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Low-rank Sparse Subspace for Spectral
Clustering

Shichao Zhang, Senior Member, IEEE, Xiaofeng Zhu, Yonggang Li, Jilian Zhang, Lifeng Yang,
and Yue Fang

Abstract—Traditional graph clustering methods consist of two sequential steps, i.e., constructing an affinity matrix from the original
data and then performing spectral clustering on the resulting affinity matrix. This two-step strategy achieves optimal solution for each
step separately, but cannot guarantee to obtain the globally optimal clustering results. Moreover, the affinity matrix directly learned from
the original data will seriously affect the clustering performance, since high-dimensional data are usually noisy and may contain
redundancy. To address the above issues, this paper proposes a Low-rank Sparse Subspace (LSS) clustering method via dynamically
learning the affinity matrix from low-dimensional space of the original data. Specifically, we learn a transformation matrix to project the
original data to their low-dimensional space, by conducting feature selection and subspace learning in the sample self-representation
framework. Then we utilize the rank constraint and the affinity matrix directly obtained from the original data to construct a dynamic and
intrinsic affinity matrix. Moreover, each of these three matrices is updated iteratively while fixing the other two. In this way, the affinity
matrix learned from the low-dimensional space is the final clustering results. Extensive experiments are conducted on both synthetic
and real datasets to show that our proposed LSS method outperforms the state-of-the-art clustering methods.

Index Terms—Feature selection, affinity matrix, spectral clustering, subspace learning

F

1 INTRODUCTION

H IGH-DIMENSIONAL data can be represented by an union
of multiple low-dimensional subspaces [1], hence spectral

clustering may achieve truthful results by clustering samples
according to their underlying subspace. Generally, according
to the utilization of graph theory, existing clustering methods
can roughly be partitioned into two categories [2], i.e., non-
graph clustering methods such as K-means [3], mean-shift [4],
Expectation-Maximization (EM) [5] and density based method
such as Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [6], as well as graph clustering methods such as
min-cuts [7], Normalized Cuts (NCut) [8], and subspace clustering
[9], [10]. Non-graph clustering methods usually achieve the best
clustering results when samples are not corrupted by noise and the
intrinsic structure of the data is simple. For example, K-means is
widely used for data clustering due to simplicity and fair clustering
performance, but it performs poorly when the structure of the
data is complicated. On the other hand, DBSCAN is difficult to
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distinguish accurate clusters when the sample space has a cross or
the spaces are very close.

To overcome the drawbacks of non-graph clustering meth-
ods, graph clustering methods take advantage of correlations
among samples to achieve better results by transforming the data
partition problem into a graph-cut problem. NCut is a popular
graph partitioning method measuring the dissimilarity between
two different subspaces and the similarity between samples in the
same subspace for learning a similarity or affinity matrix. Another
important graph clustering method is spectral clustering, which
constructs the affinity matrix by considering various inherent
structures of the data such as global structure and local structure
[11], [12]. Sparse Subspace Clustering (SSC) method, on the other
hand, can also achieve a good clustering result by conducting
spectral clustering on the resulting affinity matrix which is a
sparse similarity graph of the samples [13]. As a consequence,
spectral clustering methods have drawn increasing attention from
researchers around the world and have been utilized in many
applications.

Usually, spectral clustering consists of two separate steps [14],
i.e., contructing an affinity matrix and performing clustering on
the generated affinity matrix. Most spectral clustering methods
consider the correlation between samples when constructing the
affinity matrix. In essence, the affinity matrix can be regarded as a
graph, hence the clustering problem is transformed to the problem
of computing the optimal graph partitioning. This transformation
may remarkably reduce the complexity of clustering and hence
play an important role in spectral clustering. To calculate the
similarity between two samples, the sample self-representation
assumes that each sample can be represented by other samples
in the same subspace [12], [15], [16]. Depending on whether a
sample can be linearly represented by all the other samples or
some of its nearest neighbors, the spectral clustering methods can
be divided into two categories,i.e., global representation method
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such as LRR [17] and LSR [9], and local representation method
such as SSC [13] and CLR [18]. The major difference among
previous spectral clustering methods is the learning process of the
affinity matrix from original data [9], [17], [19]–[21].

The two-step spectral clustering methods can effectively deal
with clustering tasks, however they are likely to produce worse
results. The main reason is that the two-step methods may con-
struct a low quality affinity matrix, which is directly learned
from the original data. On one hand, the original data are usually
high-dimensional, causing the so-called curse of dimensionality
problem [22]–[24]. On the other hand, the original data contain
noise and redundancy as well, and a good affinity matrix cannot
be derived from it. As a consequence, these two intrinsic problems
of the original data will lead to a low quality affinity matrix, based
on which only a suboptimal clustering results can be got [18],
[25].

To tackle the above problems, this paper proposes a Low-rank
Sparse Subspace (LSS) clustering method, which can dynamically
learn an affinity matrix from the intrinsic low-dimensional space
of the original data. The proposed LSS utilizes the following
procedure to construct an ideal affinity matrix from the samples:
1) perform a sample self-representation process to measure sample
similarity, that is, each sample is represented by a subset of all
the samples in the same subspace; 2) learn the intrinsic low-
dimensional space of the original data by simultaneously conduct-
ing subspace learning and feature selection during the representa-
tion process; 3) dynamically construct the affinity matrix from the
low-dimensional space of the original data; and 4) impose a rank
constraint on the Laplacian matrix of the affinity matrix, so that
the final clustering results can be derived from the ideal affinity
matrix directly. To this end, we integrate three learning processes
into a unified framework, i.e., learning the affinity matrix, learning
the low-dimensional space, and learning clustering results, so
that each of them can be iteratively updated while fixing the
other two. As a consequence, the affinity matrix can be learn
from the low-dimensional space and the final clustering results
can be achieved simultaneously. Such a one-step strategy avoids
generating suboptimal results, which is inevitably in the two-step
strategy of the existing clustering methods.

We briefly summarize the main contributions of our proposed
LSS method as follows:

• Different from the previous graph clustering methods that
constructs either a fixed affinity matrix or a dynamic
affinity matrix from the original data, LSS learns a dy-
namic affinity matrix from the intrinsic low-dimensional
space of the original data. In addition, LSS constructs
affinity matrix and learns the low-dimensional space it-
eratively, which guarantees a high quality affinity matrix
because noise and redundancy are eliminated in the low-
dimensional space.

• The low rank constrain is utilized on the Laplacian matrix
of the affinity matrix, so as to produce explicitly ideal
block structure, in other words, the affinity matrix corre-
sponds to the clustering results. Adaptively adjusting the
learning process of the affinity matrix and the learning
process of the clustering results, until our LSS method
achieves the best clustering results.

• Our LSS method simultaneously integrates three processes
into a unified framework, i.e., learning the affinity matrix,
learning the low-dimensional space of the original data,

and learning clustering results. This is different from the
previous clustering methods that consider each process
separately.

The paper is organized as follows. In Section 2, we briefly
introduce existing clustering methods, and then present our LSS
method in Section 3. We evaluate our proposed LSS method
through extensive experiments in Section 4. Finally, we conclude
the paper in Section 5.

2 RELATED WORK

In this section, we review the most relevant clustering work,
i.e., non-graph clustering methods and graph clustering methods.

2.1 Non-graph methods
Non-graph methods performs clustering directly on the original
data, where the most representative one is K-means. Given a
dataset D, K-means randomly selects K data points from D as
the initial cluster centers, and then alternates the following two
steps. In the first step, for each of the data points in D we compute
its distance to each of the K cluster centers, then assign the data
point to its nearest cluster. In the second step, we update each
of the K cluster centers by considering the member data points
in the cluster. K-means will terminate until the assignments no
longer change. Obviously, it is difficult to determine a suitable
K and when dimensionality of the data is very high, distance
computation is very inefficient.

Existing work based on non-graph methods can be roughly
divided into three categories: statistics-based, density-based, and
hierarchical-based, for instance, BIRCH [26] and CURE [27].
Statistical methods, such as Multi-Stage Learning (MSL) [28] and
Mixtures of Probabilistic PCA (MPPCA) [29], assume that the
data has a Gaussian distribution inside each subspace and they
apply Expectation Maximization (EM) to a mixture of proba-
bilistic PCAs. The main idea of density-based methods is that
when the density of a region is larger than a threshold, then
the region will be included into the nearby cluster. However,
these methods, such as DBSCAN [30] and DENCLUE [31], can
only find the quasi-circular clusters. Given a dataset, hierarchical
methods directly perform hierarchical decomposition on the data,
until some predefined condition is met. This kind of methods is
usually distance or density based, and they are easily affected by
noise and outliers.

In a nutshell, common limitations of these non-graph methods
include: 1) performance is easily affected by the data, and 2) they
may encounter the problem of curse of dimensionality.

2.2 Graph based methods
As a useful technique for subspace learning and data clustering,
graph-based methods have become popular in machine learning
and data mining communities [19], [32]–[34]. Most graph methods
firstly construct an affinity matrix to measure similarity between
any two data points, and then perform graph cutting or spectral
analysis on the resulting affinity matrix [12], [19], [35]. For
example, Ncut [8] transfers the data clustering task into a graph
partition problem via effectively measuring dissimilarity between
different groups and similarity within the same groups, while SSC
[13] utilizes a representation-based sparse model to construct an
affinity matrix. Low-Rank Representation (LRR) aims to find the
low-rank representation of all data and then obtains the clustering
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results base on their respective subspaces [17]. Least Square
Regression (LSR) [9] theoretically illustrates that the affinity
matrix is usually presented as a block diagonal structure under
an ideal situation, and then obtains the clustering results by
making full use of the data correlation. Smooth Representation
Clustering [20] takes advantage of grouping effect of the data self-
representation model and meanwhile introduces a new grouping
effect condition to obtain more effective affinity matrix. GKM
[33] takes the intrinsic manifold structure of the data into account
to construct an affinity matrix for clustering. Spectral clustering in
[34] shows that the dimension of the ambient space is crucial for
clustering, based on the assumption that low dimensions chosen
in prior work are not optimal. They suggest a lower and a upper
bound together with a data-driven procedure for choosing the
optimal ambient dimension to construct the affinity matrix. Sparse
representation based spectral clustering (SRSC) [36] constructs the
affinity matrix by using all of the sparse representation coefficient
vectors for spectral clustering. As a supplement of SRSC, NMFSC
[37] constructs its affinity matrix by using Nonnegative Matrix
Factorization (NMF) coefficient vectors to cluster large scale high-
dimensional datasets.

Lots of strategies have been proposed to obtain a desirable
affinity matrix. However, the above graph clustering methods
employ a two-step strategy, which has been shown to easily
result in suboptimal clustering results [25]. To address this issue,
Constrained Laplacian Rank (CLR) [18] puts forward a block
diagonal affinity matrix and then directly clusters data points into
exactly K connected components/clusters. However, the affinity
matrix obtained by CLR is learned from the original data, which
usually contains noise and redundancy. Therefore, in this paper
we focus on graph clustering, aiming to learn an affinity matrix
from the low-dimensional space of the original data to derive an
optimal clustering result.

3 APPROACH

3.1 Notations

In this paper, we denote the input sample matrix by X. Moreover,
we utilize the normal italic letters, boldface lowercase letters, and
boldface uppercase letters to denote scalars, vectors, and matrices,
respectively. We summarize symbols used in the paper in Table 1.

3.2 Framework

Assume that
{
Xi|Xi ∈ Rd×ni

}k
i=1

are the sample sets drawn
from k independent subspaces, i.e., each subspace is equivalent to
a cluster, where ni and d denote the number of samples in cluster
i and the number of features, respectively. Many existing work
have proved that high-dimensional data are usually contributed
in some low dimensional subspaces and the samples in the same
cluster always belong to the same subspace [13]. Hence, the goal
of clustering is to partition the input samples into a number of
subspaces such that samples in the same cluster are homogeneous.
In addition, samples in the same subspace are more similar
whereas samples from different subspaces are less similar even
dissimilar. Consequently, the clustering task can be expressed as
partitioning the input data matrix X into k different independence
regions (or clusters) according to similarity between samples,
where k is the number of clusters.

The clustering performance, however, highly relies on the
affinity matrix, and the noise and the redundancy in the original

TABLE 1
Description of the symbols used in the paper

Symbols Description
X the feature matrix of a sample
x a vector of X
xi the i-th row of X
xj the j-th column of X
xi,j the element in the i-th row and the j-th column of X

||X||F the Frobenius norm of X, i.e., ||X||F =
√∑

i,j x
2
i,j

||X||2,1 the `2,1-norm of X , i.e., ||X||2,1 =
∑

i

√∑
j x

2
i,j

rank(X) the rank of X
XT the transpose of X
tr(X) the trace of X
X−1 the inverse of X

data always result in a low quality affinity matrix. To solve this
issue, our proposed LSS method constructs two affinity matrices,
i.e., the original affinity matrix A ∈ Rn×n and another intrinsic
affinity matrix S ∈ Rn×n. Specially, the original affinity matrix A
is directly learned from the original data and S is derived from the
low-dimensional space of the original data by conducting feature
selection and subspace learning on the transformation matrix W.
In this way, LSS can significantly eliminate the impacts of noise
and redundancy when constructing an ideal affinity matrix.

Meanwhile, existing two-step based clustering methods obtain
the final clustering results by searching the optimal solution at
each step. This strategy, however, cannot guarantee that the final
clustering results is globally optimal, since a globally optimal
clustering solution is not equivalent to combining together the
optimal results of the two steps, let along the difficulty to obtain
the optimal results at each step. Instead, we impose a rank con-
straint on the Laplacian matrix of S to simultaneously achieve an
ideal affinity matrix and subsequently the final clustering results.
Furthermore, LSS iteratively updates these two affinity matrices
and the transformation matrix W ∈ Rd×k, by converting the
original data into their low-dimensional space according to the
rank constraint, until both of them converges. Therefore, A will
approaches to S, meaning that LSS will construct the dynamic and
intrinsic affinity matrix S from the low-dimensional space spanned
by WTX, according to matrix A and the low-rank constraint. The
flowchart of our LSS method is given in Fig. 1.

3.3 Affinity matrix learning

The affinity matrix is introduced to measure the similarity between
any samples. Given that each sample is only connected with its
nearest neighbors [1], [11], [38], samples close to each other
should have high similarity score while samples far apart should
have small or even zero similarity score. Based on the assumption
in [39], [40] that the affinity matrix S that measures similarity
among samples can be transformed to guide the prediction of the
original feature matrix X , i.e.,

min
W

=
∑n
i,j=1 si,j ||WTXi −WTXj ||22 (1)

where W is the transformation matrix and WTxi the prediction
of the i-th superpixel xi. In Eq. (1), the similarity score si,j
between the i-th sample xi and the j-th sample xj is learned
from the original data X before optimizing the matrix W. Unfor-
tunately, original data usually contains noisy/redundant features,
hence producing low quality S. In this case, the assumption that
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Fig. 1. The flowchart of the proposed LSS method.

(a) Original (b) PCA (c) Feature selection by Lasso (d) Our LSS

Fig. 2. An illustration of the affinity matrix generated by different feature spaces on dataset iris.

the high-dimensional data has low-dimensional intrinsic space
[15], [41] motivates us to search for a high-quality S from the
low-dimensional space spanned by WTX. However, the fact is
that neither the affinity matrix S nor the transformation matrix
W are known. To solve this problem, we couple them together in
a framework in such a way that they can be iteratively updated,
until achieving their optimality respectively. Therefore, we have
the following objective function:

min
S,W
‖WTX−WTXS‖2F + γ‖W‖2,1,

∀i, sTi 1 = 1, si,i = 0,
si,j ≥ 0 if j ∈ N(i), otherwise 0

(2)

where γ is a parameter to be tuned. The regularization term
‖W‖2,1 is used to select features by enforcing matrix W to
contain row sparsity entries, such that noisy/redundant features of
X can be removed. ‖WTX−WTXS‖2F =

∑n
i,j=1 ‖WTxi −

WTXsi‖22 indicates that xi is represented by all the samples in X
in their low-dimensional space, i.e., each WTxi is represented by
all the samples WTX. The weight matrix S is the new represen-
tation of X, i.e., S is the affinity matrix of WTX. The constraint
“∀i, sTi 1 = 1, si,i = 0, si,j ≥ 0 if j ∈ N(i), otherwise 0”
implies that each WTxi is sparsely represented by all elements
in WTX, where j ∈ N(i) means that the j-th superpixel is one
of the nearest neighbors of the i-th superpixel.

Compared with the traditional pairwise similarity measure-
ment in [39], the sparse representation in Eq. (2) has at least
the following two advantages. First, the sparse representation in
Eq. (2) shows discriminative ability, i.e., Eq. (2) only selects
the samples related to the reconstruction of all the samples in
the low-dimensional feature space, thus removing the adverse
impacts of noisy samples. Second, Eq. (2) iteratively updates
W and S until both of them converge. During the update, the
optimized S can be used to guide the search for important features,
i.e., W. On the other hand, after eliminating the adverse impact

of noisy/redundant features, the important features will enable us
to find a better sparse representation, i.e., S.

Iteratively updating S and W in Eq. (2), however, may
generate suboptimal results or lead S and W to zero, since the
minimization problem in Eq. (2) does not have a constraint to
prevent this from happening. As a remedy, we induce another
affinity matrix A that is learned from the original feature space by
using the following objective function:

min
A
‖X−XA‖2F , s.t., ∀i,aTi 1 = 1, ai,i = 0,

ai,j ≥ 0 if j ∈ N(i), otherwise 0
(3)

We build two different affinity matrices A and S for data
matrix X, according to the observation that different feature
spaces result in different clustering results. As shown in Fig. 2,
subfigure (a) is the feature space of the original dataset IRIS,
whereas subfigures (b)-(d) correspond to feature spaces generated
by PCA, Lasso, and our method respectively. Specifically, PCA
finds the principal component of the original data and then
constructs affinity matrix in the principal component space. For
LASSO, we utilize LASSO-based feature selection method to
select important features, and then construct the affinity matrix
by using the selected features. Different from PCA and LASSO,
our LSS uses orthogonal-based low-rank constraint to dynamically
choose the real important features, avoiding the obstruction of
the redundant features, and finally constructs an affinity matrix
with k blocks which exactly corresponds to the final clustering
results. It is well-known that the clearer of the affinity matrix,
the better the clustering results. Since both A and S are different
similarity measurement of the same data points, the difference∑n
i=1(‖ai − si‖22) between elements in A and S should be as

small as possible. Moreover, this difference can be used to guide
the iterative optimization process in Eq. (2), so that A and S can
converge to ideal affinity matrix, respectively. Thus we have the
following objective function:
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min
A,S,W

‖WTX−WTXS‖2F + α‖X−XA‖2F
+ β

∑n
i=1 ‖ai − si‖22 + γ‖W‖2,1,

s.t. ∀i,aTi 1 = 1, ai,i = 0,
ai,j ≥ 0 if j ∈ N(i), otherwise 0;
∀i, sTi 1 = 1, si,i = 0,
si,j ≥ 0 if j ∈ N(i), otherwise 0.

(4)

where α, β and γ are parameters to tune, and constraint∑n
i=1 ‖ai − si‖22 is used to preserve consistency of A and S.

3.4 Low-rank sparse subspace clustering

The optimization model in Eq. (4) can produce high quality affin-
ity matrix S (or A), but it still involves a graph-cut problem that is
NP-hard, failing to explicitly generate the segmentation results. To
overcome this drawback, we introduce the final objective function
of our LSS method as follows:

min
A,S,W

‖WTX−WTXS‖2F + α‖X−XA‖2F
+ β

∑n
i=1 ‖ai − si‖22 + γ‖W‖2,1,

s.t. ∀i,aTi 1 = 1, ai,i = 0,
ai,j ≥ 0 if j ∈ N(i), otherwise 0;
∀i, sTi 1 = 1, si,i = 0,
si,j ≥ 0 if j ∈ N(i), otherwise 0;
WTXXTW = Ik,

(5)

where W ∈ Rd×k and Ik ∈ Rk×k are the transformation matrix
and the identity matrix, respectively.

There is only one difference between Eq. (4) and Eq. (5),
that is, Eq. (5) has one more constraint WTXXTW = Ik. In
Theorem 1 we prove that this extra constraint enables Eq. (5) to
generate explicit clustering solution, i.e., resultant matrix S will
have exact k connected components (or blocks).

Theorem 1. The optimal S generated by Eq. (5) has k blocks (or
connected components), where k is the number of clusters.

Proof. First, by following the Ky Fan’s theorem in [42], we have
the following Lemma:

Lemma 1.{
min
W

tr(WTXLXTW),

s.t.,WTXXTW = Ik.
⇔
∑k
i=1 λi → 0 (6)

where In is an n×n identity matrix, L = (In−S)(In−S)T ,
and λi, i ∈ 1, ..., k is the least k eigenvalues of L.

Second,
∑k
i=1 λi → 0 can be regarded as the relaxation ver-

sion of the constraint “L has k zero eigenvalues”, i.e., rank(L) =
n− k.

Third, by following [43], [44], we have the following Lemma:

Lemma 2. The number of eigenvalue 0 of the Laplacian matrix
L, i.e., rank(L) = n−k, is equal to the number of the connected
components of the affinity matrix S.

Finally, we know the constraint WTXXTW = Ik ensures
that S has exactly k connected components (or blocks), so S has
explicit clustering results. Due to this constraint is related to the
rank of the Laplacian matrix of the affinity matrix, so we call it
the rank constraint in this paper.

In Eq. (5), we integrate the learning of two affinity matrices A
and S, the transformation matrix W, and the low-rank constraint
WTXXTW = Ik, into a unified framework. In the framework,
a robust feature selection model based on W can be constructed
through 1) the guidance from both the low-rank constraint and
the two optimized affinity matrices, and 2) conducting subspace
learning (via the row-rank constraint) and feature selection (via
the `2,1-norm) simultaneously. The resulting matrix W can better
help the optimization of S. Meanwhile, the constraint

∑n
i=1 ‖ai−

si‖22 enforces a tradeoff between the original affinity matrix A
and the affinity matrix S that is learned from the low-dimensional
space. Hence, the low-rank constraint suggests that S is the final
clustering results, and both A and S converge to ideal affinity
matrix respectively.

Algorithm 1 Framework of the optimization of Eq. (5)

Require: X ∈ Rn×d, k, α, β and γ.
Ensure: Initial W, A, S randomly.

1: repeat
2: Obtain W by solving Eq. (7);
3: Obtain A by solving Eq. (9);
4: Obtain S by solving Eq. (13);
5: until rank(L) = n− k;

Ensure: Optimal affinity matrix S.

3.5 Optimization

It is clear that Eq. (5) is not jointly convex on A, B, and S, but
is convex on each variable while fixing the rest. In this paper, we
employ the alternative optimization strategy to optimize Eq. (5),
i.e., iteratively optimizing each variable while fixing the rest until
the algorithm converges. The pseudo-code of the framework of
our method is given in Algorithm 1.

3.5.1 Update W while fixing S and A

When S and A are fixed, Eq. (5) turns into the following optimal
problem:

min
WTXXTW=Ic

‖WTX−WTXS‖2F + γ‖W‖2,1, (7)

The objective function in Eq. (7) is convex with respect to
W, but non-smooth due to the term ‖W‖2,1. In this paper, we
employ the framework of iteratively reweighted least square in
[45] to optimize W, by iteratively optimizing W and Q until
converged. Here, Q is a diagonal matrix with the i-th diagonal
element qi,i = 1

2||wi||22
. Thus, Eq. (7) is changed to Eq. (8):

min
WTXXTW=Ic

‖WTX−WTXS‖2F + γtr(WTQW), (8)

Eq.(8) is an orthogonal optimization problem and we can
solve it by using technique in [46]. We list the pseudo-code for
optimizing W in Algorithm 3, where∇F = XTLXW+γQW
is the derivative of Eq. (8). Meanwhile, since Q dependents on W,
we iteratively optimize it by using Algorithm 2:

3.5.2 Update A while fixing W and S

By fixing W and S, we have the following objective function:

min
A

α‖X−XA‖2F + β
∑n
i=1 ‖ai − si‖22,

s.t.,∀i,aTi 1 = 1, ai,i = 0, ai,j ≥ 0
(9)
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Algorithm 2 Framework for solving Eq. (7)

Require: X ∈ Rn×d, S ∈ Rn×n,W ∈ Rd×c and γ.
Ensure: W

1: repeat
2: Obtain W(t+1) by using Algorithm 3 ;
3: Calculate the diagonal matrix Qt+1, where the i-th diagonal

element of Qt+1 is 1

2‖w(t+1)i‖22
;

4: until convergence;

Algorithm 3 Framework for solving Eq. (8)

Require: X ∈ Rn×d, S ∈ Rn×n and γ.
Ensure: W

1: Initial W(0);
2: t← 0;
3: repeat
4: W←W(t)∇FT (t) −∇F(t)WT (t)

;
5: τ ← non-monotonic line search;
6: Wt+1 ← (I− τ

2H)−1(I+ τ
2H)X(t);

7: t← t+ 1;
8: until convergence;

The Lagrangian formulation of Eq. (9) can be changed to

min
A
‖R−BA‖2F s.t., ai,i = 0, (10)

where R = [XT ,
√
β/αST , ξ1]T and B =

[XT ,
√
β/αIT , ξ1]T , I ∈ Rn×n is an identify matrix,

1 ∈ Rn×n is a square matrix with all-one-element, and ξ
approaches to infinity. In this paper, we utilize the alternative
optimization method to solve the problem in Eq. (10). Since
the optimization of ai (i = 1, ..., n) is independent on the
optimization of the other aj(j 6= i), we optimize ai while fixing
the other ajs by using the following objective function:

min
ai

‖R1 − bia
T
i ‖22 s.t., ai,i = 0, (11)

where R1 = R−(BA−biaTi ) . Eq. (11) can further be changed
to Eq. (12) as follows:

min
ai

‖ai − vi‖22 s.t., ai,i = 0, (12)

where vi = RT
1 bi/b

T
i bi. Eq. (12) has a closed form solution,

i.e., ai,j = vi,j , j 6= i and ai,i = 0, where ai,j and vi,j are the
j-th element of ai and vi, respectively.

Since the constraint “∀i, sTi 1 = 1, si,i = 0, si,j ≥ 0” in Eq.
(5) outputs sparse representation for all the data points [47], we
follow [18] to set the maximum number of neighbors to k to fix
variable β = 1

n

∑n
i=1(

k
2 v̂i,k+1 − 1

2

∑k
f=1 v̂i,f ), where v̂i is vi,

i = 1, ..., n on descend order.

3.5.3 Update S while fixing W and A

When fixing W and A, Eq. (5) can be changed to:

min
S
‖WTX−WTXS‖2F + α‖A− S‖2F ,
s.t., ∀i, sTi 1 = 1, si,i = 0, si,j ≥ 0

(13)

The Lagrangian function of Eq. (13) can be changed to:

min
S
‖R̃− B̃S‖2F s.t., si,i = 0 (14)

where R̃ = [WXT,
√
1/.αAT, φ1] and B̃ =

[WXT,
√
1/.αI, φ1], and φ approaches to infinity.

Since optimizing si (i = 1, ..., n) is independent on optimiz-
ing sj , j 6= i, we optimize si while fixing sj , j 6= i by using the
following objective function:

min
si
‖R̃1 − b̃is

T
i ‖22 s.t., si,i = 0, (15)

where R̃1 = R− (B̃S− b̃is
T
i ). In fact, Eq. (15) can be further

changed to Eq. (16) below:

min
si
‖si − ṽi‖22 s.t., si,i = 0, (16)

where ṽi = R̃T
1 b̃i/b̃

T
i b̃i. And Eq. (16) has a closed form

solution, i.e., si,j = ṽi,j , j 6= i and si,i = 0. Here, si,j and
ṽi,j are the j-th element of si and ṽi, respectively.

3.6 Convergence analysis

In this section, we analyze and prove the convergence of our pro-
posed Algorithm 1-3 when solving the final objective function Eq.
(5). Algorithm 2 and Algorithm 3 have been proved to converge
by [46] and [45], respectively, so we prove the convergence of
Algorithm 1 by using Theorem 1 given below.

Theorem 1. Algorithm 1 monotonically decreases the objective
function value of Eq. (5) until converges.

Proof. Assume after the t-th iteration we have obtained the
optimal A(t), W(t) and S(t). In the (t+1)-th iteration, we need to
optimize S(t+1) while fixing A(t) and W(t), as shown below.

3.6.1 Update S(t+1) while fixing A(t) and W(t)

.
According to Section 3.5.3, s(t+1)

i,j has a closed-form optimal
solution, i.e., a global solution, for all i, j = 1, ..., n. Thus we
have the following inequality:

∥∥∥W(t)TX−W(t)TXS(t+1)
∥∥∥2
F
+ α‖X−XA(t)‖2F

+β
∑n
i=1

∥∥∥a(t)i − s
(t+1)
i

∥∥∥2
2
+ γ

∥∥∥W(t)
∥∥∥
2,1

≤
∥∥∥W(t)TX−W(t)TXS(t)

∥∥∥2
F
+ α‖X−XA(t)‖2F

+β
∑n
i=1

∥∥∥a(t)i − s
(t)
i

∥∥∥2
2
+ γ

∥∥∥W(t)
∥∥∥
2,1

(17)

3.6.2 Update A(t+1) while fixing S(t+1) and W(t)

.
According to Section 3.5.2, a(t+1)

i,j has a closed-form optimal
solution, i.e., a global solution, for all i, j = 1, ..., n, which
implies the following:

∥∥∥W(t)TX−W(t)TXS(t+1)
∥∥∥2
F
+ α‖X−XA(t+1)‖2F

+β
∑n
i=1

∥∥∥a(t+1)
i − s

(t+1)
i

∥∥∥2
2
+ γ

∥∥∥W(t)
∥∥∥
2,1

≤
∥∥∥W(t)TX−W(t)TXS(t+1)

∥∥∥2
F
α‖X−XA(t)‖2F

+β
∑n
i=1

∥∥∥a(t)i − s
(t+1)
i

∥∥∥2
2
+ γ

∥∥∥W(t)
∥∥∥
2,1

(18)
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3.6.3 Update W(t+1) while S(t+1) and A(t+1)

.
According to the conclusion in [45], we can easily have the

following:

∥∥∥W(t+1)TX−W(t+1)TXS(t+1)
∥∥∥2
F
+ γ

∥∥∥W(t+1)
∥∥∥
2,1

+α‖X−XA(t+1)‖2F + β
∑n
i=1

∥∥∥a(t+1)
i − s

(t+1)
i

∥∥∥2
2

≤
∥∥∥W(t)TX−W(t)TXS(t+1)

∥∥∥2
F
+ γ

∥∥∥W(t)
∥∥∥
2,1

+α‖X−XA(t+1)‖2F + β
∑n
i=1

∥∥∥a(t+1)
i − s

(t+1)
i

∥∥∥2
2

(19)

By integrating Eq. (17) with Eq. (18) and Eq. (19) , we obtain:∥∥∥W(t+1)TX−W(t+1)TXS(t+1)
∥∥∥2
F
+ γ

∥∥∥W(t+1)
∥∥∥
2,1

+α‖X−XA(t+1)‖2F + β
∑n
i=1

∥∥∥a(t+1)
i − s

(t+1)
i

∥∥∥2
2

≤
∥∥∥W(t)TX−W(t)TXS(t)

∥∥∥2
F
+ γ

∥∥∥W(t)
∥∥∥
2,1

+α‖X−XA(t)‖2F + β
∑n
i=1

∥∥∥a(t)i − s
(t)
i

∥∥∥2
2

(20)

Eq. (20) indicates that the objective function value of Eq. (5)
decreases after each iteration of Algorithm 1. This concludes the
proof of Theorem 1.

3.7 Complexity analysis
The computational complexity of our LSS method mainly depends
on the iterative optimization of W, A and S in Algorithm 1.
Specifically, the time complexity of the optimization of W is
O(2dn2 + 4nd2 + 2kd2 + k3) , where d and n are the number
of features and the number of training samples, respectively
[46]. Since the optimization of both A and S takes closed form
solutions, it has a complexity of O(n2). Therefore, the overall
time complexity of Algorithm 1 is O(2dn2+4nd2+2kd2+k3) .
For comparison, time complexity of most clustering methods, such
as Constrained Laplacian Rank (CLR) [18], Ratio Cut (RCut) [48],
Sparse Subspace Clustering (SSC) [13], Low-Rank Representation
(LRR) [17], Smooth Representation (SMR) [20], Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [6] and
LeastSquares Regression (LSR) [9]), are quadratic with respect to
the sample size.

4 EXPERIMENTS

In this section, we evaluate the performance of our Low-rank
Sparse Subspace (LSS) method, by comparing LSS with nine
state-of-the-art clustering methods on two synthetic datasets and
eight real datasets. We adopt ACC and NMI as performance
measures for the algorithms.

4.1 Experiment setting
4.1.1 Dataset
We generate two synthetic datasets, as shown in Fig. 3, to verify
the effectiveness of our LSS method. Synthetic dataset 1 (see the
left-most column the first row in Fig. 3) includes 400 data points
that can be divided into two clusters. Each cluster has 200 data
points and some samples in different cluster are close in distance.
The purpose of using this kind of synthetic data is to evaluate
the ability of clustering methods to correctly recognize the two

TABLE 2
Characteristics of eight benchmark real datasets.

Datasets Samples Dimensions Classes
Coil20 1440 1024 20
Ecoli 336 344 8
Umist 575 644 20
Glass 214 9 6
Usps 1000 256 10
Jaffe 213 1024 10
Tox 171 5748 4

Yeast 1484 1470 10

clusters, without being misled by those neighboring samples from
different clusters. We denote Synthetic data 1 as Syn1. Synthetic
dataset 2 (see the left-most column of the second row in Fig.
3) contains two clusters that form a circle and a upper case
letter ‘T’ in the circle. We create this synthetic dataset to verify
the ability of clustering methods to separate these two clusters
correctly. Obviously, clustering task on Synthetic dataset 2 is more
challenging than that on Synthetic dataset 1. We denote Synthetic
dataset 2 as Syn2.

We also use eight real datasets in our experiments. Specifically,
dataset Coil [49] includes 1440 grid images of 20 objects and each
image has 1024 features. It is worth noting that the background of
all the images in Coil has been discarded. Umist [50] consists of
575 face images of 20 people, where each image contains 23× 28
pixels and all images have different poses from profile to frontal
views. Ecoli and Glass are widely used for clustering tasks and can
be downloaded from UCI Machine Learning Repository 1. Usps
[51] contains 1000 digital images where each of which is a number
from 0 to 9, thus Usps can be segmented into 10 groups. Jaffe [52]
consists of 213 face images of 10 women and these images have
different facial expressions. TOX [53] is a dataset that is followed
by observations of high-fat food feeding in mice with 24 weeks.
It is used for providing insight into the effect of high fat diets
on metabolism in the liver. And Yeast [54] contain 1484 samples
with 1470 features for predicting the Cellular localization sites of
proteins. Detail statistics of the above real datasets are summarized
in Table 2.

4.1.2 Comparison methods

In order to verify (1) how robust our proposed method is with
respect to noise and redundancy in data, and (2) how well our
one-step method performs compared to existing state-of-the-art
two-step clustering methods on real datasets, we use the following
methods for comparison: (1) three classic clustering methods,
i.e., k-means [55], Ratio Cut (RCut) [48], and Normalized cut
(NCut) [8], (2) a density-based clustering method DBSCAN [6],
(3) four baseline graph-cut-based methods, i.e., Sparse Subspace
Clustering (SSC) [13], Low-Rank Representation (LRR) [17],
Smooth Representation (SMR) [20], and Least Squares Regression
(LSR) [9], (4) and state-of-the-art method, i.e., Constrained Lapla-
cian Rank (CLR) [18]). We summarize each of these comparison
methods as follows.

• The classic k-means clustering method [55] is designed
to partition the dataset into groups so that data points in
the same groups are homogenous and data points between
different groups are heterogeneous.

1. http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/.
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Fig. 3. Experiment results of all the methods on synthetic datasets Syn1 (Top row: the ‘circle-and-T’ shape) and Syn2 (Bottom row:
the ‘double-hump’-T’ shape).

• Ratio Cut (RCut) [48] captures both the minimum-cut
and minimum-width bisection naturally, which are the two
traditional goals of segmentation.

• Normalized cuts (NCut) [8] first extracts the global repre-
sentation of images and then performs clustering task by
regarding it as a graph partitioning problem. This classic
graph segmentation method uses a two-step strategy.

• Sparse Subspace Clustering (SSC) [13] first learns a sparse
similarity matrix using an `1-norm regularizer, so as to
find the intrinsic low-dimensional subspaces of the original
high-dimensional space. Then it obtains the final clustering
results by conducting spectral clustering on the sparse
similarity matrix.

• Low-Rank Representation (LRR) [17] first searches for
the low-rank representation of the data via an `2,1-norm
regularizer, and then constructs a undirected graph using
the Ncut method.

• Smooth Representation (SMR) method [20] makes use of
the least square loss function and the trace norm regu-
larizer to enforce grouping effect among representation
coefficients, and then performs subspace segmentation.

• Least Squares Regression (LSR) [9] first takes advantage
of correlation of data points, and then obtains clustering
results by performing spectral clustering on the learned
affinity matrix.

• Constrained Laplacian Rank (CLR) [18] imposes the rank
constraint on the Laplacian graph of the affinity matrix,
which guarantees that the sparse matrix contains exact k
connected components.

• Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [6] defines a cluster as the maximum
set of points connected to density. It groups a region with
sufficiently dense data points inside as a cluster.

• Improved DBSCAN Algorithm for detecting stops in Indi-
vidual Trajectories (ImDB) [56] is a variant of DBSCAN
algorithm. ImDB is a hybrid feature-based, density mea-
surement method that takes temporal and spatial properties
into account.

For the above competitor methods, NCut, SSC, LRR, SMR
and LSR are two-step strategy-based, while DBSCAN is density-
based. Although our LSS and CLR are both one-step based
method, there are two major differences between them. First, CLR
only learns one affinity matrix S, while our LSS learns both S
and A. Second, CLR obtains S from the original feature space,
while LSS learns S from the low-dimensional space by conducting
subspace learning and feature selection simultaneously and A
which could be seen as a guide from original space.

4.1.3 Experiment set-up
In our experiments, firstly, we test the robustness of our proposed
method, compared with the comparison methods, at both the
synthetic datasets containing pre-defined noise and redundancy
and the real datasets containing uncertain noise and redundancy,
in terms of two evaluation metrics widely used for the study
of clustering tasks. Secondly, we investigate the parameters’
sensitivity of our proposed method (i.e., α and γ in Eq. (5)
via varying their values to observe the variation of clustering
performance. Thirdly, we demonstrate the convergence of our
proposed algorithm (i.e., Algorithm 1) to solve our proposed
objective function Eq. (5) via checking the iteration times while
Algorithm 1 converges, i.e., the objective function value in Eq. (5)
is stable.

4.2 Performance on synthetic datasets

Fig. 3 shows the clustering results of our LSS and the nine
comparison methods on the two synthetic datasets Syn1 (the
‘circle-and-T’ shape) and Syn2(the ‘double-hump’ shape).

For Syn1 that contains some neighboring samples from differ-
ent classes, LSS can perfectly separate the two groups of samples,
whereas all the night comparison methods fail to do that. It is
worth noting that among the nine comparison methods, Rcut, Ncut
perform better than the rest, because they only fail to distinguish
a small proportion of neighboring samples. Similar observation
of DBSCAN can be found on Syn1, where some samples are
assigned the wrong class label.

Performing clustering task on Syn2 is more challenging than
on Syn1, since in Syn2 one cluster is completely surrounded by the
other cluster. Clearly, all the nine comparison methods are failed to
correctly separate the two clusters. And Ncut performs the worse,
since it nearly assigns all samples in one cluster, except for those
samples in red from the circle-shape cluster. From the results on
Syn2, we can see that DBSCAN horizontally separates the samples
in the circle-shaped class into the upper part (in blue) and the lower
part (in red). And the samples in the T-shaped class are wrongly
assigned to the upper part. In contrast, our LSS outperforms the
nine comparison methods, correctly isolating the T-shape cluster
from the circle-shape cluster.

4.3 Performance on real datastes

We also evaluate our LSS and the nine comparison methods on
eight real datasets, with respect to the widely used evaluation
criteria, standard clustering accuracy (ACC) and Normalized Mu-
tual Information (NMI). Here, ACC is defined as the total num-
ber of correctly classified samples, with respect to their ground
truth labels. Obviously, the larger number of corrected classified
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samples, the higher the ACC value. NMI measures the matching
rate between the ground truth labels and the predicted labels. For
fairness, in the experiment we set parameter k ofK-means method
to the true number of clusters, and set the parameters of all the
methods in the range [10−3, ..., 103]. The experiment results are
given in Table 4.4.

From Table 4.4 we can see that in terms of ACC, our LSS
performs the best on nearly all the eight datasets except for Umist,
on which the CLR method only slightly better than LSS. On the
other hand, when considering NMI values LSS also outperforms
the nine comparison methods on all the real datasets except for
Coil20 and Umist, upon which DBSCAN and CLR are slightly
better than our LSS method, respectively.

For example, the ACC results of our LSS increases by 3.61%
and 30.41%, respectively, compared to the state-of-the-art method
CLR and the best two-step strategy method LSR on these eight
benchmark data sets. Besides the observation mentioned above,
we have other observations listed in the following.

First, all the one-step clustering method, i.e., LSS and CLR,
outperform the two-step clustering methodes, i.e., LRR, SSC, LSR
and. For example, ACC values of the less effective method CLR
are on average 14.30%, 22.47%, 1.09% and 6.48% higher than
those of the two-step clustering methodes LRR, SSC, LSR and
SMR, respectively. The reason may be that the one-step clustering
methods can simultaneously obtain the ideal graph matrix and op-
timal clustering results, whereas the two-step clustering methodes
usually generate sub-optimal solution.

Second, one-step based methods consistently outperform clas-
sic clustering methodes like K-means, RCut and NCut. For
example, the less effective one-step based method CLR increased
by 8.49%, 16.16%, 0.98%, and 2.43% on average, as compared
to K-means, RCut and NCut on Coil20, Ecoli, Glass and Usps,
respectively.

Third, the majority of the two-step clustering methods perform
better than the classic clustering method K-means. For example,
two-step clustering methods LRR, SSC and SMR are superior
to K-means in terms of both ACC and NMI. This implies that
two-step clustering methods can find correlations of data points
for constructing the graph matrix, which improves the clustering
performance.

4.4 Parameters’ sensitivity

We vary parameter α and γ in the range [10−3, ..., 103], and
record ACC and NMI values of our LSS in Fig. 4. There are
some important observations. First, the proposed LSS method is
sensitive to the parameters, meaning that performance of LSS
largely depends on parameter combinations. Actually, γ is utilized
to tune the sparsity of the transfer matrix W. Different γ value
results in different level of sparsity of W, i.e., different percentage
of noise features are removed from the original features. On the
other hand, α is used to tradeoff the importance of S and A.
Second, different datasets need different range of parameters to
achieve the best performance. For example, LSS achieves the best
ACC (96.71%) and NMI (96.23%) on dataset Jaffe when γ = 100
and α = 10. In contrast, LSS achieves the best ACC (83.33%)
and NMI (84.52%) on Ecoli when γ and α remain the same. This
indicates that our LSS is data-driven. Third, from Figure 4 we can
see that parameter γ is less sensitive than α on these benchmark
datasets.

4.5 Convergence
Fig. 5 shows the trend of objective value generated by our
proposed Algorithm 1 with respect to iterations. Also, we set
the stopping criteria of both Algorithm 1 and Algorithm 3 to
‖obj(t+1)−obj(t)‖22

obj(t) ≤ 10−3, where obj(t) represents the objective
function value of Eq. (5) after the t-th iteration.

From Fig. 5, we can see that our Algorithm 1 monotonically
decreases the objective function value until it converges, when
applying it to optimize the proposed objective function in Eq. (5).
It is worth noting that the convergence rate of our Algorithm 1 is
relatively fast, converging to the optimal value within 20 iterations
on all the datasets used.

5 CONCLUSION

This paper proposes a novel Low-rank Sparse subspace clustering
method via learning the affinity matrix from the low-dimensional
feature space of the original data. Moreover, we integrate the
learning of two affinity matrices, the learning of the transformation
matrix, and the learning of the clustering results into a framework
to iteratively update the affinity matrix and the transformation
matrix, so that an optimal clustering results can be obtained.
Extensive experimental results on both synthetic and real datasets
show that the proposed LSS method outperforms the competitor
methods on clustering task, and LSS has a fast convergence rate,
i.e., it will produce the final optimal results very quickly.

Although our proposed LSS method can obtain the significant
clustering results, the number of clusters K needs to be pre-
specified by the user. Similar to all K-means based methods, this
is the main limitation of our LSS method. Hence, we will focus on
automatically learning the value ofK in our future work according
to the framework of robust statistics.
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TABLE 3
Performance of all the methods on eight benchmark datasets.
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TOX 56.63 61.76 61.17 3.39 68.37 73.31 69.85 76.26 79.24 16.78 82.34
Yeast 59.18 67.93 69.50 3.41 73.23 75.8 73.62 80.18 83.50 15.13 85.69
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Fig. 4. ACC and NMI of our LSS method with respect to different parameter settings
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Fig. 5. Objective value of the proposed objective function versus iteration on four benchmark datasets.
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