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Chaff from the Wheat: Characterizing and
Determining Valid Bug Reports

Yuanrui Fan, Xin Xia, David Lo, Ahmed E. Hassan

Abstract—Developers use bug reports to triage and fix bugs. When triaging a bug report, developers must decide whether the bug
report is valid (i.e., a real bug). A large amount of bug reports are submitted every day, with many of them end up being invalid reports.
Manually determining valid bug report is a difficult and tedious task. Thus, an approach that can automatically analyze the validity of a
bug report and determine whether a report is valid can help developers prioritize their triaging tasks and avoid wasting time and effort
on invalid bug reports.
In this study, motivated by the above needs, we propose an approach which can determine whether a newly submitted bug report is
valid. Our approach first extracts 33 features from bug reports. The extracted features are grouped along 5 dimensions, i.e., reporter
experience, collaboration network, completeness, readability and text. Based on these features, we use a random forest classifier to
identify valid bug reports. To evaluate the effectiveness of our approach, we experiment on large-scale datasets containing a total of
560,697 bug reports from five open source projects (i.e., Eclipse, Netbeans, Mozilla, Firefox and Thunderbird). On average, across the
five datasets, our approach achieves an F1-score for valid bug reports and F1-score for invalid ones of 0.74 and 0.67, respectively.
Moreover, our approach achieves an average AUC of 0.81. In terms of AUC and F1-scores for valid and invalid bug reports, our
approach statistically significantly outperforms two baselines using features that are proposed by Zanetti et al. [99]. We also study the
most important features that distinguish valid bug reports from invalid ones. We find that the textual features of a bug report and
reporter’s experience are the most important factors to distinguish valid bug reports from invalid ones.

Index Terms—Bug Report, Feature Generation, Machine Learning

F

1 INTRODUCTION

Software projects use issue tracking systems (e.g., Bugzilla1

and JIRA2) to manage the process of bug reporting,
assignment, tracking, resolution and archiving [6]. Due
to the large amount of bug reports in software projects,
bug report management is a challenging work. A number
of automated bug report management techniques have
been proposed. These techniques include bug assignee
recommendation [4], [96], reopened bug prediction [71],
[95], [103], bug fixing time prediction [11], [100], blocking
bug prediction [83], [94], duplicate bug report detection [75],
[84] and bug severity/priority assignment [47], [81].

In a typical bug triaging and fixing process, a
developer/tester or an end user detects a bug, then he/she
reports the bug to an issue tracking system. Next, bug
triagers manually judge whether the bug is a valid bug (i.e.,
a real bug which contains complete description and can
be reproduced). After that, if the bug is valid, the bug is
assigned to the most appropriate developer to fix [4], [62].
In practice, a large number of bug reports are submitted
every day in large-scale projects. For example, in Mozilla3,
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Science and Technology, Zhejiang University, Hangzhou, China. E-mail:
yrfan@zju.edu.cn, xxia@zju.edu.cn

• David Lo is with the School of Information Systems, Singapore
Management University, Singapore. E-mail: davidlo@smu.edu.sg

• Ahmed E. Hassan is with School of Computing, Queen’s University,
Canada. E-mail: ahmed@cs.queensu.ca

• Xin Xia is the corresponding author.

1. http://www.bugzilla.org/
2. http://www.atlassian.com/JIRA/
3. For more details about the dataset, please refer to Section 3.1

on average, ∼307 new bug reports are submitted per day.
Thus, manually determining the validity of a bug is time-
consuming and tedious.

Invalid bugs (i.e., bugs that are not real bugs or cannot
be reproduced) increase the difficulty of bug triaging. For
instance, in our bug report datasets, 22% to 79% the of bug
reports have a resolution of DUPLICATE (i.e., reported bug
is a duplicate of a known bug), INVALID (i.e., reported bug
is not a software defect), WORKSFORME (i.e., reported bug
cannot be reproduced) or INCOMPLETE (i.e., the report
lacks sufficient information to reproduce, e.g., no steps to
reproduce).

Considering the substantial time and effort that is
needed to determine the validity of a bug, an approach
which determines early on (i.e., when a bug report
is submitted) whether a bug report is valid, can help
developers prioritize their triaging tasks. In such a case,
developers can make better use of their limited resources so
that they can focus their efforts on valid bugs. Furthermore, a
deeper understanding of the factors that lead to invalid bugs
might help in developing tools and guidelines that can assist
bug reporters in submitting well written valid bug reports.

In this study, we focus on analyzing bug reports in
Bugzilla, which is a popular issue tracking system. Bugzilla
uses two fields to track a bug report’s development
process—namely status and resolution. The status of a bug
report describes the current developement state of the bug.
The resolution of a bug report describes how has this bug
been resolved. Following Zanetti et al.’s study [99], we
define a valid bug report as a bug report whose resolution is
FIXED (i.e., reported bug is eventually fixed) or WONTFIX
(i.e., reported bug is an actual bug but will not be fixed due
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to, for example, lack of resources or low priority). We define
an invalid bug report as a bug report whose resolution is
DUPLICATE, INVALID, WORKSFORME or INCOMPLETE.
Note that in our definition, invalid bug reports include bug
reports whose resolution is WORKSFORME, while Zanetti
et al. did not define these bug reports as valid or invalid bug
reports, i.e., they dropped such bugs in their analysis.

In this paper, we propose an approach to determine early
on whether a bug report is valid or invalid. To do so, we
extract 33 features from bug reports which are grouped
along five dimensions: reporter experience, collaboration
network, completeness, readability and text. In the reporter
experience dimension, we mine the history of bug report
submissions and updates, and we extract features based
on the previous behaviors of the reporter of a bug report,
e.g., the number of prior bug reports submitted by the bug
reporter. In the collaboration network dimension, we first
extract the creation time of the bug report, and construct
a network based on the collaborations of reporters and
developers (i.e., developers’ comments on bug reports) in
the preceding month of the creation time. Then we extract
degree and centrality features of the reporter’s node of
that network. In the completeness dimension, we analyze
the description of the bug report and extract features
by checking whether the description contains needed
information for developers, e.g., whether the description
of the bug report contains stack traces or code samples.
In the readability dimension, we use readability measures
that are calculated based on the description of the bug
report such as Flecsh and Lix scores of the description [3],
[22], [26], [45], [53], [69]. In the text dimension, we first
extract token features from summary and description of bug
reports, then we apply four types of classifiers to convert the
token features into numerical scores. Based on the extracted
33 features, we use random forest [15] to build models that
can effectively determine whether a bug report is valid or
not.

Zanetti et al.’s study [99] is the most related to ours.
For each bug report, they extracted its creation time and
constructed a collaboration network based on the ASSIGN
and CC relations of bug reports in the preceding month
of the creation time—an ASSIGN relation is formed when
a user assigns a bug to another user, and a CC relation
is formed when a user adds another user into the cc list
of a bug report. Then, they proposed nine features to
be extracted from the network. Based on these features,
they built models using a Support Vector Machine (SVM)
classifier to determine whether a bug report is valid or
not. Our work is related to theirs but there are differences
between our work and theirs:

1) Our datasets are more complete than Zanetti et al.’s.
We analyze bug reports whose status is CLOSED
or VERIFIED, while they did not analyze these bug
reports. Moreover, Zanetti et al. also dropped bug
reports whose resolution is WORKSFORME. In our
bug report datasets, up to 43% of the bug reports
have a status of CLOSED or VERIFIED, and up
to 31% of invalid bug reports have a resolution of
WORKSFORME. Zanetti et al.’s study excluded a large
number of bug reports, which might introduce a threat
to the validity of their study.

2) We extract more domain-specific features from bug
reports—we not only extract features from the
collaboration network, but also derive features from the
reporter experience and bug report contents.

Zanetti et al. used SVM as the default underlying
classifier of their models [99], and in this paper, we use
random forest as the default underlying classifier of our
models. To investigate whether our additional features
improve the effectiveness of our models, we make a
comparison with two baselines based on Zanetti et al.’s
features. We refer to them as SVMZ and RFZ. The last letter
“Z” in the names indicates that the two baselines are both
using Zanetti et al.’s proposed features. SVMZ uses SVM as
its underlying classifier, while RFZ uses random forest (RF)
as its underlying classifier.

To evaluate the performance of our approach, we
collect bug report datasets from five large open source
projects—namely Eclipse, Netbeans, Mozilla, Firefox and
Thunderbird, which contains a total of 560,697 bug reports.
Experimental results show that across the five datasets, our
approach achieves an average F1-score for valid and invalid
bug reports of, 0.74 and 0.67, respectively. And our approach
achieves an average AUC (Area Under the receiver operator
characteristic Curve [38]) of 0.81. Across the five datasets,
our approach statistically significantly outperforms SVMZ
and RFZ in terms of AUC and F1-scores for valid and invalid
bug reports. Of the 33 features that we extract, we find
that desc-dmnb-score, valid-rate and summary-dmnb-score are
the most important features to distinguish valid bug reports
from invalid ones across the five studied datasets. Of these
three features, desc-dmnb-score and summary-dmnb-score are
textual features that we extract based on the summary and
description of bug reports, and valid-rate is a feature that is
used to quantify reporters’ experience.

The main contributions of this paper are:

• We propose an approach which includes a total of 33
features to determine the validity of a bug report. We
extract features from collaboration network, reporting
history and bug report contents. We experiment on a
broad range of datasets containing a total of 560,697 bug
reports from five large-scale projects. Our experimental
results show that our approach outperforms the
baselines by a substantial margin.

• We investigate the most important characteristics that
impact the validity of a bug report. Our experimental
results show that the textual features of a bug report
and reporter’s experience are the most important
factors that determine whether a bug report is valid or
not.

Paper Organization. The remainder of this paper is
organized as follows. Section 2 presents the usage scenario
of our approach when it is integrated with Bugzilla.
Section 3 presents the research questions that we investigate
in this study, elaborates the details of our data collection
process, and describes our experiment setup. Section 4
presents experimental results and answers to our research
questions. Section 5 discusses performance of our approach
and the baselines in various settings and threats to validity.
Section 6 briefly reviews prior studies related to ours.
Section 7 concludes the paper and discusses possible
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avenues for future work.

2 USAGE SCENARIO

Our approach can be integrated with Bugzilla as follows:
Without Our Approach. Bob is a bug triager in a large
software project using Bugzilla as its issue tracking system.
Daily, Bob receives more than 100 bug reports to be triaged
and this is too many for him to process in a single day.
Without our approach, he randomly selects bug reports to
triage. He reads each selected bug report, checks whether it
contains sufficient information and determines its validity.
If he finds that the bug report does not contain sufficient
information or he cannot decide its validity, he contacts the
reporter for more information. Due to the large number
of received bug reports daily, his processing of reports is
often slow. Most of his processed reports are eventually
determined as invalid. These reports waste much of Bob’s
time and effort, resulting in Bob having less time to triage
other bug reports.
With Our Approach. Bob’s project adopts our approach.
When Bob needs to triage many bug reports in a single
day, he first uses our approach to determine the validity of
these bug reports. Then, Bob triages the bug reports that are
most likely to be valid. In this case, Bob is able to prioritize
his triaging tasks and pay more attention on bug reports
that are more likely to be valid. And he can spend less
time and effort on invalid bug reports. Additionally, for bug
reports receiving a very low ranking score, those reports
are sent back to the reporters requesting them to provide
more information. This automated feedback can be done as
soon as a bug report is received; the reporters would thus
still have the bug triggering condition fresh in their minds,
are still interested in the bug, and thus are more likely to
respond. In such a way, some reports that would otherwise
be deemed invalid can potentially be salvaged. In summary
our proposed approach helps 1) triagers by reducing wasted
time on invalid bug reports and 2) reporters by informing
them immediately that their report is likely to be marked
as invalid (hence they can enhance their reports while the
reported problems are still fresh in their mind).

3 EXPERIMENT SETUP

In this section, we first introduce our data collection
process. Then we elaborate the details of 33 features that
we extract from bug reports. The features are grouped
along 5 dimensions: reporter experience, collaboration
network, completeness, readability, and text. After that, we
present the classifiers (i.e., random forest and SVM) that
we use in this study. Next, we present our evaluation
setup and our baselines, including two baselines that
are based on features of Zanetti et al. [99]. Finally, we
present the evaluation measures that we use to evaluate
the classification performance of our approach and the
baselines. In this paper, we would like to answer following
four research questions:
RQ1 Can we effectively determine the validity of a bug
report?
RQ2 How effective is our approach when all features are
used than when a single dimension of features is used?

RQ3 Which features are most important for differentiating
valid bug reports from invalid ones?

RQ4 How effective is our model when built on a subset
of our features?

3.1 Data Collection
In Bugzilla, each bug report contains a number of fields (e.g.,
bug id, creation time, reporter, status and resolution). All
updates of these fields are stored in the database of Bugzilla.
Each update record contains its time stamp, the new field
value, the original field value and the user who has changed
the field. After a reporter submits a bug report, developers
and the reporter can give comments on the bug report and
each comment is recorded along with its time stamp and
author. The comments of bug reports are also stored in the
database of Bugzilla.

In this study, we collect all fields and comments of
bug reports as well as full history of bug report updates
stored in the Bugzilla system of Eclipse, Netbeans, Mozilla,
Firefox and Thunderbird. We retrieve all the data using the
Python package python-bugzilla4. This package can crawl
bug reports data from Bugzilla via the Bugzilla’s Webservice
API5. Note that our goal is to determine the validity of an
initially submitted bug report. In such a case, we should
only use the initial field values of bug reports, i.e., the field
values of bug reports when they are submitted. Bugzilla
keeps the track of bug report updating history. To simulate
the practical usage of our approach, for bug reports in the
testing set, we use their updating histories to recover the
initial field values.

In the Bugzilla system, the status of a bug report
can be NEW, UNCONFIRMED, ASSIGNED, REOPENED,
CLOSED, RESOLVED, or VERIFIED. Developers can reopen
bug reports and change their status and resolution. Thus,
status and resolution of a bug report may be changed many
times in the bug report updating history. In this study, we
focus on the final status and resolution of bug reports until
the time we collected our data. Note that our bug report
datasets are collected on May 2017. And we focus on the
bug reports whose final status is CLOSED, RESOLVED or
VERIFIED. For these bug reports, we extract their final
resolution and label them as valid or invalid according to
the definition of valid and invalid bug reports presented in
Section 1.

All the five projects we study have large bug repositories
and provide ample data for our evaluation experiment.
Following Sun et al.’s study [76], we select a subset of each
repository to set up bug report datasets for our evaluation
experiment. Table 1 presents the statistics of the selected
data. From Table 1, we find that the class distributions of
different projects are different. For example, 78% of bug
reports in the Eclipse dataset are valid, while 21% of bug
reports in the Thunderbird dataset are valid.

A bug report may be reopened and its validity can be
changed, which may make labels of bug reports in our
datasets unreliable. For example, in Eclipse, the bug report
whose bug id is 2197486 preliminarily got a resolution of

4. https://github.com/python-bugzilla/python-bugzilla
5. https://goo.gl/XzaRby
6. https://bugs.eclipse.org/bugs/show-bug.cgi?id=219748
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TABLE 1
Statistics of the selected data.

Project Time Period # Bug Report # Valid # Invalid
Eclipse 2010.1–2014.12 121,855 95,565 (78%) 26,290 (22%)
Netbeans 2010.1–2014.12 63,621 39,197 (62%) 24,424 (38%)
Mozilla 2013.1–2014.12 224,408 155,612 (69%) 68,796 (31%)
Firefox 2002.4–2014.12 126,967 28,603 (23%) 98,364 (77%)
Thunderbird 2000.1–2014.12 33,846 7,100 (21%) 26,746 (79%)
Total 570,697 326,077 (57%) 244,620 (43%)

INVALID. However, after a few days, the bug report was
reopened and the resolution field was changed to FIXED.
We perform an analysis on the threat to the labels of our
datasets that is introduced by reopening bug reports. Notice
that we focus on the final status and resolution of bug
reports until the time that we collected our data (i.e., May
2017) in our study. We find that for 98%, 96%, 97% , 99% and
98% of the bug reports in our selected Eclipse, Netbeans,
Mozilla, Firefox and Thunderbird datasets, their status and
resolution have remained unchanged during the period
between May 2016 (i.e., one year earlier) and the time that
we collected our datasets (i.e., May 2017), respectively. It
means that for at least one year, these bug reports have not
been reopened, i.e., most of the bug reports in our datasets
are unlikely to be reopened. Thus, labels of the bug reports
in our datasets are reliable.

As mentioned earlier, our datasets are different from
Zanetti et al.’s [99]. In our study, we analyze the bug reports
whose final status is CLOSED or VERIFIED, while Zanetti
et al. dropped such data. In our datasets, 6%–43% of the
bug reports have a final status of CLOSED or VERIFIED. In
contrast to Zanetti et al.’s study, we analyze a new type of
bug reports that have a final resolution of WORKSFORME.
These bug reports are determined to be non-reproducible
by bug triaggers. We label reports with a final resolution
of WORKSFORME as invalid. And we find that 21%–31% of
invalid bug reports in the five datasets have a final resolution
of WORKSFORME.

3.2 Studied Features

We extract 33 features which can potentially impact the
validity of bug reports and differentiate valid bug reports
from invalid ones. Table 2 summarizes the set of 33 features,
which are grouped along 5 dimensions: reporter experience,
collaboration network, completeness, readability and text.

We extract some features (e.g., reporter experience)
based on all bug reports recorded in their issue tracking
systems since we need to mine full history of bug report
submissions and updates. Also, we find reporters usually
comment on their bug reports immediately after they
initially submit the bug reports. For example, in a bug
report from Eclipse whose bug id is 1166917, the reporter
added a comment on his report in a few minutes after he
initially reported the bug. We find that he attached a file
in the comment. Ignoring the comment will cause some
information loss about the bug report. Zimmermann et
al. analyzed the attachments within 15 minutes after the
creation of bug report [104]. Following their study, we use

7. https://bugs.eclipse.org/bugs/show-bug.cgi?id=116691

the same time window. When we extract completeness,
readability and textual features from bug reports, we
consider description of a bug report including not only
its initial description submitted by the reporter, but also
the comments which he/she adds in 15 minutes after
the creation time of the bug report. In a bug report,
each comment has its time stamp and author. We extract
reporters’ comments of bug reports and retrieve the
comments that we need by comparing the time stamps of
the comments and the creation time of bug reports.

To determine whether the features that we extract make
sense for identifying valid bug reports, we randomly exclude
2,000 bug reports from each dataset. We have five datasets,
and thus, in total, we have 10,000 bug reports. We find
that 51% of these bug reports are valid. We denote these
10,000 bug reports as the mini-dataset. For each feature,
we use the Wilcoxon rank-sum test [52] to analyze the
statistical significance of the difference between valid and
invalid bug reports in the mini-dataset (p-value < 0.05). And
we compute Cliff’s delta8 [21]. Cliff’s delta [21] is a non-
parametric effect size measure that can evaluate the amount
of difference between two variables. A higher level for a
feature with a positive effect increases the likelihood of a
bug report being valid, while a higher level for a feature with
a negative effect decreases the likelihood of a bug report
being valid.

Section 4.3 performs a more thorough analysis on the
importance of our features in identifying valid bug reports
for each project. The analysis in Section 4.3 considers the
combinations of features, in contrast to the simplified per-
feature analysis that we just presented.

Reporter Experience Dimension refers to features that are
based on the experience of a bug reporter in his/her bug
handling community. Developers’ experience can influence
their contributions to projects [46]. Just et al. observed that
experienced reporters are better at providing information
that is needed by for bug fixing [43]. Zimmermann et
al. noted that inexperienced reporters are likely to submit
duplicate bug reports (a type of invalid reports) [104]. Thus,
we expect that a reporter’s experience can help determine
the possible validity of a bug report. We use three features
to quantify reporters’ experience—namely bug-num, valid-
rate and recent-bug-num.

Intuitively, the more bug reports a reporter submits,
he/she should be more experienced. Thus, we use the bug-
num feature to quantify the experience of bug reporters.

8. Cliff defines a delta of less than 0.147, between 0.147 and 0.33,
between 0.33 and 0.474 and above 0.474 as negligible, small, medium,
large effect size, respectively.
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TABLE 2
Studied Features.

Dimension Feature Name Description

Reporter Experience
bug-num Number of prior bug reports submitted by the reporter of this bug report
recent-bug-num Number of prior bug reports submitted by the reporter of this bug report in 90 days
valid-rate Valid rate of prior bug reports with known labels submitted by the reporter of this bug report

Collaboration Network

lcc-membership

These metrics are used to quantify a bug reporter’s degree of activity in his/her bug handling
community [99]

in-degree
out-degree
total-degree
clustering-coefficient
k-coreness
closeness-centrality
betweenness-centrality
eigenvector-centrality

Completeness

has-stack Whether description of this bug report contains stack traces
has-step Whether description of this bug report contains steps to reproduce the bug
has-code Whether description of this bug report contains code examples
has-patch Whether description of this bug report contains patches
has-testcase Whether description of this bug report contains test cases
has-screenshot Whether description of this bug report contains screenshots

Readability

flesch

These metrics are measured by the number of syllables per word and the length of sentences,
which are used to quantify the readability of a text [3], [22], [25], [30], [45], [53], [69]

fog
lix
kincaid
ari
coleman-liau
smog

Text

summary-nb-score Likelihood scores to be valid of this bug report calculated based on its summary:
summary-nb-score, summary-mnb-score, summary-dmnb-score and summary-cnb-score are output by
the naive Bayes, multinomial naive Bayes , discriminative multinomial naive Bayes and
complement naive Bayes classifiers that are learned using summary of bug reports, respectively

summary-mnb-score
summary-dmnb-score
summary-cnb-score
desc-nb-score Likelihood scores to be valid of this bug report calculated based on its description: desc-nb-score,

desc-mnb-score, desc-dmnb-score and desc-cnb-score are output by the naive Bayes, multinomial
naive Bayes , discriminative multinomial naive Bayes and complement naive Bayes classifiers
that are learned using description of bug reports, respectively

desc-mnb-score
desc-dmnb-score
desc-cnb-score

The bug-num feature does not consider the impact of
time. For example, for a reporter who has reported 500 bug
reports, bug-num of his/her next report is always calculated
as 500. But his/her next report may be submitted a year
later, which decreases the likelihood of the new report to be
valid since the reporter may have not been familiar with the
issue tracking system and developing process of the project.
Thus, bug-num may suffer from the concept drift issue [23],
[86]. To deal with this issue, we use the recent-bug-num
feature to characterize the recent behavior of a reporter. The
recent-bug-num of a bug report is computed as the number
of prior bug reports submitted by its reporter in 90 days.
We expect that we can gain a better overview of a reporter’s
experience by combining recent-bug-num and bug-num.

Just et al. proposed using the reputation of a reporter
to identify the experience of a reporter [43]. Guo et al.
found that bug reports submitted by reporters with more
reputation are more likely to be fixed [31]. As fixed bug
reports are identified to be valid in this study, we believe that
a reporter’s reputation is a good indicator of the validity of
a bug report. In Guo et al.’s study, the reputation score of a
reporter is computed as the percentage of fixed bug reports
over the bug reports submitted by the reporter. We use a
similar computation method, and we use the percentage
of valid bug reports over the bug reports submitted by
the reporter, i.e., valid-rate, to quantify the reputation of
reporters.

The calculation of the three features is as follows. Let
us denote a newly submitted bug report as B. For B, we

TABLE 3
P-values and Cliff’s delta for the three features in the reporter

experience dimension comparing valid and invalid bug reports on the
mini-dataset.

Features P-value Cliff’s delta
bug-num <0.001 0.55 (Large)
valid-rate <0.001 0.65 (Large)
recent-bug-num <0.001 0.53 (Large)

first extract its creation time and reporter. We denote B’s
creation time and reporter as T and R, respectively. Then
we extract all bug reports submitted by R before T . The bug-
num feature is computed as the number of these bug reports.
The recent-bug-num feature is computed as the number of the
bug reports which are submitted by R in 90 days before T .
Next, to compute valid-rate, we retrieve the resolution of all
the bug reports submitted by R. From these bug reports,
we count the number of valid bug reports (i.e., bug reports
whose resolution is FIXED or WONTFIX). We also count
the total number of valid and invalid bug reports (i.e., bug
reports whose resolution is FIXED, WONFIX, DUPLICATE,
INVALID, WORKSFORME or INCOMPLETE). The valid-rate
feature is computed as the ratio between the former number
and the latter number.

Table 3 presents the p-values and Cliff’s delta for the
three features comparing valid and invalid bug reports on
the mini-dataset. From the table, we find that for all the
three features, valid and invalid bug reports have statistically
significant differences. Also, all the effect sizes are positive
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and large—indicating that the three features are effective in
determining the validity of a bug report.

Collaboration Network Dimension refers to features
based on the collaboration activities of a bug reporter in
his/her bug handling community. Bug tracking involves
many collaboration and communication activities between
reporters and developers [5]. Ehrlich et al. observed that the
social activities of a developer in the collaboration network
of the OSS community can impact his/her performance [24].
Bettenburg et al. also found that the social activities of
reporters in the collaboration network can impact the
software quality of a project [7], [8]. Inspired by these
studies, we expect that bug reporters’ degree of activity
in the collaboration network can impact the validity of
their submitted bug reports. To quantify the degree of
activity for bug reporters, we apply the nine network
measures that were proposed in Zanetti et al.’s study [99].
We refer to the nine features as lcc-membership, in-degree, out-
degree, total-degree, clustering-coefficient, k-coreness, closeness-
centrality, betweenness-centrality and eigenvector-centrality.

The collaboration network of a project changes over
time [42]. For example, some reporters or developers may
leave the project. Collaboration networks built based on the
full history of a bug repository cannot reflect such changes.
Effectiveness of the features that are extracted from such
collaboration networks will be impacted by time, i.e., they
will suffer from the issue of concept drift [23], [86]. To deal
with this issue, we decided to consider recent collaboration
activities (i.e., within a short time window prior to the
creation of the bug report). We use a time window of 30
days to build our collaboration networks, since Zanetti et al.
found that when using 30 days as a time window, features
extracted from their collaboration networks are effective in
determining valid bug reports [99].

We first construct monthly networks based on
collaborations of reporters and developers in the bug
handling community. Then, we extract features of reporters’
nodes in the networks. However, the collaboration activities
of reporters and developers that we use are different from
Zanetti et al.’s study. Zanetti et al. constructed collaboration
networks based on the ASSIGN and CC relations of bug
reports. In Zanetti et al.’s network, users are represented as
nodes, and two users are linked by a directed edge when
one user assigns a bug to the other user or one user adds
the other user to the cc list of a bug report. Bettenburg et al.
used comments of bug reports to analyze the collaboration
network of developers [8]. Compared with ASSIGN and
CC relations of bug reports, comments of bug reports can
record all the collaborative interactions of users in the bug
handling community. In this study, we consider constructing
collaboration networks based on the sequence comments
given to bug reports. We expect that relations extracted from
comments of bug reports contain more information than the
ASSIGN and CC relations.

To elaborate further, let us denote a newly submitted bug
report asB. To extract its collaboration network features, we
first extract its reporter and submission date. We denote the
reporter of B as R. Then, since each comment is recorded
along with its creation time stamp, we can retrieve all the
comments created in the preceding month of the date when

B is reported. After that, for each of these comments, we
extract its creator and the reporter of its corresponding
bug report. Next, we construct a directed graph based on
creators and corresponding bug reporters of the comments.
In the graph, nodes denote creators and corresponding
bug reporters of the comments. And for each comment, its
creator and its corresponding bug reporter are connected by
a directed edge. Subsequently, we quantify R’s degree of
activity using the nine features that are proposed by Zanetti
et al. [99].

To calculate the nine features for a reporter, we follow
Zanetti et al.’s study and focus our analysis on the largest
connected component (LCC) of a collaboration network.
The lcc-membership feature is a binary feature and it will
be set as true if the reporter is in the largest connected
component. The three features (i.e., total-degree, in-degree and
out-degree) quantify the number of connections of a reporter
to other reporters and developers. The in-degree feature is
the number of people who are connected to the reporter by
the reporter’s incoming edges. The out-degree feature is the
number of people who are connected to the reporter by the
reporter’s outgoing edges. The total-degree feature is the sum
of in-degree and out-degree. A higher total-degree, in-degree or
out-degree indicates that the reporter is more active in the
collaboration network.

K-coreness is derived from network decomposition [16].
In a network, a k-core [16] is a maximal subgraph containing
nodes of degree k or more. The k-coreness of a node is k if
it belongs to the k-core but not to the (k+1)-core. A higher
k-coreness of a reporter’s node indicates that he/she has a
higher influence in the collaboration network.

Clustering-coefficient of a node is defined as the ratio
between the number of triangles connected to the node and
the number of triples that are centered around the node,
where a triple centered around a node is a set of two edges
that are connected to the node [64]. Clustering-coefficient
is a measure quantifying the degree to which nodes in
the network tend to cluster together. A higher clustering-
coefficient of a reporter’s node indicates that the reporter
and his/her neighbors in the network has higher dense of
collaboration activities.

Closeness-centrality of a node is defined as the inverse of
sum of all distances of the node to all the other nodes [27].
Closeness-centrality is a measure quantifying the degree to
which a node is close to all other nodes in a network.
A higher closeness-centrality of a reporter’s node indicates
that he/she is closer to all other people in the collaboration
network.

Betweenness-centrality of a node is defined as the total
number of shortest paths between all possible pairs of nodes
that pass through that node [14]. A higher betweenness-
centrality of a reporter’s node indicates that the reporter
has more control on the collaboration network since more
information will pass through his/her node.

Eigenvector-centrality is a network measure that assigns
scores to nodes in a network based on the concept
that connecting to high centrality nodes increases the
node’s centrality [12]. The eigenvector-centrality of a node
is recursively defined by the centrality of the node’s direct
neighbors as shown in Formula 1, in which DN(ni) denotes
the set of direct neighbors of the node ni and λ is the largest
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TABLE 4
P-values and Cliff’s delta for the nine features in the collaboration
network dimension comparing valid and invalid bug reports on the

mini-dataset.

Features P-value Cliff’s delta
lcc-membership <0.001 0.43 (Med)
in-degree <0.001 0.44 (Med)
out-degree <0.001 0.43 (Med)
total-degree <0.001 0.48 (Large)
eigenvector-centrality <0.001 0.40 (Med)
betweenness-centrality <0.001 0.40 (Med)
closeness-centrality <0.001 0.41 (Med)
clustering-coefficient <0.001 0.42 (Med)
k-coreness <0.001 0.47 (Med)

eigenvalue of the adjacency matrix of the network.

Ev(ni) =
1

λ

∑
nj∈DN(ni)

Ev(nj) (1)

We construct the collaboration networks and extract
features using the Python package NetworkX [33].

Table 4 presents the p-values and Cliff’s delta for the nine
features comparing valid and invalid bug reports on the mini-
dataset. From the table, we find that for all the nine features,
the valid and invalid bug reports are statistically significantly
different. Moreover, all the effect sizes are positive and at
least medium—indicating that the nine features are effective
in determining the validity of a bug report.

Completeness Dimension refers to features based on
completeness of the technical information (e.g., stack traces
and code samples) present in the bug report. Schroter
et al. observed that stack traces help developers fix
bugs [66]. Weimer noted that bug reports accompanied
by the generated patches of their tool were three times
more likely to be addressed than standard bug reports [85].
Zimmermann et al. found that steps to reproduce, stack
traces, code samples, test cases and screenshots are widely
used by developers to handle and fix bugs [104]. They
reported that missing technical information is a severe
problem with bug reports and it is a problem that is
commonly encountered by bug triagers. Following these
studies, we use the existence of technical information in the
description of a bug report as an indicator of the validity
of a bug report. The technical information includes: stack
traces, steps to reproduce, code samples, patches, test cases
and screenshots. The binary features has-stack, has-step, has-
code, has-patch, has-testcase and has-screenshot represent the
existence of the six types of technical information in a bug
report respectively.

In Bugzilla, two ways are provided to describe a bug:
writing textual description or attaching description files.
In our study, we consider that description of a bug report
includes its textual description and attachments. In our
datasets, we find that the textual description of a bug report
may contain stack traces, steps to reproduce, code samples,
patches and test cases. And we find that the attachments
of a bug report may contain stack traces, patches, test
cases and screenshots. We set a binary feature as true if
its corresponding technical information is presented in the
textual description or attachments of the bug report.

The method we apply to recognize the technical
information in the textual description of a bug report is as
follows. We recognize stack traces, steps to reproduce, code
samples, patches and test cases in the textual description
of a bug report. To recognize stack traces and patches, we
follow Bettenburg et al.’s study [9] and identify the technical
information using the regular expressions they proposed.
To recognize code samples in the description, we look for
a set of code constructs like classes, functions, conditional
statements or loop statements. If the description contains one
of these constructs, we consider that the bug report contains
code samples. To recognize steps to reproduce, we first list
several patterns such as “steps to reproduce” and “reproduce
steps”. Then, we identify steps to reproduce by matching
regular expressions of these patterns in the description of
a bug report. To recognize test cases, we also list several
patterns which indicate that the description contains test
cases. We find that reporters usually first write words like
“test case:” or a line of text only containing words like “test case”
to highlight that there follows a test case. Thus, we match
regular expressions of these patterns to identify test cases in
bug reports.

The method we apply to recognize the technical
information in the attachments of a bug report is as
follows. We recognize stack traces, patches, test cases and
screenshots in the attachments of a bug report by analyzing
description of the attachments. We notice that in Bugzilla,
each attachment has an id number and corresponds to
a two-line paragraph in the description of a bug report.
The first line of the paragraph starts with words “Created
attachment” and the attachment id. The second line of the
paragraph is the description of the attachment. We use
a regular expression to recognize the first line of the
paragraph and retrieve its second line, i.e., the description
of the attachment. To recognize each type of technical
information, we observe the description of attachments
containing the technical information and list several words
or phrases appearing in the description of the attachments.
Then, we identify the technical information by checking
whether one of the words or phrases appears in the
description of attachments. To recognize stack traces, we use
the word “trace”. To recognize patches, we use the words
“fix” and “patch”. To recognize test cases, we use the words
and phrases such as “test case” and “testcase”. To recognize
screenshots, we use the words such as “window”, “view”,
and “screenshot”.

A document describing all the regular expressions,
phrases and words that are used in our study for
recognizing different kinds of technical information in a
bug report is available from our accompanying GitHub
repository9.

Table 5 presents the p-values and Cliff’s delta for the
six features comparing valid and invalid bug reports on
the mini-dataset. In the table, we find that for one feature
(i.e., has-testcase), the two groups of bug reports do not
show a statistically significant difference. And five features
have negligible effect sizes. However, these features cannot
be simply considered worthless for determining valid bug

9. https://github.com/YuanruiZJU/TSE-Valid-
Bug/blob/master/recognizing-technical-information.md
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TABLE 5
P-values and Cliff’s delta for the six features in the completeness

dimension comparing valid and invalid bug reports on the mini-dataset.

Features P-value Cliff’s delta
has-stack <0.001 0.03 (Negligible)
has-step <0.001 -0.42 (Med)
has-code <0.001 0.02 (Negligible)
has-patch <0.001 0.06 (Negligible)
has-testcase >0.05 0.00 (Negligible)
has-screenshot <0.001 -0.02 (Negligible)

reports. They may be weak indicators for determining valid
bug reports. But using all these features and combining
these features with features from other dimensions may
improve the classification performance of our approach. For
example, we find that in the mini-dataset, 96% of the 360
bug reports which contain patches (i.e., has-patch is true)
are valid—indicating that bug reports with patches have a
high likelihood to be valid. Hence, Section 4.3 considers the
combinations of features (in contrast to the simplified per-
feature analysis in the mini study).

Readability Dimension refers to features that measure the
readability of the description present in the bug report.
Readability of a text is measured based on the syllables per
word and the length of sentences in the text—it can evaluate
how many years of education required for understanding
the text without difficulties. In general, a text with higher
readability scores is more complex to read. Hooimeijer et
al. found that bug reports with better readability of their
description are resolved faster [36]. Zimmermann et al.
found that readability of a bug report’s description is an
important factor impacting the quality of bug reports [104].
Based on these prior studies, we expect that the readability
of a bug report’s description is a good indicator of the
validity of a bug report. To quantify the readability of the
description in the bug report, we use the seven readability
measures proposed by previous studies—namely flesch [25],
fog [30], lix [3], kincaid [45], ari [69], coleman-liau [22], and
smog [53].

The seven readability features are calculated using seven
formulas [3], [22], [25], [30], [45], [53], [69]. To introduce the
formulas, we need to first introduce the definition of complex
words, long words, period, and polysyllables.

Complex words are defined as those with three or more
syllables, which do not include proper nouns, familiar
jargon or compound words, and complex words do not
contain common suffixes (e.g., “-es”) as a syllable [30]. Long
words are defined as those with more than six characters [3].
A period is defined as a period (i.e., “.”), colon (i.e., “:”)
or capital first letter [3]. Polysyllables are defined as the
words with three or more syllables in three groups of ten
sentences, which are chosen in a row near the beginning, in
the middle and in the end of the analyzed text (i.e., a bug
report description in our case) [53].

We denote the number of characters, words, syllables,
sentences, complex words, long words, periods and
polysyllables in the text as Characters, Words, Syllables,
Sentences, Complex Words, Long Words, Periods and
Polysyllables, respectively. Notice that words appearing
more than once should be counted when counting

TABLE 6
P-values and Cliff’s delta for the seven features in the readability

dimension comparing valid and invalid bug reports on the mini-dataset.

Features P-value Cliff’s delta
flesch <0.001 -0.19 (Small)
fog <0.001 0.08 (Negligible)
lix <0.001 -0.06 (Negligible)
kincaid <0.001 0.10 (Negligible)
ari <0.001 0.04 (Negligible)
coleman-liau <0.001 0.10 (Negligible)
smog <0.001 0.13 (Negligible)

polysyllables [53]. Based on the above definitions, the seven
formulas for calculating the seven readability features are
shown below:

flesch = 206.835− 1.015
Words

Sentences
− 84.6

Syllables

Words
(2)

fog = 0.4
Words

Sentences
+ 40

Complex Words

Words
(3)

lix =
Words

Periods
+ 100

Long Words

Words
(4)

kincaid = 0.39
Words

Sentences
+ 11.8

Syllables

Words
− 15.59 (5)

ari = 4.71
Characters

Words
+ 0.5

Words

Sentences
− 21.43 (6)

coleman− liau = 5.88
Characters

Words
+ 29.6

Sentences

Words
(7)

smog = 3 +
√

Polysyllables (8)

We use the Python package readability10 to calculate the
readability features for the description of bug reports.

Table 6 presents the p-values and Cliff’s delta for the
seven features comparing valid and invalid bug reports
on the mini-dataset. In the table, we find that for all
the features, valid and invalid bug reports are statistically
significantly different. Six of the features have negligible
effect sizes. Similar to the completeness dimension, we
cannot simply consider that these features are useless.
Combining these features with features from other
dimensions may improve the classification performance of
our approach. For example, 2171 bug reports in the mini-
dataset have a coleman-liau larger than 20 and in these
bug reports, the proportion of valid ones pertains to 65%,
which is substantially larger than the proportion (51%) of
valid reports in the mini-dataset. Thus, on the mini-dataset,
coleman-liau is an effective feature to distinguish valid and
invalid bug reports.

10. https://github.com/mmautner/readability
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Fig. 1. Converting token features into textual scores for training and testing datasets.

Text Dimension refers to features that capture the textual
characteristics based on text mining techniques. Prior work
showed that using text mining techniques can help with
bug classification [102]. Thus, we expect that analyzing
the textual content of a bug report using text mining
techniques can help us identify valid and invalid bug reports.
A bug report consists of two important textual contents,
i.e., its summary and description. Note that as mentioned
earlier, we consider that the description of a bug report
includes its initial description and comments added by its
reporter within 15 minutes after its creation. In this paper,
we separately extract textual features for summary and
description of bug reports. And we extract textual features
in two steps: extracting token features of bug reports and
converting the token features into numerical scores.

1) Extracting Token Features. To leverage text mining
techniques, we need to first extract token features from
summary and description of bug reports. We use the same
token feature extraction method applied to summary and
description of bug reports. Without losing generality, we
only present our feature extraction method for summary of
the bug reports as follows. The same method is applied to
description of bug reports.

We extract token features from summary of bug reports
in four steps. First, we tokenize the text in the summary into
words, phrases, symbols, or other meaningful name element
tokens. Then, we remove the stop-words such as “the”, “a”,
“of” which carry little value to distinguish valid bug reports
from invalid ones. Next, we perform stemming on the tokens
to reduce inflected or sometimes derived words into their
stem, base or root form. For example the words “reading”,
“read”, and “reads” would all be reduced to “read”. After

that, we use the resulting textual tokens and count the
number of times each token appears in the summary of bug
reports. By applying the above four steps, all the summary
text of a bug report dataset can be represented as a word
frequency table. In the word frequency table, summary of
each bug report is represented as a word vector.

2) Converting Token Features into Numerical Scores. In our
evaluation setup11, there is a training dataset and testing
dataset in each fold. Both training and testing datasets
contain a large number of tokens that are extracted from
the summary and description of bug reports. By contrast,
the experience, collaboration network, completeness and
readability dimensions contain 25 features only. The
token features would crowd out the features from other
dimensions if we directly combine these token features
with other dimensions to learn models [92]. Moreover,
a large number of features might cause the curse-of-
dimensionality [35]. Thus, we follow prior studies [83],
[97] and convert the large number of token features into
a small number of numerical scores. These scores indicate
how likely a report is valid using variants of naive Bayes
when they are applied to the summary or description of
bug reports. We refer to these numerical scores as textual
scores of bug reports.

Here, we present the approach to converting token
features (extracted from summary or description) of bug
reports into textual scores.

Figure 1 presents our approach to converting token
features into textual scores for training and testing datasets.
The class labels of testing dataset in each fold are unknown
for us. Thus, as shown in the figure, we can only learn

11. Please refer to Section 3.4 for our evaluation set up
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TABLE 7
P-values and Cliff’s delta for the eight features in the text dimension

comparing valid and invalid bug reports on the mini-dataset.

Features P-value Cliff’s delta
summary-nb-score <0.001 0.41 (Med)
summary-mnb-score <0.001 0.53 (Large)
summary-dmnb-score <0.001 0.54 (Large)
summary-cnb-score <0.001 0.41 (Med)
desc-nb-score <0.001 0.38 (Med)
desc-mnb-score <0.001 0.59 (Large)
desc-dmnb-score <0.001 0.68 (Large)
desc-cnb-score <0.001 0.49 (Large)

classifiers using bug reports in the training dataset. We
elaborate the calculation of textual scores for training and
testing datasets in one fold as follows.

The calculation of textual scores for the training dataset
is as follows. We first split the training dataset into two
subsets of equal sizes using stratified random sampling,
so that the distribution and number of valid and invalid
bug reports in both subsets are the same. Then, we train
a classifier based on the first training subset and apply
the classifier on the second training subset. For each bug
report of the second training subset, the classifier outputs
a “likelihood to be valid” score and we use the likelihood
scores as textual scores for the second training subset. Also,
we use the second training subset to train a classifier and
use it to calculate the textual scores for the first training
subset. By applying this strategy, we can calculate the
textual scores for the training dataset without peeking into
the testing dataset. Moreover, this strategy ensures that the
used dataset for testing a classifier will not appear in the
used dataset for training the classifier.

To calculate the textual scores for the testing dataset,
we train a classifier based on the whole training dataset.
Then, we apply the classifier on the testing dataset. For
each bug report in the testing dataset, the classifier outputs
a “likelihood to be valid” score and we use the likelihood
scores as the textual scores of the testing dataset.

In this paper, we use four types of classifiers to
convert token features into textual scores—namely naive
Bayes classifier [54], multinomial naive Bayes classifier [54],
discriminative multinomial naive Bayes classifier [74], and
complement naive Bayes classifier [63]. Previous studies
have shown that these four classifiers are fast and
effective for text classification [54], [63], [74]. We use the
implementation of the four classifiers in Weka [34]. We
denote textual scores output by the four classifiers which are
learned from summary of bug reports as summary-nb-score,
summary-mnb-score, summary-dmnb-score, and summary-cnb-
score, respectively. And we denote textual scores output by
the four classifiers which are learned from description of
bug reports as desc-nb-score, desc-mnb-score, desc-dmnb-score,
and desc-cnb-score, respectively.

To calculate the eight textual features for the mini-
dataset, we use the method introduced above for calculating
the features for the training dataset of each fold. We split the
mini-dataset into two subsets of equal sizes using stratified
random sampling. We train models using the first subset
and use the models to calculate the textual features for
the second subset. Also, we train models using the second

subset and use the models to calculate the textual features
for the first subset. Then, we have the eight textual features
for the whole mini-dataset. Table 7 presents the p-values
and Cliff’s delta for the eight features comparing valid and
invalid bug reports on the mini-dataset. From the table, we
find that for all the eight textual features, the valid and
invalid bug reports are statistically significantly different.
Moreover, all the effect sizes are positive and at least
medium—indicating that the eight features are effective in
determining the validity of a bug report.

3.3 Classifiers

We characterize a bug report using the 33 features that we
extract. These features are then used to learn a model to
determine the validity of a bug report when it is initially
submitted. In this study, we use random forest [15] as
default classifier to construct the model. Zanetti et al. used
SVM as their default classifier [99]. We also use SVM as the
underlying classifier for one of our baselines (i.e., SVMZ).
In this section, we present the classifiers that we use in our
study, i.e., random forest and SVM.
Random Forest: Random forest is proposed by Breiman [15].
It is an ensemble approach and specially designed for
decision tree classifiers. Random forest is composed of
multiple decision trees, each of which is built based on a
random subset of the features. To label a sample, random
forest adopts the mode of the class labels output by the
decision trees. The major advantage of random forest is
that it is generally highly accurate and it can automatically
generate feature importance. Moreover, since random forest
summarizes classification results of many trees that are
learned differently, it is robust to noise and outliers. In this
paper, we apply the default random forest implementation
in Weka [34].
SVM: Support Vector Machines (SVMs) [90] are built based
on statistical theory. The core idea of SVM is to construct a
hyperplane or a set of hyperplanes in a high- or infinite-
dimensional space, which are applied for classification.
Given a set of training instances, an SVM model first
selects a small number of critical boundary instances for
each label as support vectors. In our case, the labels
are valid and invalid. Then, the SVM model builds a
linear or non-linear discriminative function to calculate
classification boundaries using the principle of maximizing
the margins among training instances of different labels. In
this paper, we use the LibSVM package in Weka as our
SVM implementation. LibSVM [18] is an integrated library
for support vector classification, regression and distribution
estimation. The library implements the SMO (Sequential
Minimal Optimization) [60] algorithm for training SVMs.
The SMO algorithm can efficiently solve the large quadratic
programming (QP) problem that arises when training
SVMs, since it breaks the problem into a series of smallest
possible QP problems, which can be solved analytically in a
short amount of time.

By default, when building SVM models for SVMZ, we
use the default parameter setting of LibSVM in Weka.
Parameter tuning may impact the classification performance
of SVM [28]. Thus, in Section 5.1, we discuss the impact of
tuning SVM parameters on the baseline.
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3.4 Evaluation Setup and Baselines
In Section 3.2, we used the mini-dataset to investigate the
effectiveness of the 33 extracted features. To avoid potential
bias induced by the mini-dataset, we exclude the 10,000 bug
reports of the mini-dataset from our datasets. In Section 4
and Section 5, we experiment on the remaining data which
contains a total of 560,697 bug reports to evaluate the
performance of our approach.

To simulate the usage of our approach in practical
bug handling process, we use the longitudinal data setup
described in previous software engineering studies [10],
[77], [93]. First, the bug reports from each project presented
in Table 1 are first sorted in chronological order according
to their initially submission time. Then we put the bug
reports into 11 non-overlapping frames (i.e., ordered set of
bug reports), where each of them has the same number of
bug reports. The process proceeds as follows: First, in fold
0, we train using bug reports in frame 0, and test the trained
model using the bug reports in frame 1. Then, in fold 1,
we train using bug reports in frame 1, and test the trained
model using the bug reports in frame 2, and so on. In the
final fold (fold-9), we train using bug reports in frame 9, and
test using bug reports in frame 10. Notice that in each fold,
we use one frame as training dataset and its next frame as
testing dataset. We then calculate the average AUC scores
across the 10 folds. In RQ1 and RQ2, we use this evaluation
setup.

Zanetti et al. [99] proposed a set of features based
on the collaboration networks they constructed, and used
these features to determine whether a bug report is valid
or not. They constructed collaboration network on the
basis of dyadic relations ASSIGN and CC. Then for each
bug report, they extracted nine features of its reporter’s
corresponding node in the network. After that, they used
SVM as default underlying classifier to build models based
on the extracted features. In this paper, we would like to
investigate whether our features are more effective than
the collaboration network features proposed by Zanetti et
al.. To make a comparison, we choose two baselines which
are all based on Zanetti et al.’s features. We name the
two baselines as SVMZ and RFZ. SVMZ uses SVM as its
underlying classifier, which is the original Zanetti et al.’s
method as presented in their paper. RFZ uses random forest
as its underlying classifier, which is the same as the classifier
used by our approach. We introduce the second baseline to
investigate whether the improvement that we achieve is due
to the difference in the classifier or not.

3.5 Evaluation Metrics
For each bug report, there would be four possible
determination outcomes: a bug report is determined as
valid when it is truly valid (true positive, TP); it can be
determined as valid when it is truly invalid (false positive,
FP); it can be determined as invalid when it is truly valid
(false negative, FN); it can be determined as invalid when it
is truly invalid (true negative, TN). Based on these possible
outcomes, we calculate precision, recall and F1-score to
evaluate the performance of our approach in comparison
with the baselines. We also use AUC as an evaluation metric
in our study.

Valid Precision: is the proportion of bug reports that are
correctly labeled as valid among those that are determined
as valid, i.e.:

P (v) =
TP

TP + FP
(9)

Valid Recall: is the proportion of valid bug reports that are
correctly labeled, i.e.:

R(v) =
TP

TP + FN
(10)

Invalid Precision: is the proportion of bug reports that are
correctly labeled as invalid among those that are determined
as invalid, i.e.:

P (i) =
TN

TN + FN
(11)

Invalid Recall: is the proportion of invalid bug reports that
are correctly labeled, i.e.:

R(i) =
TN

FP + TN
(12)

F1-score: is a summary measure that combines both
precision and recall—it evaluates if an increase in precision
(recall) outweighs a reduction in recall (precision). For valid
bug reports, the F1-score is calculated as the harmonic mean
of P (v) and R(v), i.e.:

F1(v) =
2× P (v)×R(v)

P (v) +R(v)
(13)

For invalid bug reports, the F1-score is calculated as the
harmonic mean of P (i) and R(i), i.e.:

F1(i) =
2× P (i)×R(i)

P (i) +R(i)
(14)

AUC: We use the Area Under the Curve (AUC) of receiver
operator characteristic (ROC) [38] as a performance measure
in our study. The AUC score is computed by plotting the
ROC curve. In the ROC curve, the true positive rate (TPR) is
plotted as a function of the false positive rate (FPR) across all
thresholds. In our context, a threshold refers to the threshold
that is needed by a classifier to label a bug report as valid or
invalid. When determining the validity of a bug report, the
classifier first outputs a likelihood score for the report to be
valid, and then, the classifier needs to compare the score with
a threshold to decide the label of the report. If the likelihood
is higher than the threshold, the bug report is predicted as
valid. Otherwise, the bug report is predicted as invalid. The
threshold can be a value ranging from 0 to 1. AUC measures
the prediction performance across all the thresholds. Thus,
it is a threshold independent measure [13].

Also, AUC is robust towards the class imbalance
problem [48], [78]. When calculating AUC, data imbalances
that are inherent to the datasets can be automatically
considered. Thus, AUC is not biased for classifiers
when they are evaluated on datasets of different class
distributions. AUC ranges from 0 to 1. Higher AUC values
indicate better classification performance. An AUC of 0.5
indicates a classifier that is no better than random guessing.
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As a general rule, a classifier with an AUC score that is more
than 0.7 is considered to have acceptable performance [37].

AUC has a statistical interpretation: in our context, it
evaluates the possibility that a classifier ranks a randomly
chosen valid bug report higher than a randomly chosen
invalid bug reports [48]. When developers use a classifier
to prioritize their triaging tasks, AUC is an appropriate
measure to evaluate the quality of the ranking list that is
produced by the classifier.

4 RESULTS

In this section, we presents answers of the four research
questions proposed in Section 3.

4.1 RQ1: Can we effectively determine the validity of a
bug report?

To evaluate the performance of our approach and the
baselines, we calculate the average AUC, precision, recall,
and F1-scores for valid and invalid bug reports across the 10
folds. Table 8 presents the average AUC, F1-scores, precision
and recall for valid and invalid bug reports of our approach
in comparison with the baselines. On average, across the
five datasets, our approach achieves an AUC, F1(v) and
F1(i) of 0.81, 0.74 and 0.67, respectively. As shown in
Table 8, our approach consistently outperforms the baselines
in terms of AUC, F1(v) and F1(i) across the five datasets.
We use Wilcoxon signed-rank test [87] with a Bonferroni
correction [1] to investigate whether the improvements of
our approach over the baselines are statistically significant.
We also compute Cliff’s delta [21]. Table 9 presents the
adjusted p-values and Cliff’s delta comparing AUC, F1(v)
and F1(i) for our approach with the baselines.

We notice that as shown in Table 8, our approach
outperforms SVMZ and RFZ in terms of average F1(i) across
the 10 folds on the Netbeans dataset, while in Table 9, our
statistical tests show that the improvements of our approach
over the two baselines are not significant. We look into the
F1(i) scores of our approach, SVMZ and RFZ in the 10 folds.
We find that in three folds, SVMZ and RFZ only achieve
F1(i) scores which are around 0.1, indicating that both
SVMZ and RFZ cannot handle imbalanced data in these
folds. As for our approach, in these folds, our approach
can still achieve F1(i) scores which are around 0.5. Hence,
the average F1(i) scores of SVMZ and RFZ on the Netbeans
dataset are much lower than our approach. However, in five
folds, both SVMZ and RFZ achieve equal/larger F1(i) scores
than our approach with much lower F1(v) scores than our
approach. Hence, the improvements of our approach over
the baselines are not significant in terms of F1(i).

Moreover, we also notice that on the Eclipse dataset, both
SVMZ and RFZ achieve a much lower recall for invalid bug
reports (i.e., R(i)) than our approach. And the two baselines
achieve an average F1(i) score near to 0. Hence, the two
baselines cannot handle imbalanced data. In comparison
with the two baselines, our approach achieves a much better
performance in terms of F1(i). The underlying classifier of
RFZ is the same as the classifier used by our approach.
It indicates that our features are more robust towards
imbalanced data than Zanetti et al.’s features.

From Tables 8 and 9, we observe the following findings:
• In terms of AUC, our approach on average improves

SVMZ and RFZ by 33% and 19%, respectively. Statistical
tests show that the improvements are significant, and all
the effect sizes are positive and large.

• In terms of F1-scores for valid bug reports, i.e., F1(v),
our approach on average improves SVMZ and RFZ by
9% and 12%, respectively. Statistical tests show that the
improvements are significant, and all the effect sizes are
positive and at least medium.

• In terms of F1-scores for invalid bug reports, i.e., F1(i), our
approach on average improves SVMZ and RFZ by 34%
and 29%, respectively. Statistical tests show that only two
of the improvements are not significant, and most of the
effect sizes are positive and non-negligible.
In summary, our approach outperforms SVMZ and

RFZ by a substantial margin. Thus, our features are more
effective than the proposed features by Zanetti et al. [99] to
determine the validity of a bug report.

4.2 RQ2: How effective is our approach when all
features are used than when a single dimension of
features is used?
By default, our approach combines 33 features from
five dimensions (i.e., reporter experience, collaboration
network, completeness, readability and text). In this
research question, we investigate how effective is our model
when built on a single dimension of features. We do this to
find out whether our approach benefits from using multiple
dimensions of features—as compared to a single dimension
of features. If the answer is no, it means that we have made
a simple problem too complex and we just need to use a
feature dimension to identify valid bug reports. To achieve
this goal, We compare performance of these models and
our model learned using all features. For convenience, in
this section, we denote our model learned using all the 33
features as All Features.

We build a random forest model using features from
each dimension. In total, we build five random forest
models for each dataset. We denote them as reporter
experience, collaboration network, completeness, readability and
text models, respectively. We then experiment the five
random forest models on each dataset, and compute the
average AUC, precision, recall and F1-scores for valid and
invalid bug reports in the 10 folds.

Table 10 presents the AUC, precision, recall and F1-
scores for valid and invalid bug reports of the All Features
models in comparison with the models built using features
in each dimension. As shown in the table, the All Features
models achieve better AUC, F1(v) and F1(i) scores than the
models that are learned using one dimension across the
five datasets. Similar to RQ1 and RQ2, we use Wilcoxon
signed-rank test with Bonferroni correction to investigate
whether the improvements of the All Features models over
the models learnt using one dimension are statistically
significant. And we use Cliff’s delta to measure effect size.
Table 11 presents the adjusted p-values and Cliff’s delta
comparing AUC, F1(v) and F1(i) scores for the All Features
models with the models learned using one dimension.

From Table 10 and 11, we have the following findings:
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TABLE 8
AUC, precision, recall and F1-scores for valid and invalid bug reports of our approach in comparison with the baselines. The best results are in

bold.

Project Approach AUC Valid Invalid
F1(v) P(v) R(v) F1(i) P(i) R(i)

Eclipse
Ours 0.76 0.88 0.82 0.96 0.35 0.63 0.24
SVMZ 0.50 0.88 0.78 1.00 0.00 0.00 0.00
RFZ 0.63 0.87 0.78 0.99 0.01 0.15 0.01

Netbeans
Ours 0.73 0.76 0.72 0.80 0.55 0.61 0.49
SVMZ 0.58 0.69 0.69 0.73 0.39 0.36 0.44
RFZ 0.63 0.67 0.71 0.68 0.44 0.46 0.50

Mozilla
Ours 0.83 0.86 0.82 0.90 0.62 0.71 0.55
SVMZ 0.58 0.81 0.74 0.89 0.33 0.54 0.27
RFZ 0.64 0.78 0.74 0.84 0.36 0.47 0.32

Firefox
Ours 0.87 0.62 0.70 0.56 0.90 0.88 0.92
SVMZ 0.70 0.55 0.63 0.50 0.88 0.87 0.90
RFZ 0.77 0.50 0.61 0.43 0.88 0.85 0.91

Thunderbird
Ours 0.84 0.59 0.74 0.51 0.92 0.89 0.95
SVMZ 0.68 0.49 0.66 0.41 0.90 0.87 0.94
RFZ 0.75 0.50 0.62 0.43 0.90 0.87 0.94

TABLE 9
Adjusted P-values and Cliff’s Delta comparing AUC, F1(v) and F1(i) for our approach with the baselines.

Project Approach AUC F1(v) F1(i)

Eclipse SVMZ 1.00 (Large)** 0.44 (Med)** 1.00 (Large)**
RFZ 1.00 (Large)** 0.58 (Large)** 1.00 (Large)**

Netbeans SVMZ 1.00 (Large)** 0.62 (Large)* 0.06 (Negligible)
RFZ 1.00 (Large)** 0.80 (Large)** -0.22 (Small)

Mozilla SVMZ 1.00 (Large)** 0.84 (Large)** 1.00 (Large)**
RFZ 1.00 (Large)** 1.00 (Large)** 1.00 (Large)**

Firefox SVMZ 1.00 (Large)** 0.42 (Med)** 0.28 (Small)**
RFZ 1.00 (Large)** 0.60 (Large)** 0.28 (Small)**

Thunderbird SVMZ 0.96 (Large)** 0.42 (Med)** 0.46 (Med)**
RFZ 0.84 (Large)** 0.44 (Med)** 0.60 (Large)**

***p<0.001, **p<0.01, *p<0.05

• In terms of AUC, the All Features models on average
improve the reporter experience, collaboration network,
completeness, readability and text models by 11%, 16%,
25%, 29% and 7%. Statistical tests show that the
improvements are significant, and all the effect sizes
are non-negligible.

• In terms of F1-scores for valid bug reports, i.e., F1(v), the
All Features models on average improve the reporter
experience, collaboration network, completeness, readability
and text models by 7%, 9%, 19%, 25% and 4%,
respectively. Statistical tests show that in most cases, the
All Features models significantly improve the models
built on a single dimension of features with non-
negligible effect sizes.

• In terms of F1-scores for invalid bug reports, i.e., F1(i),
the All Features models on average improve the reporter
experience, collaboration network, completeness, readability
and text models by 12%, 24%, 49%, 29% and 8%,
respectively. Statistical tests show that in most cases, the
All Features models significantly improve the models
built on a single dimension of features with non-
negligible effect sizes.

In summary, our approach that uses all features is
more effective than the models using a single dimension of
features in determining the validity of a bug report. Thus,
our approach benefits from using multiple dimensions of
features—as compared to a single dimension features.

4.3 RQ3: Which features are most important for
differentiating valid bug reports from invalid ones?

In this research question, we would like to find out the
most important features that differentiate valid bug reports
from invalid bug reports in our Eclipse, Netbeans, Mozilla,
Firefox and Thunderbird datasets. In different projects, the
characteristics of bug reports that differentiate valid and
invalid bug reports may be different. Thus, we conduct our
experiment on each bug report dataset.

Note that in RQ1 and RQ2, the textual features we use
are extracted based on training dataset and testing dataset in
each fold. In this research question, we calculate the textual
features for each dataset using all the bug reports in the
dataset. First, we split the dataset into two subsets of equal
sizes using stratified random sampling. Then, we create
word frequency tables for each subsets. Next, we use the
first subset to train models using the four types of classifiers
presented in Section 3.2. We apply these models to calculate
textual scores for the second subset. We also use the second
subset to train models using the four types of classifiers and
apply these models to calculate textual scores for the first
subset. After the above steps, we have textual features for
all the bug reports in the dataset.

Following Tian et al.’s study [82], we leverage the
random forest classifier with 10-times 10-fold cross-
validation to investigate the most important features.
Comparing with the random forest models we build in RQ1,
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TABLE 10
AUC, precision, recall and F1-scores for valid and invalid bug reports of All Features models in comparison with models built using features in

each dimension. The best results are in bold.

Project Approach AUC Valid Invalid
F1(v) P(v) R(v) F1(i) P(i) R(i)

Eclipse

All Features 0.76 0.88 0.82 0.96 0.35 0.63 0.24
Reporter Experience 0.67 0.86 0.80 0.94 0.18 0.34 0.13
Collaboration Network 0.64 0.87 0.78 0.98 0.04 0.20 0.02
Completeness 0.58 0.88 0.78 1.00 0.00 0.21 0.00
Readability 0.57 0.87 0.79 0.98 0.10 0.39 0.06
Text 0.68 0.87 0.81 0.96 0.26 0.53 0.17

Netbeans

All Features 0.73 0.76 0.72 0.80 0.55 0.61 0.49
Reporter Experience 0.64 0.69 0.70 0.68 0.52 0.51 0.53
Collaboration Network 0.63 0.70 0.68 0.74 0.42 0.49 0.43
Completeness 0.52 0.76 0.61 1.00 0.00 0.22 0.00
Readability 0.57 0.70 0.64 0.77 0.37 0.46 0.31
Text 0.66 0.73 0.68 0.80 0.47 0.56 0.41

Mozilla

All Features 0.83 0.86 0.82 0.90 0.62 0.71 0.55
Reporter Experience 0.73 0.81 0.79 0.84 0.52 0.57 0.49
Collaboration Network 0.69 0.81 0.77 0.87 0.47 0.57 0.41
Completeness 0.68 0.83 0.77 0.90 0.48 0.62 0.39
Readability 0.68 0.81 0.75 0.88 0.40 0.54 0.32
Text 0.80 0.85 0.81 0.89 0.59 0.67 0.53

Firefox

All Features 0.87 0.62 0.70 0.56 0.90 0.88 0.92
Reporter Experience 0.81 0.54 0.62 0.47 0.88 0.85 0.91
Collaboration Network 0.79 0.50 0.59 0.44 0.88 0.85 0.91
Completeness 0.74 0.28 0.82 0.23 0.87 0.83 0.94
Readability 0.70 0.34 0.56 0.26 0.87 0.81 0.92
Text 0.85 0.58 0.66 0.53 0.89 0.87 0.91

Thunderbird

All Features 0.84 0.59 0.74 0.51 0.92 0.89 0.95
Reporter Experience 0.79 0.53 0.64 0.46 0.90 0.87 0.94
Collaboration Network 0.77 0.51 0.63 0.44 0.90 0.87 0.93
Completeness 0.74 0.33 0.82 0.26 0.89 0.84 0.95
Readability 0.65 0.24 0.48 0.17 0.88 0.82 0.95
Text 0.81 0.54 0.67 0.46 0.91 0.88 0.94

TABLE 11
Adjusted P-values and Cliff’s Delta comparing AUC, F1(v) and F1(i) for All Features models with models built using features in each dimension.

Project Approach AUC F1(v) F1(i)

Eclipse

Reporter Experience 1.00 (Large)** 0.80 (Large)** 0.90 (Large)**
Collaboration Network 1.00 (Large)** 0.74 (Large)** 1.00 (Large)**
Completeness 1.00 (Large)** 0.44 (Med)** 1.00 (Large)**
Readability 1.00 (Large)** 0.62 (Large)** 1.00 (Large)**
Text 1.00 (Large)** 0.50 (Large)** 0.82 (Large)**

Netbeans

Reporter Experience 1.00 (Large)** 0.88 (Large)** 0.40 (Med)*
Collaboration Network 1.00 (Large)** 0.74 (Large)** 0.30 (Small)
Completeness 1.00 (Large)** -0.04 (Negligible) 1.00 (Large)**
Readability 1.00 (Large)** 0.82 (Large)** 1.00 (Large)**
Text 0.94 (Large)** 0.44 (Med)** 0.76 (Large)**

Mozilla

Reporter Experience 0.98 (Large)** 0.82 (Large)** 1.00 (Large)**
Collaboration Network 1.00 (Large)** 0.70 (Large)** 1.00 (Large)**
Completeness 1.00 (Large)** 0.54 (Large)** 1.00 (Large)**
Readability 1.00 (Large)** 0.82 (Large)** 1.00 (Large)**
Text 0.52 (Large)** 0.42 (Med)** 0.92 (Large)**

Firefox

Reporter Experience 0.90 (Large)** 0.50 (Large)** 0.26 (Small)**
Collaboration Network 0.98 (Large)** 0.60 (Large)** 0.30 (Small)**
Completeness 1.00 (Large)** 0.72 (Large)** 0.30 (Small)**
Readability 1.00 (Large)** 0.94 (Large)** 0.32 (Small)**
Text 0.60 (Large)** 0.26 (Small)** 0.18 (Small)**

Thunderbird

Reporter Experience 0.64 (Large)** 0.36 (Med)** 0.52 (Large)**
Collaboration Network 0.68 (Large)** 0.44 (Med)** 0.52 (Large)**
Completeness 0.84 (Large)** 0.84 (Large)** 0.46 (Med)**
Readability 1.00 (Large)** 1.00 (Large)** 0.72 (Large)**
Text 0.32 (Small)** 0.24 (Small)** 0.36 (Med)**

***p<0.001, **p<0.01, *p<0.05
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we first apply feature selection and use the selected features
to build another random forest models. Feature selection is
aimed at removing correlated features which may lead to
poor models [56].

Step 1: Correlation Analysis. For each bug report dataset, we
first look for the correlations among the features by taking
advantage of variable clustering analysis implemented in
the R package Hmisc. Then, we construct a hierarchical
overview of the 33 features. In the hierarchical overview,
the correlated features are grouped into sub-hierarchies.
To remove correlated features, we use the same setting in
the previous study [82]—we randomly select one feature
and remove the other features from a sub-hierarchy if the
correlations of features in the sub-hierarchy are above 0.7.
After this step, we remove 15, 18, 16, 19 and 20 features
in the datasets of Eclipse, Netbeans, Mozilla, Firefox and
Thunderbird, respectively. Note that we separately study
the most important features for different projects and
different projects may have different correlated features.
Thus, we have different remaining features for different
projects.

Step 2: Redundancy Analysis. After reducing collinearity
among the features by correlation analysis, we detect
redundant features which do not consist of unique signal
as compared to the other features. To do the redundancy
analysis, we apply the redun function provided by the R
package rms. By redundancy analysis, we find that in the
Eclipse, Mozilla and Firefox datasets, one of the remaining
features can be represented by other features (i.e., the feature
is redundant). Thus, in this step, we remove one feature
from the Eclipse, Mozilla and Firefox datasets, respectively.

Step3: Important Features Identification. After the above two
steps, there are 17, 15, 16, 13 and 13 features remaining
in the Eclipse, Netbeans, Mozilla, Firefox and Thunderbird
datasets, respectively. For each dataset, we build a random
forest model based on the remaining features using the R
package bigrf. In the training process, we use the varimp
function in the R package bigrf to compute the importance
of features. The feature importance evaluation is based on
an internal error estimate of a random forest classifier, which
is called out of the bag (OOB) estimate [89]. The key idea
behind it is to see whether the OOB estimate will be reduced
significantly or not when features are randomly permuted
one by one.

We perform 10 times 10-fold cross-validation when we
compute the importance of features. In each run of 10-fold
cross-validation, we have 10 importance values for each
feature. To determine which of the features are the most
important, we apply the Scott-Knott Effect Size Difference
(ESD) test [49], [79], [91] for the importance values taken
from all 10 runs of 10-fold cross-validation. The Scott-
Knott ESD test is different from the Scott-Knott test [67].
The Scott-Knott test assumes that the data is normally
distributed. This might cause that the created groups are
trivially different from one another. The Scott-Knott ESD test
can correct the non-normal distribution of an input dataset
and merge any two statistically distinct groups (i.e., the
groups have a negligible effect size) into one group.

Tables 12, 13, 14, 15 and 16 present the importance of the
remaining features as ranked according to the Scott-Knott

TABLE 12
Importance of the 17 features in the Eclipse dataset as ranked

according to the Scott-Knott ESD test. The second and third columns
show P-values, Cliff’s Delta for the features. The features with

non-negligible effect sizes are in bold.

Groups Features P-value Cliff’s delta
1 desc-dmnb-score <0.001 0.52 (Large)
2 valid-rate <0.001 0.45 (Med)
3 summary-dmnb-score <0.001 0.40 (Med)
4 summary-nb-score <0.001 0.26 (Small)
5 flesch <0.001 0.08 (Negligible)
6 lix <0.001 -0.12 (Negligible)
7 bug-num <0.001 0.22 (Small)
8 clustering-coefficient <0.001 0.13 (Negligible)
9 desc-mnb-score <0.001 0.16 (Small)
10 desc-nb-score <0.001 0.18 (Small)
11 lcc-membership <0.001 0.20 (Small)
12 has-step <0.001 -0.09 (Negligible)
13 has-stack <0.001 -0.15 (Small)
14 has-code <0.001 -0.01 (Negligible)
15 has-screenshot <0.001 -0.02 (Negligible)
16 has-patch <0.001 0.06 (Negligible)
17 has-testcase >0.05 0.00 (Negligible)

TABLE 13
Importance of the 15 features in the Netbeans dataset as ranked

according to the Scott-Knott ESD test. The second and third columns
show P-values, Cliff’s Delta for the features. The features with

non-negligible effect sizes are in bold.

Groups Features P-value Cliff’s delta
1 desc-dmnb-score <0.001 0.43 (Med)
2 summary-dmnb-score <0.001 0.33 Small
3 valid-rate <0.001 0.37 (Med)
4 desc-mnb-score <0.001 0.30 (Small)
5 summary-nb-score <0.001 0.20 (Small)
6 lix <0.001 -0.02 (Negligible)
7 bug-num <0.001 0.28 (Small)
8 clustering-coefficient <0.001 0.18 (Small)
9 desc-nb-score <0.001 0.07 (Negligible)
10 has-stack <0.001 -0.05 (Negligible)
11 has-step <0.001 0.02 (Negligible)
12 has-screenshot >0.05 0.00 (Negligible)
13 has-code <0.001 0.02 (Negligible)
14 has-testcase <0.001 0.00 (Negligible)
15 has-patch <0.001 0.01 (Negligible)

TABLE 14
Importance of the 16 features in the Mozilla dataset as ranked

according to the Scott-Knott ESD test. The second and third columns
show P-values, Cliff’s Delta for the features. The features with

non-negligible effect sizes are in bold.

Groups Features P-value Cliff’s delta
1 desc-dmnb-score <0.001 0.64 (Large)
2 summary-dmnb-score <0.001 0.58 (Large)
3 valid-rate <0.001 0.55 Large
4 bug-num <0.001 0.30 (Small)
5 lix <0.001 -0.12 (Negligible)
6 coleman-liau <0.001 -0.03 (Negligible)
7 clustering-coefficient <0.001 0.25 (Small)
8 eigenvector-centrality <0.001 0.13 (Negligible)
9 has-step <0.001 -0.30 (Small)
10 desc-nb-score <0.001 0.20 Small
11 lcc-membership <0.001 0.21 (Small)
12 has-screenshot <0.001 -0.06 (Negligible)
13 has-patch <0.001 0.06 (Negligible)
14 has-testcase <0.001 0.00 (Negligible)
15 has-code >0.05 0.00 (Negligible)
16 has-stack <0.001 0.00 (Negligible)
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TABLE 15
Importance of the 13 features in the Firefox dataset as ranked

according to the Scott-Knott ESD test. The second and third columns
show P-values, Cliff’s Delta for the features. The features with

non-negligible effect sizes are in bold.

Groups Features P-value Cliff’s delta
1 desc-dmnb-score <0.001 0.75 (Large)
2 valid-rate <0.001 0.67 (Large)
3 summary-dmnb-score <0.001 0.63 (Large)
4 summary-nb-score <0.001 0.44 (Med)
5 lix <0.001 -0.20 (Small)
6 coleman-liau <0.001 -0.06 (Negligible)
7 has-step <0.001 -0.48 (Large)
8 desc-nb-score <0.001 0.40 Med
9 has-patch <0.001 0.09 (Negligible)
10 has-screenshot <0.001 0.01 (Negligible)
11 has-testcase >0.05 0.00 (Negligible)
12 has-code <0.001 0.00 (Negligible)
13 has-stack >0.05 0.00 (Negligible)

TABLE 16
Importance of the 13 features in the Thunderbird dataset as ranked

according to the Scott-Knott ESD test. The second and third columns
show P-values, Cliff’s Delta for the features. The features with

non-negligible effect sizes are in bold.

Groups Features P-value Cliff’s delta
1 desc-dmnb-score <0.001 0.68 Large
2 valid-rate <0.001 0.62 (Large)
3 summary-dmnb-score <0.001 0.52 (Large)
4 clustering-coefficient <0.001 0.50 (Large)
5 coleman-liau >0.05 0.01 (Negligible)
6 lix <0.001 -0.10 (Negligible)
7 desc-nb-score <0.001 0.41 (Small)
8 has-step <0.001 -0.43 (Med)
9 has-patch <0.001 0.16 (Small)
10 has-screenshot <0.001 0.02 (Negligible)
11 has-code <0.05 0.00 (Negligible)
12 has-stack >0.05 0.00 (Negligible)
13 has-testcase >0.05 0.00 (Negligible)

ESD test results in the Eclipse, Netbeans, Mozilla, Firefox
and Thunderbird, respectively. As shown in the tables, the
features desc-dmnb-score, valid-rate and summary-dmnb-score
are consistently ranked in the top three important features
that affect the random forest models to differentiate valid
bug reports and invalid ones across the five datasets.

Step4: Effect of Important Features. To understand the impact
of each feature, we compare the values of the remaining
features between valid and invalid bug reports in the five
datasets. Similar to Section 3.2, we apply the Wilcoxon rank-
sum test [52] to analyze the statistical significance of the
difference between valid and invalid bug reports. We use
Cliff’s delta to measure the effect size of difference between
the two groups of bug reports. Tables 12, 13, 14, 15 and 16
present the p-values and Cliff’s delta for the remaining
features of the Eclipse, Netbeans, Mozilla, Firefox and
Thunderbird datasets, respectively.

Based on the results shown in Tables 12–16, the features
desc-dmnb-score, valid-rate and summary-dmnb-score are the
most important features to distinguish valid and invalid bug
reports. Across the five datasets, these features are ranked
in the top three most important features, and they have
statistically significant and non-negligible positive effect.
This indicates that for a bug report, its textual features and

its reporter’s experience are the most important factors that
positively influence the likelihood of the bug report being
valid.

4.4 RQ4: How effective is our model when built on a
subset of our features?

In this research question, we investigate the effectiveness of
various subsets of our features. We do this in two parts. We
first focus on the five feature dimensions and investigate the
contributions of each dimension. Then, we focus on subsets
of individual features coming across the five dimensions.
Similarly to Section 4.2, in this section, we denote our model
learned using all the 33 features as All Features.

4.4.1 Feature Dimensions

In this part, we investigate effectiveness of the five
dimensions. To do this, we evaluate contribution of each
dimension to our approach in presence of the other four
dimensions.

To investigate contribution of a dimension to our
approach, we exclude the dimension and compare
performance of the All Features model and the random
forest model built using features of remaining four
dimensions. If the dimension has contributions to our
approach, the All Features model will achieve better
performance than the latter model.

We exclude a dimension at a time and learn a random
forest model using the remaining dimensions. In total,
we build five random forest models for each dataset. We
denote them as reporter experience{, collaboration network{,
completeness{, readability{ and text{, respectively. The symbol
{ denotes that the model uses the complement set of
the features (e.g., text{ denotes the model using features
excluding the text dimension). We then experiment the five
random forest models on each dataset, and compute the
average AUC, precision, recall and F1-scores for valid and
invalid bug reports across the 10 folds.

Table 17 presents the AUC, precision, recall and F1-
scores for valid and invalid bug reports of All Features
models in comparison with the random forest models
built using features of four dimensions. In Table 17, we
find that the All Features models achieve better AUC,
F1(v) and F1(i) scores than reporter experience{ and text{

models. However, the All Features models do not show
improvements over the collaboration network{, completeness{

and readability{ models. We use Wilcoxon signed-rank
test with Bonferroni correction to investigate whether the
All Features models statistically significantly improve the
models learned using features from four dimensions. And
we use Cliff’s delta to measure effect size. Table 18 presents
the adjusted p-values and Cliff’s delta comparing AUC,
F1(v) and F1(i) scores for All Features models with the
models learned using four dimensions.

From Table 18, we have the following findings:
• The All Features models statistically significantly

improve the reporter experience{ models in terms of
AUC, F1(v) and F1(i) across the five datasets. All the
effect sizes are positive and most of the effect sizes are
non-negligible.
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TABLE 17
AUC, precision, recall and F1-scores for valid and invalid bug reports of All Features models in comparison with models built using features of four

dimensions. The symbol { denotes the model uses the complement set of features. The best results are in bold.

Project Approach AUC Valid Invalid
F1(v) P(v) R(v) F1(i) P(i) R(i)

Eclipse

All Features 0.76 0.88 0.82 0.96 0.35 0.63 0.24
Reporter Experience{ 0.73 0.88 0.81 0.96 0.31 0.60 0.21
Collaboration Network{ 0.76 0.88 0.82 0.96 0.35 0.62 0.24
Completeness{ 0.76 0.88 0.82 0.96 0.34 0.63 0.24
Readability{ 0.76 0.88 0.82 0.96 0.35 0.61 0.25
Text{ 0.73 0.88 0.81 0.96 0.29 0.55 0.20

Netbeans

All Features 0.73 0.76 0.72 0.80 0.55 0.61 0.49
Reporter Experience{ 0.72 0.75 0.71 0.80 0.53 0.60 0.48
Collaboration Network{ 0.73 0.76 0.72 0.80 0.55 0.61 0.50
Completeness{ 0.73 0.76 0.72 0.80 0.55 0.61 0.49
Readability{ 0.73 0.75 0.71 0.80 0.54 0.61 0.49
Text{ 0.69 0.73 0.69 0.79 0.49 0.57 0.44

Mozilla

All Features 0.83 0.86 0.82 0.90 0.62 0.71 0.55
Reporter Experience{ 0.82 0.86 0.82 0.90 0.61 0.70 0.54
Collaboration Network{ 0.82 0.86 0.82 0.90 0.62 0.71 0.56
Completeness{ 0.82 0.86 0.82 0.90 0.62 0.71 0.55
Readability{ 0.82 0.86 0.82 0.90 0.62 0.71 0.55
Text{ 0.79 0.85 0.80 0.90 0.57 0.68 0.49

Firefox

All Features 0.87 0.62 0.70 0.56 0.90 0.88 0.92
Reporter Experience{ 0.87 0.61 0.69 0.56 0.90 0.88 0.92
Collaboration Network{ 0.87 0.63 0.70 0.57 0.90 0.89 0.92
Completeness{ 0.87 0.62 0.70 0.57 0.90 0.89 0.92
Readability{ 0.87 0.62 0.70 0.56 0.90 0.88 0.92
Text{ 0.84 0.57 0.67 0.51 0.89 0.87 0.92

Thunderbird

All Features 0.84 0.59 0.74 0.51 0.92 0.89 0.95
Reporter Experience{ 0.83 0.58 0.73 0.49 0.92 0.88 0.95
Collaboration Network{ 0.84 0.59 0.75 0.50 0.92 0.89 0.96
Completeness{ 0.84 0.59 0.73 0.50 0.92 0.89 0.95
Readability{ 0.84 0.60 0.74 0.51 0.92 0.89 0.95
Text{ 0.82 0.57 0.71 0.48 0.91 0.88 0.95

TABLE 18
Adjusted P-values and Cliff’s Delta comparing AUC, F1(v) and F1(i) for All Features models with models built using features of four dimensions.

Project Approach AUC F1(v) F1(i)

Eclipse

Reporter Experience{ 0.74 (Large)** 0.18 (Small)** 0.70 (Large)**
Collaboration Network{ 0.14 (Negligible) 0.02 (Negligible) -0.04 (Negligible)
Completeness{ 0.28 (Small)** 0.00 (Negligible) 0.08 (Negligible)
Readability{ 0.02 (Negligible) 0.12 (Negligible)** -0.02 (Negligible)
Text{ 0.74 (Large)** 0.46 (Med)** 0.82 (Large)**

Netbeans

Reporter Experience{ 0.40 (Med)** 0.16 (Small)** 0.34 (Med)*
Collaboration Network{ 0.08 (Negligible) 0.00 (Negligible) -0.02 (Negligible)
Completeness{ 0.02 (Negligible) 0.04 (Negligible) 0.02 (Negligible)
Readability{ 0.14 (Negligible) 0.10 (Negligible) 0.04 (Negligible)
Text{ 0.80 (Large)** 0.40 (Med)** 0.68 (Large)**

Mozilla

Reporter Experience{ 0.26 (Small)** 0.16 (Small)** 0.52 (Large)**
Collaboration Network{ 0.06 (Negligible) 0.06 (Negligible) 0.00 (Negligible)
Completeness{ 0.06 (Negligible) -0.04 (Negligible) 0.02 (Negligible)
Readability{ 0.10 (Negligible) 0.08 (Negligible) 0.06 (Negligible)
Text{ 0.56 (Large)** 0.40 (Med)** 0.98 (Large)**

Firefox

Reporter Experience{ 0.18 (Small)** 0.10 (Negligible) 0.10 (Negligible)*
Collaboration Network{ 0.02 (Negligible) -0.14 (Negligible) -0.06 (Negligible)
Completeness{ 0.12 (Negligible)* -0.02 (Negligible) 0.00 (Negligible)
Readability{ 0.04 (Negligible) 0.06 (Negligible) 0.00 (Negligible)
Text{ 0.58 (Large)** 0.30 (Small)** 0.14 (Negligible)**

Thunderbird

Reporter Experience{ 0.16 (Small)** 0.10 (Negligible) 0.14 (Negligible)
Collaboration Network{ 0.06 (Negligible) 0.00 (Negligible) -0.04 (Negligible)
Completeness{ 0.06 (Negligible) 0.04 (Negligible) 0.06 (Negligible)
Readability{ 0.02 (Negligible) -0.02 (Negligible) -0.02 (Negligible)
Text{ 0.30 (Small)** 0.16 (Small)** 0.22 (Small)*

***p<0.001, **p<0.01, *p<0.05
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• The All Features models do not achieve statistically
significant improvements over the collaboration network{

and readability{ models in terms of AUC, F1(v) and F1(i)
across the five datasets.

• The All Features models achieve only one statistically
significant improvement with positive and non-
negligible effect size over the completeness{ models. In
other cases, the improvements are not significant.

• The All Features models statistically significantly
improve the text{ models in terms of AUC, F1(v) and
F1(i) across the five datasets. All the effect sizes are
positive. And only one effect size is negligible.

In summary, in the presence of the other four
dimensions, the collaboration network, completeness or
readability dimension has little contribution to the
performance of our approach. On the other hand,
the reporter experience and text dimensions have
statistically significant contributions—indicating that the
two dimensions play a notably important role in our
approach. Our findings from the above analysis are
consistent with our conclusion in Section 4.3: reporter
experience and textual features of bug reports are the most
important features in identifying valid bug reports.

4.4.2 Individual Features

In this part, we investigate effectiveness of feature subsets in
which features are across the five dimensions. We would like
to find out a feature subset achieving similar performance
of the full features for each dataset. We leverage the results
of Section 4.3 to achieve this goal.

In Section 4.3, correlated and redundant features of
each dataset are removed. For each dataset, the remaining
features are ranked by their importance as shown in
Tables 12–16. We focus on two subsets of features for each
dataset: top 5 and top 10 most important features. Based on
each subset of features, we learn a random forest model. In
total, we build two random forest models for each dataset.
We denote the random forest models using top 5 and top 10
most important features as TOP5 and TOP10, respectively.
We then experiment the two random forest models on each
dataset, and compute the average AUC, precision, recall and
F1-scores for valid and invalid bug reports across the 10 folds.
Table 19 presents the AUC, precision, recall and F1-scores
for valid and invalid bug reports of the All Features models in
comparison with TOP5 and TOP10 models. From the table,
we find that TOP5 and TOP10 achieve similar performance
of the All Features models in terms of AUC, F1(v) and
F1(i) scores. In addition, by comparing the results shown
in Tables 19 and 8, we find that TOP5 and TOP10 models
outperform the two baselines using Zanetti et al.’s features
(i.e., SVMZ and RFZ) in terms of AUC and F1-scores for
valid and invalid bug reports (Zanetti et al.’s models use 9
features).

We use Wilcoxon signed-rank test with Bonferroni
correction to investigate whether the All Features models
statistically significantly improve TOP5 and TOP10 models
in terms of AUC, F1(v) and F1(i). And we use Cliff’s delta to
measure effect size. Table 20 presents the adjusted p-values
and Cliff’s delta comparing AUC, F1(v) and F1(i) scores
for All Features models with TOP5 and TOP10 models.

From the table, we find that the All Features models cannot
achieve statistically significant improvements over TOP5
and TOP10 across the five datasets in terms of F1(v) and
F1(i).

In summary, models built using top 5 or top 10 important
features can effectively determine the validity of a bug
report and achieve similar performance of our models that
use all features. And our top 5 or top 10 important features
are more effective than Zanetti et al.’s 9 features.

5 DISCUSSION

In this section, we further analyze and discuss the
performance of our approach in comparison with the
baselines in various settings.

5.1 Impact of Tuning SVM Parameters on Our Baseline

By default, we use the default SVM parameters in Weka for
SVMZ. Fu et al. found that parameter selection can impact
the classification performance of SVM models [28]. Thus, in
this section, we would like to investigate whether parameter
tuning can improve the performance of SVMZ. We also
investigate whether our approach can still outperform
SVMZ with parameter tuning in terms of AUC and F1-
scores for valid and invalid bug reports. We use the
parameter tuning technique proposed by Fu et al. [28]. In
the following paragraphs, we describe the details of SVM
parameters, our parameter tuning approach, and evaluation
results of SVMZ with parameter tuning.
SVM Parameters: SVM has several parameters which we
can use to control its learning process. Following Fu et
al.’s study, we focus on four parameters: C, Kernel, Gamma
and Coef0. Also, we use the same searching range of these
parameters in Fu et al.’s study. The parameter C is the
regularization term in SVM. It controls the tradeoff between
training errors and model complexity. A smaller C will
generate a simple SVM model with more training errors,
while a larger C leads to a more complex SVM model
with fewer training errors. In our study, we tune C ranging
from 1 to 50. As for the parameter Kernel, we use it to
introduce different nonlinearities into the SVM model by
applying the kernel function to training data. In our study,
we tune Kernel using four candidate kernel functions: linear
kernel, polynomial kernel, radial-based function (rbf) kernel
and sigmoid kernel. The parameter Gamma controls how
far the influence of a single training example reaches—low
values mean “far” and high values mean “close”. Gamma
is used in polynomial, rbf and sigmoid kernel functions.
We tune Gamma ranging from 0 and 1. The parameter Coef0
is an independent parameter which is used in polynomial
and sigmoid kernel functions. In our study, we tune Coef0
ranging from 0 and 1.

The LibSVM library uses rbf kernel as the default kernel
function. By default, it sets C and Coef0 as 1 and 0,
respectively. The default Gamma of LibSVM is 1/k, where k
denotes the number of input features. We use this parameter
setting as the default parameter setting of SVM in our study.
Parameter Tuning Approach: We use the parameter tuning
approach that is proposed in Fu et al.’s study [28]. We
present this approach as follows.
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TABLE 19
AUC, precision, recall and F1-scores for valid and invalid bug reports of All Features models in comparison with models built using top 5 and top

10 most important features. The best results are in bold.

Project Approach AUC Valid Invalid
F1(v) P(v) R(v) F1(i) P(i) R(i)

Eclipse
All Features 0.76 0.88 0.82 0.96 0.35 0.63 0.24
TOP5 0.73 0.88 0.82 0.95 0.37 0.59 0.27
TOP10 0.76 0.88 0.82 0.96 0.36 0.61 0.26

Netbeans
All Features 0.73 0.76 0.72 0.80 0.55 0.61 0.49
TOP5 0.71 0.74 0.71 0.77 0.53 0.58 0.50
TOP10 0.72 0.75 0.72 0.79 0.55 0.60 0.50

Mozilla
All Features 0.83 0.86 0.82 0.90 0.62 0.71 0.55
TOP5 0.81 0.85 0.82 0.89 0.61 0.69 0.55
TOP10 0.82 0.86 0.82 0.90 0.62 0.70 0.55

Firefox
All Features 0.87 0.62 0.70 0.56 0.90 0.88 0.92
TOP5 0.86 0.61 0.68 0.55 0.90 0.88 0.92
TOP10 0.86 0.61 0.69 0.56 0.90 0.88 0.92

Thunderbird
All Features 0.84 0.59 0.74 0.51 0.92 0.89 0.95
TOP5 0.82 0.58 0.71 0.50 0.92 0.89 0.95
TOP10 0.83 0.59 0.74 0.50 0.92 0.89 0.96

TABLE 20
Adjusted P-values and Cliff’s Delta comparing AUC, F1(v) and F1(i) for All Features models with models built using top 5 and top 10 most

important features.

Project Approach AUC F1(v) F1(i)

Eclipse TOP5 0.62 (Large)** 0.28 (Small) -0.20 (Small)
TOP10 0.28 (Small) 0.16 (Small) -0.14 (Negligible)

Netbeans TOP5 0.48 (Large)** 0.36 (Med)** 0.30 (Small)*
TOP10 0.28 (Small)** 0.16 (Small)** 0.08 (Negligible)

Mozilla TOP5 0.38 (Med)** 0.30 (Small)** 0.36 (Med)**
TOP10 0.24 (Small)* 0.16 (Small)** 0.18 (Small)

Firefox TOP5 0.36 (Med)** 0.14 (Negligible)** 0.08 (Negligible)**
TOP10 0.24 (Small)** 0.10 (Negligible) 0.00 (Negligible)

Thunderbird TOP5 0.28 (Small)** 0.08 (Negligible)** 0.12 (Negligible)*
TOP10 0.18 (Small)** 0.02 (Negligible) 0.02 (Negligible)

***p<0.001, **p<0.01, *p<0.05

In each fold, we first use stratified random sampling
technique to split the training dataset into two subsets.
The first subset contains 80% bug reports of the training
dataset, which is used for training when tuning parameters.
To distinguish the training dataset and the first subset, we
call the first subset as tuning-training dataset. The second
subset contains the remaining bug reports, which is used
for validation when tuning parameters. We call the second
subset as validation dataset.

When tuning parameters, we train SVM models on the
tuning-training dataset using different combinations of four
parameters and evaluate the performance of these models
on the validation dataset. Our aim is to find a combination of
parameters to optimize an objective function on validation
dataset. As shown in Table 1, class distributions of our
datasets are imbalanced. In the Eclipse, Netbeans and
Mozilla datasets, bug reports of the minority class are
invalid. In the Firefox and Thunderbird datasets, bug reports
of the minority class are valid. In Section 4.1, we find that
using default parameter setting in Weka, SVMZ suffers from
the data imbalance problem. It achieves a much lower F1-
score for the minority class than our approach on the five
datasets. Thus, we use the F1-score for the minority class as
our objective function. When tuning parameters, we aim to
maximize the F1-score for the minority class on validation
dataset.

When searching the optimal combination of parameters,
we follow Fu et al.’ study [28] and use the differential
evolution technique [20], [73]. Differential evolution (DE) is
a heuristic approach that optimizes a problem by iteratively
trying to improve a candidate solution with regard to a
give objective function [73]. The technique has been used
in many previous software engineering studies [2], [28],
[29]. When tuning parameters, we take the same DE steps
presented in Fu et al.’s study [28] to find a combination of
parameters which maximize the objective function. Then we
use the combination of parameters to train an SVM model
on the tuning-training dataset, and evaluate its performance
on the testing dataset of the fold.

Evaluation Results: In this section and the following text,
we use SVMZ denote SVMZ using the default parameter
setting. And we denote SVMZ with the parameter tuning
approach as T-SVMZ. For each dataset, we calculate the
average AUC and F1-scores for valid and invalid bug reports
of T-SVMZ across the 10 folds. Table 21 presents the average
AUC and F1-scores for valid and invalid bug reports of
our approach in comparison with SVMZ and T-SVMZ.
From the table, we find that T-SVMZ improves SVMZ in
terms of F1-scores for the minority class on each dataset.
For example, on Eclipse dataset, SVMZ cannot identify
invalid bug reports—its F1(i) is 0. With parameter tuning
approach, T-SVMZ achieves an F1(i) of 0.12. We also find
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TABLE 21
AUC and F1-scores for valid and invalid bug reports of our approach in
comparison with SVMZ using the default parameter setting and SVMZ

using the parameter tuning approach. The best results are in bold.

Project Approach AUC F1(v) F1(i)

Eclipse
Ours 0.76 0.88 0.35
SVMZ 0.50 0.88 0.00
T-SVMZ 0.46 0.78 0.12

Netbeans
Ours 0.73 0.76 0.55
SVMZ 0.58 0.69 0.39
T-SVMZ 0.59 0.65 0.51

Mozilla
Ours 0.83 0.86 0.62
SVMZ 0.58 0.81 0.33
T-SVMZ 0.58 0.75 0.40

Firefox
Ours 0.87 0.62 0.90
SVMZ 0.70 0.55 0.88
T-SVMZ 0.74 0.60 0.88

Thunderbird
Ours 0.84 0.59 0.92
SVMZ 0.68 0.49 0.90
T-SVMZ 0.72 0.56 0.90

that T-SVMZ outperforms SVMZ in terms of AUC, F1(v)
and F1(i). However, as shown in Table 21, our approach
achieves the best AUC, F1(v) and F1(i) scores across the five
datasets. In terms of AUC, F1(v) and F1(i), our approach
on average outperforms T-SVMZ by 31%, 10% and 20%,
respectively. Thus, our approach still outperforms SVMZ
with the parameter tuning approach.

5.2 Impact of Different Underlying Classifiers
In this paper, we use random forest as the default
underlying classifier to evaluate the performance of our
approach. Here, we would like to investigate the impact
of different underlying classifiers on the classification
performance. In addition to random forest, we also use
other classifiers namely SVM, naive Bayes and decision
tree [35]. These classifiers are widely used in past software
engineering studies [41], [44], [81]. For naive Bayes and
decision tree, we apply the default implementation in
Weka [34]. And we use the LibSVM package in Weka
as our SVM implementation. In addition to evaluate the
performance of SVM models with the default parameter
setting, we also evaluate the performance of SVM models
using the parameter tuning approach introduced in
Section 5.1. We denote SVM models using the parameter
tuning approach as T-SVM.

Table 22 presents the AUC and F1-scores for valid and
invalid bug reports of models built on our features using
different underlying classifiers. In Table 22, we notice that
the random forest models achieve the best performance in
terms of AUC across the five datasets. And the random
forest and naive Bayes models achieve better performance in
terms of F1-scores for valid and invalid bug reports than the
other three models. In most cases, the random forest models
show better performance as compared to models using the
other classifiers in terms of AUC and F1-scores.

We notice that the T-SVM models achieve better
classification performance than the SVM models, especially
on the Firefox and Thunderbird datasets. The SVM models
suffer from imbalanced data and achieve low F1-scores for
valid bug reports on the two datasets. With the parameter
tuning approach, T-SVM models achieves better AUC, F1(v)

TABLE 22
AUC and F1-scores for valid and invalid bug reports of models built on
our features using different underlying classifiers. The best results are

in bold.

Project Approach AUC F1(v) F1(i)

Eclipse

Random Forest 0.76 0.88 0.35
SVM 0.53 0.88 0.14
T-SVM 0.55 0.82 0.29
Naive Bayes 0.72 0.85 0.47
Decision Tree 0.64 0.87 0.37

Netbeans

Random Forest 0.73 0.76 0.55
SVM 0.57 0.76 0.32
T-SVM 0.61 0.70 0.53
Naive Bayes 0.70 0.70 0.58
Decision Tree 0.61 0.71 0.52

Mozilla

Random Forest 0.83 0.86 0.62
SVM 0.59 0.84 0.34
T-SVM 0.66 0.85 0.51
Naive Bayes 0.80 0.84 0.60
Decision Tree 0.73 0.84 0.59

Firefox

Random Forest 0.87 0.62 0.90
SVM 0.55 0.15 0.86
T-SVM 0.73 0.59 0.89
Naive Bayes 0.85 0.65 0.88
Decision Tree 0.75 0.60 0.89

Thunderbird

Random Forest 0.84 0.59 0.92
SVM 0.53 0.07 0.88
T-SVM 0.71 0.54 0.90
Naive Bayes 0.83 0.62 0.90
Decision Tree 0.70 0.56 0.90

and F1(i) scores than SVM models. However, the random
forest models still achieve better classification performance
than T-SVM in terms of AUC, F1(v) and F1(i) scores.

In practice, to achieve the best performance for our
approach, we recommend developers to use random forest
as the underlying classifier to build models.

Here, we would like to investigate why random forest
outperforms T-SVM. We analyze the classification errors
made by random forest and T-SVM. This may also shed
lights on an avenue to further improve the performance of
our approach. In Table 22, we notice that on the Eclipse
dataset, random forest substantially outperforms T-SVM
in terms of AUC, F1(v) and F1(i). Thus, we investigate
the difference of the incorrectly classified reports between
random forest and T-SVM on the Eclipse dataset.

For the Eclipse dataset, we record the bug reports which
are incorrectly labeled by the classifier (random forest or
T-SVM) in each fold. And we combine these incorrectly
labeled bug reports across the 10 folds. In total, across
the 10 folds, the random forest model incorrectly labels
21,503 bug reports, in which 3,295 (15%) ones are truly
valid and 18,208 (85%) ones are truly invalid. And the T-
SVM model in total incorrectly labels 31,661 bug reports,
in which 14,611 (46%) ones are truly valid and 17,050 (54%)
ones are truly invalid. The T-SVM model incorrectly labels
many more truly valid bug reports than the random forest
model. Hence, T-SVM achieves much worse classification
performance than random forest.

We use a box-plot [88] to observe the distributions of
our features in the truly valid and invalid bug reports which
are incorrectly labeled by the random forest model and T-
SVM model. A box-plot is a graphical method for depicting
the distribution of numerical data based on minimum (0%),
first quartile (25%), median (50%), third quartile (75%), and
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Fig. 2. Distributions of valid-rate in the truly valid and invalid bug reports
that are incorrectly labeled by random forest and T-SVM on the Eclipse
dataset.

maximum (100%). We find that the box plots, which show
the distributions of valid-rate of the incorrectly labeled bug
reports, present visible differences between the two models.
Notice that valid-rate of a bug report refers to the valid
rate of the prior reports with known labels as submitted by
the reporter of this bug report. A larger valid-rate indicates
that the reporter is more likely to have more experience. In
the following paragraphs, we focus on using valid-rate to
analyze the classification errors made by the two models.

Figure 2 presents the box plots showing the distributions
of valid-rate in the truly valid and invalid bug reports that
are incorrectly labeled by random forest and T-SVM on
the Eclipse dataset. In the figure, valid (RF) and valid (T-
SVM) denote the truly valid bug reports that are incorrectly
labeled as invalid by the random forest and T-SVM models,
respectively. And invalid (RF) and invalid (T-SVM) denote
the truly invalid bug reports that are incorrectly labeled as
valid by the random forest and T-SVM models, respectively.

From Figure 2, we find that box plots showing the
distributions of valid-rate for valid (RF) and valid (T-
SVM) are visibly different. For random forest, most of the
incorrectly labeled truly valid reports by random forest have
a valid-rate less than 0.3, while for T-SVM, most of those
reports have a valid-rate larger than 0.5. In Section 4.3, we
find that valid-rate is an important feature in identifying
valid reports from invalid ones and it has a positive effect
size. It indicates that a bug report with a larger valid-rate
is more likely to be valid. T-SVM classifies a large number
of bug reports with high valid-rate as invalid, while random
forest does not have such a problem. This observation helps
explain why T-SVM incorrectly labels many more truly valid
bug reports than random forest. Here, we present more
empirical evidence to verify this claim.

In the incorrectly labeled bug reports of random forest
and T-SVM, we find that only 4% of the reports have a valid-
rate in the range (0.1, 0.5). Thus, we could ignore these bug
reports and focus more on the bug reports having a valid-
rate in the range [0, 0.1] or [0.5, 1]. We count that bug reports
with a valid-rate ≤ 0.1 are submitted by inexperienced
reporters. And we count that bug reports with a valid-rate
≥ 0.5 are submitted by experienced reporters. Then, for
random forest and T-SVM, we categorize incorrectly labeled
bug reports having a valid-rate in the range [0, 0.1] or [0.5, 1]
as follows.

The following are the categories of errors made by
random forest:

1. Inexperienced bug reporters who submit valid bug
reports (valid-rate ≤ 0.1). This account for 11% of the
errors (including 2403 bug reports).

2. Experienced bug reporters who submit invalid bug
reports (valid-rate ≥ 0.5). This account for 55% of the
errors (including 11868 bug reports).

3. Inexperienced bug reporters who submit invalid bug
reports (valid-rate ≤ 0.1). This account for 26% of the
errors (including 5644 bug reports).

4. Experienced bug reporters who submit valid bug
reports (valid-rate ≥ 0.5). This account for 3% of the
errors (including 624 bug reports).

The following are the categories of errors made by T-
SVM:

1. Inexperienced bug reporters who submit valid bug
reports (valid-rate ≤ 0.1). This account for 11% of the
errors (including 3335 bug reports).

2. Experienced bug reporters who submit invalid bug
reports (valid-rate ≥ 0.5). This account for 31% of the
errors (including 9838 bug reports).

3. Inexperienced bug reporters who submit invalid bug
reports (valid-rate ≤ 0.1).This account for 20% of the
errors (including 6331 bug reports).

4. Experienced bug reporters who submit valid bug
reports (valid-rate ≥ 0.5). This account for 35% of the
errors (including 11024 bug reports).

Based on the above analysis, we can notice that T-
SVM incorrectly labels many more valid bug reports which
are submitted by experienced reporters, which is the
most different error category in comparison with random
forest. This results in that T-SVM achieves much worse
performance than random forest.

5.3 Impact of Imbalanced Data

From Table 3.1, we notice that all of our datasets are
imbalanced. In the Eclipse, Netbeans and Mozilla datasets,
valid bug reports are the majority class and invalid ones are
the minority class. In the Firefox and Thunderbird datasets,
invalid bug reports are the majority class and valid ones
are the minority class. By default, our approach uses the
original imbalanced training dataset to learn a model. In
this discussion, we would like to investigate whether we
can further improve the performance of our approach by
dealing with the data imbalance problem.

To deal with the imbalanced data, we re-balance the
training dataset in each fold and use the re-balanced dataset
to train a model. We re-balance the data using a re-sampling
technique that removes the bug reports from the majority
class (under-sampling) and repeats the bug reports from the
minority class (over-sampling). Notice that in each fold, we
only re-balance the training dataset and the original testing
dataset is not re-balanced.

We denote our model learned from the original
imbalanced training dataset as Default. And we denote
our model learned from the re-balanced training dataset as
Rebalanced. Table 23 presents AUC and F1-scores for valid
and invalid bug reports of Rebalanced models in comparison
with Default models. In the table, we find that across the five
datasets, the Rebalanced models achieve better F1-scores for
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TABLE 23
AUC and F1-scores for valid and invalid bug reports of our models that
use the re-balanced training dataset (i.e., Rebalanced) in comparison
with our models that use the original imbalanced training dataset (i.e.,

Default).

Project Approach AUC F1(v) F1(i)

Eclipse Default 0.76 0.88 0.35
Rebalanced 0.76 0.85 0.48

Netbeans Default 0.73 0.76 0.55
Rebalanced 0.72 0.72 0.60

Mozilla Default 0.83 0.86 0.62
Rebalanced 0.83 0.84 0.65

Firefox Default 0.87 0.62 0.90
Rebalanced 0.86 0.66 0.89

Thunderbird Default 0.84 0.59 0.92
Rebalanced 0.84 0.62 0.90

the minority class. But in terms of AUC, the Rebalanced and
Default models achieve similar performance.

In summary, dealing with imbalanced data can improve
the F1-score for the minority class of our approach. But it
does not improve the AUC of our approach.

5.4 Impact of Feature Selection

In Section 4.3, we apply a feature selection method when we
investigate the most important features. Feature selection
is also widely used to improve performance of classifiers
in previous studies [32]. In this section, we would like to
investigate whether automated feature selection methods
can further improve the performance of our approach.
Feature selection can be performed in two phases of our
approach. First, feature selection can be applied from our
evaluation experiment. Second, feature selection can be
applied when we calculate textual features for bug reports.
Here, we discuss the impact of automated feature selection
methods when they are applied in both two cases with
regard to the classification performance of our approach.

For convenience, we denote our model without using
automatic feature selection methods as Default. And we
denote the feature selection method that is used in
Section 4.3 as CRA, with “C”, “R” and “A” denotes
“correlation”, “redundancy” and “analysis”, respectively.

5.4.1 Feature Selection in Evaluation

In this part, we apply feature selection to our features from
our evaluation experiment. And we use the longitudinal
data setup to evaluate the models. In each fold, we first
use CRA to remove correlated and redundant features for
the training dataset. Then, we build a model using the
preprocessed training dataset and evaluate the model on
the testing dataset. Finally, we calculate the average AUC
and F1-scores for valid and invalid bug reports across the
10 folds. We denote our model built with CRA applied
as Default+CRA. Table 24 presents the AUC and F1-scores
for valid and invalid bug reports of Default+CRA models in
comparison with Default models. In the table, we find that
across the five datasets, the Default+CRA models achieve
a slightly lower performance (not statistically significant
difference) in terms of AUC, F1(v) and F1(i) in comparison
with the Default models.

TABLE 24
AUC and F1-scores for valid and invalid bug reports of our approach

with feature selection applied when building models in comparison with
our models without applying feature selection methods.

Project Approach AUC F1(v) F1(i)

Eclipse Default 0.76 0.88 0.35
Default+CRA 0.76 0.88 0.34

Netbeans Default 0.73 0.76 0.55
Default+CRA 0.72 0.75 0.54

Mozilla Default 0.83 0.86 0.62
Default+CRA 0.82 0.86 0.61

Firefox Default 0.87 0.62 0.90
Default+CRA 0.86 0.61 0.90

Thunderbird Default 0.84 0.59 0.92
Default+CRA 0.83 0.57 0.91

5.4.2 Feature Selection in Textual Feature Extraction
When extracting the textual features, we learn classifiers
using token features of bug reports. Then, we use the
likelihood scores to be valid of the bug reports output by the
classifiers as textual features. In this part, we apply feature
selection to the token features when we learn the classifiers.
We investigate whether applying feature selection to the
token features impacts the performance of our approach.
We investigate the impact of two feature selection methods:
CRA and Information Gain (IG). IG is a widely used
feature selection method to select useful features for text
classification in previous studies [68], [98]. Recently, Huang
et al. [39] found that IG can improve the performance of
their text classification classifiers. Thus, in this part, we
investigate impact of applying IG to the token features of
bug reports. When applying IG, we choose top 5% of the
total number of token features.

In each fold, to extract textual features for the training
dataset, we first split the training dataset into two subsets
of equal sizes using stratified random sampling. Next, we
apply a feature selection method (CRA or IG) to token
features of each subset. Then, we train classifiers based
on the selected token features of one subset and use the
classifiers to calculate textual features for the other subset.
To extract textual features for the testing dataset, we apply
the same feature selection method to token features of the
whole training dataset. Then we train classifiers based on
the selected token features of the training dataset and use
the classifiers to calculate textual features for the testing
dataset. Since we separately extract textual features for
summary and description of bug reports, we need to
perform six runs of feature selection in each fold (three runs
for summary of bug reports and three runs for description
of bug reports).

We name the models with CRA and IG applied
when extracting textual features as Default+TEXT-CRA and
Default+TEXT-IG, respectively. Table 25 presents AUC and
F1-scores for valid and invalid bug reports of Default+TEXT-
CRA and Default+TEXT-IG models in comparison with the
Default models. In the table, we find that applying CRA or
IG when extracting textual features does not improve the
performance of our approach in terms of AUC, F1(v) and
F1(i) scores.

In summary, applying automated feature selection
method does not improve the performance of our approach.
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TABLE 25
AUC and F1-scores for valid and invalid bug reports of our approach

with feature selection methods applied when extracting textual features
in comparison with our models without applying feature selection

methods.

Project Approach AUC F1(v) F1(i)

Eclipse
Default 0.76 0.88 0.35

Default+TEXT-CRA 0.76 0.88 0.35
Default+TEXT-IG 0.76 0.88 0.35

Netbeans
Default 0.73 0.76 0.55

Default+TEXT-CRA 0.73 0.75 0.55
Default+TEXT-IG 0.72 0.75 0.53

Mozilla
Default 0.83 0.86 0.62

Default+TEXT-CRA 0.83 0.86 0.62
Default+TEXT-IG 0.82 0.86 0.61

Firefox
Default 0.87 0.62 0.90

Default+TEXT-CRA 0.87 0.62 0.90
Default+TEXT-IG 0.87 0.61 0.90

Thunderbird
Default 0.84 0.59 0.92

Default+TEXT-CRA 0.84 0.59 0.92
Default+TEXT-IG 0.84 0.59 0.92

5.5 Impact of Using N-gram Features

In this study, we use eight textual features to characterize
the textual contents (i.e., summary and description) of bug
reports. To calculate these textual features, we leverage four
classifiers (i.e., naive Bayes classifier and its variants) to
convert the token features that are extracted from summary
and description of bug reports into numerical scores. We
denote our approach that uses this default setting as Ours-
Default.

Many prior studies used N-gram features to perform text
classification tasks, where an N-gram refers to a consecutive
sequence of N tokens from a text [17]. In this discussion,
we would like to investigate the impact of using N-gram
features to determine the validity of a bug report. We
use three types of N-gram features together, namely 1-
gram features (i.e., token features), 2-gram features and
3-gram features. We investigate the impact of using the
three types of N-gram features together to determine the
validity of a bug report. We do this in two ways: 1)
investigating the effectiveness of the N-gram features of
bug reports in identifying valid bug reports; 2) investigating
the performance of our approach when we use the N-
gram features of summary and description of bug reports
to calculate our eight textual features.

To achieve 1), we compare the performance of our
approach that uses the default setting and text classification
models that are built using the N-gram features of bug
reports. Since we leverage four classifiers including naive
Bayes classifier and its variants to calculate our textual
features, we also use these four classifiers as underlying
classifiers to build the text classification models. Our
approach leverages both summary and description of bug
reports. To leverage these two textual contents for the
text classification models, we combine the summary and
description for each bug report, and extract 1-gram, 2-gram
and 3-gram features from the combined text. Then, we
use the three types of N-gram features together to build
text classification models. We name the text classification
models using naive Bayes classifier, multinomial naive
Bayes classifier, discriminative multinomial naive Bayes

TABLE 26
AUC and F1-scores for valid and invalid bug reports of our approach

that uses default setting (i.e., Ours-Default) in comparison with models
trained using N-gram features (i.e., NB-NGRAM, MNB-NGRAM,
DMNB-NGRAM and CNB-NGRAM) and our approach that uses

N-gram features of bug reports to calculate the eight textual features
(i.e., Ours-NGRAM).

Project Approach AUC F1(v) F1(i)

Eclipse

Ours-Default 0.76 0.88 0.35
NB-NGRAM 0.65 0.83 0.36

MNB-NGRAM 0.61 0.87 0.27
DMNB-NGRAM 0.66 0.87 0.33

CNB-NGRAM 0.58 0.87 0.29
Ours-NGRAM 0.76 0.88 0.34

Netbeans

Ours-Default 0.73 0.76 0.55
NB-NGRAM 0.61 0.69 0.43

MNB-NGRAM 0.66 0.74 0.47
DMNB-NGRAM 0.67 0.73 0.52

CNB-NGRAM 0.61 0.74 0.48
Ours-NGRAM 0.73 0.75 0.54

Mozilla

Ours-Default 0.83 0.86 0.62
NB-NGRAM 0.73 0.79 0.52

MNB-NGRAM 0.76 0.85 0.58
DMNB-NGRAM 0.79 0.84 0.60

CNB-NGRAM 0.71 0.84 0.58
Ours-NGRAM 0.83 0.86 0.62

Firefox

Ours-Default 0.87 0.62 0.90
NB-NGRAM 0.74 0.53 0.82

MNB-NGRAM 0.83 0.61 0.85
DMNB-NGRAM 0.84 0.58 0.89

CNB-NGRAM 0.79 0.61 0.85
Ours-NGRAM 0.87 0.61 0.90

Thunderbird

Ours-Default 0.84 0.59 0.92
NB-NGRAM 0.71 0.48 0.83

MNB-NGRAM 0.81 0.56 0.85
DMNB-NGRAM 0.81 0.55 0.90

CNB-NGRAM 0.75 0.56 0.84
Ours-NGRAM 0.84 0.59 0.92

classifier and complement naive Bayes classifier as NB-
NGRAM, MNB-NGRAM, DMNB-NGRAM and CNB-
NGRAM, respectively. We use the longitudinal data setup
presented in Section 3.4 to evaluate these models. And we
calculate the average AUC and F1-scores for valid and invalid
bug reports across the 10 folds.

To achieve 2), we compare the performance of our
approach that uses the default setting and our approach
that uses N-gram features of bug reports to calculate the
eight textual features. We first separately extract N-gram
features (including 1-gram, 2-gram and 3-gram features)
from summary and description of bug reports. Then, we
apply the method presented in Section 3.2 to convert the N-
gram features into the eight textual features for the reports.
We denote our approach using the three types of N-gram
features to calculate the textual features as Ours-NGRAM.
To evaluate the performance of Ours-NGRAM, we use
the longitudinal data setup introduced in Section 3.4 and
calculate the average AUC and F1-scores for valid and invalid
bug reports of Ours-NGRAM across the 10 folds.

Table 26 presents the AUC and F1-scores for valid
and invalid bug reports of our approach that uses default
setting in comparison with models using N-gram features
(including 1-gram, 2-gram and 3-gram features) and our
approach that uses N-gram features to calculate the eight
textual features.

From Table 26, we find that in most cases, our approach
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that uses default setting achieves better performance than
the NB-NGRAM, MNB-NGRAM, DMNB-NGRAM and
CNB-NGRAM models in terms of AUC, F1(v) and F1(i)—
indicating that the 33 features that we use in our approach
to determine the validity of a bug report are more effective
than the N-gram features of bug reports.

From the table, we also find that across the five
datasets, Ours-Default and Ours-NGRAM achieve similar
performance in terms of AUC, F1(v) and F1(i). Ours-Default
only uses token features (i.e., 1-gram features) to calculate
the eight textual features, while Ours-NGRAM uses more N-
gram features (i.e., 2-gram and 3-gram features) in addition
to features used by Ours-Default to do that. However, our
experimental results show that the additional 2-gram and 3-
gram features that are used by Ours-NGRAM cannot further
improve the performance of our approach. Moreover,
the additional 2-gram and 3-gram features cause more
computation costs. Hence, our default setting is preferred
over Ours-NGRAM.

In summary, our features are more effective than N-gram
features of bug reports in determining the validity of a bug
report. Moreover, we recommend to use token features to
calculate the eight textual features when using our approach
in practice.

5.6 Cross-validation Setup

By default, we use longitudinal data setup to evaluate the
effectiveness of our approach and the baselines in this paper.
Still, in many software engineering studies, cross-validation
is used as the evaluation setting [65], [83], [97]. Thus, for
completeness sake, here, we would like to compare the
effectiveness of our approach with SVMZ and RFZ when we
use 10-times stratified 10-fold cross-validation data setup.

We perform 10 times stratified 10-fold cross-validation.
In each run of stratified 10-fold cross-validation, the
dataset for each project are first randomly divided into 10
folds using stratified random sampling. Stratified random
sampling technique can keep the class distribution of each
fold the same as the original dataset. Of the 10 folds, a single
fold is retained as the testing dataset, and the remaining
nine folds are used as training dataset. The process is
then repeated 10 times, with each of the 10 folds used
exactly once as the testing dataset. In each fold, we use our
approach present in Section 3.2 to convert token features
of training and testing datasets into textual scores. Then we
calculate the average AUC scores and F1-scores for valid and
invalid bug reports across the 10 runs of stratified 10-fold
cross-validation. We empirically find that time efficiency
of tuning SVM parameters for SVMZ is unacceptable in
this setting. Thus, in this section, we do not tune SVM
parameters for SVMZ.

Table 27 presents the AUC and F1-scores for valid and
invalid bug reports of our approach in comparison with
the baselines when we use 10-times stratified 10-fold cross-
validation data setup. On average, across the five datasets,
our approach achieves an AUC, F1(v) and F1(i) of 0.83, 0.77
and 0.71, respectively. In comparison with the baselines,
our approach achieves better performance in terms of AUC,
F1(v) and F1(i) across the five datasets. Similar to RQ1 and
RQ2, we apply Wilcoxon signed-rank test with Bonferroni

TABLE 27
AUC and F1-scores for valid and invalid bug reports of our approach in
comparison with the baselines when we use 10-times stratified 10-fold

cross-validation data setup. The best results are in bold.

Project Approach AUC F1(v) F1(i)

Eclipse
Ours 0.81 0.90 0.49
SVMZ 0.52 0.88 0.09
RFZ 0.68 0.88 0.13

Netbeans
Ours 0.75 0.77 0.57
SVMZ 0.51 0.76 0.07
RFZ 0.65 0.75 0.17

Mozilla
Ours 0.85 0.87 0.65
SVMZ 0.63 0.81 0.48
RFZ 0.75 0.80 0.56

Firefox
Ours 0.89 0.67 0.91
SVMZ 0.75 0.62 0.90
RFZ 0.80 0.61 0.90

Thunderbird
Ours 0.86 0.64 0.92
SVMZ 0.72 0.58 0.91
RFZ 0.76 0.58 0.91

TABLE 28
Adjusted P-values and Cliff’s Delta comparing AUC, F1(v) and F1(i) for

our approach with the baselines in 10-times stratified 10-fold
cross-validation.

Project Approach AUC F1(v) F1(i)

Eclipse SVMZ 1.00 (Large)** 1.00 (Large)** 1.00 (Large)**
RFZ 1.00 (Large)** 1.00 (Large)** 1.00 (Large)**

Netbeans SVMZ 1.00 (Large)** 1.00 (Large)** 1.00 (Large)**
RFZ 1.00 (Large)** 1.00 (Large)** 1.00 (Large)**

Mozilla SVMZ 1.00 (Large)** 1.00 (Large)** 1.00 (Large)**
RFZ 1.00 (Large)** 1.00 (Large)** 1.00 (Large)**

Firefox SVMZ 1.00 (Large)** 1.00 (Large)** 1.00 (Large)**
RFZ 1.00 (Large)** 1.00 (Large)** 1.00 (Large)**

Thunderbird SVMZ 1.00 (Large)** 0.98 (Large)** 0.98 (Large)**
RFZ 1.00 (Large)** 1.00 (Large)** 1.00 (Large)**

***p<0.001, **p<0.01, *p<0.05

correction to investigate whether the improvements of our
approach over the baselines are statistically significant. We
also use Cliff’s delta to measure effect size. Table 28 presents
the adjusted p-values and Cliff’s delta comparing AUC
scores for our approach with the baselines in 10-times
stratified 10-fold cross validation.

Based on the results shown in Tables 27 and 28, we have
the following findings:

• In terms of AUC, our approach on average outperforms
SVMZ and RFZ by 32% and 14%, respectively.
Statistical tests show that the improvements are
significant and all the effect sizes are large.

• In terms of F1-scores for valid bug reports, i.e., F1(v),
our approach on average outperforms SVMZ and RFZ
by 5% and 7%, respectively. Statistical tests show that
the improvements are significant and all the effect sizes
are large.

• In terms of F1-scores for invalid bug reports, i.e., F1(i),
our approach on average outperforms SVMZ and RFZ
by 45% and 34%, respectively. Statistical tests show that
the improvements are significant and all the effect sizes
are large.

5.7 Cross-project Setting
In the experiment setting of RQ1 and RQ2, for each project,
we train a model using the historical bug reports with
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known labels within the project. However, a newly built
project may not possess enough bug report data to build
a model. In this section, we would like to investigate the
effectiveness of our approach for determining valid and
invalid bug reports in the cross-project setting. For each
project, we first build a model using data from it. We denote
the project as source project. Then, we use the model to
determine the validity of bug reports in the other projects.
We denote these projects as target projects.

In the cross-project setting, we use bug report data in
source project as training dataset and use data in target
project as testing dataset. We use the approach presented
in Section 3.2 to convert token features into textual scores
for training and testing datasets. Similar to Section 5.6,
we empirically find that time efficiency of tuning SVM
parameters for SVMZ is unacceptable in the cross-project
setting. Thus, we also do not tune SVM parameters for
SVMZ.

Tables 29–33 present the AUC and F1-scores for valid and
invalid bug reports of our approach in comparison with the
baselines when we use one of the five projects (i.e., Eclipse,
Netbeans, Mozilla, Firefox and Thunderbird) as a source
project and another as a target project. As shown in the tables,
our approach achieves the best AUC scores in all cases in
comparison with the baselines. In terms of F1(v) and F1(i),
our approach also achieves better performance than SVMZ
and RFZ in most cases.

TABLE 29
AUC and F1-scores for valid and invalid bug reports of our approach in

comparison with the baselines in cross-project setting when using
Eclipse as source project. The best results are in bold.

Source & Target Project Approach AUC F1(v) F1(i)

Eclipse ⇒ Netbeans
Ours 0.70 0.74 0.51
SVMZ 0.50 0.76 0.00
RFZ 0.60 0.76 0.04

Eclipse ⇒ Mozilla
Ours 0.74 0.83 0.22
SVMZ 0.50 0.82 0.00
RFZ 0.57 0.79 0.02

Eclipse ⇒ Firefox
Ours 0.80 0.48 0.62
SVMZ 0.50 0.37 0.00
RFZ 0.77 0.37 0.01

Eclipse ⇒ Thunderbird
Ours 0.79 0.43 0.59
SVMZ 0.50 0.35 0.00
RFZ 0.74 0.35 0.01

TABLE 30
AUC and F1-scores for valid and invalid bug reports of our approach in

comparison with the baselines in cross-project setting when using
Netbeans as source project. The best results are in bold.

Source & Target Project Approach AUC F1(v) F1(i)

Netbeans ⇒ Eclipse
Ours 0.74 0.87 0.38
SVMZ 0.50 0.88 0.00
RFZ 0.62 0.88 0.01

Netbeans ⇒ Mozilla
Ours 0.73 0.83 0.33
SVMZ 0.50 0.82 0.01
RFZ 0.58 0.80 0.03

Netbeans ⇒ Firefox
Ours 0.82 0.50 0.65
SVMZ 0.50 0.37 0.00
RFZ 0.78 0.37 0.01

Netbeans ⇒ Thunderbird
Ours 0.79 0.45 0.65
SVMZ 0.50 0.34 0.00
RFZ 0.75 0.35 0.01

TABLE 31
AUC and F1-scores for valid and invalid bug reports of our approach in

comparison with the baselines in cross-project setting when using
Mozilla as source project. The best results are in bold.

Source & Target Project Approach AUC F1(v) F1(i)

Mozilla ⇒ Eclipse
Ours 0.74 0.88 0.35
SVMZ 0.62 0.73 0.41
RFZ 0.61 0.72 0.41

Mozilla ⇒ Netbeans
Ours 0.67 0.75 0.44
SVMZ 0.61 0.66 0.55
RFZ 0.59 0.62 0.56

Mozilla ⇒ Firefox
Ours 0.90 0.71 0.92
SVMZ 0.78 0.63 0.87
RFZ 0.77 0.63 0.88

Mozilla ⇒ Thunderbird
Ours 0.85 0.64 0.91
SVMZ 0.75 0.59 0.88
RFZ 0.74 0.58 0.88

TABLE 32
AUC and F1-scores for valid and invalid bug reports of our approach in

comparison with the baselines in cross-project setting when using
Firefox as source project. The best results are in bold.

Source & Target Project Approach AUC F1(v) F1(i)

Firefox ⇒ Eclipse
Ours 0.73 0.76 0.47
SVMZ 0.57 0.54 0.38
RFZ 0.62 0.46 0.37

Firefox ⇒ Netbeans
Ours 0.69 0.54 0.60
SVMZ 0.61 0.53 0.58
RFZ 0.62 0.54 0.58

Firefox ⇒ Mozilla
Ours 0.78 0.73 0.59
SVMZ 0.59 0.71 0.45
RFZ 0.63 0.64 0.48

Firefox ⇒ Thunderbird
Ours 0.85 0.62 0.92
SVMZ 0.71 0.56 0.90
RFZ 0.76 0.49 0.90

TABLE 33
AUC and F1-scores for valid and invalid bug reports of our approach in

comparison with the baselines in cross-project setting when using
Thunderbird as source project. The best results are in bold.

Source & Target Project Approach AUC F1(v) F1(i)

Thunderbird ⇒ Eclipse
Ours 0.73 0.78 0.48
SVMZ 0.56 0.53 0.37
RFZ 0.62 0.50 0.37

Thunderbird ⇒ Netbeans
Ours 0.70 0.53 0.61
SVMZ 0.61 0.52 0.59
RFZ 0.62 0.50 0.59

Thunderbird ⇒ Mozilla
Ours 0.73 0.73 0.53
SVMZ 0.58 0.70 0.44
RFZ 0.60 0.67 0.48

Thunderbird ⇒ Firefox
Ours 0.87 0.65 0.90
SVMZ 0.74 0.61 0.89
RFZ 0.78 0.56 0.89

We calculate the average AUC scores for each target
project. On average, our approach achieves an AUC score of
0.74, 0.69, 0.75, 0.85 and 0.82 for Eclipse, Netbeans, Mozilla,
Firefox and Thunderbird, respectively. Also, we compare the
AUC scores of our approach shown in Tables 29–33 and the
average AUC scores of our approach in the within-project
setting shown in Table 8. Table 34 presents the ratio values
between the AUC scores of our approach in this setting
and the average AUC scores of our approach in the within-
project setting for our five datasets. As shown in the table,
in terms of AUC, our approach can achieve at least 88% of
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TABLE 34
The ratio values between the AUC scores of our approach in the cross-project setting and the average AUC scores of our approach in the

within-project setting.

Source Project
Target Project Eclipse Netbeans Mozilla Firefox Thunderbird

Eclipse - 96% 89% 92% 94%
Netbeans 97% - 88% 94% 94%
Mozilla 97% 92% - 103% 101%
Firefox 96% 95% 94% - 101%

Thunderbird 96% 96% 88% 100% -

the performance that our approach achieves in the within-
project setting.

From Table 34, we find that in most cases, AUC scores of
our approach in the cross-project setting are slightly lower
than AUC scores of our approach in within-project setting.
In Section 4.3, we find that textual features of bug reports are
very important for our approach when identifying valid bug
reports. Textual contents of bug reports in different projects
are likely to be different. Words frequently appearing in
bug reports of one project may not frequently appear in
bug reports of other projects. For example, we find that the
word “launcher” appears in 5.8% of the bug reports in our
Eclipse dataset while in the other datasets, only up to 0.2%
of the bug reports contain this word. As a result, the textual
features may have a bias in the cross-project setting, which
causes the performance of our approach worse than the
performance in within-project setting. Moreover, in Table 34,
we also notice that when we use Mozilla as target project,
the ratio values are lower as compared to other projects.
This may due to that training data we use is not sufficient—
compared with the Mozilla dataset, the other four datasets
contain much less bug reports.

5.8 Threats to Validity

Threats to internal validity refer to errors in our datasets
and implementation code. We have double-checked the
code. However, there may still exist some errors which we
did not find.

Developers can reopen bug reports and modify their
status and resolution, which may introduce a threat to labels
of our datasets. Status and resolution of a bug report may be
changed many times in its history. In this study, we focused
on the final status and resolution of bug reports until the
time we collected our datasets (i.e., May 2017). And we
analyzed the severity of the threat that is introduced by
reopening bug reports on our datasets. We found that for
at least 96% of the bug reports, their status and resolution
remained unchanged until the time that we collected our
datasets—c.f., Section 3.1 for details. Thus, developers are
unlikely to reopen most of the bug reports of our datasets.
We believe that labels of at least 96% of the bug reports in
our datasets are reliable.

In this paper, we consider non-reproducible bug reports
whose final resolution is WORKSFORME as invalid. In
practice, developers may have to fix a non-reproducible bug.
In this case, we cannot simply consider a non-reproducible
bug report as invalid. However, since we focused on the final
status and resolution of bug reports, the bug reports that
were once considered as non-reproducible (with a resolution

of WORKSFORME) but resolved later with a final resolution
of FIXED or WONTFIX are actually considered as valid
in our study. Hence, we have considered the valid non-
reproducible bug reports. Nevertheless, the bug reports with
a final resolution of WORKSFORME may still include valid
ones that report real bugs, which may introduce a bias into
our study.
Threats to external validity refer to the generality of
our approach. In this paper, we analyzed five bug report
datasets from Eclipse, Netbeans, Mozilla, Firefox and
Thunderbird. The datasets contain a total of 560,697 bug
reports. The datasets have different class distributions.
And across the five datasets, our approach achieves better
performance than the baselines. Thus, we believe that our
approach can achieve good performance for datasets of
different class distributions. Moreover, in Section 5.7, we
presented that our approach can achieve better performance
than the two baselines in the cross-project setting.

The five studied projects are GUI-based. Bug report
for projects without GUIs may be different. Future studies
should re-examine our finding on projects that are not GUI-
based.
Threats to construct validity refer to the suitability of
the evaluation measure. In this paper, we mainly used
AUC and F1-scores for valid and invalid bug reports as our
evaluation measure. The AUC and F1-scores are widely
used evaluation measures in past software engineering
studies [28], [47], [59], [61], [97]. Therefore, we believe that
there exists little threat to construct validity of our study.

6 RELATED WORK

In this section, we describe the related studies on valid
bug determination, bug report quality and bug report
management.

6.1 Study on Valid Bug Determination

To our best knowledge, Zanetti et al.’s study [99] is the
most related work to our paper on valid bug determination.
Zanetti et al. proposed the usage of collaboration network
to determine valid bugs in open source projects. They
constructed collaboration networks based on ASSIGN
and CC relations of bug reports. Then, they extracted
nine features for bug reporters from the networks, e.g.,
closeness centrality and clustering coefficient. After that,
they built models based on their extracted features to
determine the validity of a bug report. Our approach
considers more features that are not considered by Zanetti
et al., We not only extract features from collaboration
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network, but also from reporter experience and bug report
contents. We combine features which are grouped along five
dimensions (i.e., reporter experience, collaboration network,
completeness, readability and text), and our approach
statistically significantly improves two baselines based on
Zanetti et al.’s features (i.e., SVMZ and RFZ) in terms of
AUC and F1-scores for valid and invalid bug reports.

6.2 Studies on Bug Report Quality

There have been number of studies on bug report
quality [19], [36], [43], [50], [51], [66], [85], [101], [104].

Hooimeijer et al. identified high-quality bug reports as
those with short resolution time and proposed quantitative
and qualitative features extracted from bug reports to
model bug report quality. [36]. They mainly focused on
bug-fixing time prediction. Linstead et al. proposed an
unsupervised technique to estimate bug report quality using
Latent Dirichlet Allocation [50]. They identified bug reports
with coherence topic as high-quality ones. In this paper, we
identify valid bug reports according to their resolution field
and we focus on determining the validity of a bug report,
which is different from their studies.

Zimmermann et al. studied characteristics of good bug
reports by surveying developers [104]. In the survey, they
asked developers which characteristics of bug reports they
most needed when they triaged and fixed bugs. They also
proposed an automated technique called CUEZILLA which
could analyze bug report quality and categorize bug reports
into five levels (from very bad to very good). However, they
trained CUEZILLA based on a very small dataset—only
289 bug reports. Unlike Zimmermann et al., we study the
most important characteristics of valid bug reports by means
of analyzing large-scale bug report datasets collected from
five open source projects. Moreover, we not only consider
extracting features from bug report contents, but also from
submission history of reporters and their activities in the
collaboration process of the project.

Recently, Chaparro et al. proposed an automated
technique to help improve the quality of bug reports [19].
Their technique can detect missing information including
observed behavior, expected behavior and steps to
reproduce in description of the bug reports. By doing this,
the technique can further alert the reporters about the
detected missing information. They found 154 discourse
patterns which are frequently used by reporters to describe
the three types of information. Based on these patterns, they
used regular expressions, heuristics and machine learning-
based methods to automatically detect missing information
of bug reports. In this paper, we detect six types of technical
information in description of bug reports including stack
traces, steps to reproduce, code samples, patches, test cases
and screenshots. We use several regular expressions, words
and phrases to detect the information. Our method is simple
and straightforward. However, since reporters may not
explicitly describe technical information in bug reports (e.g.,
steps to reproduce) [19], our method may lead to more false
negatives as compared to Chaparro et al.’s method.

In addition to Chaparro et al.’s study, many studies are
also conducted on improving bug report quality. Weimer
et al. proposed an algorithm to automatically construct

patches and they found that bug reports accompanied
by patches were three times as likely to be fixed as
standard bug reports [85]. Just et al. conducted a survey on
information needs and commonly faced problems with bug
reporting among several hundred developers [43]. Then,
they suggested improvements to make bug tracking systems
easier to use and facilitate submission of high-quality bug
reports. Schroter et al. provided empirical evidence of the
usefulness of stack traces in bug reports by statistically
analyzing bug reports from Eclipse [66]. Lotufo et al.
investigated whether Stack Overflow’s game mechanisms
are effective in increasing bug report quality [51]. They
found that the game mechanisms are effective in such
capabilities, and they suggested that bug tracking systems
should be improved with game mechanisms. Zhang et al.
found that many bug reports have limited information
and proposed a sentence ranking algorithm to select
proper contents for bug report enrichment [101]. Our study
is different from these studies. These studies focus on
improving bug report quality, while in our paper, we focus
on analyzing the validity of a bug report and determining
whether a bug report is valid.

6.3 Studies on Bug Report Management

There are other studies that have been proposed to help
developers deal with a large number of bug reports. We
highlight past studies on bug assignment, duplicated bug
detection, severity prediction, and reopened bug prediction.

1) Bug Assignment: There have been a number of studies
on bug assignment [4], [40], [57], [72], [77], [93]. Murphy
et al. and Anvik et al. leveraged machine techniques such
as Naive Bayes and SVM to recommend bug fixers [4],
[57]. Tamrawi et al. proposed a fuzzy-based approach
to recommend fixers [77]. Jeong et al. investigated bug
reassignment phenomenon in Eclipse and Mozilla [40]. And
they proposed the usage of tossing graph to recommend bug
fixers. Shokripour et al. proposed a two-phase local-based
approach which used simple term filtering and weighting
to recommend developers [72]. Xia et al. extended Latent
Dirichlet Allocation (LDA) and proposed a specialized topic
modeling algorithm for bug assignment [93].

2) Duplicate Bug Detection: There have been a number
of studies on duplicate bug report detection [58], [75], [76],
[84]. Wang et al. identified duplicate bug reports using
natural language and execution information present in bug
reports [84]. Sun et al. proposed a discriminative model
based on features for duplicate bug report detection [76].
The model was based on features they extracted from
duplicate and non-duplicate bug reports. Then they use the
likelihood scores output by the model to rank existing bug
reports given a new report. In their other work, Sun et al.
proposed a retrieval function called REP to measure the
similarity between two bug reports [75]. They considered
a number of special features of duplicate bug reports and
extended BM25F—an effective retrieval function proposed
in the information retrieval (IR) community. Nguyen et al.
proposed a duplicate bug report detection approach taking
advantage of both IR-based and topic based features [58].

3) Severity Prediction: There have been a number of
studies on bug severity prediction [47], [55], [80]. Menzies
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et al. proposed an automated method which could assign
severity levels to bug reports using multi-class classification
techniques [55]. Lamkanfi et al. extended Menzies et al.’s
work by predicting the severity of bug reports into two
severity labels, i.e., severe and not severe [47]. In a later
work, Tian et al. proposed an approach to predict fine-
grained severity labels of bug reports using information
retrieval techniques and nearest neighbor classification [80].

4) Reopened Bug Prediction: There have been a number
of studies on reopened bug prediction [70], [71], [95], [103].
Shihab et al. proposed the problem of identifying reopened
bugs and they used machine learning techniques to predict
reopened bugs in Eclipse, Apache and OpenOffice [70],
[71]. Zimmermann et al. performed an empirical study
on reopened bugs and analyzed their root causes in the
Microsoft Windows operating system [103]. Xia et al.
proposed a composite approach which combines various
features to improve the performance of reopened bug
prediction [95].

7 CONCLUSION

In this paper, we propose an approach to determine whether
a newly submitted bug report is valid or invalid. We extract
33 features to characterize a bug report; these features
are grouped along five dimensions: reporter experience,
collaboration network, completeness, readability and text.
Then, we use random forest to build models. To investigate
the effectiveness of our approach, we conduct an experiment
on large-scale bug report datasets from five open source
projects containing a total of 560,697 bug reports. Our
experimental results show that across the five datasets,
our approach achieves an average F1-score for valid bug
reports and F1-score for invalid ones of 0.74 and 0.67,
respectively. In terms of F1-score for valid bug reports,
our approach outperforms SVMZ and RFZ by 9% and
12%, respectively. And in terms of F1-score for invalid
bug reports, our approach outperforms SVMZ and RFZ
by 34% and 29%, respectively. Furthermore, our approach
achieves an average AUC of 0.81, which outperforms SVMZ
and RFZ by 33% and 19%, respectively. Our experimental
results show that our approach statistically significantly
outperforms the two baselines by a substantial margin. We
also find that among the 33 features, desc-dmnb-score, valid-
rate and summary-dmnb-score are the most important ones
that distinguish valid bug reports from invalid ones.

In the future, we plan to evaluate our approach with
more bug reports from more software projects. And we
also plan to study more features that can impact validity
of bug reports, and design a better approach to improve the
performance further.
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