
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

1-2018

Securing display path for security-sensitive
applications on mobile devices
Jinhua CUI
Singapore Management University, jhcui@smu.edu.sg

Yuanyuan ZHANG
Fujian Normal University

Zhiping CAI
National University of Defense Technology

Anfeng LIU
Central South University

Yangyang LI
China Academy of Electronics and Information Technology

DOI: https://doi.org/10.3970/cmc.2018.055.017

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons, and the Software Engineering Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
CUI, Jinhua; ZHANG, Yuanyuan; CAI, Zhiping; LIU, Anfeng; and LI, Yangyang. Securing display path for security-sensitive
applications on mobile devices. (2018). Computers, Materials and Continua. 55, (1), 17. Research Collection School Of Information
Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4114

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/200254851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3970/cmc.2018.055.017
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Copyright © 2018 Tech Science Press CMC, vol.55, no.1, pp.17-35, 2018

CMC. doi: 10.3970/cmc.2018.055.017 www.techscience.com/cmc

Securing Display Path for Security-Sensitive Applications on

Mobile Devices

Jinhua Cui1, 2, Yuanyuan Zhang3, Zhiping Cai1, *, Anfeng Liu4 and Yangyang Li5

Abstract: While smart devices based on ARM processor bring us a lot of convenience,

they also become an attractive target of cyber-attacks. The threat is exaggerated as

commodity OSes usually have a large code base and suffer from various software

vulnerabilities. Nowadays, adversaries prefer to steal sensitive data by leaking the content

of display output by a security-sensitive application. A promising solution is to exploit

the hardware visualization extensions provided by modern ARM processors to construct

a secure display path between the applications and the display device. In this work, we

present a scheme named SecDisplay for trusted display service, it protects sensitive data

displayed from being stolen or tampered surreptitiously by a compromised OS. The TCB

of SecDisplay mainly consists of a tiny hypervisor and a super light-weight rendering

painter, and has only ~1400 lines of code. We implemented a prototype of SecDisplay

and evaluated its performance overhead. The results show that SecDisplay only incurs an

average drop of 3.4%.

Keywords: Mobile device, secure display, virtualization, trusted computing base, display

path, trust anchor.

1 Introduction

Smart devices with ARM processors are now widely used in our daily life. For instance,

we can use smart phones not only for calling a friend, but also browse websites, take

photos and buy products. While smart devices bring us a lot of convenience, they also

become an attractive target of cyber-attacks. Thus, the security of smart devices is one of

the biggest concerns of users.

The threat to security is exaggerated as commodity operating systems (OSes) support rich

functionalities. These Rich OSes usually have a large code base with complicated logic

and thus suffer various software vulnerabilities. As an OS has higher privilege level than

user-level applications, the security-sensitive data can be readily leaked once the OS is

compromised. To protect the sensitive data from being leaked or tampered, various

1 College of Computer, National University of Defense Technology, Changsha 410073, China.

2 SMU Labs, Singapore Management University, Singapore 178895, Singapore.

3 College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350117, China.

4 School of Information Science and Engineering, Central South University, Changsha 410083, China.

5 Innovation Center, China Academy of Electronics and Information Technology, Beijing 100041, China.

* Corresponding author: Zhiping Cai. Email: zpcai@nudt.edu.cn.

18 Copyright © 2018 Tech Science Press CMC, vol.55, no.1, pp.17-35, 2018

schemes [McCune, Li, Qu et al. (2010); Yu, Gligor and Zhou (2015); Sun, Sun, Wang et

al. (2015); Wang, Chen, Wang et al. (2015); Danisevskis, Peter, Nord-holz et al. (2015);

Cheng, Ding and Deng (2013); Cheng and Ding (2013); Chen, Garfinkel, Lewis et al.

(2008); Cho, Shin, Kwon et al. (2016); Azab, Ning, Shah et al. (2014)] have been

proposed during the past years. Among them, the schemes like Fides [Strackx and

Piessens (2012)] and Flicker [McCune, Parno, Perrig et al. (2008)] utilize a more

privileged kernel to counteract the illegal behaves targeting userland applications, but

these mechanisms can unimpededly be disabled by rootkits residing in kernel space at

runtime. To this end, schemes based on ARM TrustZone [Sun, Sun, Wang et al. (2015);

Alves (2004); Winter (2012); Logic (2012); Azab, Ning, Shah et al. (2014); Tian, Wang,

Liu et al. (2017); Guan, Liu, Xing et al. (2017)] and hardware virtualization [McCune, Li,

Qu et al. (2010); Yu, Gligor and Zhou (2015); Wang, Chen, Wang et al. (2015); Cheng,

Ding and Deng (2013); Cheng and Ding (2013); Cho, Shin, Kwon et al. (2016); Eppler

and Wang (2018)] are proposed.

TrustZone is designed as a hardware security extension in ARM processors [ARM

(2010)], it has already been adopted by most trusted execution environment (TEE)

solutions (e.g. MobiCore (Trustonics) [Logic (2012)], Sierra-TEE [Sierraware (2013)]).

TrustZone can build a secure world separated from other software layers including the

hypervisor and Rich OS in the normal world, and can configure a secure physical

memory space which only can be accessed by the secure world. Therefore, a system

rooted on TrustZone surely can provide security guarantees on protecting security-

sensitive applications (SecApps). However, the devices providers rarely publish their

source code placed in TrustZone, thus make security community difficult to do a good

examination. Moreover, the trusted computing base (TCB) of secure world would

increment along with the number of kernel modules such as char driver and display driver

installed in the OS. A bloated TCB may revoke its reliability in security. Furthermore, for

third-party software developers, it may be an arduous procedure for negotiating with

OEMs and service providers to place their code into the secure world.

Recent ARM processors like ARMv7-A and ARMv8-A extend their architectures to support

virtualization, with which users can efficiently implement a lightweight hypervisor. The

immediate benefit of hardware-assisted virtualization is that the hardware resources of a

platform can be separated into two isolated domains, and the domain with higher privilege

can monitor the activities of the other. Therefore, virtualization has a good availability and

becomes a popular choice for a platform to fortify its kernel or application security [Wang,

Chen, Wang et al. (2015); Chen, Garfinkel, Lewis et al. (2008); Jiang and Wang (2007);

Litty, Lagar Cavilla and Lie (2008); Cho, Shin, Kwon et al. (2016); Azab, Ning, Shah et

al. (2014)]. Taking Trusted Display [Yu, Gligor and Zhou (2015)] as an example, it relies

on the underlying micro-hypervisor to mediate accesses to sensitive GPU objects by the

Rich OS/Apps and emulates these accesses to prevent against arbitrary modifications.

Nowadays, cyber-attacks targeting smart devices start to steal sensitive data by leaking

the display content of touchscreen. For instance, screenshot taking attacks [Lin, Li, Zhou

et al. (2014)] try to obtain the content of display output stored in the frame buffer, on a

purpose to get SecApp’s security-sensitive output. Moreover, the phishing attacks [Chen,

Qian and Mao (2014); Bianchi, Corbetta, Invernizzi et al. (2015)] present a dialog on the

Securing Display Path for Security-Sensitive Applications 19

screen analogous to the user’s SecApp to trick the user into leaking security-sensitive

information such as login credentials.

This work mitigates such an attack by providing a trust display service. Because of the

availability, we exploit the hardware virtualization extensions provided by modern ARM

processor to build a trusted world for the service. Specifically, SecDisplay relies on a tiny

hypervisor to create a “secure world” separated from the untrusted OS. SecDisplay

successfully manage a minimizing TCB by implementing a tiny hypervisor with a super

light-weight rendering painter. The rendering painter utilizes the character-image to directly

be rendered (~1400 SLoC), avoiding the need of implementing a full-featured char drivers

in hypervisor. SecDisplay guarantees that the display content containing the sensitive data

is securely protected from being read or modified stealthily by malicious OS.

We implemented a prototype of SecDisplay on Odroid-XU4 QSB equipped with 8 CPU

cores, and developed a high-level particular application named SecEditor on Android OS

to demonstrate the usability and reliability of SecDisplay.

In summary, we make the following contributions in this paper.

(1) We present a new scheme named SecDisplay to protect the display content from

being read or tampered by an untrusted OS running on ARM platform. This scheme

exploits ARM Hardware Virtualization extensions to build a “secure world” isolated

from the OS kernel, and create a communication channel from SecApp to the display

device that is only accessible by the secure world.

(2) We implement a prototype of SecDisplay on Odroid-XU4 QSB with multi-processor

architecture. The OS is a customized Linux 3.10.9 and Android 4.4.4. The experimental

results show that our system only incurs 3.4% performance overhead.

The remainder of the paper is organized as follows. Section 2 gives a background of

ARM Hardware Virtualization, the two stages of memory address translation and the

flow of input and output in the context of a display device. Section 3 describes the threat

model and assumptions. Section 4 presents the design of our SecDisplay system. We

elaborate the prototype implementation in Section 5 and evaluate it in Section 6. The

related work is described in Section 7. Finally, we summarize the paper in Section 8.

2 Background

2.1 ARM hardware virtualization overview

Similar to x86 architecture, ARM virtualization extensions enable the efficient

implementation of the hypervisor for ARM compliant processors to the latest ARMv7-A

and ARMv8-A architectures. Instead of introducing an orthogonal feature to distinguish

between the hypervisor and VM operation, ARM extended the existing CPU mode

hierarchy, originally just PL0 user mode and PL1 kernel mode, by adding a separate more

privileged mode called PL2 (also known as Hyp mode) to run the hypervisor. These PLs

have independent memory address spaces and different privileges.

Hyp mode has the responsibility of performing trap-and-emulation operations to support

virtualization in the normal world. It holds its own banked registers, as well as additional

registers, such as SP, SPSR, and ELR, in which most of critical feature of hardware-

assistant CPU virtualization is executed. Using this register set, the hypervisor software

20 Copyright © 2018 Tech Science Press CMC, vol.55, no.1, pp.17-35, 2018

running in Hyp mode can configure hardware to trap into Hyp mode on several sensitive

instructions and hardware interrupts.

2.2 Stage-2 translation for memory access controlling

TTBR0,
TTBR1

Stage-2
Page Table

Stage-1
Page Table

Stage-1
Translation

Performed by OS

Physical Memory

VTTBR

Virtual
Address (VA)

Stage-2
Translation

Performed by
Hypervisor

Intermediate
Physical

Address (IPA)

Physical
Address (PA)

Figure 1: Two stage address translation

In ARM virtualization, ARM provides memory virtualization by adding an extra level

translation, Stage-2 translation. With Stage-2 translation enabled, ARM defines three

address spaces: Virtual Addresses (VAs), Intermediate Physical Addresses (IPAs), and

Physical Addresses (PAs). IPAs are a continuous physical memory space in guest OS’s

view. Fig. 1 depicts the two-level address translation. VAs in a guest OS are translated to

IPAs through the Stage-1 page tables managed by guest OS kernel just like non-

virtualized systems. IPAs are further translated to PAs via the Stage-2 page tables

maintained by the hypervisor. Each CPU core has two TTBR_0/1 (Translation Table

Base Register) and one VTTBR (Virtual Translation Table Base Register), pointing to the

Stage-1 and Stage-2 page tables, respectively. While the hypervisor uses a single

translation that converts VAs to PAs directly based on another Stage-1 page table for PL2

itself.

The Stage-2 Translation can only be enabled and disabled in Hyp mode, and the

hypervisor can flexibly configure which physical memory page needs to be protected

through setting the appropriate access permission on the Stage-2 page table entry. Thus,

any illegal accesses to protected memory will trigger page faults and be trapped into Hyp

mode to handle.

2.3 The input and output for the display devices

Smart devices typically have a touch screen and several functional buttons. The screen is

driven by a display controller. It scans an assigned region of memory, interprets the

Securing Display Path for Security-Sensitive Applications 21

content as a map of color values and feeds them to the screen.

More specifically, when an input event is issued by the human user, the touch screen will

actively trigger a hardware interrupt to CPU and delivery the obtained coordinate

information to the input buffer mapped into I/O space, then the input driver will further

be responsible for parsing and handling the event to response the clicked application. For

the output event, in general, the display controller generates a VSYNC interrupt on the

start of the vertical sync gap to coordinate the system’s rendering activities. The display

controller driver, which owns the device and receives that interrupt, forwards it to the

frame buffer switch which, in turn, passes it onto the active client. After that, the data to

be displayed on behalf of the application will be computed and composited by GPU and

the Hardware Compositor, respectively. Accordingly, the frame buffers are populated

with the blending final pixels, which are transmitted to display device in a DMA channel

or other much faster channel by updating the display controller registers.

Moreover, the display controller driver provides an abstraction of the screen. Thereby it

partitions the screen into several logical regions, the label region (e.g. cursor, caption or

menu) and the client region (e.g. OS window). Using the display controller’s support for

multiple scan-out regions or overlays, each of the region may be backed by different

frame buffers. The driver offers a service to attach arbitrary buffers to the logical screen

regions and to retrieve information about the region’s geometry and pixel layout.

3 Threat model and assumptions

We require that the smart devices where the SecDisplay is deployed support the

Hardware Virtualization Extension, and that their hardware behaves correctly. We trust

the code in the Boot ROM where the trust chain is started in the secure world, and the

former boot code will always verify the integrity of the latter one. The hypervisor

therefore is securely booted and trusted at runtime. An adversary is able to exploit

software vulnerabilities to compromise the Rich OS and then obtain the sensitive display

content.

We consider that an adversary can leak a SecApp’s security-sensitive output through

screenshot taking attacks [Lin, Li, Zhou et al. (2014)] whereby the content of display output

in the frame buffer is read by a malicious program of a compromised Rich OS during

running SecApp. Besides, the adversary can manipulate the display engine’s data paths and

overlay a new frame buffer over a SecApp’s display thereby breaking the integrity of

SecApps’ display output without touching its contents. In addition, the phishing attacks

[Chen, Qian and Mao (2014); Bianchi, Corbetta, Invernizzi et al. (2015)] that present a

dialog on the screen analogous to the user’s SecApp may trick the user into giving away

security-sensitive information such as login credentials. The adversary also could try to

eavesdrop on the user input and/or output in the process of transmitting the sensitive

information [Xu, Bai and Zhu (2012); Miluzzo, Varshavsky, Balakrishnan et al. (2012)].

In this paper, we assume that the attacker cannot access physical devices or launch local

physical attacks, such as removing the MicroSD card. We do not consider side-channels,

device peer-to-peer communication and shoulder-surfing attacks [Hoanca and Mock

(2005)]. We ignore I/O channel isolation attacks, which have already been addressed in

prior study [Zhou, Gligor, Newsome et al. (2012); Jiang and Wang (2007)]. We also omit

22 Copyright © 2018 Tech Science Press CMC, vol.55, no.1, pp.17-35, 2018

denial of service (DoS) attacks. For example, an adversary might manipulate the display

controller or GPU configurations to disable screen output. However, for a well elaborated

SecApp (e.g. SecEditor) it would be difficult to launch a DoS attack that would remain

unnoticed by an observant user. Data-only attacks [Hu, Chua, Adrian et al. (2015); Hu,

Shinde, Adrian et al. (2016); Davi, Gens, Liebchen et al. (2017)] that modify the data

objects are outside the scope of this paper. Other aspects of security requirement [Liu and

Li (2018); Tang, Liu, Zhang et al. (2018); Huang, Liu, Zhang et al. (2018); Li, Cai and

Xu (2018); Zhang, Cai, Liu et al. (2018); Sun, Cai, Li et al. (2018); Xia, Cai and Xu

(2018)] also have no consideration due to weak relevance.

4 System design

Fig. 2 shows the SecDisplay architecture. The tiny hypervisor as the trust display anchor

(TDA) is running under the Rich OS, which has a higher privilege than kernel mode and

only contain one component: trusted rendering painter. The hardware display device is

used to render the data entered by the human user via touchscreen. The owning lowest

privileged particular applications are residing on user mode, which are responsible for

interacting with the underlying TDA to activate SecDisplay.

SecApps

Rich OS

Activity
Window
Service

Display
Controller

Surface-
Flinger

Stage-2
Address

Translation

Tiny-hypervisor

Device Display

Emulation
Support

H/W
composer

Memory Map

MMIO space

DRAM

ROM & RAM &
I/O

Frame buffer

4 GB

2 GB

1 GB

0 GB

Trusted Untrusted

Rendering
Painter

Figure 2: The architecture of SecDisplay. The tiny hypervisor as the TDA to guarantee

the security of frame buffer composed by the Rich OS

4.1 Flushing frame buffer

As the repainting operation is performed in the hypervisor space and we do not

implement the related display driver in it to reduce the size of TCB, there exists a

problem about how to make the data in the new protected frame buffer display on screen

quickly. The most straightforward approach is that the trusted rendering painter residing

in the hypervisor helps directly repaint the currently used or next frame buffer to be

display with the prepared character-image data according to the coordinate stored in the

input buffer. Nevertheless, during the SecDisplay working, the input buffer is always

locked, which causes the entire touchscreen fail to respond to any request from the Rich

OS except for the TDA. Therefore, no any updating operation actively transfers the

Securing Display Path for Security-Sensitive Applications 23

content of the new frame buffer onto display device. Based on our observation for

another Raspberry Pi2 board, the display subsystem is not quite complex than Odroid-

XU4, on where the frame buffer update is invoked by display device through forwarding

a hardware interrupt to CPU that only periodically fetch the pixel data from frame buffer

onto the display device to display. Thus, the former board can save more time-consuming

operations and power and display more smoothly but involving in great complexity while

the latter one is most likely to occur screen tearing phenomenon but always presenting

the new data in frame buffer onto screen. Theoretically, we should implement a complete

display driver in the hypervisor space to timely transfer frame data to the display device

but this will dramatically increase the size of TCB. Instead of designing a complicated

display driver that has the potential to introduce new vulnerabilities, we made several

trials below.

Firstly, according to the display controller specification of the particular board, we

changed the mappings in SysMMU_DISP1 Page Table that mapped to the physical frame

buffer for OS window to the previously allocated new frame buffer address, or created

new mappings for SysMMU_DISP1 Page Table, and then observed that the content of

the new frame buffer wouldn’t be transferred to the display device to display normally

after the start and end addresses of display controller registers was exactly configured.

While non-cacheable memory attribute for the new frame buffer and the relevant TLB

flushing operations have been enforced, the display content repainted by the TDA still

did not timely occur on screen until the time updating event arrives.

Secondly, as ARM only supports tracking memory at the 4 KB or even larger granularity,

thus, the data structures related to the display controller registers are exactly mapped into

the same physical page in current setting, which will involve in extra traps into the

hypervisor once happened any access to the arbitrary address within the specific locked

page. Moreover, the number of display controller registers is a little more (~18), thus, if

we only enable Stage-2 translation lock the physical page that contains the related

registers of display controller, and then help emulate these traps according to the

syndrome information stored in different syndrome registers (e.g. HSR, HPFAR and

HDFAR) and repaint the frame buffer to be displayed in the hypervisor when updating

the controller registers by the display driver, the overhead of iterative context switching

between SVC and HYP mode will incur much more performance loss.

Therefore, in order to possibly not introduce too much performance overhead or not

implement a new display driver in the hypervisor, we make a trade-off between

performance and generality for flushing frame data to display device, where we chose to

perform the frame buffer updating by invoking the userland android element invalidation

interface function from the SecApp. Specifically, we create a dedicated thread to call the

invalidation function in polling way, when the TDA is initialized completely, the update

status will be set through an installed system call module. At this moment, the TDA does

not touch any data in current frame buffer until the touchscreen events are triggered by

the human user, where arbitrary access to the protected input buffer from the Rich OS

will cause the page fault which is directly delivered into the TDA in HYP mode by

hardware. At the same time when the TDA detected the update status, it will immediately

repaint the frame buffer allocated for OS window with the character image based on the

24 Copyright © 2018 Tech Science Press CMC, vol.55, no.1, pp.17-35, 2018

parsed coordinate in the input buffer.

Because only repainting one frame buffer will occur flickering phenomenon without the

particular character-image data in the other two frame buffers, our implementation will

firstly repaint the shadowing frame buffer and then copy them to all three frame buffers

for OS window when invoked update event in polling thread. While the content in frame

buffers may be flushed away due to from the external update events, as the touchscreen is

always locked during its working and our SecApp is set to full screen mode, the repainted

frame buffers will not be polluted or overwritten.

The frame buffer to be flushed out onto screen that contains the sensitive data can be read

or tampered stealthily by the Rich OS, so we exploit Stage-2 translation to constrain such

malicious access. Furthermore, considering that GPU also access the frame buffer

through SysMMU_DISP1 Page Table. Theoretically, we can make the TDA verify the

integrity of the SysMMU_DISP1 Page table to counteract this attack from GPU side.

However, since the page table for display device is frequently modified to create the new

frame buffer or release the old one, we cannot simply shield it in current setting.

4.2 Quick rendering

Although GPU is quite efficient at accelerating the creation of images in a frame buffer

intended for output to a display device, it still needs to occupy a certain number of time

slices to render, composite and copy to the frame buffer. To this end, we elaborately

devise a series of character images for output and a dedicated soft keyboard for input.

Each piece of character image is derived from their complete screenshots through

dumping the data of the specific character area from the frame buffer into file. Similar to

the hard keyboard on PC or mobile phone, the particular keyboard contains a set of

common English characters except the special ones.

With previously prepared input and output resources, it is unnecessary for the TDA to

implement a complete functional display driver in the hypervisor space that will

dramatically increase the size of TCB. As a result, the trusted rendering painter only need

to copy the according character-image data loaded into memory to the current frame

buffer when the human user clicks a character on the dedicated soft keyboard.

Accordingly, such an operation will enable the sensitive data in frame buffer be quickly

rendered onto the display device. Considering that these character images used for output

may be tampered by the Rich OS, we put them into the specific memory blocks that are

protected against malicious OS access through the Stage-2 memory translation. For the

simplicity of implementation, we load these character images with hypervisor image

together into the memory region allocated to the hypervisor space during SecDisplay’s

initializing phase, wherein the integrity is also verified to strictly ensure their security.

4.3 TDA: Trust Display Anchor

Instead of implementing a complicated display driver in the hypervisor, we utilize the

TDA as the function module to achieve a series of goals of protecting those elaborated

character images, locking the input buffer allocated for touchscreen, handling the page

faults and repainting the frame buffer, etc.

Securing Display Path for Security-Sensitive Applications 25

4.3.1 Locking the input buffer

The input buffer register as a unit of touch screen controller that is mapped into MMIO

space is charge of storing or collecting the coordinate information from touchscreen

sensor. When the human user presses down on the touchscreen, the sensor processor unit

will forward the computed coordinate into the mapped input buffer which will further be

read by OS kernel to handle the touchscreen events. In order to obtain the coordinate

prior to the Rich OS, the TDA sets the physical page containing the input buffer to non-

accessible through the Stage-2 translation to forbid any malicious access during

SecApp’s working. The DMA-based attacks can be prevented by verifying the integrity

of the SMMU page tables but, in practical, the frequent modifications to those page tables

by OS may make it incompetent.

4.3.2 Handling page faults

After finished locking the input buffer, any read or write operations will trigger the page

faults that will be forwarded into the handler of offset 0×14 of the exception base address

of the hypervisor vector table to further handle. In exception handler, we parse the

coordinate information fetched from the input buffer into x, y values. According to the

coordinate we determine the position of the character clicked by the human user on the

particular soft keyboard displayed on screen based on the previously computed range of x

and y values, as shown in Tab. 1. Once obtained the knowledge of the position of the

clicked character, we will accordingly located the in-memory character image to repaint

the frame buffer. After handling the exception, the TDA will perform the ERET

instruction to switch back to SVC mode to continue executing the following instructions.

With the design of ARM processor pipeline, we have to add the offset of 4 bytes to

ELR_hyp register to avoid trapping into the hypervisor again.

Table 1: A small protion of coordinate range based on the elaborated soft keyboard

Characters
Coordinate Range

Upper-left to Lower-right

0

1

2

a

b

c

done

delete

(1194, 446)~(1282, 488)

(24, 446)~(112, 488)

(154, 446)~(242, 488)

(93, 609)~(185, 655)

(724, 685)~(814, 735)

(469, 685)~(563, 735)

(24, 685)~(182, 735)

(1103, 685)~(1248, 735)

4.3.3 Repainting for frame buffer

In our current design of SecEditor application, a right-size bar located at the top of screen

is used to display the sensitive data, accordingly, and the mapped areas in the frame

26 Copyright © 2018 Tech Science Press CMC, vol.55, no.1, pp.17-35, 2018

buffer are protected from any malicious access. The trusted rendering painter as a part of

TDA is charge of repainting the bar with the clicked character images. Benefiting from

our previously elaborated 38 pieces of images, we only directly copy the corresponding

image data into the frame buffer instead of spending much more time computing and

compositing the final pixels by GPU and hardware compositor, respectively. However,

this also introduces the issue of generality that the right-size character images for

different screen resolution need to be redesigned. Comparing to the great enhancement to

the performance and security, we chose to match the new device through providing a

simple versatile tool to produce the matchable images.

5 Implementation

We implement a SecDisplay prototype using Odroid-XU4 quick start board (QSB).

Odroid-XU4 is equipped with four big cores (ARM Cortex-A15 up to 2.0 GHz) and four

small cores (ARM Cortex-A7 up to 1.4 GHz) with 2 GB LPDDR3 RAM, and supports

boot from an eMMC5.0 HS400 Flash Storage or a MicroSD card. The touchscreen we

use is Odroid-VU HDMI LCD Display, a 9-inch 1280×800 (WXGA) display with 10-

points capacitive touchscreen. Besides, 2×USB 3.0 Host used for faster communicated

with the peripherals are also integrated. We run Android 4.4 KitKat with Linux 3.13 on it.

To demonstrate the usability and reliability of our system, moreover, we elaborated a

high-level particular application that provides a reliable user input/output interface to

ensure the security of the display content. In specific, we will present our implementation

as follows.

5.1 Slightly instrumenting to the display driver

To quickly flush the content in the repainted frame buffer to the display device, we

slightly modify the source code of the display driver through inserting a stub to check

whether the flag of updating the frame buffer is met. When the human user touches the

characters on touchscreen via the particular soft keyboard in SecEditor, the page faults

will be triggered as the Rich OS tries to read the locked input buffer. In the page fault

handler, the TDA will put a global flag into memory to inform the updating thread in

SecEditor to invoke the invalidation function of frame buffer. At the same time, another

flag for the display driver is also put into memory through the system call interface. Once

the instrumented code in the display driver detected the flag set by the updating thread, it

will invoke the HVC call instruction to repaint the currently used frame buffer using the

prepared character images in the hypervisor. Otherwise, it will branch to the original flow

of execution of the display driver.

SedDisplay made a couple of modifications on the OS driver. However, it does not mean

SecDisplay is not a practical solution. SecDisplay is compatible with legacy programs,

even though a program does not need protection, it can still run on the OS modified by

SecDisplay.

Securing Display Path for Security-Sensitive Applications 27

Figure 3: Snapshot of SecEditor based on the SecDisplay

5.2 Repainting based on character image

To quickly display the character clicked by the human user onto screen, we elaborate the

common character images instead of producing them via complicated GPU computing

and compositing. As is shown in Fig. 3, each character on the top of the picture is

composed of a piece of image of suitable size. The 38 pieces of images are derived from

their complete screenshots through dumping the data of the specific character area from

the frame buffer into file. Thus, when a character needs to be displayed, we only directly

copy the corresponding image data into the frame buffer.

Besides, we load these character-image data into the specific memory blocks during

initializing the system and verify their integrity to prevent any runtime attacks from

maliciously accessing them. Note that when we perform these operations in the TDA, the

temporary variables in stack may be asynchronously modified by other CPUs due to

running on multi-core platform, thus, the push or pop operation to save or restore the

context is most likely to lead to crashing the OS. To this end, we allocate the stack

memory for each core and cautiously maintain them.

5.3 Filtering out multi-touch noise

In virtue of different single-touch technology on the display device, when happened to

pressing down only one time on the touchscreen, more than one touch events can be

tracked down and repeatedly handled in the TDA. This severely constrains the

performance of SecDisplay. Based on our prior study to touchscreen driver in Linux

kernel, the driver will filter out redundant touch events triggered by the human user

through setting a time threshold that is used to drop the events beyond the value.

Similar to the operation performed by the OS kernel, we estimate and adjust the time

threshold to filter out the redundant touch events and further avoid the higher overhead

28 Copyright © 2018 Tech Science Press CMC, vol.55, no.1, pp.17-35, 2018

from repeatedly repainting the frame buffer for the same touch event. To generalize our

design and improve the user experience, only the region belonging to the particular soft

keyboard will handle the page faults while the remainder including the gap between the

characters on the keyboard and the blank areas on the top of the keyboard will has no any

response.

6 Performance evaluation

In this section, we evaluate the proposed system. First, we measured the time required to

identify coordinates, repaint shadowing frame buffer, copy frame data to three frame

buffers and so on during the system initialization. Secondly, besides these micro-

benchmarks, we also conducted the macro-benchmarks. Specifically, we use Android

Vellamo (Version 3.2.6) and CF-bench (Version 1.3) benchmarks to evaluate the overall

performance impact of the trust display service on the OS/Apps software. Finally, we

show the code size of TCB and all major prototype components in SecDisplay. All the

experiments were repeated 20 or more times and the average results are reported here.

6.1 Performance on micro-benchmarks

The runtime overhead incurred by SecDisplay includes the hypervisor interceptions or

hypervisor calls and the CPU time spent by the hypervisor’s execution. To evaluate the

former cost, we measure the turnaround time of an empty HVC call which causes the

CPU to trap into the HYP mode and return immediately. Our experiments show that the

average cost for a round-trip mode switch is around 86 CPU cycles on our board. For the

latter cost in the hypervisor, identifying the coordinate clicked by user on touchscreen,

locating and repainting the shadow frame buffer and copying the data in shadow buffer

into the frame buffers will take a bit of time. The overhead increases around 16

milliseconds on average, as is shown in Tab. 2.

Table 2: The relative time of code execution in SecDisplay, in millisecond

Identifying coordinates ~0.002

Repainting shadow frame buffer ~0.298

Copying to frame buffer ~15.63

6.2 Performance on macro-benchmarks

We use two Android benchmarks Vellamo and CF-bench to evaluate the system-wide

performance impact of SecDisplay on the Rich OS/Apps. Vellamo includes two test

items: Multicore and Metal while CF-bench actually involves in more, wherein we chose

two representative benchmarks: Native and Java. The Multicore on Vellamo extensively

measures floating point computing, memory r/w speed, system call operations, Binder

IPC and so on, and the Metal mainly aims at CPU performance and networking

capabilities. CF-bench is used to measure the performance overhead of DRAM and flash

storage in Native and Dalvik environment, respectively. The results are shown in Tab. 3,

the higher score means the better performance. The overhead on the overall system

performance is quite small.

Securing Display Path for Security-Sensitive Applications 29

Table 3: Performance of the trust display service on Vellamo and CF-bench (higher

score is better)

 SecDisplay

Off

SecDisplay

On

Performance

loss (%)

Vellamo

Multicore

Metal

963.7

475.5

949.1

459.6

1.5

3.3

CF-bench

Native

Java

Overall

21802.9

5613.2

12088.6

21230.1

5303.6

11673.7

2.6

5.5

3.4

As aforementioned explanation, when SecDisplay is enabled, the extra Stage-2

translation will occur on every memory access. Therefore, the time spent on the address

translation should be doubled theoretically while the impact is also aggravated

accordingly. However, as MMU’s TLB caches every mapping that previously has been

translated and the data cache and instruction cache also have been enabled for frequent

cache hits, the performance loss is still small. In addition, the context switch, TLB

invalidation, identifying coordinate and copying the data into the frame buffers also will

introduce a certain amount of performance drop, but the measurement results are almost

same as off SecDisplay. The reason lay behind that is the two benchmarks never have

access to any protected memory (e.g. the input buffer) which will trigger page faults to

trap into the hypervisor to handle.

6.3 TCB size

In SecDisplay, the tiny hypervisor is the TCB of the trust display service. To estimate the

safety of SecDisplay in terms of TCB size, we counted the number of source lines of our

prototype. As is shown in Tab. 4, the SecDisplay hypervisor only consists of <190C

SLoC and <1,400 assembly SLoC, therefore, SecDisplay has a smaller TCB than the

previous works [McCune, Li, Qu et al. (2010); Yu, Gligor and Zhou (2015); Danisevskis,

Peter, Nordholz et al. (2015); Cho, Shin, Kwon et al. (2016); Azab, Ning, Shah et al.

(2014)]. Moreover, we also show the statistic of other components, such as the

instrumented display driver with 90 SLoC totally, the system call interface comprising of

162 SLoC for interacting with kernel, and the high-level SecApp including java and

native code with 223 SLoC.

Table 4: Code size in SecDisplay (in SLoC). The numbers of assembly code lines are in

the brackets

Tiny hypervisor Instrumented drivers Two syscalls interface SecEditor

183 (1378) 90 162 223

30 Copyright © 2018 Tech Science Press CMC, vol.55, no.1, pp.17-35, 2018

7 Related work

7.1 Virtualization-based security

The immediate benefit of virtualization is that the hardware resources of a platform can

be partitioned two isolated domains, and the domain with higher privilege can monitor

the activity of the other. This mechanism has been explored by a diverse of fields

including malware analysis [Dinaburg, Royal, Sharif et al. (2008)], kernel rootkits

detection and prevention [Li, Wang, Jiang et al. (2010); Riley, Jiang and Xu (2008,

2009)], virtual honeypot [Jiang and Wang (2007)], system security enhancement [Wang,

Chen, Wang et al. (2015); Chen, Garfinkel, Lewis et al. (2008); Jiang and Wang (2007);

Litty, Lagar-Cavilla and Lie (2008); Cho, Shin, Kwon et al. (2016); Azab, Ning, Shah et

al. (2014); Shen, Li, Su et al. (2018)], etc.

In particular, virtualization is a popular choice of platforms to fortify the kernel or

applications security. For instance, Patagonix protects the kernel code integrity through

virtualization-based code identification [Litty, Lagar-Cavilla and Lie (2008)], while

HookSafe further addresses the protection granularity problem through systematic hook

redirection [Wang, Jiang, Cui et al. (2009)]. Meanwhile, Overshadow is designed to

protect the secrecy of the user data in memory even if the kernel is completely

compromised [Chen, Garfinkel, Lewis et al. (2008)].

Trusted Display [Yu, Gligor and Zhou (2015)] and Graphical User Interface [Danisevskis,

Peter, Nordholz et al. (2015)] are two approaches based on virtualization to assure the

confidentiality and authenticity of content output by SecApp and thus prevent a

compromised Rich OS or application from surreptitiously reading or modifying the

displayed output. More specifically, the former one mainly provides trusted display on

commodity platforms that use modern graphics processing units (GPUs). The latter one

provides a trusted and identifiable input and output path between the user and a VM.

Hardware virtualization-based systems are trustable due to their smaller code base and

attack surface. However, the bloated code base of modern hypervisors and recent attacks

put this assumption into question. This problem is much more serious as a system

providing trusted display service needs to support complexity interoperations among

several hardware components. Therefore, in this work, we proposed a system with very

small code base to provide trusted display.

7.2 Trusted display with other techniques

Several previous approaches provide trusted display services through fortifying the OS

kernel, such as Nitpicker [Feske and Helmuth (2005)] and Trusted X [Epstein, McHugh,

Pascale et al. (1991)]. Glider [Sani, Zhong and Wallach (2014)] also could be used to

provide a trusted display service since it isolates GPU objects in the kernel. However,

these approaches extensively modified the OS kernel. Past research efforts to restructure

unmodified OSes to support high-assurance security services were failed to meet

stringent marketplace requirements on timely availability and maintenance. Moreover,

the Rich OS always has a complicated code base and thus potentially contains a number

of software vulnerabilities.

Other approaches provide trusted display by exclusively assigning GPU to SecApp.

Securing Display Path for Security-Sensitive Applications 31

Recent implementations of trusted path [Zhou, Gligor, Newsome et al. (2012); Zhou, Yu

and Gligor (2014)] isolate communication channels from SecApp to GPU hardware.

However, once assigned to a SecApp, the GPU cannot be accessed by the Rich OS/Apps

until the device is re-assigned to them. Thus, the Rich OS/Apps cannot display their

content during SecApp’s exclusive use of the trusted display.

Meanwhile, GPU virtualization can provide trusted display services by running SecApps

in a privileged domain and the Rich OS/Apps in an unprivileged domain. The privileged

domain can emulate the GPU display function in software [Steinberg and Kauer (2010)]

for the Rich OS/Apps. However, some GPU functions, such as image-processing

emulation, are extremely difficult to implement in software due to their inherent

complexity [Tian, Dong and Cowperthwaite (2014)]. As a result, GPU emulation cannot

provide all GPU functions to the Rich OS/Apps, and hence this approach is incompatible

with commodity software. A mitigation solution named Smowton [Smowton (2009)]

paravirtualizes the user-level graphics software stack to provide added GPU functions to

the Rich OS/Apps. Unfortunately, this type of approach requires graphics software stack

modifications inside the Rich OS/Apps, and hence is incompatible with commodity OS.

Basically, these techniques targets for x86 platform while leaving ARM untouched.

Particularly, TrustZone technology on ARM is extensively applied to security enhancement.

TZ-RKP [Azab, Ning, Shah et al. (2014)] leverages the Security Extension to protect the

kernel running in the normal world. Specifically, it instruments the original kernel to

prevent it from executing certain privileged instructions or updating page tables. These

operations instead must be handled by the secure world. Certainly, TrustZone technology

can also protect the display content for the SecApp which typically runs in the secure

world avoiding any interference from the normal world. However, the closed source to

TrustZone code makes the research and implementation difficult without any external

collaboration.

Some cryptography-based approaches [Yamamoto, Hayasaki and Nishida (2004)] decode

concealed display images via optical methods; for instance, by placing a transparency,

which serves as the secret key, over concealed images to decode them. These approaches

are similar in spirit to the use of one time pads, and hence need physical monitor

modification for efficient, frequent re-keying. Other systems [Oikonomakos, Fournier

and Moore (2006); Yuan, Li, Wu et al. (2017); Pradeep, Mridula and Mohanan (2017)]

add decryption circuitry to displays, and hence also require commodity hardware

modification, which fails to satisfy design requirements.

8 Conclusion

In this work, we have proposed a trust display scheme named SecDisplay. It utilizes the

hardware virtualization extensions provided by modern ARM processors to protect the

display output from being stolen or tampered stealthily by a compromised OS.

SecDisplay successfully maintains a minimal TCB while secures the display path

between security-sensitive applications and display devices. The design of SecDisplay is

fully compatible with commodity hardware, applications, OSes and the display drivers.

We implemented a prototype of SecDisplay on Odroid-XU4 QSB, and elaborated a

SecApp named SecEditor to demonstrate the usability and reliability of SecDisplay. The

32 Copyright © 2018 Tech Science Press CMC, vol.55, no.1, pp.17-35, 2018

performance evaluations conducting on both micro-benchmarks and macro-benchmarks

show a negligible overhead.

Acknowledgement: This work was financially supported by the National Natural

Science Foundation of China (Grant No. 61379145) and the Joint Funds of CETC (Grant

No. 20166141B08020101).

References

Alves, T. (2004): Trustzone: Integrated hardware and software security. White Paper.

ARM (2010): Cortex-a9 technical reference manual.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0388f/DDI0388F_cortex_a9_r2p2_

trm.pdf.

Azab, A. M.; Ning, P.; Shah, J.; Chen, Q. (2014): Hypervision across worlds: Real-

time kernel protection from the arm trustzone secure world. Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security, pp. 90-102.

Bianchi, A.; Corbetta, J.; Invernizzi, L.; Fratantonio, Y. (2015): What the app is that?

Deception and countermeasures in the android user interface. Security and Privacy, pp.

931-948.

Chen, Q.; Qian, Z.; Mao, Z. (2014): Peeking into your app without actually seeing it: Ui

state inference and novel android attacks. USENIX Security Symposium, pp. 1037-1052.

Chen, X.; Garfinkel, T.; Lewis, E. C.; Subrahmanyam, P. (2008): Overshadow: A

virtualization-based approach to retrofitting protection in commodity operating systems.

ACM SIGOPS Operating Systems Review, vol. 42, no. 2, pp. 2-13.

Cheng, Y.; Ding, X. (2013): Guardian: Hypervisor as security foothold for personal

computers. International Conference on Trust and Trustworthy Computing, pp. 19-36.

Cheng, Y.; Ding, X.; Deng, R. (2013): Appshield: Protecting applications against

untrusted operating system. Singapore Management University Technical Report, SMU-

SIS-13, vol. 101.

Cho, Y.; Shin, J. B.; Kwon, D.; Ham, M. (2016): Hardware-assisted on-demand hyper-

visor activation for efficient security critical code execution on mobile devices. USENIX

Annual Technical Conference, pp. 565-578.

Danisevskis, J.; Peter, M.; Nordholz, J.; Petschick, M.; Vetter, J. (2015): Graphical

user interface for virtualized mobile handsets. IEEE S&P MoST.

Davi, L.; Gens, D.; Liebchen, C.; Ahmad Reza, S. (2017): Pt-rand: Practical mitigation

of data-only attacks against page tables. 24th Annual Network and Distributed System

Security Symposium.

Dinaburg, A.; Royal, P.; Sharif, M.; Lee, W. (2008): Ether: Malware analysis via hard-

ware virtualization extensions. Proceedings of the 15th ACM conference on Computer and

Communications Security, pp. 51-62.

Eppler, J.; Wang, Y. (2018): Towards improving the security of mobile systems using

virtualization and isolation. 2018 4th International Conference on Mobile and Secure

Securing Display Path for Security-Sensitive Applications 33

Services, pp. 1-6.

Epstein, J.; McHugh, J.; Pascale, R.; Orman, H. (1991): A prototype b3 trusted x

window system. Computer Security Applications Conference, pp. 44-55.

Feske, N.; Helmuth, C. (2005): A nitpicker’s guide to a minimal-complexity secure gui.

Computer Security Applications Conference, 21st Annual, pp. 85-94.

Guan, L.; Liu, P.; Xing, X.; Ge, X.; Zhang, S. et al. (2017): Trustshadow: Secure

execution of unmodified applications with arm trustzone. Proceedings of the 15th Annual

International Conference on Mobile Systems, Applications, and Services, pp. 488-501.

Hoanca, B.; Mock, K. J. (2005): Screen oriented technique for reducing the incidence of

shoulder surfing. Security and Management, pp. 334-340.

Hu, H.; Chua, Z. L.; Adrian, S.; Saxena, P.; Liang, Z. (2015): Automatic generation

of data-oriented exploits. USENIX Security Symposium, pp. 177-192.

Hu, H.; Shinde, S.; Adrian, S.; Chua, Z. L. (2016): Data-oriented programming: On

the expressiveness of non-control data attacks. Security and Privacy, pp. 969-986.

Huang, M.; Liu, Y.; Zhang, N.; Xiong, N.; Liu, A. et al. (2018): A services routing

based caching scheme for cloud assisted crns. IEEE Access.

Jiang, X.; Wang, X. (2007): “out-of-the-box” monitoring of vm-based high-interaction

honeypots. International Workshop on Recent Advances in Intrusion Detection, pp. 198-218.

Li, J.; Wang, Z.; Jiang, X.; Grace, M.; Bahram, S. (2010): Defeating return-oriented

rootkits with return-less kernels. Proceedings of the 5th European conference on

Computer Systems, pp. 195-208.

Li, Y.; Cai, Z.; Xu, H. (2018): Llmp: Exploiting lldp for latency measurement in

software-defined data center networks. Journal of Computer Science and Technology, vol.

33, no. 2, pp. 277-285.

Lin, C. C.; Li, H.; Zhou, X. Y.; Wang, X. (2014): Screenmilker: How to milk your

android screen for secrets. NDSS.

Litty, L.; Lagar Cavilla, H. A.; Lie, D. (2008): Hypervisor support for identifying

covertly executing binaries. USENIX Security Symposium, pp. 243-258.

Liu, F.; Li, T. (2018): A clustering-anonymity privacy-preserving method for wearable

iot devices. Security and Communication Networks.

Logic, T. (2012): Trusted foundations by trusted logic mobility.

http://www.arm.com/community/partners/display/product/rw/ProductId/5393/.

McCune, J. M.; Li, Y.; Qu, N.; Zhou, Z. (2010): Trustvisor: Efficient tcb reduction and

attestation. 2010 IEEE Symposium on Security and Privacy, pp. 143-158.

McCune, J. M.; Parno, B. J.; Perrig, A.; Reiter, M. K.; Isozaki, H. (2008): Flicker:

An execution infrastructure for tcb minimization. ACM SIGOPS Operating Systems

Review, vol. 42, pp. 315-328.

Miluzzo, E.; Varshavsky, A.; Balakrishnan, S.; Choudhury, R. R. (2012): Tapprints:

Your finger taps have fingerprints. Proceedings of the 10th International Conference on

Mobile Systems, Applications, and Services, pp. 323-336.

Oikonomakos, P.; Fournier, J.; Moore, S. (2006): Implementing cryptography on tft

34 Copyright © 2018 Tech Science Press CMC, vol.55, no.1, pp.17-35, 2018

technology for secure display applications. International Conference on Smart Card

Research and Advanced Applications, pp. 32-47.

Pradeep, A.; Mridula, S.; Mohanan, P. (2016): High security identity tags using spiral

resonators. Computers, Materials & Continua, vol. 52, no. 3, pp. 185-195.

Riley, R.; Jiang, X.; Xu, D. (2008): Guest-transparent prevention of kernel rootkits with

vmm-based memory shadowing. International Workshop on Recent Advances in

Intrusion Detection, pp. 1-20.

Riley, R.; Jiang, X.; Xu, D. (2009): Multi-aspect profiling of kernel rootkit behavior.

Proceedings of the 4th ACM European Conference on Computer Systems, pp. 47-60.

Sani, A. A.; Zhong, L.; Wallach, D. S. (2014): Glider: A gpu library driver for

improved system security. Operating Systems.

Shen, D.; Li, Z.; Su, X.; Ma, J.; Deng, R. (2018): Tinyvisor: An extensible secure

framework on android platforms. Computers & Security, vol. 72, pp. 145-162.

Sierraware (2013): Open virtualization’s sierravisor and sierratee.

http://www.openvirtualization.org.

Smowton, C. (2009): Secure 3D graphics for virtual machines. Proceedings of the

Second European Workshop on System Security, pp. 36-43.

Steinberg, U.; Kauer, B. (2010): Nova: A microhypervisor-based secure virtualization

architecture. Proceedings of the 5th European conference on Computer systems, pp. 209-222.

Strackx, R.; Piessens, F. (2012): Fides: Selectively hardening software application com-

ponents against kernel-level or process-level malware. Proceedings of the 2012 ACM

Conference on Computer and Communications Security, pp. 2-13.

Sun, H.; Sun, K.; Wang, Y.; Jing, J.; Wang, H. (2015): Trustice: Hardware-assisted

isolated computing environments on mobile devices. Dependable Systems and Networks,

pp. 367-378.

Sun, W.; Cai, Z.; Li, Y.; Liu, F.; Fang, S. et al. (2018): Security and privacy in the

medical internet of things. Security and Communication Networks.

Tang, J.; Liu, A.; Zhang, J.; Xiong, N. N.; Zeng, Z. et al. (2018): A trust-based secure

routing scheme using the traceback approach for energy-harvesting wireless sensor

networks. Sensors, vol. 18, no. 3, pp. 751.

Tian, C.; Wang, Y.; Liu, P.; Zhou, Q.; Zhang, C. et al. (2017): Im-visor: A pre-ime

guard to prevent ime apps from stealing sensitive keystrokes using trustzone. 2017 47th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pp.

145-156.

Tian, K.; Dong, Y.; Cowperthwaite, D. (2014): A full gpu virtualization solution with

mediated pass-through. USENIX Annual Technical Conference, pp. 121-132.

Wang, X.; Chen, Y.; Wang, Z.; Qi, Y.; Zhou, Y. (2015): Secpod: A framework for

virtualization-based security systems. USENIX Annual Technical Conference, pp. 347-360.

Wang, Z.; Jiang, X.; Cui, W.; Ning, P. (2009): Countering kernel rootkits with

lightweight hook protection. Proceedings of the 16th ACM conference on Computer and

communications security, pp. 545-554.

Securing Display Path for Security-Sensitive Applications 35

Winter, J. (2012): Experimenting with arm trustzone -- or: How i met friendly piece of

trusted hardware. Trust, Security and Privacy in Computing and Communications (Trust-

Com), pp. 1161-1166.

Xia, J.; Cai, Z.; Xu, M. (2018): An active defense solution for arp spoofing in openflow

network. Chinese Journal of Electronics.

Xu, Z.; Bai, K.; Zhu, S. (2012): Taplogger: Inferring user inputs on smartphone touch-

screens using on-board motion sensors. Proceedings of the 5th ACM conference on

Security and Privacy in Wireless and Mobile Networks, pp. 113-124.

Yamamoto, H.; Hayasaki, Y.; Nishida, N. (2004): Secure information display with

limited viewing zone by use of multi-color visual cryptography. Optics Express, vol. 12,

no. 7, pp. 1258-1270.

Yu, M.; Gligor, V. D.; Zhou, Z. (2015): Trusted display on untrusted commodity

platforms. Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security, pp. 989-1003.

Yuan, C.; Li, X.; Wu, Q.; Li, J.; Sun, X. (2017): Fingerprint liveness detection from

different fingerprint materials using convolutional neural network and principal

component analysis. Computers, Materials & Continua, vol. 53, no. 3, pp. 357-371.

Zhang, H.; Cai, Z.; Liu, Q.; Xiao, Q.; Li, Y. et al. (2018): A survey on security-aware

measurement in sdn. Security and Communication Networks.

Zhou, Z.; Gligor, V. D.; Newsome, J.; McCune, J. M. (2012): Building verifiable

trusted path on commodity x86 computers. Security and Privacy, pp. 616-630.

Zhou, Z.; Yu, M.; Gligor, V. D. (2014): Dancing with giants: Wimpy kernels for on-

demand isolated I/O. Security and Privacy, pp. 308-323.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-2018

	Securing display path for security-sensitive applications on mobile devices
	Jinhua CUI
	Yuanyuan ZHANG
	Zhiping CAI
	Anfeng LIU
	Yangyang LI
	Citation

	Manuscript Preparation Instruction for Publishing in Computer Modeling in Engineering and Science (CMES)

