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Influence maximization (IM), which selects a set of k seed users (a.k.a., a seed set) to maximize the influence
spread over a social network, is a fundamental problem in a wide range of applications. However, most ex-
isting IM algorithms are static and location-unaware. They fail to provide high-quality seed sets efficiently
when the social network evolves rapidly and IM queries are location-aware. In this article, we first define two
IM queries, namely Stream Influence Maximization (SIM) and Location-aware SIM (LSIM), to track influential
users over social streams. Technically, SIM adopts the sliding window model and maintains a seed set with
the maximum influence value collectively over the most recent social actions. LSIM further considers social
actions are associated with geo-tags and identifies a seed set that maximizes the influence value in a query
region over a location-aware social stream. Then, we propose the Sparse Influential Checkpoints (SIC) frame-
work for efficient SIM query processing. SIC maintains a sequence of influential checkpoints over the sliding
window and each checkpoint maintains a partial solution for SIM in an append-only substream of social ac-
tions. Theoretically, SIC keeps a logarithmic number of checkpoints w.r.t. the size of the sliding window and
always returns an approximate solution from one of the checkpoint for the SIM query at any time. Further-
more, we propose the Location-based SIC (LSIC) framework and its improved version LSIC, both of which
process LSIM queries by integrating the SIC framework with a Quadtree spatial index. LSIC can provide ap-
proximate solutions for both ad hoc and continuous LSIM queries in real time, while LSIC™ further improves
the solution quality of LSIC. Experimental results on real-world datasets demonstrate the effectiveness and
efficiency of the proposed frameworks against the state-of-the-art IM algorithms.
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1 INTRODUCTION

Social media advertising has become an indispensable tool for many companies to promote their
business online. Such trends have generated $39.94 billion in advertising revenue for Facebook in
2017 alone.! Influence Maximization (IM) is a key algorithmic problem behind viral marketing [12,
22] on social media. Through the word-of-mouth propagation among friends, IM aims to select
a set of k seed users (a.k.a., a seed set) such that the source information (e.g., advertisement) is
maximally spread in the network, and it has been extensively studied [5, 8, 9, 14, 17, 19, 21, 22,
33, 36, 37, 44-46, 49] in the past decade. Besides viral marketing, IM is also the cornerstone in
many other important applications, such as sensor placement [25], rumor control [7], and social
recommendation [31, 53].

Conventional IM algorithms [5, 9, 21, 22, 37, 44-46, 49] have two limitations. First, they as-
sume the social influences among users are static and persistent. In particular, they consider the
topology of the social network is fixed and the influence probabilities that are pre-trained from
historical user actions in the social network [18, 24, 34, 40] remain unchanged for a long period.
However, social influence is highly dynamic in reality and the propagation tendencies between
users can be altered drastically by breaking news and trending topics. Consequently, it is not easy
for conventional IM algorithms to capture the dynamics of social influences in real time and the
seed set may be outdated. Second, they ignore the spatial information of influenced users for seed
set selection. Enabled by the prevalence of positioning devices, geo-tagged user actions in social
networks are massively generated from smart phones and wearable devices. The positioning in-
formation enables vast opportunities to provide new services to end users [51, 54, 56]. As such,
there is an emerging demand on utilizing the geo-tagged user actions in social networks to drive
the growth in location-based advertising, where the targeted users are located in a spatial region
specified by an advertiser. The overall market value of location-based advertising has reached $9.8
billion in 2015 and is expected to grow to $29.5 billion in 2020.2 To meet this new demand, we
need to retrieve the seed set with the maximum influence in a specific region instead of the whole
network, which cannot be efficiently handled by conventional IM algorithms.

There have been some research efforts on both location-aware IM [20, 26, 28, 47, 48, 57] and
dynamic IM [1, 10, 38, 52, 58]. Nevertheless, existing methods do not fully satisfy the requirements
of real-world propagation campaigns. Existing location-aware IM algorithms only work in
the static setting where both social influences and user locations are not changed over time.
Meanwhile, the state-of-the-art dynamic IM algorithms still suffer from efficiency issues to handle
massive number of continuously generated social actions [38, 52]. In real-world scenarios, viral
campaigns are often both time-critical and location-aware. For example, a restaurant uses online
social networks to promote its one-day special offer to attract customers. It is important to target
the customers who are both spatially and temporally relevant to this offer. More specifically,
attracting users who are located near the restaurant and being active lately is more beneficial
than attracting those who are far and silent for the promotion. To maximize market reach and
attract more potential customers, it needs to identify a group of influential users with the maximal
influence among targeted consumers in real time, who are used as the seed set to initiate the
spread of the promotion. However, to the best of our knowledge, none of the existing techniques
can handle the case where IM queries are both time-critical and location-aware.

To resolve the aforementioned drawbacks, we first propose a novel Stream Influence Maximiza-
tion (SIM) query to track the influential users in a social network. SIM utilizes the widely available
user actions (e.g., tweets/retweets) to estimate the social influences and maintains the seed set

Thttps://investor.fb.com/financials/default.aspx.
Zhttp://www.biakelsey.com/location-targeted-mobile-ad-spend-reach-29-5b-u-s-2020.
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continuously over streams. Specifically, SIM adopts the sliding window model [11], which always
considers the most recent N actions. It strives to find a set of k seed users who collectively have
the maximum influence value in the sliding window at any time. In addition, SIM supports general
monotone submodular functions to compute the influence values as such functions are often used
to represent the “diminishing returns” property of social influences in various IM problems [19,
22, 26, 27, 47]. Furthermore, we define the Location-aware SIM (LSIM) query for influential users
tracking over geo-tagged social streams. LSIM also adopts the sliding window model and mono-
tone submodular influence functions. Different from SIM, it focuses on maximizing the region-
constrained social influence. Given a spatial region R, LSIM only considers a subset of geo-tagged
actions (e.g., tweets/retweets with locations), which are both active and located in R. LSIM returns
a seed set with the largest influence value over the substream of actions in R. It is noted that the
seed users may not perform any action in R themselves.

Since SIM and LSIM are NP-hard, we focus on processing them approximately with theoret-
ical bounds. Leveraging the monotonicity and submodularity of influence functions, the greedy
algorithm [35] can provide (1 — 1/e)-approximate solutions for both queries. However, it requires
O(k - |U|) (where |U] is the number of users in the social network) influence function evalua-
tions for each update. Empirically, it takes around 5s to select 50 seed users from a network with
500K users, which hardly matches the rates of real-world social streams. Another related tech-
nique is Streaming Submodular Optimization (SSO) [3, 23]. Existing SSO algorithms [3, 23] can
provide (1/2 — f)-approximate solutions for maximizing submodular functions with cardinality
constraints in append-only streams. However, they cannot be directly used in the sliding window
model as they do not handle the expiry of actions.

In this article, we first propose a novel Sparse Influential Checkpoints (SIC) framework to pro-
cess SIM queries efficiently with theoretical bounds. SIC maintains a sequence of partial solutions
called influential checkpoints with different starting points for SIM. We design a generic Set-Stream
Mapping (SSM) interface for each checkpoint to adapt e-approximation SSO algorithms for SIM
such that a checkpoint also maintains an e-approximate solution for SIM over its append-only
sub-stream. To answer SIM for each window, SIC just returns the solution from the earliest check-
point, which does not expire yet. Leveraging the monotonicity and subadditivity of the influence
values returned by different checkpoints, given the parameter f € (0, 1), SIC only keeps O(IOgTN)
influential checkpoints and maintains an £(1 — §)-approximate solution for SIM.

Apparently, SIC does not consider the spatial information and thus cannot be used to process
LSIM queries directly. Therefore, we propose the Location-based SIC (LSIC) framework that pro-
cesses LSIM queries by integrating the SIC framework with a Quadtree spatial index. LSIC can
process both continuous and ad hoc LSIM queries, but in different ways. A continuous LSIM tracks
a seed set to maximize the influence value in a query region R over a period of time. LSIC sets up an
SIC instance for each continuous LSIM and registers the instance in Quadtree. During the stream
processing, if any arrival action is located in R, the instance will receive the action and update
the seed set accordingly. It is guaranteed that the SIC instance processes all actions in R over the
time interval and always maintains an (1 — f§)-approximate solution for any continuous LSIM.
An ad hoc LSIM requests a seed set with the maximum influence value in the query region R for
the sliding window at the query time. The method for continuous LSIM cannot be applied to ad
hoc LSIM, as the regions of interest are not known in advance. Thus, to process ad hoc queries,
LSIC maintains SIC instances in Quadtree nodes over streams. Given an ad hoc LSIM, LSIC first
finds the SIC instance that are maintained in the maximum Quadtree node covered by the query
region as a partial solution. Then, it feeds the remaining actions in the query region to the par-
tial solution to obtain the final solution. Theoretically, the final solution returned by LSIC is also
(1 — p)-approximate for any ad hoc LSIM.



Although LSIC can efficiently process LSIM queries in real time, the seed quality of LSIC is
often inferior to that of state-of-the-art static IM methods. Hence, we propose LSIC* to improve
upon LSIC. LSIC* maintains the same Quadtree spatial index and SIC instances in Quadtree nodes
as LSIC. But it employs an improved approximation algorithm to process LSIM queries: for any
continuous or ad hoc LSIM, LSIC* first acquires the top-k’ (k” > k) influential users in the query
region from the Quadtree and the SIC instances in Quadtree nodes. Then, it runs a THRESHOLDING
algorithm [4] to retrieve the seed set from the top-k” users. LSIC* can achieve abetter (1 — 1/e — y)-
approximation factor for any y € (0, 1) if k" is sufficiently large. Empirically, the seed set returned
by LSIC* is of significant higher quality than LSIC.

Finally, we evaluate the performance of the proposed frameworks on real-world datasets. First,
for SIM processing, SIC can provide seed sets with at least 96% quality compared with the state-
of-the-art static IM approaches while achieving up to 178X speedups over them. Second, for both
continuous and ad hoc SIM processing, the seed sets of LSIC and LSIC* achieve at least 89% and
94% quality, respectively, compared with the state-of-the-art static IM approaches, and both meth-
ods demonstrate over two orders of magnitude speedups. LSIC* runs slightly slower than LSIC for
continuous LSIM. Nevertheless, the average latency of LSIC* to process an ad hoc LSIM is equiv-
alent to or even better than LSIC. Moreover, both LSIC and LSIC™ process at least 5K actions per
second for continuous LSIM and handle ad hoc LSIM queries within 150ms, which can meet the
demand for real-time query processing in real-world social streams.

Our main contributions in this article are summarized as follows.

e We address the limitations of existing IM methods for fast evolving and location-based social
networks and define the SIM and LSIM queries over sliding windows.

e We develop the SIC framework for efficient SIM processing. Theoretically, SIC provides
£(1 — p)-approximate solutions for SIM.

e We devise LSIC and LSIC™ to process continuous and ad hoc LSIM queries efficiently. LSIC
can provide solutions with the same £(1 — f8)-approximation for LSIM. LSIC* substantially
improves the seed quality of LSIC and achieves a (1 — 1/e — y)-approximation factor for
LSIM when k’ is sufficiently large.

e We demonstrate the effectiveness and efficiency of the proposed frameworks by extensive
experiments on real-world datasets.

The rest of this article is organized as follows. Section 2 reviews the related work. Section 3
formally defines the SIM and LSIM queries over sliding windows. Then, Section 4 presents the
SIC framework for SIM processing. Next, Section 5 introduces the LSIC and LSIC* frameworks for
LSIM processing. Section 6 reports the experimental setup and results. Finally, Section 7 concludes
the whole article and discusses the future work.

2 RELATED WORK

We summarize the literature related to this work from three areas, namely influence maximization,
streaming submodular optimization, and function estimation over sliding windows.

Influence Maximization in Social Networks. There has been a vast amount of literature
on influence maximization (IM) [5, 8-10, 16, 17, 19-22, 26, 33, 3638, 44-47, 49, 52, 58] over the
last decade (see Reference [30] for an extensive survey). Kempe et al. [22] are among the first to
formulate IM as an optimization problem. They prove that the influence functions are monotone
and submodular under two classical diffusion models, i.e., Independent Cascade (ICM) and Lin-
ear Threshold (LTM). Due to the NP-hardness of IM, they propose a (1 — 1/e — ¢)-approximation
greedy framework for IM. After the seminal work, many techniques have been proposed to im-
prove the efficiency of the greedy framework. The state-of-the-art static IM method under ICM



and LTM is Reverse Influence Sampling (RIS) [5, 21, 37, 44, 45, 49]. IMM [44] is a typical RIS-
based algorithm for IM. It improves the efficiency of the original RIS [5] algorithm by reducing
the sampling complexity and achieves nearly linear running time w.r.t. the graph size while re-
taining the (1 — 1/e — ¢)-approximation ratio. In the experiments, we use IMM as the baseline for
static IM.

Recently, IM is extended to various location-aware problems by considering different spatial
contexts [20, 26, 28, 41, 47, 48, 57]. Li et al. [26] first define a location-aware IM problem by finding
a seed set to maximize the influence spread over users in a query region. They adopt the PMIA [9]
model for influence estimation and propose efficient algorithms to provide (1 — 1/e)-approximate
solutions for location-aware IM under PMIA. Li et al. [28] model users’ geographical preferences
based on their check-in behaviors and propose a location-aware IM problem to maximize the in-
fluence weighted by users’ preferences to the query region. They propose a community-based
heuristic algorithm for the problem. Wang et al. [47, 48] propose distance-aware IM to maximize
the influence w.r.t. a query position. They consider the influence over users decrease with their
distances to the query position and aim to find the seeds to maximize the distance-aware social in-
fluence. They extend both PMIA [47] and RIS [48] based methods for the problem. Zhou et al. [57]
study the location-based IM problem in the Online to Offline (O20) environment. Guo et al. [20]
study the IM problem in case of trajectory databases.

However, the above methods for both conventional and location-aware IM are based on static
social influences. They cannot efficiently support highly evolving networks, because a complete
rerun is required for every update. Meanwhile, there are emerging studies about dynamic IM on
evolving graphs. Chen et al. [10] propose an Upper Bound Interchange (UBI) heuristic to track
the seed set over a sequence of snapshot graphs. Nevertheless, UBI cannot provide any theoret-
ical guarantee for seed quality and its performance degrades dramatically when the size of the
seed set increases [50]. Dynamic IM algorithms with theoretical bounds are presented in Ref-
erences [38, 52]. They maintain RIS-based [5] indices against graph changes and guarantee the
same (1 — 1/e — ¢)-approximation for IM. Due to the high maintenance cost, they only process
several hundred graph updates per second, which cannot meet the requirement of real-world so-
cial streams. Subbian et al. [43] propose a method to compute users’ influence scores and identify
the influencers over social streams. Different from IM, they define a top-k query to track a set
of users with the highest influence scores over social streams without considering the influence
overlaps between different users. There are several studies on incorporating temporal dynamics
into the IM problem. For example, Gomez-Rodriguez et al. [16, 17] and Tang et al. [44] study IM
under the continuous-time diffusion model. However, both studies focus on modeling the tempo-
ral dynamics of the diffusion process and maximizing the influence spread within a given time
constraint. They do not take into account the evolving of social influences over time, and thus are
orthogonal to SIM and LSIM proposed in this article.

Streaming Submodular Optimization(SSO). Existing SSO [2, 3, 23, 39] algorithms adopt the
append-only streaming model where elements arrive one by one and dynamically maintain a set
of at most k elements to maximize a submodular function w.r.t. the observed elements. Saha et al.
[39] and Ausiello et al. [2] develop two methods for a special case of SSO (i.e., the online Maxi-
mum k-Coverage problem) with the same 1/4-approximation. The state-of-the-art algorithms for
SSO are SIEVESTREAMING [3] and THRESHOLDSTREAM [23], both of which achieve a (1/2 — f)-
approximation for any f > 0. Unfortunately, these algorithms cannot be directly applied to the
sliding window model, because they do not handle the continuous expiry of elements. Neverthe-
less, we will show that they can serve as checkpoint oracles for SIC in Section 4.1.

Very recently, Epasto et al. [13] propose algorithms for SSO over sliding windows. Although
the (1/3 — f)-approximation algorithm in Reference [13] is similar to SIC, they have two major



differences. First, the algorithm is designed for the Set-Stream model instead of social action
streams. Second, it is specific for THRESHOLDSTREAM and cannot be adapted to other SSO
algorithms. Different from Reference [13], SIC adopts the Set-Stream Mapping (SSM) interface to
handle social action streams and can use different SSO algorithms as checkpoint oracles.
Function Estimation over Sliding Windows. Several techniques [6, 11] are proposed to con-
tinuously estimate a function over sliding windows. They leverage some special properties of tar-
get functions to achieve sublinear performance and provable quality. Let g be the target function
and A, B, C be three sequences in a stream such that B is a tail subsequence of A and C is con-
tiguous to B. The exponential histogram [11] is proposed to approximate weakly additive func-
tions, i.e., g(A) + g(C) < g(AU C) < Cr(g(A) + g(C)) for some Cr > 1. The smooth histogram [6]

requires the target functions to be (a, f)-smooth. Specifically, g is (a, f)-smooth if % >1-p

o BUC
implies ZE AUC;

histograms are applicable only when g can be computed with an approximation ratio of at least
0.8 over append-only streams. In this article, we adopt monotone submodular functions [22] that
are widely used in the social influence analysis. However, such functions are not weakly additive
and no SSO algorithm can achieve an approximation ratio of better than (1 — 1/e) = 0.63 unless
P=NP. This implies that both techniques cannot be directly applied to our scenario.

> 1— «a for some 0 < f§ < a < 1. Following the analysis in Reference [13], smooth

3 PROBLEM DEFINITION
3.1 Influence in Social Streams

In this subsection, we introduce the concept of influence in social action streams, formally define
the influence set of a user or a set of users in the sliding window model, and consider the influence
function defined on the influence set.

Let Abe a social stream over a social network with a set U of users. The social stream A comprises
unbounded time-sequenced social actions {ay, ay, . . .}, which are generated by user activities. Let
a; = (u,ap); (t' <t) be an action at time t representing the following social activity: A user u
performs a; at time t responding to an earlier action ay. If an action a; does not respond to any
previous action, e.g., a user u posts original content, then we call it a root action and denote it by
a; = (u, nil);. In alocation-based social network, a; is associated with a spatial location p; (x¢, y;) €
R? representing that a, is performed at p;. For example, “tweet” and “retweet” on Twitter are
typical social actions. A tweet/retweet will have a geo-tag if the user posts it from a geo-position
enabled device and allows for position sharing.

Like many data streams, social streams are time-sensitive: recent actions are more valuable than
older ones. We adopt the well-recognized sequence-based’ sliding window [11] model to capture
such essence. Let N be the window size, a sequence-based sliding window W; maintains the latest
N actions till a; in the stream, i.e., W; = {a;_N+1, . - ., a;}. For simplicity, we use W;[i] to represent
the ith (i € [1, N]) action within W;. Then, we use U; C U to denote the set of active users who
perform at least one action in Wy, ie., Uy = {W;[i]l.uli=1,...,N}.

Since social actions can directly reflect the influence diffusion in the social network [18, 19, 24,
43], we define the influence between users according to their performed actions. We say u influences
v in Wy, denoted by (u ~» v),, if there exists an action a performed by user v such that a € W; and
a is directly or indirectly triggered by an action a’ of u. Note that such an a’ is not necessarily in
W;.

We formally define the influence set of a user as follows.

3We only consider the sequence-based sliding window model in this article. But it is noted that the proposed frameworks
can be adapted to the time-based sliding window model trivially.



Definition 3.1 (Influence Set). The influence set of a user u € U at time ¢, denoted as I;(u) C Uy,
is the set of users influenced by u w.r.t. the sliding window at time ¢ (i.e., W;). Equivalently, I, (u) =
{vl(u ~ v):}.

Intuitively, the influence set of u denotes the set of users who recently perform actions under
the impact of u. The concept of the influence set can be naturally extended to a set of users. In
particular, let S = {uy, ..., ur} be a set of k users, the influence set of S w.r.t. W; is a union of the
influence sets of all its members, i.e., I;(S) = Uyesl;(u).

Furthermore, we define the region-constrained influence set in the context of geo-tagged social
action streams.

Definition 3.2 (Region-constrained Influence Set). Given a region R = [p!(x!,y}), p"(x",y")]
R?, the influence set I;(u, R) of u at time t in R is a subset of I;(u) consisting of the users who
perform an action a; such that p; € R (i.e., x; € [x!,x"] Ay, € [y}, y"]) and a; is triggered by a,
of u. The concept of region-constrained influence sets for a set of users can be defined similarly,
ie, I;(S,R) = Uyesl;(u, R).

Given a set S of users, the influence function is defined on its influence set I;(S). The in-
fluence value of S is measured by a set function f(I;(-)) : 2!V = Ry, which is nonnegative,
monotone* and submodular’. Such functions are widely accepted as the influence functions for
IM due to its natural representation of the “diminishing returns” property of the social influ-
ence [22]. We also extend the definition of the influence function to region-constrained influence
sets. Given a set S of users and a region R, the influence value of S in R is given by a function
f:(-,-) : 2IV x (R?, R?) — Rs. Obviously, given any specific region R, the location-aware in-
fluence function f(I;(:, R)) retains the monotonicity and submodularity of f(I;(-)).

For ease of presentation, we consider the cardinality functions, i.e., f(I;(S)) = |[I;(S)| and
f(I:(S,R)) = |I:(S, R)|, as the influence functions in the remaining of this article. It is noted that
any other monotone submodular influence functions can also be adopted similarly. Example 3.3
illustrates the concept and computation of social influences over sliding windows.

Example 3.3. We consider an example for social stream as shown in Figure 1. Given the window
size N = 8, the sliding windows at time 8 and 10, i.e., W3 and W)y, are highlighted by red and green
boxes, respectively. The influence set of u; at time 8 is Ig(u;) = {uy, up, us} as ay, a¢ are performed
by u; and ay, a4 performed, respectively, by u,, us are triggered by a; in Ws. When the window
slides from W; to Wy, a; and a, expire while ag and ay arrive. Then, I1o(u1) = {u1, us}, because u,
is deleted from Iy (u;) for the expiry of a,. However, since a4 has not expired yet, u; still influences
u3 in Wy regardless of the expiry of a;.

The social actions in Figure 1 are associated with positions in two-dimensional space [0, 8]%.
Given a region R =[(3,3),(7,7)] (see the blue box in Figure 1(b)), the influence set of u; is
Is(u1, R) = {us},because ps € Rand py, ps ¢ R. When the window slides from W to Wy, I1o(u1, R) =
{us} remains unchanged as a4 does not expire at time 10 and po, p1o € R.

3.2 Influence Maximization Query

In this subsection, we define the Stream Influence Maximization (SIM) and Location-aware Stream
Influence Maximization (LSIM) queries over social streams based on the concepts introduced in
Section 3.1. We then prove the NP-hardness of retrieving the optimal solutions for both queries.

4A set function g is monotone iff for all A C B, g(A) < g(B).
%A set function g is submodular iff for all A C B, and any element x ¢ B, g(A U {x}) — g(A) > g(BU {x}) — g(B).



(a) Social Actions (b) Influences and Positions

Action Position 0 X 8
a; <uy nil>, (1,1) a8 8
a, <U, a,>, (1, 3)
az <ug nil>, (6, 4)

a, <U a,;>, (5, 4)
ag <Uy az>s (4,7) y
ag <U;, a3>4 (2,1)
a; <Ug az>; (4, 5)
ag <U, a,>4 (3,6)
ag <U,, Nil>4 (1, 4)
a,y <Ug 89> (1, 5) 8

Fig. 1. Example for geo-tagged social action stream. In Figure (a), we list a sequence of 10 geo-tagged social
actions. In Figure (b), we illustrate the spatial information and social influence of these actions. The actions
are plotted at the coordinates of their positions and the influence relationships are represented by arrows.

As new actions arrive at high speed while old ones expire at the same rate, users with the largest
influence values keep evolving over time. To track the influential users over social streams in real
time, we propose the Stream Influence Maximization (SIM) query as follows.

Definition 3.4 (SIM). Let W; be the sliding window at time ¢. Given k € Z*, an SIM ¢, (k) is a query
that returns a set of at most k seed users S; (we use OPT; = f(I;(S})) to denote its influence value)
who collectively have the maximum influence value w.r.t. Wy, ie., S} = argmaxgscy.s|<kf (I:(S))-

Extending SIM in the context of geo-tagged social streams, we define the Location-aware Stream
Influence Maximization (LSIM) query as follows.

Definition 3.5 (LSIM). Let W; be the sliding window at time ¢. Given k € Z* and a region R,
an LSIM gq,(k,R) is a query that returns a set of at most k seed users® S, g (we use OPT g =
f: (S;‘ g» R)) to denote its influence value) who collectively have the maximum influence value in
Rw.rt. W, ie, S:,R = argmaxscy.is|<k f (¢ (S, R)).

We consider both ad hoc and continuous LSIM queries in this article. An ad hoc query g, (k, R)
at time ¢ retrieves the set of seed users who have the largest influence in R w.r.t. W;. A continuous
query qps,,.,](k, R) registered at #; and unregistered at t, tracks the set of seed users who have the
maximum influence in R at any time ¢ from t; to t,.

We continue with the example in Figure 1 to show how SIM and LSIM keep track of the most
influential users over the sliding window.

Example 3.6. An SIM query gg(2) returns Sg = {uy, us}, because I3(S;) = Is(u1) U Is(u3) contains
all users in Us. We have OPTy = f(I3(S;)) = 5 if the cardinality function is used. After a;, a; expire
and ay, ayo arrive at time 10, f(I10(S3)) = 4 as uy is deleted from I,y (Sg). Thus, q19(2) returns 7, =
{uz, u3} for Wy, because I1o(S},) contains all users in Uyy. We have OPTy, = 6 accordingly.

Given R = [(3,3),(7,7)], an LSIM query gs(2, R) returns Sg.r = {us}, because u3 influences all
users who perform actions in R w.r.t. Ws. We get OPTs g = 3.In addition, 1‘0’ g = lus}and OPTyg r =
3 are not changed from time 8 to 10.

®It is noted that the seed users may not perform any action themselves in region R.



Table 1. Frequently Used Notations

Symbol Definition and Description
U the set of users in a social network
A={ay,as,...} an unbounded sequence of social actions in a social network

ar =u,ay);

an action a; € A performed by u € U at time ¢ triggered by ay
(t' <)

pr(xs,ys) a; is performed at p; with longitude x; and latitude v,

N the size of the sliding window

Wi, W [i] the sliding window at time t and the ith action in W;

R A region R = [p’, p"] denoting a rectangle defined by diagonal

corners p'(x!, y") and p" (x", y")

I (u), I (S)

the influence set of a user u or a set of users S w.r.t. W;

It(u, R),It(S, R)

the region-constrained influence set of u or S in R w.r.t. W;

L[i]()

the influence set of u or S for contiguous actions {W;[i], ..., W;[N]}

f@(), fUe ()

the location-unaware and location-aware influence functions

k the maximum size of the seed set for SIM and LSIM

q: (k) An SIM query at time ¢ with a cardinality constraint k

q:(k,R) An LSIM query at time ¢ with a cardinality constraint k and a query
region R

Sy, S;‘,R the optimal seed sets of g;(k) and gq;(k, R). We use OPT; and OPT;
to denote their influence values, respectively.

A[i] an influential checkpoint maintaining an e-approximate solution
for SIM w.r.t. contiguous actions {W;[i], ..., W[N]}

Syli] the optimal seed set of SIM w.r.t. contiguous actions

{(W[i], ..., W;[N]}. We use OPT;[i] to denote its influence value.

Then, we show the NP-hardness of SIM by reducing a well-known NP-hard problem, i.e., the
Maximum k-Coverage problem [15], to SIM in polynomial time. The NP-hardness of LSIM can be
proved accordingly, because SIM is a special case of LSIM when R is the full space.

THEOREM 3.7. SIM and LSIM are NP-hard.

Proor. We prove Theorem 3.7 by reducing a well-known NP-hard problem, i.e., Maximum k-
Coverage, to SIM. A Maximum k-Coverage instance consists of an positive integer k and a collection
of m non-empty sets S = {s1,52,...,8,}. It aims to find a subset S’ C S such that |S’| < k and
| Us,es sil is maximized. Any Maximum k-Coverage instance is reduced to a SIM instance as fol-
lows: Let t be the timestamp and G = Us,cgss; be the ground set. For any set s; € S, we create
an action a, = (u;, nil); where u; ¢ G. For each element e € s;, we create an action a; = (e, ay);
(t" < t). Next, we stream all created actions to SIM in the ascending order of ¢. Since the total num-
ber of created actions is O(m - |G|), the reduction is performed in polynomial time. Let the window
size N equal to the total number of created actions. Let S}, = {u;, ..., u;} be the optimal solution
of SIM w.r.t. Wy using the cardinality function. {s;,...,s;} will be optimal for the corresponding
Maximum k-Coverage instance as well. Thus, the reduction naturally follows. Finally, because SIM
is a special case of LSIM when R is the full space, LSIM is NP-hard as well. O

Before moving on to the remaining parts, we summarize the frequently used notations in
Table 1.



4 SPARSE INFLUENTIAL CHECKPOINTS

In this section, we present the Sparse Influential Checkpoints (SIC) framework for SIM. We first
describe the Set-Stream Mapping (SSM) interface for SIM over an append-only action stream in
Section 4.1. Then, we introduce the idea of the SIC framework, demonstrate its maintenance pro-
cedure, and analyze it theoretically in Section 4.2.

4.1 Set-Stream Mapping

A simple approach to SIM is the GREEDY algorithm [35] for submodular maximization with cardi-
nality constraints. Because the influence function is monotone and submodular, GREEDY can return
a (1 — 1/e)-approximate solution for SIM. As GREEDY does not store any intermediate result, it is
required to be rerun from scratch for each window slide. When the window slides from W,_; to
W;, we first update the influence sets of users according to the arrival and expired actions. Then,
GREEDY starts with an empty user set Sy = 0. At each iteration i (1 < i < k), it adds a user u to S;_;
maximizing f(I;(Si—; U {u})) — f(I;(Si-1)). After k iterations, Sy is returned the result. Although
it achieves the best approximation ratio, i.e., (1 — 1/e), for submodular maximization with cardi-
nality constraints [35], O(k - |U|) influence function evaluations are needed for every update. Such
an inefficient scheme cannot handle a large window size with new actions arriving rapidly.

To improve the efficiency, we first propose a method to process SIM incrementally with only one
pass over social action streams. We propose to use SSO algorithms [2, 3, 23, 39] in the append-only
streaming model for SIM. However, they are designed for the set-stream model where elements
in the stream are sets instead of actions. Generally, an algorithm A over an append-only set-
stream contains two components: f’(-) is a monotone submodular objective function and CX; is a
candidate solution containing no more than k sets from ¢ observed sets (i.e., X1, ..., X;). Given a
stream of sets {X1, X, . . ., X} }, the objective of A is to maximize f'(CX;) at any time t (1 <t <
m). Although resembling our problem, the set-stream model cannot directly fit in our scenario due
to the following mismatch: it strives to keep k sets from a stream of sets but all observed sets are
immutable. However, SIM aims to maintain k users from a sequence of actions and arrival actions
may trigger updates in the influence sets of existing users.

To bridge the gap between the two stream models and leverage existing SSO algorithms based
on the set-stream model, we propose a generic Set-Stream Mapping (SSM) interface. Let an in-
fluential checkpoint A,[i] (1 < i < N) denote a checkpoint oracle that provides an e-approximate
solution for SIM over contiguous actions {W;[i], ..., W;[N]}. Next, we will show how SSM adapts
an SSO algorithm A for the set-stream model to serve as a checkpoint oracle A,[i]. First, the can-
didate solution CX is adapted to store k users. Second, the objective function f” is adapted to the
influence function f(I;[i](-)), where I;[i] denotes the influence set of user(s) over contiguous ac-
tions {W;[i], ..., W;[N]}. Subsequently, SSM maps an action stream to a set-stream and feeds the
set-stream to A;[i]. Whenever a new action a; arrives, each A;[i] takes the following steps:

(1) Identify users uy, uy, . . ., uq whose I;[i](-) is updated;
(2) Feed A[i] with a stream S; = {I:[i](u1), . ..., L [i](uq)};
(3) Update the solution of A,[i] for each I, [i](u) € S;.

There are several choices of oracles that are developed for the set-stream model with differences
on solution quality, update complexity, and function generality. Typical oracles are listed in Table 2.
An important conclusion is that the SSM procedure does not affect the quality guarantee of the
mapped algorithms.

THEOREM 4.1. Let A be an e-approximation SSO algorithm in the set-stream model and A be the
mapped algorithm of A using SSM. A is e-approximation for SIM.



Table 2. Candidate Checkpoint Oracles for IC and SIC

Oracle Approximation Factor | Update Complexity | Function
SIEVESTREAMING [3] 1/2-p O(logk/p) General
THRESHOLDSTREAM [23] 1/2-p O(logk/p) General
Blog Watch [39] 1/4 O(k) Cardinality
MkC [2] 1/4 O(klogk) Cardinality

Note that we use SIEVESTREAMING as the exemplar oracle in the remainder of this article.

ProoF. To show A is e-approximation for SIM, we consider an append-only set-stream gen-
erated by SSM over the action stream. At any time ¢, let OPT; be the optimal influence value of
SIM w.r.t. W;, and OPT; be the optimal influence value achieved by any set of at most k sets from
the mapped set-stream. We treat all influence sets in the mapped set-stream as independent sets
regardless of whether they belong to the same user. We run A over the mapped set-stream till
time ¢ and produce a result with at most k sets: CX; = {I;, (us,), . . ., I, (uz,)}. Note that the in-
fluential sets in CX; may be outdated and refer to the same user. Nevertheless, we can still use
CX; to approximate OPT; without affecting the approximation ratio. To obtain the seed set from
CX;, we select a set of distinct users U; from CX;. Since the influence function f is monotone
and the up-to-date influence set of any user can only grows larger in the append-only stream,
we have f(I;(U;)) = f(Uxecx,X). Moreover, CX; is an e-approximate solution over the append-
only stream, i.e., f(Uxecx,X) = eOPT;. As the up-to-date influence sets always appear in the
append-only set-stream, we have OPT; > OPT,, and thus f(I;(U;)) > ¢OPT;. Therefore, U, is an
e-approximate solution for SIM w.r.t. W;. O

Given the result of Theorem 4.1, an influential checkpoint A,[i] is guaranteed to maintain an e-
approximate solution for SIM over contiguous actions {W;[i], ..., W;[N]}. We can devise a simple
framework (i.e., Influence Checkpoints (IC) in [50]) for SIM over sliding windows. IC maintains
N influential checkpoints for every action in W, at any time t. For each window slide, it simply
deletes the checkpoint corresponding to the expired action and creates a new checkpoint for the
arrival action a;. Then, each existing checkpoint processes a; accordingly. At any time ¢, the first
non-expired checkpoint, i.e., A;[1], must have processed all actions in W; and maintains an -
approximate solution for SIM w.r.t. W;.

According to the SSM steps, an action a; is mapped to at most d influence sets, where d is the
number of predecessors of a; in the propagation. In practice, d is usually small, e.g., d <5 on
average as shown in our experiments (see Table 3). Since the number of checkpoints in IC is N,
the total number of checkpoint evaluations is O(dN). If the update complexity of the checkpoint
oracle for each set is O(g), then the total time complexity of IC for each update is O(dgN). Using
SIEVESTREAMING as an example oracle, we can see IC is (1/2 — f§)-approximate and has O(M)
update complexity. A detailed description of the STEVESTREAMING algorithm and the IC framework
is omitted in this article and can be found in References [3] and [50], respectively.

4.2 The Sparse Influential Checkpoints Framework

As real-world applications often require millions of actions in one window, IC still incurs prohib-
itive cost to maintain N checkpoints in practice. To reduce the number of checkpoints and thus
improve the update efficiency, we design a Sparse Influential Checkpoints (SIC) framework to se-
lectively maintain a subset of checkpoints without losing too much solution accuracy when the
window slides. Specifically, the number of checkpoints maintained by SIC is logarithmic to N while
its approximation ratio remains £ (1 — ) for any > 0 if the checkpoint oracle is e-approximate.



ALGORITHM 1: SPARSE INFLUENTIAL CHECKPOINTS
Input: SIC at time ¢ — 1: {A;—1[x0], As—1[x1], ..., At-1[xs]}, a parameter f > 0
Output: The solution for g; (k) at any time ¢
1 while receiving a new action a; at time t do
2 Create Ay[xs+1] where xs11 = N, s < s+ 1;

3 foreach A;_1[x;] do A¢[xi] « Ap—1[xi], xi <« xi — 1;
4 foreach A;[x;] do A;[x;].process(a;);
5 fori e [1,s] do

6 Initialize A~ « 0;
7 forje[i+1,s—1]do
8 if A¢[x;] > (1 - B)A¢[xi] and A¢[xj+1] = (1 = B)A¢[x;] then
9 AT — AT U {A¢[x])
10 else
11 break;
12 Delete the checkpoints in A~ from SIC andshift the remaining checkpoints accordingly;
13 if x; = 0 then
14 Delete A;[xo] and shift the remaining checkpoints accordingly;
/* On processing q;(k) at time t */

15 Retrieve the solution of A;[x1] for g;(k);

The idea of SIC is to leverage a subset of checkpoints to approximate the rest. On the one hand,
to reduce the update cost, the number of checkpoints maintained should be as small as possible; on
the other hand, the approximation ratio should remain tight. To achieve both goals, we propose a
strategy to safely remove some checkpoints in the current window while ensuring the remaining
checkpoints are able to approximate any windows with a bounded ratio.

We consider a sequence of checkpoints {A;[xo], A¢[x1], ..., At[xs]} maintained by SIC at time
t. Intuitively, given any three consecutive checkpoints A;[x;—1], A [x;], A¢[xi+1] kept by SIC and
a parameter f € (0,1), as long as (1 — f)As[x;—1] is less than A;[x;] and A;[x;41], we can safely
delete A¢[x;] as A¢[x;+1] is at least (1 — fB)-approximate to A;[x;]. Given a checkpoint oracle with
an e-approximation for SIM, it is not hard to identify that using A;[x;+1] for OPT;[x;] offers an
£(1 — p)-approximate solution. Although such a maintenance strategy is simple, we need to ensure
that the approximation ratio does not degrade seriously over time, i.e., the approximation ratio
should be at least £(1 — f8) at any time ¢’ > t. We will analyze the theoretical soundness of SIC
after introducing its maintenance procedure.

Algorithm 1 presents how to efficiently maintain the checkpoints over sliding windows in SIC.
Upon receiving a new action a;, we create a new checkpoint for a; (Line 2), add all checkpoints in
W;_1 to W;, and use a, to update all checkpoints in W; (Lines 3 and 4). Then the efficient deletion
of checkpoints are presented in Lines 5-12. For each checkpoint A;[x;], we find the first x; (j > i)
such that A;[x;] > (1 = f)As[x;] and A;[xj41] < (1 = B)As[x;]. Then, all checkpoints between x;
and x; are deleted and will be approximated by A, [x;] in the subsequent window shifts. Finally, if
the second checkpoint (i.e., A;[x;]) has expired, the earliest checkpoint (i.e., A;[x,]) will be deleted
(Lines 13 and 14). It is noted that an additional checkpoint (A;[xo]) is stored in SIC to keep track of
the solution over a window with size larger than N. Since A;[x,] approximates the upper bound
of the optimal solution for the current window and Algorithm 1 always maintains a bounded ratio
between two neighboring checkpoints, a bounded approximation ratio is guaranteed by using
A¢[x1] as the result for the current window. We provide a running example for the checkpoint
maintenance of SIC in Example 4.2.
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Fig. 2. Example for checkpoint maintenance in SIC. We continue with the example in Figure 1 and illustrate
how SIC maintains the checkpoints at times 8, 9, and 10 (the deleted ones are marked by crosses).

Example 4.2. An example for SIC maintenance is illustrated in Figure 2. Let N = 8, k = 2 and
f = 0.3. There are initially 6 checkpoints in SIC at time 8. According to Algorithm 1, Ag[5] is
deleted from SIC, since Ag[6] =3 > (1 — 0.3) X 4 = (1 — f)Ag[4]. At time 8, the seed users for gs(2)
are {uy, us} returned by Ag[1]. When the window slides at time 9 with the arrival of ay, a; and
Ag[1] (which later becomes A¢[0]) expire. But Ag[0] is not deleted, because the second checkpoint
Ao[3] has not expired yet. Then, all checkpoints will be updated according to ay. After the update
procedure, Ag[3] can be deleted, because A9[5] > (1 — )Ay[0]. Finally, all checkpoints are updated
according to aj at time 10 and no checkpoint is deleted. The first non-expired checkpoint A1o[4]
is used for gq0(2) at time 10 and {uy, us} is returned as the seed set.

Theoretical Analysis of SIC. In the following, we will demonstrate the theoretical soundness
of SIC and analyze the complexity of SIC. To establish our theoretical claims for SIC, we first
analyze the property of the optimal checkpoint oracle, which always returns the optimal solution
for SIM over an append-only action stream. There are two important properties of the optimal
checkpoint oracle.

Definition 4.3 (Monotonicity & Subadditivity). Lett, < t, be two timestamps and thb“ represents
a window containing a set of contiguous actions {ay,, . . ., as, } with the corresponding checkpoint
denoted as Ai‘; Given any three timestamps t; < t; < t3, a checkpoint oracle is monotone if Ag >
Ajl. In addition, a checkpoint oracle is subadditive if Ajl < A}l + A

LEmMMA 4.4. Lett, <t} be two timestamps and OPTttb“ denote the optimal oracle (also the optimal
influence value) for Wfb“. The optimal oracle is monotone and subadditive.

Proor. Let I, fa #(S) be the influence set of S and S; ,, be the optimal solution of SIM for con-
tiguous actions in Wt,, . Because S; , must be a candidate solution for W?, it is obvious that
OPT,! > OPT,!.Forany S C U,wehave,'(S) = I, (S) UL?(S). Then, we have OPT,! = f(S; ,) <
f, tl (S;‘1 1))+ f (12 2(Sh)) < OPT;Z1 + OPTf;, where the first inequality holds for the property
of 1nﬂuence sets, and the second inequality is satisfied, because Sj ,, is a candidate solution for
both Wél and th;z. Finally, we prove that OPT;; ' < OPTttZl + OPT;3 2. ]



We note that, although the optimal checkpoint oracle is both monotone and subadditive, it is
intractable unless P=NP. In practice, we use the approximate checkpoint oracles as listed in Table 2.
The approximate oracles are monotone. This is essential due to their greedy nature: updating
the maintained result only when this update increases the function value. Given the result of
Lemma 4.4 and the monotonicity of approximate checkpoint oracles, we show that the checkpoints
maintained by Algorithm 1 is theoretically bounded for SIM.

LEMMA 4.5. Given any four timestamps t; < t, < t3 < ty, if (1 —ﬁ)Ag < AZ, we have £(1—

2
ﬂ)OPTtZ1 < AZ forany fp € (0,1).

s(1- ﬁ)(OPTtZ1 + OPT;4 )= 5(1- ﬂ)OPTf4 ', because the first inequality holds from the monotonic-
ity of the approximate checkpoint oracles, the second inequality is due to AZ >(1- ﬁ)Ag, the
third inequality holds, because the checkpoint oracle is e-approximate, and the final inequality
holds, since the optimal checkpoint oracle is monotone and subadditive. ]

Proor. We can acquire the following inequalities AZ > %(Ag + AZ) > 2((1- ,B)AZ + AZ ) >

According to Lemma 4.5, if (1 — ,B)AZ < AZ, using the checkpoint oracle started at time ¢, to
approximate any checkpoints between t; and t; can always achieve an (1 — f§)-approximation ra-
tio for any number of appending actions. Next, we present Lemma 4.6 to demonstrate the property
of the checkpoints maintained by Algorithm 1.

LEMMA 4.6. SIC for W; contains a sequence of s checkpoints A¢[xo], A¢[x1], ..., Ae[xs] where
Xo < x1 < -+ < X5 maintained by Algorithm 1. Given f§ € (0, 1), any neighboring checkpoints A¢[x;],
A¢[xi41] and A4 [xi42] satisfy one of the following three conditions:

(1) if Ae[xiz1] = (1 = B)As[x:], then A¢[xive] < (1 = B)A¢[xi] orxipq = t.
(2) ifxiv1 # x; + 1 and A¢[xi1] < (1= P)As[x;], then 5(1 — f)OPT;[x;] < Ay[xi44].
(3) Xiy1 = X; + 1 (anAt[xi+1] < (1 — ﬁ)At[xi].

Proor. We prove the lemma by induction. As the base case, there are only 2 actions in the
window and either condition 1 or condition 3 holds.

Then, assuming Lemma 4.6 holds at time ¢, and we show that it still holds after the update
procedure in Algorithm 1 at time ¢ + 1. Let A;[x;] be a checkpoint instantiated before ¢ + 1 and is
not deleted during the update procedure at ¢ + 1. A;[x;+1] is the subsequent checkpoint of A4 [x;]
at time ¢. Next, we discuss all possible cases for SIC maintenance at time ¢ + 1.

Case 1. x;1 # x; + 1 and A;[x;41] is deleted at time ¢ + 1. In this case, we have A;,[x;+1] >
(1= P)Ass1[x:] and Apyq[xi42] < (1 = B)Ass1[x;] according to Lines 5-12 of Algorithm 1. Thus,
Condition 1 holds at time ¢ + 1.

Case 2. x;j11 # x; + 1 and A;41[x;4+1] is not deleted at time ¢ + 1. In this case, A;41[x;+1] must
become the subsequent checkpoint of A;y1[x;] at some time ¢’ < t. Then, at time t’, we have
Ap[xiz1] = (1= B)Ap[x;]. According to Lemma 4.5, Apiq1[x;41] = £(1 — f)OPT,11[x;] holds. Be-
cause A;y+1[xi41] is not deleted at time t + 1, we have either Condition 1 (when A;yq[xi+1] =
(1 = B)As+1[x;]) or Condition 2 holds (when A;i1[xi+1] < (1 — f)Ass1[x;]) at time ¢t + 1.

Case 3. xj11 = x; + L. If Apyq[xi41] = (1 = B)Ass1[x;], then Condition 1 holds, since Asi1[xi11]
is not deleted at time ¢ + 1; otherwise, Condition 3 holds.

Therefore, at least one condition in Lemma 4.6 holds in all possible cases at time ¢ + 1, and we
conclude the proof. O

Leveraging Lemma 4.6, we can analyze SIC theoretically. We then formally present the approx-
imation guarantee and complexity of SIC in Theorems 4.7 and 4.8.



THEOREM 4.7. SIC maintains a %(1— f)-approximate solution for SIM in A.[x] if an e-
approximate checkpoint oracle is used.

Proor. We use OPT; to denote the optimal solution of SIM w.r.t. W; and prove £(1 - f) is a
lower bound for the ratio between A;[x;] and OPT;. Let A;[xo] be the expired checkpoint be-
fore A;[x1]. Since A;[xo] and A;[x1] are neighboring checkpoints in SIC, one of the conditions
in Lemma 4.6 holds at time ¢. If Condition 3 in Lemma 4.6 holds, then we have OPT; < eA;[x1],
since A;[x1] directly maintains an approximate solution w.r.t. W;. Otherwise we have OPT; <
OPT;[x0] < e ﬁ)At[Xﬂ since A;[xo] has expired. Thus, SIC maintains an £ (1 — §)-approximate
solution for SIM in A;[x1]. O

THEOREM 4.8. The number of checkpoints in SIC w.r.t. a sliding window of size N is O(I%TN).

Proor. Lemma 4.6 guarantees either A;[x;11] or A;[x;42] is less than (1 — f)A,[x;]. Since AtBC\H

26N £or B € (0,1). Therefore, the number of

is O(N), the number of checkpoints is at most o=

log N
)

As the time complexity for a checkpoint to update each action is O(dg) if each checkpoint takes
log N )

checkpoints in SIC is O( O

O(g) to evaluate one influence set and the number of checkpoints maintained by SIC is O(

dglogN)
B

the time complexity of SIC for each update is O( When SIEVESTREAMING is used as the

checkpoint oracle, SIC obtains a (1/4 — f)-approximate solution for SIM. The time complexity of
SIC for each update is O(dIOg—NZlng) accordingly.

Discussion. Although we have discussed how to handle SIM queries over sliding windows that
slide for one action at a time, retrieving the result at such an intense rate is often unnecessary. Here,
we discuss how to handle the case where each window slide receives L actions while the earliest
L actions expire at the same time. For SIC, we create only one checkpoint when the window slides
from W; to W, 1. Subsequently, we use all actions from a; to a,+ to update all checkpoints in the
window. Finally, we adopt the same strategy as presented in Algorithm 1 to delete the checkpoints.
The theoretical results of SIC are not affected by the above adaptations.

5 LOCATION-BASED SIC

As SIC does not consider any spatial information of social actions, it cannot be used to answer
LSIM queries directly. In this section, we will show how SIC can be integrated with a well-known
spatial index, i.e., Quadtree [42], to process LSIM queries efficiently.

Next, we first briefly present the procedure of Quadtree maintenance over sliding windows.
Then, we will propose Location-based SIC (LSIC) framework and its improved version LSIC*, in
Sections 5.1 and 5.2, respectively, on processing continuous as well as ad hoc LSIM queries.

Quadtree Maintenance. Quadtree is a commonly used in-memory index for two-dimensional
point data. In Quadtree, each internal node has exactly 4 quadrants that divide its minimum bound-
ing rectangle (MBR) into four equal parts, namely, North West (NW), North East (NE), South West
(SW), and South East (SE). Each quadrant corresponds to one child of the node. For ease of pre-
sentation, we encode the Quadtree nodes as follows: (1) the quadrants of any node are numbered
as NW=0, NE=1, SW=2, and SE=3; (2) the children use the id of their parent as prefix, adding the
number of its quadrant as the last digit. To maintain two-dimensional point data (i.e., the posi-
tions of actions in the geo-tagged social stream) in Quadtree, four basic operations are needed:
(1) to insert a point into Quadtree; (2) to delete a point from Quadtree; (3) to split a Quadtree
node; and (4) to combine Quadtree nodes into one node. The insertion and deletion of a point tra-
verses Quadtree along a path from root to leaf and visits all Quadtree nodes whose MBRs cover the



(a) Quadtree maintained for W, at time 8 (b) Quadtree maintained for W,, at time 10
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Fig. 3. The Quadtree index maintained at times 8 and 10 (node capacity M = 2 and fill factor & = 1.0).

point. The point is finally inserted into or deleted from the point list in the leaf node. For query
efficiency, Quadtree has a node capacity M € Z* that limits the maximum number of points in
a leaf node. When a leaf node has contained more than M points after insertion, it will be split
into four children corresponding to the quadrants of its MBR. Conversely, to improve the space
usage, when an internal node has fewer points than a threshold, its descendant nodes will be
combined into one node. Let « € [0, 1] be the filling factor. When an internal node contains fewer
than aM points, the combination procedure deletes its descendants from Quadtree and inserts all
points in the deleted nodes into the node. The reason why a lower threshold is used for com-
bination is to avoid frequent split/combination fluctuations, which incur excessive maintenance
costs.

For LSIM processing, LSIC and LSIC* maintain a Quadtree to index all active actions in W; at
time ¢t according to their geo-locations. For each window slide, L arrival actions are inserted into
Quadtree while L expired ones are deleted from Quadtree (when ¢t > N). One common operation
on Quadtree for LSIM processing is the region query that retrieves the set of actions in a specified
query region. Starting from the root node, a region query recursively traverses all nodes over-
lapped with the query region. When traversing an internal node, it further traverses its children
overlapped with the query region. When traversing a leaf node, it iterates through the point list
in the node and adds all actions covered by the query region into the result set. Finally, it collects
the actions from each overlapped node as the result set for the region query.

Example 5.1. In Figure 3, we continue with Figure 1 to illustrate how Quadtree is maintained
over a geo-tagged social action stream. At time 8, Quadtree maintains all active actions in W.
Nodes 0 and 2 are split as more than M = 2 actions have been inserted into both nodes. When
the window slides from t = 8 to t = 10, a; and a, are deleted while a9 and a; are inserted. The
children of Node 0 are combined, because there is only two actions remaining in Node 0.

Next, we show how to process a region query in R = [(1, 3), (2, 6)] with Quadtree. Starting from
Root, we first check whether the MBRs of Root’s children are overlapped with R. We find Nodes 0
and 2 are overlapped with R. Node 0 is a leaf node and its point list will be traversed. a, is located
in R but ag is not. Thus, ay is added to the result set. Node 2 is an internal node, and we further
traverse its child Node 20 that are overlapped with R. Finally, it adds a;o in Node 20 to the result
set and returns {ay, aio} as the result for the region query.

5.1 The LSIC Framework

In this subsection, we propose the Location-based Sparse Influential Checkpoints (LSIC) framework
for processing both continuous and ad hoc LSIM queries, but in different ways. Generally, the LSIC
framework comprises two components: (1) a Quadtree index for actions in the current window;



(2) SIC instances to process LSIM queries. LSIC maintains an SIC instance for each continuous
LSIM query and registers the instance in the Quadtree. Whenever an arrival action is inserted into
the query region of the continuous LSIM, the SIC instance is updated accordingly. The SIC instance
can always provide an approximate solution for the continuous LSIM at any time. However, such
a method cannot work for ad hoc LSIM query processing. This is because ad hoc LSIM may be
issued at any time in arbitrary regions and thus it is infeasible to maintain the seed sets for any
possible queries in advance. To provide the solutions for any ad hoc LSIM queries in real time, LSIC
maintains SIC instances in Quadtree nodes. When receiving an ad hoc LSIM query, LSIC first finds
the SIC instance from the node that are covered by the query region and contains the maximum
number of active actions as a partial solution. Then, LSIC feeds the remaining actions in the query
region to the partial solution for the final solution. Next, we will discuss the detailed procedures
of continuous and ad hoc LSIM processing with LSIC.

Continuous LSIM Processing with LSIC. We show how to process a continuous LSIM query
q[1,1,](k, R) from time t; to t, with LSIC. For any time ¢ € [t;, t;], LSIC should maintain a seed set
for LSIM w.r.t. the actions located in R from a;, to a;. The method of LSIC to process continuous
LSIM naturally extends from SIC: it maintains an SIC instance to track the seed set for each con-
tinuous LSIM over time. The difference is that the SIC instance is only updated for actions in the
query region of LSIM. The Quadtree is used to filter the actions that are irrelevant to the query.
The operations to process an LSIM query gy, +,](k, R) during time t; to f, are listed as follows.

e Registration. When qp;, ,,(k, R) is received at time ¢;, LSIC creates an empty SIC instance
SIC4 and registers it in the Quadtree. Specifically, SIC, is registered in the minimum node
whose MBR can fully cover the query region R. We use cur to denote the node containing
SICq4 in the Quadtree.

e Update. If an action a; is inserted into Node cur, then it will check whether p; is located
in R.If p; € R, then SIC, will process a; as an appending action according to Algorithm 1.

e Movement. The instance SIC; may be moved to another node when Node cur is split or
deleted. First, if cur is split and one of cur’s child can also fully cover R, SIC; will be moved
to that child. When none of cur’s children can fully cover R, SIC; will not be moved. Second,
if cur is deleted for combination, SIC, will be moved back to the parent of cur.

e Deletion. When q(y, 5,1 (k, R) expires at time t;, SIC, is terminated and deleted from cur.

At any time t from t; to t;, LSIC can always maintain the solution of LSIM g4, 1,](k, R) in the
SIC instance SICg.

Example 5.2. In Figure 4, we give an example for continuous LSIM query processing with LSIC.
Two continuous queries Q1 = qy1,10](2, R1) where Ry = [(3,5), (4,6)] and Qs = q[1,10](2, R2) where
R, = [(5,2), (8,4)] are received at time 1. They are initially inserted into Root. At time 3, Root is
split. Q; and Q, are moved to Node 2 and Node 1, respectively. At time 8, Node 2 is split and Q; is
moved to Node 21. At time 10, Nodes 00, 01, 02, 03 are combined back to Node 0. Since Q; and Q,
are not registered in these nodes, they are not affected. During the period, Q; receives two actions
az, ag and SIC; is updated for them. Q, receives as, a4 and SIC, is also updated accordingly. At time
10, the seed set for Q; and Q, returned by SIC; and SIC, are {us} and {us}, respectively.

Theoretical Analysis of LSIC for continuous LSIM. We give the approximation ratio of
LSIC for continuous LSIM in Theorem 5.3.

THEOREM 5.3. The result provided by LSIC for any continuous LSIM query is (1 — B)-approximate
when an e-approximate checkpoint oracle is used.



Fig. 4. Example for processing continuous LSIM queries Q1 and Qo with LSIC. Note that Q; and Q3 are
registered in Quadtree and maintained with SIC instances SIC; and SICy, respectively.

Proor. At any time ¢ € [t;, t;], a continuous LSIM query gy, 1,1 (k, R) maintains a seed set with
the maximum influence value for actions located in R from a, to a;. Therefore, the theorem holds
if (1) SIC,4 maintained by LSIC processes a set of actions {a;|i € [t;,t] A p; € R} at time £; (2) SIC,
provides an (1 — )-approximate solution for the processed actions. Succinctly examining the op-
erations, Condition (1) must hold for SIC,. In addition, Condition (2) holds as the influence function
f (-, R)) for Region R preserves the monotonicity and submodularity of f(I;(-)). Therefore, SIC,
provides an £ (1 — ff)-approximate solution for LSIM g, +,)(k, R) at any time ¢ € [t;, t2]. ]

Next, we analyze the complexities of the above operations. The number of traversed nodes for
the insertion of SIC, is at most equal to the height of Quadtree, i.e., O(log %) This is because
Quadtree nodes in the same level are not overlapped with each other. Therefore, for any region R,
there is at most one node can fully cover R. The time complexity for SIC, to update an action a,
is O(dglo—gNR) where Nf, is the number of active actions in R. The movements of SIC, for the split
and deletion of cur only involve cur and the parent/children of cur. Hence, the time complexity
of any movement is O(1). The deletion of SIC, at t, has the same complexity as insertion, i.e.,
O(log %) Finally, since the solution is always explicitly maintained in SIC,, the time complexity
to answer any query is O(1).

Ad hoc LSIM Processing with LSIC. Next, we will present how to answer an ad hoc LSIM
query q;(k, R) at time ¢ using LSIC. When the query is received at time ¢, LSIC should return a
seed set with the maximum influence value w.r.t. all actions that are (1) located in R and (2) active
in W; in real time. Compared to continuous LSIM, ad hoc LSIM are more flexible: a query may
be issued at any time in an arbitrary region. Therefore, it is infeasible to precompute a seed set
for any possible ad hoc queries. To answer ad hoc LSIM queries in real time, the LSIC framework
maintains SIC instances in Quadtree nodes (an SIC instance in a Quadtree node processes all active
actions in this node) and utilizes them to accelerate ad hoc LSIM processing. Although an SIC
instance in a Quadtree node cannot provide a solution with a bounded approximation ratio for
an ad hoc LSIM query, it can be used to provide a partial solution for LSIM whose query region
can cover this node. As the partial solution has processed a large portion of actions in the query
region, LSIC only queries for unprocessed actions and feeds them to the partial solution for the
final solution. To provide the partial solutions for as many LSIM queries as possible, LSIC should
maintain an SIC instance in every Quadtree node. But such a maintenance strategy is very costly
and unnecessary. First, the insertion of any action will trigger the updates of the SIC instances
maintained in all nodes along the insertion path and incurs excessive update costs. Second, the



ALGORITHM 2: Ap HOC LSIM PROCESSING WITH LSIC
Input: A LSIM query g;(k, R), a Quadtree
Output: The solution for ¢; (k, R)
1 Initialize an empty queue QUEUE and enqueue Quadtree. Root into QUEUE;
2 nd < nil, max < 0;
3 while QUEUE is not empty do
4 Dequeue the first node in QUEUE as cur;

5 if Rcyr C R and num(cur) > max and there exists an SIC instance in node cur then

6 nd « cur,max < num(cur);

7 else if R.,,» ¢ R then

8 foreach child cur.ch of node cur do enqueue cur.ch into QUEUE if R.,, . N R # nil;

if nd # nil then

10 Use SIC,,4 as the partial solution sol;
11 A, «— {ajlaj € Wy ApiER\Rnd};
12 else

13 Invoke an empty SIC instance sol;

14 Ay < {ailai € Wy Api €R};
foreach a in A, do sol.process(a);

©

1

«

16 return the solution from sol;

N

space costs of maintaining SIC instances for all nodes are prohibitive. Third, the SIC instances for
nodes with very small areas or a few actions hardly bring benefits to query processing. In practice,
LSIC maintains an SIC instance in a node only if: (1) it contains at least M actions and (2) the area
of its MBR exceeds a threshold (e.g., 0.4% of the full space). When an LSIM cannot find any SIC
instance to provide the partial result, LSIC will perform a region query on Quadtree to retrieve all
actions in the query region and process these actions using SSM to acquire the final solution.

The detailed description of processing an ad hoc LSIM query g, (k, R) with LSIC is shown in
Algorithm 2. Given a Quadtree node cur, we use R, and num(cur) to denote the MBR of cur
and the number of actions in cur, respectively. LSIC first finds a Quadtree node nd such that (1) it
maintains an SIC instance and (2) its MBR R,,4 is fully covered by R, i.e., R,y € R. When there is
more than one node found, LSIC will select the node containing the maximum number of actions
as nd (Lines 3-8). Then, LSIC considers two cases: (1) If nd exists, then the result of SIC,,; will be
the partial result sol. The remaining actions A, for g, (k, R) will include all active actions in Region
R\ Rpq4,ie., {aila; € W; Ap; € R\ Ryq} (Lines 9-11). (2) If none of the nodes with SIC instances is
fully covered by R, then LSIC will set up an empty instance sol and add all active actions in R into
A, (Lines 12-14). Finally, sol processes each action in A, and is used to provide the final solution
for g, (k, R) (Lines 15 and 16).

Example 5.4. In Figure 5, we give an example for ad hoc LSIM processing using LSIC. The
Quadtree used is the same as Example 5.2 in Figure 4. We consider an SIC instance is maintained
for every Quadtree node containing at least 2 actions (except the Root node). The nodes that only
contain 0 or 1 action are not maintained with SIC instances. Given an LSIM query Qs = q10(2, R3)
where Rs = [(2,3), (4, 8)], two Quadtree nodes, namely 21 and 23, are covered by Rs. As Node 23
does not maintain an SIC instance, the SIC instance in Node 21 provides the partial result sol.
Then, we query the remaining actions that are not processed by sol yet. We have A, = {as} and
sol will process as. {u;} is returned as the final solution of Qs after processing as. For an LSIM
query Q4 = q10(2, Ry) where Ry = [(4,3), (7,5)], we do not find any Quadtree node covered by Ry.



Fig. 5. Example for processing ad hoc LSIM queries Q3 and Q4 with LSIC. Note that we mark “v"” for
Quadtree nodes with SIC instances and “X” for Quadtree nodes without SIC instances.

Therefore, LSIC performs a region query of Ry in Quadtree. The result is A, = {as, a4, a7}. Then,
the actions in A, are processed from scratch according to SSM. The solution for Qy is {us}.

Theoretical Analysis of LSIC for ad hoc LSIM. The approximation ratio of the result re-
turned by Algorithm 2 is given in Theorem 5.5.

THEOREM 5.5. The solution returned by Algorithm 2 is £ (1 — f)-approximate for any ad hoc LSIM
query when an e-approximate checkpoint oracle is used.

Proor. To prove Theorem 5.5, the first thing to note is that the approximation ratios of check-
point oracles listed in Table 2 are order-independent. They do not make any assumption of the
arrival order of actions and their results are e-approximate even for the most adversary streaming
order. SIC preserves the order-independence of checkpoint oracles. Then, we can prove Theo-
rem 5.5 by showing that Algorithm 2 merely changes the order to process actions, which does
not affect the approximation ratio. We consider two cases to process an ad hoc LSIM ¢, (k, R) in
Algorithm 2.

Case 1 (nd = nil). In this case, LSIC retrieves all active actions in R and processes them from
scratch. The procedure is equivalent to process SIM using the Set-Stream Mapping interface. From
Theorem 4.1, we can see the result is an e-approximate solution for g; (k, R).

Case 2 (nd # nil). In this case, we divide the active actions in R into two subsets: (1) A, =
{aila; € Wy Ap; € Rual; (2) Ay = {ajla; € W; Ap; € R\ Ry,4}. Actions in A, have been processed
by SIC,4 and actions in A, will be processed by the partial result of SIC, 4. As SIC,,4 is maintained
by Algorithm 2 over actions in A, one of three conditions in Lemma 4.6 must hold at time . Then,
actions in A, are processed as appending actions. According to Lemma 4.6, one of three conditions
can still hold after processing actions in A,. Then, all actions in A. U A, have been processed.
Because A, U A, have contained all actions required for g, (k, R) and SIC is order-independent, it
is guaranteed that the final solution is £(1 — )-approximate according to Theorem 4.7.

In both cases, Algorithm 2 provides an at least £(1 — f§)-approximate solution for any ad hoc
LSIM query and we conclude the proof. ]

To analyze the complexity of ad hoc LSIM query processing with LSIC, we should consider both
the maintenance of SIC instances in Quadtree nodes for each action and the cost of Algorithm 2
to return the final result. Inserting an action a; into the Quadtree needs to traverse O(log %)
nodes from root to leaf. For each node, if it maintains an SIC instance, the instance will process



a; using Algorithm 1. Therefore, the complexity of maintaining SIC instances in Quadtree nodes

for each action is O(%). Then, we analyze the complexity of Algorithm 2 for each ad
hoc LSIM query. First, it traverses each Quadtree node overlapped with R to find the partial result.
The number of nodes traversed is O(%) in the worst case. Then, the region query retrieves at
most Ng actions to be processed by the partial result, where N is the number of active actions
in R. If nd # nil, then the number of actions processed by the partial result will be (Ng — N, ,);
otherwise, it will process Ng actions. Therefore, the complexity to process the partial result is
O(dgNg). Finally, the complexity of Algorithm 2 to process an ad hoc LSIM query is O( + dgNg).

5.2 The LSIC* Framework

In this subsection, we introduce the LSIC* framework to improve upon LSIC. Under certain circum-
stances, the seed sets returned by LSIC show inferior quality compared with the state-of-the-art
static IM approaches, e.g., IMM [44] and GREEDY [35]. Therefore, we are motivated to improve
LSIC so that LSIM can still be processed in real time while the seed quality can match the state-of-
the-art static IM approaches.

Atahigh level, LSIC™ maintains the same indices as LSIC: (1) a Quadtree spatial index for actions
in the sliding window W; at time ¢ and (2) the SIC instances in Quadtree nodes, as introduced in
Section 5.1. However, LSIC* employs a different accessing method to the maintained indices for
LSIM processing. The basic idea is as follows: given a query region R, it acquires top-k” users with
the maximum region-constrained influence value f(I; (-, R)). Then, it runs a simple THRESHOLDING
algorithm adapted from Reference [4] to retrieve the seed set for LSIM from the top-k’ users. It is
noted that k” > k is a tunable parameter. A greater k” means better seed quality yet lower query
efficiency and vice versa. Subsequently, we first describe the method to process continuous and ad
hoc LSIM queries with LSIC*, including (1) how to acquire the top-k” users in the query region R
of an continuous or ad hoc LSIM and (2) how the THRESHOLDING algorithm retrieves the seed set
from the given top-k” users. Then, we analyze LSIC* theoretically.

LSIM processing with LSIC*. Given a continuous LSIM q(¢, 1,1 (k, R), LSIC* also registers it
in the Quadtree. The following operations: Registration, Movement, and Deletion, are the same
as LSIC in Section 5.1. Instead of maintaining an SIC instance for each continuous LSIM, LSIC*
maintains the influence value f(I;(u,R)) of each user u € U in the query region R from time #
to t, and always tracks the top-k’ users with the maximum influence values. Initially, the region-
constrained influence set I; (u, R) of each user u € U is set to () at time ¢;. Then, for each window
slide, LSIC* updates I; (u, R) as well as the influence value f(I; (u, R)) of each user u w.r.t. the arrival
and expiry of actions in R. Moreover, the top-k’ influential users as well as their influence values
in R are explicitly kept. Once there are any change in the top-k” users (both the entries of new
users and the updates in existing users), LSIC* reruns THRESHOLDING to update the seed set for
qit,](k, R). Given an ad hoc LSIM g, (k, R) at time ¢, LSIC* first runs a region query to acquire
all Quadtree nodes that (1) are overlapped with R and (2) have SIC instances. Then, for every SIC
instance in these nodes, LSIC* retrieves each user u from its solution and computes the influence
value f(I;(u, R)). Additionally, it obtains the influence values of remaining users directly from the
actions in R. It combines both results and acquires the top-k’ users with the maximum influence
values in R for ¢; (k, R). Similarly, LSIC* runs THRESHOLDING to obtain the solution for g, (k, R).

Given a set S’ of top-k’ users obtained for any LSIM query g, (k,R), the THRESHOLDING al-
gorithm to retrieve the seed set is presented in Algorithm 3. First, it initializes a priority queue
PRQ and inserts each user u in S’ to PRQ (Line 1). The candidate result CAND is initialized to
0. The users in PRQ are ordered by the marginal gain u.d w.r.t. CAND in descending order. The
initial marginal gain u.d of u is set to its influence value f(I;(u, R)), because CAND = (). Then, it
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Fig. 6. Example for processing an LSIM query Qs with THRESHOLDING in LSIC*.

ALGORITHM 3: THRESHOLDING
Input: A LSIM query q;(k, R), a set S” of k users, a parameter y
Output: The solution for g (k, R)
1 Initialize a priority queue (max-heap) PRQ,insert each u € S’ into PRQ ordered by u.5 = f(I; (u, R));
2 TH « maxyes f(I;(u,R)), CAND « 0
3 while PRQ is not empty and |CAND| < k do
4 Peek the first user u in PRQ;
5 while TH < u.6 do

6 Remove the first user u from PRQ, update u.§ < f(I;(CAND U {u},R)) — f(I;(CAND,R));
7 if TH < u.d0 and |CAND| < k then

8 CAND < CAND U {u}, if |CAND| = k then break;

9 else

10 Insert u into PRQ if u.§ > 0;

11 Peek the first user u in PRQ;

12 TH « (1—-y)-TH;
13 return CAND;

updates the candidate result CAND in an iterative manner with a threshold TH. TH is initially set
to the maximum influence value among the users in S’ (Line 2). The procedure of an iteration with
threshold TH is shown in Lines 3-12. It evaluates each user u whose marginal gain u.d potentially
reaches TH at the iteration. When u.d of the first user u in PRQ is at least TH, it removes u from
PRQ and re-evaluates its marginal gain u.§ w.r.t. CAND (Line 6). If u.§ can still reach TH, then
u will be added to CAND; otherwise, u will be inserted back to PRQ as long as u.§ > 0 (Lines 7-
10). If CAND has contained k users, then no more iteration is needed and CAND will be returned
(Line 8). Otherwise, the threshold TH will be descended by (1 — y) times (y > 0) for the next itera-
tion (Line 12). Finally, CAND will be returned as the seed set for q; (k, R) if either CAND contains
k elements or PRQ is empty (Line 13).

Example 5.6. In Figure 6, we give an example for LSIM processing using THRESHOLDING in
LSIC*. We consider a query Qs = q10(2, Rs) where Rs = [(1,3), (4,8)] at time 10. Let k¥’ = 4 and
y = 0.1. As a preliminary step, LSIC* retrieves four users {uy, us, us, us} with the maximum influ-
ence values for THRESHOLDING. Initially, the threshold is set to TH = 2 and the candidate result
is CAND = (. At Iteration (1) with TH = 2, it evaluates the first user us and the marginal gain of



adding us to CAND is 2. Therefore, u3 is added to CAND. Then, us is evaluated but the marginal
gain of adding us becomes 0 as I1o(us, Rs) is identical to I;o(u3, Rs) and us has been added to CAND.
As a result, us is not inserted to the priority queue any more. Next, u; is evaluated and included
into CAND. Finally, as S has contained 2 users, no more iteration is required and CAND = {u,, us}
is returned as the solution for Qs.

Theoretical Analysis of LSIC*. First, we give the approximation ratio of THRESHOLDING for
LSIM in Theorem 5.7 when we assume that the seed set is only selected from the top-k’ users.

THEOREM 5.7. Given a set S’ C U of k" users with the maximum influence value f(I;(u, R)), the
solution CAND returned by Algorithm 3 satisfies that f(I;(CAND,R)) > (1 —1/e — y)OPT’, where
OPT’ = maxscss|<k f (1 (S, R)).

Proor. First, if CAND has less than k elements, it must hold that .6 = 0 for each u € CAND \
S’. We have f(I;(CAND, R)) = OPT’ in this case, because adding any remaining users into CAND
cannot increase the influence value any more.

Then, we consider the case where CAND contains k users. Let S;={uy,...,u;} (j€
[1,k]) be the first j users added to CAND and Sy = &. Assume that u;,; is added
to S; at the iteration with a threshold TH. It holds that uj,1.6 = f(I;(S; U {uj+1},R)) —
fU:(S;,R)) > TH and u.b < % for any u € S\ (Sj U {ej+1)}. Then, uj;1.6 > (1 -y)u.d for
any u € S*\'S; where S* = argmaxgscs.s|<kf:(S,R)). By summing up the above inequal-
ity for each u € S* \ i» we have [S*\ S| - uj41.0 > (1 =) Yyes ns; U 6. Thus, uj1.6 > |s*\s,\ .
Zuesn\s; U-0 = - - Dyesns; u.0. In addition, 3, esns; u. 5 > OPT’ - f(I;(S;,R)) for submodu-
larity. Therefore Uj+1.0 = f(I;(Sj+1,R)) = fI:(S;,R)) > —- (OPT’ f(I:(S;,R))). Equivalently,
fU:(Sj+1,R)) = OPT" > (1 - 1_Ty)(f(It(Sj,R)) — OPT"). Substltutmg Sj+1 by Sk,...,S51 for k
times, we prove f(I;(CAND,R)) = f(I;(Sx,R)) = (1 - (1 - 1_T’/)k) -OPT’ > (1 - e~ "Y)OPT’ >
(1-1/e—y)OPT". O

Given the conclusion of Theorem 5.7, it is obvious that LSIC* will return (1 - 1/e —y)-
approximate solution for any LSIM query if k" = |U], i.e., all users in the social network are con-
sidered by THRESHOLDING. However, this incurs a prohibitive computational cost for processing
an LSIM in real time. In real-world scenarios, due to the power-law nature of social influence, i.e.,
only a few users achieve high influences and most users have very low influences, ignoring the
users with low influences does not severely affect the solution quality. Therefore, we set k” to be
slightly greater than k (e.g., k" = 3k in the experiments). Although there is no theoretical guarantee
of the approximation factor of LSIC* unless k’ = |U]|, it can still return solutions of good quality
for LSIM empirically even when k’ is small. The complexity of LSIC* is analyzed as follows. First, it
maintains the region-constrained influence values as well as the top-k” users for each continuous
LSIM. An arrival or expiry of any action triggers updates in at most d influence sets. In addition,
we consider the top-k” users are maintained in a red-black tree and thus updating the top-k” users
for any action is O(d log k”). For any ad hoc LSIM, LSIC* traverses O(%) nodes in Quadtree. The
complexity of acquiring the top-k” users is O(dNg log k’). Finally, the THRESHOLDING algorithm
runs at most O(logyNR) iterations, because the ratio between the influence values of the first user
and the k’th user is O(Ng). At each iteration, it evaluates at most k" users and takes O(log k’) to
remove a user from or insert a user to a priority queue. Therefore, the complexity of Algorithm 3

is O(ngNR(log k" + g)).




Table 3. Statistics of Datasets

Dataset Users Actions | Average Depth | Geo-tagged
Reddit 2,628,904 | 48,104,875 4.58 N
Twitter 2,881,154 | 9,724,908 1.87 N
Twitter-SG 177,934 1,830,086 1.22 Y
Twitter-NY | 1,196,237 | 13,267,644 1.38 Y

6 EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency and effectiveness of our proposed frameworks on several
real-world datasets. We first describe the experimental setup in Section 6.1. We then compare
SIC with the state-of-the-art static and dynamic IM algorithms for SIM in Section 6.2. Finally, we
evaluate the efficiency and effectiveness of LSIC and LSIC* for LSIM in Section 6.3.

6.1 Experimental Setup

Datasets. The following four real-world datasets are used in the experiments.

e Reddit. Reddit is an online forum where user actions include post and comment. We down-
load the Reddit comments in May 2015 from kaggle’ and query the Reddit API for the posts
in the same period. We combine posts with comments and sort all actions by timestamp.

o Twitter. Twitter is an online social network where user actions include tweet, retweet, quote
and reply. We collect these actions for one week via Twitter stream API® on trending topics
such as 2016 US presidential election, 2016 NBA finals and UEFA Euro 2016.

o Twitter-SG. We collect geo-tagged user actions in Singapore via Twitter stream APIL The
bounding box is set to [(1.2,103.5), (1.5, 104.1)].

o Twitter-NY. We collect geo-tagged user actions in New York City via Twitter stream API.
The bounding box is set to [(40.5, —74), (40.9, —=73)].

In data preprocessing, the geo-positions of actions in the Twitter-SG and Twitter-NY datasets
are normalized to [0, 1]2.

The statistics of these datasets are summarized in Table 3.

Approaches. The compared approaches are listed as follows.

e IMM [44]. To support our argument on the effectiveness, we use the state-of-the-art IM
algorithm on static graphs as a baseline. At each time ¢, we construct an influence graph
G; by treating users as vertices and the influence relationships between users w.r.t. W; as
directed edges. For location-aware IM, we construct a location-based influence graph G; r
for R only considering the influences to users in R w.r.t. W;. The edge probabilities are as-
signed by the Weighted Cascade model (WCM) [22]. To extract the influential users, we set
the parameters to ¢ = 0.5,/ = 1 [44] and run IMM on the generated influence graphs.

e UBI [10]. We use the state-of-the-art method Upper Bound Interchange (UBI) for IM on
dynamic graphs as another baseline. The generation of influence graphs is the same as IMM.
Then, a sequence of influence graphs {Gy, ..., G,} are fed to UBI in a chronological order
to track the influential users. We keep the same interchange threshold as used in Reference
[10], i.e., 0.01. As UBI cannot be trivially adapted to location-aware IM and our results in

Thttps://www.kaggle.com/reddit/reddit-comments-may-2015.
8https://developer.twitter.com/en/docs.
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Section 6.2 have shown the superiority of SIC over UBI, we do not consider UBI any more
in Section 6.3.

e GR [35]. We also implement the classic GREEDY (GR) algorithm in Reference [35], because
it achieves the best possible approximation factor of (1 — 1/e) for SIM and LSIM queries.
A detailed description of the algorithm is presented in Section 4.1. Since GREEDY does not
store any intermediate result, it always reruns from scratch when being queried. For SIM
and LSIM processing, the only difference is the computation of influence values. Given a
query region R, LSIM only considers active actions in R to compute the influence values.

e IC. The Influential Checkpoints (IC) framework for SIM is simply presented in Section 4.1
and a more detailed description can be found in Reference [50]. SIEVESTREAMING [3] is used
as the checkpoint oracle for IC, which guarantees (1/2 — f§)-approximate solutions for SIM.

e SIC. The Sparse Influential Checkpoints (SIC) framework for SIM is presented in Section 4.2.
SIEVESTREAMING [3] is also used as the checkpoint oracle for SIC, which guarantees (1/4 —
B)-approximate solutions for SIM. In Section 6.3, we use SIC as a baseline method for LSIM.
SIC tracks a seed set over the stream without considering the spatial information of actions.

e LSIC. The LSIC framework for LSIM is proposed in Section 5.1. SIEVESTREAMING [3] is still
used as the checkpoint oracle for LSIC. LSIC returns (1/4 — f)-approximate solutions for
both continuous and ad hoc LSIM.

e LSIC*. The LSIC* framework for LSIM is proposed in Section 5.2. LSIC* could return (1 —
1/e — y)-approximate solutions for continuous and ad hoc LSIM if k" were set to [U]. In
practice, we set k” = 3k and y = 0.1 across all the experiments in Section 6.3.

Existing location-aware IM methods [26, 28] are based on static graphs where both network topol-
ogy and users’ positions are not changed over time. Therefore, they cannot support incremental
updates over social action streams and need to recompute the solution from scratch for each up-
date. In our scenario, their performance cannot exceed IMM. Hence, they are not compared with
our proposed approaches in the experiments.

Metrics for Solution Quality. We use two different metrics to evaluate the seed quality of com-
pared approaches, because IMM and UBI work under the Independent Cascade model, whereas
GREEDY, IC, SIC, LSIC, and LSIC* are proposed for SIM and LSIM queries in Section 3. Given a
seed set, (1) its influence value is the value of influence functions for SIM and LSIM (i.e., the
cardinality functions) in Section 3; (2) its influence spread is the expected number of users acti-
vated by the seeds on the influence graph under the Independent Cascade model. We run 10,000
rounds of Monte-Carlo simulations to calculate the influence spread. It is a commonly used met-
ric for the quality of IM algorithms [22]. After obtaining the influence values and influence spread
of the seed sets returned by compared approaches, we further normalize them for ease of pre-
sentation. The influence values of all approaches are normalized by GREEDY. For example, given
an SIM or LSIM query, if the influence values of the seed sets returned by SIC and GREEDY are
95 and 100, respectively, SIC will acquire a score of 0.95. Similarly, the influence spread is nor-
malized by IMM. After the normalization, we use the average scores and standard variances to
evaluate the solution quality of compared approaches. The normalized scores of influence values
and influence spread are referred to as Normalized Influence Value and Normalized Influence
Spread.

Metrics for Efficiency. For SIM and continuous LSIM processing, we use throughput as the
metric for efficiency. The throughput is the average number of actions processed by an approach
per second. A higher throughput means a faster speed for stream processing. We do not use the
average latency as a metric, because the seeds are always maintained explicitly and the time to
retrieve them is negligible. For ad hoc LSIM processing, we use both the throughput to maintain



Table 4. Parameters in the Experiments

Parameter Values
B 0.1,0.2,0.3,0.4,0.5
k 10, 30, 50, 70, 90
N 100K, 300K, 500K, 700K, 900K
Selectivity | 1%,2%,3%, 4%, 5%
Q 10, 30, 50, 70, 90
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Fig. 7. Solution quality of compared approaches for SIM with varying parameter f and seed size k. The
average score is represented by the bar length and the standard variance is denoted by the error bar length.
Note that the influence values in Figures (a) and (b) are normalized by GReepy and the influence spread in
Figures (c) and (d) are normalized by IMM (the same for Figures 9 and 11).

SIC instances in Quadtree nodes over streams and the average latency, which is the average time
from receiving an ad hoc query to returning its solution as the metrics for efficiency.

Query Workload of LSIM. The query workload of continuous LSIM is as follows: We first
generate Q LSIM queries. At the start of the stream, we submit Q queries to compared approaches.
The results of Q queries are requested for each window slide until the end of the stream. The query
workload of ad hoc LSIM is as follows: we generate 1,000 LSIM queries and assign a random times-
tamp to each of them. During the stream, each LSIM query will be issued to compared approaches
at the assigned timestamp.

Parameters. We examine five parameters in the experiments: (1) S is the parameter in IC and
SIC to achieve a trade-off between solution quality and efficiency. For LSIC, we set § = 0.1 across
all the experiments. (2) k is the maximum size of the seed set. (3) N is the size of the sliding window.
(4) Selectivity is the ratio between the area of the query region for LSIM and the full space. The
area of the full space has been normalized to 1 in data preprocessing. If the query region is set to a
square of side 0.1, then the Selectivity will be 1%. (5) Q is the number of continuous LSIM queries
monitored at the same time. We fix the number of actions for each window slide to L = 5,000. The
summary of parameters is listed in Table 4 with default values in bold.
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Fig. 8. Throughputs of compared approaches for SIM with varying f, seed size k, and window size N.

Experiment Settings. All experiments are conducted on a server running Ubuntu 16.04.3 LTS.
It has an Intel Xeon E7-4820 1.9GHz processor and 128GB memory. All compared approaches
except IMM are implemented in Java 8. The IMM implementation available’ is written in C++.

6.2 Evaluation for SIM

Solution Quality for SIM. In Figures 7(a) and 7(b), we test the influence values of IC and SIC with
varying . The average scores for the influence values of SIC are slightly lower than IC while the
standard variances are a little higher in most of the experiments, because fewer checkpoints are
maintained by SIC. However, both SIC and IC show good robustness against f§ in terms of solution
quality. The influence values of IC and SIC are still over 96% of the influence values of GREEDY
when f = 0.5.

The results for influence spread with varying k are presented in Figures 7(c) and 7(d). Compared
with IMM, IC and SIC show less than 5% quality losses in all experiments. This result verifies the
effectiveness of SIM, because the seeds for SIM queries achieve nearly equivalent influence spread
to the seeds retrieved by IMM under the Independent Cascade model. In contrast, although the
influence spread of UBI is close to IMM when k = 10, it degrades dramatically when k increases.
UBI relies on interchanging users to maintain the seeds against the updates on the influence graph.
It interchanges a user into the seed set only when a substantial gain is achieved in the estimated

“https://sourceforge.net/projects/im-imm/.
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Fig. 9. Solution quality of compared approaches for continuous LSIM with varying k and selectivity. The
average score and the standard variance are denoted by the length of the bar and the error bar, respectively.

influence spread (i.e., 1% of the total influence spread prior to the interchange). As the total influ-
ence spread increases with k, users with emerging influences are harder to be interchanged into
the seed set. As a result, it delays the interchanges and degrades the solution quality.

Efficiency for SIM. The throughputs of IC and SIC with varying f are presented in Figures 8(a)
and 8(b). Both approaches achieve higher throughputs when f increases. There are two reasons
behind such an observation. First, SIEVESTREAMING is used as the checkpoint oracle and its up-
date cost is inversely proportional to f. Second, SIC maintains fewer checkpoints for a larger f
(note that the number of checkpoints in IC is not affected by f), which naturally leads to shorter
update time. Therefore, SIC shows greater superiority over IC in terms of throughput when f
increases.
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Fig. 10. Throughputs of compared approaches for continuous LSIM with varying k, selectivity, and Q.

The throughputs of compared approaches with varying k are presented in Figures 8(c) and
8(d). The throughputs of all approaches are inversely correlated with k. IC and SIC employ
SIEVESTREAMING as the checkpoint oracle, whose update time is proportional to O(log k). Hence,
the throughputs of IC and SIC drop when k is larger. Compared with IC and the baseline meth-
ods, SIC shows significant advantages in throughputs for all experiments. SIC dominates GREEDY
and IMM by achieving up to two orders of magnitude higher throughputs in both datasets. The
throughputs of UBI are far behind SIC and IC on the Reddit dataset but are close to IC on the Twitter
dataset. Nonetheless, SIC still has more than three times higher throughputs than UBL

The throughputs of compared approaches with varying N are presented in Figures 8(e) and
8(f). Although the throughputs of all approaches decrease with increasing N, SIC shows better
scalability than other approaches, since it only maintains O(log N) checkpoints when f is fixed. In
addition, IC shows a nearly equal throughput to SIC when N = 100K. This is because the number of
checkpoints in IC are very close to SIC (20 in IC vs. 12 in SIC) and the benefits of sparse checkpoints
become less significant. Nonetheless, when N increases, SIC regains its superiority. In addition, SIC
achieves throughputs of up to 178X, 35X, and 12X over GREEDY, IMM, and UBI, respectively.

6.3 Evaluation for LSIM

Solution Quality for Continuous LSIM. The solution quality of compared approaches for con-
tinuous LSIM queries is shown in Figures 9(a)-9(h). First, the average scores of LSIC for both
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Fig. 11. Solution quality of compared approaches for ad hoc LSIM with varying k and selectivity. The average
score is represented by the bar length and the standard variance is denoted by the error bar length.

quality metrics are over 90% in all experiments while the standard variances are at most 6.5%. The
results support our argument on the effectiveness of LSIC for continuous LSIM. However, the seed
quality of LSIC is 5%-10% lower than GREEDY and IMM. The main reason is that, compared with
SIM, the optimal influence value of an LSIM query is obviously smaller. Both SIC and LSIC employ
SIEVESTREAMING as the checkpoint oracle while SIEVESTREAMING depends on estimating the op-
timal influence value accurately to maintain near-optimal solutions for SIM and LSIM. Therefore,
smaller optimal influence values cause larger relative errors in estimations and degrade the solu-
tion quality of LSIC for LSIM compared with SIC for SIM. Second, LSIC* significantly improves
the seed quality upon LSIC. LSIC" achieves average scores of 94%—-99% in all experiments with
smaller variances. Due to the power-law nature of social influence, the quality losses caused by
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Fig. 12. Average latency of compared approaches for ad hoc LSIM with varying k and selectivity.

ignoring the users with fewer influence values are marginal. The seed quality of LSIC* is nearly
equivalent to GREEDY and IMM when k is 10 or 30. But the seed quality slightly degrades when k
increases. Nevertheless, the average scores are always above 94% in all experiments. Finally, SIC
cannot provide solutions of good quality for LSIM, because the spatial information is totally ig-
nored. The average scores of SIC are mostly between 50% and 80%. But the average score of SIC
obviously increases with selectivity, since global and local influencers tend to be more similar when
the selectivity increases.

Efficiency for Continuous LSIM. The throughputs of compared approaches for continuous
LSIM with varying k, selectivity and Q are shown in Figures 10(a)-10(f). Overall, the throughputs
of LSIC and LSIC™ are at least 8K and 5K, respectively. Both of them achieve up to two orders of
magnitude higher throughput than GREepy and IMM. This results confirm the high efficiency of
both approaches for continuous LSIM processing. LSIC achieves higher throughputs than LSIC*
in most cases, especially when k is small or the selectivity is large. Furthermore, the throughputs
of LSIC and LSIC* decrease with increasing k, selectivity, and Q. Such a trend is apparent, because
the total number of influence function evaluations for each window slide naturally grows with
these parameters. The throughputs of GREEDY are significantly lower on the Twitter-NY dataset,
because Twitter-NY contains about eight times more users than Twitter-SG. Different from other
approaches, the throughputs of IMM increase with rising selectivities because a smaller selectivity
often leads to sparser influence graphs, where IMM runs more slowly [44]. In spite of this, IMM
still has much lower throughputs than LSIC and LSIC* when the selectivity is 5%. Finally, although
SIC achieves the highest throughputs among compared approaches, we have shown that it cannot
provide solutions of good quality for LSIM in Figures 9(a)-9(h).

Solution Quality for Ad Hoc LSIM. The solution quality of compared approaches for ad hoc
LSIM queries with varying k and selectivity is presented in Figures 11(a)-11(h). The results are gen-
erally similar to those of continuous LSIM. The average scores of LSIC and LSIC* are at least 89%
and 94%, respectively. LSIC* also shows a slight degradation in solution quality when k increases.
In addition, the solution quality of LSIC for ad hoc LSIM drops when the selectivity increases. This
is because ad hoc LSIM queries with smaller selectivities are less likely to find a partial solution.



These queries are handled by rerunning from scratch, which often returns solutions with slightly
better quality, though this incurs higher computational costs. Not surprisingly, SIC also cannot
provide high-quality solutions for ad hoc LSIM.

Efficiency for Ad Hoc LSIM. The average latency of compared approaches for ad hoc LSIM
queries with varying k and selectivity are presented in Figures 12(a)-12(d). Generally, the average
latencies of LSIC and LSIC" are both within 150ms, which is acceptable for real-time query pro-
cessing over streams. GREEDY and IMM often take 1 to 20s for an ad hoc LSIM query. Compared
with them, LSIC and LSIC* achieve speedups of up to 512x and 476x for ad hoc LSIM process-
ing. The average latencies of LSIC and LSIC" are quite close. LSIC is more scalable to the larger
selectivity thanks to the partial solutions maintained in Quadtree nodes. LSIC* shows better scal-
ability to k, because it only considers top-k’ users. In addition, the throughputs of LSIC and LSIC*
to update SIC instances in Quadtree nodes are still over 10K. The throughput is about 18K when
k = 50 and 12K when k = 90. The results confirm LSIC and LSIC" are able to maintain the indices
and answer ad hoc LSIM queries at the same time.

7 CONCLUSION

In this article, we proposed the Stream Influence Maximization (SIM) and Location-aware SIM
(LSIM) queries to retrieve a seed set with the maximum influence value over location-unaware and
location-aware social streams, respectively. Then, we proposed the Sparse Influential Checkpoints
(SIC) framework to process SIM queries efficiently over social streams. Theoretically, SIC could
return (1 — )-approximate solutions for SIM queries. Furthermore, we proposed the Location-
based SIC (LSIC) framework and its improved version LSIC* for efficient LSIM processing over
geo-tagged social streams. LSIC also provided £(1 — f8)-approximate solutions for both ad hoc
and continuous LSIM queries. LSIC* improved the seed quality of LSIC and it would achieve a
(1 —1/e — y)-approximation factor for LSIM if k” = |U|. Finally, extensive experiments on real-
world datasets demonstrated that our proposed frameworks achieved up to two orders of mag-
nitude speedups over the state-of-the-art IM approaches. Meanwhile, compared with them, the
losses in seed quality were at most 4%, 11%, and 6% for SIC, LSIC, and LSIC*, respectively. In par-
ticular, they achieved an average throughput of at least 5K actions per second, which indicated
that they were adequate to process real-world social streams.

For future work, we consider that users have various preferences in the social media adver-
tising domain [29, 32, 55]. We plan to study the streaming influence maximization query where
advertisers can input keywords/topics to target the audience that is of interest to the query.
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