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Securing Display Path for Security-Sensitive Applications on 

Mobile Devices 
 

Jinhua Cui1, 2, Yuanyuan Zhang3, Zhiping Cai1, *, Anfeng Liu4 and Yangyang Li5 

 

 

Abstract: While smart devices based on ARM processor bring us a lot of convenience, 

they also become an attractive target of cyber-attacks. The threat is exaggerated as 

commodity OSes usually have a large code base and suffer from various software 

vulnerabilities. Nowadays, adversaries prefer to steal sensitive data by leaking the content 

of display output by a security-sensitive application. A promising solution is to exploit 

the hardware visualization extensions provided by modern ARM processors to construct 

a secure display path between the applications and the display device. In this work, we 

present a scheme named SecDisplay for trusted display service, it protects sensitive data 

displayed from being stolen or tampered surreptitiously by a compromised OS. The TCB 

of SecDisplay mainly consists of a tiny hypervisor and a super light-weight rendering 

painter, and has only ~1400 lines of code. We implemented a prototype of SecDisplay 

and evaluated its performance overhead. The results show that SecDisplay only incurs an 

average drop of 3.4%. 

 

Keywords: Mobile device, secure display, virtualization, trusted computing base, display 

path, trust anchor. 

1 Introduction 

Smart devices with ARM processors are now widely used in our daily life. For instance, 

we can use smart phones not only for calling a friend, but also browse websites, take 

photos and buy products. While smart devices bring us a lot of convenience, they also 

become an attractive target of cyber-attacks. Thus, the security of smart devices is one of 

the biggest concerns of users. 

The threat to security is exaggerated as commodity operating systems (OSes) support rich 

functionalities. These Rich OSes usually have a large code base with complicated logic 

and thus suffer various software vulnerabilities. As an OS has higher privilege level than 

user-level applications, the security-sensitive data can be readily leaked once the OS is 

compromised. To protect the sensitive data from being leaked or tampered, various 
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schemes [McCune, Li, Qu et al. (2010); Yu, Gligor and Zhou (2015); Sun, Sun, Wang et 

al. (2015); Wang, Chen, Wang et al. (2015); Danisevskis, Peter, Nord-holz et al. (2015); 

Cheng, Ding and Deng (2013); Cheng and Ding (2013); Chen, Garfinkel, Lewis et al. 

(2008); Cho, Shin, Kwon et al. (2016); Azab, Ning, Shah et al. (2014)] have been 

proposed during the past years. Among them, the schemes like Fides [Strackx and 

Piessens (2012)] and Flicker [McCune, Parno, Perrig et al. (2008)] utilize a more 

privileged kernel to counteract the illegal behaves targeting userland applications, but 

these mechanisms can unimpededly be disabled by rootkits residing in kernel space at 

runtime. To this end, schemes based on ARM TrustZone [Sun, Sun, Wang et al. (2015); 

Alves (2004); Winter (2012); Logic (2012); Azab, Ning, Shah et al. (2014); Tian, Wang, 

Liu et al. (2017); Guan, Liu, Xing et al. (2017)] and hardware virtualization [McCune, Li, 

Qu et al. (2010); Yu, Gligor and Zhou (2015); Wang, Chen, Wang et al. (2015); Cheng, 

Ding and Deng (2013); Cheng and Ding (2013); Cho, Shin, Kwon et al. (2016); Eppler 

and Wang (2018)] are proposed. 

TrustZone is designed as a hardware security extension in ARM processors [ARM 

(2010)], it has already been adopted by most trusted execution environment (TEE) 

solutions (e.g. MobiCore (Trustonics) [Logic (2012)], Sierra-TEE [Sierraware (2013)]). 

TrustZone can build a secure world separated from other software layers including the 

hypervisor and Rich OS in the normal world, and can configure a secure physical 

memory space which only can be accessed by the secure world. Therefore, a system 

rooted on TrustZone surely can provide security guarantees on protecting security-

sensitive applications (SecApps). However, the devices providers rarely publish their 

source code placed in TrustZone, thus make security community difficult to do a good 

examination. Moreover, the trusted computing base (TCB) of secure world would 

increment along with the number of kernel modules such as char driver and display driver 

installed in the OS. A bloated TCB may revoke its reliability in security. Furthermore, for 

third-party software developers, it may be an arduous procedure for negotiating with 

OEMs and service providers to place their code into the secure world. 

Recent ARM processors like ARMv7-A and ARMv8-A extend their architectures to support 

virtualization, with which users can efficiently implement a lightweight hypervisor. The 

immediate benefit of hardware-assisted virtualization is that the hardware resources of a 

platform can be separated into two isolated domains, and the domain with higher privilege 

can monitor the activities of the other. Therefore, virtualization has a good availability and 

becomes a popular choice for a platform to fortify its kernel or application security [Wang, 

Chen, Wang et al. (2015); Chen, Garfinkel, Lewis et al. (2008); Jiang and Wang (2007); 

Litty, Lagar Cavilla and Lie (2008); Cho, Shin, Kwon et al. (2016); Azab, Ning, Shah et 

al. (2014)]. Taking Trusted Display [Yu, Gligor and Zhou (2015)] as an example, it relies 

on the underlying micro-hypervisor to mediate accesses to sensitive GPU objects by the 

Rich OS/Apps and emulates these accesses to prevent against arbitrary modifications. 

Nowadays, cyber-attacks targeting smart devices start to steal sensitive data by leaking 

the display content of touchscreen. For instance, screenshot taking attacks [Lin, Li, Zhou 

et al. (2014)] try to obtain the content of display output stored in the frame buffer, on a 

purpose to get SecApp’s security-sensitive output. Moreover, the phishing attacks [Chen, 

Qian and Mao (2014); Bianchi, Corbetta, Invernizzi et al. (2015)] present a dialog on the 
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screen analogous to the user’s SecApp to trick the user into leaking security-sensitive 

information such as login credentials. 

This work mitigates such an attack by providing a trust display service. Because of the 

availability, we exploit the hardware virtualization extensions provided by modern ARM 

processor to build a trusted world for the service. Specifically, SecDisplay relies on a tiny 

hypervisor to create a “secure world” separated from the untrusted OS. SecDisplay 

successfully manage a minimizing TCB by implementing a tiny hypervisor with a super 

light-weight rendering painter. The rendering painter utilizes the character-image to directly 

be rendered (~1400 SLoC), avoiding the need of implementing a full-featured char drivers 

in hypervisor. SecDisplay guarantees that the display content containing the sensitive data 

is securely protected from being read or modified stealthily by malicious OS. 

We implemented a prototype of SecDisplay on Odroid-XU4 QSB equipped with 8 CPU 

cores, and developed a high-level particular application named SecEditor on Android OS 

to demonstrate the usability and reliability of SecDisplay. 

In summary, we make the following contributions in this paper. 

(1) We present a new scheme named SecDisplay to protect the display content from 

being read or tampered by an untrusted OS running on ARM platform. This scheme 

exploits ARM Hardware Virtualization extensions to build a “secure world” isolated 

from the OS kernel, and create a communication channel from SecApp to the display 

device that is only accessible by the secure world. 

(2) We implement a prototype of SecDisplay on Odroid-XU4 QSB with multi-processor 

architecture. The OS is a customized Linux 3.10.9 and Android 4.4.4. The experimental 

results show that our system only incurs 3.4% performance overhead. 

The remainder of the paper is organized as follows. Section 2 gives a background of 

ARM Hardware Virtualization, the two stages of memory address translation and the 

flow of input and output in the context of a display device. Section 3 describes the threat 

model and assumptions. Section 4 presents the design of our SecDisplay system. We 

elaborate the prototype implementation in Section 5 and evaluate it in Section 6. The 

related work is described in Section 7. Finally, we summarize the paper in Section 8. 

2 Background 

2.1 ARM hardware virtualization overview 

Similar to x86 architecture, ARM virtualization extensions enable the efficient 

implementation of the hypervisor for ARM compliant processors to the latest ARMv7-A 

and ARMv8-A architectures. Instead of introducing an orthogonal feature to distinguish 

between the hypervisor and VM operation, ARM extended the existing CPU mode 

hierarchy, originally just PL0 user mode and PL1 kernel mode, by adding a separate more 

privileged mode called PL2 (also known as Hyp mode) to run the hypervisor. These PLs 

have independent memory address spaces and different privileges. 

Hyp mode has the responsibility of performing trap-and-emulation operations to support 

virtualization in the normal world. It holds its own banked registers, as well as additional 

registers, such as SP, SPSR, and ELR, in which most of critical feature of hardware-

assistant CPU virtualization is executed. Using this register set, the hypervisor software 
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running in Hyp mode can configure hardware to trap into Hyp mode on several sensitive 

instructions and hardware interrupts. 

2.2 Stage-2 translation for memory access controlling 

TTBR0, 
TTBR1

Stage-2 
Page Table

Stage-1 
Page Table

Stage-1 
Translation 

Performed by OS

Physical Memory

VTTBR

Virtual 
Address (VA)

Stage-2 
Translation 

Performed by 
Hypervisor

Intermediate 
Physical 

Address (IPA)

Physical 
Address (PA)

 

Figure 1: Two stage address translation 

In ARM virtualization, ARM provides memory virtualization by adding an extra level 

translation, Stage-2 translation. With Stage-2 translation enabled, ARM defines three 

address spaces: Virtual Addresses (VAs), Intermediate Physical Addresses (IPAs), and 

Physical Addresses (PAs). IPAs are a continuous physical memory space in guest OS’s 

view. Fig. 1 depicts the two-level address translation. VAs in a guest OS are translated to 

IPAs through the Stage-1 page tables managed by guest OS kernel just like non-

virtualized systems. IPAs are further translated to PAs via the Stage-2 page tables 

maintained by the hypervisor. Each CPU core has two TTBR_0/1 (Translation Table 

Base Register) and one VTTBR (Virtual Translation Table Base Register), pointing to the 

Stage-1 and Stage-2 page tables, respectively. While the hypervisor uses a single 

translation that converts VAs to PAs directly based on another Stage-1 page table for PL2 

itself. 

The Stage-2 Translation can only be enabled and disabled in Hyp mode, and the 

hypervisor can flexibly configure which physical memory page needs to be protected 

through setting the appropriate access permission on the Stage-2 page table entry. Thus, 

any illegal accesses to protected memory will trigger page faults and be trapped into Hyp 

mode to handle. 

2.3 The input and output for the display devices 

Smart devices typically have a touch screen and several functional buttons. The screen is 

driven by a display controller. It scans an assigned region of memory, interprets the 
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content as a map of color values and feeds them to the screen. 

More specifically, when an input event is issued by the human user, the touch screen will 

actively trigger a hardware interrupt to CPU and delivery the obtained coordinate 

information to the input buffer mapped into I/O space, then the input driver will further 

be responsible for parsing and handling the event to response the clicked application. For 

the output event, in general, the display controller generates a VSYNC interrupt on the 

start of the vertical sync gap to coordinate the system’s rendering activities. The display 

controller driver, which owns the device and receives that interrupt, forwards it to the 

frame buffer switch which, in turn, passes it onto the active client. After that, the data to 

be displayed on behalf of the application will be computed and composited by GPU and 

the Hardware Compositor, respectively. Accordingly, the frame buffers are populated 

with the blending final pixels, which are transmitted to display device in a DMA channel 

or other much faster channel by updating the display controller registers. 

Moreover, the display controller driver provides an abstraction of the screen. Thereby it 

partitions the screen into several logical regions, the label region (e.g. cursor, caption or 

menu) and the client region (e.g. OS window). Using the display controller’s support for 

multiple scan-out regions or overlays, each of the region may be backed by different 

frame buffers. The driver offers a service to attach arbitrary buffers to the logical screen 

regions and to retrieve information about the region’s geometry and pixel layout. 

3 Threat model and assumptions 

We require that the smart devices where the SecDisplay is deployed support the 

Hardware Virtualization Extension, and that their hardware behaves correctly. We trust 

the code in the Boot ROM where the trust chain is started in the secure world, and the 

former boot code will always verify the integrity of the latter one. The hypervisor 

therefore is securely booted and trusted at runtime. An adversary is able to exploit 

software vulnerabilities to compromise the Rich OS and then obtain the sensitive display 

content. 

We consider that an adversary can leak a SecApp’s security-sensitive output through 

screenshot taking attacks [Lin, Li, Zhou et al. (2014)] whereby the content of display output 

in the frame buffer is read by a malicious program of a compromised Rich OS during 

running SecApp. Besides, the adversary can manipulate the display engine’s data paths and 

overlay a new frame buffer over a SecApp’s display thereby breaking the integrity of 

SecApps’ display output without touching its contents. In addition, the phishing attacks 

[Chen, Qian and Mao (2014); Bianchi, Corbetta, Invernizzi et al. (2015)] that present a 

dialog on the screen analogous to the user’s SecApp may trick the user into giving away 

security-sensitive information such as login credentials. The adversary also could try to 

eavesdrop on the user input and/or output in the process of transmitting the sensitive 

information [Xu, Bai and Zhu (2012); Miluzzo, Varshavsky, Balakrishnan et al. (2012)]. 

In this paper, we assume that the attacker cannot access physical devices or launch local 

physical attacks, such as removing the MicroSD card. We do not consider side-channels, 

device peer-to-peer communication and shoulder-surfing attacks [Hoanca and Mock 

(2005)]. We ignore I/O channel isolation attacks, which have already been addressed in 

prior study [Zhou, Gligor, Newsome et al. (2012); Jiang and Wang (2007)]. We also omit 



 

 

 

22   Copyright © 2018 Tech Science Press                   CMC, vol.55, no.1, pp.17-35, 2018 

 

denial of service (DoS) attacks. For example, an adversary might manipulate the display 

controller or GPU configurations to disable screen output. However, for a well elaborated 

SecApp (e.g. SecEditor) it would be difficult to launch a DoS attack that would remain 

unnoticed by an observant user. Data-only attacks [Hu, Chua, Adrian et al. (2015); Hu, 

Shinde, Adrian et al. (2016); Davi, Gens, Liebchen et al. (2017)] that modify the data 

objects are outside the scope of this paper. Other aspects of security requirement [Liu and 

Li (2018); Tang, Liu, Zhang et al. (2018); Huang, Liu, Zhang et al. (2018); Li, Cai and 

Xu (2018); Zhang, Cai, Liu et al. (2018); Sun, Cai, Li et al. (2018); Xia, Cai and Xu 

(2018)] also have no consideration due to weak relevance. 

4 System design 

Fig. 2 shows the SecDisplay architecture. The tiny hypervisor as the trust display anchor 

(TDA) is running under the Rich OS, which has a higher privilege than kernel mode and 

only contain one component: trusted rendering painter. The hardware display device is 

used to render the data entered by the human user via touchscreen. The owning lowest 

privileged particular applications are residing on user mode, which are responsible for 

interacting with the underlying TDA to activate SecDisplay. 

SecApps

Rich OS

Activity 
Window 
Service

Display 
Controller

Surface-
Flinger

Stage-2 
Address 

Translation

Tiny-hypervisor

Device Display

Emulation 
Support

H/W
composer

Memory Map

MMIO space

DRAM

ROM & RAM & 
I/O

Frame buffer

4 GB

2 GB

1 GB

0 GB

Trusted Untrusted

Rendering 
Painter

 

Figure 2: The architecture of SecDisplay. The tiny hypervisor as the TDA to guarantee 

the security of frame buffer composed by the Rich OS 

4.1 Flushing frame buffer 

As the repainting operation is performed in the hypervisor space and we do not 

implement the related display driver in it to reduce the size of TCB, there exists a 

problem about how to make the data in the new protected frame buffer display on screen 

quickly. The most straightforward approach is that the trusted rendering painter residing 

in the hypervisor helps directly repaint the currently used or next frame buffer to be 

display with the prepared character-image data according to the coordinate stored in the 

input buffer. Nevertheless, during the SecDisplay working, the input buffer is always 

locked, which causes the entire touchscreen fail to respond to any request from the Rich 

OS except for the TDA. Therefore, no any updating operation actively transfers the 
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content of the new frame buffer onto display device. Based on our observation for 

another Raspberry Pi2 board, the display subsystem is not quite complex than Odroid-

XU4, on where the frame buffer update is invoked by display device through forwarding 

a hardware interrupt to CPU that only periodically fetch the pixel data from frame buffer 

onto the display device to display. Thus, the former board can save more time-consuming 

operations and power and display more smoothly but involving in great complexity while 

the latter one is most likely to occur screen tearing phenomenon but always presenting 

the new data in frame buffer onto screen. Theoretically, we should implement a complete 

display driver in the hypervisor space to timely transfer frame data to the display device 

but this will dramatically increase the size of TCB. Instead of designing a complicated 

display driver that has the potential to introduce new vulnerabilities, we made several 

trials below. 

Firstly, according to the display controller specification of the particular board, we 

changed the mappings in SysMMU_DISP1 Page Table that mapped to the physical frame 

buffer for OS window to the previously allocated new frame buffer address, or created 

new mappings for SysMMU_DISP1 Page Table, and then observed that the content of 

the new frame buffer wouldn’t be transferred to the display device to display normally 

after the start and end addresses of display controller registers was exactly configured. 

While non-cacheable memory attribute for the new frame buffer and the relevant TLB 

flushing operations have been enforced, the display content repainted by the TDA still 

did not timely occur on screen until the time updating event arrives. 

Secondly, as ARM only supports tracking memory at the 4 KB or even larger granularity, 

thus, the data structures related to the display controller registers are exactly mapped into 

the same physical page in current setting, which will involve in extra traps into the 

hypervisor once happened any access to the arbitrary address within the specific locked 

page. Moreover, the number of display controller registers is a little more (~18), thus, if 

we only enable Stage-2 translation lock the physical page that contains the related 

registers of display controller, and then help emulate these traps according to the 

syndrome information stored in different syndrome registers (e.g. HSR, HPFAR and 

HDFAR) and repaint the frame buffer to be displayed in the hypervisor when updating 

the controller registers by the display driver, the overhead of iterative context switching 

between SVC and HYP mode will incur much more performance loss. 

Therefore, in order to possibly not introduce too much performance overhead or not 

implement a new display driver in the hypervisor, we make a trade-off between 

performance and generality for flushing frame data to display device, where we chose to 

perform the frame buffer updating by invoking the userland android element invalidation 

interface function from the SecApp. Specifically, we create a dedicated thread to call the 

invalidation function in polling way, when the TDA is initialized completely, the update 

status will be set through an installed system call module. At this moment, the TDA does 

not touch any data in current frame buffer until the touchscreen events are triggered by 

the human user, where arbitrary access to the protected input buffer from the Rich OS 

will cause the page fault which is directly delivered into the TDA in HYP mode by 

hardware. At the same time when the TDA detected the update status, it will immediately 

repaint the frame buffer allocated for OS window with the character image based on the 
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parsed coordinate in the input buffer. 

Because only repainting one frame buffer will occur flickering phenomenon without the 

particular character-image data in the other two frame buffers, our implementation will 

firstly repaint the shadowing frame buffer and then copy them to all three frame buffers 

for OS window when invoked update event in polling thread. While the content in frame 

buffers may be flushed away due to from the external update events, as the touchscreen is 

always locked during its working and our SecApp is set to full screen mode, the repainted 

frame buffers will not be polluted or overwritten. 

The frame buffer to be flushed out onto screen that contains the sensitive data can be read 

or tampered stealthily by the Rich OS, so we exploit Stage-2 translation to constrain such 

malicious access. Furthermore, considering that GPU also access the frame buffer 

through SysMMU_DISP1 Page Table. Theoretically, we can make the TDA verify the 

integrity of the SysMMU_DISP1 Page table to counteract this attack from GPU side. 

However, since the page table for display device is frequently modified to create the new 

frame buffer or release the old one, we cannot simply shield it in current setting. 

4.2 Quick rendering 

Although GPU is quite efficient at accelerating the creation of images in a frame buffer 

intended for output to a display device, it still needs to occupy a certain number of time 

slices to render, composite and copy to the frame buffer. To this end, we elaborately 

devise a series of character images for output and a dedicated soft keyboard for input. 

Each piece of character image is derived from their complete screenshots through 

dumping the data of the specific character area from the frame buffer into file. Similar to 

the hard keyboard on PC or mobile phone, the particular keyboard contains a set of 

common English characters except the special ones. 

With previously prepared input and output resources, it is unnecessary for the TDA to 

implement a complete functional display driver in the hypervisor space that will 

dramatically increase the size of TCB. As a result, the trusted rendering painter only need 

to copy the according character-image data loaded into memory to the current frame 

buffer when the human user clicks a character on the dedicated soft keyboard. 

Accordingly, such an operation will enable the sensitive data in frame buffer be quickly 

rendered onto the display device. Considering that these character images used for output 

may be tampered by the Rich OS, we put them into the specific memory blocks that are 

protected against malicious OS access through the Stage-2 memory translation. For the 

simplicity of implementation, we load these character images with hypervisor image 

together into the memory region allocated to the hypervisor space during SecDisplay’s 

initializing phase, wherein the integrity is also verified to strictly ensure their security. 

4.3 TDA: Trust Display Anchor 

Instead of implementing a complicated display driver in the hypervisor, we utilize the 

TDA as the function module to achieve a series of goals of protecting those elaborated 

character images, locking the input buffer allocated for touchscreen, handling the page 

faults and repainting the frame buffer, etc. 
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4.3.1 Locking the input buffer 

The input buffer register as a unit of touch screen controller that is mapped into MMIO 

space is charge of storing or collecting the coordinate information from touchscreen 

sensor. When the human user presses down on the touchscreen, the sensor processor unit 

will forward the computed coordinate into the mapped input buffer which will further be 

read by OS kernel to handle the touchscreen events. In order to obtain the coordinate 

prior to the Rich OS, the TDA sets the physical page containing the input buffer to non-

accessible through the Stage-2 translation to forbid any malicious access during 

SecApp’s working. The DMA-based attacks can be prevented by verifying the integrity 

of the SMMU page tables but, in practical, the frequent modifications to those page tables 

by OS may make it incompetent. 

4.3.2 Handling page faults 

After finished locking the input buffer, any read or write operations will trigger the page 

faults that will be forwarded into the handler of offset 0×14 of the exception base address 

of the hypervisor vector table to further handle. In exception handler, we parse the 

coordinate information fetched from the input buffer into x, y values. According to the 

coordinate we determine the position of the character clicked by the human user on the 

particular soft keyboard displayed on screen based on the previously computed range of x 

and y values, as shown in Tab. 1. Once obtained the knowledge of the position of the 

clicked character, we will accordingly located the in-memory character image to repaint 

the frame buffer. After handling the exception, the TDA will perform the ERET 

instruction to switch back to SVC mode to continue executing the following instructions. 

With the design of ARM processor pipeline, we have to add the offset of 4 bytes to 

ELR_hyp register to avoid trapping into the hypervisor again. 

Table 1: A small protion of coordinate range based on the elaborated soft keyboard 

Characters 
Coordinate Range 

Upper-left to Lower-right 

0 

1 

2 

a 

b 

c 

done 

delete 

(1194, 446)~(1282, 488) 

(24, 446)~(112, 488) 

(154, 446)~(242, 488) 

(93, 609)~(185, 655) 

(724, 685)~(814, 735) 

(469, 685)~(563, 735) 

(24, 685)~(182, 735) 

(1103, 685)~(1248, 735) 

4.3.3 Repainting for frame buffer 

In our current design of SecEditor application, a right-size bar located at the top of screen 

is used to display the sensitive data, accordingly, and the mapped areas in the frame 
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buffer are protected from any malicious access. The trusted rendering painter as a part of 

TDA is charge of repainting the bar with the clicked character images. Benefiting from 

our previously elaborated 38 pieces of images, we only directly copy the corresponding 

image data into the frame buffer instead of spending much more time computing and 

compositing the final pixels by GPU and hardware compositor, respectively. However, 

this also introduces the issue of generality that the right-size character images for 

different screen resolution need to be redesigned. Comparing to the great enhancement to 

the performance and security, we chose to match the new device through providing a 

simple versatile tool to produce the matchable images. 

5 Implementation 

We implement a SecDisplay prototype using Odroid-XU4 quick start board (QSB). 

Odroid-XU4 is equipped with four big cores (ARM Cortex-A15 up to 2.0 GHz) and four 

small cores (ARM Cortex-A7 up to 1.4 GHz) with 2 GB LPDDR3 RAM, and supports 

boot from an eMMC5.0 HS400 Flash Storage or a MicroSD card. The touchscreen we 

use is Odroid-VU HDMI LCD Display, a 9-inch 1280×800 (WXGA) display with 10-

points capacitive touchscreen. Besides, 2×USB 3.0 Host used for faster communicated 

with the peripherals are also integrated. We run Android 4.4 KitKat with Linux 3.13 on it. 

To demonstrate the usability and reliability of our system, moreover, we elaborated a 

high-level particular application that provides a reliable user input/output interface to 

ensure the security of the display content. In specific, we will present our implementation 

as follows. 

5.1 Slightly instrumenting to the display driver 

To quickly flush the content in the repainted frame buffer to the display device, we 

slightly modify the source code of the display driver through inserting a stub to check 

whether the flag of updating the frame buffer is met. When the human user touches the 

characters on touchscreen via the particular soft keyboard in SecEditor, the page faults 

will be triggered as the Rich OS tries to read the locked input buffer. In the page fault 

handler, the TDA will put a global flag into memory to inform the updating thread in 

SecEditor to invoke the invalidation function of frame buffer. At the same time, another 

flag for the display driver is also put into memory through the system call interface. Once 

the instrumented code in the display driver detected the flag set by the updating thread, it 

will invoke the HVC call instruction to repaint the currently used frame buffer using the 

prepared character images in the hypervisor. Otherwise, it will branch to the original flow 

of execution of the display driver. 

SedDisplay made a couple of modifications on the OS driver. However, it does not mean 

SecDisplay is not a practical solution. SecDisplay is compatible with legacy programs, 

even though a program does not need protection, it can still run on the OS modified by 

SecDisplay. 
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Figure 3: Snapshot of SecEditor based on the SecDisplay 

5.2 Repainting based on character image 

To quickly display the character clicked by the human user onto screen, we elaborate the 

common character images instead of producing them via complicated GPU computing 

and compositing. As is shown in Fig. 3, each character on the top of the picture is 

composed of a piece of image of suitable size. The 38 pieces of images are derived from 

their complete screenshots through dumping the data of the specific character area from 

the frame buffer into file. Thus, when a character needs to be displayed, we only directly 

copy the corresponding image data into the frame buffer. 

Besides, we load these character-image data into the specific memory blocks during 

initializing the system and verify their integrity to prevent any runtime attacks from 

maliciously accessing them. Note that when we perform these operations in the TDA, the 

temporary variables in stack may be asynchronously modified by other CPUs due to 

running on multi-core platform, thus, the push or pop operation to save or restore the 

context is most likely to lead to crashing the OS. To this end, we allocate the stack 

memory for each core and cautiously maintain them. 

5.3 Filtering out multi-touch noise 

In virtue of different single-touch technology on the display device, when happened to 

pressing down only one time on the touchscreen, more than one touch events can be 

tracked down and repeatedly handled in the TDA. This severely constrains the 

performance of SecDisplay. Based on our prior study to touchscreen driver in Linux 

kernel, the driver will filter out redundant touch events triggered by the human user 

through setting a time threshold that is used to drop the events beyond the value. 

Similar to the operation performed by the OS kernel, we estimate and adjust the time 

threshold to filter out the redundant touch events and further avoid the higher overhead 
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from repeatedly repainting the frame buffer for the same touch event. To generalize our 

design and improve the user experience, only the region belonging to the particular soft 

keyboard will handle the page faults while the remainder including the gap between the 

characters on the keyboard and the blank areas on the top of the keyboard will has no any 

response. 

6 Performance evaluation 

In this section, we evaluate the proposed system. First, we measured the time required to 

identify coordinates, repaint shadowing frame buffer, copy frame data to three frame 

buffers and so on during the system initialization. Secondly, besides these micro-

benchmarks, we also conducted the macro-benchmarks. Specifically, we use Android 

Vellamo (Version 3.2.6) and CF-bench (Version 1.3) benchmarks to evaluate the overall 

performance impact of the trust display service on the OS/Apps software. Finally, we 

show the code size of TCB and all major prototype components in SecDisplay. All the 

experiments were repeated 20 or more times and the average results are reported here. 

6.1 Performance on micro-benchmarks 

The runtime overhead incurred by SecDisplay includes the hypervisor interceptions or 

hypervisor calls and the CPU time spent by the hypervisor’s execution. To evaluate the 

former cost, we measure the turnaround time of an empty HVC call which causes the 

CPU to trap into the HYP mode and return immediately. Our experiments show that the 

average cost for a round-trip mode switch is around 86 CPU cycles on our board. For the 

latter cost in the hypervisor, identifying the coordinate clicked by user on touchscreen, 

locating and repainting the shadow frame buffer and copying the data in shadow buffer 

into the frame buffers will take a bit of time. The overhead increases around 16 

milliseconds on average, as is shown in Tab. 2. 

Table 2: The relative time of code execution in SecDisplay, in millisecond 

Identifying coordinates ~0.002 

Repainting shadow frame buffer ~0.298 

Copying to frame buffer ~15.63 

6.2 Performance on macro-benchmarks 

We use two Android benchmarks Vellamo and CF-bench to evaluate the system-wide 

performance impact of SecDisplay on the Rich OS/Apps. Vellamo includes two test 

items: Multicore and Metal while CF-bench actually involves in more, wherein we chose 

two representative benchmarks: Native and Java. The Multicore on Vellamo extensively 

measures floating point computing, memory r/w speed, system call operations, Binder 

IPC and so on, and the Metal mainly aims at CPU performance and networking 

capabilities. CF-bench is used to measure the performance overhead of DRAM and flash 

storage in Native and Dalvik environment, respectively. The results are shown in Tab. 3, 

the higher score means the better performance. The overhead on the overall system 

performance is quite small. 



 

 

 

Securing Display Path for Security-Sensitive Applications                                       29 

 

Table 3: Performance of the trust display service on Vellamo and CF-bench (higher 

score is better) 

 SecDisplay  

Off 

SecDisplay  

On 

Performance 

loss (%) 

Vellamo 

Multicore 

Metal 

 

963.7 

475.5 

 

949.1 

459.6 

 

1.5 

3.3 

CF-bench 

Native 

Java 

Overall 

 

21802.9 

5613.2 

12088.6 

 

21230.1 

5303.6 

11673.7 

 

2.6 

5.5 

3.4 

As aforementioned explanation, when SecDisplay is enabled, the extra Stage-2 

translation will occur on every memory access. Therefore, the time spent on the address 

translation should be doubled theoretically while the impact is also aggravated 

accordingly. However, as MMU’s TLB caches every mapping that previously has been 

translated and the data cache and instruction cache also have been enabled for frequent 

cache hits, the performance loss is still small. In addition, the context switch, TLB 

invalidation, identifying coordinate and copying the data into the frame buffers also will 

introduce a certain amount of performance drop, but the measurement results are almost 

same as off SecDisplay. The reason lay behind that is the two benchmarks never have 

access to any protected memory (e.g. the input buffer) which will trigger page faults to 

trap into the hypervisor to handle. 

6.3 TCB size 

In SecDisplay, the tiny hypervisor is the TCB of the trust display service. To estimate the 

safety of SecDisplay in terms of TCB size, we counted the number of source lines of our 

prototype. As is shown in Tab. 4, the SecDisplay hypervisor only consists of <190C 

SLoC and <1,400 assembly SLoC, therefore, SecDisplay has a smaller TCB than the 

previous works [McCune, Li, Qu et al. (2010); Yu, Gligor and Zhou (2015); Danisevskis, 

Peter, Nordholz et al. (2015); Cho, Shin, Kwon et al. (2016); Azab, Ning, Shah et al. 

(2014)]. Moreover, we also show the statistic of other components, such as the 

instrumented display driver with 90 SLoC totally, the system call interface comprising of 

162 SLoC for interacting with kernel, and the high-level SecApp including java and 

native code with 223 SLoC. 

Table 4: Code size in SecDisplay (in SLoC). The numbers of assembly code lines are in 

the brackets  

Tiny hypervisor Instrumented drivers Two syscalls interface SecEditor 

183 (1378) 90 162 223 
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7 Related work 

7.1 Virtualization-based security 

The immediate benefit of virtualization is that the hardware resources of a platform can 

be partitioned two isolated domains, and the domain with higher privilege can monitor 

the activity of the other. This mechanism has been explored by a diverse of fields 

including malware analysis [Dinaburg, Royal, Sharif et al. (2008)], kernel rootkits 

detection and prevention [Li, Wang, Jiang et al. (2010); Riley, Jiang and Xu (2008, 

2009)], virtual honeypot [Jiang and Wang (2007)], system security enhancement [Wang, 

Chen, Wang et al. (2015); Chen, Garfinkel, Lewis et al. (2008); Jiang and Wang (2007); 

Litty, Lagar-Cavilla and Lie (2008); Cho, Shin, Kwon et al. (2016); Azab, Ning, Shah et 

al. (2014); Shen, Li, Su et al. (2018)], etc. 

In particular, virtualization is a popular choice of platforms to fortify the kernel or 

applications security. For instance, Patagonix protects the kernel code integrity through 

virtualization-based code identification [Litty, Lagar-Cavilla and Lie (2008)], while 

HookSafe further addresses the protection granularity problem through systematic hook 

redirection [Wang, Jiang, Cui et al. (2009)]. Meanwhile, Overshadow is designed to 

protect the secrecy of the user data in memory even if the kernel is completely 

compromised [Chen, Garfinkel, Lewis et al. (2008)]. 

Trusted Display [Yu, Gligor and Zhou (2015)] and Graphical User Interface [Danisevskis, 

Peter, Nordholz et al. (2015)] are two approaches based on virtualization to assure the 

confidentiality and authenticity of content output by SecApp and thus prevent a 

compromised Rich OS or application from surreptitiously reading or modifying the 

displayed output. More specifically, the former one mainly provides trusted display on 

commodity platforms that use modern graphics processing units (GPUs). The latter one 

provides a trusted and identifiable input and output path between the user and a VM. 

Hardware virtualization-based systems are trustable due to their smaller code base and 

attack surface. However, the bloated code base of modern hypervisors and recent attacks 

put this assumption into question. This problem is much more serious as a system 

providing trusted display service needs to support complexity interoperations among 

several hardware components. Therefore, in this work, we proposed a system with very 

small code base to provide trusted display. 

7.2 Trusted display with other techniques 

Several previous approaches provide trusted display services through fortifying the OS 

kernel, such as Nitpicker [Feske and Helmuth (2005)] and Trusted X [Epstein, McHugh, 

Pascale et al. (1991)]. Glider [Sani, Zhong and Wallach (2014)] also could be used to 

provide a trusted display service since it isolates GPU objects in the kernel. However, 

these approaches extensively modified the OS kernel. Past research efforts to restructure 

unmodified OSes to support high-assurance security services were failed to meet 

stringent marketplace requirements on timely availability and maintenance. Moreover, 

the Rich OS always has a complicated code base and thus potentially contains a number 

of software vulnerabilities. 

Other approaches provide trusted display by exclusively assigning GPU to SecApp. 
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Recent implementations of trusted path [Zhou, Gligor, Newsome et al. (2012); Zhou, Yu 

and Gligor (2014)] isolate communication channels from SecApp to GPU hardware. 

However, once assigned to a SecApp, the GPU cannot be accessed by the Rich OS/Apps 

until the device is re-assigned to them. Thus, the Rich OS/Apps cannot display their 

content during SecApp’s exclusive use of the trusted display. 

Meanwhile, GPU virtualization can provide trusted display services by running SecApps 

in a privileged domain and the Rich OS/Apps in an unprivileged domain. The privileged 

domain can emulate the GPU display function in software [Steinberg and Kauer (2010)] 

for the Rich OS/Apps. However, some GPU functions, such as image-processing 

emulation, are extremely difficult to implement in software due to their inherent 

complexity [Tian, Dong and Cowperthwaite (2014)]. As a result, GPU emulation cannot 

provide all GPU functions to the Rich OS/Apps, and hence this approach is incompatible 

with commodity software. A mitigation solution named Smowton [Smowton (2009)] 

paravirtualizes the user-level graphics software stack to provide added GPU functions to 

the Rich OS/Apps. Unfortunately, this type of approach requires graphics software stack 

modifications inside the Rich OS/Apps, and hence is incompatible with commodity OS. 

Basically, these techniques targets for x86 platform while leaving ARM untouched. 

Particularly, TrustZone technology on ARM is extensively applied to security enhancement. 

TZ-RKP [Azab, Ning, Shah et al. (2014)] leverages the Security Extension to protect the 

kernel running in the normal world. Specifically, it instruments the original kernel to 

prevent it from executing certain privileged instructions or updating page tables. These 

operations instead must be handled by the secure world. Certainly, TrustZone technology 

can also protect the display content for the SecApp which typically runs in the secure 

world avoiding any interference from the normal world. However, the closed source to 

TrustZone code makes the research and implementation difficult without any external 

collaboration. 

Some cryptography-based approaches [Yamamoto, Hayasaki and Nishida (2004)] decode 

concealed display images via optical methods; for instance, by placing a transparency, 

which serves as the secret key, over concealed images to decode them. These approaches 

are similar in spirit to the use of one time pads, and hence need physical monitor 

modification for efficient, frequent re-keying. Other systems [Oikonomakos, Fournier 

and Moore (2006); Yuan, Li, Wu et al. (2017); Pradeep, Mridula and Mohanan (2017)] 

add decryption circuitry to displays, and hence also require commodity hardware 

modification, which fails to satisfy design requirements. 

8 Conclusion 

In this work, we have proposed a trust display scheme named SecDisplay. It utilizes the 

hardware virtualization extensions provided by modern ARM processors to protect the 

display output from being stolen or tampered stealthily by a compromised OS. 

SecDisplay successfully maintains a minimal TCB while secures the display path 

between security-sensitive applications and display devices. The design of SecDisplay is 

fully compatible with commodity hardware, applications, OSes and the display drivers. 

We implemented a prototype of SecDisplay on Odroid-XU4 QSB, and elaborated a 

SecApp named SecEditor to demonstrate the usability and reliability of SecDisplay. The 
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performance evaluations conducting on both micro-benchmarks and macro-benchmarks 

show a negligible overhead. 
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