,Ni)|
| ∪Ni∈N FR(x,Ni)|

(3.1)

Example. Figure 3.3 illustrates the an example of user distributing his

friends in two OSPs, A and B. The user x have a total of 25 friends; 10

friends in A, 20 friends in B, and 5 of the friends are overlapped two OSPs.

Thus, the user x ’s friendship similarity in OSP A and B will be computed as

Fsim(x,N) = 5/25 = 0.2.

Figure 3.3: Example of user’s friendship in two online social platforms

Upper Bound of Friendship Similarity. The maximum Friendship

Similarity value (i.e., the upper bound of Friendship Similarity) is only achieved

when x has the same friends in all OSPs. The maximum value of a user’s friend-

ship similarity in multiple OSPs is equal to the ratio between the minimum

and the maximum number of friends added to an OSP among the OSPs that

the user has participated (as shown in Equation 3.2). Referencing to the earlier

example in Figure 3.3, the maximum possible Fsim value for user x would be

10/20 = 0.5. i.e. user x added all his friends in OSP A in OSP B as well.

max(Fsim(x,N)) ≤
min
Ni∈N
|FR(x,Ni)|

max
Ni∈N
|FR(x,Ni)|

(3.2)

3.3.2 Friendship Evenness

Suppose that a user x divides all his friends among all the n OSPs without

overlap, we expect 1
n

of his friends in each OSP. Suppose there is a non-zero
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overlap among his friends across all the OSPs but negligible overlap between

subsets of OSPs, and Fsim(x,N) > 0, the expected ratio of friends x adds to

each OSP is then estimated by 1
n

+ Fsim(x,N)
n

as shown in Equation 3.3.

Fequal(x,N) =
1 + (n− 1) · Fsim(x,N)

n
(3.3)

Proof. Suppose x has N unique friends in N. Assume that x distributes her

friends evenly across the OSPs. Let Nu be the number of unique friends in each

OSP and let F denote Fsim(x,N). We then expect x to have N · F common

friends across the OSPs. In other words, x has Nu+F ·N friends in each OSP.

As N = n · Nu + F · N , we obtain N = n·Nu

1−F . Each OSP is then expected to

have Nu + F · n·Nu

1−F friends in each OSP. The expected ratio of friends in each

OSP is therefore

Nu + F ·N
N

=
Nu + F · n·Nu

1−F
n·Nu

1−F
=

1 + (n− 1) · F
n

(3.4)

When F = 0, the above ratio degenerates to 1
n

implying that all friends of

x are equally divided among OSPs exclusively. When F = 1, the ratio also

becomes 1 suggesting that every OSP covers all friends of x. When there are

only two OSPs, i.e., n = 2, the expected ratio of friends in each OSP is 1+F
2

.

However, we would expect that in many circumstances, unevenness exists

among the friend counts of the OSPs. For example, a user may maintain a

larger group of friends in an OSP Ni while keeping a smaller clique in another

OSP. We thus define the ratio of friends of a user x in OSP Ni relative to all

friends in Equation 3.5.

Fin(x,Ni,N) =
|FR(x,Ni)|

| ∪Ni∈N FR(x,Ni)|
(3.5)

Finally, we then define the evenness of user’s friendship distribution in

multiple OSPs as the inverse of summation of the difference between the ratio

of friends added in each OSP and the expected ratio of friends a user adds to
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each OSP when the friends are evenly distributed as shown in Equation 3.6.

Feven(x,N) = 1−
n∑
i=1

∣∣∣Fin(x,Ni,N)− Fequal(x,N)
∣∣∣ (3.6)

Referring to our earlier example in Figure 3.3, Fin(x,A, {A,B}) is 10/25 =

0.4 and Fin(x,B, {A,B}) is 20/25 = 0.8. User x ’s evenness of friendship

distribution in OSP A and B is Feven(x, {A,B}) = 1 − (|0.4 − 1+0.2
2
| + |0.8 −

1+0.2
2
|) = 0.6.

Note that Feven(x, {A, b}) measure is also in the range of 0 to 1. Suppose

that a user adds an equal number of friends in the two OSPs with any number

of overlap friends between the two OSPs, the user’s friendship evenness value

will be 1. The value for friendship evenness will be 0 if no friend in one of the

two OSPs.

There is also an interesting relationship between the upper bound of Friend-

ship Similarity and Friendship Evenness. Based on Equation 3.2, in order to

achieve a maximum friendship similarity value of 1 (i.e., max(Fsim(x,N)) = 1),

the minimum and maximum numbers of friends in all the OSPs are iden-

tical. That is, user x distributes friendships evenly among all the OSPs

(Feven(x,N) = 1). Thus, the more evenly distributed the friends among OSPs,

the higher the max(Fsim(x,N)).

3.4 Empirical Study on Twitter and Instagram

In this section, we apply the friendship similarity and evenness measures to

analyze how the 97,978 base users maintain their friendships in Twitter and

Instagram.

3.4.1 Distribution Analysis

Figure 3.4 shows the distribution of friendship similarity. The average friend-

ship similarity is 0.104. The 1st, 2nd, and 3rd quartile friendship similarity
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Figure 3.4: Friendship similarity distribution

values are 0.046, 0.09 and 0.148 respectively. This left-leaning bell shape distri-

bution suggests that there are very few users who maintained similar friendship

in their Twitter and Instagram accounts. Interestingly, this is contrary to our

initial hypothesis that the user would prefer to have a high friendship similar-

ity for ease of maintenance. There could be a few reasons for the low average

friendship similarity; for instance, the users may have maintained low even-

ness for their friendship in the two OSPs, thus limiting the maximum possible

friendship similarity value for the users, or the users simply prefer to maintain

different groups of friends in different OSPs.

Figure 3.5 depicts the distribution of friendship evenness of the base users.

The average friendship evenness is 0.648, a value much higher than the aver-

age friendship similarity. The 1st, 2nd and 3rd quartile evenness values are

0.534, 0.705 and 0.856 respectively. The distribution is right-leaning, suggest-

ing that most users may prefer to have not overly uneven friendship counts in

different OSPs. Also, the right-learning friendship evenness distribution fur-

ther strengthens our earlier finding that the users tend to prefer to maintain

different groups of friends in different OSPs. There could be many reasons

for users’ preference to keep the different friendship in different OSPs. One of

the possible reasons could be as suggested by Lim et al. [73], that users use
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Figure 3.5: Friendship evenness distribution

different OSPs for different purposes or interests, which indirectly motivates

the users to connect to different friends in different OSPs. To explain the

user’s friendship maintenance, we will study beyond the structural properties

of multiple OSPs and investigate the differences in the user interests across

different OSPs in our subsequence chapters.

3.4.2 Relationship Between Measures

We also examine the relationship between friendship similarity and friendship

evenness of users in Figure 3.6 where each point in the figure represents a user

with his friendship similarity and evenness values.

Figure 3.6 shows that as the user’s friendship evenness increases, friendship

similarity seems to increase its range of values. This observation supports

what we have highlighted in our earlier discussion that the friendship evenness

limits the friendship similarity. We also further investigate this by showing the

friendship similarity distribution of users with top and bottom 10% friendship

evenness in Figure 3.7. The top 10% friendship evenness users have friendship

similarity distribution similar to the overall friendship similarity distribution

(as shown in Figure 3.4), while the bottom 10% friendship evenness users have
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Figure 3.6: Friendship similarity and friendship evenness

a more left-leaning friendship similarity distribution. The top 10% friendship

evenness users also have an average of friendship similarity of 0.124, slightly

higher than the 0.104 friendship similarity of an average user, while the bottom

10% friendship evenness users have an average of 0.055 friendship similarity,

significantly lower than the average user. However, it is observed that there

are quite still a number of users who have high friendship evenness but low

friendship similarity.

To investigate the dependency of friendship evenness and similarity, we

performed a Chi-squared Test of Independence on the two measures. The test

result shows p-value < 2.2e−16, which is lesser than the 0.05 significance level;

therefore we reject the null hypothesis that friendship similarity is independent

of friendship evenness. The two measures also show a weak positive correlation

of 0.277.

3.5 Friendship Prediction Experiments

In this section, we examine how the link prediction in multiple OSPs can

leverage on the links across OSPs. Link prediction can come in two forms;

namely, prediction of future links and prediction of missing links [72, 39, 115].
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Figure 3.7: Friendship similarity of top and bottom 10% friendship evenness
Users

In our research, we focus on the latter which is useful in applications such as

friend recommendations. As this is the first attempt to conduct link prediction

for multiple OSPs, we also want to answer the following research questions:

• Can we predict the link between two users in one OSP using the structural

information of the two users in another OSP? Suppose that two users

have many common friends in a single OSP, it is likely that they are

friends in the other OSP. Intuitively, the existence of a link between the

two users in one OSP should also increase the likelihood of a link between

the users in another OSP.

• Can the friendship maintenance features improve the accuracy of link

prediction in multiple OSPs? Now that we have the friendship similarity

and evenness measures, we would like to know if they can make good

features for link prediction.

3.5.1 Task Definitions

There are two prediction tasks to be performed: (a) Twitter Link Predic-

tion (TWLP) where we predict if two users are friends on Twitter; and (b)
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Instagram Link Prediction (INLP), where we predict if two users are

friends on Instagram.

We now describe the setup of the training and test data in our link predic-

tion task. Let VBoth be the 97,978 base users who exist in both Twitter and

Instagram. For our base users in Twitter, we define the set of positive instances

to be (u, v) pairs such that both u and v are in VBoth and (u, v) is an observed

link in Twitter. We denote this set of positive instances by Epos(TWT ). The

set of negative instances, denoted by Eneg(TWT ), is the set of (u, v) pairs with

both u and v from VBoth but are not friends in Twitter. The sets of positive

and negative instances for our base users in Instagram are defined similarly.

With the above definitions, we derive 17,651 and 26,241 positive instances

for base users in Twitter and Instagram respectively, i.e., |Epos(TWT )| =

17, 651 and |Epos(INT )| = 26, 241. The numbers look small compared with

the size of base users largely because the base users which are selected based

on having both Twitter and Instagram accounts do not come from the same

user community. Hence, only very few of them know each other on Twitter

or Instagram. In other words, there are many more negative instances making

the link prediction tasks highly imbalanced. Furthermore, there are additional

overheads crawling additional data (e.g., friends or neighbors) for each positive

and negative instance in the prediction task. To keep the number of instances

manageable for the prediction methods, we randomly select 5,000 positive in-

stances and 25,000 negative instances for each run in our prediction tasks. The

negative instances are kept to five times that of positive instances. To make

the prediction harder, we also check that at least 5,000 negative instances have

at least one common neighbor on Twitter or Instagram.

3.5.2 Unsupervised Link Prediction Methods

We propose to use several unsupervised link prediction methods using different

neighborhood features as ranking measures[91, 2]. These measures involve using
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the common neighbors between a pair of users u and v to derive some affinity

score for ranking the user pair. These measures are also based on the triadic

closure principle in social network analysis [113]. In this work, the following

measures are used:

• Common Neighbors (CN): This measure counts the number of com-

mon neighbors between u and v.

• Jaccard Coefficient (JC): This measure returns the fraction of com-

mon neighbors between u and v.

• Adamic-Adar (AA): This measure considers the popularity of common

neighbors. The less popular common neighbors are given larger weights

as they are added together to derive an affinity score.

The above measures are chosen as they were commonly used in link pre-

diction experiments. More formal definitions of them are given at the top of

Table 3.2. In Table 3.2, FR(u, T ) and FR(u, I) denotes the friends of u in

Twitter and Instagram respectively. While applied to score each of the 5,000

positive instances and 25,000 negative instances, the measures are computed

using all observable link instances in our dataset, i.e., all links excluding those

used as positive instances.

There were also recent studies that applied these neighborhood measures

in multidimensional networks, where links between users in one dimension

are ranked using the neighborhood features of users in another dimension of

the same network [107]. Unlike these existing link prediction works on mul-

tidimensional networks, we are now using these neighborhood measures for

unsupervised link prediction between users in multiple OSPs where users may

not have accounts on both OSPs and users having accounts on both OSPs may

not have their accounts matched.

We use F1 at Top K to evaluate each unsupervised link prediction method.

We first rank all given 30,000 instances by the method’s measure in decreasing
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order. The Precision and Recall at Top K are computed by:

Prec@K =
# correct predictions among top K ranked instances

K

Rec@K =
# correct predictions among top K ranked instances

5000

F1@K =
2 · Prec@K ·Rec@K
Prec@K +Rec@K

Figure 3.8: F1 scores @ top K for TWLP and INLP

Figure 3.8 shows F1@K of unsupervised link prediction methods in TWLP

and INLP tasks. We introduce a baseline method which returns randomly

selected K instances as predicted links. We vary K from 1000 to 10,0000 to

examine the performance of each method.

As shown in the figure, all the unsupervised methods perform significantly

(3 to 4 folds) better than the random baseline in both TWLP and INLP

tasks. While the baseline method increases gradually with larger K values

due to increasing recall, most of the other methods improve their F1@K only

up K=4000 or K=5,000. Beyond which, their F1@K drops. This is because

these methods are able to rank positive instances more highly than negative

instances.
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Interestingly, the figure also shows that the prediction methods using In-

stagram links outperform those using Twitter links even when the prediction

task involves Twitter link prediction, i.e., TWLP. In particular, the method

using Jaccard Coefficient on Instagram links (i.e., JCI ) outperforms the rest

for almost all K values, achieving the highest F1 scores of 0.882 and 0.838 for

TWLP and INLP tasks respectively for top 5,000 ranked results. A possible

explanation of the above findings could be that the users have higher friend-

ship degrees in Instagram than Twitter. Two users who are friends on Twitter

are likely to have common friends on Instagram. Even though the Twitter

neighborhood measures performed worse than Instagram neighborhood mea-

sures, they still yield good results (up to 0.689 for F1@5K) in predicting links

between users in Instagram. This suggests that predicting links in one OSP

using the neighborhood information of another OSP can yield good accuracy.

3.5.3 Supervised Link Prediction Methods

For supervised link prediction, we use Support Vector Machine (SVM) with the

linear kernel as the binary classifier trained with each instance represented as a

feature vector. SVM is chosen because of its relatively good results in other link

prediction tasks. We also consider three types of features as shown in Table 3.2.

The neighborhood features are the scores from different measures used in

unsupervised link prediction methods. By including the neighborhood features,

the supervised methods can hopefully achieve at least the good accuracy of the

unsupervised methods.

We introduce a binary cross-platform feature CL which returns 1 if the

users of the instance are friends in another OSP, and 0 otherwise. For example,

in the case of TWLP task, a (u, v) instance is assigned a CL feature value of

1 if and only if u and v are friends in Instagram. This feature is included

because having a friendship in another OSP should increase the odds of the

users having friendship in the target OSP.
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Table 3.2: Link prediction features

Feature Description

Neighborhood features

CNT |FR(u, T ) ∩ FR(v, T )|
JCT

|FR(u,T )∩FR(v,T )|
|FR(u,T )∪FR(v,T )|

AAT
∑

z∈FR(u,T )∩FR(v,T )
1

log|FR(z,T )|
CNI |FR(u, T ) ∩ FR(v, I)|
JCI

|FR(u,I)∩FR(v,I)|
|FR(u,I)∪FR(v,I)|

AAI
∑

z∈FR(u,I)∩FR(v,I)
1

log|FR(z,I)|

Common Neighbor Friendship Maintenance features

HEHST
|{z∈FR(u,T )∩FR(v,T )|Fsim(z) is high,Feven(z) is high}|

|FR(u,T )∪FR(v,T )|

HELST
|{z∈FR(u,T )∩FR(v,T )|Fsim(z) is low,Feven(z) is high}|

|FR(u,T )∪FR(v,T )|

LEHST
|{z∈FR(u,T )∩FR(v,T )|Fsim(z) is low,Feven(z) is low}|

|FR(u,T )∪FR(v,T )|

LELST
|{z∈FR(u,T )∩FR(v,T )|Fsim(z) is high,Feven(z) is low}|

|FR(u,T )∪FR(v,T )|

HEHSI
|{z∈FR(u,I)∩FR(v,I)|Fsim(z) is high,Feven(z) is high}|

|FR(u,I)∪FR(v,I)|

HELSI
|{z∈FR(u,I)∩FR(v,I)|Fsim(z) is low,Feven(z) is high}|

|FR(u,I)∪FR(v,I)|

LEHSI
|{z∈FR(u,I)∩FR(v,I)|Fsim(z) is high,Feven(z) is low}|

|FR(u,I)∪FR(v,I)|

LELSI
|{z∈FR(u,I)∩FR(v,I)|Fsim(z) is high,Feven(z) is low}|

|FR(u,I)∪FR(v,I)|

Cross-Platform features

CL

{
1 if (u, v) exists in another OSP

0 otherwise

Finally, we also include a group of features known as common neighbor

friendship maintenance features. While the neighborhood features in one

OSP yield reasonable or even good results in unsupervised link prediction in

another social OSP, the features may not work very well when the common

neighbors demonstrate friendship maintenance that prevents friendship infer-

ence across OSPs. For example, a common neighbor between users u and v

in Instagram who maintain separate friends in Twitter and Instagram does

not increase the likelihood of friendship between u and v in Twitter. The

common neighbor friendship maintenance features are obtained by dividing all

common neighbors who are present in both Twitter and Instagram into four

different categories: namely: (a) high friendship evenness and high friend-

ship similarity; (b) low friendship evenness and high friendship similarity; (c)

high friendship evenness and low friendship similarity; and (d) low friendship
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evenness and low friendship similarity. We say that a user has high (or low)

friendship evenness if her friendship evenness is greater than (or not greater

than) the average friendship evenness value. We define the user with high or

low friendship similarity in the same way. These common neighbor friendship

maintenance features are shown in Table 3.2.

We use six different feature configurations in our supervised link prediction

methods as follows:

• NBO: Neighborhood features only

• NFM: Common Neighbor Friendship Maintenance features only

• NBOFM: Neighborhood and Common Neighbor Friendship Mainte-

nance features

• NBCL: Neighborhood and Cross-Platform features

• NFMCL: Common Neighbor Friendship Maintenance and Cross-Platform

features

• ALL: All features

We conduct three runs of TWLP and INLP experiments and report the

average precision, recall and F1 score of each method. For each run, we use

a sample of 5,000 user pairs with friendship and 25,000 user pairs without

friendship as the positive and negative instances respectively for training an

SVM classifier, and another sample of 5,000 user pairs with friendship and

25,000 user pairs without friendships for testing. We conducted three runs of

training and test evaluation altogether.

Table 3.3 shows the results of supervised link prediction for TWLP and

INLP tasks. In these experiments, all the feature configurations yield better

precision than recall. Most of them have F1 higher than the best F1 scores of

the unsupervised methods (i.e., JCI ). Generally, according to F1, the config-

uration using all features outperforms other methods. Although the Common
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Table 3.3: Link prediction results by supervised methods

Tasks Methods Avg Prec. Avg Recall Avg F1

TWLP

NBO 0.954 0.873 0.911
NFM 0.955 0.830 0.888
NBOFM 0.953 0.875 0.912
NBCL 0.976 0.887 0.929
NFMCL 0.979 0.861 0.916
ALL 0.973 0.891 0.930
JCI 0.882 0.882 0.882

INLP

NBO 0.942 0.832 0.883
NFM 0.959 0.721 0.823
NBOFM 0.942 0.833 0.884
NBCL 0.958 0.838 0.894
NFMCL 0.971 0.74 0.84
ALL 0.956 0.841 0.895
JCI 0.838 0.838 0.838

Neighbor Friendship Maintenance (NFM) features performed slightly worse

than the Neighborhood (NBO) features, the NFM features still managed to

achieve a reasonably good F1 score of 0.888 and 0.823 for TWLP and INLP

tasks respectively. This observation suggests that we can predict, with rea-

sonable accuracy, the friendship between users using the common neighbor’s

friendship maintenance as features. The addition of Cross-Platform (CL) fea-

ture also improves the results of NFM and NBO features. Interestingly,

the configuration with Common Neighbor Friendship Maintenance and Cross-

Platform features (i.e., NFMCL) yield the best precision result in both TWLP

and INLP task. This result suggests that the existence of a link between the

two users in one OSP increases the likelihood of a link between the users in

another OSP.

A possible reason for Common Neighbor Friendship Maintenance (NFM)

features performing slightly worse than the Neighborhood (NBO) features

could be due to the lack of common neighbors with friendship maintenance

measures who are also base users. Thus we re-examined the supervised link

prediction results and determined the accuracy of link prediction for test in-

stances that have at least one common neighbor who is also a base user.

As shown in Table 3.4, our NFM features only method outperformed the
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Table 3.4: Link prediction results of test instances with at least 1 base user
common neighbor

Task Methods Avg Prec. Avg Recall Avg F1

TWLP
NBO 0.948 0.970 0.959
NFM 0.971 0.994 0.982

INLP
NBO 0.938 0.959 0.949
NFM 0.976 0.999 0.987

method using NBO features by precision, recall and F1 score in both TWLP

and INLP tasks. This result suggests that there were several occasions where

the NBO features only method wrongly labeled a positive instance as negative,

but NFM features correctly label these instances.

Upon further examination of these test instances, we found that although

each user pair has very few common neighbors, the common neighbors falls

in the low friendship evenness and high friendship similarity friendship main-

tenance category (i.e., LEHS). The users in LEHS connect to more friends

in either Twitter or Instagram while keeping a smaller and potentially closer

clique of common friends across the two OSPs. Thus, a pair of users with

a LEHS common neighbor is more likely to be friends especially when they

belong to the smaller clique of friends in one of the OSPs.

3.6 Summary

In this chapter, we studied how users manage and maintain friendships across

multiple OSPs. We constructed a base set of about 100,000 users with Twitter

and Instagram accounts and studied the friendship of these users in the two

OSPs. We introduced friendship similarity to measure the similarity of friend-

ships between two OSPs. A friendship evenness measure was also defined to

quantify the degree of balance a user maintains for the number of friendships in

different OSPs. We showed that most users prefer to maintain different friend-

ships in different OSPs while keeping only a small clique of common friends

across OSPs.
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We also investigated link prediction in multiple OSPs using unsupervised

and supervised methods. Our experiments have shown that the conventional

unsupervised methods using neighborhood features perform well even when

we predict links in one OSP using only the network structural properties from

another OSP. We have also proposed a set of platform features and applied

them to supervised link prediction method. The experiments showed that the

supervised methods with suitable feature sets could improve the accuracy over

that of unsupervised methods.
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Chapter 4

Analyzing Collaborative

Activities in Multiple Online

Social Platforms

Increasingly, software developers are using a wide array of online social plat-

forms (OSPs) for collaborative work and learning. In this chapter [68, 69],

we analyze the users’ collaborative activities and topical interests in multiple

OSPs in the context of software engineering. We empirically study the topical

interests similarities inferred from collaborative activities among users within

and across two OSPs: GitHub and Stack Overflow. We also propose a novel

mutliple OSPs prediction framework which predicts users’ collaborative activ-

ities in multiple OSPs using insights and measures derived from our empirical

study.

4.1 Introduction

GitHub1 and Stack Overflow 2 are two popular online social platforms (OSPs)

among users in software engineering community. GitHub is a collaborative

1https://github.com/
2http://stackoverflow.com/
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software development platform that allows code sharing and version control.

Users can participate in various activities in GitHub, for example, users may

fork (i.e., create a copy of) repositories of other users. Stack Overflow is a

community-based website for asking and answering questions relating to pro-

gramming languages, software engineering, and tools. Although the two OSPs

are used for different purposes, users can utilize both platforms for software

development. For example, a user who has interests in Java programming

language may fork a Java project in GitHub and answer Java programming

questions in Stack Overflow.

In this study, we broadly define the topical interests of a user as the pro-

gramming related topics inferred from the collaborative activities he or she

performed on GitHub repositories and Stack Overflow questions. For instance,

when a user answers Stack Overflow questions tagged with javascript, jquery,

and angularjs, we infer that the user is interested in the three topics. Similarly,

when a user forks repositories in GitHub which description contains keywords

such as javascript and ajax, we assume that the user is interested in the two

topics.

The learning of users’ topical interests from their collaborative activities

could provide new insights on how users utilize the two OSPs for software

development. For example, if users share similar topical interests in GitHub

and Stack Overflow, the two OSPs may complement each other for software

development. Conversely, if the users display differences between their topical

interests in GitHub and Stack Overflow, the two OSPs may have been used

in a disjoint manner. The social and community-based features in GitHub

and Stack Overflow also add new dynamics to the study of user’s collaborative

activities and topical interests. For instance, users may find themselves shar-

ing similar topical interests with other users who had performed collaborative

activities in common repositories or questions together. Thus, it would be in-

teresting to investigate the collaborative activities and topical interests of users

49



CHAPTER 4. ANALYZING COLLABORATIVE ACTIVITIES IN MULTIPLE ONLINE SOCIAL

PLATFORMS

within and across the two OSPs. In particular, we ask the following research

questions: Does a user display similar topical interests in his GitHub and Stack

Overflow collaborative activities? (RQ1), and does a user share similar top-

ical interests with other users who co-participated collaborative activities in

GitHub and Stack Overflow? (RQ2).

As these collaborative OSPs gain popularity, many research studies have

proposed recommender systems to improve the usability of these OSPs. For ex-

ample, there are works which predict and recommend relevant Stack Overflow

questions and answers to aid users in software development [31, 125, 123]. For

GitHub, researchers have proposed methods to predict which software repos-

itories are more relevant to a target user [41, 138, 53]. Nevertheless, many

of these studies only consider the users’ collaborative activities and topical

interests in a single platform when predicting and recommending collabora-

tive activities to the users. In this chapter, we aim to utilize the insights and

measures derived from our empirical study to predict collaborative activities

in multiple OSPs environment.

This work improves the state-of-the-art of cross-platform studies on collab-

orative activities in multiple OSPs. It gives several key contributions outline

below. Firstly, to the best of our knowledge, it is the first research attempt

to study similarity of user topical interests across GitHub and Stack Over-

flow using large datasets. Secondly, we propose several scores to measure the

similarity in user topical interests within and across OSPs. The proposed simi-

larity scores are also applied in an empirical study to quantify the similarity in

users’ topical interests within and across Stack Overflow and GitHub. Thirdly,

we extend our empirical findings and conduct prediction experiments to pre-

dict users’ collaborative activities in the two OSPs using supervised methods

with users’ topical interests related features derived from insights gathered in

the empirical study. Our prediction experiments show that using supervised

methods with our proposed features yield good accuracy in predicting user
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collaborative activities in multiple OSPs.

The rest of this chapter is organized as follows: Section 4.2 describes the

data collection of our GitHub and Stack Overflow datasets. We propose mea-

sures that quantify the similarity of user’s topical interests within and across

multiple OSPs in Section 4.3. We then conduct an empirical study in Section

4.4 by applying the proposed measures to analyze the users’ collaborative ac-

tivities and topical interests within and across GitHub and Stack Overflow. In

Section 4.5, we present a novel framework for predicting user collaborative ac-

tivities within and across multiple OSPs. We also adopt the measures derived

from our empirical studies and proposed a set of novel features used in user

collaborative activities prediction. The user collaborative activities prediction

experiment and results are discussed in Section 4.6. Finally, we conclude this

chapter in Section 4.7.

4.2 Data Preparation

There are two main datasets used in our study; we retrieve collaborative activ-

ities from October 2013 to March 2015 of about 2.5 million GitHub users and

1 million Stack Overflow users from open-source database dumps[40]3. Specif-

ically, the below collaborative activities are retrieved from the two platforms:

• Fork : Making a copy of a GitHub repository.

• Watch: Bookmarking a GitHub repository and receive notifications of

activities on the repository.

• Commit : Uploading software codes to a GitHub repository.

• Pull-Request : Telling other collaborators about changes made to a GitHub

repository.

• Ask : Asking a Stack Overflow question.

3https://archive.org/details/stackexchange
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• Answer : Answering a Stack Overflow question.

• Favorite: Bookmarking a Stack Overflow question.

As this study intends to investigate users’ collaborative activities and top-

ical interests across GitHub and Stack Overflow, we further identify users

who were using both OSPs. For this work, we used the dataset provided

by Badashian et al. [10], where they utilized GitHub users’ email addresses

and Stack Overflow users’ email MD5 hashes to find the intersection between

the two datasets. In total, we identify 92,427 users, which forms our base user

set. Subsequently, we retrieved the collaborative activities participated by the

base users. In total, we have extracted 416,171 Fork, 2,168,871 Watch, 846,862

Commit, 386,578 Pull-Request, 277,346 Ask, 766,315 Answer and 427,093 Fa-

vorite activities. Our subsequent analysis will be based on this group of col-

laborative activities participated by the base users.

Figure 4.1: GitHub and Stack Overflow base users activities distributions

Figure 4.1 shows the distributions of base users’ collaborative activities in

GitHub and Stack Overflow. Most of the users forked and committed to 1-

10 repositories (64% and 66% of the users respectively), asked and answered

1-10 questions (54% and 59% of the users respectively). There are also quite

a number of users who watched 11-100 repositories (26%). We also observe
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that more than half of users have at least answered one questions (71%) and a

substantial number of users also answered 11-100 questions (12%). Also, more

than half of the users had never done a pull-request in GitHub (69%). This

is an interesting phenomenon; although both answer and pull-request could

suggest expertise of users, the users seem to engage in more answer than pull-

request. A possible explanation could be the difference in effort required for

the two collaborative activities; pull-request would require greater effort from

the users to learn and edit codes while answer would typically require the user

to provide a short text answer to a specific question. We also notice that there

are users (albeit very few) who were extremely active in GitHub and Stack

Overflow; they forked, watched, committed, pull-requested more than 1000

repositories, or asked, answered and favorited more than 1000 questions.

4.3 User Interests Similarity Measures

In this section, we first describe how we infer users’ topical interests from their

collaborative activities in OSPs. Next, we propose measures to quantify the

user’s topical interests similarity within and across multiple OSPs.

4.3.1 Inferring User Interests

We infer user’s topical interests by observing the repositories and questions

that the user forked, watched, committed, pull-requested, asked, answered, or

favorited in GitHub and Stack Overflow. We use the following heuristics to

infer user’s topical interests:

1. To infer user’s topical interests in Stack Overflow, we use the descriptive

tags of the questions that they asked, answered and favorited. For ex-

ample, consider a question q related to mobile programming for Android

smartphones which contain the following set of descriptive tags: {Java,

Android}. If a user d asked, answered, or favorited that question, we
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infer that his topical interests include Java and Android.

2. GitHub does not allow users to tag repositories, but it allows users to

describe their repositories. These descriptions often contain important

keywords that can shed light to user’s topical interests. To infer a user’s

topical interests from the repositories that the user had participated,

we first collect all descriptive tags that appear in our Stack Overflow

dataset. In total, 39,837 unique descriptive tags are collected. Next, we

perform keyword matching between the collected Stack Overflow tags

and a GitHub repository description. We consider the matched keywords

as the inferred topical interests. We choose to use Stack Overflow tags

to ensure that user’s topical interests across the two platforms can be

mapped to the same vocabulary.

We denote the inferred topical interests of a user given a repository r that

he or she forked, watched, committed or pull-requested in GitHub as I(r).

Similarly, we denote the inferred topical interests of a user given a question q

that he or she asked, answered, or favorited in Stack Overflow as I(q). Since

the inferred interests given a repository or a question are the same for all users

participated in it, we also refer to I(r) and I(q) as the topics in r and q. For

simplicity, we also refer to them as r’s topics and q’s topics respectively. User

d’s overall topical interests in GitHub and Stack Overflow, denoted by IGH(d)

and ISO(d), is the union of his or her topical interests over all the repositories

and questions that d has forked, watched, committed, pull-requested, asked,

answered, or favorited.

4.3.2 User Topical Interests Similarity Across Platforms

One way to measure the similarity in an individual user’s topical interests

across platforms is to take the intersection of his topical interests in Stack

Overflow (ISO(d)) and his topical interests in GitHub (IGH(d)). However, this
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simple measure considers all topics to have equal weight. In reality, a user

may ask much more questions related to a particular topic than other topics.

Similarly, a user may fork repositories associated with a specific topic than

other topics. Thus, a finer way to measure the similarity in user’s topical

interests should consider the number of repositories and questions that belong

to each topic.

To capture the above mentioned intuition, we propose cross-platform simi-

larity score, which is denoted as SimSO-GH (d). Given a user d, we measure d’s

similarity in topical interests across Stack Overflow (SO) and GitHub (GH) by

computing the proportion of d’s repositories and questions that fall in d’s com-

mon topical interests in Stack Overflow and GitHub (i.e., ISO(d)
⋂
IGH(d)).

By denoting the repositories and questions that are related to d (i.e., d forked,

watched, committed, pull-requested, asked, answered, or favorited these reposi-

tories or questions) as d.R and d.Q, we can mathematically define SimSO-GH (d)

as follows:

CI(d) = ISO(d)
⋂

IGH(d) (4.1)

SharedQ(d) = {q ∈ d.Q|I(q) ∈ CI(d)} (4.2)

SharedR(d) = {r ∈ d.R|I(r) ∈ CI(d)} (4.3)

SimSO-GH(d) =
|SharedR(d)|+ |SharedQ(d)|

|d.R|+ |d.Q|
(4.4)

In Equation 4.1, we define the common topical interests of user d in both

Stack Overflow and GitHub. Equation 4.2 defines the set of questions with

topics that falls into the common topical interests, while Equation 4.3 defines

the set of repositories with topics that falls into the common topical inter-
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ests. Equation 4.4 defines SimSO-GH (d) as the proportion of repositories and

questions of d that falls into the common topical interests.

Figure 4.2: Example of cross-platform similarity score calculation

Figure 4.2 shows an example for the calculation of cross-platform simi-

larity score SimSO-GH(d). Consider user d who has performed collaborative

activities in GitHub and Stack Overflow. d has forked 2 repositories; Repos-

itory A which description contains the tag set {Java, Android}, and Reposi-

tory B which description contains the tag set {Java}, and watched Repository

C which description contains the tag set {C#}. d also favorited 2 Stack

Overflow questions; Question D which are tagged with {Android}, and Ques-

tion F which are tagged with {iOS}, and answered Question E which are

tagged with {Java}. We can estimate d’s topical interests in GitHub (i.e.

IGH(d)) as {Java, Android, C#} and d’s topical interests in Stack Overflow

(i.e., ISO(d)) as {Android, iOS}. The common topical interests of d (i.e.,

CI(d)) would be {Java, Android}. Therefore, SharedR(d) would include repos-

itories A and B, while SharedQ(d) would include questions D and E. Thus,

SimSO-GH(d) = |2|+|2)|
|3|+|3| .
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4.3.3 User Topical Interests Similarity Among

Co-Participating Activity Users

To study the similarity of topical interests among users who performed col-

laborative activities in GitHub and Stack Overflow together, we propose co-

participation similarity scores, each focusing on a collaborative activity. Given

a collaborative activity and a target user d, we want to measure the similarity

between d and all other users who co-participated in the target collaborative

activity for at least one common GitHub repository or StackOverflow ques-

tion. For example, considering forking a repository as a collaborative activity

of interest, we want to find users who co-fork at least one common GitHub

repository with d, and we denote the set of other users who co-participated in

forking at least one common repository as CoF (d). Similarly, given a user d,

we denote the set of other users who co-participated in watching, committing,

pull-requesting, answering, or favoriting at least one common repository or

question as CoW (d), CoC(d), CoP (d), CoA(d), and CoV (d), respectively.

Intuitively, the more repositories or questions of common topical interests

that d share with other users in CoF (d), the higher the similarities should

be. To compute the similarity in topical interests between d and CoF (d), we

measure the average similarity in topical interests between d and each user d′

in CoF (d); for each of such pair, we measure their similarity by computing the

proportion of d′’s forked repositories which share an interest with the topical

interests of d in his or her forked repositories. Mathematically, we define the

co-participation similarity scores for forking in Equation 4.5.

SimF (d, CoF (d)) =

∑
d′∈CoF (d)

|SharedF (d,d′)|
|d′.RF |

|CoF (d)|
(4.5)

SimW (d, CoW (d)) =

∑
d′∈CoW (d)

|SharedW (d,d′)|
|d′.RW |

|CoW (d)|
(4.6)
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SimC(d, CoC(d)) =

∑
d′∈CoC(d)

|SharedC(d,d′)|
|d′.RC|

|CoC(d)|
(4.7)

SimP (d, CoP (d)) =

∑
d′∈CoP (d)

|SharedP (d,d′)|
|d′.RP |

|CoP (d)|
(4.8)

SimA(d, CoA(d)) =

∑
d′∈CoA(d)

|SharedA(d,d′)|
|d′.QA|

|CoA(d)|
(4.9)

SimV (d, CoV (d)) =

∑
d′∈CoV (d)

|SharedV (d,d′)|
|d′.QV |

|CoV (d)|
(4.10)

In the above formulas, d′.RF denotes the repositories or questions that d′

forked. Furthermore, SharedF (d , d ′) denotes the set of repositories which are

forked by d′ and share common interests with d’s forked repositories. Mathe-

matically, it is defined as:

{r′ ∈ d′.RF |
[
I(r′)

⋂ ⋃
r∈d.RF

I(r)

]
6= ∅}

In Equation 4.5, we define the average similarity in topical interests between

user d and other users who had co-forked at least 1 repository with d. The

co-participation similarity scores for co-watch (SimW (d, CoW (d))), co-commit

(SimC(d, CoC(d))), co-pull-request (SimP (d, CoP (d))), co-answer

(SimA(d, CoA(d))), and co-favorite (SimV (d, CoV (d))) are similarly defined in

Equation 4.6 to 4.10.

Figure 4.3 shows an example for the calculation of co-participation similar-

ity score for watch activity SimW (d, coW (d)) for user d. Let us consider two

users d and d′ and assume that there are no other users. User d watched reposi-

tories A and B. User d′ co-watched B with d. Thus, coW (d) is {d’}. In addition

to B, user d′ also watched repositories C and D. SharedW (d, d′) would then

include B and C as both of the repositories share common topical interests

with the repositories that d watched. SimW (d) =

[∑
d′∈CoW (d)

|2|
|3|

]
/|1| = 0.67.
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Figure 4.3: Example of co-participation similarity score calculation for watch
activity

It is important to note that the co-participation similarity scores only con-

sider the similarity in topical interests between pairs of users who have per-

formed collaborative activities together in at least one common repository or

question with each other but the users may have participated in many other

repositories and questions different from each other. For example, users d and

d′ only watched one common repository, but they had watched many other

repositories which were different from each other. Also, when computing the

co-participation similarity measure between users who participated in a partic-

ular activity, we only consider the topical interests of the users in that target

activity. For instance, when computing SimW (d) , we consider how similar are

the interests between users based only on the watch activities, i.e., we do not

consider repositories forked by the users or questions answered and favorited

by the users.
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4.4 Empirical Study on GitHub and Stack

Overflow

In this section, we applied the user topical interests similarity measures pro-

posed in the previous section on GitHub and Stack Overflow large datasets.

We also attempt to answer the two research questions that we have listed

earlier in this empirical study RQ1 and RQ2.

4.4.1 Similarity of User’s Topical Interests Across

Platforms

Figure 4.4: Distribution of users’ cross-platform similarity scores in GitHub
and Stack Overflow

Figure 4.4 shows the distribution of the cross-platform similarity scores

computed for the base users. On average, the users have a similarity score of

0.39. This observation suggests that on average, 39% of the GitHub reposi-

tories and Stack Overflow questions that a user had performed collaborative

activities on, shared similar topics. Also, close to half (49%) of the users have

scored 0.5 or higher, while 26% of the users have their similarity scores equal

to 0, i.e., the topical interests of these users are totally different in GitHub and

Stack Overflow. This observation suggests that although most users do share
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high similarity in topical interests in GitHub and Stack Overflow, however,

there are a group of users who have different topical interest in GitHub and

Stack Overflow.

We further drill down to compare the similarity for different types of collab-

orative activity across the two platforms. For example, we measure the similar-

ity in user’s topical interests by only considering repositories that the user has

forked and questions that the user has answered. 12 different combinations

capturing different pairs of collaborative activities across the two platforms

are considered: Fork-Ask, Fork-Answer, Fork-Favorite, Commit-Ask, Commit-

Answer, Commit-Favorite, pull-request-Ask, pull-request-Answer, pull-request-

Favorite, Watch-Ask, Watch-Answer and Watch-Favorite.

Figure 4.5: Boxplots of users’ topical interest similarity for different collabo-
rative activity pairs

Figure 4.5 shows the boxplots of cross-platform similarity scores for the

12 different collaborative activity pairs. The collaborative activity pairs have

average similarity scores between 0.27 to 0.38, slightly lower than the overall

average of 0.39. All the collaborative activity pairs also have a significantly

higher number of users with scores of 0. This observation is as expected since by
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combining all collaborative activity pairs we have a larger pool of common top-

ical interests. Among the 12 collaborative activity pairs, pull-request-Answer

pair has the highest average similarity score. A possible explanation for this

observation could be attributed to the nature of the collaborative activity;

pull-request and answer not only reveal the topical interests of the users but

also demand the users have certain expertise on the topics or programming

languages of the participated repositories and questions. For example, a user

who is proficient in Java programming language would only answer Java pro-

gramming related questions and submit pull-request for Java repositories but

he could watch other programming language repositories or favorite questions

from other topics for learning purposes.

4.4.2 Similarity of Interests Among Co-Participating Users

Figure 4.6: Boxplots of co-participation similarity scores for different activities

Figure 4.6 shows the boxplots of co-participation similarity scores of the

base users. We observe that a user has average similarity scores between 0.45

to 0.86 with other users who performed at least one collaborative activity

together. This means that given two users who participated in a common col-

laborative activity, on average 45-86% of all repositories and questions that

they participated shared similar topics. Interestingly, we also observed that

commit, pull-request and answer have higher average similarity score compare
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to the rest of the collaborative activities (0.81, 0.86 and 0.78 respectively). A

possible reason for this observation could again be related to the expertise of

the users. We would expect that the expertise of the users to be more special-

ized and less diverse than users’ interests, thus resulting in higher similarity

scores for users sharing a common commit, pull-request and answer.

4.4.3 Discussion

Our empirical study suggests that users do display some similar topical inter-

ests in their GitHub and Stack Overflow collaborative activities (RQ1) and

users do share common topical interests with other users who have performed

collaborative activities together in the OSPs (RQ2). Furthermore, we were

able to quantify the level of similarity in user’s topical interests across dif-

ferent OSPs; we found that on average, 39% of the GitHub repositories and

Stack Overflow questions which a user has performed collaborative activities

on, share the same topics.

The findings from our empirical study could be extended to build predictive

analytics and recommendation application. As we learned that users do share

interest similarity across platforms (RQ1), intuitively we could predict a user’s

collaborative activities in one OSP using his or her topical interests displayed

on another OSP. For example, if we learn that a user answer Java related

questions in Stack Overflow, and he exhibits high similarity in his topical

interests across OSPs, we can predict that the user is likely to participate in

Java related repositories in GitHub. Similar intuition can be applied to our

findings from RQ2.
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4.5 Activity Prediction in GitHub and Stack

Overflow

Figure 4.7 illustrates an example for collaborative activity prediction in a mul-

tiple OSP setting. Consider user u, who has accounts on both GitHub and

Stack Overflow. If we adopt a direct platform activity prediction approach,

i.e., predicts a user’s activities in a platform using his or her activity interests

from the same platform, we could predict that u is likely to answer or favorite

question X in Stack Overflow as u has previously answered a LSTM related

question. However, if we adopt a cross-platform activity prediction approach,

i.e., predicts a user’s activities in a platform using his or her activity interests

from another platform, we could predict that u is also likely to answer or fa-

vorite a SVM related question Y as u has previously watched a SVM related

repository B in GitHub.

Figure 4.7: Example of Activity Prediction in Multiple Platforms Setting

There are some benefits of using user interests from multiple OSPs for

collaborative activity prediction. Firstly, it enables prediction and recommen-

dation of users’ collaborative activities in OSPs even when past collaborative

activity history of a user is minimal or unavailable, i.e., cold-start problem

[108]. For example, if we learn from a user’s activities in GitHub that she

is interested in Python and text mining techniques, we would predict that

she will likely participate in Python and text mining related Stack Overflow
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questions even when she has just newly joined Stack Overflow and has not

participated in any questions. Second, it could cover the blind spots of col-

laborative activity recommender systems which use only data from a single

platform. For example, if a user has forked Android related repositories in

GitHub, recommendation systems which are built on user’s past collaborative

activity in GitHub will likely to recommend the user more Android related

repositories. However, the same user may have also participated in some iOS

related questions in Stack Overflow, and such observations can be used to make

relevant GitHub collaborative activity recommendations to the user.

In this section, we first present our proposed multiple platforms collabo-

rative activity prediction framework. We then define the prediction problem

and describe the features used in our proposed prediction method.

4.5.1 Multiple Platform Collaborative Activity Predic-

tion Framework

Figure 4.8 shows the framework that we adopt for multiple platforms collab-

orative activity prediction. We begin with data extraction from two OSPs:

Stack Overflow and GitHub. There are three sub-processes in data extraction:

(i) matching of users Stack Overflow and GitHub accounts, (ii) extracting the

users’ collaborative activities, and (iii) inferring users’ interests from their ac-

tivities. The details of these sub-processes are be covered in Section 4.2. Next,

we construct the Stack Overflow and GitHub user features which we will use

in our collaborative activity prediction.

Our framework also incorporates two approaches to predict users’ collab-

orative activities, namely: direct and cross platform activity prediction. We

define direct platform activity prediction as predicting a user’s collaborative ac-

tivity using features from the same OSP. For example, we predict if a given user

will answer a given Stack Overflow question using the user’s Stack Overflow

features. Conversely, we define cross-platform activity prediction as predict-
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Figure 4.8: Multiple Platforms Activity Prediction Framework

ing a collaborative activity to a user using features from a different OSP. For

example, we predict if a given user will answer a given Stack Overflow ques-

tion using the user’s GitHub features. The performance of both prediction

approaches will be evaluated on four prediction tasks, which will be described

in Section 4.6.

4.5.2 Problem Statement

Given a pair of query user and item (i.e., question or repository), (u, k), we

aim to predict if u will perform a collaborative activity (e.g., answer, favorite,

fork or watch) on k. There are various ways to measure the likelihood of u

performing a collaborative activity on k. For example, we could consider the

similarity between k ’s description and u’s topical interests inferred from differ-

ent activities, or the similarity between k ’s description and the inferred topical

interests of the user who co-participate collaborative activities with u. In our

proposed framework, we propose two types of user features, namely:user activ-

ity interest similarity features and user co-activity interest similarity features.

The notations used throughout this paper are summarized in Table 4.1.
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Table 4.1: List of notations used

Symbol Description

u Query user
k Query item
v User who co-participated activities with user u
r Repository
q Question
I(r) Topics of repository r
I(q) Topics of question q
I(k) Topics of query item k
u.RF Set of repositories forked by user u
u.RW Set of repositories watched by user u
u.QA Set of questions answered by user u
u.QF Set of questions favorited by user u
CoFork(u) Set of users who co-forked at least one repository with user u
CoWatch(u) Set of users who co-watched at least one repository with user u
CoAns(u) Set of users who co-answered at least one question with user u
CoFav(u) Set of users who co-favorited at least one question with user u

4.5.3 User Collaborative Activity Interest Similarity

Features

This set of features measures the similarity between a query item k and a query

user u’s fork, watch, answer and favorite collaborative activity topical interests

in GitHub and Stack Overflow. The intuition behind this set of features comes

from our empirical study, where they found that users in GitHub and Stack

Overflow shared similarities between their topical interests in different types of

collaborative activities and across the two platforms. Suppose that we want to

predict if a user would fork a given repository in GitHub, we would measure the

similarity between the given repository’s topic and the user’s topical interests

inferred from the different collaborative activities. Intuitively, the higher the

similarity scores, the more likely the user would fork the given repositories.

Equation 4.11 captures the above intuition and measures similarity between k

and u’s fork activity topics (i.e., SimFork(u, k)), by dividing {r ∈ u.RF |I(r) ∈

I(k))}, which is the number of u’s forked repositories that shared common

topics with the item interests of k, by the total number of repositories forked

by u (i.e.,u.RF ).
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Example. Referencing to the earlier example in Figure 4.7, we could

predict if user u will answer question X by computing the similarity between

question X and u’s fork activity topics. In this example, the common topics

between u and question X will be LSTM. The number of u’s forked repositories

that shared common topic with question X (i.e.,{r ∈ u.RF |I(r) ∈ I(k))}) will

then be 1 (i.e., Repository A), while the total number of repositories forked by

u is 2 (i.e., Repository A and B). Thus, SimFork(u, k) = 1
2

= 0.5.

SimFork(u, k) =
|{r ∈ u.RF |I(r) ∈ I(k))}|

|u.RF |
(4.11)

SimWatch(u, k) =
|{r ∈ u.RW |I(r) ∈ I(k)}|

|u.RW |
(4.12)

SimAns(u, k) =
|{q ∈ u.QA|I(q) ∈ I(k)}|

|u.QA|
(4.13)

SimFav(u, k) =
|{q ∈ u.QF |I(q) ∈ I(k)}|

|u.QF |
(4.14)

We compute the similarities between k and u’s watch, answer and favorite

activities interests in similar ways as shown in Equation 4.12, 4.13 and 4.14

respectively.

4.5.4 User Co-Participation Interest Similarity Features

This set of features measures the similarity between a query item k and the

topical interests of other users v who have performed a collaborative activity

together with a query user u. The intuition behind this set of features also

comes from our empirical study, where they found that users share similar top-

ical interests with other users who they co-participated a collaborative activity

(even minimally) in an OSP. Suppose that we want to predict if a user would

fork a given repository in GitHub, we would measure the similarity between
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the given repository’s topics and the topical interests of other users who had

co-forked repositories with the user in GitHub. Intuitively, we would also ex-

pect that the higher the similarity score, the more likely the user would fork

the given repository. Equation 4.15 captures the above intuition and measures

the average similarity between k and fork activity topics of all users v, who

had co-forked at least one repository with u (i.e., CoFork(u)).

As users also share common topical interests across different activities

and platforms, we would expect that considering other users who had co-

participated in other types of collaborative activities with the target user can

also potentially help to predict if the target user would participate in a given

platform activity. For instance, we are likely able to predict if a user would fork

a given repository by measuring the similarity between the given repository’s

topics and the topical interests of other users who have co-participated with

the user in watch, answer and favorite activities.

Example. Referencing to the example in Figure 4.7, we could predict if

user u will favorite question Z by computing the similarity between question

Z’s topic and the topical interests of other users who have co-fork a repository

with user u. Assuming that user u only has 1 other user, v, who co-fork

repositories with him or her, the common topical interests between v and

question Z will be XGBoost. The number of v’s forked repositories that shared

common topics with question Z (i.e.,{r ∈ v.RF |I(r) ∈ I(k))}) will then be

1 (i.e., Repository C), while the total number of repositories forked by v is 2

(i.e., Repository C and D). Finally, SimCoFork(u, k) =
1
2

1
= 0.5.

SimCoFork(u, k) =

[∑
v∈CoFork(u)

|{r∈v.RF |I(r)∈I(k)}|
|v.RF |

]
|CoFork(u)|

(4.15)

SimCoWatch(u, k) =

[∑
v∈CoWatch(u)

|{r∈v.RW |I(r)∈I(k)}|
|v.RW |

]
|CoWatch(u)|

(4.16)
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SimCoAns(u, k) =

[∑
v∈CoAns(u)

|{q∈v.QA|I(q)∈I(k)}|
|v.QA|

]
|CoAns(u)|

(4.17)

SimCoFav(u, k) =

[∑
v∈CoFav(u)

|{q∈v.QF |I(q)∈I(k)}|
|v.QF |

]
|CoFav(u)|

(4.18)

We compute the similarities between item k’s topic and topical interests of

other users v who have co-watched, co-answered and co-favorited with a target

user u in similar ways as shown in Equation 4.16, 4.17 and 4.18 respectively.

4.6 Collaborative Activity Prediction

Experiments

In this section, we describe the supervised prediction experiments conducted

to evaluate our proposed method. Specifically, we consider the following Col-

laborative activity prediction tasks:

• Answer Prediction. Given a Stack Overflow user-question pair, predict

if the user will answer the question

• Favorite Prediction. Given a Stack Overflow user-question, predict if the

user will favorite the question

• Fork Prediction. Given a GitHub user-repository, predict if the user will

fork the repository

• Watch Prediction. Given a GitHub user-repository, predict if the user

will watch the repository

4.6.1 Experiment Setup

Data Selection. For answer prediction task, we retrieve all the Stack Over-

flow questions that the base users have answered and define a positive instance
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as a user-question pair where a base user had answered the particular ques-

tion in Stack Overflow. For negative instances, we randomly assign a Stack

Overflow question to the base users and check that the randomly assigned pair

does not exist in the positive instance set. For the training datasets used in

answer prediction task, we randomly generated 5,000 negative instances and

randomly selected 5,000 positive instances from the questions answered by

users between October 2013 and June 2014 (9 months). The same approach

was used to generate the positive and negative instances for test sets using

the questions answered by the users between July 2014 and March 2015 (9

months). Similar approach was used to generate the user-question and user-

repository pairs for positive and negative instances used in favorite, fork and

watch prediction tasks.

Note that we have repeated the prediction experiments for five runs, and

the random selection of train and tests set are repeated for each of the runs.

Also, although we know the true labels of the user-question and user-repository

pairs, we do not consider the labels when deriving the values of our proposed

features, i.e., we assume that we do not know the labels of the pairs.

Feature Configuration. To compare the performance of direct and

cross platform activity prediction approaches, we use Support Vector Machine

(SVM) with linear kernel and apply the following feature sets on all prediction

tasks:

• SO Act: This set of features includes the Answer (Eqn. 4.13) and

Favorite (Eqn. 4.14) Interests Similarity scores for a given user-question

or user-repository pair.

• SO CoAct: This set of features includes the Co-Answer (Eqn. 4.17)

and Co-Favorite (Eqn. 4.18) Interests Similarity scores for a given user-

question or user-repository pair.

• GH Act: This set of features includes the Fork (Eqn. 4.11) and Watch
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(Eqn. 4.12) Interests Similarity scores for a given user-question or user-

repository pair.

• GH CoAct: This set of features includes the Co-Fork (Eqn. 4.15)

and Co-Watch (Eqn. 4.16) Interests Similarity scores for a given user-

question or user-repository pair.

• ALL: This set of features is the union of all features.

4.6.2 Prediction Results

We measure the prediction accuracy for each feature configuration by com-

puting the average area under the ROC curve (AUC) over a set of positive

and negative examples drawn from the test set for each of the five runs. The

results for the four prediction tasks are shown in Figure 4.9. We observe that

feature configuration ALL performed the best in all prediction tasks, achiev-

ing an AUC of 0.89, 0.77, 0.75 and 0.67 for answer, favorite, fork and watch

prediction tasks respectively.

Performance of cross-platform prediction approach. Although the

cross-platform prediction approach did not outperform the direct platform pre-

diction approach in user collaborative activity prediction, they still yield good

accuracy. For example, when predicting user’s answer and favorite activities

in Stack Overflow, the GitHub user collaborative activity interests similarity

features (i.e., GH Act) has AUC of 0.71 and 0.64 respectively, and when pre-

dicting user’s fork and watch activities in GitHub, the Stack Overflow user

collaborative activity interests similarity features (i.e., SO Act) has AUC of

0.65 and 0.58 respectively. The AUC for predicting user’s answer activities

in Stack Overflow using user collaborative activity interests similarity features

(i.e., GH Act) is observed to be slightly higher than the prediction for other

activities. A possible explanation for this could be the difference between

the nature of user activities; answering a question in Stack Overflow would
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Figure 4.9: ROCs for Four Prediction Tasks

require that a user possesses particular domain expertise, whereas other ac-

tivities such as watching a GitHub repository or favoriting a Stack Overflow

question depend on the user’s interests. As such, we observe higher AUC score

for predicting answer activity task as the users’ expertise are usually more

specialized and less diverse than their interests.

More interestingly, using cross-platform prediction approach with user co-

participation interests similarity features (i.e., GH CoAct and SO CoAct),

have also yielded reasonable prediction accuracy. For example, when predicting

user’s answer activities in Stack Overflow, GH CoAct has yielded an AUC

of 0.62. This result suggests that even with no information about a user’s

past collaborative activities in the Stack Overflow and only minimal informa-

tion such as the user’s co-participation collaborative activities in GitHub, we

are still able to predict user’s activity in Stack Overflow reasonably. Similar
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observations are made when predicting user activities in GitHub using user’s

co-activities in Stack Overflow.

4.6.3 Discussion

The results of the four prediction tasks offer us some insights in performing

recommendations in OSPs. The reasonably good accuracy of cross-platform

prediction approach also demonstrate its potential to solve the cold-start prob-

lem; i.e., predicting and recommending a user’s activities without knowing the

users’ past collaborative activity history on the platform. For example, when

predicting user’s answer activities in Stack Overflow, we can achieve AUC as

high as 0.71 without using any Stack Overflow features (i.e., using GitHub

features GH Act only). Similar observations were made for the fork, watch

and favorite activities.

We further conduct a small case study to retrieve and review fork pre-

dictions of users who did not have any past fork activities. For example, we

successfully predicted that user U420338 would forked repository R12172473

in GitHub even when this was the first repository forked by the user (i.e., no

past user fork activity). Examining into details, we found that R12172473 has

description tags 〈svg, javascript〉, and among the 95 questions U420338 had

answered in Stack Overflow, 83 contain the tags 〈javascript〉 or 〈svg〉 or both.

By analyzing U420338 ’s Stack Overflow activities, our approach can identify

his interests, which ultimately help in predicting the user’s GitHub activities.

4.7 Summary

In this chapter, we have studied the similarity in user collaborative activi-

ties and topical interests within and across GitHub and Stack Overflow. Our

findings were based on data for 92,427 users who were active in GitHub and

Stack Overflow. We first proposed similarity scores to measure similarity in
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users’ topical interests within and across OSPs. Next, we applied our proposed

similarity scores in an empirical study on GitHub and Stack Overflow. We ob-

served that on average, 39% of the GitHub repositories and Stack Overflow

questions that a user had performed collaborative activities on, shared similar

topics. The users also do share common interests with other users who co-

participated collaborative activities in the platforms. We also propose a novel

framework which predicts users’ collaborative activities in multiple OSPs. Our

experiments on large real-world datasets have shown that users’ collaborative

activities in Stack Overflow can be predicted with reasonable accuracy using

the same user’s topical interests inferred from his or her collaborative activ-

ities in GitHub. The same observation was made when predicting a user’s

collaborative activities in GitHub using his or her topical interests inferred

from his or her activities in Stack Overflow. The reasonable accuracy yield by

cross-platform prediction approach demonstrates its potential in solving the

cold-start problem in user collaborative activity prediction and recommenda-

tion in OSPs.
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User Modeling Tasks
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Chapter 5

Modeling User Topical Interests

and Platform Preferences

With multiple OSPs designed for different purposes and communities, users

typically show preferences of certain OSP(s) over others for specific topics.

Such platform preferences may even be found at the individual level. In this

chapter [65], we model topics as well as platform preferences of users by propos-

ing a new topic model known as MultiPlatform-LDA (MultiLDA). Instead of

just merging all posts from different OSPs into a single text collection, Multi-

LDA keeps one text collection for each OSP but ensures that all OSPs share

a common set of topics. MultiLDA further learns the user-specific platform

preferences for each topic. We evaluate MultiLDA against TwitterLDA, the

state-of-the-art method for OSP content modeling, on two aspects: (i) the

effectiveness in modeling topics across OSPs, and (ii) the ability to predict

platform choices for each post.

5.1 Introduction

The surge of users using multiple OSPs has opened up new challenges to learn-

ing users’ topical interests. Learning user topical interests in OSP is a widely

studied research topic [34, 26, 130, 85, 46, 141]. Most works study topics in
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the text content of OSP. There are also studies that learn latent topics (or

clusters) from user behaviors (e.g., forwarding posts, expressing “likes”, etc.)

and network features [99, 44]. Most of them demonstrated the applications of

the learned user topical interests in e-commerce and services recommendation

[139, 142]. Nevertheless, all these studies have been confined to textual content

from single OSP.

With the same users using multiple OSPs, the holistic approach is to learn

user topical interests considering the combined user-generated data from mul-

tiple OSPs. For example, one could learn from a user’s Twitter data that

she is interested in IT gadgets, but the same user is interested in food and

fashion based on her Instagram posts. This approach, however, requires two

significant challenges to be tackled, namely user linkage and multiple OSPs

topic modeling. The former refers to linking user accounts from different OSPs

belonging to the same users. The latter is topic modeling in the multiple OSPs

context where heterogeneous media types and users’ platform preferences are

the additional model elements. User linkage is a highly active research topic

but is not the focus of this chapter [121, 136, 137, 27]. In this chapter, we

assume that user linkage has already been performed and focus on the second

major challenge, multi OSP topic modeling.

As part of this work’s research objectives and contributions, we propose a

generative model that can learn topics from user-generated data from multiple

OSPs as well as their platform preferences. A simple way to perform multiple

OSPs topic modeling is to apply an existing topic model such as LDA [19]

on the directly combined content of the same users. Unfortunately, such an

approach does not work when the content is of different media types, nor does

it consider the platform preferences of the users when the latter share content

of different topics.

Figure 5.1 shows the methodology used in our research. We first construct

a topic model for multiple OSPs. In this work, we propose MultiPlatform-LDA
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Figure 5.1: Research framework for analyzing user topic-specific OSP prefer-
ences

(MultiLDA), a topic model that jointly learns the topical interests and platform

preferences of users who have accounts on multiple OSPs. Next, we have a data

processing step to gather user-generated data from multiple OSPs, to conduct

user linkage (if required) and to turn all rich media content (i.e., images and

videos) to words using the state-of-the-art image captioning software. The

identification and crawling of this dataset itself is a major challenge. In total,

we have gathered about 5.8 million text and rich media posts from 2,785 users

who have accounts on Twitter, Instagram, and Tumblr.

Finally, we evaluate the multiple OSPs topic model(s). We perform two sets

of experiments to assess MultiLDA: (i) we first use likelihood and perplexity to

evaluate the model’s ability to learn users’ topical interests from the observed

text and rich media posts, and (ii) we also evaluate the predictive power of

MultiLDA model. Lastly, we also conduct an empirical study on the real-world

data using our model, where we learn and report the popular topics on different

OSPs and the individuals’ platform preferences.

On the whole, this work improves the state-of-the-art topic modeling re-

search and derives several interesting findings. These include:

• In modeling text and rich media content from multiple OSPs, Multi-
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LDA outperforms TwitterLDA, another state-of-the-art topic model for

modeling social media text.

• In the prediction of users’ platform choices, MultiLDA predicted users’

platform choice with a high average accuracy of 0.947, outperforming

TwitterLDA’s average accuracy by 30%.

• In our empirical study, we found different OSPs having different popular

topics. E.g., users prefer to post music related topics on Tumblr while

sharing food-related topics on Instagram. Also, while most users tend

to conform to the general topic distribution of OSPs (i.e., post content

with popular topics in the platform), individual user platform preference

still exists. MultiLDA was able to model this individual user platform

preference effectively.

The rest of this chapter is organized as follows: Section 5.2 describes the

construction of our Twitter, Instagram, and Tumblr datasets. We present the

MultiLDA model in section 5.3. Section 5.4 presents the experimental eval-

uations for our proposed model using the real-world datasets. The empirical

analysis on users’ platform choices and topics on the studied OSPs will also be

discussed in Section 5.5. Finally, we conclude this chapter in Section 5.6.

5.2 Data Preparation

Our model evaluation requires a dataset combining user-generated data from

multiple OSPs, and we want these OSPs to share some common users. We

selected three popular OSPs, namely (a) Twitter, a short-text microblogging

site; (b) Instagram, a photo-sharing social media site; and (c) Tumblr, a social

networking and blogging site that supports a wide range of rich media such as

pictures, videos, etc.

We began by gathering a set of 234,289 Singapore-based Twitter users who

declared Singapore location in their user profiles. These users were identified
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by an iterative snowball sampling process starting from a small seed set of well

known Singapore Twitter users followed by traversing the follow links to other

Singapore Twitter users until the sampling iteration did not get many more

new users. From these Twitter users, we obtained a subset of them having a

user account(s) on Instagram, Tumblr, or both.

Among the above Twitter users, we selected users who also mentioned their

Instagram and/or Tumblr accounts (in the form of username or hyperlink) in

their Twitter bio descriptions. As some users chose to mention their other OSP

accounts on Instagram or Tumblr, we also gathered the linked user accounts of

other OSPs by scanning the bio descriptions of Instagram and Tumblr users.

As some of these linked user accounts may no longer exist, we performed

checking of account existence using the respective OSP APIs. Those user

accounts which no longer exist were removed from our dataset. We further

filtered away inactive users who did not make at least five posts in the year

2015 on any OSPs.

Table 5.1: Number of users in each particular OSP who use another OSP

Twitter Instagram Tumblr
Twitter 2696 2446 272
Instagram - 2537 111
Tumblr - - 362

In total, we have gathered 2,785 users who form the base user set. Table 5.1

shows the breakdown of overlapping users between the three OSPs. Twitter

users form the largest group with 2,696 of them (see the first diagonal entry)

in the base user set. Instagram is slightly smaller with 2,537 users. Tumblr

users form the smallest user group with 362 users. There are 2,446 overlapping

users between in our Twitter and Instagram data. The common users between

Tumblr and the other OSPs are much fewer. Not shown in Table 5.1, our

dataset also has 22 users active on all the three OSPs. Note that this dataset

construction is biased towards Twitter which was conveniently used as the

first OSP to find the other linked accounts from Instagram and Tumblr. This
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bias should not affect our findings if the Instagram and Tumblr users without

Twitter accounts have topical interests similar to those with Twitter accounts.

Table 5.2: Number and types of base users’ posts in each OSP

Twitter Instagram Tumblr
Text 4,923,083 - 135,853
Photo - 223,325 515,530
Video - - 27,015

To learn the users’ topics and platform preferences, we gathered all posts

generated by each user of our base user set in the year 2015 using the platform-

specific APIs. Table 5.2 shows the number and types of posts published by

the base users in the three OSPs. From Twitter, we collected nearly 5 million

tweets. From Instagram, we gathered 223,325 photo images. From Tumblr,

we obtained 135,853 text messages, 515,530 photo images, and 27,015 videos.

In total, we have 5.8 million posts from all these base set users to be used in

our multiple OSPs topic modeling experiments.

Other than tweets from Twitter and text posts from Tumblr, the photos and

videos from Instagram and Tumblr rich media objects have to be converted

to text content before we can apply topic modeling on them. One possible

way is to extract the user annotated text associated with these photos and

videos. Unfortunately, we found that about 23% of our Tumblr posts do not

have user annotated text. We also found that the user-provided annotations

may not accurately describe the content. In this work, we, therefore, relied on

Clarifai 1, a third-party visual recognition API that is well known to accurately

recognize objects and scenes in rich media, to generate word tags for the photos

and videos. The generated tags will then replace the photos and videos in topic

modeling. In the case of Tumblr, we thus have posts that are originally text

messages as well as posts that are a bag of tags returned by Clarifai.

For example, Figure 5.2 shows a photo posted in Instagram with caption

and the Clarifai generated tags. While the caption expresses the user opinion

1https://clarifai.com/
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Figure 5.2: Example of photo posted with caption and Clarifai generated tags

about the food in the scene, the visual recognition tool can better describe

most if not all objects in the photo. This makes the generated tags suitable

for modeling topics relevant to the photo.

5.3 Modeling Platform Choice and Post

In this section, we present our proposed model, MultiPlatform-LDA (Multi-

LDA), which learns the topics and topic-special platform preferences of each

user in multiple OSPs.

5.3.1 Notations

Before we present our proposed model, we first summarize the notations in

Table 5.3. Given a set of users and their posts on some OSPs, we use U , S,

and P to denote the sets of users, posts, and OSPs respectively. We use Su to

denote the number of users u’s posts across all the OSPs. The s-th post of user

u is then denoted by the pair (pu,s, Nu,s) where pu,s is the platform of the post,

and Nu,s is the content of the post. In this work, we focus on text content and

assume that Nu,s is a bag of words. The n-th word of the post (pu,s, Nu,s) is

then denoted by Nu,s,n. Lastly, we use V to denote the vocabulary of all the
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words found in the dataset.

Table 5.3: Notations

Symbol Description

V Vocabulary of words in users’ content

U/S/P Sets of users, posts and OSPs

K Number of topics

Su Set of posts of user u

Nu,s Set of words of s-th post of user u

pu,s Platform of s-th post of user u

wu,s,n n-th word of s-th post of user u

zu,s Topic of s-th post of user u

yu,s,n Coin of n-th word of s-th post of user u

φk Word distribution of topic k

φB Word distribution of background topic

π Bias toward background topic

θu Topic distribution of user u

σu,k Platform distribution of user u for topic k

P Bag of platforms of all posts

C Bag of coins of all words

C−u,s,n Bag of coins of all words except ωu,s,n
Z Bag of topics of all posts

Z−u,s Bag of topics of all posts except the s-th post of user u

Dc
−u,s,n Tuple (C−u,s,n,Z,S,P, α, β, µ, γ)

ny(c,Dc
−u,s,n) #times in Dc

−u,s,n that words are associated with the coin c

nb(ω,Dc
−u,s,n)

#times in Dc
−u,s,n that the word ω is associated with the

background topic

nw(ω, z,Dc
−u,s,n) #times in Dc

−u,s,n that the word ω is associated with topic z

Dz
−u,s Tuple (Z−u,s, C,S,P, α, β, µ, γ)

nwz(ω, z,Dz
−u,s,n) #times in Dz

−u,s that word ω is associated with topic z

np(p, z,Dz
−u,s)

#times in Dz
−u,s that posts about topic z are associated with

platform p

nz(k, u,Dz
−u,s)

#times in Dz
−u,s that posts of user u are associated with

topic k

5.3.2 Generative Process

Our model is designed based on the assumption that users have OSPs pref-

erence specific to topics. That is, given a topic, users may prefer to generate

content about the topic more on a specific OSP than other OSPs. For ex-

ample, a user may post more gourmet related photos on Instagram but post

more tweets about sports and entertainment on Twitter. Thus, to model the

users’ interests accurately, it is important to learn both the topics of the user-
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generated content and topic-specific platform preference.

Figure 5.3: Plate diagram of MultiLDA model

Based on the above assumption, we design MultiLDA model with plate

diagram shown in Figure 5.3, to simulate the generation of observed users’

content from their hidden topical interests and topic-specific platform prefer-

ence. We assume that there are K topics across all the OSPs. Each topic k

has a multinomial distribution φk over the vocabulary V . We also assume that

there is a background topic that captures the background words used across

the OSPs. Similarly, this background topic also has a multinomial distribution

φB over the vocabulary. The bias toward the background topic is characterized

by a binomial distribution π. To capture users’ topical interests, we assume

that each user u has a multinomial distribution θu over K topics. Lastly, to

capture the u’s topic-specific platform preference, we assume that, for each

topic k, u has a multinomial distribution σu,k over the set of OSPs P . The

bias toward the background topic π has Beta prior γ, and the topics’ word

distributions φk and φB have common symmetric Dirichlet prior β. Similarly,

users’ topic distributions θu’s and users’ topic-specific platform distributions

σu,k’s have symmetric Dirichlet priors α and µ respectively.

In MultiLDA model, the s-th post of user u is generated as follows. The

post’s topic zu,s is first chosen by sampling from u’s topic distribution θu. As
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posts are short, we assume that each post has only one topic. The post’s

content is then generated by sampling its words where each word is sampled

independently from the others. For each word wu,s,n, a biased coin yu,s,n is

flipped to decide where the word is sampled from. The bias of the coin is set

to the bias toward the background topic π. The word is sampled from the word

distribution of the chosen topic (i.e., φzu,s) if the coin is head, i.e., yu,s,n = 1,

or that of background topic (i.e., φB) otherwise. Lastly, the post’s platform is

chosen by sampling from u’s platform distribution specific to the chosen topic,

i.e., σu,k. The whole generative process of the MultiLDA model is summarized

in Algorithm 1.

Algorithm 1 Generative Process for MultiLDA

1: sample φB ∼ Dir(β)
2: sample π ∼ Beta(γ)
3: � “Topic Plate”
4: for topic k ∈ {1, · · · , K} do
5: sample the topic’s word distribution φk ∼ Dir(β)
6: end for
7: � “User Plate”
8: for user u ∈ U do
9: sample u’ topic distribution θu ∼ Dir(α)

10: for topic k ∈ {1, · · · , K} do
11: sample u’s platform distribution for the topic σu,k ∼ Dir(µ)
12: end for
13: � “Post Plate”
14: for post s ∈ Su do
15: sample the post’s topic zu,s ∼Multi(θu)
16: � “Word Plate”
17: for word wu,s,n of the post do
18: sample the word’s coin yu,s,n ∼ Bernoulli(π)
19: if yu,s,n = 0 then
20: sample the word from background topic wu,s,n ∼Multi(φB)
21: else
22: sample the word from the post’s topic wu,s,n ∼Multi(φzu,s)
23: end if
24: end for
25: sample the post’s platform pu,s ∼Multi(σu,zu,s)
26: end for
27: end for
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5.3.3 Inference Via Gibbs Sampling

Like in other LDA-based models, the inference problem in the MultiLDA model

is intractable [19]. We, therefore, adopt a sampling-based approach to estimate

the model’s parameters from a given dataset. Specifically, we first randomly

initialize the latent topics of posts and latent coins of all words in the dataset.

We then use a collapsed Gibbs sampler [76] to iteratively sample the coin for

every word and topic for every post. These iterations result in a sample set

which allows us to estimate the model’s parameters.

Sampling coin for a word. Consider the word ωu,s,n; we denote the bag

of coins of all other words by C−u,s,n. Also, we denote the bag of topics of all

the posts by Z and denote the bag of OSPs of all posts by P . The coin yu,s,n

is then sampled according to the following equations.

p(yu,s,n = 0|Dc
−u,s,n) ∝

nb(ωu,s,n,D
c
−u,s,n) + β∑

ω∈V [nb(ω,Dc
−u,s,n) + β]

·

ny(0,Dc
−u,s,n) + γ0

ny(0,Dc
−u,s,n) + ny(1,Dc

−u,s,n) + γ0 + γ1)
(5.1)

p(yu,s,n = 1|Dc
−u,s,n) ∝

nw(ωu,s,n, zu,s,D
c
−u,s,n) + β∑

ω∈V [nw(ω, zu,s,Dc
−u,s,n) + β]

·

ny(1,Dc
−u,s,n) + γ1

(ny(0,Dc
−u,s,n) + (ny(1,Dc

−u,s,n) + γ0 + γ1)
(5.2)

In Equations 5.1 and 5.2, Dc
−u,s,n denotes the tuple (C−u,s,n, Z,S,P ,

α, β, µ, γ), and ny(c,Dc
−u,s,n) (c = 0 or 1) is the number of times in Dc

−u,s,n that

words are associated with the coin c. In Equation 5.1, nb(ω,Dc
−u,s,n) is the

number of times in Dc
−u,s,n that the word ω is associated with the background

topic. Similarly, in Equation 5.2, nw(ω, z,Dc
−u,s,n) is the number of times

in Dc
−u,s,n that the word ω is associated with topic z. In these equations,

the first terms on the right hand side are the posterior information of yu,s,n,
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i.e., the likelihoods that the word ωu,s,n is generated by the background topic

(Equation 5.1) or by topic zu,s (Equation 5.2). The second terms are the prior

information of yu,s,n, i.e., the likelihood of yu,s,n = c given coins of all other

words.

Sampling topic for a post. Now consider the s-th post of user u, we

denote the bag of topics of all other posts by Z−u,s. Also, we denote the bag

of coins of all the words by C. The topic zu,s is then sampled according to the

following equation.

p(zu,s = z|Dz
−u,s) ∝

∏
yu,s,n=1

nwz(ωu,s,n, z,D
z
−u,s) + β∑

w∈V [nwz(ω, z,Dz
−u,s) + β]

·

np(pu,s, z,D
z
−u,s) + µ∑

p∈P [np(p, z,Dz
−u,s) + µ]

·
nz(z, u,D

z
−u,s) + α∑K

k=1 nz(k, u,Dz
−u,s) + α

(5.3)

In Equation 5.3, Dz
−u,s denotes the tuple (Z−u,s, C,S,P , α, β, µ, γ).

nwz(ω, z,D
z
−u,s,n) is the number of times in Dz

−u,s that word ω is associated

with topic z. np(p, z,Dz
−u,s) is the number of times in Dz

−u,s that posts about

topic z are associated with platform p. Lastly, nz(k, u,D
z
−u,s) is the number of

times in Dz
−u,s that posts of user u are associated with topic k. In the equation,

the first and second terms on the right hand side are the posterior information

of zu,s, i.e., the likelihoods that the post’s words and platform are generated

by the topic z respectively. The third term is the prior information of zu,s, i.e.,

the likelihood of zu,s = z given topics of all other posts.

In our experiments, we used symmetric priors with α = 50/K, β = 0.01,

µ = 0.01, and γ0 = γ1 = 0.01. Each time, we run the model for 600 iterations

of Gibbs sampling. The first 100 iterations were ignored to remove the effect

of the random initialization. We take 25 samples with a gap of 20 iterations

in the last 500 iterations to estimate the model’s parameters.
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5.4 Experimental Evaluation

In this section, we perform some experiments to evaluate MultiLDA and to

compare with TwitterLDA, the state-of-the-art topic model for short social

posts. We first describe the experimental setup and evaluation criteria. Next,

the platform choice prediction task is then introduced as part of our evaluation

experiments.

5.4.1 Experiment Setup

We evaluate MultiLDA model in two aspects, namely (i) the effectiveness in

modeling topics in content from multiple OSPs, and (ii) the accuracy of pre-

dicting users’ platform choices as they generate posts.

We use the TwitterLDA as our baseline. While TwitterLDA is the state-

of-the-art topic model for tweet posts, it can be easily adapted to “tag” posts.

It is important to note that TwitterLDA model does not consider platform

information associated with the posts. It assumes that all posts are from a

single platform.

Training and Test Datasets. For each base user, we randomly selected

80% to 90% of posts of the user to form the training set, and use the remaining

posts as the test set. We then learn the MultiLDA and TwitterLDA models

using the training set and apply the learned models on the test set.

5.4.2 Post Content Modeling

To evaluate the effectiveness of MultiLDA and TwitterLDA in modeling posts

across OSPs, we compute the likelihood of the training set and perplexity of

the test set. The model with the higher likelihood or, the lower perplexity is

considered superior in the task.

Figure 5.4 shows the likelihood and perplexity achieved by MultiLDA and

TwitterLDA as we vary the number of topics K. As expected, as we use a
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Figure 5.4: Log(Likelihood) and -Log(Perplexity) of MultiLDA and Twit-
terLDA

larger number of topics, both models achieve a higher likelihood and smaller

perplexity. The quantum of improvement, however, reduces as K increases.

We notice that the improvement reaches a plateau when K is 80 or above.

The figure also shows that MultiLDA outperforms TwitterLDA in likeli-

hood and perplexity by a very small margin. A possible explanation is our

choice of the multiple OSPs datasets which has relatively sufficient data gener-

ated by each user. When a user has enough training data from multiple OSPs,

TwitterLDA can learn the user topics quite well compared with MultiLDA.

It suggests that there are not many users with strong topic-specific platform

preferences for MultiLDA to yield much higher likelihood or lower perplexity

than TwitterLDA.

5.4.3 Platform Choice Prediction

To evaluate the predictive power of MultiLDA and TwitterLDA, we get them to

predict users’ platform choices given the content of the test posts. The platform

choice of a test post is predicted by MultiLDA by (i) assigning the post’s topic

using the trained MultiLDA, and then (ii) selecting the most probable platform

for the assigned post topic where the user’s topic-specific platform distribution

determines the most likely platform.
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For TwitterLDA which does not model platform choices, we generate the

predicted platform choice of a given test post by (i) assigning the particular

post’s topic using the trained TwitterLDA, and then (ii) returning the most

popular platform choice for the assigned topic according to the training set.

We use Average F1 to measure the accuracy of platform choice prediction

results. For each OSP p (i.e., Twitter, Instagram, or Tumblr), we first define

its precision, recall and F1 as follows.

Precp =
# posts with p as the correctly predicted platform

# posts with p as the predicted platform

Recallp =
# posts with p as the correctly predicted platform

# posts with p as the platform

F1p =
2 · Precp ·Recallp
Precp +Recallp

We measure Precp, Recallp and F1p by taking average of their values over

three runs of prediction each using a different randomly selected training and

test sets. By taking the average over three OSPs, we obtain the Average F1

as 1
3

∑
p F1p

Figure 5.5 shows the F1 scores of both MultiLDA and TwitterLDA for

each OSP and the average F1 with a number of topics varying from 20 to

100. We also include a baseline which always predicts Twitter (the OSP with

most posts) as the platform choice. We observe that MultiLDA outperforms

TwitterLDA model in every OSP although the margin is small on the Twit-

ter. On Instagram and Tumblr, MultiLDA significantly performs better than

TwitterLDA by more than 50% and 30% respectively. The figure also shows

that the prediction results do not change significantly for a different number

of topics. Considering all three OSPs, MultiLDA improves the Avg F1 by 30%

compared with TwitterLDA.

This good prediction accuracy of MultiLDA suggests that individual-level

platform preferences still matter. We will further examine and discuss this in
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Figure 5.5: F1 scores for Twitter (top left), Instagram (top right), and Tumblr
(bottom left), and the average F1 score of the three OSPs (bottom right)

the empirical study section.

5.5 Analysis on Platform Choices and Topics

In this section, we present several empirical findings on user topics and platform

choices learned by MultiLDA. First, we analyze the similarity in user’s topics

across the different OSPs. Next, we compare some of the popular topics shared

by the users on the different OSPs. Finally, we examine two case studies that

further highlight some of the characteristics of MultiLDA.

5.5.1 Platform Topics Analysis

We analyze the differences (and some similarities) of popular topics among

the three OSPs. We will also present two prediction case studies to validate

the different approaches of platform choice prediction by MultiLDA and Twit-
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terLDA. The number of topics in the MultiLDA model is set to 100 for this

empirical analysis.

For any pair of OSPs pi and pj, we compute for each user u the Jensen-

Shannon Divergence (JSD) between the u’s topic distributions on pi and pj as

follows.

JSD(pi‖pj|u) =
1

2
D(pi‖pj|u) +

1

2
D(pj‖pi|u)

where D(pi‖pj|u) is the Kullback-Leibler divergence defined by:

D(pi‖pj|u) =
∑
k

P (k|pi, u)log
P (k|pi, u)

P (k|pj, u)

where P (k|pi, u) denotes probability of a topic k when user u posts on platform

pi.

JSD measures how similar a user shares topics at two different OSPs. It

returns a value between 0 and 1. A JSD score of 1 means that the user has

identical topic distribution on both OSPs. A zero JSD score means completely

different topic distributions are shared on the two OSPs.

Figure 5.6: JSD score distributions of users for (Twitter, Instagram), (Twitter,
Tumblr) and (Instagram,Tumblr)

Figure 5.6 depicts the JSD score distribution of users having accounts on

different OSP pairs. The figure shows that most users enjoy higher JSD (or

higher topic distribution similarities) between Twitter and Instagram and be-
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tween Twitter and Tumblr. Even so, there are very few users with JSD more

than 0.8. Among users with Instagram and Tumblr posts, most of them see

much smaller topic distribution similarity. In fact, there are many of them

having JSD ≤ 0.1.

Figure 5.7: The proportion of top topics in (a) Twitter, (b) Instagram, and
(c) Tumblr

Figure 5.7 shows the top five popular topics among the base users’ posts

in (a) Twitter, (b) Instagram and (c) Tumblr. The labels of the topics are

manually assigned after examining the topics’ top words. When two topics

are very similar, we add numbers behind the topic labels (e.g., “Fashion 1 ”,
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“Fashion 2 ”, etc.) to distinguish them. The number in parentheses represents

the topic likelihood value. For each topic, the top words are those having the

highest likelihoods given the topic, and the top posts are those having the

lowest perplexities given the topic.

From the charts, we notice some differences among the popular topics of

the three OSPs. In particular, the popular topics on Twitter are very different

from those on Instagram and Tumblr. The popular topics in Twitter are about

daily chatters while the popular topics on Instagram and Tumblr tend to be

more visual (e.g., Fashion and Landscape). Instagram and Tumblr are observed

to share some common popular topics (e.g., Fashion), but there are also some

notable differences. For example, topics such as Music and Entertainment are

popular on Tumblr but not on Instagram. On the other hand, topics such as

Gatherings, Food, and Drinks are popular on Instagram but not on Tumblr.

The differences in popular topics of the three OSPs suggest that the users

could be using each OSP for different purposes (e.g., a user uses Twitter for

news sharing but sharing posts about their pop idols in Tumblr). Another

explanation could be due to the difference in the networks of friends in different

OSPs. In chapter 3, we found that most users prefer to maintain different

friendships in different OSPs while keeping only a small clique of common

friends across OSPs. Thus, the content shared might cater to the diverse

audience from different OSPs.

5.5.2 Case Studies

Case Study 1: Individual User Preferences. As discussed in the earlier

section, the presence of individual user’s platform preferences enables Mul-

tiLDA model to outperform TwitterLDA model. Among the users in our

dataset, we found User1659 who made 95 and 20 posts on Twitter and Insta-

gram respectively. The prediction accuracies for User1659 ’s posts are 0.916

and 0.083 for MultiLDA and TwitterLDA respectively. The accuracy difference

95



CHAPTER 5. MODELING USER TOPICAL INTERESTS AND PLATFORM PREFERENCES

is significantly large. As we examine into the posts of User1659, we found that

many of the user’s Twitter posts fall into the Music and Entertainment topic

which is popular on Tumblr. Hence, TwitterLDA model wrongly predicted

most of User1659 ’s posts to be on Tumblr. However, there are only a few

such cases in our dataset. The majority (87%) of the base users in our dataset

have their posts predicted with more than 0.7 prediction accuracy using the

TwitterLDA model.

Case Study 2: Advantage of Popular Topics in Platforms. Al-

though the MultiLDA model was able to outperform the TwitterLDA model

on most users’ platform choice prediction, there are a few instances where Twit-

terLDA outperforms MultiLDA by a small margin. For example, in User2709 ’s

platform choice predictions, TwitterLDA achieved a prediction accuracy of 1.0

while MultiLDA achieved a prediction accuracy of 0.875. We examine the two

wrong predictions made by MultiLDA and found that the two posts are pub-

lished on Tumblr, and they fall into the “Music and Entertainment” topic.

As User2709 had not published posts on this topic on Tumblr in the training

set, MultiLDA was not able to learn and predict the platform choice correctly.

Conversely, TwitterLDA had predicted the platform choice correctly as “music

and entertainment” is a popular topic on Tumblr. There are very few (< 5

instances) of such exceptions in our dataset. However, this points to exciting

future work of extending MultiLDA to use a combination of global and user

preferences.

5.6 Summary

In this chapter, we proposed a novel topic model known as MultiPlatform-LDA

(MultiLDA), which jointly models OSP topics as well as platform preference of

users. We evaluated MultiLDA using real-world datasets from three OSPs and

benchmarked against the state-of-the-art topic model. Our experiment results
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have shown that MultiLDA outperforms TwitterLDA in both topic modeling

and platform choice prediction tasks. We have also empirically shown that

users exhibited different topical interests across OSPs and the different OSPs

have different popular topics.
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Chapter 6

Modeling Topic-Specific

Influential Users in Multiple

Online Social Platforms

Finding influential users in online social platforms (OSPs) is an important

problem with many possible useful applications. HITS and other link analysis

methods, in particular, have been often used to identify hub and authority

users in web graphs and OSPs. These works, however, have not considered the

topical aspect of links in their analysis. Furthermore, most of these works are

confined to identifying influential users within a single OSPs. In this chapter

[66], we propose two topic-based model: (i) Hub and Authority Topic model

(HAT) and (ii) Multiple Platform Hub and Authority Topic model (MPHAT)

to identifying topic-specific hub and authority users in single and multiple

OSPs respectively. We evaluate HAT and MPHAT against several existing

state-of-the-art methods in three tasks: (i) modeling of topics, (ii) platform

choice prediction, and (iii) link recommendation.

98



CHAPTER 6. MODELING TOPIC-SPECIFIC INFLUENTIAL USERS IN MULTIPLE ONLINE

SOCIAL PLATFORMS

6.1 Introduction

Online social platforms (OSPs), such as Facebook, Twitter, and Instagram,

have grown phenomenally in recent years. It was reported that as of August

2017, Facebook has over 2 billion monthly active users, while Instagram and

Twitter have over 700 million and 300 million monthly active user accounts

respectively [1]. The vast amount of content and social data generated by

these platforms has made them important resources for marketing campaigns

such as the diffusion of advertising messages and promotion of new products.

Identifying influential users in OSPs is therefore critical to these marketing

applications.

Many research works have proposed methods to identify influential users

in OSPs. For example, some works determine users’ social influence by net-

work centrality measures [25, 12, 56, 61]. Other works adapted HITS [58] and

PageRank [95] algorithms which have initially been proposed to determine hub

and authority web pages through analyzing the link structure of a web graph

to identify influential users in OSPs [103, 114, 127]. Nevertheless, these ex-

isting works are either not topic specific or confined to identifying influential

users within a single OSP.

Topic and platform specificities are important when analyzing the hub and

authority users as they provide more insights about users and reveal in which

OSP they are influential. To illustrate the usefulness of topic specificity, con-

sider an example of two users, u1 and u2, sharing similar ego network struc-

tures. HITS will assign u1 and u2 similar authority and hub scores. However,

if u1 is a popular food content contributor who is followed by many food-loving

users, while u2 is a prominent politician followed by many users interested in

politics, it is more appropriate to infer that u1 and u2 are authority users on

food-related and political topics respectively. Platform specificity is also im-

portant in identifying influential users across multiple OSPs. Suppose a user

u3 posts much food content and is followed by many food-loving users in an
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OSP p1 but is less active in another OSP p2, i.e., u3 contributes less content

and forms fewer relationships in p2. While u3 is regarded as an authority user

on food-related topics, her authority on this topic is found in OSP p1 but not

p2.

The benefits of studying topic and platform-specific hub and authority

users are manifold. Firstly, it enables better user recommendation. For exam-

ple, when a jazz-loving user joins an OSP, we can recommend her to follow

authority users in jazz music in that OSP. Secondly, identifying topic and

platform-specific hub and authority users enhances the effectiveness of mar-

keting campaigns. For example, a food and beverage company can reach out

to food-related topics authority users across multiple OSPs to promote their

products. These are users who can more effectively disseminate food-related

marketing messages and influence others in food choices. The opinions of these

influential users on competing restaurants and food products are also impor-

tant feedback to the company. Also, the company can find new food-related

authorities in different OSPs referenced by the platform-specific food-topical

hub users.

Our main contributions in this work consist of the following.

• We propose two topic-based models, Hub and Authority Topic model

(HAT) and Multiple Platforms Hub and Authority Topic model (MPHAT).

To the best of our knowledge, HAT is the first model that jointly learns

user topics, hub and authority in an OSP, while MPHAT is the first

model that learns topic-specific hub and authority users across multiple

OSPs.

• We apply the HAT and MPHAT models on real-world datasets and

demonstrate that (a) HAT and MPHAT are comparable to state-of-the-

art topic models in learning topics from user-generated content, and (b)

HAT and MPHAT outperform other models in user link recommendation

tasks for both single and multiple platform settings. Empirically, we also
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applied HAT and MPHAT to identify topic-specific hubs and authorities

within and across Instagram and Twitter.

• We also conduct experiments on synthetic datasets to verify the effec-

tiveness of MPHAT in identifying platform-specific topical hubs and au-

thorities under different dataset parameter settings.

The rest of this chapter is organized as follows: Section 6.2 describes the

generative process of our two proposed models. Section 6.3 and 6.4 present the

experimental evaluations that we have conducted on real-world and synthetic

datasets respectively. The empirical study on the real-world data using HAT

and MPHAT models will also be discussed in Section 6.3. Finally, we conclude

the chapter in Section 6.5.

6.2 Proposed Models

In this section, we describe our two proposed model: (i) Hub and Authority

Topic models (HAT) and (ii) Multiple Platform Hub and Authority Topic

model (MPHAT) in detail. We begin by introducing the key elements of the

models and their notation. Next, we present the principles behind designing

the models and their generative processes. We then present an algorithm for

learning the models’ parameters and a data sub-sampling strategy to reduce

the computational cost.

6.2.1 Notations and Preliminaries

We summarize the main notations in Table 6.1. We use U to denote the set of

users, U and V to denote the sets of followers and followees of all users in U

respectively. For each user u ∈ U , we denote her posts by Su. Here, we adopt

the bag-of-words representation for each post: that is, each post is represented

as a multi-set of words, and the word order is not important. The number of

words of the s-th post of user u is then denoted by Nu,s, while the n-th word
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of the s-th post is denoted by wu,s,n. Lastly, we denote the word vocabulary

by W .

Table 6.1: Notations

Symbol Description

U/U/ V Sets of users, followers, and followees

W Vocabulary of words in users’ content, and |W| = W

Su Sets of posts by user u

Nu,s Sets of words in post su
wu,s,n n-th word of the s-th post by user u

K Number of topics

τk Word distribution of topic k

Xu Topic vector of user u

ηu,k Platform preference vector of user u for topic k

pu,s Platform of s-th post of user u

Hu Topic-specific hub vector of user u

Av Topic-specific authority vector of user v

ru,v,p Relationship between u and v in platform p
= 1 if u follows v in platform p, = 0 otherwise

γ Dirichlet priors of τk
α, β, σ, δ Prior shape of Xu,k, ηu,k,p, Av, and Hu respectively

κ, φ Prior scale of Xu,k and ηu,k,p respectively

In this work, we adopt a topic modeling approach for modeling users’ in-

terests, platform preferences, hubs and authorities specific to each topic. Our

proposed models, HAT and MPHAT, consist of the following model elements.

Topic. A topic is a semantically coherent theme of words found in the

user posts. Formally, a topic is represented by a multinomial distribution over

W (unique) words. For example, a topic about traveling would have high

probabilities for words such as trip, and flight, but low probabilities for other

words. Another topic about food would have high probabilities for words such

as coffee and sandwich but low properties for other non-food related words.

Topical interest. This refers to a user’s interests for a specific topic. For-

mally we assign to every user u a topical interest vector Xu = (Xu,1, · · · , Xu,K)

where K is the number of topics and Xu,k ∈ (0,+∞) for k = 1, · · · , K.

Topic-specific authority. This refers to the authority of a user for a

topic. A topic-specific authority user is one who attracts connections from

others for the topic she is well known for. We thus assign to every user v ∈ V
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a topic-specific authority vector Av = (Av,1, · · · , Av,K) where K is the number

of topics and Av,k ∈ (0,+∞) for k = 1, · · · , K.

Topic-specific hub. This refers to users with connections to many other

users for specific topics. We assign to every user u ∈ U , a topic-specific hub

vector Hu = (Hu,1, · · · , Hu,K) where K is again the number of topics and

Hu,k ∈ (0,+∞) for k = 1, · · · , K.

Platform preference. For a specific topic k, a user may prefer to share

content or connect to other users for topic k in a specific platform that she par-

ticipates in. We model this user’s topical platform preference by assigning to

every user u a topic-specific platform preference vector, ηu,k = (ηu,k,1, · · · , ηu,k,P ),

where P is the number of platforms. Note that the users’ platform preferences

are only modeled in MPHAT.

6.2.2 Model Design Principles

The HAT model is designed to generate user posts and following links based

on their topical interests, hubs, and authorities in single OSP environment.

MPHAT extends HAT by also considering the users’ platform preferences when

generating user posts and following links in multiple OSPs environment. We

employ topic modeling approach similar to LDA [19] and Twitter-LDA [141]

for generating user posts from topics. We also use a factorization approach to

generate the following links from topic-specific platform preferences, hubs, and

authorities.

The notable point in our models is in the explicit and direct modeling of

the relationships among topical interests, platform preferences, hubs, and au-

thorities. In HAT and MPHAT, user topical interests and platform preferences

not only determine post content and which platform the content will be shared

but also play essential roles in determining hubs and authorities. The relation-

ships are however not deterministic, but probabilistic in nature. The HAT and

MPHAT models recognize that it is necessary for a user to be interested in a
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topic before she becomes an authority or hub for that topic. However, a user

who has a keen interest in a topic may not be authority or hub for that topic.

Moreover, different topical hub or authority users can be found on different

platforms. HAT and MPHAT models, therefore, learn for each user the nu-

merical scores of her topic-specific hub and authority. Also, unlike the existing

models that return scores normalized across users, topics, or platforms, HAT

and MPHAT aim at learning users’ explicit, unnormalized scores, which can

be used directly or normalized when required.

6.2.3 Generative Process

We depict the plate diagram of the HAT and MPHAT models in Figure 6.1

and 6.2 respectively. The generative processes for HAT and MPHAT are sum-

marized in Algorithm 2 and 3 respectively. Recall that the number of topics K

is given, we denote the word distribution of topic k by τk and assume that it

is sampled from a given Dirichlet prior with parameter γ. HAT and MPHAT

then generate the user posts and following links as follows.

Generating topic interest vectors. For both HAT and MPHAT, we

first generate the users’ topical interest vectors. For each user u (also the user

v in the plate diagram), the k-th dimension of her topical interest vector, Xu,k,

is sampled from the Gamma distribution with shape α and scale κ. Gamma

distribution is chosen over Gaussian because we want the values of topical

interests to be positive values.

Generating topic-specific platform preference vectors. Specific for

MPHAT, we follow a similar approach to generate user’s topic-specific platform

preference vector. Firstly, we assume that there are P OSPs. For every user u

and every topic k, the p dimension of u’s platform preference vector specific to

topic k ηu,k,p is sampled from the Gamma distribution with shape β and scale

φ.
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Figure 6.1: Plate Diagram of HAT Model

Generating posts. For HAT and MPHAT to generate the s-th post of

user u, the post’s topic zu,s is first sampled from the multinomial distribution

with parameter θu = s(Xu). Here s(X) is the Softmax function1 that converts

an arbitrary vector to a probabilistic vector of the same dimension size. Similar

to other previous works on modeling user content in social networks [141], we

assume that each post has only one topic as it contains a limited amount of

text. The post’s content is then generated by sampling its words. Each word

wu,s,n is sampled from the word distribution of the chosen topic, i.e., τzu,s ,

independently from the other words. For MPHAT, we also sampled the OSP

on which the post is shared from the multinomial distribution Ωu,zu,s = s(ηu,zu).

Generating topic-specific hub and authority vectors. HAT and

MPHAT incorporate two main ideas in generating user topic-specific hubs

and authorities vectors. Firstly, HAT and MPHAT model the users’ topic-

1https://en.wikipedia.org/wiki/Softmax function
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Figure 6.2: Plate Diagram of MPHAT Model

specific hub and authority values as positive numeric values. Secondly, HAT

and MPHAT probabilistically relate these hub and authority values to user

topical interests. Hence, we propose to model a user’s topic-specific hub and

authority scores using Gamma distributions whose means are the user’s inter-

est in the topics, and the scores will be positive real numbers. Specifically, the

topic-specific authority score of user v ∈ V for topic k, Av,k, is sampled from

the Gamma distribution with shape σ and scale
Xv,k

σ
. Similarly, the topic-

specific hub score of user u ∈ U for topic k, Hu,k, is sampled from the Gamma

distribution with shape δ and scale
Xu,k

δ
. Due to the property of Gamma

distributions2, both Av,k and Hu,k share the same expectation Xu,k.

Generating links. In HAT, we generate users’ following links in a single

OSP. We use ru,v to denote the relationship between u and v: ru,v = 1 if u

follows v, and = 0 otherwise. We sample ru,v from the Bernoulli distribution

2https://en.wikipedia.org/wiki/Gamma distribution
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with mean f(HT
uAv, λ). Here HT

uAv is the dot product of HT
u and Av and f is

the function to scale down it to [0,1) and is defined in Equation 6.1.

In MPHAT, we generate platform-specific users’ following in multiple OSPs.

We use ru,v,p to denote the relationship between u and v on platform p:

ru,v,p = 1 if u follows v on p, and = 0 otherwise. To generate ru,v,p, we first

derive the platform-specific authority vector of v on platform p, Apv,k, by tak-

ing the element-wise product of Av and vector s(ηv,1,p, · · · , ηv,K,p). Similarly,

the platform-specific hub vector of u on platform p, Hp
u,k, is defined by the

element-wise product of Hu and vector s(ηu,1,p, · · · , ηu,K,p). Finally, we sample

ru,v,p from the Bernoulli distribution with mean f(HpT
u Apv, λ). Here HpT

u Apv is

the dot product of HpT
u and Apv and f is the function to scale down it to [0,1)

and is defined in Equation 6.1.

f(x, λ) = 2(
1

e−λx + 1
− 1

2
) (6.1)

where λ ∈ (0, 1) is an engineering parameter.

In HAT, the likelihood of forming a following link from u to v is therefore

factorized into u’s topic-specific hub scores, v’s topic-specific authority scores.

The likelihood is high when these topic-specific hubs and authorities correlate

(i.e., u has high hub in topics that v has high authority), and is low otherwise.

Similarly, in MPHAT, the likelihood of forming a following link from u to v is

factorized into u’s topic-specific hub scores, v’s topic-specific authority scores,

and their platform preferences. The likelihood is high when these topic-specific

hubs, authorities and platform preferences correlate (i.e., u has high hub in

topics that v has high authority, and both of them have high preference for

the same platform), and is low otherwise.

6.2.4 Model Learning

Given the prior γ, and the parameters α, β, δ, σ, φ, κ, and λ, we learn the other

parameters in HAT and MPHAT model using maximum likelihood approach.
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In other words, to learn HAT and MPHAT models, we solve the optimization

problem in Equation 6.2 and 6.3 respectively.

{X∗, A∗, H∗, Z∗, τ ∗} = arg.maxX,A,H,Z,τL(D|Ψ) (6.2)

{X∗, η∗, A∗, H∗, Z∗, τ ∗} = arg.maxX,η,A,H,Z,τL(D|Ψ) (6.3)

In Equation 6.2, Ψ = {X,A,H,Z, τ, α, β, δ, σ, φ, κ, λ, γ} whereX represents

for the set of Xu for all users {u}. A and H are similarly defined. Z represents

for the bag of topics of all posts, while τ represents for the set of all topic word

distributions {τk}. Lastly, L(D|Ψ) is the likelihood function of the observed

data D (i.e., posts and following links) given the value of all the parameters.

Equation 6.3 is similarly defined.

Similar to LDA-based models, the problem in Equation 6.2 and 6.3 is in-

tractable [19]. We therefore make use of Gibbs-EM method [18] for learning

in HAT and MPHAT models. Specifically, we first randomly initialize X, η,

A, H, and τ . We then iteratively perform the following steps until reaching a

convergence or exceeding a given number of iterations.

• To sample Z while fixing X, η, A, H, and τ . The topic zu,s is sampled

according to the following equation.

P (zu,s = k|θu, τ) ∝ θu,k ×
Nu,s∏
n=1

τk,wu,s,n (6.4)

where, again, θu = s(Xu)

• To optimize X, η, A, H, and τ while keeping Z unchanged. In this step,

we make use of the alternating gradient descent method [22]. That is,

we iteratively optimize X, η, A, H, or τ while fixing all the others.
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6.2.5 Parallelization

As suggested by Equation 6.4, the sampling of a post’s topic is independent

of that of all the other posts. Hence, we can use multiple child processes,

each corresponding to a small set of users, to sample the topics for the users’

posts simultaneously. Also, in the alternating steps for optimizing X, we can

parallelize the computation as the optimization of a user’s topic interest vector

is independent of that of all other users’ topic interest vectors. Similarly, we

can parallelize the alternating optimization of A, H, η, and τ .

In our implementation, in sampling Z, we build a process pool and submit

a process for sampling topic for posts of 1
N

of the users where N is the pool’s

size. In the ideal case, we can reduce the running time of sampling Z to N

times. Similarly, we use the process pool to reduce the running time in the

alternating optimization steps.

6.2.6 Data Sub-Sampling

Like previous factorization and mixed membership models, the HAT and MPHAT

models consider both link and non-link relationships of all pairs of users. This

consideration makes the overall complexity of the HAT and MPHAT mod-

els to be O(N2
u) where Nu is the number of users, which is not practical for

large-scale social networks. We, therefore, choose to use a data sub-sampling

method to reduce the computational cost. To do that, for each user u, we keep

all u’s out links (i.e., the links where u follow other users) and m% of its out

non-links (i.e., the no-links where u does not follow some other users). These

m% non-links are selected from the followees of u’s followees (i.e., the 2-hops

non-existent links). This selection strategy retains only a subset of relation-

ships that carry strong signal of users’ hub and authority values while filtering

out the remaining data that may contain noise.
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6.3 Experiments on real-world dataset

Ideally, we should evaluate HAT and MPHAT by comparing the authority and

hub users identified by the model with ground truth authority and hub users.

However, it is difficult to find ground truth in real-world datasets. For such

datasets, we evaluate HAT and MPHAT against some baseline methods on

three tasks: (i) modeling of topics, (ii) users’ platform choice prediction, and

(iii) link recommendation. We first introduce the real-world datasets which we

have collected for our model evaluation. Next, we describe the experiments

conducted and report the results. Finally, we present several empirical findings

on the topics, hub and authority users learned by the HAT and MPHAT model.

6.3.1 Dataset

Our model evaluation requires multiple datasets that allow us to observe user

topical interests and preferences. Furthermore, as we are interested in study-

ing authorities and hubs across online social networks, we require some users

to have accounts on multiple OSPs. Public datasets that satisfy the above re-

quirements are not available. Thus, we specially collect two datasets from two

popular OSPs that fulfill our requirements, namely Twitter, a short-text mi-

croblogging site, and Instagram, a photo-sharing social media site. Both Twit-

ter and Instagram support directed relationships among users, which reflect

the preferences of users towards following other authority users. Furthermore,

the hub and authority users in the two OSPs may differ concerning different

topics.

For Twitter data, we collected a set of Singapore-based Twitter users who

declared Singapore locations in their user profiles. These users were identified

by an iterative snowball sampling process starting from a small seed set of well

known Singapore Twitter users followed by traversing the follow links to other

Singapore Twitter users until the sampling iteration did not get any more new
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Table 6.2: Statistics for Instagram and Twitter Datasets. Numbers in () refer
to counts that involve users with accounts on both OSPs and the links among
these accounts only.

Instagram Twitter
Total users
Total links
Avg Links/user
Max followers
Max followings
Min followers
Min following

5,633 (932)
342,719 (22,529)

60 (24)
803 (217)
672 (147)

5 (5)
5 (5)

5,401 (932)
276,299 (25,379)

51 (27)
2,048 (421)
991 (172)

5 (5)
5 (5)

Total posts
Max posts/user
Min posts/user
Avg posts/user

636,593 (121,856)
200 (200)
10 (40)

113 (130)

944,035 (143,317)
200 (200)
40 (40)

174 (153)

users. From these users, we obtain a subset of users who are active, i.e., have

more than 50 directed links, and posted at least 40 tweets between October and

December 2016. Subsequently, we retrieve the posts of these active Twitter

users. A similar approach is used to retrieve the data of active Instagram users

who have more than 50 directed links and posted at least ten posts between

October and December 2016.

To identify users who have accounts on both Twitter and Instagram among

the above active Twitter users, we obtain a subset of users who mention their

Instagram accounts in their Twitter bio descriptions. If a mentioned Instagram

account is active and does not exist in our subset of active Instagram users, we

retrieve the posts and links of that account and add it to our Instagram user

set. A similar approach is used to retrieve users who have mentioned their

Twitter accounts in their Instagram bio descriptions. Table 6.2 shows the

statistics about the collected datasets. In total, we gathered 5,633 Instagram

users and 5,401 Twitter users. Among the gathered users, 932 pairs of Twitter

and Instagram user accounts are owned by the same users, i.e., these users

have active accounts on the two OSPs.
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6.3.2 Experiment Setup

We evaluate HAT and MPHAT models in three tasks, namely, (i) topic mod-

eling, (ii) platform choice prediction, and (iii) link recommendation. The first

task focuses on comparing the topics learned by HAT and MPHAT with those

learned by other baseline models. The second task applies MPHAT to predict

users’ platform choices as they publish posts. Finally, the last task applies

HAT and MPHAT to the prediction of missing links in OSPs. Note that three

evaluation tasks will be conducted in the multiple OSP setting. For exam-

ple, in the first task, we not only model the topics in individual OSPs (i.e.,

Twitter and Instagram separately) but also topics across both OSPs. In the

second task, we predict the platform choices of users who have accounts on

multiple OSPs. Finally, in the last task, we train HAT and MPHAT with

user relationships from multiple OSPs and predict links to users in individual

OSPs.

6.3.2.1 Baselines

For topic modeling, we compare HAT and MPHAT with LDA [19] and TW LDA

[141]. LDA and TW LDA are two popular topic models for text documents

and Twitter content respectively.

For platform choice prediction, we compare MPHAT with TW LDA and

MultiPlatform-LDA (MultiLDA), which we proposed in Chapter 5. MultiLDA

learns the user’s platform preferences from their posts. Although TW LDA

does not model platform choices, we could infer the posts’ platform based on

the popular platform choice for the topics learned using TW LDA.

For link recommendation, we compare HAT and MPHAT against several

baselines: HITS, WTFW, and common user interests learned by LDA and

TW LDA. The intuition for interest-based baselines is that user who shares

common interests are likely to follow each other due to homophily [86]. WTFW

models the topic-specific and social relationships among users, while HITS
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returns the authority and hub scores of users based on the relationship network

structure.

6.3.2.2 Parameter Setting

In our experiments, the parameter setting of LDA, TW LDA, and WTFW

methods are set to the default values as recommend in their origin. HITS

method is parameter free. For HAT and MPHAT methods, we found that the

Gibbs-EM algorithm converges around after 200 alternating iterations, each

iteration includes 10 gradient descent steps. Topics’ prior is set to a symmetric

Dirichlet distribution with γ = 0.001 as widely used in previous works. Both

shape α and scale κ of the Gamma prior of users’ topical interest Xuk are set to

2 for all users u and all topics k. This setting makes Xuk’s mean and standard

deviation close to 4 and 3 respectively. That means Xuk deviates moderately

with respect to its mean, hence, s(Xuk) is moderately but not extremely skewed

toward any topic. This is reasonable as we expect that it is very less likely

that users totally focus on a single topic. Similarly, both shape β and scale φ

of the Gamma prior of users’ platform preference ηukp are set to 2 as we do

not expect users, who have an account on multiple OSPs, to totally focus on

some single OSP. Also, the shapes σ and δ of Gamma priors of users’ authority

and hub are set to 2. This makes the means of users’ authority Auk and hub

Hu,k close to their topical interest Xu,k. The scaling parameter λ is set to 0.01

through empirical evaluation on list values.

6.3.2.3 Evaluation Metrics

Topic modeling evaluation. For evaluation on topic modeling, we compute

the likelihood of the training set and perplexity of the test set when HAT,

MPHAT, and the baselines are applied to the OSP datasets. The model with

higher likelihood and lower perplexity is considered superior in this task.

Platform choice prediction evaluation. For evaluation on platform choice

113



CHAPTER 6. MODELING TOPIC-SPECIFIC INFLUENTIAL USERS IN MULTIPLE ONLINE

SOCIAL PLATFORMS

prediction, we get the models to predict users’ platform choices given the con-

tent of the test posts. MPHAT predicts the platform choice of a test post by

first assigning the posts topic using the trained MPHAT, and then selecting the

most probable platform for the assigned post topic where the most probable

platform is determined by the users topic-specific platform preference distri-

bution.

For TW LDA which does not model platform choices, we generate the

predicted platform choice of a given test post by first assigning the particular

posts topic using the trained TW LDA, and then returning the most popular

platform choice for the assigned topic according to the training set.

Finally, we compute the accuracy of platform choice prediction. Accuracy

for platform choice prediction is defined as:

Accuracy =
#posts with platform correctly predicted

#posts in all platforms

Link recommendation evaluation. For evaluation on link recommenda-

tion, we first define the link recommendation task as recommending new links

to a user in a given OSP, i.e., we want to recommend users, other users, to

follow in a specific OSP. Thus, given a user u, we first rank her predicted fol-

lowing and non-following of a specific OSP in the test set by some link scores.

Then, we recommend u other users v who are in the specific platform and are

higher on the link scores.

For MPHAT, the link score, scoreMPHAT (u,v,p) that user u would follow user

v is measured by the likelihood that ru,v,p = 1 as computed based on the two

users’ hub, authority, and platform preference as described in Section 6.2.3 on

Generating links. Similarly, for HAT, the score, scoreHAT (u,v), is the likelihood

that u follows v as computed based on the two users’ hub and authority learnt

by HAT as described in Section 6.2.3 on Generating links.

For HITS, the score is measured by taking the product of u’s hub (hu) and
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v’s authority (av):

scoreHITS(u,v) = hu · av (6.5)

For LDA, the score is measured by taking the inner product of the topical

interests θu and θv:

scoreLDA =
K∑
k=1

θu,k · θv,k (6.6)

The same way is also applied to measure links’ scores in TW LDA. Lastly, for

WTFW, we directly use the link scores returned by the model.

Finally, we use precision at top k and Mean Reciprocal Rank (MRR) [120]

to measure the accuracy of link recommendation. Precision at top k is defined

as:

Preck =

∑
u∈uk |Lu ∩ L

′
u,k|

k · |uk|

where uk is a set of users with at least k positive links, Lu and L′u,k are the set

of u’s positive links and set of top k predicted links for u.

6.3.2.4 Training and Test Datasets

We generate three pairs of training and test datasets which will be used in our

experiments: (i) Instagram, (ii) Twitter and (iii) combined datasets.

For Instagram datasets, we randomly select 80% of Instagram posts and

links from each user who have an account on Instagram to form the training

set and use the remaining posts and links as the test set. A similar process

is applied to generate the Twitter training and test dataset. The Instagram

and Twitter datasets are used to conduct single platform link recommendation

experiments.

For the combined datasets, we randomly select 80% of platform-specific

posts and links from each user to form the training set and use the remaining

posts and links as the test set. When combining the two OSPs, the users who

have accounts on both Twitter and Instagram will be unified into a single user
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identity. The combined datasets are used to conduct multiple OSP setting

experiments in the three evaluation tasks, i.e., topic modeling, platform choice

prediction, and link recommendation.

6.3.3 Evaluation on Topic Modeling

We evaluate the topic modeling of HAT, MPHAT and the baselines on three

datasets mentioned in Section 6.3.2.4. Figure 6.3 shows the likelihood and

perplexity achieved by HAT, MPHAT, LDA, and TW LDA. As expected, the

larger the number of topics, the higher the likelihood, and lower perplexity are

archived by all models. The quantum of improvement, however, reduces as the

number of topics increases.

Figure 6.3 also shows that HAT and MPHAT outperform LDA, and are

comparable to TW LDA in the topic modeling task. This result supports the

insights from previous work which suggested that standard LDA does not work

well for short social media text as both Instagram photo captions and Twitter

tweets are much shorter than normal documents [141]. A possible explanation

for the similar results achieved by HAT, MPHAT, and TW LDA can be due

to the three models assuming that each post has only one topic.

Interestingly, we also observe that HAT, MPHAT and TW LDA have out-

performed LDA more in Twitter than Instagram. A possible explanation can

again be attributed to the different length of the post in different OSPs; Twitter

tweets are shorter with a 140 character limit, while Instagram photo captions

are longer with no limitation in length imposed.

6.3.4 Evaluation on Platform Choice Prediction

We next evaluate MPHAT and the baselines in a platform choice prediction

task using the combined dataset. The task predicts the platforms to be used

for posts from users with accounts on both Instagram and Twitter. Figure 6.4

shows the accuracy of MPHAT, MultiLDA, and TW LDA for each OSP with
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Figure 6.3: Likelihood and perplexity of topics modeled in Instagram, Twitter
and combined datasets

the number of topics varying from 12 to 20. We observe that MPHAT and

MultiLDA outperform TW LDA by about 35% in this prediction task. The

figure also shows that the prediction results do not change significantly for the

different number of topics.

We also observe that MultiLDA outperforms MPHAT by a minimal margin.

A possible reason for this observation could be due to the noise introduced by

the user relationships; MultiLDA learns the users’ platform preference from

their posts, while MPHAT considers both users’ posts and relationships when

learning the users’ platform preference. Some users, albeit few, might form
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Figure 6.4: Accuracy of platform choice prediction at various number of topics

a lot of relationships in Twitter but they seldom tweet, and this could lead

MPHAT to infer that the user has a stronger preference in Twitter.

6.3.5 Evaluation on Link Recommendation

In link recommendation experiments, we consider all links in test datasets

as positive instances, and in principle, all the non-existent links as negative

instances. Nevertheless, due to the sparsity of OSPs, the number of possible

non-links is enormous. Thus, we limit the negative instances to all the nodes

which are 2-hops away from the source node of each positive link, which is

about 100 times the number of positive instances. The evaluation on link

recommendation is conducted in two settings: (i) multiple platforms and (ii)

single platform link recommendation.

In the multiple platforms link recommendation setting, we train HAT,

MPHAT and the baseline models on the combined training dataset and per-

form link recommendation in individual OSPs separately using the combined

test dataset. This experiment aims to evaluate the models when recommend-

ing links in multiple OSPs. To further analyze the model effectiveness, we

will present the recommendation results involving (a) all types of links and (b)

links among users who have accounts on both OSPs (i.e., MP Links) using the

combined test dataset.

In single platform link recommendation setting, the models are trained
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Table 6.3: Multiple platform Instagram and Twitter link recommendations

Method P@1 P@2 P@3 P@4 P@5 MRR

Instagram

LDA 0.017 0.017 0.018 0.019 0.020 0.065
TW LDA 0.015 0.017 0.017 0.017 0.018 0.059
HITS 0.069 0.065 0.057 0.051 0.050 0.135
WTFW 0.086 0.070 0.058 0.052 0.048 0.141
HAT 0.087 0.078 0.073 0.067 0.064 0.160
MPHAT 0.114 0.104 0.097 0.090 0.086 0.200

Twitter

LDA 0.020 0.019 0.019 0.018 0.017 0.067
TW LDA 0.017 0.017 0.018 0.019 0.019 0.067
HITS 0.100 0.094 0.084 0.078 0.076 0.203
WTFW 0.152 0.125 0.109 0.100 0.093 0.261
HAT 0.196 0.163 0.144 0.129 0.117 0.305
MPHAT 0.226 0.182 0.156 0.141 0.130 0.337

on a single OSP training dataset, say Instagram training dataset, and the

link recommendation is performed on the same single OSP test dataset, i.e.,

Instagram test dataset. The purpose of this experiment setting is to evaluate

HAT and MPHAT ability in single platform link recommendation compared

with other single platform methods.

6.3.5.1 Multiple Platforms Link Recommendation

Table 6.3 shows the multiple platforms link recommendation results for In-

stagram and Twitter. Note that for HAT, MPHAT and the topic-specific

baselines, i.e., WTFW, LDA and TW LDA, the number of topics learned is

set to 18 as beyond which, the quantum of improvement on topic likelihood

and perplexity are significantly reduced (see Section 6.3.3).

We observe that MPHAT outperforms HAT and all baselines in both pre-

cision at top k and MRR for both Instagram and Twitter. When measured by

MRR, MPHAT significantly outperforms HITS by more than 50% and 60% on

Instagram and Twitter respectively. This result suggests that the topical con-

text is essential in link recommendation. MPHAT also improves the MRR of

the common user interests baselines by more than two-fold. This observation

also indicates the importance of network information in link recommendation.
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Table 6.4: Stratified Instagram and Twitter link recommendations

Method P@1 P@2 P@3 P@4 P@5 MRR

Instagram

HAT (All) 0.087 0.078 0.073 0.067 0.064 0.160
MPHAT (All)) 0.114 0.104 0.097 0.090 0.086 0.200
%Improvement 31% 31% 32% 33% 33% 25%

HAT (MP) 0.032 0.035 0.037 0.038 0.040 0.096
MPHAT (MP) 0.047 0.065 0.066 0.066 0.063 0.152
%Improvement 43% 84% 77% 72% 57% 59%

Twitter

HAT (All) 0.196 0.163 0.144 0.129 0.117 0.305
MPHAT (All)) 0.226 0.182 0.156 0.141 0.130 0.337
%Improvement 15% 11% 8% 9% 11% 10%

HAT (MP) 0.050 0.057 0.056 0.055 0.052 0.126
MPHAT (MP) 0.073 0.075 0.070 0.062 0.059 0.161
%Improvement 46% 29% 24% 12% 12% 28%

Considering both OSPs, MPHAT and HAT also outperform WTFW by

more than 10% in MRR. Interestingly, this demonstrates the importance of

hub when modeling topical links; WTFW models susceptibility as users who

are interested in a particular topic, while MPHAT and HAT model hub as users

who are not only interested in a topic but follow users who are also authority

users in that topic. Finally, when measured by MRR, MPHAT outperforms

HAT by more than 25% and 10% on Instagram and Twitter respectively. This

result demonstrates MPHAT’s superiority over HAT in recommending links in

multiple OSP setting.

Table 6.4 shows the results for links among users who have accounts on

both platforms. We observe that MPHAT has significant improvement over

HAT for both all links and MP links. In particular, MPHAT observes 25%

improvement by MRR over HAT for all links recommendation in both Insta-

gram and Twitter. This observation could be attributed to MPHAT model

design, which considers the users’ platform preferences. For example, when

user u, who has accounts on both Instagram and Twitter, is an authority for

a specific topic k, HAT will recommend other Instagram and Twitter users

who are hubs for topic k to follow u. However, suppose u is more active on

Instagram. She is more likely to be an authority for topic k on Instagram only.
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MPHAT, which models u’s platform preferences, would instead recommend

only Instagram users who are hubs for topic k to follow u.

We also note that the MRRs for Instagram and Twitter MP links are lower

than all links recommendation for both models. We examined the learned

model parameters and found that most of the users who have accounts on

both OSPs are topical authorities but not strong hubs. On average, 48.91%

of the top 100 authority users across the 18 topics are users on both OSPs.

Conversely, only 19.91% of the top 100 hub users across the 18 topics are

users on both OSPs. These characteristics of the users on both OSPs make it

harder to recommend MP links to these users because most of them they are

authorities and have less propensity to follow other authorities.

6.3.5.2 Single Platform Link Recommendation

Table 6.5 shows the single platform link recommendation results for Instagram

and Twitter. Note that for topic-specific models, the number of topics learned

in the training phase is set to 8 and 10 for Instagram and Twitter respectively.

Table 6.5: Single platform Instagram and Twitter link recommendations

Method P@1 P@2 P@3 P@4 P@5 MRR

Instagram

LDA 0.018 0.019 0.019 0.019 0.019 0.062
TW LDA 0.020 0.018 0.017 0.017 0.017 0.059
HITS 0.078 0.070 0.063 0.057 0.054 0.145
WTFW 0.099 0.082 0.071 0.064 0.059 0.167
HAT 0.103 0.092 0.086 0.081 0.078 0.182
MPHAT 0.123 0.113 0.106 0.100 0.097 0.211

Twitter

LDA 0.017 0.017 0.018 0.019 0.019 0.067
TW LDA 0.024 0.025 0.025 0.024 0.023 0.080
HITS 0.055 0.066 0.064 0.064 0.065 0.169
WTFW 0.169 0.146 0.132 0.123 0.115 0.296
HAT 0.220 0.166 0.144 0.130 0.120 0.319
MPHAT 0.220 0.182 0.159 0.146 0.135 0.335

Similar to link recommendation in multiple platform setting, we observe

that MPHAT outperforms all baselines measured by both precision at top k
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and MRR for both Instagram and Twitter. This result shows that MPHAT

can also perform well in single platform link recommendation.

Interestingly, we also observe that the MRR of single platform link rec-

ommendation is higher for most models than that of multiple platform link

recommendation. A possible explanation could be the additional noise intro-

duced when we combined the Instagram and Twitter datasets to form the

combined dataset. For example, when recommending Instagram links in the

test dataset, we train the models using the Twitter and Instagram links in

the combined training dataset. The additional Twitter links might be noise

in modeling influence of Instagram users, thus making the Instagram link rec-

ommendation task more difficult for multiple platforms. The effect of this

additional cross-platform noise is further discussed in an empirical analysis in

Section 6.3.6.2.

6.3.6 Empirical Analysis

In this section, we first examine the topic-specific platform preferences of users

learned by the MPHAT model. Next, we empirically compare the authority

and hub users learned by HITS, HAT, and MPHAT. Note that the analysis is

conducted on the combined dataset.

6.3.6.1 Topic-Specific Platform Preferences

Other than the users’ topical interests, authorities and hubs, MPHAT also

learns the topical platform preferences of users on multiple OSPs. Here, we

showcase the platform preference of users on Instagram and Twitter. Fig-

ure 6.5 shows the distributions of platform preferences of users with accounts

on multiple OSPs for four selected sample topics, namely, “sports”, “current

affairs”, “beauty” and “gourmet”.

Generally, we observe that the distribution of platform preferences dif-

fers across the four topics. This observation supports previous research work
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Figure 6.5: Distributions of platform preferences for sports, current affairs,
beauty, gourmet topics

described in Chapter 5 that suggests that users have different platform prefer-

ences for different topics. For example, for the topics on “sports” and “current

affairs”, the right-leaning bar charts of users’ platform preference for Twitter

suggest that the users on multiple OSPs prefer to generate their “sports” and

“current affairs” content in Twitter, and also link to other Twitter users who

have displayed interests on the two topics.

The study on users’ topical platform preference also has implications for

users’ topical authority and hub values. Suppose that “sports” is a popular

topic on Twitter and a user, u, who has accounts on both Twitter and In-

stagram, is identified as a “sports” authority, it is likely that u also has a

stronger platform preference for Twitter on “sports” topic. This is because

most of the sports-loving users and hubs who follow u are likely to be from

Twitter. Note that u may also have other Instagram followers. However, these

Instagram followers may not contribute much in determining the u’s authority

in “sports” topic because majority of the “sports” topical hubs that link to
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u are in Twitter. Another empirical example on topical platform preference’s

effects on topical authority and hub is discussed in Section 6.3.6.2.

6.3.6.2 Hub and Authority Users

Table 6.6 shows samples of the authority and hub users learned by HITS,

HAT and MPHAT. HITS determines the authority and hub users strictly by

the network structures. Thus, the top authority and hub users identified by

HITS are popular Twitter and Instagram users with many followers. On the

other hand, MPHAT and HAT can identify authority and hub users for specific

topics. For example, for the “sports” topic, MPHAT was able to identify

popular football clubs and news media and a sports blogger as top authority

users. These users often post sports-related content and are followed by many

users interested in sports. Similarly, the top sports topic hub users identified

by MPHAT are also sports bloggers and fan group who have followed the sports

topic authority users. Similar observations are made in HAT.

Interestingly, we also observe the topic-specific authority and hub users

identified by MPHAT different from those that are identified by HAT. Par-

ticularly for the topic on “beauty”, MPHAT have identified popular lifestyle

bloggers who have accounts on both Instagram and Twitter as authority users,

while HAT identified cosmetics brands and lifestyle bloggers who only have an

Instagram account as authorities. A possible reason for the difference could be

the additional cross-platform noise in modeling influence of users with accounts

on multiple OSPs, which we have briefly discussed in Section 6.3.5.2.

To investigate this further, we first examine the top 100 hub users for the

topic on “beauty” and found that they all have accounts on Instagram. This

suggests that “beauty” is a popular topic in Instagram and the authority users

followed by these hub users should also have an account in Instagram. Many

of these top 100 hub users follow the top 5 “beauty” authority users identified

by HAT and MPHAT.

124



CHAPTER 6. MODELING TOPIC-SPECIFIC INFLUENTIAL USERS IN MULTIPLE ONLINE

SOCIAL PLATFORMS

Table 6.6: A sample of authority and hub users in combined dataset learned
by HITS, HAT and MPHAT. I@, T@ and C@ denotes Instagram, Twitter and
multiple OSPs users respectively.

Topic Top 10 Keywords Top 5 Authority Users Top 5 Hub Users

HITS

- - C@xiaxue, T @blxcknicotine,
C@naomineo (lifestyle blogger),
C@benjaminkheng, C@toshrock
(celebrity)

T @blxcknicotine, C@naomineo
(lifestyle blogger),
C@benjaminkheng, C@flyirene
(celebrity), T @herbertrsim (busi-
nessman)

HAT

Beauty beauty, makeup,
skincare, treat-
ment, clozette,
collection, lip,
foundation, facial,
lipstick

I@sephorasg, I@laneigesg
(cosmetics brand),
I@benefitcosmeticssg (lifestyle
blogger), I@beautifulbuns sg
(fashion magazine),
I@thewowoshop (cosmetics
ecommerce)

I@sephorasg,
I@etudehousesingapore,
I@laneigesg (cosmetics brand),
I@benefitcosmeticssg (lifestyle
blogger), I@a must shop (cos-
metic ecommerce)

Sports game, team,
united, arsenal,
manutd, league,
fans, football, goal,
footy jokes

T @lfc, T @arsenal (football
club), T @ufc (sports news
media), T @futballtweets,
T @empireofthekop (sports blog-
ger)

T @redsports, T @empireofthekop,
T @futballtweets,
T @coutinhoflair, T @theredcardtv
(sport blogger)

Current
Affairs

business, market-
ing, digital, trump,
tech, ai, data,
china, fintech,
startup

C@stcom, T @channelnewsasia
(news media), T @mrbrown
(satire blogger), T @eskimon
(businessman), T @govsingapore
(government)

T @wtfsg (satire blogger),
T @eskimon, T @herbertrsim,
T @alansoon (business),
T @robinhicks (editor)

MPHAT

Beauty beauty, makeup,
skincare, treat-
ment, natural,
facial, oil, lip, foun-
dation, clozette

C@jamietyj, C@bongqiuqiu,
C@bellywellyjelly, C@Xiaxue,
C@xchubbykitty (lifestyle blog-
ger)

I@ilrpsg (skin-care brand),
C@william82sg, C@JoannaLHS,
I@makeupforeversg,
I@benefitcosmeticssg (lifestyle
blogger)

Sports arsenal, game,
manutd, team,
league, football,
united, goal, mufc,
liverpool

C@stcom, T @channelnewsasia
(news media), T @lfc , T @arsenal
(football club), T @redsports
(sport blogger)

T @alb s fc (football club),
T @redsports, T @footbalifact,
T @futballtweets (sport blogger),
T @theutdreview (fan group)

Current
Affairs

business, market-
ing, digital, trump,
tech, ai, data,
china, fintech,
startup

C@stcom (news media),
T @eskimon (businessman),
T @mrbrown (satire blogger),
C@papsingapore (political party),
T @govsingapore (government)

C@pinkdotsg (social
group), T @alansoon,
C@skinnylatte, T @mrscotteddy,
C@mediumshawn (businessman)

However, HAT has given lower authority scores to the users who have ac-

counts on multiple OSPs because other non-hub users in Twitter also follow

them, i.e., noise from the links in other OSPs is introduced in HAT’s modeling

of the users’ topical authority. MPHAT mitigates these noise by considering

the topical platform preferences of users on multiple OSPs when learning their

topical authority and hub scores from the users’ links in multiple OSPs. We

examined the topical platform preferences of the top 5 “beauty” topic author-

ity users identified by MPHAT and found that these authority users have an

average 0.62 platform preferences score for Instagram, i.e., they have a stronger

125



CHAPTER 6. MODELING TOPIC-SPECIFIC INFLUENTIAL USERS IN MULTIPLE ONLINE

SOCIAL PLATFORMS

preference for the Instagram platform on the “beauty” topic. MPHAT weighs

the “beauty” topical authority scores of these users by their platform prefer-

ences for Instagram and reduces the effect of the noise among the links from

Twitter.

6.3.7 Efficiency of Parallel Implementation

We now examine the efficiency of the parallel implementation of the learning

algorithm in MPHAT as presented in Section 6.2.5. Figure 6.6 shows the

running time of a full iteration of the algorithm when the number of parallel

processes is varied from 1 to 20. The figure clearly shows that, as we expected,

the running time drops dramatically when the number of parallel processes

starts increasing. This shows the efficacy of our parallel implementation. It is

also expected that the running time does not decrease significantly after that

due to trade off between the actual computing time and the additional time

spent on managing the process pool.
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Figure 6.6: Run time of HAT and MPHAT with various number of threads

6.3.8 Data Sub-Sampling Analysis

In Section 6.2.6, we discussed a data sub-sampling method used to reduce

the computation cost of HAT and MPHAT. We now empirically examine the

effect on link recommendation of the data sub-sampling method. Note that
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the experiments are conducted in the multiple platforms link recommendation

setting described in Section 6.3.5.
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Figure 6.7: MRR for Instagram and Twitter link recommendation with various
percentage of non-link sampled

Figure 6.7 shows the HAT and MPHAT’s MRR for Instagram and Twitter

link recommendation with various percentage of non-link sampled. The link

recommendation results are observed to be consistent even when we increase

the percentage of non-links sampled for training as the data sub-sampling

process is not random but bias to more informative non-links (i.e., followees

of users’ followees). Thus, the additional less informative non-links would not

improve the link recommendation performance significantly.

6.4 Experiments on Synthetic Datasets

In this section, we evaluate the accuracy of HAT and MPHAT using synthetic

datasets containing ground truth information. Our goal is also to determine

how HAT and MPHAT behave with different data settings. To do this, we

need access to the ground truth value of those variables, which is however

not available in any real dataset. We, therefore, address this shortcoming by

generating synthetic datasets for conducting experimental evaluations.
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6.4.1 Synthetic Data Generation

We employ the following steps to generate a dataset with N users on P plat-

forms with posts covering K topics using a vocabulary with W words.

Generating users’ topical interest. Given K topics, for each user u,

we randomly choose 10% of topics to be ones that u is interested in. That is,

the topical interest vector of u, Xg
u, is randomly generated such that the dis-

tribution Softmax(Xg
u) (i.e, applying Softmax function on Xg

u) mostly skews

on u’s interested topics. Also, {Xg
u}u are also normalized across users such

that: if users u and v are interested topics ki and kj respectively then Xg
u,ki

is similarly as large as Xg
v,kj

, and they are both much larger than other Xg
w,kl

for users w not interested in topics kl. This normalization does not affect

Softmax(Xg
u) but creates clear and distinctive users’ topical interest for more

accurate comparison among models.

Generating users’ platform preference. Given P platforms, as sug-

gested by observations from real datasets used in the Section 6.3, we randomly

choose a large subset of users, says 70%, to have accounts on only a single

platform, and the remaining users have accounts on all P platforms. For each

user u having account on only a single platform, says p, her platform prefer-

ence vector ωgu,k is generated with Softmax(ωgu,k) totally focused on the p-th

element for any topic k. Otherwise, u has accounts on multiple platforms and

ωgu,k is defined to have either (i) Softmax(ωu,k) return uniform distribution

of platforms u has accounts on, or (ii) Softmax(ωgu,k) return a distribution

that skews 90% on a certain platform. We generate two synthetic datasets

with all the users on multiple platforms either adopting a uniform or skewed

platform preference distributions. The two synthetic datasets help to evaluate

the models more comprehensively.

Generating users’ hub and authority. For each topic k, we randomly

choose a small proportion, says q, of users interested in k (refer to the previous

step for generating users’ topical interest) to be authority users of topic k.
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Similarly, q of users interested in k are randomly chosen to be hub users of

topic k. As q becomes sufficiently larger, the users who are both authority and

hub will increase. If v is among the authority users of k, her authority score

Agv,k is set to Xg
v,k plus a small perturbation µ, (µ > 0). Otherwise, Agv,k is set

to be much smaller than Xg
v,k. Similarly, the hub score Hg

u,k of user u on topic

k is set in the same way. As users’ topical interest Xg
∗,k’s are normalized, Agv,ki

is similarly as large as Agu,kj if v and u are authoritative on topics ki and kj

respectively. The same observations are held for users’ hub scores. These result

in a clear separation between authority (or hub) users and non-authority (or

non-hub) users in the synthetic datasets. Such a separation helps to evaluate

the models more accurately.

Generating topics’ word distribution. Given W words in the vocab-

ulary, for each of K topics, its word distribution is randomly generated such

that the distribution skews on 10% of the words. Again, this skewness is to

create clear and distinctive topics.

Generating the posts and relationships. For each user u, we generate

a random number between Tmin and Tmax of posts, and for each u’s post a

random number between Lmin and Lmax of words. The posts’ topic, words,

and following links are generated similar to the generative process described

in Section 6.2.3.

6.4.2 Experiment Setup

We evaluate HAT and MPHAT’s effectiveness in identifying topical hub and

authority users in two synthetic datasets, namely, the uniform dataset, which

users show no platform preference to generate posts and relationships, and the

skewed dataset, which the users show platform preferences to generate posts

and relationships.

We generate the synthetic datasets with 1000 users (N = 1000), 10 topics

(K = 10) and 2 platforms (P = 2). We also set the authority and hub
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perturbation µ to 0.1, and the Tmin and Tmax for posts generation to be 100

and 200 respectively. For each topic k, q% of the users who are interested

in topic k are also randomly selected as the topical hub and authorities. We

vary q% to be between 10% and 50% in our subsequent experiments. For the

learning of the HAT and MPHAT models, we adopt the parameter settings

described in S Section 6.3.2.2.

Before evaluating HAT and MPHAT’s accuracy in modeling in identifying

topical hub and authority users, we first check that the topic learned by the two

models are similar to the generated ground truth. To perform this evaluation,

for each ground truth topic kg, we compute the Euclidean distances between

kg’s word distribution and the word distributions of the learned topics. The

corresponding learned topic which has the smallest Euclidean distance with kg

is assumed to be the matching learned topic kl.

To evaluate HAT and MPHAT’s accuracy in identifying topical hub and

authority users, we rank users by the model computed hub and authority scores

for each topic, and compare the top q% users in the ranked lists with the ground

truth topical hub and authority users. We measure the model’s precision by

PrecAuth@q% = τp∩τg
τg

for each topic k, where τp is the set of top q% authorities

predicted by the model and τg is the set of authorities in the ground truth. The

precision in recovering ground truth topical hubs, PrecHub@q%, are computed

similarly.

6.4.3 Performance Evaluation

We applied HAT and MPHAT on the uniform and skewed datasets. We first

check and match the topics learned by the two models to the ground truth

topics by comparing the topics Euclidean distance. Subsequently, we evaluate

the accuracy of the two models in topic-specific hubs and authorities ground

truth recovery.
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Table 6.7: Descriptive stats of HAT and MPHAT matching and learned topics’
Euclidean distances.

Method Min Max Mean StdDev

MPHAT 0.0014 0.0033 0.0021 0.0006
HAT 0.0013 0.0031 0.0018 0.00007

6.4.3.1 Topic Distances Comparison

Table 6.7 shows descriptive statistics of Euclidean distances between the word

distributions of topics learned by HAT and MPHAT, and the matching ground

truth topics in the uniform dataset. We observed that the Euclidean distances

between the word distributions of the ground truth topics and topics learned

by the two models are small, i.e., the mean distance of 0.0021 and 0.0018 for

MPHAT and HAT respectively. This observation suggests that both models

can learn the topics well, which is essential for identifying the topic-specific

hubs and authorities in the ground truth. Similar observations are made when

applied HAT and MPHAT on the skewed dataset.

6.4.3.2 Hubs and Authorities Ground Truth Recovery

Figure 6.8 shows the ground truth recovery results for uniform and skewed

datasets. For various q%, we compute the average PrecAuth@q% and PrecHub@q%

for 10 topics learned in the two OSPs.

From Figure 6.8, we observed that both MPHAT and HAT performed well

in identifying topical hub and authority users in the uniform dataset, while

MPHAT has outperformed HAT in the skewed dataset. The results are rea-

sonable as HAT is designed to identify topical hubs and authorities in a single

platform setting, and is thus able to perform well in the uniform dataset. It,

however, yields poor results for skewed dataset. On the other hand, MPHAT

performs very well in both data settings. MPHAT learns the users’ topical plat-

form preference and thus was able to perform well in identifying the topical

hubs an authorities in both synthetic datasets. The results are also consistent

across various q%.
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Figure 6.8: PrecAuth and PrecHub at various q%

6.5 Summary

In this chapter, we have proposed two novel generative models called Hub and

Authority Topic Model (HAT) model and Multiple Platform Hub and Au-

thority Topic (MPHAT) model. HAT jointly learns user’s topic-specific hubs,

authorities, and interests, while MPHAT extends HAT by also learning the

users’ platform preferences. We evaluated HAT and MPHAT using synthetic

and real-world datasets and benchmarked against the state-of-the-art. Our ex-

periments on Twitter and Instagram datasets showed that our proposed HAT

and MPHAT outperforms LDA and achieves comparable results as TW LDA

in topic modeling. On platform prediction, MPHAT outperforms the TW LDA

baseline method and can predict which OSP a user would publish his or her

posts with reasonable accuracy. On link recommendation, MPHAT outper-

forms the baseline methods in MRR by at least 10%. We have empirically

shown that HAT and MPHAT can identify hub and authority users within

and across Twitter and Instagram for different topics. Our experiments on
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synthetic datasets also showed that MPHAT outperforms HAT in identifying

hub and authority users in multiple OSP setting.

Algorithm 2 Generative Process for HAT Model

1: � “Generating topics”
2: for each topic k do
3: sample the topic’s word distribution τk ∼ Dir(γ)
4: end for
5: � “Generating user topical interests
6: for each user u do
7: for topic k ∈ {1, · · · , K} do
8: sample u’s interest in topic k: Xu,k ∼ Γ(α, κ)
9: end for

10: end for
11: � “Generating user topic-specific authorities and hubs”
12: for each topic k do
13: for each user v ∈ V do
14: sample v’s authority on topic K: Av,k ∼ Γ(σ,

Xv,k

σ
)

15: end for
16: for each user u ∈ U do
17: sample u’s hub on topic k: Hu,k ∼ Γ(δ,

Xu,k

δ
)

18: end for
19: end for
20: � “Generating posts”
21: for each user u do
22: for each post s do
23: sample topic zu,s ∼Multi(θu) where θu = s(Xu)
24: for each word slot n do
25: sample the word wv,s,n ∼Multi(τzv,s)
26: end for
27: end for
28: end for
29: � “Generating following relationship”
30: for each pair of source user u and target user v do
31: sample the relationship: ru,v ∼ Bernoulli(f(HT

uAv, λ))
32: end for
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Algorithm 3 Generative Process for MPHAT Model

� “Generating topics”
for each topic k do

sample the topic’s word distribution τk ∼ Dir(γ)
end for
� “Generating user topical interests and topic-specific
platform preferences”
for each user u do

for topic k ∈ {1, · · · , K} do
sample u’s interest in topic k: Xu,k ∼ Γ(α, κ)
for platform p ∈ {1, · · · , P} do

sample u’ preference for platform p on topic k: ηu,k,p ∼ Γ(β, φ)
end for

end for
end for
� “Generating user topic-specific authorities and hubs”
for each topic k do

for each user v ∈ V do
sample v’s authority on topic K: Av,k ∼ Γ(σ,

Xv,k

σ
)

end for
for each user u ∈ U do

sample u’s hub on topic k: Hu,k ∼ Γ(δ,
Xu,k

δ
)

end for
end for
� “Generating posts”
for each user u do

for each post s do
sample topic zu,s ∼Multi(θu) where θu = s(Xu)
for each word slot n do

sample the word wv,s,n ∼Multi(τzv,s)
end for
sample platform pu,s ∼Multi(Ωuzu,s) where Ωuzu,s = s(ηu,zu,s)

end for
end for
� “Generating following relationship”
for each pair of source user u and target user v do

sample the relationship: ru,v,p ∼ Bernoulli(f(HpT
u Apv, λ))

end for
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Chapter 7

Conclusion

7.1 Dissertation Summary

With the increased adoption of multiple online social platforms (OSPs) for

many types of social and work activities performed by the same population

of users, the analysis and modeling of user-generated data from these OSPs is

an important yet challenging research task. In this section, we summarize the

dissertation work and highlight its main contributions.

Empirical Analysis. To study how users manage their activities across

OSPs, we conducted two empirical studies to analyze user-generated data in

multiple OSPs. For each study, a multi-OSP dataset is specially gathered such

that we can observe the same set of users actively using OSPs over the same

period. The novel insights gained from these studies can also be used to derive

useful features for prediction tasks that involve multiple OSPs.

In Chapter 3, we proposed a few novel measures to analyze the similarity

and evenness of a user’s friendship in multiple OSPs. We hypothesize that

users have to make their own decisions about whether their online friendships

should be fully, partially, or not replicated across different OSPs. The pro-

posed measures, quantifying such user friending preferences, were applied to

the empirical analysis of friendships of users who have accounts on Twitter
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and Instagram. Our analysis found most of these users maintaining mostly

different sets of online friendships across OSPs. Most users appear to be in-

terested in keeping only a very small proportion of common online friends in

OSPs. The insights gathered in our user’s friendship maintenance empirical

study are also used to derive novel user features which can improve friendship

link prediction in multiple OSP setting.

In Chapter 4, we proposed another set of novel measures to quantify the

similarity in users’ topical interests inferred from their collaborative activities

within and across multiple OSPs. We applied the proposed measures to the

analysis of GitHub and Stack Overflow, which are two popular OSPs used

by the software engineering communities. Our analysis found most users dis-

played similar topical interests in their collaborative activities in the two OSPs,

suggesting the possibilities that the users might be using GitHub and Stack

Overflow in a complementary manner. We also found that users who perform

collaborative activities together tend to share common topical interests in the

two OSPs. Using our findings from the empirical study, we proposed a collab-

orative activity recommendation framework which includes novel user features

that allow us to predict a user’s collaborative activities in one OSP using the

same user’s topical interests inferred from his or her collaborative activities in

another OSP. Through extensive experiments and case study, we also demon-

strated our proposed framework’s potential in solving the cold-start problem

in collaborative activity recommendations, i.e., recommending activities to a

user without knowing the users’ past collaborative activity history on the OSP.

User Modeling. In this dissertation, we have focused on modeling the

latent user factors related to content and user-user relationships in multiple

OSP. The modeling techniques and methodologies proposed in our user model-

ing tasks enable us to conduct better user profiling and cross-platform empirical

studies.

In Chapter 5, we proposed MultiPlatform-LDA (MultiLDA), which extends
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LDA for learning users’ latent topical interests in multiple OSPs and their

topic-specific platform preferences. MultiLDA also allows topics to be shared

between different OSPs, thus facilitating the comparison of topical interests

across platforms. Through experiments on real-world datasets, we showed

that MultiLDA is able to model user topical interests and platform preferences

across Twitter, Instagram, and Tumblr. MultiLDA is also generalizable to

learn the platform’s topics and user’s topical interests in single and multiple

OSP settings, making it a useful tool for future research that requires learning

the latent topics and user’s topical interests in OSPs.

In Chapter 6, we proposed two novel generative models, Hub and Authority

Topic model (HAT) and Multiple Platform Hub and Authority Topic model

(MPHAT), to identity topic-specific influential users in single and multiple

OSP settings. Both are extensions of the well-known HITS model which does

not consider topics nor multiple OSP setting. Through extensive experiments

on real-world and synthetic datasets, we have demonstrated that HAT and

MPHAT perform well in (a) topic modeling, (b) platform prediction, and (c)

user link recommendation, in both single and multiple OSP settings. Empir-

ically, we have applied HAT and MPHAT to identify topic-specific hubs and

authorities within and across Instagram and Twitter. HAT and MPHAT are

also generalizable and can be applied to identify influential users and perform

social recommendation in different OSPs.

7.2 Future Work

To conclude this dissertation, we discuss some potential future work.

On cross-platform empirical studies, the insights gathered from our empir-

ical studies in Chapters 3 and 4 can be applied to designing and extending

modeling techniques to learn latent user factors in multiple OSPs. For exam-

ple, from our empirical study in Chapter 3 we found that users have preferences
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in maintaining different groups of friends in different OSPs while keeping only

small cliques of common friends across multiple OSPs. This insight presents

the possibility of modeling the latent user’s friendship maintenance preferences

in multiple OSPs. Currently, the HAT and MPHAT model proposed in Chap-

ter 6 is not able to perform this modeling task because HAT and MPHAT

are designed to model user’s topic-specific relationship, i.e., user u follows v

because u is interested in a topic which v is an authority in, but not the social

relationships, i.e., u and v follow each other because they are friends. Thus,

we can design new models to learn the latent user’s friendship maintenance

preferences, which can potentially help to improve social recommendations in

OSPs.

Similarly, in Chapter 4 we found that users displayed different topical inter-

ests in the various collaborative activities in OSPs, prompting the possibility

to model the latent user’s activity-specific topical interests within and across

OSPs. The MultiLDA model proposed in Chapter 5 is not able to perform this

modeling task because MultiLDA is designed to learn the aggregated platform-

specific topical interests of a user. Thus, a new model will need to be proposed

to address the platform and activity-specific topical interests of users. This

new model can help to improve activity recommendation in OSPs.

On user modeling, a natural extension to our work in Chapters 5 and 6 is to

consider the dynamic aspect of modeling latent user factors in multiple OSPs.

For instance, users may change their topical interests in the different platform

over time. For example, a user may change their topical interests over time

to follow trending topics in Twitter but remain consistent in his or her topical

interests in Instagram. We can extend MultiLDA to learn the evolution of

user’s topical interests in multiple OSPs. The new dynamic topic model helps

better profile user’s long-term and short-term topical interests across multiple

OSPs.

Similar to users’ topical interests, users may change their influence across
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topics over time. For example, a popular sports athlete, who is an authorized

user on sport-related topics maybe gain authority on food-related topics over

time as he or she shares more content on healthy eating and is followed by

more users who are interested in food-related topics. A user may also change

his or her influence across platforms. For example, when a fashion-related au-

thority Twitter user joins Instagram, he or she may gain popularity rapidly in

Instagram and become a new fashion-related authority in Instagram because

he or she is quickly followed by other fashion-related hub users who have ac-

counts on the two OSPs. MPHAT can be extended to model these dynamic

aspects in the user’s platform and topic-specific influence. The new dynamic

user influence model can help better identify influence users and provide better

social recommendations in OSPs.

Lastly, we can continue to adopt the research framework proposed in Sec-

tion 1.2 to utilize different combinations of user-generated data to conduct new

cross-platform empirical studies and design novel user modeling techniques to

learn latent user factors in multiple OSP setting. For example, other than the

users’ social and work activities covered in Chapter 3 and 4, content sharing

and information diffusion across multiple OSPs is also an exciting direction

for cross-platform empirical studies. For example, we can examine the con-

tent sharing activities of users with accounts on multiple OSPs and identify

users who are more likely to cross-share information in multiple OSPs. We

can also determine what kind of content is more likely to be transferred and

cross-shared between OSPs.
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