
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

5-2018

Deep code comment generation
Xing HU

Ge LI

Xin XIA

David LO
Singapore Management University, davidlo@smu.edu.sg

Zhi JIN

DOI: https://doi.org/10.1145/3196321.3196334

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Software Engineering Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
HU, Xing; LI, Ge; XIA, Xin; LO, David; and JIN, Zhi. Deep code comment generation. (2018). Proceedings of the 26th ACM/IEEE
Conference on Program Comprehension (ICPC 2018), Gothenburg, Sweden, 2018 May 27-28. 200-210. Research Collection School Of
Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4292

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/200254748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4292&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/3196321.3196334
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4292&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4292&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Deep Code Comment Generation∗

Xing Hu
1
, Ge Li

1
, Xin Xia

2
, David Lo

3
, Zhi Jin

1

1
Key Laboratory of High Confidence Software Technologies (Peking University), MoE, Beijing, China

2
Faculty of Information Technology, Monash University, Australia

3
School of Information Systems, Singapore Management University, Singapore

1
{huxing0101,lige,zhijin}@pku.edu.cn,

2
xin.xia@monash.edu,

3
davidlo@smu.edu.sg

ABSTRACT
During software maintenance, code comments help developers

comprehend programs and reduce additional time spent on reading

and navigating source code. Unfortunately, these comments are

often mismatched, missing or outdated in the software projects.

Developers have to infer the functionality from the source code.

This paper proposes a new approach named DeepCom to automat-

ically generate code comments for Java methods. The generated

comments aim to help developers understand the functionality

of Java methods. DeepCom applies Natural Language Processing

(NLP) techniques to learn from a large code corpus and generates

comments from learned features. We use a deep neural network

that analyzes structural information of Java methods for better

comments generation. We conduct experiments on a large-scale

Java corpus built from 9,714 open source projects from GitHub. We

evaluate the experimental results on a machine translation met-

ric. Experimental results demonstrate that our method DeepCom

outperforms the state-of-the-art by a substantial margin.

CCS CONCEPTS
• Software and its engineering→Documentation; •Comput-
ing methodologies → Neural networks;

KEYWORDS
program comprehension, comment generation, deep learning

ACM Reference Format:
Xing Hu

1
, Ge Li

1
, Xin Xia

2
, David Lo

3
, Zhi Jin

1
. 2018. Deep Code Comment

Generation. In Proceedings of IEEE/ACM International Conference on Program
Comprehension, Gothenburg, Sweden, May 27 - May 28, 2018 (ICPC’18). ACM,

New York, NY, USA, 11 pages. https://doi.org/10.475/123_4

∗
This research is supported by the National Basic Research Program of China (the

973 Program) under Grant No. 2015CB352201, and the National Natural Science Foun-

dation of China under Grant Nos. 61232015 and 61620106007. Zhi Jin and Ge Li are

corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPC’18, May 27 - May 28, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.

ACM ISBN 123-4567-24-567/08/06. . . $15.00

https://doi.org/10.475/123_4

1 INTRODUCTION
In software development andmaintenance, developers spend around

59% of their time on program comprehension activities [45]. Previ-

ous studies have shown that good comments are important to pro-

gram comprehension, since developers can understand the meaning

of a piece of code by using the natural language description of the

comments [35]. Unfortunately, due to tight project schedule and

other reasons, code comments are often mismatched, missing or

outdated in many projects. Automatic generation of code comments

can not only save developers’ time in writing comments, but also

help in source code understanding.

Many approaches have been proposed to generate comments for

methods [24, 35] and classes [25] of Java, which is the most popu-

lar programming language in the past 10 years
1
. Their techniques

vary from the use of manually-crafted [25] to Information Retrieval

(IR) [14, 15]. Moreno et al. [25] defined heuristics and stereotypes to

synthesize comments for Java classes. These heuristics and stereo-

types are used to select information that will be included in the

comment. Haiduc et al. [14, 15] applied IR approaches to generate

summaries for classes and methods. IR approaches such as Vector

Space Model (VSM) and Latent Semantic Indexing (LSI) usually

search comments from similar code snippets. Although promising,

these techniques have two main limitations: First, they fail to ex-

tract accurate keywords used for identifying similar code snippets

when identifiers and methods are poorly named. Second, they rely

on whether similar code snippets can be retrieved and how similar

the snippets are.

Recent years have seen an emerging interest in building proba-

bilistic models for large-scale source code. Hindle et al. [17] have

addressed the naturalness of software and demonstrated that code

can be modeled by probabilistic models. Several subsequent studies

have developed various probabilistic models for different software

tasks [12, 23, 40, 41]. When applied to code summarization, different

from IR-based approaches, existing probabilistic-model-based ap-

proaches usually generate comments directly from code instead of

synthesizing them from keywords. One of such probabilistic-model-

based approaches is by Iyer et al. [19] who propose an attention-

based Recurrent Neural Network (RNN) model called CODE-NN.

It builds a language model for natural language comments and

aligns the words in comments with individual code tokens directly

by attention component. CODE-NN recommends code comments

given source code snippets extracted from Stack Overflow. Experi-

mental results demonstrate the effectiveness of probabilistic models

on code summarization. These studies provide principled methods

for probabilistically modeling and resolving ambiguities both in

natural language descriptions and in the source code.

1
https://www.tiobe.com/tiobe-index/

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

ICPC’18, May 27 - May 28, 2018, Gothenburg, Sweden Xing Hu et al.

In this paper, to utilize the advantage of deep learning techniques,

we propose a novel approach DeepCom to generate descriptive com-

ments for Java methods which are functional units of Java language.

DeepCom builds upon advances in Neural Machine Translation

(NMT); NMT aims to automatically translate from one language

(e.g., Chinese) to another language (e.g., English) and it has been

shown to achieve great success for natural language corpora [6, 37].

Intuitively, generating comments can be considered as a variant

of the NMT problem, where source code written in a program-

ming language needs to be translated to text in natural language.

Compared to CODE-NN which only builds a language model for

comments, the NMT model builds language models for both source

code and comments. The words in comments align with the RNN

hidden states which involve the semantics of code tokens. Deep-

Com generates comments by automatically learning from features

(e.g., identifier names, formatting, semantics, and syntax features)

extracted from a large-scale Java corpus. Different from traditional

machine translation, our task is challenging since:

(1) Source code is structured: In contrast to natural language

text which is weakly structured, programming languages are

formal languages and source code written in them are unam-

biguous and structured [3]. Many probabilistic models used

in NMT are sequence-based models that need to be adapted

to structured code analysis. The main challenge and oppor-

tunity is how to take advantage of rich and unambiguous

structure information of source code to boost effectiveness

of existing NMT techniques.

(2) Vocabulary: In natural language (NL) corpora normally

used for NMT, the vocabulary is usually limited to the most

common words, e.g., 30,000 words, and words outside the

vocabulary are treated as unknown words – often marked

as ⟨UNK⟩. It is effective for such NL corpora because words

outside the dominant vocabulary are so rare. In code corpora,

the vocabulary consists of keywords, operators, and iden-

tifiers. It is common for developers to define various new

identifiers, and thus they tend to proliferate. In our dataset,

we get 234,146 unique tokens after replacing numerals and

strings with generic tokens ⟨NUM⟩ and ⟨STR⟩. In a codebase

used to build probabilistic models, there are likely to be many

out-of-vocabulary identifiers. As Table 1 illustrates, there

are 234,055 unique identifiers in our dataset. If we use most

common 30,000 tokens as the code vocabulary, about 85 %

identifiers will be regarded as ⟨UNK⟩. Additionally, about

30% tokens in source code are ⟨UNK⟩. Hellendoorn and De-

vanbu [16] have demonstrated that it is unreasonable for

source code to use such a vocabulary.

To address these issues, DeepCom customizes a sequence-based

language model to analyze Abstract Syntax Trees (AST) which

capture structures and semantics of Java methods. The ASTs are

converted into sequences before they are fed into DeepCom. It is

generally accepted that a tree cannot be restored from a sequence

generated by a classical traversal method such as pre-order tra-

versal and post-order traversal. To better present the structure of

ASTs, and keep the sequences unambiguous, we propose a new

structure-based traversal (SBT) method to traverse ASTs. Using

SBT, a subtree under a given node is included into a pair of brackets.

tanh

xt

tanh

xt-1

… tanh

xt

…

ht

ht-2 ht-1 ht

… …

Unfold

(a) Standard RNN model and its unfolded

architecture through time step

Ct-1

ht-1

× !

! ! !
× ×

tanh

ft it ot

Ct

ht

xt

Ct
^

tanh

(b) The LSTM unit

Figure 1: An illustration of basic RNN and LSTM

The brackets represent the structure of the AST and we can restore

a tree unambiguously from a sequence generated using SBT.

Moreover, to address the vocabulary challenge, we propose a

new method to represent unknown tokens. The tokens in AST

sequences include terminal nodes, non-terminal nodes, and brackets

in our work. The unknown tokens come from the terminal tokens

of ASTs. We replace the unknown tokens with their types instead

of a universal special ⟨UNK⟩ token.

DeepCom generates comments word-by-word from AST se-

quences. We train and evaluate DeepCom on the Java dataset that

consists of 9,714 Java projects from GitHub. The experimental re-

sults show that DeepCom can generate informative comments.

Additionally, the results show that DeepCom achieves the best per-

formance when compared with a number of baselines including

the state-of-the-art approach by Iyer et al. [19].

The main contributions of this paper are as follows:

• We formulate code comments generation task as a machine

translation task.

• We customize a sequence-based model to process structural

information extracted from source code to generate com-

ments for Java methods. In particular, we propose a new AST

traversal method (namely structure-based traversal) and a

domain-specific method to deal with out-of-vocabulary to-

kens better.

Paper organization. The remainder of this paper is organized

as follows. Section II presents background materials on language

models and NMT. Section III elaborates on the details of DeepCom.

Section IV and Section V present the experiment setup and results.

Section VI discusses strengths of DeepCom, and threats to validity.

Section VII surveys the related work. Finally, Section VIII concludes

the paper and points out potential future directions.

2 BACKGROUND
2.1 Language Models
Our work is inspired by the machine translation problem in the NLP

field. We exploit the language models learning from a large-scale

source code corpus. The models generate code comments from

the learned features. The language models learn the probabilistic

distribution over sequences of words. They work tremendously

well on a large variety of problem (e.g., machine translation [6],

speech recognition [9], and question answering [46]).

For a sequence x = (x1,x2, ...,xn) (e.g., a statement), the lan-

guage model aims to estimate the probability of it. The probability

Deep Code Comment Generation ICPC’18, May 27 - May 28, 2018, Gothenburg, Sweden

Source

Files

Method

Declaration

!"#!$%&'()%'

SingleVariable

Declaration
!"#$%&

*+,'-'.

/&012

34%.'55!0+6

#,7,'$'+,
…

AST
Parse

a. Data Processing b. Training a sequence-to-sequence model

 Model

Java Method

Code Comment

c. Comments generation with

 the trained model

Simple

Type

String

Method

Invocation

(MethodDeclaration(Modifier_public)
Modifier_public (SimpleType
(SimpleName_String)
SimpleName_String) SimpleType
(SingleVariableDeclaration (SimpleType

(SimpleName_Integer) 8
SBT

'(') '* '+

,(,) ,* ,+…

…

Encoder P(X)

Attention

y0 -(-) -./(

0(0) 0* 0.…

…

-(-) -* -.…

<GO> Extracts request identifier…

Extracts request method <EOS>
Decoder P(Y|X)

Natural Language
Annotations

Training

Y

X

Figure 2: Overall framework of DeepCom.

of a sequence is computed via each of its tokens. That is,

P(x) = P(x1)P(x2|x1)...P(xn |x1...xn−1) (1)

In this paper, we adopt a language model based on the deep neural

network called Long Short-Term Memory (LSTM) [18]. LSTM is

one of the state-of-the-art RNNs. LSTM outperforms general RNN

because it is capable of learning long-term dependencies. It is a

natural model to use for source code which has long dependencies

(e.g., a class is used far away from its import statement). The details

of RNN and LSTM are shown in Figure 1.

2.1.1 Recurrent Neural Networks. RNNs are intimately related

to sequences and lists because of their chain-like natures. It can in

principle map from the entire history of previous inputs to each

output. At each time step t , the unit in the RNN takes not only the

input of the current step but also the hidden state outputted by its

previous time step t − 1. As Figure 1(a) illustrates, the hidden state

of time step t is updated according to the input vector xt and its

previous hidden state ht−1, namely, ht = tanh(Wxt +Uht−1 + b)
whereW , U , and b are the trainable parameters which are updated

while training, and tanh is the activation function: tanh(z) = (ez −

e−z)/(ez + e(−z)).
A prominent drawback of the standard RNN model is that gra-

dients may explode or vanish during the back-propagation. These

phenomena often appear when long dependencies exist in the se-

quences. To address these problems, some researchers have pro-

posed several variants to preserve long-term dependencies. These

variants include LSTM and Gated Recurrent Unit (GRU). In this

paper, we adopt the LSTM which has achieved success on many

NLP tasks [6, 37].

2.1.2 Long Short-Term Memory. LSTM introduces a structure

called the memory cell to solve the problem that ordinary RNN is

difficult to learn long-term dependencies in the data. The LSTM is

trained to selectively “forget” information from the hidden states,

thus allowing room to take in more important information [18].

LSTM introduces a gating mechanism to control when and how

to read previous information from the memory cell and write new

information. The memory cell vector in the recurrent unit preserves

long-term dependencies. In this way, LSTM handles long-term

dependencies more effectively than vanilla RNN. LSTM has been

widely used to solve semantically related tasks and has achieved

convincing performance. These advantages motivate us to exploit

LSTM for building models for source code and comments. Figure

1(b) illustrates a typical LSTM unit and for more details of LSTM,

please refer to [10, 18].

2.2 Neural Machine Translation
NMT [44] is an end-to-end learning approach for automated trans-

lation. It is a deep learning based approach and has made rapid

progress in recent years. NMT has shown impressive results surpass-

ing those of phrase-based systems while addressing shortcomings

such as the need for hand engineered features. Its architecture typi-

cally consists of two RNNs, one to consume the input text sequences

and the other one to generate the translated output sequences. It is

often accompanied by an attention mechanism that aligns target

with source tokens [6].

NMT bridges the gap between different natural languages. Gen-

erating comments from the source code is a variant of machine

translation problem between the source code and the natural lan-

guage. We explore whether the NMT approach can be applied

to comments generation. In this paper, we follow the common

Sequence-to-Sequence (Seq2Seq) [37] learning framework with at-

tention [6] which helps cope effectively with the long source code.

3 PROPOSED APPROACH
The transition process between source code and comments is simi-

lar to the translation process between different natural languages.

Existing research has applied machine translation methods trans-

lating code from one source language (e.g., Java) to another (e.g.,

C#) [13]. A few studies adopt machine translation method for gener-

ating natural language descriptions from the source code. Oda et al.

[30] present a machine translation approach to generate natural

language Pseudo-code of the source code at the statement level.

In this paper, DeepCom translates the source code to a high-level

description at the method level.

The overall framework of DeepCom is illustrated in Figure 2.

DeepCom mainly consists of three stages: data processing, model

training, and online testing. The source code we obtained from

GitHub is parsed and preprocessed into a parallel corpus of Java

methods and their corresponding comments. In order to learn the

structural information, the Java methods are converted into AST

sequences by a special traversal approach before input into the

model. With the parallel corpus of AST sequences and comments,

we build and train generative neural models based on the idea of

NMT. There are two challenges during training process:

ICPC’18, May 27 - May 28, 2018, Gothenburg, Sweden Xing Hu et al.

!" !# !$!%

&" &# &$ &%…

…

Encoder P(X)

…

Decoder P(Y|X)

'()"

*(

'(

*()" *(+"
…

…

…

'()" '(+"

Attention
Distribution

P(Y|X) Pr(Y)

Cross-Entropy

Context Vector

Figure 3: Sequence-to-Sequence model.

• How to represent ASTs to store the structural information

and keep the representation unambiguous while traversing

the ASTs?

• How to deal with out-of-vocabulary tokens in source code?

In the following paragraphs, we will introduce the details of

the model and the approaches we propose to resolve the above-

mentioned challenges.

3.1 Sequence-to-Sequence Model
In this paper, we apply a Sequence-to-Sequence (Seq2Seq) model

to learn source code and generate comments. Seq2Seq model is

widely used for machine translation [37], text summarization [34],

dialogue system [39], etc. The model consists of three components,

an Encoder, a Decoder, and an Attention component, in which

the Encoder and Decoder are both LSTMs. Figure 3 illustrates the

detailed Seq2Seq model.

3.1.1 Encoder. The encoder is an LSTM we describe in Section

2 and responsible for learning the source code. At each time step t ,
it reads one token xt of the sequence, then updates and records the

current hidden state st , namely,

st = f (xt , st−1) (2)

where f is a LSTM unit that maps a word of source language xt into
a hidden state st . The encoder learns latent features from source

code, and the features are encoded into the context vector c . These
latent features include the identifiers naming conventions, control

structures, and etc. In this paper, DeepCom adopts the attention

mechanism to compute the context vector c .

3.1.2 Attention. Attention mechanism is a recent model that

selects the important parts from the input sequence for each target

word. For example, the token “whether” in comments usually aligns

with the “if” statements in the source code. The generation of each

word is guided by a classic attention method proposed by Bahdanau

et al. [6].

It defines individual ci for predicting each target word yi as a
weighted sum of all hidden states s1, .., sm in encoder and computed

1

2

4

3

5

Tree structure

(1(2(4)4 (5)5 (6)6)2 (3)3)1

6

Sequence generated by SBT

Figure 4: An example of sequencing an AST to a sequence
by SBT. (For a number, the bold font number after bracket
indicates node itself and the number in brackets denotes the
tree structure by taking it as the root node.)

as

ci =
m∑
j=1

αi jsj (3)

The weight αi j of each hidden state sj is computed as

αi j =
exp(ei j)∑m

k=1 exp(eik)
(4)

and

ei j = a(hi−1, sj) (5)

is an alignment model which scores how well the inputs around

position j and the output at position i match.

3.1.3 Decoder. The Decoder aims to generate the target se-

quence y by sequentially predicting the probability of a word yi
conditioned on the context vector ci and its previous generated

words y1, ...,yi−1, i.e.,

p(yi |y1, ...,yi−1,x) = д(yi−1,hi , ci) (6)

where д is used to estimate the probability of the word yi . The goal
of the model is to minimize the cross-entropy, i.e., minimize the

following objective function:

H (y) = −
1

N

N∑
i=1

n∑
j=1

loдp(y
(i)
j) (7)

where N is the total number of training instances, and n is the

length of each target sequence. y
(i)
j means the jth word in the ith

instance. Through optimizing the objective function using opti-

mization algorithms such as gradient descendant, the parameters

can be estimated.

3.2 Abstract Syntax Tree with SBT traversal
Translation between source code and NL is challenging due to the

structure of source code. One simple way to model source code

is to just view it as plain text. However, in such way, the struc-

ture information will be omitted, which will cause inaccuracies

in the generated comments. To learn the semantic and syntactic

information at the same time, we convert the ASTs into specially

formatted sequences by traversing the ASTs. Sequences obtained

by classical traversal methods (e.g., pre-order traversal) are lossy

since the original ASTs cannot unambiguously be reconstructed

back from them. This ambiguity may cause different Java methods

(each with different comments) to be mapped to the same sequence

Deep Code Comment Generation ICPC’18, May 27 - May 28, 2018, Gothenburg, Sweden

representation. It is confusing for the neural network if there are

multiple labels (in our setting, comments) given to a specific input.

For addressing this problem, we propose a Structure-based Traver-

sal (SBT) method to traverse the AST. The details are presented in

Algorithm 1. Figure 4 illustrates a simple example of SBT to traverse

a tree and the detailed procedure is as follows:

• From the root node, we first use a pair of brackets to represent

the tree structure and put the root node itself behind the

right bracket, that is (1)1, shown in Figure 4.

• Next, we traverse the subtrees of the root node and put all

root nodes of subtrees into the brackets, i.e., (1(2)2(3)3)1.

• Recursively, we traverse each subtree until all nodes are

traversed and the final sequence (1(2(4)4(5)5(6)6)2(3)3)1 is

obtained.

Algorithm 1 Structure-based Traversal

1: procedure SBT(r) ▷ Traverse a tree from root r
2: seq ← � ▷ seq is the sequence of a tree after traversal

3: if !r .hasChild then
4: seq ← (r)r ▷ Add brackets for terminal nodes

5: else
6: seq ← (r ▷ Add left bracket for non-terminal nodes

7: for c in childs do
8: seq ← seq + SBT (c)

9: seq ← seq+)r ▷ Add right bracket for non-terminal

nodes after traversing all their children

10: return seq

DeepCom processes each AST into a sequence following the SBT

algorithm. For example, the AST sequence of the following Java

method extracted from project Eclipse Che
2
is shown in Figure 5:

public String extractFor(Integer id){

LOG.debug("Extracting method with ID:{}", id);

return requests.remove(id);

}

The left part of Figure 5 is the AST of the method. The non-terminal

nodes (those without boxes) illustrate the structural information

of source code. They have the feature “type” which is a fixed set

(e.g., IfStatement, Block, and ReturnStatement). The terminal nodes

(those within boxes) not only have “type” but also have “value”

(token within brackets). The “value” is the concrete token occurring

in the source code and “type” indicates the type of the token. The

right part of the figure is the sequence constructed by traversing

the AST. The terminal nodes are represented by their “type” and

“value” (connected by “_”), such as “log” is represented by “Sim-

pleName_Log”. The non-terminal nodes are represented by their

“type”. A subtree is included in a pair of brackets and we can restore

the AST from the given sequence easily. In this way, we can keep

the structural information and make the representation lossless –

the original AST can be unambiguously reconstructed from the

sequence.

3.3 Out-of-vocabulary tokens
Vocabulary is another challenge to model source code [16]. In NL,

studies usually limit vocabulary to the most common words (e.g.,

2
https://github.com/eclipse/che

MethodDeclaration

Modifier (public)
SimpleType

SimpleName (String)

SingleVariableDeclaration

SimpleType

SimpleName (id)

SimpleName (Integer)

Block
ExpressionStatement

MethodInvocation

SimpleName (Log)

SimpleName (debug)

SimpleName (Extracting method with ID:{})

SimpleName (id)
ReturnStatement

MethodInvocation

SimpleName (request)

SimpleName (remove)

SimpleName (id)
SimpleName (extractFor)

(MethodDeclaration
 (Modifier_public) Modifier_public
 (SimpleType
 (SimpleName_String) SimpleName_String
) SimpleType
 (SingleVariableDeclaration
 (SimpleType
 (SimpleName_Integer) SimpleName_Integer
) SimpleType
 (SimpleName_id) SimpleName_id
) SingleVariableDeclaration
 (Block
 (ExpressionStatement
 (MethodInvocation
 (SimpleName_LOG) SimpleName_LOG
 (SimpleName_debug) SimpleName_debug
 (SimpleName_ExtractingmethodwithID:{})
 SimpleName_ExtractingmethodwithID:{}
 (SimpleName_id) SimpleName_id
) MethodInvocation
) ExpressionStatement
 (ReturnStatement
 (MethodInvocation
 (SimpleName_request) SimpleName_request
 (SimpleName_remove) SimpleName_remove
 (SimpleName_id) SimpleName_id
) MethodInvocation
) ReturnStatement
) Block
 (SimpleName_extractFor) SimpleName_extractFor
) MethodDeclaration

SBT

Figure 5: AST of the Java method named extractFor.

top 30,000) during data processing. The out-of-vocabulary tokens

are replaced by a special unknown token, e.g., ⟨UNK⟩. It is effective

for NLP because words outside vocabulary are so rare. However,

this method is arguably inappropriate when it comes to source code.

In addition to fixed operators and keywords, there are user-defined

identifiers which take up the majority of code tokens [7]. These

identifiers have a substantial influence on the vocabulary of lan-

guage models. If we keep a regular vocabulary size for source code,

there will be many unknown tokens. If we want the occurrences

of ⟨UNK⟩ tokens to be as few as possible, the vocabulary size will

increase a lot. A large vocabulary size will make it difficult to train

a deep learning model since it requires more training data, time,

and memory. To achieve optimal and stable results, models need to

run a larger number of iterations to tune the parameters for each

word in the vocabulary.

Hence, we propose a newmethod to represent the out-of-vocabulary

tokens for source code. In AST, the non-terminal nodes have “type”

feature, and terminal nodes not only have “type” feature, but also

have “value” feature. DeepCom takes the AST sequences as inputs,

the vocabulary consists of brackets, all “type” of nodes (including

non-terminal nodes Tnon and terminal nodes Tterm), and partial

type-value pairs of terminal tokens. We keep the tokens which

appear in the most frequent 30,000 tokens as the AST sequences

vocabulary. For the type-value pairs outside the vocabulary, Deep-
Com uses their “type” Tterm instead of the ⟨UNK⟩ token to replace

them. For example, for the terminal nodes “extractFor” and “id” in

the code presented above, their types are both “SimpleName” as

shown in Figure 5. The tokens input into the model should be “Sim-

pleName_extractFor” and “SimpleName_id” respectively. However,

since the token “SimpleName_extractFor” is out of the vocabulary,

we use its type “SimpleName” representing it instead. In this way,

the out-of-vocabulary tokens are represented by their related type

information instead of the meaningless word.

4 EXPERIMENT SETUP
Then we use the Eclipse’s JDT compiler

3
to parse the Java methods

into ASTs and extract corresponding Javadoc comments which

are standard comments for Java methods. The methods without

Javadoc are omitted in this paper. For each method with a comment,

we use the first sentence appeared in its Javadoc description as

3
http://www.eclipse.org/jdt/

ICPC’18, May 27 - May 28, 2018, Gothenburg, Sweden Xing Hu et al.

Table 1: Statistics for code snippets in our dataset

#Methods

#All

Tokens

All

Identifiers

Unique

Tokens

#Unique

Identifiers

69,708 8,713,079 2,711,496 234,146 234,055

Table 2: Statistics for code lengths and comments lengths

Code Lengths

Avg Mode Median <100 <150 <200

99.94 16 65 68.63% 82.06% 89.00%

Comments Lengths

Avg Mode Median <20 <30 <50

8.86 8 13 75.50% 86.79% 95.45%

the comment since it typically describes the functionalities of Java

methods according to Javadoc guidance
4
. Empty or just one-word

descriptions are filtered out in this work because these comments

have no ability to express the Java methods functionalities. We also

exclude the setter, getter, constructor and test methods, since they

are easy for a model to generate the comments.

Finally, we get 69,708 ⟨ Java method, comment⟩ pairs5. Similar

to Jiang et al. [20]’s work, we randomly select 80% of the pairs for

training, 10% of the pairs for validation, and rest 10% for testing.

Table 1 and Table 2 illustrates statistics of the corpus. We also

give the details of methods lengths and comments length. The

average lengths of Java methods and comments are 99.94 and 8.86

tokens in this corpus. We find that more than 95% code comments

have no more than 50 words and about 90% Java methods no longer

than 200 tokens.

During the training, the numerals and strings are replaced with

generic tokens ⟨NUM⟩ and ⟨STR⟩ respectively. Themaximum length

of AST sequences is set to 400. We use a special symbol ⟨PAD⟩ to

pad the shorter sequences and the longer sequences will be cut

into sequences with 400 tokens. We add special tokens ⟨START⟩

and ⟨EOS⟩ to the decoder sequences during training. ⟨START⟩ is

the start of the decoding sequence and the ⟨EOS⟩ means the end

of it. The maximum comment length is set to 30. The vocabulary

sizes for AST sequences and comments are both 30,000 in this pa-

per. While there is no ⟨UNK⟩ in ASTs sequences, there are a few

out-of-vocabulary tokens in comments that are replaced by ⟨UNK⟩.

4.1 Training Details
The model is validated every 2,000 minibatches on the validation set

by BLEU [31] which is a commonly used automatic metric for NMT.

Training runs for about 50 epochs and we select the best model

that has best results on the validation set as the final model. The

model is then evaluated on the test set by computing average BLEU

scores and the results will be discussed in Section 5. All models are

implemented using the Tensorflow framework
6
and extended based

4
http://www.oracle.com/technetwork/articles/java/index- 137868.html

5
Data is available at https://github.com/huxingfree/DeepCom

6
https://www.tensorflow.org/

on the Seq2Seq model in Tensorflow tutorials
7
. The parameters are

shown as follows:

• The SGD (with minibatch size 100 randomly chosen from

training instances) is used to train the parameters.

• DeepCom uses two-layered LSTMs with 512 dimensions of

the hidden states and 512-dimensional word embeddings.

• The learning rate is set to 0.5 and we clip the gradients norm

by 5. The learning rate is decayed using the rate 0.99.

• To prevent over-fitting, we use dropout with 0.5.

4.2 Evaluation Measure: BLEU-4
DeepCom uses machine translation evaluation metrics BLEU-4

score[31] to measure the quality of generated comments. BLEU

score is a widely-used accuracy measure for NMT [22] and has

been used in software tasks evaluation [12, 20]. It calculates the

similarity between the generated sequence and reference sequence

(usually a human-written sequence). The BLEU score ranges from

1 to 100 as a percentage value. The higher the BLEU, the closer the

candidate is to the reference. If the candidate is completely equal to

the reference, the BLEU becomes 100%. Jiang et al. [20] exploit it to

evaluate the generated summaries for commit messages. Gu et al.

[12] use BLEU to evaluate the accuracy of generated API sequences

from natural language queries. Their experiments show that BLEU

score is reasonable to measure the accuracy of generated sequences.

It computes the n-gram precision of a candidate sequence to the

reference. The score is computed as:

BLEU = BP · exp(
N∑
n=1

wnloдpn) (8)

where pn is the ratio of length n subsequences in the candidate that

are also in the reference. In this paper, we set N to 4, which is the

maximum number of grams. BP is brevity penalty,

BP =

{
1 i f c > r

e(1−r/c) i f c ≤ r
(9)

where c is the length of the candidate translation and r is the effec-
tive reference sequence length.

In this paper, we regard a generated comment as a candidate

and a programmer-written comment (extracted from Javadoc) as a

reference.

5 RESULTS
In this section, we evaluate different approaches by measuring their

accuracy on generating Java methods’ comments. Specifically, we

mainly focus on the following research questions:

• RQ1: How effective is DeepCom compared with the state-of-

the-art baseline?

• RQ2: How effective is DeepCom to source code and com-

ments of varying lengths?

5.1 RQ1: DeepCom vs. Baseline
5.1.1 Baseline. We compare DeepCom with CODE-NN [19]

which is a state-of-the-art code summarization approach and also a

deep learning basedmethod. CODE-NN is an end-to-end generation

7
https://github.com/tensorflow/nmt

Deep Code Comment Generation ICPC’18, May 27 - May 28, 2018, Gothenburg, Sweden

Table 3: Evaluation results on Java methods

Approaches BLEU-4 score (%)

CODE-NN 25.30

Seq2Seq 34.87

Attention-based Seq2Seq 35.50

DeepCom (Pre-order) 36.01

DeepCom (SBT) 38.17

system to generate summaries for code snippets. It exploits an RNN

with attention to generate summaries by integrating the token

embeddings of source code instead of building language models for

source code. We do not use IR approaches as baselines, because the

results in CODE-NN has shown that CODE-NN outperforms the IR

based approaches.

We also compare DeepCom with its variants, that are, the basic

Seq2Seq model, the attention based Seq2Seq model, and DeepCom

with a classical traversal method (i.e., pre-order traversal). The

Seq2Seq model and the attention based Seq2Seq model take the

source code as inputs. They aim to evaluate the effectiveness of

NMT approaches for comments generation. To evaluate the effec-

tiveness of SBT, we compare SBT with one of the most ordinary

traversal methods – pre-order traversal. In addition, we also com-

pare DeepCom with CODE-NN on the dataset that CODE-NN uses.

5.1.2 Results. We measure the gap between automatically gen-

erated comments and human-written comments. The difference is

evaluated by a machine translation metric, i.e., BLEU-4 score. Table

3 illustrates the average BLEU-4 scores of different approaches to

generating comments for Java methods. The accuracy of machine

translation model Seq2Seq substantially outperforms CODE-NN.

CODE-NN fails to learn the semantic of the source code when it

generates comments from token embeddings of source code di-

rectly. Seq2Seq model exploits RNN to build a language model

for the source code and effectively learns the semantics of Java

methods. The BLEU-4 score increases further while integrating the

structural information. Compared to DeepCom with the pre-order

traversal, the SBT based model is much more capable of learning

semantic and syntactic information within Java methods. In a word,

the improvement of our proposed DeepCom (SBT) over CODE-NN

is large. The average BLEU-4 score of DeepCom improves about

13% compared to CODE-NN. The results of DeepCom are compara-

ble to the BLEU scores of state-of-the-art NMT models on natural

language translation which are about 40%[21, 44].

We further conduct experiments on the same datasets CODE-

NN used, which includes C# and SQL snippets collected from Stack

Overflow. The results are shown in Table 4. Since many of the

code snippets in their provided dataset are incomplete and hard to

parse them into ASTs, we compare the Seq2Seq model with CODE-

NN. It highlights that the Seq2Seq outperforms the state-of-the-art

method CODE-NN in different languages. The average BLEU scores

of Seq2Seq improve more than 10% on various program languages

compared to CODE-NN.

Through the evaluation, we have verified that comments gen-

eration task is very similar to machine translation except that the

Table 4: Evaluation results on CODE-NN datasets including
C# and SQL programming languages.

Language Approaches BLEU-4 score(%)

C#

CODE-NN 20.4

Seq2Seq 30.00

SQL

CODE-NN 17.0

Seq2Seq 30.94

structural information in source code needs to be taken into ac-

count. DeepCom can generate more informative comments than the

state-of-the-art method. Compared to the model without AST, the

BLEU score of DeepCom increases to 38.17% and the BLEU-4 scores

of about 38% of the instances are greater than 50%. We evaluate two

traversal methods SBT and pre-order traversal. DeepCom with SBT

performs better than traditional pre-order traversal. This is the case

because SBT better preserves the structure of ASTs. Experimental

results indicate that the structural information is important for

translating text in structured languages to unstructured ones.

5.2 RQ2: BLEU-4 scores for source code and
comments of different lengths

We further analyze the prediction accuracy for Java methods and

comments of different lengths. Figure 6 presents the average BLEU-

4 scores of DeepCom and CODE-NN for source code and ground

truth comments of varying lengths. As Figure 6(a) illustrates, the

average BLEU-4 scores tend to be lower when we increase source

code length. For most code lengths, the average BLEU-4 scores of

DeepCom improve those of CODE-NN by about 10%. For DeepCom,

AST lengths grow rapidly as the source code lengths increase and as

a result, some features are lost when cutting the long AST sequences

into a fixed length sequence during training.

For comments of different lengths, DeepCom maintains similar

accuracy as shown in Figure 6(b). However, the accuracy of CODE-

NN decreases sharply while code comment length increases. When

the code comment lengths are greater than 25 tokens, the accuracy

of CODE-NN decreases to less than 10%. DeepCom still performs

better when we need to generate comments consisting of 25-28

words.

6 DISCUSSION
6.1 Qualitative analysis
Here, we perform qualitative analysis on the human-written com-

ments and comments which are automatically generated by our

approach. Table 5 shows some examples of Java methods, the com-

ments generated by DeepCom and human-written comments. By

analyzing cases of generated results, we find the cases can be di-

vided into the following situations.

6.1.1 Exactly correct comments. DeepCom can generate exactly

correct comments from the source code of different lengths (Case

1 and Case 2), which validate the capability of our approach to

encode Java methods and decode comments. Generally, DeepCom

ICPC’18, May 27 - May 28, 2018, Gothenburg, Sweden Xing Hu et al.

(a) BLEU-4 scores for different code lengths

(b) BLEU-4 scores for different comment lengths

Figure 6: The average BLEU-4 scores of different lengths of
code and comment in Java language. (We compare twometh-
ods DeepCom with SBT and CODE-NN)

performs well when the business logic of these Java methods is

clear and code conventions are universal.

6.1.2 Algorithm implementations. For the Java methods which

are more concerned about algorithm than business logic, Deep-

Com can generate accurate comments. The algorithm concerned

Java methods usually use similar structures to implement the same

algorithm function. As Case 5 shows, the method “sort” aims to

sort an array using Binary Sort, DeepCom captures the correct

functionality and generates the correct comments.

6.1.3 Cases when generated comments are better than human-
written ones. By analyzing the generated comments and the source

code, we find that DeepCom performs better than human written

comments when the Java methods aim to determine something

true or not. Developers write interrogative sentences as comments

sometimes (shown in Case 6 and Case 7). These comments are

nonstandard even though they can express the functionalities of

Java methods. DeepCom can not only generate accurate comments

but also more standard comments.

6.1.4 API invocations intensive Javamethods. Developers usually
invoke APIs to implement a specific function. These APIs include

platform standard APIs and customized APIs defined by third par-

ties or developers themselves. We find that DeepCom can generate

accurate comments when most API invocations are platform stan-

dard APIs (shown in Case 1). However, when the majority API

invocations in a Java method are customized APIs, DeepCom does

not perform as good as human-written comments (shown in Case

4 and Case 9). The influence of API invocations explains that Deep-

Com can learn the platform standard APIs usage patterns from a

large-scale dataset. However, it can not learn customized APIs well

because the customized APIs with the same name have different

usage patterns in different programs.

6.1.5 Low BLEU score cases. The results with lower BLEU scores

are mainly divided into two types, meaningless sentences, and sen-

tences with clear semantics. The former mainly contains empty

sentences and results with too many repetitive words. We conjec-

ture the problems come from out-of-vocabulary words in original

comments or mismatch between the Java methods and comments

in the original dataset.

In the latter ones, most of them are irrelevant to original com-

ments in their semantics. There are also some interesting results

that hold relevant semantics but gain low BLEU scores (shown in

Case 4). The automatically generated and manual comments may

describe similar functionalities but with different words or order.

6.1.6 Unknown words in generated comments. There are un-

known words in the generated comments sometimes. As Case

3 shows, DeepCom fails to predict the token “FactoryConfigu-

rationError” which is the method name defined by developers.

DeepCom is not good at learning the method or identifiers names

occurred in comments. Developers define various names while pro-

gramming and most of these tokens appearing at most once in the

comments. During the training process, we replaced all unknown

identifier tokens in AST sequences with their types, but we do not

replace the unknown identifiers occur in comments. It is hard for

DeepCom to learn these user-defined tokens in comments that have

been replaced by the unknown token ⟨UNK⟩.

6.2 Strengths of DeepCom
Amajor challenge for generating comments from code is the seman-

tic gap between code and natural language descriptions. Existing

approaches are based on manually crafted templates or information

retrieval and lack a model to capture the semantic relationship

between source code and natural language. DeepCom, a machine

translation model, has the ability to bridge the gap between two

languages, i.e., programming language and natural language.

6.2.1 Probabilistic model connecting semantics of code and com-
ments. One advantage of DeepCom is generating comments directly

by learning source code instead of synthesizing comments from

keywords or searching similar code snippets’ comments.

Synthesizing comments from keywords usually uses some man-

ually crafted templates. The procedure of templates definition is

time-consuming and the quality of keywords depends on the qual-

ity of a given Java method. They fail to extract accurate keywords

when the identifiers and methods are poorly named. The IR based

approaches usually search the similar code snippets and take their

comments as the final results. These IR based approaches rely on

whether similar code snippets can be retrieved and how similar the

snippets are.

DeepCom builds language models for code and natural language

descriptions. The language models are able to handle the uncer-

tainty in the correspondence between code and text. DeepCom

Deep Code Comment Generation ICPC’18, May 27 - May 28, 2018, Gothenburg, Sweden

Table 5: Examples of generated comments by DeepCom. These samples are necessarily limited to short methods because of
space limitations. AST structure is not shown in the table, because AST is much longer than source code.

Case ID Java method Comments

1

public static byte[] bitmapToByte(Bitmap b){

ByteArrayOutputStream o = new ByteArrayOutputStream();

b.compress(Bitmap.CompressFormat.PNG,100,o);

return o.toByteArray();

}

Automatically generated: convert Bitmap to byte array

Human-written: convert Bitmap to byte array

2

private static void addDefaultProfile(SpringApplication app,

SimpleCommandLinePropertySource source){

if(!source.containsProperty("spring.profiles.active")

&&!System.getenv().containsKey("SPRING_PROFILES_ACTIVE")){

app.setAdditionalProfiles(Constants.SPRING_PROFILE_DEVELOPMENT);

}

}

Automatically generated: If no profile has been configured , set by default the "dev"

profile.

Human-written: If no profile has been configured , set by default the "dev" profile.

3

public FactoryConfigurationError(Exception e){

super(e.toString());

this.exception=e;

}

Automatically generated: Create a new ⟨UNK⟩ with a given Exception base cause

of the error.

Human-written: Create a new FactoryConfigurationError with a given Exception

base cause of the error.

4

protected void createItemsLayout(){

if (mItemsLayout == null){

mItemsLayout=new LinearLayout(getContext());

mItemsLayout.setOrientation(LinearLayout.VERTICAL);

}

}

Automatically generated: Creates item layouts if any parameters

Human-written: Creates item layout if necessary

5

public static void sort(Comparable[] a){

int n=a.length;

for (int i=1; i < n; i++){

Comparable v=a[i];

int lo=0, hi=i;

while (lo < hi) { ... }

...

}

assert isSorted(a);

}

Automatically generated: Sorts the array in ascending order,using the natural or-

der.

Human-written: Rearranges the array in ascending order,using the natural order.

6

public boolean isEmpty(){

return root == null;

}

Automatically generated: Returns true if the symbol is empty.

Human-written: Is this symbol table empty?

7

public boolean contains(int key){

return rank(key) != -1;

}

Automatically generated: Checks whether the given object is contained within the

given set.

Human-written: Is the key in this set of integers?

8

public void tag(String inputFileName,String outputFileName,

OutputFormat outputFormat){

List<String> sentences=jsc.textFile(inputFileName).collect();

tag(sentences,outputFileName,outputFormat);

}

Automatically generated: Replaces the message with a given tag

Human-written: Tags a text file , each sentence in a line and writes the result to

an output file with a desired output format.

9

public void unlisten(String pattern){

UtilListener listener=listeners.get(pattern);

if(listener!=null){

listener.destroy();

listeners.remove(pattern);

}else{

client.onError(Topic.RECORD,Event.NOT_LISTENING,pattern);

}

}

Automatically generated: It can be called when the product only or refresh has

ended.

Human-written: Removes a listener that was previously registered with listenFor-

Subscriptions.

learns common patterns from a large-scale source code and the en-

coder itself is a language model which remembers the likelihood of

different Java methods. The decoder of DeepCom learns the context

of source code which bridges the gap between natural language

and code. Furthermore, the attention mechanism helps align code

tokens and natural language words.

6.2.2 Generation assisted by structural information. Program-

ming languages are formal languages which are more structure

dense than text and have formal syntax and semantics. It is diffi-

cult for models to learn semantic and syntax information at the

same time just given code sequences. Existing approaches usually

analyze source code directly and omit its syntax representation.

In contrast to traditional NMT models, DeepCom takes advan-

tage of rich and unambiguous code structures. In this way, Deep-

Com bridges the gap between code and natural language with the

assistance of structure information within the source code. From

ICPC’18, May 27 - May 28, 2018, Gothenburg, Sweden Xing Hu et al.

the evaluation results, we find that the structural information im-

proves the quality of comments. The improvements for methods

implementing standard algorithms are much more obvious. Java

methods realizing the same algorithmmay define different variables

while their ASTs are much more similar.

6.3 Threats to Validity
We have identified the following threats to validity:

Automatic evaluation metrics: We evaluate the gap between

generated comments and human-written comments by machine

translation metric BLEU which is gradually used in generative-

based software issues [12, 20]. The reason for this setting is that we

want to reduce the impact of the subjectivity of manual evaluation.

Quality of collected comments: We collected the comments for

Java methods from the first sentence of Javadoc as other work

does [12]. Although we define heuristic rules to decrease the noise

in comments, there are some mismatched comments in the dataset.

In the future, we will investigate a better technique to build a better

parallel corpus.

Comparisons on Java dataset: Another threat to validity is that

our approach is experimented on Java dataset. Although we fail to

evaluate DeepCom directly on CODE-NN’ dataset which is difficult

to parse into ASTs, the results on Java have proved the effectiveness

of DeepCom. In the future, we will extend our approach to other

programming languages (e.g., Python).

7 RELATEDWORK
7.1 Code Summarization
As a critical task in software engineering, code summarization aims

to generate brief natural language descriptions for source code.

Automatic code summarization approaches vary from manually-

crafted template [24, 35, 36], IR [14, 15, 43] to learning-based ap-

proaches [4, 19, 28].

Creating manually-crafted templates to generate code comments

is one of the most common code summarization approaches. Srid-

hara et al. [35] use the Software Word Usage Model (SWUM) to cre-

ate a rule-based model that generates natural language descriptions

for Java methods. Moreno et al. [25] predefine heuristic rules to

select information and generate comments for Java classes by com-

bining the information. These rule-based approaches have been ex-

panded to cover special types of code artifacts such as test cases [48]

and code changes [8]. Human templates usually synthesize com-

ments by extracting keywords from the given source code.

IR approaches are widely used in summary generation and usu-

ally search comments from similar code snippets. Haiduc et al. [15]

apply the Vector Space Model (VSM) and Latent Semantic Indexing

(LSI) to generate term-based comments for classes and methods.

Their works are replicated and expanded by Eddy et al. [11] which

exploit a hierarchical topic model. Wong et al. [42] apply code

clone detection techniques to find similar code snippets and use the

comments from similar code snippets. The work is similar to their

previous work AutoComment [43] which mines human-written de-

scriptions for automatic comment generation from Stack Overflow.

Recently, some studies try giving natural language summaries

by deep learning approaches. Iyer et al. [19] present RNN networks

with attention to produce summaries that describe C# code snip-

pets and SQL queries. It takes source code as plain text and models

the conditional distribution of the summary. Allamanis et al. [4]

apply a neural convolutional attentional model to the problem that

extremely summarizes the source code snippets into short, name-

like summaries. These learning-based approaches mainly learn the

latent features from source code, such as semantics, formatting,

and etc. The comments are generated according to these learned

features. The experimental results of them have proved the effective-

ness of deep learning methods on code summarization. In this paper,

DeepCom integrates the structure information which is verified

important for comments generation.

7.2 Language models for source code
Recently, thanks to the insight of Hindle et al. [17], there is an emerg-

ing interest in building language models of source code. These lan-

guage models vary from n-gram model [1, 29], bimodal model [5],

and RNNs [12, 19]. Hindle et al. [17] first propose to explore N-gram

to model the source code and demonstrate that most software is

also natural and find regularities in natural code. Some studies build

the models to bridge the gap between the programming language

and natural language descriptions. Allamanis et al. [1] develop a

framework to learn the code conventions of a codebase and the

framework exploits N-gram model to name Java identifiers. Alla-

manis et al. [2] and Raychev et al. [33] suggest names for variables,

methods, and classes. Mou et al. [26] present a tree-based convo-

lutional neural networks to model the source code and classify

programs. Gu et al. [12] present a classic encoder-decoder model

to bridge the gap between the Java API sequences and natural lan-

guage. Yin and Neubig [47] build a data-driven syntax-based neural

network model for generating code from natural language.

Learning from source code is applied to various software engi-

neering tasks, e.g., fault detection [32], code completion [27, 29],

code clone [38] and code summarization [19]. In this paper, we

explore the combination of deep learning methods and source code

features to generate code comments. Compared to the previous

works, DeepCom explains the code summarization procedure from

a machine translation perspective. The experimental results also

prove the ability of DeepCom.

8 CONCLUSION
This paper formulates code summarization task as a machine trans-

lation problem which translates source code written in a program-

ming language to comments in natural language. We propose Deep-

Com, an attention-based Seq2Seq model, to generate comments

for Java methods. DeepCom takes ASTs sequences as input. These

ASTs are converted to specially formatted sequences using a new

structure-based traversal (SBT) method. SBT can express the struc-

tural information and keep the representation lossless at the same

time. DeepCom outperforms the state-of-the-art approaches and

achieves better results on machine translation metrics. In future

work, we plan to improve the effectiveness of our proposed ap-

proach by introducing more domain-specific customizations. We

also plan to apply our proposed approach to other software engi-

neering tasks that can be mapped to a machine translation problem

(e.g., code migration, etc.).

Deep Code Comment Generation ICPC’18, May 27 - May 28, 2018, Gothenburg, Sweden

REFERENCES
[1] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2014. Learn-

ing natural coding conventions. In Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. ACM, 281–293.

[2] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2015. Sug-

gesting accurate method and class names. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ACM, 38–49.

[3] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2017.

A Survey of Machine Learning for Big Code and Naturalness. arXiv preprint
arXiv:1709.06182 (2017).

[4] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional at-

tention network for extreme summarization of source code. In International
Conference on Machine Learning. 2091–2100.

[5] Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and Yi Wei. 2015. Bimodal

modelling of source code and natural language. In International Conference on
Machine Learning. 2123–2132.

[6] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Machine

Translation by Jointly Learning to Align and Translate. Computer Science (2014).
[7] Manfred Broy, Florian Deißenböck, and Markus Pizka. 2005. A holistic approach

to software quality at work. In Proc. 3rd World Congress for Software Quality
(3WCSQ).

[8] Raymond PL Buse and Westley R Weimer. 2010. Automatically documenting

program changes. In Proceedings of the IEEE/ACM international conference on
Automated software engineering. ACM, 33–42.

[9] Ciprian Chelba, Dan Bikel, Maria Shugrina, Patrick Nguyen, and Shankar Kumar.

2012. Large scale language modeling in automatic speech recognition. arXiv
preprint arXiv:1210.8440 (2012).

[10] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.

Empirical evaluation of gated recurrent neural networks on sequence modeling.

arXiv preprint arXiv:1412.3555 (2014).
[11] Brian P Eddy, Jeffrey A Robinson, Nicholas A Kraft, and Jeffrey C Carver. 2013.

Evaluating source code summarization techniques: Replication and expansion. In

Program Comprehension (ICPC), 2013 IEEE 21st International Conference on. IEEE,
13–22.

[12] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep

API learning. In Proceedings of the 2016 24th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. ACM, 631–642.

[13] XiaodongGu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2017. DeepAM:

Migrate APIs with Multi-modal Sequence to Sequence Learning. arXiv preprint
arXiv:1704.07734 (2017).

[14] Sonia Haiduc, Jairo Aponte, and Andrian Marcus. 2010. Supporting program

comprehension with source code summarization. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering-Volume 2. ACM, 223–

226.

[15] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the

use of automated text summarization techniques for summarizing source code.

In Reverse Engineering (WCRE), 2010 17th Working Conference on. IEEE, 35–44.
[16] Vincent J Hellendoorn and Premkumar Devanbu. 2017. Are deep neural networks

the best choice for modeling source code?. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM, 763–773.

[17] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.

2012. On the naturalness of software. In Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 837–847.

[18] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[19] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.

Summarizing Source Code using a Neural Attention Model.. In ACL (1).
[20] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically generat-

ing commit messages from diffs using neural machine translation. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering.
IEEE Press, 135–146.

[21] Melvin Johnson, Mike Schuster, Quoc V Le, Maxim Krikun, Yonghui Wu, Zhifeng

Chen, Nikhil Thorat, Fernanda Viégas, Martin Wattenberg, Greg Corrado, et al.

2016. Google’s multilingual neural machine translation system: enabling zero-

shot translation. arXiv preprint arXiv:1611.04558 (2016).
[22] Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M

Rush. 2017. Opennmt: Open-source toolkit for neural machine translation. arXiv
preprint arXiv:1701.02810 (2017).

[23] Pablo Loyola, Edison Marrese-Taylor, and Yutaka Matsuo. 2017. A Neural Ar-

chitecture for Generating Natural Language Descriptions from Source Code

Changes. arXiv preprint arXiv:1704.04856 (2017).
[24] Paul W McBurney and Collin McMillan. 2014. Automatic documentation gen-

eration via source code summarization of method context. In Proceedings of the
22nd International Conference on Program Comprehension. ACM, 279–290.

[25] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,

and K Vijay-Shanker. 2013. Automatic generation of natural language summaries

for java classes. In Program Comprehension (ICPC), 2013 IEEE 21st International

Conference on. IEEE, 23–32.
[26] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016. Convolutional Neural

Networks over Tree Structures for Programming Language Processing.. In AAAI,
Vol. 2. 4.

[27] Lili Mou, Rui Men, Ge Li, Lu Zhang, and Zhi Jin. 2015. On end-to-end pro-

gram generation from user intention by deep neural networks. arXiv preprint
arXiv:1510.07211 (2015).

[28] Dana Movshovitz-Attias and William W Cohen. 2013. Natural language models

for predicting programming comments. (2013).

[29] Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N Nguyen.

2013. A statistical semantic language model for source code. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering. ACM, 532–542.

[30] Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata, Sakriani Sakti,

Tomoki Toda, and Satoshi Nakamura. 2015. Learning to generate pseudo-code

from source code using statistical machine translation (t). In Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on. IEEE, 574–
584.

[31] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a

method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics. Association for

Computational Linguistics, 311–318.

[32] Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto

Bacchelli, and Premkumar Devanbu. 2016. On the naturalness of buggy code. In

Proceedings of the 38th International Conference on Software Engineering. ACM,

428–439.

[33] Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting program

properties from big code. In ACM SIGPLAN Notices, Vol. 50. ACM, 111–124.

[34] Alexander M Rush, Sumit Chopra, and Jason Weston. 2015. A neural attention

model for abstractive sentence summarization. arXiv preprint arXiv:1509.00685
(2015).

[35] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-

Shanker. 2010. Towards automatically generating summary comments for java

methods. In Proceedings of the IEEE/ACM international conference on Automated
software engineering. ACM, 43–52.

[36] Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. 2011. Automatically

detecting and describing high level actions within methods. In Proceedings of the
33rd International Conference on Software Engineering. ACM, 101–110.

[37] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning

with neural networks. In Advances in neural information processing systems. 3104–
3112.

[38] Jeffrey Svajlenko and Chanchal K Roy. 2016. AMachine Learning Based Approach

for Evaluating Clone Detection Tools for a Generalized and Accurate Precision.

International Journal of Software Engineering and Knowledge Engineering 26,

09n10 (2016), 1399–1429.

[39] Oriol Vinyals and Quoc Le. 2015. A neural conversational model. arXiv preprint
arXiv:1506.05869 (2015).

[40] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learning semantic

features for defect prediction. In Proceedings of the 38th International Conference
on Software Engineering. ACM, 297–308.

[41] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.

2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.
ACM, 87–98.

[42] Edmund Wong, Taiyue Liu, and Lin Tan. 2015. Clocom: Mining existing source

code for automatic comment generation. In Software Analysis, Evolution and
Reengineering (SANER), 2015 IEEE 22nd International Conference on. IEEE, 380–
389.

[43] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. Autocomment: Mining question

and answer sites for automatic comment generation. In Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering. IEEE
Press, 562–567.

[44] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

2016. Google’s neural machine translation system: Bridging the gap between

human and machine translation. arXiv preprint arXiv:1609.08144 (2016).
[45] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan, and Shan-

ping Li. 2017. Measuring program comprehension: A large-scale field study with

professionals. IEEE Transactions on Software Engineering (2017).

[46] Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang, Hang Li, and Xiaoming Li. 2015.

Neural generative question answering. arXiv preprint arXiv:1512.01337 (2015).

[47] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-

Purpose Code Generation. arXiv preprint arXiv:1704.01696 (2017).
[48] Sai Zhang, Cheng Zhang, and Michael D Ernst. 2011. Automated documentation

inference to explain failed tests. In Proceedings of the 2011 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering. IEEE Computer Society,

63–72.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	5-2018

	Deep code comment generation
	Xing HU
	Ge LI
	Xin XIA
	David LO
	Zhi JIN
	Citation

	Abstract
	1 Introduction
	2 Background
	2.1 Language Models
	2.2 Neural Machine Translation

	3 Proposed Approach
	3.1 Sequence-to-Sequence Model
	3.2 Abstract Syntax Tree with SBT traversal
	3.3 Out-of-vocabulary tokens

	4 Experiment Setup
	4.1 Training Details
	4.2 Evaluation Measure: BLEU-4

	5 Results
	5.1 RQ1: DeepCom vs. Baseline
	5.2 RQ2: BLEU-4 scores for source code and comments of different lengths

	6 Discussion
	6.1 Qualitative analysis
	6.2 Strengths of DeepCom
	6.3 Threats to Validity

	7 Related work
	7.1 Code Summarization
	7.2 Language models for source code

	8 Conclusion
	References

