
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2018

VT-Revolution: Interactive programming tutorials
made possible
Lingfeng BAO
Zhejiang University

Zhenchang XING
Australian National University

Xin XIA
Monash University

David LO
Singapore Management University, davidlo@smu.edu.sg

Shanping LI
Zhejiang University

DOI: https://doi.org/10.1145/3236024.3264587

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Education Commons, Programming Languages and Compilers Commons, and the

Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
BAO, Lingfeng; XING, Zhenchang; XIA, Xin; LO, David; and LI, Shanping. VT-Revolution: Interactive programming tutorials made
possible. (2018). ESEC/FSE 2018: Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Con-ference and
Symposium on the Foundations of Software Engineering: Lake Buena Vista, Florida, November 4-9. 924-927. Research Collection School
Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4299

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/200254755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/3236024.3264587
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4299&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/784?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4299&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4299&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4299&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

VT-Revolution: Interactive Programming Tutorials
Made Possible

Lingfeng Bao
Zhejiang University

China

Zhenchang Xing
Australian National University

Australia

Xin Xia
Monash University

Australia

David Lo
Singapore Management University

Singapore

Shanping Li
Zhejiang University

China

ABSTRACT
Programming video tutorials showcase programming tasks and as-
sociated workflows. Although video tutorials are easy to create, it is
often difficult to explore the captured workflows and interact with
the programs in the videos. In this work, we propose a tool named
VTRevolution – an interactive programming video tutorial author-
ing system. VTRevolution has two components: 1) a tutorial author-
ing system leverages operating system level instrumentation to log
workflow history while tutorial authors are creating programming
video tutorials; 2) a tutorial watching system enhances the learn-
ing experience of video tutorials by providing operation history
and timeline-based browsing interactions. Our tutorial authoring
system does not require any special recording tools or instrumen-
tation of target applications. Neither does it incur any additional
burden on tutorial authors to add interactions to video tutorials.
Given a video tutorial enriched with synchronously-logged work-
flow history, our tutorial watching system allows tutorial watchers
to explore the captured workflows and interact with files and code
in a way that is impossible for video data alone. We conduct a user
study of 90 developers to evaluate the design and effectiveness of
our system in helping developers learn programming knowledge
in video tutorials.
Demonstration video link: https://youtu.be/9HSVQRaqgA0
Tool website: http://baolingfeng.xyz:8080/VTRevolution/

CCS CONCEPTS
• Human-centered computing → User interface toolkits; • Soft-
ware and its engineering→ Software libraries and repositories;

KEYWORDS
Workflow, Video Tutorial

ACM Reference Format:
Lingfeng Bao, Zhenchang Xing, Xin Xia, David Lo, and Shanping Li. 2018.
VT-Revolution: Interactive Programming Tutorials Made Possible. In Pro-
ceedings of the 26th ACM Joint European Software Engineering Conference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3264587

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’18),
November 4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3236024.3264587

1 INTRODUCTION
Programming video tutorials have become a very popular resource
to help developers learn coding. A survey reported that more than
2/3 developers use video tutorials weekly and monthly [17]. Video
tutorials allow developers to directly observe the workflows that
are carried out to complete programming tasks, which might be
more valuable than traditional, text-based learning resources [12].

Comparing with text-based tutorials, it’s much easier to record a
5minutes tutorial video using a screen-capturing tool like Snagit1 [16].
However, due to the nature of video content (i.e., a stream of screen-
captured images), it is difficult to let video tutorial watchers interact
with the tutorial content. First, a tutorial watcher cannot get an
holistic, high-level overview of workflow, e.g., when to modify
which file and how, or what content the tutorial author already
adds to a file up till now. Second, there is no effective search and
navigation support for tutorial content. Finally, it is inconvenient
to access complementary learning resources. A tutorial watcher is
usually unfamiliar with some APIs in the tutorial and need com-
plementary learning resources (e.g., API documentation) to assist
their learning of the tutorial.

The above interaction limitations can lead to misunderstandings
of the content [10], difficulties in keeping up with the pace of the
tutorial and reduced knowledge retention [15]. Existing multimedia
tutorial authoring tools (e.g.HyperCard2,Adobe Authorware3) allow
the authors to create more interactive video tutorials and annotate
the video content with rich information. But the limitation is that
they require authors define the story line and there are no aids for
freely exploring the capturedworkflows. Some recent work [1, 2, 17]
uses Optical-Char-Recognition (OCR) techniques to convert video
content into text, which can then be summarized, searched or linked
to other resources. But OCR technique has limitations in time cost
and quality of extracted data.

In this paper, we design and implement an interactive program-
ming video tutorial system named VT-Revolution. A key design goal
of VT-Revolution is, on the one hand, we want tutorial watchers
to be able to freely explore the captured workflow in the tutorial
and interact with the tutorial content; and, on the other hand, we
do not want to create a significant burden on tutorial authors to
1https://www.techsmith.com/snagit.html
2http://hypercard.org/
3http://www.adobe.com/products/authorware/

https://youtu.be/9HSVQRaqgA0
http://baolingfeng.xyz:8080/VTRevolution/
https://doi.org/10.1145/3236024.3264587
https://doi.org/10.1145/3236024.3264587
https://www.techsmith.com/snagit.html
http://hypercard.org/
http://www.adobe.com/products/authorware/

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Lingfeng Bao, Zhenchang Xing, Xin Xia, David Lo, and Shanping Li

Video-Workflow
Synchronization Component

Low Level
HCI Actions

Workflow Operation
Abstraction Component

ActivitySpace API Docs

Tutorial Authoring System

Tutorial Watching System

Tutorial Creator Tutorial Watcher

API Document
Linker

Workflow
Operations

Screen Capturing

Video
Caption

Operation
Timeline

File Content
View

Workflow
Search

Workflow History UIs

Video Player Video Player

Figure 1: The Framework of VT-Revolution

manually annotate tutorial videos with workflow history and other
complementary resources.

To achieve this goal, our tutorial authoring system records screen-
captured video and uses ActivitySpace [3, 6] to synchronously
log the workflow history while the author is interacting with soft-
ware development environment to create a programming tutorial.
The ActivitySpace tool can unobtrusively track and analyze a
developer’s interactions with a wide range of software tools and
applications commonly used in software development, including
IDEs, text editors, web browsers, and office software. It has been
successfully applied in several studies, e.g., [5, 20]. As the first
proof-of-concept of our interactive programming video tutorial
system, we only log tutorial authors’ actions within the IDE. This
is because the programming video tutorial author usually spends
most of the time in the IDE to demonstrate how to complete the
programming task. ActivitySpace allows us to easily extend the
workflow history logging to other software tools used during the
programming tutorial.

Figure 1 presents our VT-Revolution system, which contains a
tutorial authoring system and a tutorial watching system. The
tutorial authoring system integrates a regular screen-capturing tool
(e.g., Snagit), the ActivitySpace framework [3, 6], and a workflow
operation abstraction component. The tutorial watching system
takes as input an interactive programming tutorial, consisting of a
screen-captured programming video and a synchronously-logged
time-series of workflow operations. The tutorial watching system
integrates a video player, several workflow history user interfaces,
a video-workflow synchronization component, and a API document
linker [18].

2 VT-REVOLUTION SYSTEM
2.1 Tutorial Authoring System
Synchronous Video Recording &WorkflowHistory Logging
To create an interactive programming video tutorial, a tutorial au-
thor can use a system that installs a screen-capturing tool (e.g.,
Snagit) and the ActivitySpace tool [3]. Screen-capturing tools
usually support shortcut keys (for example, Snagit uses Shift+F9
and Shift+F10) to start and stop screen capturing. The ActivityS-
pace tool can be configured to monitor such key events. Once the
ActivitySpace tool detects that the tutorial author starts (or stops)
the video recording using the screen-capturing tool, it will start (or
stop) the synchronous logging of the tutorial author’s workflow
history during the programming tutorial.

As the author is interacting with an application, ActivitySpace
logs a time series of low-level HCI action records. Each action record
has a time stamp down to millisecond precision. An action record
is composed of event type and basic window information collected

Table 1: HCI Actions being Logged in IDE Editors and Views
UI Events Type When to Log Content to Log

Loss focus Edit Key inputs occur Component type, Window title
File content, File display name

View —- Component type
View content, View name

Gain focus Edit —- Component type, Window title
File content, File display name

View —- Component type
View content, View name

Mouse click Edit Key inputs occur Component type, Window title
File content, File display name

using OS Window APIs, and focused UI component information
that the application exposes to the operating system through acces-
sibility APIs. The current prototype of tutorial authoring system
configures ActivitySpace to log four types HCI actions in IDE
editors and views as summarized in Table 1.
Workflow Operation Abstraction Considering the logging la-
tency of HCI actions, the ActivitySpace tool just logs the action
records during tutorial authoring. However, these low-level action
records cannot intuitively reflect the developer’s programming op-
erations at higher-level of abstraction. Therefore, once the tutorial
author stops the video recording and workflow history logging, our
tutorial authoring system will abstract the logged time-series of
low-level action records into a time series of high-level workflow
operations. The current system prototype abstracts four categories
of workflow operations pertinent to programming tasks: open file
and switch file, inspect exception, add and delete code elements, and
edit text content. Table 2 summarizes the heuristics for abstracting
these workflow operations from low-level action records.

2.2 Tutorial Watching System
Figure 2 shows the screenshots of workflow history user interfaces
in VT-Revolution. The design of these workflow history UIs allows
tutorial watchers to easily explore workflow history, interact with
tutorial content, and access API documents.
Video Caption: This feature allows tutorial watchers to easily note
“what the tutorial author does at this moment” in the tutorial video.
The video caption, which is automatically generated by the system
based on workflow operations, highlights tutorial author’s actions
and code-element changes in the video content that is currently
playing.
Workflow Operation Timeline: Workflow operation timeline
provides an overview of “when the tutorial author does what to
which file” during a programming tutorial. Workflow operations are
shown chronologically from top down in the workflow operation
timeline. Each row represents an operation incluing the time span
of the operation (a horizontal bar proportional to the time span),
the operation type, and the involved file(s). For add/delete-code-
elements operations, the rows display the involved code elements.
For inspect-exception and edit-text-content operations, the rows
display a link which can be clicked to view details of exception or
text content changes in a pop-up view.

Workflow operation timeline allows tutorial watchers to search
and navigate tutorial content by workflow operations. Tutorial watch-
ers can filter the workflow operations by operation type or the
involved file(s). The tutorial video timeline and the workflow oper-
ation timeline are synchronized. As the tutorial video is playing or
tutorial watchers navigate the tutorial video timeline, the workflow

VT-Revolution: Interactive Programming Tutorials Made Possible ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 2: Workflow Operation Abstraction
Operation Category Operation Type Notion Abstraction Heuristics

Open FileOpen < ti , name >
File display name at the time ti does not appear in the set of
file display names from all the action records till the time ti−1

File Switch FileSwitch < ti , or iдin, tarдet >
The file display name at the time ti is different from the file display
name at the time ti−1

Exception Inspect Inspect < ti−1, ti , exception >
The console output view has the focus from the time ti−1 to ti ,
and the view content contains string “exception”

Add Add < ti−1, ti , type, inf o >
Unmatched AST node in the AST at the time ti , compared with
the AST at the time ti−1

Code Element Delete Delete < ti−1, ti , type, inf o >
Unmatched AST node in the AST at the time ti−1 , compared with
the AST at the time ti

Text content Edit Edit < ti−1, ti , f ile, chanдe >
Text content differences in the non-source text file from
the time ti−1 to ti

1

2
3 4

5

6

(a)	Main

7

(b)	Workflow	Operation	Timeline

8

(c)	File	Content	View (d)	API	Document	Linking

9

9

10

10

Figure 2: Screenshots ofVT-Revolution. (1) Video player. (2) Search
Workflow Operations. (3) Show Workflow Operation Timeline. (4) Show File

Content View. (5) A programming task description in tutorial. (6) Video Cap-

tion: workflow operation at this moment. (7) The highlighted workflow op-

eration is synchronous with the video playing. (8) The file timeline: when to

work on which file and time spent. (9) File content is synchronous with the

video playing. (10) Right click an operation in operation timeline to access

API document.

operation involved in the current video content will be highlighted
in yellow color. The video watcher can navigate the tutorial video
by double-clicking an operation in the workflow operation timeline.
File Content View File content view allows tutorial watchers to
view “all the content that the tutorial author already created to a
file till to the current time of video playing” during a programming
tutorial. Tutorial watchers can show/hide this view by clicking
“Show/Hide File Content View” button. The files that have been
opened till the current time of video playing are displayed in a
tabbed view. Each tab is annotated with the display name of a file.
The focused file and its content is synchronized with the tutorial
video playing. As the tutorial video is playing or tutorial watchers
navigate the video, the focused file in the current video content
will be underlined in the file content view. As changes are made to
the focused file in the tutorial video, the content of the focused file
will be updated automatically in the file content view. Although

only a part of the focused file is visible in the current video content,
tutorial watchers can switch between files and view file contents
in the file content view just like in the IDE, without the need to
navigate the video to the time when that content is visible.

File content view uses a timeline of file to provide an overview of
“when the tutorial author works on which file and the time spent” dur-
ing a programming tutorial . Each file in the timeline is represented
by a distinct color. The same color is used in the corresponding
file tab. The time spent on a file is proportional to a horizontal bar
on the timeline. The horizontal bar is annotated with the corre-
sponding file display name. This file timeline and the tutorial video
timeline are synchronized. Combined with video and file content
synchronization, the file timeline allows tutorial watchers to navi-
gate tutorial content based on the time when the tutorial author works
on a particular file and creates particular file content.
SearchWorkflow Operations This feature allows tutorial watch-
ers to find workflow operations that involve code elements they are
interested in. Tutorial watchers enter a keyword in the search box.
The system currently performs a simple substring match between
the entered keyword and the name attribute of code elements in-
volved in workflow operations. It returns a list of work operations
that involve the matched code elements in a chronological order.
Tutorial watchers can double-click an operation in the results list
to navigate the tutorial video to the start time of the double-clicked
operation.
Accessing API Documentation While tutorial watchers inspect
workflow operations in workflow operation timeline or workflow
operation search results, or view code content in file content view,
they can select a code element and request complementary learning
resources. The current prototype supports the access to the official
API documentation of the selected code element. We adopt the
approach proposed in the Live API documentation tool [18] for
linking the selected code element to its relevant API document.

3 EVALUATION
We conduct a usability study to evaluate the proposed system, VT-
Revolution. We first record three Java programming tutorial videos
using a screen-capture tool and ActivitySpace. Then we design
a questionnaire for each tutorial video and invite 90 junior Java
developers in an IT company to complete these questionnaires
using VT-Revolution. 90 developers are divided into six groups:
three experimental groups and three corresponding control groups.
Each group has 15 participants. The participants in an experimental
group and the corresponding control group. Finally, we analyze the
results of the questionnaires and illustrate how VT-Revolution to

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Lingfeng Bao, Zhenchang Xing, Xin Xia, David Lo, and Shanping Li

0 0 2

18
25 18 16

9

2 0

1 5 1 5
(b)	Without	Tool(a)	With	Tool

Figure 3: The Overall Satisfaction Score

0 0
4

13

28

0 0 4
12

29

0 0
3

22 20

0 1

10

21

13

Workflow	Timeline File	Content	View

Search	&	Navigation API	Doc	Linking

1 5 1 5

Figure 4: The Score of Different Functions of VT-Revolution

improve practitioners the efficiency of learning information from
tutorial videos. We put all the experiment material in VT-Revolution
prototype website http://baolingfeng.xyz:8080/VTRevolution/.

Figure 3 shows the overall satisfaction score rated by the partici-
pants with or without VT-Revolution. We can see that most of the
participants using VT-Revolution have positive satisfaction scores
while the majority of the participants using regular video player
have negative satisfactory score.We also study the usefulness scores
of different features rated by the participants in the experimental
groups (see Figure 4). The majority of users rate these features
useful or very useful. Therefore, We think VT-Revolution can help
developers learn programming knowledge in video tutorials.

4 RELATEDWORK
Video tutorials have been proved to be an effective medium for
learning, for example, by providing user-guided experience [7] and
encouraging learners to explore and learn at their own pace [13].
However, video tutorials also have some drawbacks, for example,
navigation issues within long video tutorials [10], and it’s hard
for users who lack of overall understanding of recorded workflow
to keep up with the pace of the instructions. Past research has
shown that navigation and understanding of workflows in video
tutorials can be aided by providing operation history and timeline-
based browsing interactions [9, 14]. These tools are designed for
drawing applications and graphical design software. Our system
incorporates operation history and timeline interactions specially
designed for software data, such as file switching, code-element
changes.

Researchers have investigated how to create effective video for
education [11, 19]. Some tools [8, 9] use operation histories to
help users understand the captured workflow. However, these ap-
proaches require special recording tools and instrumentation of
target applications. In contrast, our system does not have such re-
quirements due to the adoption of the ActivitySpace framework.

5 CONCLUSION AND FUTUREWORK
We propose an interactive programming video tutorial system, VT-
Revolution, to enhance the learning experience of programming
video tutorials. By linking workflow history with video playback,
tutorial watchers can obtain a high-level overview of workflow
and file content, and directly navigate to parts of interest in their
learning of video tutorials. Our user study confirms that our system

can help developers learn video tutorials more efficiently, and lead
to more satisfactory learning experience. The current prototype of
VT-Revolution only supports several workflow operation abstrac-
tions in IDEs. In the future, we will extend it by supporting more
applications and more workflow operations. ing resources: code
and workflow.

ACKNOWLEDGMENT
This is a demonstration paper accompanying with our full research
paper [4]. This research was partially supported by the National Key
Research and Development Program of China (2018YFB1003904)
and NSFC Program (No. 61602403).

REFERENCES
[1] Lingfeng Bao, Jing Li, Zhenchang Xing, Xinyu Wang, Xin Xia, and Bo Zhou. 2017.

Extracting and analyzing time-series HCI data from screen-captured task videos.
Empirical Software Engineering 22, 1 (2017), 134–174.

[2] Lingfeng Bao, Jing Li, Zhenchang Xing, XinyuWang, and Bo Zhou. 2015. Reverse
engineering time-series interaction data from screen-captured videos. In Proc.
SANER. IEEE, 399–408.

[3] Lingfeng Bao, Zhenchang Xing, Xinyu Wang, and Bo Zhou. 2015. Tracking and
Analyzing Cross-Cutting Activities in Developers’ Daily Work (N). In Proc. ASE.
IEEE, 277–282.

[4] Lingfeng Bao, Zhenchang Xing, Xin Xia, and David Lo. 2018. VT-Revolution:
Interactive Programming Video Tutorial Authoring and Watching System. TSE
(2018).

[5] Lingfeng Bao, Zhenchang Xing, Xin Xia, David Lo, and Ahmed E. Hassan. 2018.
Inference of development activities from interaction with uninstrumented appli-
cations. Empirical Software Engineering 23, 3 (2018), 1313–1351.

[6] Lingfeng Bao, Deheng Ye, Zhenchang Xing, Xin Xia, and Xinyu Wang. 2015. Ac-
tivitySpace: a remembrance framework to support interapplication information
needs. In Proc. ASE. IEEE, 864–869.

[7] Peter Duffy. 2008. Engaging the YouTube Google-eyed generation: Strategies for
using Web 2.0 in teaching and learning. The Electronic Journal of e-Learning 6, 2
(2008), 119–130.

[8] Jennifer Fernquist, Tovi Grossman, and George Fitzmaurice. 2011. Sketch-sketch
revolution: an engaging tutorial system for guided sketching and application
learning. In Proc. UIST. ACM, 373–382.

[9] Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2010. Chronicle: capture,
exploration, and playback of document workflow histories. In Proc. UIST. ACM,
143–152.

[10] SusanMHarrison. 1995. A comparison of still, animated, or nonillustrated on-line
help with written or spoken instructions in a graphical user interface. In Proc.
CHI. ACM Press/Addison-Wesley Publishing Co., 82–89.

[11] Colin Lankshear and Michele Knobel. 2010. DIY Media: A contextual background
and some contemporary themes. DIY media: Creating, sharing and learning with
new technologies. New York: Peter Lang (2010), 1–21.

[12] Laura MacLeod, Margaret-Anne Storey, and Andreas Bergen. 2015. Code, camera,
action: How software developers document and share program knowledge using
YouTube. In Proc. ICPC. IEEE Press, 104–114.

[13] DF Mullamphy, PJ Higgins, SR Belward, and LM Ward. 2010. To screencast or
not to screencast. Anziam Journal 51 (2010), C446–C460.

[14] Toshio Nakamura and Takeo Igarashi. 2008. An application-independent system
for visualizing user operation history. In Proc. UIST. ACM, 23–32.

[15] Susan Palmiter, Jay Elkerton, and Patricia Baggett. 1991. Animated demon-
strations vs written instructions for learning procedural tasks: a preliminary
investigation. International Journal of Man-Machine Studies 34, 5 (1991), 687–701.

[16] Catherine Plaisant and Ben Shneiderman. 2005. Show me! Guidelines for pro-
ducing recorded demonstrations. In Proc. VL/HCC. IEEE, 171–178.

[17] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco
Oliveto, Mir Hasan, Barbara Russo, Sonia Haiduc, and Michele Lanza. 2016. Too
long; didn’t watch!: extracting relevant fragments from software development
video tutorials. In Proc. ICSE. ACM, 261–272.

[18] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API
documentation. In Proc. ICSE. ACM, 643–652.

[19] William Sugar, Abbie Brown, and Kenneth Luterbach. 2010. Examining the
anatomy of a screencast: Uncovering common elements and instructional strate-
gies. The International Review of Research in Open and Distributed Learning 11, 3
(2010), 1–20.

[20] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shan-
ping Li. 2017. Measuring program comprehension: A large-scale field study with
professionals. TSE (2017).

http://baolingfeng.xyz:8080/VTRevolution/

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2018

	VT-Revolution: Interactive programming tutorials made possible
	Lingfeng BAO
	Zhenchang XING
	Xin XIA
	David LO
	Shanping LI
	Citation

	Abstract
	1 Introduction
	2 VT-Revolution System
	2.1 Tutorial Authoring System
	2.2 Tutorial Watching System

	3 Evaluation
	4 Related Work
	5 Conclusion and Future Work
	References

