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Abstract

Effective placement of emergency response vehicles
(such as ambulances, fire trucks, police cars) to deal with
medical, fire or criminal activities can reduce the inci-
dent response time by few seconds, which in turn can
potentially save a human life. Owing to its adoption in
Emergency Medical Services (EMSs) worldwide, exist-
ing research on improving emergency response has fo-
cused on optimizing the objective of bounded time (i.e.
number of incidents served in a fixed time). Due to the
dependence of this objective on temporal uncertainty,
optimizing the bounded time objective is challenging. In
this paper, we propose a new objective referred to as the
bounded rank (which is the number of incidents served
by a base station whose rank is below a bounded rank
value) that has nice theoretical properties and serves as
an indirect substitute for the bounded time objective.
To understand the theoretical properties of this new ob-
jective in the context of the spatio-temporal uncertainty
associated with emergency incidents, we first provide a
Poisson Point Process (PPP) model of the emergency re-
sponse problem. We then formally define the bounded
rank objective in the context of the model and demon-
strate that the bounded rank metric is monotone submod-
ular. Due to the monotone submodularity of the objec-
tive, we can propose a greedy approach that can provide
an a priori guarantee of 50% from optimal and a much
tighter posteriori guarantee. Practically and more impor-
tantly, we demonstrate that optimizing this bounded rank
objective on simulators validated on real data (and not
just on the abstract PPP model) provides better results
than the best known approach for optimizing bounded
time objective.

1 Introduction
To handle medical, fire or crime related emergencies,
Emergency Response Vehicles (ERVs) like ambulances,
fire rescue vehicles and police cars are strategically po-
sitioned at a set of base stations throughout the city.
Since time can be critical in responding to such emer-
gency situations, we need to optimize the placement of
these ERVs so they can reach incident locations within
the fastest possible time. Specifically, a Key Perfor-
mance Indicator (KPI) employed by many emergency
management systems worldwide is to maximize the
number of incidents that have a response time less than

Copyright c© 2018, Association for the Advancement of Arti-
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a fixed time value (which is dependent on the nature of
the emergency). This is referred to as the bounded time
objective, and the challenge is to increase the number
of incidents that have a response time lower than the
bounded time while considering the spatio-temporal un-
certainty associated with the occurrence of emergency
incidents.

Emergency management systems have been exten-
sively studied in the literature, specifically in the context
of ambulance response1. There are two main threads
of existing research. The first thread has focused on
the dispatch of ambulances from base locations and
the second thread has focused on the allocation and
reallocation of ambulances to base stations. A survey
of existing approaches (Brotcorne, Laporte, and Semet
2003) reveals that much of the previous work in EMS
has been on the dispatch of ambulances from base sta-
tions (Schmid 2012; Andersson and Värbrand 2007;
Ibri, Nourelfath, and Drias 2012). While dispatch is an
important mechanism to improve emergency manage-
ment systems, given the significant spatio-temporal un-
certainty associated with occurrence of incidents as well
as the uncertainty involved in ascertaining the critical-
ity of an emergency request over phone, in almost all
EMSs world wide, the ambulance dispatch procedure is
fixed: the nearest ambulance to the incident location is
dispatched.

The key focus of this paper is to advance research on
the latter problem (allocation and reallocation of ERVs).
Unlike Maxwell et al. (Maxwell et al. 2010), we fo-
cus on allocating ambulances for the entire fleet and
not for an individual ambulance. As indicated earlier,
we focus on improving the bounded time response and
hence is different to the work on heuristic worst case
planning (Andersson and Värbrand 2007). Owing to the
significant spatio-temporal uncertainty in incident oc-
currence coupled with the city scale nature of the prob-
lem (with large number of bases, ERVs and locations),
the allocation problem is computationally challenging
and is typically driven by data. There have been typi-
cally two types of objectives considered in the literature
while optimizing allocation using data-driven models:

1. Bounded time objective (Yue, Marla, and Krishnan
2012): The goal here is to maximize the number of

1Given the extensive literature in ambulance response, we
will use ERVs and ambulances synonymously



incidents that have a response time less than a fixed
time value.

2. Bounded risk objective (Saisubramanian, Varakan-
tham, and Lau 2015; Ghosh and Varakantham 2016):
The goal here is to minimize the response time for a
fixed percentile of requests.

For bounded time objective, existing ap-
proaches (Yue, Marla, and Krishnan 2012) that are
based on data-driven simulators greedily allocate am-
bulances to base stations based on the marginal benefit
in terms of the number of incidents. For bounded risk
objective, existing data-driven approaches employ a
combination of linear optimization and sample average
approximation (Pagnoncelli, Ahmed, and Shapiro 2009;
Varakantham and Kumar 2013) to minimize response
time. However, with both these objectives and threads
of work, there is no optimal solution available and the
focus is on approximate solutions. In this paper, our
focus is on a bounded rank metric that when optimized
using a greedy approach improves performance with
respect to bounded time objective better than the greedy
approach that optimizes bounded time objective.

The new objective, Bounded Rank (BR) has a pa-
rameter K. The goal with bounded rank objective is to
maximize the number of incidents that are served by
an ambulance from one of the K nearest base stations.
Typically, emergency response systems dispatch the re-
sponse vehicle from the nearest base station. Due to the
spatio-temporal uncertainty and limited ambulances at
each base station, there is a good chance that the ambu-
lance from the nearest base station may not be available
to serve all the incidents in the same area. In fact, in
our real world datasets, we observe that the top 2 near-
est stations typically serve most of the incidents equally.
Therefore, by picking a K that ensures response time is
less than the bounded time in bounded time objective,
bounded rank can be made to optimize for bounded time
indirectly.

It is important to note that for both bounded time and
bounded rank, there are two key similarities which al-
low for this indirect optimization of bounded time met-
ric using BR objective-(i) Output with both metrics is
the number (or percentage) of requests satisfying a cer-
tain criterion (response time < given time value for
bounded time, and rank < K for bounded rank) and
(ii) Both these metrics have continuous (if we consider
percentage of requests) values and do not result in in-
feasible solutions. On the other hand, for bounded risk,
output is the response time satisfying a certain criterion
(like percentage of requests with a lesser response time
than the objective is at least 80) resulting in infeasible
solutions if there is no allocation that will result in 80
(or some fixed) percentile of requests being served.
We make the following contributions in this paper:

(1) To represent the spatio-temporal uncertainty asso-
ciated with emergency incidents, we first provide a
Poisson Point Process (PPP) model of the emergency
response problem and formally define the bounded

rank objective in the context of the model.
(2) We demonstrate that the metric of incidents served

from a bounded rank (e.g., nearest base is a rank of 1,
second nearest is rank of 2) base station is monotone
submodular. Due to the submodularity of the objec-
tive, we can propose a greedy approach that can pro-
vide an a priori guarantee of 50% from optimal and
a tighter posteriori guarantee.

(3) Practically and more importantly, we demonstrate
that optimizing this bounded rank objective provides
better results than the state of art existing approach
for optimizing bounded time objective on two simu-
lators validated by real world data sets. We also ob-
serve that the bounded rank objective performs very
well on the bounded risk metric as well.

2 Background
In this section, we first describe monotone submodular-
ity and matroids as they are required in proving sub-
modularity of the bounded rank objective and also in
showing the guarantee of the greedy approach. Next,
we describe the data driven optimization work of Yue
et al. (Yue, Marla, and Krishnan 2012), as key technical
details from that work are referenced in this paper.

Monotone Submodularity and Matroids
We now describe submodular functions and matroids.

Definition 1. Given a finite set, Π, a submodular func-
tion is a set function, F : 2Π → R, where 2Π is
the power set corresponding to Π. More importantly,
∀X,Y ⊆ Π with X ⊆ Y and for every i ∈ Π \ Y ,

F (X ∪ i)− F (X) ≥ F (Y ∪ i)− F (Y )

A submodular function F is monotone if F (Y ) ≥
F (X) for X ⊆ Y .

Monotone submodular functions are interesting because
maximizing a submodular function to pick a fixed num-
ber of elements (say k) from the finite set (Π) while
difficult can be approximated efficiently with a strong
quality guarantee. Specifically, a greedy algorithm that
incrementally generates the solution set by maximizing
marginal utility provides solutions that are at least 63%
(1− 1

e ) of the optimal solution.
In this paper, we are also interested in maximizing

a submodular function, however, under a specific con-
straint on the finite set (Π) and the elements that are
picked. Specifically, the constraint is specified using a
partition matroid. We provide the formal definitions be-
low:

Definition 2. For a finite ground set, Π, let P be a
non-empty collection of subsets of Π. The system Γ =
(Π,P) is a matroid if it satisfies the following two prop-
erties:

• The hereditary property: P1 ∈ P ∧ P2 ⊂ P1 =⇒
P2 ∈ P . In other words, all the subsets of P1 must be
in P .



• The exchange property: ∀P1,P2 ∈ P : |P1| <
|P2| =⇒ ∃x ∈ P2 \ P1;P1 ∪ x ∈ P .

We are specifically interested in a ground set that is
partitioned as Π = Π1 ∪ Π2 ∪ . . . ∪ Πk. The family of
subsets, P = {P ⊆ Π : ∀i, |P ∩ Πi| ≤ 1} forms a
matroid called a partition matroid. This family of sub-
sets denotes that any solution can include at most one
element from each ground set partition. This is relevant
in this paper, as ground set partitions represent base set
for each ambulance and we need to pick one base for
each ambulance.

Simulation Driven Optimization
Yue et al. (Yue, Marla, and Krishnan 2012) provided the
event-driven simulator of Algorithm 1, which employs
order of incident arrival and the nearest idle ambulance
dispatch policy. We start with an event set ξ where each
element e ∈ ξ represents an emergency incident and
the list is sorted based on arrival order of incident. I
denotes the set of available ambulances that are allo-
cated according to given allocation A. ar denotes the
ambulance id that is assigned for request r ∈ R. Ini-
tially each request is tagged as null assignment. In each
iteration we pop the first element e from the event list ξ.
If the event e is a new request then we dispatch the near-
est available ambulance ar for the request and remove
the ambulance from available ambulance set I . We also
insert a job-completion event in the event list at time
tr(ar), where tr(ar) denotes the time when ambulance
ar will return back to base after completing the job r .
On the other hand, if the popped element e is a job com-
pletion event for request r, then we add the ambulance
ar to the set I such that it can be used to serve a new
request. This process continues until the event list be-
comes empty. Once the process is finished, we can use
the assignment results to measure the metrics: percent-
age of requests served in bounded time.

Algorithm 1: EDSimulator(R,B,A)

Initialize: it← 0 ;
I ← A // Initialise set of available ambulance;
ξ ← R // Sorted in arrival order;
a = {ar|ar←⊥} //Initialise as null assignment ;
repeat

Pop next arriving event e from ξ;
if e =New Request r then

ar ← Dispatch(r, I) // Dispatch nearest free
ambulance;
I ← I − {ar} // Update available ambulance;
Push job completion event at tr(ar) into ξ;

else if e=job completion event for r then
I←I ∪{ar} // Update available ambulance;

until (|ξ| > 0);
return {ar}

Yue et al. (Yue, Marla, and Krishnan 2012) also pro-
vided a greedy algorithm that incrementally considers
assignment of ambulances to base stations based on
the marginal benefit (in terms of number of incidents
served within a fixed time) computed using the simula-
tor above.

3 Poisson Point Process (PPP) Model of
Emergency Incidents

We now describe a model to represent the problem of
optimizing allocation of ERVs in emergency response.
The occurrence of an emergency incident is a spatio-
temporal random event. The density of incidents varies
spatio-temporally and the arrivals are independent of
each other. As in previous work (Yue, Marla, and Kr-
ishnan 2012; Peleg and Pliskin 2004), we represent the
arrival process of emergency incidents using a Pois-
son distribution. We further generalize the Poisson pro-
cess to incorporate a spatial variation. It is captured
by a spatial non-homogeneous Poisson process with a
fixed, spatially varying density function in two dimen-
sion, λ(x, y) which is formed from the arrived incident
location points. The temporal variation of the incident
arrivals can be captured by considering different den-
sity functions, i.e., λt(x, y) for different times of the
day like peak and non-peak hours. The granularity of t
could be as large as a season or a week or it could be
varying every hour. Since we are providing an off-line
optimization solution, granularity of t is not indeed a
constraint. Thus, our interest is in optimizing the ambu-
lance allocation over a given period of time, e.g, in an
hour or over a day, under a spatial Poisson model with
the given density λ(x, y) in that time period. Hence-
forth, while we do not explicitly mention time period,
the focus is on a given time period.

The emergency incident points in a two-dimensional
space, {Si} form a non homogeneous Poisson process
with the density λ(x, y). The expected number of inci-
dents is given by,

S̄ =

∫ ∞
−∞

∫ ∞
−∞

λ(x, y) dx dy (1)

For a zone Zi, i = 1, 2, . . . L, the probability that
there are k incidents in zone Zi is given by Poisson dis-
tribution as follows.

Pr{N(Zi) = k} =
e−S̄(Zi)S̄(Zi)

k

k!
, (2)

where, S̄(Zi) is the expected number of incidents in
zone Zi which is given by,

S̄(Zi) =

∫ ∫
(x,y)∈Zi

λ(x, y) dx dy (3)

The density could vary in different zones of the city and
can be obtained using data of historical incidents (dur-
ing the time period of interest). For purposes of gener-
ality, we will refer to density using λ(x, y) and not use
a zone representation.



4 Optimizing Ambulance Allocation in
PPP Model

We now formally define the ambulance allocation prob-
lem using the following tuple:

< R,B,N , FK >

R denotes a set of emergency requests. B =
{b1, b2, . . . b|B|} denotes the set of bases where ambu-
lances can be positioned. N = {n1, n2, . . . n|N |} rep-
resents the set of ambulances. The goal is to optimize
metric FK by computing an allocation set, A, where

A = {(i, j)|i ∈ N , j ∈ B,
∑
j∈B
|(i, j)| = 1}

Each element (i, j) represents the assignment of ith
ambulance to jth base. Note that there can be multi-
ple ambulances allocated to the same base but an am-
bulance can be allocated to one base (and hence the∑
j∈B |(i, j)| = 1).
FK is the Bounded Rank (BR) metric. For each emer-

gency incident request, r ∈ R, we consider a set of
nearest bases ranked in increasing order of their respec-
tive response times, assuming that there is an idle or
available ambulance. This is typically used for imple-
menting the nearest idle dispatch policy. In the context
of the PPP model described earlier, FK measures the
expected number of incidents served from the nearest
(in terms of response time) K bases (i.e., up to rank K)
for a given allocation of ambulances.

Let us consider an ambulance allocation, A. We split
the spatial non-homogeneous Poisson process into two
types, type-0 and type-1. Type-1 are the points or in-
cidents which satisfy bounded rank objective (i.e., are
served by a base of rank-K or lower). Our metric
FK(A) then corresponds to the expected number of in-
cidents of type-1 and is given as follows:

FK(A) =

∫ ∞
−∞

∫ ∞
−∞

λ(x, y)P
{A}
K (x, y) dx dy (4)

P
{A}
K (x, y) is the probability that the incident at

(x, y) is served by a base of rank less thanK in the allo-
cationA. This division into multiple types is referred to
as splitting or thinning (Ross 2010) of a Poisson point
process and the expression is justified through this con-
nection to thinning/splitting. We now describe the com-
putation of P {A}K (x, y).

Calculating P {A}
K (x, y)

The probability computation has two parts:
(1) There is a base of rank-K or lower in the set A for

(x, y): For a given point or incident (x, y), the event
of having a base, b, of rank-K or lower in the rank list
of the point (or the zone to which this point belongs
to) in allocationA is a deterministic event for a given
b,A and (x, y). Let IK(x,y)(b,A) be the indicator vari-
able that is set to 1 if rank(x,y)(b) ≤ K; b ∈ A and
0 otherwise.

(2) There is an ambulance available at a base identified
in (1) above: To decide availability of ambulance at
a base, we model the dynamics of emergency request
service at each base using queueing theory. Specifi-
cally, the queueing model of interest is an Erlang-B
or loss model, where there is no queueing of emer-
gency requests. Queueing here essentially means re-
quests waiting for service completion. It is a M/M/c/0
queue (Ross 2010) where there are Poisson arrivals of
emergency incidents, exponential service for the in-
cident requests and c servers or ambulances with zero
buffer or no queueing. Thus, the steady state proba-
bility of an ambulance being free at a base b with c
ambulances is given as follows:

Pr{Q < c} = 1− πc = 1−
mc

c!∑c
j=0

mj

j!

(5)

where, Q is the number of customers waiting for ser-
vice completion or equivalently it is the number of
customers in the system and similarly m is the ex-
pected number of customers in the system or equiv-
alently expected number of busy servers or ambu-
lances.
As in prior literature (Larson 1974; Lee et al. 2006),
service time for an emergency request can be as-
sumed to be exponentially distributed with rate µ
based on average service times from history and the
expected service time is T = 1

µ . For arrival rate, λ,
m = λ× T = λ

µ .

Let
〈
b1(x, y), b2(x, y), . . . , bK(x, y)

〉
be the top K

nearest bases for incident at location (x, y). For nota-
tional convenience, we will refer to bi(x, y) as bi. Given
(1) and (2) above, we have:

P
{A}
K (x, y) =Pr{request at (x, y)

served by rank ≤ K base}
= 1− Pr{request at (x, y) is not

served by {b1 ∩ . . . ∩ bK}}

=1−
K∏
i=1

IK(x,y)(bi,A) · Pr{Qbi = cbi}

(6)

Here, cbi is the number of ambulances allocated to
base bi in A. Qbi is a random variable representing
number of emergency requests served or number of
busy ambulances at base bi. Pr{Qbi = cbi} is the
blocking probability which means the probability that
there is no free ambulance and hence the request is
blocked, i.e., can not be served. This probability is es-
sentially πcbi and from (5) is given by,

Pr{Qbi = cbi} =

m
cbi
bi

cbi !∑cbi
j=0

mj
bi

j!

, (7)



where, mbi =
λbi

µ and,

λbi =

∫ ∞
−∞

∫ ∞
−∞

λ(x, y) · IK(x,y)(bi,A) dx dy (8)

IK(x,y)(bi,A) represents the event of having base, bi,
as the rank-K or lower ranked base in the rank list of a
given point (x, y). Here, 1

µ is the average service time
(round trip time for an ambulance, i.e., from base to in-
cidence to hospital and back to base) which is obtained
for each base using historic data.

Monotone Submodularity of FK

In order to prove monotone submodularity of a function,
FK , we have to satisfy the following requirements:

• There exists a finite ground set, E such that FK is
defined for all subsets of E.

• FK is monotone, i.e., ∀A ⊆ Â ⊆ 2E , we have

FK(A) ≤ FK(Â) (9)

• FK is submodular i.e., ∀A ⊆ Â ⊆ 2E and for every,
a ∈ 2E \ Â, we have,

FK(A ∪ {a})− FK(A) ≥ FK(Â ∪ {a})− FK(Â)

For the first requirement, ground set, E is the set of
all possible assignments of ambulances to base stations:

E = {(i, j)|∀i ∈ N ,∀j ∈ B}

It should be noted that FK should be defined for all pos-
sible allocations, irrespective of whether an allocation is
valid or not. The definition of FK remains the same as
in Equation 4, except that in case of an invalid allocation
i.e., when an ambulance is allocated to multiple bases,
we assume that there are as many copies of that am-
bulance (as the bases it is assigned to). For second and
third requirements, we show it in proof of Proposition 1.

Proposition 1. FK : 2E → R defined using Equation 4
is monotone submodular.

Proof: Let A ⊆ Â ⊆ 2E . The superset Â is gener-
ated by adding more elements to the set A. Addition of
an element essentially means that an additional ambu-
lance is allocated a base2

Since number of ambulances at bases either stays
same or increases, it should be noted that P {Â}K (x, y) ≥
P
{A}
K (x, y). Therefore, FK(Â) ≥ FK(A) and mono-

tonicity of FK is proved.
Now, to prove submodularity, we first obtain FK(Â∪

{a})−FK(Â) as follows. From Equation (4), for every,

2There is also the case of the same ambulance being allo-
cated two bases. This is an invalid allocation, but we have to
show submodularity even for this case. As indicated earlier, in
such a case we define FK assuming there are two copies of
that ambulance.

a ∈ 2E \ Â, we have that

FK(Â ∪ {a})− FK(Â)

=

∫ ∞
−∞

∫ ∞
−∞

λ(x, y)
(
P
Â∪{a}
K (x, y)− P ÂK (x, y)

)
dx dy

(10)

Using probability rule of Pr(X ∪ Y ) = Pr(X) +
Pr(Y )− Pr(X ∩ Y ), we can write

P
Â∪{a}
K (x, y)− P ÂK (x, y)

= P
{a}
K (x, y)− P Â∩{a}K (x, y)

Since an incident at point (x, y) being served by a
bounded rank base from Â and set a are independent,

= P
{a}
K (x, y)− P ÂK (x, y)P

{a}
K (x, y)

= P
{a}
K (x, y)(1− P {Â}K (x, y))

Substituting this expression in Equation (10) we get,

FK(Â ∪ {a})− FK(Â)

=

∫ ∞
−∞

∫ ∞
−∞

λ(x, y)P
{a}
K (x, y)(1− P {Â}K )(x, y) dx dy

(11)

Similarly, FK(A∪{a})−FK(A) can be written as:

FK(A ∪ {a})− FK(A) =

∫ ∞
−∞

∫ ∞
−∞

λ(x, y)×

P
{a}
K (x, y)(1− P {A}K (x, y)) dx dy (12)

From the above equations, relating marginal gains es-
sentially reduces to finding the relation between prob-
abilities, P {Â}K and P

{A}
K . Since P {Â}K ≥ P

{A}
K , we

have:

FK(A ∪ {a})− FK(A) ≥ FK(Â ∪ {a})− FK(Â)

Hence submodularity of FK is also proved. �

5 Greedy Approximation
Given that FK is monotone submodular, a greedy ap-
proach can provide a strong offline guarantee and good
quality solutions. The greedy algorithm which assigns
|N | ambulances to |B| bases using bounded rank met-
ric FK is given by Algorithm 2. At each iteration, we
add an ambulance to a base that provides the maximum
marginal benefit (in terms of FK) over all the bases.
The metric FK(A) is obtained using thinning of the non
homogeneous Poisson process. I(i,j)∈A is an indicator
variable that indicates if (i, j) ∈ A.

Since, we have to maximize a submodular function
FK with respect to a partition matroid constraint (i.e.,
one base for each ambulance), therefore, the greedy al-
gorithm provides solutions that are at least 50% of opti-
mal according to the following proposition due to Fisher
et al.



Algorithm 2: BR-Greedy(R,B, N )

Input:R,B,N ;
Output: A s.t. |A| = |N |,
∀i ∈ N :

∑
j∈B I(i,j)∈A = 1;

begin
A ← ∅ ;
for i ∈ N do

for j ∈ B do
aj ← (i, j) ;
if aj /∈ A then

δaj |A = FK(A ∪ {aj})− FK(A) ;
a∗ ← argmax

j∈B
δaj |A ;

A ← A∪ {a∗};
end
return A

Proposition 2. (Fisher, Nemhauser, and Wolsey 1978):
Greedy algorithm for maximizing a monotone submod-
ular function subject to a partition matroid yields solu-
tions that are at least 50% of the optimal solution.

While the a priori guarantee is 50% of optimal, we
can provide a tighter posteriori guarantee as shown in
proposition below.
Proposition 3. If the optimal solution, A∗ has m
changes in allocation from a given solution A, then

FK(A∗) ≤ FK(A) +m · δ∗K(A)

where δ∗K(A) = maxa

[
FK(A ∪ {a})− FK(A)

]
Proof. The proof for the above proposition is a direct
result of applying the greedy algorithm to a partition
matroid (Goundan and Schulz 2007). For any monotone
submodular function, g : 2

∏
→ R with optimal solu-

tion Z∗, we have:

g(Z∗) ≤ g(Z) +
∑

e∈Z∗\Z

δe(Z)

In the context of the metric, FK this translates to:

FK(A∗) ≤ FK(A) +
∑

a∈A∗\A

δK,a(A)

While we do not know composition of A∗, we can add
best marginal value for every allocation to obtain up-
per bound for FK(A∗). Since all ambulances are homo-
geneous and there are m such ambulances whose allo-
cation is different (from the proposition definition), we
have

FK(A∗) ≤ FK(A) +m · δ∗K(A)

where δ∗K(A) = maxa

[
FK(A ∪ {a})− FK(A)

]
�

It should be noted that in the worst case, allocation for
every ambulance is different in the optimal solution.
Therefore, the worst case value of m is equal to |N |,
the total number of ambulances.

6 Comparing BR and BT in Simulation
Due to the dependence on time in bounded time (BT)
objective, it is difficult to analytically represent the be-
havior of BT in steady state. On the other hand, as
shown in previous sections, behavior of BR objective
can be analytically studied in steady state. In order to
compare the two objective values in non-steady state,
we have to consider transient behavior. Therefore, we
employ the simulation model as given in (Yue, Marla,
and Krishnan 2012) and described in Section 2, as it can
capture temporal dynamics of the underlying EMS sys-
tem. In such a deterministic setting (with exact logs of
emergency requests), the utility function or metric BR
can be computed exactly and not in expectation. Now
the metric BR is given by,

FBRK (A) =
∑
r∈R

K∑
i=0

FBRr,i (A) (13)

where,

FBRr,i (A) =

{
1 if request r served from base bi ∈ A
0 Otherwise

There can be other variants of BR objective, where serv-
ing from top rank base can be prioritized (wi = 1

2i ):

FBRWK (A) =
∑
r∈R

K∑
i=0

wi · FBRr,i (A) (14)

In (Yue, Marla, and Krishnan 2012), the metric used
is FBTT (A) =

∑
r∈R F

BT
r,T (A) where,

FBTr,T (A) =

{
1 if response time for r ≤ T minutes
0 Otherwise

7 Experimental Results
We first describe the experimental setup and then de-
scribe the key results that demonstrate the utility of our
greedy algorithm that optimizes BR objective.

We experimented with one simulated data set,
dataset-1 and a real dataset, dataset-2 3 is adopted
from (Yue, Marla, and Krishnan 2012). Each request
log in both data sets contains the following informa-
tion (a) Incident location; (b) Arrival time; (c) A set of
feasible nearby bases from where the request can be as-
sisted; (d) Response time from each of the feasible base
to scene location; and (e) Round-about time for each of
the feasible base stations. While these specific details
might not always be readily available for real deploy-
ment, as indicated in (Ghosh and Varakantham 2016),
we can estimate them using straightforward methods.
We can compute set of feasible nearby bases and pre-
dict the response and round-off times for bases.

We consider three objectives, FBRK (A), FBRWK (A),
and FBTT (A) and use the greedy approximation ap-
proach of Algorithm 2 to optimize the three objectives.

3http://projects.yisongyue.com/ambulance allocation/



(a) % served within 15 min. (b) % served within 30 min. (c) % not served (d) αth percentile in min.

Figure 1: Performance comparison for dataset-2

% in T % in T + 3.5 mins
BTG 5% -0.7%
BRG 5.4% 0.0%

BRWG 6% 0.5%
% in T % in T + 3.5 mins

BTG 5% 0.5%
BRG 4.8% 1.0%

BRWG 5.2% 1.0%
% in T % in T + 3.5 mins

BTG 3.5% 0.3%
BRG 3.3% 0.5%

BRWG 3.7% 0.7%

Table 1: Percentage Improvement over Baseline with
|B| − ∃, |B| and (|B| + 11) Ambulances

α (α+ 0.1)
BTG -0.1 mins -0.6 mins
BRG 0.05 mins 0 mins

BRWG 0.1 mins 0.2 mins
α (α+ 0.1)

BTG 0.4 mins 0.25 mins
BRG 0.4 mins 0.3 mins

BRWG 0.4 mins 0.3 mins
α (α+ 0.1)

BTG 0.3 mins 0.4 mins
BRG 0.3 mins 0.4 mins

BRWG 0.3 mins 0.45 mins

Table 2: Reduction in αth and (α + 0.1)th percentile
response time in minutes compared to Baseline with
|B| − ∃, |B| and (|B| + 11) Ambulances

The greedy algorithms that optimize these objectives
are referred to as BRG (Bounded Rank Greedy), BRWG
(Bounded Rank Weighted Greedy) and BTG (Bounded
Time Greedy) . The objectives are then evaluated using
the event-driven simulator of Algorithm 1 with respect
to the bounded time and bounded risk performance met-
rics. As indicated earlier, the event-driven simulator em-
ploys the nearest idle ambulance dispatch policy.

Performance comparison on dataset-1
In this section, we provide comparison of all the ap-
proaches with respect to bounded time and bounded
risk metrics on dataset-1. In this dataset, there are |B|
base stations. We have request logs over a period of six
months. We use first 3 month logs for training purpose
to generate the ambulance allocation using different ap-
proaches and the performance is tested on request logs
over the other 3 months. We show performance compar-
ison between the three greedy approaches and a baseline
allocation with respect to the two metrics. Baseline al-
location here essentially represents an allocation that is
derived based on historical load at stations.

We experimented with ambulance fleets of different
sizes ( |B|-9, |B| and |B|+11) allocated to |B| bases. Fur-
thermore, we used different metric values for bounded
time (T and T +3.5 minutes)4 and bounded risk (α and
α+0.1 percentile). These results are shown in Tables 1
and 2. Here are the key observations:
• Both bounded rank greedy approaches (BRG and

BRWG) perform better than the baseline approaches
consistently with respect to bounded time as well as
bounded risk metrics. However, bounded time greedy
(BTG) fares worse than the baseline for all the objec-
tives except bounded time of T minutes for which
it is optimized, in the experiment with |B|- 9 ambu-
lances. BRWG outperforms BTG consistently with
respect to both bounded time and bound risk metrics.

• The difference between BRWG and BTG in terms of
bounded time (around 1.1%) and bounded risk re-
sponse time (30-40 seconds) does not seem signifi-
cant. However, qualitatively 1% amounts to serving
about 6-7 more requests per day within the T minute

4The bounds are decided through some preliminary exper-
iments. A more thorough theoretical and empirical analysis
for setting of bounds given KPI is left for future work.



m Online bound
|B|+ 11 75%

1
2 · (B + 11) 90%

10 95%
0 100 %

Table 3: Online Bound

mark and 30 seconds improvement is equivalent to
taking five ambulances out of service while retaining
the response time.

Posteriori Bounds for BRG Here, we demonstrate
that the posteriori (online) guarantee, obtained by em-
ploying Proposition 3, is significantly better than the a
priori guarantee (of 50% from optimal) for BRG on a
given training set of data. It should be noted that the
number of differences with optimal will be equal to
number of ambulances only in pathological cases that
are created synthetically. In real problems, the value of
m is expected to be much lower (as ambulances are ho-
mogeneous). Therefore, we calculated online bound for
multiple different values of m.

Table 3 illustrates the quality guarantee in the case
where we have |B|+11 ambulances over |B| bases. It
should be noted that even whenm = |B|+11, the guar-
antee is 75% of optimal and if the number of differences
with optimal was half of |B|+11, then the guarantee is
90% of optimal. The online guarantees for other settings
and data sets were very similar.

Performance on dataset-2
In this section, we provide comparison of all the ap-
proaches with respect to bounded time and bounded risk
metrics on dataset-2. In this dataset, there are 58 ambu-
lances and 58 base stations. The best allocation is ob-
tained using 500 training logs, validated on 500 logs
and is tested on 500 test logs. We present performance
of the greedy approaches and the Baseline1 (1 ambu-
lance at each base station) in Figure 1 over four metrics
(similar to Yue et al.). Here are the key observations:
• BRG and BRWG perform better than the baseline ap-

proach with respect to all the four metrics whereas
(similar to dataset-1) BTG fared worse than the base-
line approach for bounded risk metric and for % of
requests not served. BRG served around 1.1% more
requests than the baseline.

• BRWG served 1% more requests than BTG in 30
minutes. In terms of 80th percentile as well, both
BRG and BRWG outperformed baseline and BTG by
around 1 and 2 minutes, respectively.

8 Conclusion
We have modeled the spatio-temporal uncertainty in
emergency requests using a non-homogeneous Poisson
point process. We presented a novel indirect objective
based on number of incidents served from bounded rank

base stations and showed it to be monotone submodu-
lar. It enabled us to provide greedy approximation for
Bounded Rank (BR) objective with 50% offline guar-
antee and much tighter posteriori guarantee. More im-
portantly, the elegant theoretical guarantee in the model
also translates to improved performance on simulators
validated on two real data sets. We demonstrated that
our BR greedy algorithm consistently performs better
than the existing and baseline approaches.
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