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Adaptive Cost-Sensitive Online Classification
Peilin Zhao , Yifan Zhang , Min Wu , Steven C. H. Hoi , Mingkui Tan , and Junzhou Huang

Abstract—Cost-Sensitive Online Classification has drawn extensive attention in recent years, where the main approach is to directly

online optimize two well-known cost-sensitive metrics: (i) weighted sum of sensitivity and specificity and (ii) weighted misclassification

cost. However, previous existing methods only considered first-order information of data stream. It is insufficient in practice, since many

recent studies have proved that incorporating second-order information enhances the prediction performance of classification models.

Thus, we propose a family of cost-sensitive online classification algorithms with adaptive regularization in this paper. We theoretically

analyze the proposed algorithms and empirically validate their effectiveness and properties in extensive experiments. Then, for better

trade off between the performance and efficiency, we further introduce the sketching technique into our algorithms, which significantly

accelerates the computational speed with quite slight performance loss. Finally, we apply our algorithms to tackle several online

anomaly detection tasks from real world. Promising results prove that the proposed algorithms are effective and efficient in solving

cost-sensitive online classification problems in various real-world domains.

Index Terms—Cost-sensitive classification, online learning, adaptive regularization, sketching learning

Ç

1 INTRODUCTION

WITH the rapid growth of datasets, the technologies of
machine learning and data mining power many

respects of modern society: from content filtering to web
searches on social networks, and from goods recommenda-
tions to intelligent customer services on e-commerce. Gradu-
ally, many real-world large-scale applications make use of a
family of techniques called online learning, which has been
extensively studied for many years in machine learning and
datamining literatures [1], [2], [3], [4], [5], [6]. In general, online
learning is a class of efficient and scalable machine learning
methods, whose goal is to incrementally learn a model to
make correct predictions on a stream of samples. This family
of methods provides an opportunity to solve many real-world
applications that data arrives sequentially while predictions
must be made instantly, such as malicious URL detection [7],
[29] and portfolio selection[8]. In addition, online learning is
also good at solving large-scale learning tasks, e.g., learning
support vector machine frombillions of data [9].

However, although online learning was studied widely,
most existing methods were inappropriate to solve cost-
sensitive classification problems, because most of them seek
performance based on measurable accuracy or mistake rate,

which are obviously cost-insensitive. As a result, these algo-
rithms are difficult to handle numerous real-world prob-
lems, where datasets are always class-imbalanced, i.e., the
mistake costs of samples are significantly different [10], [11],
[12]. To solve this problem, researchers have suggested to
use more meaningful metrics, such as the weighted sum
of sensitivity and specificity [13], [14], and the weighted
misclassification cost [10], [15] to replace old ones. Based on
this, many batch classification algorithms are proposed to
directly optimize prediction performance for cost-sensitive
classification over the past decades [10], [15]. However,
these batch algorithms often suffer from poor scalability
and efficiency for large-scale tasks, which make them inap-
propriate for online classification applications.

Although both online classification and cost-sensitive classifi-
cation were studied widely, quite few literatures study cost-
sensitive online classification. As results, the Cost-Sensitive
Online Classification framework [16], [17] was recently
proposed to fill the gap between online learning and cost-
sensitive classification. According to this framework, a class
of algorithms named as Cost-Sensitive Online Gradient
Descend (COG) was proposed to directly optimize prede-
fined cost-sensitive metrics (e.g., weighted sum or weighted
misclassification cost) based on online gradient descent tech-
nique. Particularly, compared with other traditional online
algorithms, COG shows strong empirical performance in
solving cost-sensitive online classification problems.

However, although COG is able to handle the Cost-
sensitive online classification tasks, it only takes the first
order information of samples (i.e., weighted mean of the
gradient). It is obviously insufficient, since many recent
studies[3], [18], [19], [20] have shown that comprehensive
consideration with second-order information (i.e., the corre-
lations between features) significantly enhances the perfor-
mance of online classification.

As an attempt to remedy the limitation of first-order
approaches, we propose the Adaptive Regularized
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Cost-Sensitive Online Gradient Descent algorithms (named
ACOG), based on the state-of-the-art Confidence Weighted
strategy [3], [18], [19], [20]. We theoretically analyze their
regret bounds [21] and their cost-sensitive metric bounds.
Corresponding conclusions confirm the good convergence
of ACOG algorithms.

Furthermore, although enjoying the advantage of
second-order information, our proposed algorithms are at
the cost of higher running time, because the updating pro-
cess of correlation matrix is time-consuming. As results, it
may be inappropriate for some real-world applications with
quite high-dimensional datasets. Thus, for better trade off
between the efficiency and performance, we further propose
an updated version of ACOG algorithms based on sketch-
ing techniques [22], [23], [24], [25], whose running time is
linear in the dimensions of samples, just like the first order
methods.

Next, we conduct extensive experiments to evaluate the
performance and specialities of our proposed algorithms
and then apply them to solve online anomaly detection
tasks from several real-world domains. Promising results
confirm the effectiveness and efficiency of our methods in
real-world cost-sensitive online classification problems.

Note that a brief version of this paper had been pub-
lished in the IEEE ICDM conference [26]. Compared with it,
this journal manuscript makes several significant exten-
sions, including (1) an updated variant with sketching
methods and some theoretical analyses about its time com-
plexity; (2) an extension of ACOG with an additional loss
function and theoretical analyses; (3) more extensive empir-
ical studies to evaluate the proposed algorithms.

The rest of this paper is organized as follows. We present
the problem formulation and the proposed algorithms
with theoretical analyses in Section 2. To save space, we pro-
vide theorem proofs and related work in Appendixes.1

Next, we propose an efficient version based on sketching
techniques in Section 3. After that, Section 4 empirically
evaluates the performance and properties of our algorithms,
and Section 5 shows an application to real-world anomaly
detection tasks. Finally, Section 6 concludes the paper.

2 SETUP AND ALGORITHM

In this section, we first introduce the framework and formu-
lation setting of the Cost-Sensitive Online Classification
problem [16], [17]. Then, we present the proposed Adap-
tively Regularized Cost-Sensitive Online Gradient Descent
algorithms (ACOG) in detail.

2.1 Problem Setting

Without loss of generality, we consider online binary classi-
fication problems here. The main goal is to learn a linear
classification model with an updatable predictive vector
w 2 Rd, based on a stream of training samples fðx1; y1Þ;
ðx2; y2Þ; . . . ; ðxT ; yT Þg, where T is the total quantity of sam-
ples, xt 2 Rd is the d-dimensional sample at time t, and
yt 2 f�1; 1g is the corresponding true class label. In detail,
at the tth round of learning, the learner obtains a sample xt
and then predicts its estimated class label ŷt ¼ signðw>t xtÞ,

where wt is the model predictive vector learnt from the pre-
vious t� 1 samples. Then, the model receives the ground
truth of instance yt 2 f�1; 1g, which is the label of true class.
If ŷt ¼ yt, the model makes a correct prediction; otherwise,
it makes a mistake and suffers a loss. In the end, the learner
updates its predictive vector wt based on the received pain-
ful loss.

For convenience, we define M¼ ft jyt 6¼ signðwt � xtÞ;
8t 2 ½T �g is the mistake index set, Mp ¼ ft 2 M and
yt ¼ þ1g is the positive set of mistake index andMn ¼ ft 2
M and yt ¼ �1g is the negative one. In addition, we set
M ¼ jMj, Mp ¼ jMpj and Mn ¼ jMnj to denote the number
of total mistakes, positive mistakes and negative mistakes.
Moreover, we denote the index sets of all positive samples
and all negative samples by I pT ¼ fi 2 ½T �jyi ¼ þ1g and
InT ¼ fi 2 ½T �jyi ¼ �1g, where Tp ¼ jIpT j and Tn ¼ jInT j
denote the number of positive samples and negative
samples.

For performance metrics of this problem, we first assume
the positive samples as rare class, i.e., Tp � Tn. Generally,
traditional online classification approaches are eager to
maximize accuracy (or minimize mistake rate equivalently):

accuracy ¼ T �M

T
:

However, this metric is inappropriate for imbalanced
data, because models can easily obtain high accuracy, even
simply classifying all imbalanced samples as negative class.
So, a more suitable approach is to measure the sum of
weighted sensitivity and specificity:

sum ¼ ap � Tp �Mp

Tp
þ an � Tn �Mn

Tn
;

where ap;an 2 ½0; 1� are weight parameters for trade off
between sensitivity and specificity, and ap þ an ¼ 1. Note
that if ap ¼ an ¼ 0:5, the sum metric becomes the famous
balanced accuracymetric.

In addition, another metric to measure is the misclassifi-
cation cost suffered by the model:

cost ¼ cp �Mp þ cn �Mn;

where cp; cn 2 ½0; 1� are misclassification cost parameters for
positive and negative instances, and cp þ cn ¼ 1. Generally,
either the higher of the sum value or the lower of the cost
value, the better performance of classification.

Then, we can adjust our focus to maximize summetric or
minimize cost metric. As is known in [16], [17], both objec-
tives are equivalent to minimizing the following objective:X

yt¼þ1
rIðytw�xt < 0Þ þ

X
yt¼�1

Iðytw�xt < 0Þ; (1)

where r ¼ apTn
anTp

for weighted sum metric and r ¼ cp
cn

for
weighted costmetric.

2.2 Algorithm

In this section, we present the proposed ACOG algorithms
by optimizing the objective from Eq. (1). However, this
objective function is non-convex. Thus, to facilitate the opti-
mization, we replace the indicator function with its convex1. https://arxiv.org/pdf/1804.02246.pdf
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variants (either one of the following two functions):

‘Iðw; ðx; yÞÞ ¼ maxð0; ðr � Iðy¼1ÞþIðy¼�1ÞÞ�yðw � xÞÞ; (2)

‘IIðw; ðx; yÞÞ ¼ ðr � Iðy¼1ÞþIðy¼�1ÞÞ �maxð0; 1�yðw � xÞÞ: (3)

For ‘Iðw; ðx; yÞÞ, the change of margin yields more
“frequent” updates for specific class, compared to the
traditional hinge loss; while for ‘IIðw; ðx; yÞÞ, the change
of the slope causes to more “aggressive” updates for spe-
cific class.

Then, our aim is to minimize the regret of learning pro-
cess [21], based on either loss functions ‘Iðw; ðx; yÞÞ or
‘IIðw; ðx; yÞÞ:

Regret :¼
XT
t¼1

‘ðwt; ðxt; ytÞÞ �
XT
t¼1

‘ðw�; ðxt; ytÞÞ; (4)

where w� ¼ arg mint
PT

t¼1r‘ðw; ðxt; ytÞÞ. To solve this opti-
mization problem, the cost-sensitive online gradient descent
algorithms (COG) [16], [17] were proposed:

wtþ1 ¼ wt � hr‘tðwtÞ;
where h is the learning rate and ‘tðwtÞ ¼ ‘ðw; ðxt; ytÞÞ. How-
ever, COG algorithms only consider the first order gradient
information of the sample stream to update the learner,
which is clearly insufficient since many recent studies have
shown the significance of incorporating the second order
information [3], [18], [19], [20]. Motivated by this discovery,
we propose to introduce adaptive regularization to promote
the cost-sensitive online classification.

Let us assume the online model satisfies a multivariate
Gaussian distribution, i.e., w 	 Nðm;SÞ , where m is the
mean value vector of distribution and S is the covariance
matrix of distribution. Then, we can predict the class label
of an sample x based on signðw>xÞ, when given a definite
multivariate Gaussian distribution. In reality, it is more
practical to make predictions by simply using distribution
mean E½w� ¼ m rather than w. So, the rule of model predic-
tion actually adopts signðm>xÞ in the following. For better
understanding, each mean value mi can be regarded as the
model’s knowledge about the feature i; while the diagonal
entry of covariance matrix Si;i is regarded as the confidence
of feature i. Generally, the smaller of Si;i, the more confi-
dence in the mean weight mi for feature i. In addition to
diagonal values, other covariance terms Si;j can be under-
stood as the correlations between two mean weight value mi

and mj for feature i and j.
Given a multivariate Gaussian distribution, we naturally

recast the object functions by minimizing the following
unconstraint objective, based on the divergence between
empirical distribution and probability distribution:

DKLðN ðm;SÞjjN ðmt;StÞÞ þ h‘tðmÞ þ 1

2g
x>t Sxt;

where DKL is the Kullback-Leibler divergence, h is fitting
parameter and g is regularized parameter. Specifically, this
objective helps to reach trade off between distribution diver-
gence (first term), loss function (second term) and model
confidence (third term). In other word, the objective would
like to make the least adjustment at each round to minimize

the loss and optimize the confidence of model. To solve this
optimization problem, we first depict the Kullback-Leibler
divergence explicitly:

DKL

�Nðm;SÞjjN ðmt;StÞ
�

¼ 1

2
log

� detSt

detS

�
þ 1

2
TrðS�1t SÞ þ 1

2
jjmt � mjj2

S�1t
� d

2
:

However, this optimization function dose not have the
closed-form solution. Thus, we change the loss term ‘tðmÞ
with its first order Taylor expansion ‘tðmtÞ þ g>t ðm� mtÞ,
where gt ¼ @‘tðmtÞ. Now, we obtain the final optimization
objective by removing constant terms:

ftðm;SÞ ¼ DKLðN ðm;SÞjjN ðmt;StÞÞþhg>t mþ
1

2g
x>t Sxt; (5)

which is much easier to be solved.
A simple method to solve this objective function is to

decompose it into two parts depending on m and S, respec-
tively. Then, the updates of mean vector m and covariance
matrix S can be performed independently:
� Update the mean parameter:

mtþ1 ¼ arg min
m

ftðm;SÞ;

� If ‘tðmtÞ 6¼ 0, update the covariance matrix:

Stþ1 ¼ arg min
S

ftðm;SÞ:
For the update of mean parameter, setting the derivative

of @mftðmtþ1;SÞ as zero will give:

S�1t ðmtþ1 � mtÞ þ hgt ¼ 0 ¼) mtþ1 ¼ mt � hStgt;

while for covariance matrix, setting the derivative of
@Sftðm;Stþ1Þ as zero will result in:

�S�1tþ1 þ S
�1
t þ

xtx
>
t

g
¼ 0 ¼) S

�1
tþ1 ¼ S

�1
t þ

xtx
>
t

g
;

where adopting the Woodbury identity [28] will give:

Stþ1 ¼ St � Stxtx
>
t St

g þ x>t Stxt
: (6)

Note that the update of mean parameter m relies on the
confidence parameter S, we thus propose to update m based
on the updated covariance matrix Stþ1 instead of the old
one St, which should be more accurate:

mtþ1 ¼ mt � hStþ1gt: (7)

This is different from AROW [20], where the updating
rule of mt based on the old matrix St. To intuitively under-
stand this change, let us assume Stþ1 as a diagonal matrix.
Then, we can find that the updating process actually assigns
the updating value of each dimension with different self-
adaptive learning rates. So, it is more appropriate to update
m, with the learning rate that considers the current sample.
In other words, the more unconfident of the weight, the
more aggressive of its updates. Then, we summarize the
proposed Adaptive Regularized Cost-Sensitive Online Gra-
dient Descent (ACOG) in Alogrithm 1.
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Algorithm 1. Adaptive Regularized Cost-Sensitive
Online Gradient Descent (ACOG)

Input learning rate h; regularized parameter g; bias parameter

r ¼ ap�Tn
an�Tp for “sum“ and r ¼ cp

cn
for “cost“.

Initialization m1 ¼ 0, S1 ¼ I.
1: for t ¼ 1! T do
2: Receive sample xt;
3: Compute ‘tðmtÞ¼‘�ðmt; ðxt; ytÞÞ; where � 2 fI; IIg;
4: if ‘tðmtÞ > 0 then

5: Stþ1 ¼ St � Stxtx
>
t St

gþx>t Stxt
;

6: mtþ1 ¼ mt � hStþ1gt; where gt ¼ @m‘tðmtÞ;
7: else
8: mtþ1 ¼ mt;Stþ1 ¼ St;
9: end if
10: end for

For simplification, we ignore the sample numbers T in the
analyses of algorithms efficiency. Thus the time complexity
for the updates of Stþ1 and m are both Oðd2Þ, so the overall
time complexity for ACOG is Oðd2Þ, which is quite slower
than the first order COG algorithms, especially for high-
dimensional datasets. To reduce the time complexity,We pro-
pose to use the diagonal version of ACOG (i.e., ACOGdiag),
which accelerates the speed of ACOG algorithms to OðdÞ.
Specifically, only a diagonal version St would be maintained
and updated at round t, which can improve computational
efficiency and savememory cost.

Remark. In ACOG algorithms, one practical concern is the
setting of the value of r, when optimizing theweighted sum

performance. Normally, r is denoted as r ¼ apTn
anTp

for sum

metric. However, the value of Tp and Tn might be unknown
in advance on real-world online classification tasks. A prac-
tical method is to approximate the ratio Tn

Tp
according to the

empirical distribution of the past training instances, and

adaptively update Tn
Tp

during the online learning process. In

addition, we would empirical examine this problem in
experiments.

2.3 Theoretical Analysis

In this section, we theoretically analyze the proposed ACOG
algorithms in terms of two cost-sensitive metrics. Before
that, we first prove an important theorem, which gives the
regret bounds for algorithms that contributes to later theo-
retical analyses.

Theorem 1. Let ðx1; y1Þ; ðx2; y2Þ; . . . ; ðxT ; yT Þ be a sequence of

samples, where xt 2 Rd; yt 2 f�1; 1g. Then for any m 2 Rd,

by setting h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxt�T jjmt�mjj2TrðS�1Tþ1Þ

glog ðjS�1Tþ1jÞ

r
, the proposed ACOG-I

satisfies:

Regret � Dm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gTrðS�1Tþ1Þlog ðjS�1Tþ1jÞ

q
;

where Dm ¼ maxtjjmt � mjj. In addition, by setting

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxt�T jjmt�mjj2TrðS�1Tþ1Þ

r2glog ðjS�1Tþ1jÞ

r
, ACOG-II satisfies:

Regret � rDm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gTrðS�1Tþ1Þlog ðjS�1Tþ1jÞ

q
:

Remark. Let us suppose jjxtjj � 1, it is easy to discover
TrðS�1Tþ1Þ � OðT=gÞ, which means the regrets of ACOG
are in the order of Oð ffiffiffiffi

T
p Þ. This order of regret is the opti-

mal, since the loss function is not strongly convex [43].

Theorem 2. Under the same assumptions in the Theorem 1, by
setting r ¼ apTn

anTp
, for any m 2 Rd the ACOG-I satisfies:

sum 
 1�an

Tn

XT
t¼1

‘tðmÞþDm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gTrðS�1Tþ1Þlog ðjS�1Tþ1jÞ

q" #
;

and the ACOG-II satisfies:

sum 
 1�an

Tn

XT
t¼1

‘tðmÞþrDm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gTrðS�1Tþ1Þlog ðjS�1Tþ1jÞ

q" #
:

Remark. It is easy to verify that
PT

t¼1 ‘tðmÞ is a convex esti-

mate of rMp þMn for m, so an
Tn

PT
t¼1 ‘tðmÞ is an estimate of

ap
Mp

Tp
þ an

Mn
Tn
. In addition, it is worthy noting that an can-

not be set as zero, since r ¼ apTn
anTp

. However, one limitation

here is that we may not know Tn
Tp

in advance for a real-

world online learning task. To solve this issue, an alterna-

tive approach is to consider the cost metric, which does

not need the Tn
Tp

term in advance because r ¼ cp
cn
.

Theorem 3. Under the same assumptions in the Theorem 1, by
setting r ¼ cp

cn
, for any m 2 Rd, the ACOG-I satisfies:

cost � cn
XT
t¼1

‘tðmÞþDm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gTrðS�1Tþ1Þlog ðjS�1Tþ1jÞ

q" #
;

and the ACOG-II satisfies:

cost � cn
XT
t¼1

‘tðmÞþrDm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gTrðS�1Tþ1Þlog ðjS�1Tþ1jÞ

q" #
:

Remark. For the costmetric,
PT

t¼1 ‘tðmÞ is a convex estimate

of
cp
cn
Mp þMn, and so cn

PT
t¼1 ‘tðmÞ is an estimate of

cpMp þ cnMn. Moreover, one should note that cn cannot

be set as zero because of r ¼ cp
cn
.

3 ENHANCED ALGORITHM WITH SKETCHING

As mentioned above, the time complexity of ACOG is Oðd2Þ
and its diagonal version is OðdÞ. However, the diagonal
ACOG cannot enjoy the correlation information between
different dimensions of samples. When instances have low
effective rank, the regret bound of diagonal ACOG may be
much worse than its full-matrix version due to the lack of
enough dependance on the data dimensionality [24]. Unfor-
tunately, real-world high-dimensional datasets are common
to have such low rank settings with abundant correlations
between features. So for those real-world datasets, it is more
appropriate to choose the full matrix version. However,
ACOG has one limitation that it will take a large amount
of time, when receiving quite high-dimensional samples.
To better balance the performance and the running time,
we propose an enhanced version of our algorithms, named
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Sketched Adaptive Regularized Cost-Sensitive Online Gra-
dient Descent (SACOG).

3.1 Sketched Algorithm

In this section, we will present the enhanced version of
ACOG via Oja’s sketch method [22], [41], [42], which is
designed to accelerate computation efficiency when the sec-
ond order matrix of sequential data is low rank.

In detail, the main idea of SACOG is to approximate the
second covariance matrix S by a small number of carefully
selective directions, called as a sketch.

According to Eqs. (6) and (7), we know the updating rule
of model parameter m:

mtþ1 ¼ mt � hStþ1gt;

and the incremental formula of covariance matrix:

S
�1
tþ1 ¼ S

�1
t þ

xtx
>
t

g
;

which can be expressed in another way:

S
�1
tþ1 ¼ Id þ

Xt

i¼1

xix
>
i

g
; (8)

where d is the dimensionality of instance.
Let Xt 2 Rt�d be a matrix, whose tth row is x̂>t , where we

define x̂t ¼ xtffiffi
g
p as the to-sketch vector. Then, the Eq. (8) can

be written as:

S
�1
tþ1 ¼ Id þX>t Xt:

Now, we define St 2 Rm�d as sketch matrix to approxi-
mateXt, where the sketch sizem� d is a small constant.

When m is chosen so that X>t Xt can be approximated by
S>t St well, the Eq. (8) can be redefined as:

S�1tþ1 ¼ Id þ S>t St:

Then by the Woodbury identity[28], we have:

Stþ1 ¼ Id � S>t HtSt; (9)

where Ht ¼ ðIm þ StS
>
t Þ�1 2 Rm�m. Then, we rewrite the

updating rule of parameter m:

mtþ1 ¼ mt � hðgt � S>t HtStgtÞ: (10)

Based on above, we summarize Sketched ACOG in
Algorithm 2.

Then we discuss how to maintain the matrices St and Ht

efficiently via sketching technique, where we compute
eigenvalues and eigenvectors of sequential data through
online gradient descent with to-sketch vector x̂t as input.

In detail, let the diagonal matrix Lt 2 Rm�m contain the
approximated eigenvalues and Vt 2 Rm�d be the estimated
eigenvectors at round t. According to Oja’s algorithm [41],
[42], the updating rules of Lt and Vt are defined as:

Lt ¼ ðIm � GtÞLt�1 þ GtdiagfVt�1x̂tg2; (11)

Vt  �orth Vt�1 þ GtVt�1x̂tx̂>t ; (12)

where learning rate Gt ¼ 1
t Im 2 Rm�m is a diagonal matrix,

and  �orth represents an orthonormalizing step.2 Then, the
sketch matrices can be obtained by:

St ¼ ðtLÞ
1
2Vt;

Ht ¼ diag
1

1þ tL1;1
; . . . ;

1

1þ tLm;m

� �
:

(13)

Algorithm 2. Sketched Adaptive Regularized Cost-Sensi-
tive Online Gradient Descent (SACOG)

Input learning rate h; regularized parameter g; sketch size m;
bias r ¼ ap�Tn

an�Tp for “sum“ and r ¼ cp
cn
for “cost“.

Initialization m1 ¼ 0, sketchðS0; H0Þ  SketchInitðmÞ.
1: for t ¼ 1! T do
2: Receive sample xt;
3: Compute ‘tðmtÞ¼‘�ðmt; ðxt; ytÞÞ; where � 2 fI; IIg;
4: Compute the t-sketch vector x̂t ¼ xtffiffi

g
p ;

5: ðSt;HtÞ  SketchUpdateðx̂Þ;
6: if ‘tðmtÞ > 0 then
7: mtþ1 ¼ mt�hðgt�S>t HtStgtÞ; where gt¼@m‘tðmtÞ;
8: else
9: mtþ1 ¼ mt:
10: end if
11: end for

Since the rows of St are always orthogonal, Ht is an effi-
ciently maintainable diagonal matrix all the way. We sum-
marize the Oja’s sketching technique in Algorithm 3.

Algorithm 3. Oja’s Sketch for SACOG

Inputm, x̂ and stepsize matrix Gt.
Internal State t, L, V andH:
SketchInitðmÞ

1: Set t ¼ 0; S ¼ 0m�d;H ¼ Im;L ¼ 0m�m
and V to anym� dmatrix with orthonormal rows;

2: Return ðS;HÞ:
SketchUpdateðx̂Þ

1: Update t tþ 1;
2: Update L ¼ ðIm � GtÞLþ GtdiagfV x̂g2;
3: Update V  orth V þ GtV x̂x̂>;
4: Set S ¼ ðtLÞ12V ;
5: SetH ¼ diagf 1

1þtL1;1
; . . . ; 1

1þtLm;m
g;

6: Return ðS;HÞ:

Remark. The time complexity of this algorithm is Oðm2dÞ
per round because of the orthonormalizing operation,
and one can update the sketch every m rounds to
improve time complexity to OðmdÞ [44]. Another concern
is the regret guarantee, which is not clear now because
existing analysis for Oja’s algorithm is only for the sto-
chastic situation [22]. However, SACOG provides good
empirical performance.

3.2 Sparse Sketched Algorithm

However, even via sketching, SACOG algorithms are still
quite slower than most online first order methods, because

2. For sake of simplicity, Vt þ Gtþ1Vtx̂tx̂
>
t is assumed as full rank

with rows all the way, so that the �orth operation always keeps the same
dimensionality of Vt.
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they cannot enjoy the sparse information of samples while
first-order algorithms can. The question is that in many
real-world applications, the samples are normally high
sparse that the number of nonzero elements satisfies
jjxjj0 � swith some small constants s� d.

As results, many first order methods can enjoy a per-
round running time depending on s rather than d. But for
SACOG, even when samples are sparse, the sketch matrix
St still becomes dense quickly, because of the orthonormal-
izing updating of Vt. For this reason, the updates of mt can-
not enjoy the sparsity of samples. To handle this question,
we propose an enhanced sparse version of SACOG to
achieve a purely sparsity-dependent time cost.

The main idea is that we adjust the formulations of eigen-
vector Vt and predictive vector mt, so that the updates of
them are always sparse. In detail, there are two key modifi-
cations for SACOG: (1) The Eigenvectors Vt are modified as
Vt ¼ FtZt, where Ft 2 Rm�m is an orthonormalizing matrix
so that FtZt is orthonormal, and Zt 2 Rm�d is a sparsely
updatable direction. (2) The weights mt fall into two parts
mt ¼ wt þ Z>t�1bt, where wt 2 Rd captures the sparsely upda-
ting weights on the complementary subspace, and bt 2 Rm

captures the weights on the subspace form Vt�1 (same
as Zt�1). Then, we describe how to sparsely update two
weight parts wt and bt. First, from Eq. (13), we know

St ¼ ðtLÞ
1
2Vt ¼ ðtLÞ

1
2FtZt. Then, we have:

mtþ1 ¼mt � hðId � S>t HtStÞgt
¼wt þ Z>t�1bt � hgt þ hZ>t F

>
t ðtLHtÞFtZtgt

¼½wt � hgt � ðZt � Zt�1Þ>bt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wtþ1

� þ Z>t ½bt þ hF>t ðtLHtÞFtZtgt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
btþ1

�:

According to this, we can define the updating rule of wt:

wtþ1 ¼wt � hgt � ðZt � Zt�1Þ>bt
¼wt � hgt � x̂td

>
t bt;

(14)

where Zt¼Zt�1þdtx̂>t , and define the updating rule of bt:

btþ1 ¼ bt þ hF>t ðtLtHtÞFtZtgt: (15)

Based on above, we summarize the sparse SACOG in
Algorithm 4.

Next, we describe how to update Lt, Ft and Zt. First, we
rewrite the updating rule of eigenvalues Lt from Eq. (11):

Lt ¼ ðIm � GtÞLt�1 þ GtdiagfFt�1Zt�1x̂tg2: (16)

Then from Eq. (12), we have:

FtZt  orthFt�1Zt�1 þ GtFt�1Zt�1x̂tx̂
>
t ;

¼Ft�1ðZt�1 þ F�1t�1GtFt�1Zt�1x̂tx̂
>
t Þ:

(17)

Here, Zt ¼ Zt�1 þ dtx̂
>
t , where dt ¼ F�1t�1GtFt�1Zt�1x̂t (note

that Ft is always invertible because of Footnote 1). Now, it is
easy to note that Zt � Zt�1 is a sparse rank-one matrix,
which represents the update of wt is efficient.

Finally, for the update of Ft so that FtZt is also ortho-
normalizing, we apply the Gram-Schmidt algorithm to Ft�1
in a Banach space, where the inner product is defined as
ha; bi ¼ a>Ktb and Kt ¼ ZtZ

>
t is the Gram matrix (See

Algorithm 6). Then, we can update Kt efficiently based on
the update of Zt:

Kt ¼ ZtZ
>
t ;

¼ ðZt�1 þ dtx̂
>
t ÞðZt�1 þ dtx̂

>
t Þ>;

¼ Kt�1 þ Zt�1x̂td
>
t þ dtx̂

>
t Z
>
t�1 þ dtx̂

>
t x̂td

>
t :

(18)

Algorithm 4. Sparse Sketched Adaptive Regularized
Cost-Sensitive Online Gradient Descent (SACOG)

Input learning rate h; regularized parameter g; sketch size m;

bias r ¼ ap�Tn
an�Tp for “sum“ and r ¼ cp

cn
for “cost“.

Initialization w1 ¼ 0d�1, b1 ¼ 0m�1;
Initialization Sketch ðL0; F0; Z0; H0Þ  SketchInitðmÞ;
1: for t ¼ 1! T do
2: Receive sample xt;
3: Compute ‘tðmtÞ¼‘�ðmt; ðxt; ytÞÞ; where � 2 fI; IIg;
4: Compute the t-sketch vector x̂t ¼ xtffiffi

g
p ;

5: ðLt; Ft; Zt; Ht; dtÞ  SketchUpdateðx̂Þ;
6: if ‘tðmtÞ > 0 then
7: wtþ1 ¼ wt � hgt � x̂td

>
t bt;

8: btþ1 ¼ bt þ hF>t ðtLtHtÞFtZtgt;
9: mtþ1 ¼ wtþ1 þ Z>t btþ1;
10: else
11: mtþ1 ¼ mt, wtþ1 ¼ wt, btþ1 ¼ bt:
12: end if
13: end for

We summarize the Sparse Oja’s algorithm for SACOG in
Algorithm 5.

Algorithm 5. Sparse Oja’s Sketch for SACOG

Inputm, x̂ and stepsize matrix Gt.
Internal State t, L, F , Z,K andH:
SketchInitðmÞ

1: Set t ¼ 0; F ¼ K ¼ H ¼ Im;L ¼ 0m�m
and Z to anym� dmatrix with orthonormal rows;

2: Return ðL; F; Z;HÞ:
SketchUpdateðx̂Þ
1: Update t tþ 1;
2: L ¼ ðIm � GtÞLþ GtdiagfFZx̂g2;
3: Set d ¼ F�1GtFZx̂

>;
4:K  K þ Zx̂d> þ dx̂>Z> þ dx̂>x̂d>;
5: Z  Z þ dx̂>;
6: ðL;QÞ  DecomposeðF;KÞ,
where LQZ ¼ FZ and QZ is orthogonal;

7: Set F ¼ Q;
8: SetH ¼ diagf 1

1þtL1;1
; . . . ; 1

1þtLm;m
g;

9: Return ðL; F; Z;H; dÞ:

Remark. Note that the most time-consuming step is the
update of Ft (See line 3 in Algorithm 6), which is Oðm3Þ.
In addition, the time complexity for update of wt is OðmsÞ
and that of bt is Oðm2 þmsÞ. Thus, the overall time com-
plexity of sparse ACOG per round is Oðm3 þmsÞ. One
can improve the running time per round to Oðm2 þmsÞ
by only updating the sketch every m rounds. To the best
of our knowledge, this is the first time that sparse Oja’s
sketch method is applied to the cost-sensitive online clas-
sification problem.
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Algorithm 6. DecomposeðF;KÞ
Input F 2 Rm�m and Gram matrixK ¼ ZZ> 2 Rm�m;
Initialization L ¼ 0m�m and Q ¼ 0m�m;
1: for i ¼ 1! m do
2: Let f> be the ith row of F ;
3: Compute a ¼ QKf , b ¼ f �Q>a and c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b>Kb

p
;

4: if c 6¼ 0 then
5: Insert 1

c b
> to the ith row of Q;

6: end if
7: Set the ith entry of a to be c;
8: Insert a to the ith row of L;
9: end for
10: Delete the all-zero columns of L and all-zero rows of Q;
11: Return ðL;QÞ:

4 EXPERIMENTS

In this section, we first evaluate the performance and char-
acteristics of the original algorithms (i.e., ACOG and its
diagonal version). After that, we further evaluate the effec-
tiveness and efficiency of sketched variants (i.e., SACOG
and its sparse version).

4.1 Experimental Testbed and Setup

At the beginning,we compareACOGand its diagonal variant,
with several famous standard online learning algorithms as
follows: (1) Perceptron Algorithm [1], [38]; (2) Relaxed Online
Maximum Margin Algorithm [39] (“ROMMA“); (3) Passive-
Aggressive algorithm [36] (“PA-I“ and “CPA-PB“); (4) Per-
ceptron Algorithm with Uneven Margin [40] (“PAUM“);
(5) Adaptive Regularization ofWeight Vector [20] (“AROW“);
(6) Cost-Sensitive Online Gradient Descent [16], [17]
(“COG-I“ and “COG-II“), from which ACOG was derived.
All algorithms were evaluated on 4 benchmark datasets as
listed in Table 1,which are obtained fromLIBSVM.3

For data preprocessing, all samples are normalized by
xt  xt

kxtk2, which is extensively used in online learning,

since samples are obtained sequentially.
For a valid comparison, all algorithms used the same

experimental settings. We set ap ¼ an ¼ 0:5 for sum, and
cp ¼ 0:9 and cn ¼ 0:1 for cost. The value of r was set to

ap�Tn
an�Tp

for sum and
cp
cn

for cost, respectively. For CPAPB algorithm,
rð�1; 1Þ was set to 1, and rð1;�1Þ was r. For PAUM, the
uneven margin was set to r. In addition, the parameter of C
for PA-I, learning rate � for COG and learning rate h for all
our proposed algorithms were selected from ½10�5;
10�4; . . . ; 105�. The regularized parameter g for AROW and
all our algorithms were set as 1.

On each dataset, experiments were conducted over 20
random permutations of instances. Results are reported

through the average performance of 20 runs and evaluated
by 4 metrics: sensitivity; specificity, the weighted sum of
sensitivity and specificity, and the weighted cost of misclas-
sification. All algorithms were implemented in MATLAB
on a 3.40GHzWinodws machine.

4.2 Evaluation with Sum Metrics

4.2.1 Evaluation of Weighted Sum Performance

First of all, we aim to evaluate the weighted sum perfor-
mance of ACOG and its diagonal version. Table 2 summa-
ries the experimental results on 4 datasets, and Fig. 1 shows
the development of online average sum performance on all
datasets, respectively.

From Fig. 1 and Table 2, we can find that second-order
algorithms (i.e., our proposed ACOG algorithms and regu-
lar AROW algorithm) outperform first-order algorithms on
almost all datasets. This confirms the effectiveness of intro-
ducing the second order information into online classifica-
tion. At the same time, ACOG algorithms significantly
outperform all other online learning algorithms including
AROW on all datasets, which confirms the superiority of
combination between the second order information and
cost-sensitive online classification.

Then by evaluating both sensitivity and specificity met-
rics, our proposed algorithms not only achieve the best
sensitivity on all datasets, but also produce a fairly good
specificity for most datasets. This implies the proposed
ACOG approaches are effective in improving prediction
accuracy for rare class samples.

Moreover, while ACOGdiag algorithms achieve smaller
sum than ACOG algorithms, their computations are faster.
This indicates the diagonal ACOG algorithms have ability
to balance the effectiveness and efficiency.

4.2.2 Evaluation of Sum under Varying Weights

In this section, we would like to evaluate the sum of
proposed methods under different cost-sensitive weights.
Fig. 2 shows the empirical results under different weights of
an and ap. We find that our proposed algorithms consis-
tently outperform all other algorithms under different val-
ues of weight on almost all datasets. This further validates
the effectiveness of the proposed methods.

4.3 Evaluation with Cost Metrics

4.3.1 Evaluation of Weighted Cost Performance

Table 2 summaries the experimental performance of the
ACOGcost on 4 datasets in terms of cost metrics, and Fig. 3
illustrates the development of online cost performance at
each iteration.

By evaluating the cost performance in Fig. 3 and Table 2,
our proposed methods achieve much lower misclassifica-
tion cost than other methods among all cases. For example,
the overall cost of ACOG is about less than half of cost
made by all regular first-order algorithms (i.e., perceptron,
ROMMA, PA-I, PAUM and CPAPB). This implies that intro-
ducing the second order information is beneficial to the
decrease of misclassification cost.

In addition, by examining both sensitivety and
specificity metrics, we observe that our proposed methods

TABLE 1
List of Binary Datasets in Experiments

Dataset #Examples #Features #Pos:#Neg

covtype 581012 54 1:1
german 1000 24 1:2.3
a9a 48842 123 1:3.2
ijcnn1 141691 22 1:9.4

3. https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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often achieve the best sensitivity result on all datasets, and
attain a relatively good specificity among all cases.

Moreover, the diagonal ACOGdiag methods achieve
higher cost value than ACOG methods, but their running
time are lower. This is similar with the situation based on
sum metric. Thus, the ACOGdiag methods can be regarded
as a choice to balance the performance and efficiency.

4.3.2 Evaluation of Cost under Varying Weights

In this section, we examine the cost performance under dif-
ferent cost-sensitive weights cn and cp for our proposed
algorithms. From the results in Fig. 4, we observe that the
proposed algorithms outperform almost all other algo-
rithms under different weights. And only on a few datasets,
AROW can achieve similar performance with our proposed

TABLE 2
Evaluation of the Cost-Sensitive Classification Performance of ACOG and Other Algorithms

Algorithm “sum” on a9a “cost” on a9a
Sum(%) Sensitivity(%) Specificity (%) Time(s) Cost(102) Sensitivity(%) Specificity (%) Time(s)

Perceptron 71.343 � 0.215 56.406 � 0.327 86.280 � 0.102 0.196 50.951 � 0.382 56.406 � 0.327 86.280 � 0.102 0.191
ROMMA 70.904 � 0.239 57.918 � 0.493 83.889 � 0.262 0.225 50.184 � 0.361 57.989 � 0.346 83.863 � 0.227 0.224
PA-I 71.274 � 0.169 56.310 � 0.277 86.237 � 0.113 0.212 51.068 � 0.311 56.310 � 0.277 86.237 � 0.113 0.212
PAUM 78.255 � 0.155 70.868 � 0.345 85.643 � 0.116 0.192 35.976 � 0.346 70.868 � 0.345 85.643 � 0.116 0.197
CPAPB 72.678 � 0.209 62.818 � 0.345 82.537 � 0.145 0.254 42.517 � 0.326 66.818 � 0.285 79.503 � 0.132 0.246
AROW 75.854 � 0.188 58.858 � 0.510 92.849 � 0.153 5.591 45.931 � 0.486 58.858 � 0.510 92.849 � 0.153 5.104
COG-I 78.978 � 0.128 71.967 � 0.264 85.990 � 0.137 0.192 28.632 � 0.263 79.390 � 0.241 81.284 � 0.107 0.190
COG-II 79.126 � 0.103 81.038 � 0.243 77.213 � 0.168 0.201 25.527 � 0.182 89.013 � 0.171 62.398 � 0.243 0.193
ACOG-I 79.903 � 0.109 73.561 � 0.347 86.244 � 0.162 3.080 26.760 � 0.291 81.129 � 0.340 81.398 � 0.219 2.837
ACOG-II 81.220 � 0.108 85.269 � 0.219 77.171 � 0.134 3.344 20.307 � 0.169 94.079 � 0.136 62.107 � 0.185 3.612
ACOG-Idiag 79.827 � 0.094 73.361 � 0.245 86.293 � 0.103 0.202 26.917 � 0.253 80.990 � 0.282 81.369 � 0.147 0.205
ACOG-IIdiag 81.098 � 0.083 84.705 � 0.227 77.491 � 0.152 0.216 20.661 � 0.110 93.352 � 0.126 63.212 � 0.238 0.213

Algorithm “sum” on covtype “cost” on covtype
Sum(%) Sensitivity(%) Specificity (%) Time(s) Cost(102) Sensitivity(%) Specificity (%) Time(s)

Perceptron 52.609 � 0.057 51.364 � 0.058 53.854 � 0.057 1.649 1377.464 � 1.638 51.364 � 0.058 53.854 � 0.057 1.662
ROMMA 52.164 � 0.674 50.819 � 0.731 53.509 � 0.647 2.233 1391.250 � 19.560 50.860 � 0.702 53.541 � 0.614 2.295
PA-I 51.666 � 0.056 50.324 � 0.061 53.008 � 0.063 1.869 1406.500 � 1.675 50.324 � 0.061 53.008 � 0.063 1.913
PAUM 54.268 � 0.059 52.588 � 0.089 55.949 � 0.066 1.693 1340.022 � 2.311 52.588 � 0.089 55.949 � 0.066 1.709
CPAPB 51.667 � 0.057 50.552 � 0.063 52.781 � 0.065 2.135 1194.433 � 1.911 59.661 � 0.070 44.275 � 0.072 2.199
AROW 63.036 � 0.033 60.158 � 0.244 65.914 � 0.213 22.640 687.696 � 3.148 76.580 � 0.137 69.579 � 0.134 22.556
COG-I 54.268 � 0.059 52.588 � 0.089 55.949 � 0.066 1.637 631.834 � 1.721 84.036 � 0.070 24.494 � 0.062 1.710
COG-II 54.208 � 0.051 54.038 � 0.096 54.377 � 0.055 1.643 426.122 � 0.834 94.088 � 0.031 7.501 � 0.107 1.657
ACOG-I 68.077 � 0.038 70.565 � 0.073 65.588 � 0.082 13.782 466.376 � 1.190 90.693 � 0.049 23.054 � 0.038 18.988
ACOG-II 68.020 � 0.030 71.265 � 0.070 64.774 � 0.068 13.528 305.056 � 0.355 98.969 � 0.021 6.365 � 0.163 13.232
ACOG-Idiag 67.247 � 0.060 69.183 � 0.076 65.311 � 0.082 1.824 469.701 � 1.377 90.594 � 0.090 22.782 � 0.370 1.971
ACOG-IIdiag 67.225 � 0.062 69.913 � 0.096 64.537 � 0.086 1.805 308.987 � 7.944 98.739 � 0.367 7.015 � 0.507 1.828

Algorithm “sum” on german “cost” on german
Sum(%) Sensitivity(%) Specificity (%) Time(s) Cost(102) Sensitivity(%) Specificity (%) Time(s)

Perceptron 53.760 � 1.655 35.133 � 2.343 72.386 � 0.977 0.003 1.945 � 0.070 35.133 � 2.343 72.386 � 0.977 0.003
ROMMA 57.625 � 2.943 43.550 � 4.496 71.700 � 1.710 0.004 1.721 � 0.128 43.650 � 4.372 71.536 � 1.932 0.004
PA-I 53.043 � 1.902 34.000 � 2.818 72.086 � 1.128 0.003 1.977 � 0.083 34.000 � 2.818 72.086 � 1.128 0.003
PAUM 54.145 � 1.335 26.483 � 3.633 81.807 � 1.341 0.003 2.112 � 0.091 26.483 � 3.633 81.807 � 1.341 0.003
CPAPB 53.185 � 1.948 37.883 � 2.925 68.486 � 1.144 0.004 1.759 � 0.082 44.317 � 2.883 63.464 � 1.287 0.004
AROW 59.948 � 1.295 26.367 � 3.893 93.529 � 1.630 0.014 1.610 � 0.082 43.867 � 3.364 86.571 � 1.543 0.016
COG-I 54.424 � 1.474 36.083 � 2.203 72.764 � 0.807 0.003 1.770 � 0.081 42.933 � 3.010 67.200 � 0.990 0.003
COG-II 54.952 � 1.359 54.833 � 1.318 55.071 � 1.442 0.003 1.035 � 0.033 81.067 � 0.799 25.200 � 1.983 0.003
ACOG-I 63.150 � 1.025 49.050 � 1.932 77.250 � 1.489 0.008 1.232 � 0.049 62.750 � 2.017 67.671 � 1.394 0.010
ACOG-II 62.511 � 1.190 63.000 � 2.052 62.021 � 1.408 0.008 0.875 � 0.044 86.883 � 2.264 25.564 � 4.099 0.011
ACOG-Idiag 61.765 � 1.195 47.517 � 2.610 76.014 � 1.022 0.003 1.330 � 0.064 58.967 � 2.362 68.300 � 0.901 0.003
ACOG-IIdiag 62.281 � 1.428 62.883 � 1.852 61.679 � 1.576 0.003 0.912 � 0.045 84.733 � 0.876 28.629 � 4.046 0.003

Algorithm “sum” on ijcnn1 “cost” on ijcnn1
Sum(%) Sensitivity(%) Specificity (%) Time(s) Cost(102) Sensitivity(%) Specificity (%) Time(s)

Perceptron 69.988 � 0.252 45.926 � 0.455 94.051 � 0.050 0.112 26.303 � 0.221 45.926 � 0.455 94.051 � 0.050 0.114
ROMMA 75.547 � 0.229 57.689 � 0.439 93.405 � 0.111 0.124 21.467 � 0.207 57.666 � 0.459 93.404 � 0.108 0.128
PA-I 69.980 � 0.312 45.542 � 0.579 94.418 � 0.083 0.119 26.305 � 0.274 45.542 � 0.579 94.418 � 0.083 0.124
PAUM 79.066 � 0.275 64.377 � 0.590 93.755 � 0.092 0.112 18.378 � 0.239 64.377 � 0.590 93.755 � 0.092 0.118
CPAPB 73.745 � 0.209 57.328 � 0.371 90.161 � 0.091 0.155 23.096 � 0.200 57.215 � 0.407 90.233 � 0.094 0.160
AROW 67.258 � 0.460 36.208 � 0.980 98.308 � 0.074 0.450 28.626 � 0.401 36.208 � 0.980 98.308 � 0.074 0.465
COG-I 79.066 � 0.275 64.377 � 0.590 93.755 � 0.092 0.109 18.441 � 0.236 64.171 � 0.590 93.814 � 0.096 0.116
COG-II 81.520 � 0.232 81.940 � 0.363 81.100 � 0.182 0.112 16.398 � 0.197 81.683 � 0.311 81.394 � 0.205 0.116
ACOG-I 82.375 � 0.230 71.010 � 0.607 93.740 � 0.178 0.212 15.197 � 0.123 71.996 � 0.352 93.429 � 0.102 0.218
ACOG-II 86.872 � 0.174 88.924 � 0.323 84.820 � 0.218 0.288 12.279 � 0.149 87.626 � 0.293 84.770 � 0.165 0.298
ACOG-Idiag 81.468 � 0.225 69.007 � 0.502 93.929 � 0.092 0.114 15.681 � 0.227 70.680 � 0.624 93.631 � 0.127 0.122
ACOG-IIdiag 86.929 � 0.124 88.205 � 0.266 85.652 � 0.107 0.120 12.016 � 0.111 87.164 � 0.300 85.801 � 0.138 0.122
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methods. These discoveries imply that our ACOG algo-
rithms have a wide selection range of weight parameters for
online classification tasks.

4.4 Evaluation of Algorithm Properties

We have evaluated the performance of proposed algo-
rithms in previous experiments, where promising results
confirm their great superiority. Next, we are eager to
examine their unique properties, including the influence
of learning rate, regularized parameter, updating rule,
online estimation and generalization ability. These
examinations contribute to better understanding and
applications of proposed methods. For simplicity, all
experiments are based on sum metric, and every experi-
ment only considers one objective or variable, while all
other variable settings are fixed and similar with before
experiments.

4.4.1 Evaluation of Learning Rate

In this section, we evaluate the influence of learning rate.
In detail, we examine the sum performances of propo-
sed methods with different learning rates h from ½10�4;
10�3; . . . ; 103; 104�.

In Fig. 5, we find that ACOG algorithms would achieve
relatively higher result, when we choose proper learning
rate (i.e., relatively higher h in general). This is easy to
understand because the values of covariance matrix S

are normally small. Specifically, when a misclassification
happened at time t, we update the predictive vector m by
mtþ1 ¼ mt þ hStþ1gt, where gt ¼ @‘tðmtÞ. Because the values
of covariance matrix S are normally small, the values of
Stþ1gt thus are small. So if we want to obtain excellent per-
formance, it would be better to choose properly higher
learning rates as updating steps.

Fig. 1. Evaluation of online “sum“ performance of the proposed algo-
rithms on public datasets.

Fig. 2. Evaluation of weighted “sum“ performance under varying weights
of sensitivity and specificity.

Fig. 3. Evaluation of online “cost“ performance of the proposed algo-
rithms on public datasets.

Fig. 4. Evaluation of weighted “cost“ performance under varying weights
for False Positives and False Negatives.
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Moreover, we find the proposed methods with objective
function ‘IIðw; ðx; yÞÞ can achieve relatively higher perfor-
mance than the methods with ‘Iðw; ðx; yÞÞ, which means
that ACOG-II and ACOG-IIdiag are more robust to different
learning rate h and consequently have a wider parameter
choice space.

4.4.2 Evaluation of Regularized Parameter

Now, we aim to examine the influence of regularized
parameters on our proposed algorithms.

When the learner makes a mistake, we update the covari-

ance matrix S by Stþ1 ¼ St � Stxtx
>
t St

gþx>t Stxt
with default regular-

ized parameter g as 1. However, the rationality of this
setting is not verified. Thus, we examine the performance of
our algorithms with different regularized parameters g

from ½10�4; 10�3; . . . ; 103; 104� for summetrics.

The results in Fig. 6 show that the optimal parameter nor-
mally is different according to datasets; while in most cases,

the setting g ¼ 1 can achieve the best or fairly good results.
This discovery confirms the practical value of our algo-
rithms with default settings.

4.4.3 Evaluation of Updating Rule

As mentioned in Section 2, the predictive vector m is
updated by mtþ1 ¼ mt þ hStþ1gt, which is different from
AROWwhere the updating rule for m relies on the old St. In
this section, we would like to evaluate the difference
between two updating rules based on sum metrics for pro-
posed methods, where the invariant versions (i.e., green
line in Fig. 7) depending on old St.

From Fig. 7, we find that although the difference between
two updating rules is not obvious, the performance of Stþ1
versions slightly exceed St versions, which is consistent
with our analysis in Section 2.

4.4.4 Evaluation of Online Estimation of Tn
Tp

In the remark of Algorithm 1, we analyzed the parameter

r ¼ hpTn
hnTp

for ACOGsum algorithms, where the main question

is that the value of Tp and Tn cannot be obtained in advance
on real-world online learning.

Thus, we want to evaluate the influence of online estima-
tion Tn

Tp
on sum performance, compared with the original

algorithms. We adopt the widely used laplace estimation

here, which estimates Tn
Tp

by tnþ1
tpþ1, where tp and tn represent

the number of positive samples and negative samples that
have been seen, respectively.

Fig. 8 shows the performance of online estimation.We find
that the online laplace estimation performs quite similar
results with the original one. This discovery validates the
practical value of the proposedACOGsum algorithms.

4.4.5 Evaluation of Generalization Ability

Then, we evaluate the generalization ability of proposed
methods, which may exist problems when converting an
online algorithm to a batch training approach. We use

Fig. 5. Performance under varying learning rates.

Fig. 6. Performance under different regularized parameters.

Fig. 7. Evaluation of updating rules.
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5-fold cross-validation for better validation of the general
performance.

Table 3 summary the consequences on sum metrics, in
which we discover that our proposed algorithms achieve
the best among all algorithms on all datasets. This discovery
indicates that our proposed methods have a strong general-
ized ability and can be regarded as a potentially useful tool
to train large-scale cost-sensitive models.

4.5 Performance and Efficiency of Sketched ACOG

In the previous experiments, the evaluations of the pro-
posed ACOG algorithms have shown promising results.
However, we can find the implementation of ACOG is time
consuming when facing high-dimensional datasets, because
of the updating step for covariance matrix. As a result, it is
difficult for engineers to address the real-world tasks with
quite large-scale datasets.

A simple solution to this question is to implement the
diagonal version of ACOG, and then enjoy linear time com-
plexity. However, the gain of diagonal ACOG is at the cost
of lower performance, because it abandons the correlation
information between sample dimensions, which is quite
important and indispensable for datasets with strong inner-
correlation. Thus, for better trade off between performance
and time efficiency, we propose the Sketched ACOG
(named SACOG) and its sparse version (named SSACOG).

In this section, we first evaluate our sketched algori-
thms with several baseline algorithms: (1) “COG-I“ and
“COG-II“; (2) “ACOG-I“ and “ACOG-II“; (3) “ACOG-Idiag“
and “ACOG-IIdiag“, where we adopt 4 relatively high-
dimensional datasets from LIBSVM, which are higher than
45 dimensions as list in Table 4. After that, we examine the
performance difference between SACOG and SSACOG.

For simplicity, we focus on the case that the sketch sizem
is fixed as 5 for all sketched algorithms, although our meth-
ods can be easily generalized by setting different sketch sizes
like [22]. Moreover, the learning rate was selected from
½10�5; 10�4; . . . ; 105�, where other implementation details are
similar with [22]. In addition, all experimental settings for
other algorithms are same as previous experiments.

4.5.1 Evaluation of Weighted Sum Performance

In this section, we would like to examine the performance
and efficiency of our sketched algorithms, where we adopt
the sparse version (SSACOG) rather than the original
SACOG, which is more appropriate for real-world datasets.

The results are summarized in Fig. 9, Fig. 10 and Table 5
based on two metrics, from which we find that the proposed
SSACOG is much faster than ACOG algorithms, while
the performance of sketched algorithms is not affected too
much and sometimes even better. In addition, the degree of
efficiency optimization by sketching technique goes up
along with the increase of data dimensions, which is consis-
tent with the common sense.

Note that although the running time of SSACOG is
slower than ACOGdiag, it enjoys higher performance due

Fig. 8. Evaluation of online estimation of TnTp.

TABLE 3
Evaluation of Generalization Ability with sum

Algorithm a9a covtype german ijcnn1

Perceptron 68.649 51.553 53.737 70.045
ROMMA 72.467 67.059 58.614 76.818
PA-I 71.986 51.283 51.363 70.410
PAUM 79.323 53.354 52.126 82.012
CPAPB 73.668 51.279 52.768 73.942
AROW 75.961 64.928 54.575 67.642
COG-I 79.705 53.354 52.258 82.012
COG-II 78.559 68.897 50.784 82.849
ACOG-I 80.026 72.428 62.954 82.926
ACOG-II 81.630 72.632 60.928 87.730
ACOG-Idiag 80.118 71.051 64.389 82.334
ACOG-IIdiag 81.752 71.311 66.036 87.628

TABLE 4
Datasets for Evaluation of Sketched Algorithm

Dataset #Examples #Features #Pos:#Neg

mushrooms 8124 112 1:1.07
protein 17766 357 1:1.7
usps 7291 256 1:5.11
Sensorless 58509 48 1:10

Fig. 9. Weighted “sum“ performance of SACOG.
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to the advantage of sufficient second-order information.
This confirms the superiority of ACOG with sketching
technique.

4.5.2 Efficiency Comparison between Sketched ACOG

and Sparse Sketched ACOG

Then, We would like to compare the performance and run-
ning time between SACOG and its sparse version SSACOG.
The experimental results based on both metrics are summa-
rized in Table 6.

From results, we find that the running time of SSACOG
is lower than SACOG. It is consistent with the time com-
plexity analysis of two algorithms in Section 3. For better
understanding, we simply give a analysis. Given sketch size
m ¼ 5, the time complexity for SACOG is Oð25dÞ according
to the analysis of Section 3, while the time complexity for
SSACOG is Oð125þ 5sÞ. One can accelerate the time com-
plexity to Oð5dÞ for SACOG and Oð25þ 5sÞ for SSACOG by
only updating the sketch everym round.

Thus, the time complexity for SACOG is linear in the
data dimensionality d, and running time for SSACOG is lin-
ear in the data non-sparse degree s. Then, it is easy to under-
stand the SSACOG would be much faster than SACOG,
when the data dimensionality d is high and the data sparsity
is strong s� d.

5 APPLICATION TO ONLINE ANOMALY DETECTION

The proposed adaptive regularized cost-sensitive online
classification algorithms can be potentially applied to solve
a wide range of real-world applications in data mining. To
verify their practical application value, we apply them to
tackle several online anomaly detection tasks in this section.

5.1 Application Domains and Testbeds

Below, we first exhibit the related domains of anomaly
detection problems:

� Finance: The credit card approval problem enjoys a
huge demand in financial domains, where our task is

to discriminate the credit-worthy customers for the
Australian dataset fromanAustralian credit company.

� Nuclear: We apply our algorithms to the Magic04
dataset with 19020 samples to simulate registration
of high gamma particles. The dataset was collected
by a ground-based atmospheric Cherenkov gamma
telescope. In detail, the “gamma signal“ samples are
considered as the normal class, while the hadron
ones are treated as outliers.

� Bioinformatics: We address bioinformatics anomaly
detection problemswith DNAdataset to recognize the
boundaries between exons and introns from a given
DNA sequence, where exon/intron boundaries are
defined as anomalies and others are treated as normal.

� Medical Imaging: We apply our approaches to add-
ress the medical image anomaly detection problem
with the KDDCUP08 breast cancer dataset4. The
main goal is to detect the breast cancer from X-ray
images, where “benign” is assigned as normal and
“malignant” is abnormal.

To better understand, we summary the detailed informa-
tion for each dataset in Table 7.

5.2 Empirical Evaluation Results

In this section, our algorithms are applied to address real-
world anomaly detection tasks with 4 datasets from different
domains, where we use the balanced accuracymetric to avoid
inflated performance evaluations on imbalanced datasets. In
addition, we apply our sparse sketched ACOG algorithms
(SSACOG) only for two high-dimensional datasets (i.e.,
DNA and KDDCUP08), because for low-dimensional tasks,
the proposed ACOG algorithms are fast enough. Further-
more, all implementation settings are same as Section 4.

Table 8 exhibits the experimental results, from which we
can draw several observations. First of all, two cost-sensitive
methods (PAUM and CPAPB) outperform their regular
methods (Perceptron and PA-I) among all datasets. This
confirms the superiority of cost-sensitiveness for online
learning. Second, COG algorithms outperform all regular
first-order algorithms (i.e., first 5 baselines) on almost all
datasets, which demonstrates the effectiveness of direct
cost-sensitive optimization in online learning.

Moreover, ACOG algorithms and AROW algorithm out-
perform all other algorithms, where ACOG is the updated
version of COG with adaptive regularization using second
order information. This infers the online classification that
introduces the second-order inner-correlation information
can enjoy a huge performance improvement. Furthermore,
the performance of ACOG exceeds all other algorithms,
which demonstrates the effectiveness of cost-sensitive online
optimization using the second order information.

By the way, although the speed of SSACOG is slightly
slower than ACOGdiag, its performance is relatively better.
On the other hand, SSACOG is much faster than ACOG
with slight performance loss. This implies that the sketching
version of ACOG is a good choice to balance the perfor-
mance and efficiency for handling high-dimensional real-
world tasks. Furthermore, if someone only wants to pursue
the efficiency, they can regard ACOGdiag as a choice.

Fig. 10. Weighted “cost“ performance of SACOG.

4. http://www.sigkdd.org/kddcup/
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In conclusion, all promising results confirm the superior-
ity of our proposed algorithms for real-world online anom-
aly detection problems, where datasets are normally high-
dimensional and highly class-imbalanced.

6 CONCLUSION

In this paper, to remedy the weakness of first-order cost-
sensitive online learning algorithms, we propose to

TABLE 5
Evaluation of the Cost-Sensitive Classification Performance of SSACOG

Algorithm “sum” on mushrooms “cost” on mushrooms
Sum(%) Sensitivity(%) Specificity (%) Time(s) Cost Sensitivity(%) Specificity (%) Time(s)

COG-I 99.205 � 0.047 99.455 � 0.075 98.956 � 0.095 0.019 15.760 � 2.496 99.823 � 0.070 97.688 � 0.091 0.020
COG-II 99.211 � 0.057 99.420 � 0.094 99.003 � 0.097 0.019 39.180 � 2.283 99.538 � 0.055 94.465 � 0.275 0.019
ACOG-I 99.580 � 0.027 99.810 � 0.070 99.350 � 0.076 0.043 18.735 � 1.062 99.939 � 0.051 95.802 � 0.443 0.085
ACOG-II 99.572 � 0.033 99.794 � 0.080 99.349 � 0.075 0.045 16.770 � 1.546 99.932 � 0.035 96.373 � 0.412 0.054
ACOG-Idiag 99.447 � 0.052 99.652 � 0.077 99.243 � 0.087 0.019 17.520 � 1.588 99.933 � 0.045 98.119 � 0.060 0.020
ACOG-IIdiag 99.457 � 0.052 99.652 � 0.086 99.262 � 0.117 0.019 21.185 � 1.431 99.792 � 0.037 96.601 � 0.167 0.019
SSACOG-I 99.628 � 0.052 99.798 � 0.066 99.459 � 0.102 0.038 15.880 � 1.677 99.930 � 0.043 96.623 � 0.303 0.041
SSACOG-II 99.606 � 0.050 99.805 � 0.062 99.408 � 0.093 0.038 15.560 � 3.870 99.869 � 0.040 97.291 � 1.063 0.034

Algorithm “sum” on protein “cost” on protein
Sum(%) Sensitivity(%) Specificity (%) Time(s) Cost Sensitivity(%) Specificity (%) Time(s)

COG-I 69.935 � 0.213 68.114 � 0.343 71.757 � 0.322 0.127 2156.980 � 35.558 75.944 � 0.463 60.071 � 0.270 0.151
COG-II 69.764 � 0.230 70.005 � 0.392 69.523 � 0.415 0.129 1375.740 � 12.402 90.618 � 0.106 28.559 � 0.607 0.152
ACOG-I 71.340 � 0.214 69.794 � 0.427 72.886 � 0.385 14.603 1406.660 � 28.314 87.072 � 0.428 52.671 � 0.576 16.922
ACOG-II 71.265 � 0.235 71.678 � 0.398 70.852 � 0.501 14.446 1110.075 � 12.274 94.972 � 0.172 22.753 � 0.853 13.601
ACOG-Idiag 71.305 � 0.126 69.825 � 0.346 72.785 � 0.257 0.161 1441.505 � 19.496 86.500 � 0.269 53.441 � 0.394 0.171
ACOG-IIdiag 71.233 � 0.150 71.530 � 0.365 70.935 � 0.298 0.158 1198.455 � 11.459 92.585 � 0.143 31.925 � 0.685 0.166
SSACOG-I 71.532 � 0.198 66.861 � 0.530 76.203 � 0.485 0.355 1227.345 � 16.904 90.608 � 0.225 44.148 � 0.342 0.393
SSACOG-II 71.323 � 0.132 71.725 � 0.305 72.075 � 0.403 0.352 1144.680 � 13.087 94.053 � 0.144 26.224 � 0.661 0.348

Algorithm “sum” on Sensorless “cost” on Sensorless
Sum(%) Sensitivity(%) Specificity (%) Time(s) Cost Sensitivity(%) Specificity (%) Time(s)

COG-I 50.888 � 0.227 9.637 � 0.473 92.139 � 0.076 0.166 4741.190 � 21.159 11.155 � 0.403 90.823 � 0.038 0.154
COG-II 52.374 � 0.422 52.717 � 0.464 52.032 � 0.387 0.167 4801.600 � 38.579 50.168 � 0.415 54.576 � 0.354 0.149
ACOG-I 83.468 � 0.308 72.935 � 0.620 94.001 � 0.068 0.503 1622.600 � 32.312 72.563 � 0.709 94.188 � 0.078 0.480
ACOG-II 87.398 � 0.186 88.088 � 0.284 86.708 � 0.178 0.486 1283.350 � 16.768 87.247 � 0.264 87.350 � 0.131 0.455
ACOG-Idiag 80.044 � 0.314 66.427 � 0.627 93.661 � 0.051 0.169 1956.200 � 33.729 65.995 � 0.668 93.827 � 0.071 0.157
ACOG-IIdiag 85.968 � 0.124 86.608 � 0.178 85.328 � 0.118 0.173 1422.950 � 16.836 85.783 � 0.227 86.043 � 0.131 0.153
SSACOG-I 92.432 � 0.213 89.818 � 0.442 95.047 � 0.047 0.322 753.695 � 21.185 89.482 � 0.476 95.296 � 0.066 0.285
SSACOG-II 93.913 � 0.129 94.487 � 0.181 93.339 � 0.123 0.296 615.625 � 12.280 94.166 � 0.194 93.676 � 0.096 0.264

Algorithm “sum” on usps “cost” on usps
Sum(%) Sensitivity(%) Specificity (%) Time(s) Cost Sensitivity(%) Specificity (%) Time(s)

COG-I 96.820 � 0.165 96.361 � 0.345 97.279 � 0.116 0.039 90.165 � 3.851 92.642 � 0.344 98.179 � 0.060 0.031
COG-II 96.576 � 0.139 96.516 � 0.226 96.637 � 0.193 0.038 75.135 � 4.338 96.570 � 0.215 93.722 � 0.342 0.030
ACOG-I 98.073 � 0.115 97.822 � 0.242 98.323 � 0.095 0.271 44.365 � 3.448 96.671 � 0.321 98.591 � 0.070 0.151
ACOG-II 97.633 � 0.148 97.998 � 0.230 97.268 � 0.176 0.239 50.100 � 4.321 98.241 � 0.172 94.883 � 0.488 0.252
ACOG-Idiag 96.886 � 0.226 95.641 � 0.435 98.131 � 0.076 0.039 79.850 � 4.773 93.526 � 0.423 98.314 � 0.080 0.031
ACOG-IIdiag 96.305 � 0.182 96.369 � 0.228 96.240 � 0.182 0.040 66.300 � 3.242 96.993 � 0.149 94.425 � 0.295 0.030
SSACOG-I 97.091 � 0.197 96.817 � 0.323 97.365 � 0.125 0.077 57.055 � 4.251 95.657 � 0.384 98.296 � 0.076 0.054
SSACOG-II 97.048 � 0.163 97.010 � 0.237 97.085 � 0.190 0.074 52.420 � 4.009 97.647 � 0.192 95.550 � 0.360 0.054

TABLE 6
Evaluation between SACOG and Sparse SACOG

Algorithm “sum” on mushrooms “cost” on mushrooms “sum” on protein “cost” on protein
Sum(%) Time(s) Cost(102) Time(s) Sum(%) Time(s) Cost(102) Time(s)

SACOG-I 99.620 � 0.043 0.072 16.020 � 1.796 0.096 71.544 � 0.197 3.769 1226.890 � 17.094 3.302
SACOG-II 99.598 � 0.040 0.074 13.790 � 1.852 0.035 71.907 � 0.180 3.705 1147.775 � 14.364 2.373
SSACOG-I 99.628 � 0.052 0.038 15.880 � 1.677 0.039 71.532 � 0.198 0.287 1227.345 � 16.904 0.272
SSACOG-II 99.606 � 0.050 0.038 15.560 � 3.870 0.033 71.900 � 0.204 0.285 1144.680 � 13.087 0.239

Algorithm “sum” on Sensorless “cost” on Sensorless “sum” on usps “cost” on usps
Sum(%) Time(s) Cost(102) Time(s) Sum(%) Time(s) Cost(102) Time(s)

SACOG-I 92.432 � 0.213 0.232 753.695 � 21.185 0.235 97.146 � 0.149 0.135 55.970 � 3.053 0.078
SACOG-II 93.913 � 0.129 0.193 615.625 � 12.280 0.194 97.071 � 0.169 0.091 53.155 � 4.815 0.090
SSACOG-I 92.432 � 0.213 0.239 753.695 � 21.185 0.225 97.091 � 0.197 0.057 57.055 � 4.251 0.052
SSACOG-II 93.913 � 0.129 0.214 615.625 � 12.280 0.204 97.048 � 0.163 0.054 52.420 � 4.009 0.053
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introduce second-order information into cost-sensitive
online classification framework based on adaptive regulari-
zation. As a result, a family of second-order cost-sensitive
online classification algorithms is proposed, with favour-
able regret bound and impressive properties.

Moreover, to overcome the time-consuming problem of
our second-order algorithms, we further study the sketch-
ing method in cost-sensitive online classification frame-
work, and then propose sketched cost-sensitive online
classification algorithms, which can be developed as a
sparse cost-sensitive online learning approach, with better
trade off between the performance and efficiency.

Then for examination of the performance and efficiency,
we empirically evaluate our proposed algorithms on many
public real-world datasets in extensive experiments. Promis-
ing results not only prove the new proposed algorithms suc-
cessfully overcome the limitation of first-order algorithms,
but also confirm their effectiveness and efficiency in solving
real-world cost-sensitive online classification problems.

Future works include: (i) further exploration about the in-
depth theory of cost-sensitive online learning; (ii) further
study about the sparse computationmethods in cost-sensitive
online classification problems.
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