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ABSTRACT
Real-world deployments of WiFi-based indoor localization in large
public venues are few and far between as most state-of-the-art so-
lutions require either client or infrastructure-side changes. Hence,
even though high location accuracy is possible with these solutions,
they are not practical due to cost and/or client adoption reasons.
Majority of the public venues use commercial controller-managed
WLAN solutions, that neither allow client changes nor infrastruc-
ture changes. In fact, for such venues we have observed highly
heterogeneous devices with very low adoption rates for client-side
apps.

In this paper, we present our experiences in deploying a scalable
location system for such venues. We show that server-side local-
ization is not trivial and present two unique challenges associated
with this approach, namely Cardinality Mismatch and High Client
Scan Latency. The “Mismatch” challenge results in a significant mis-
match between the set of access points (APs) reporting a client in
the offline and online phases, while the “Latency” challenge results
in a low number of APs reporting data for any particular client. We
collect three weeks of detailed ground truth data (≈ 200 landmarks),
from a WiFi setup that has been deployed for more than four years,
to provide evidences for the extent and understanding the impact
of these problems. We propose heuristics to alleviate them. We also
summarize the challenges and pitfalls of real deployments which
hamper the localization accuracy.

CCS CONCEPTS
• Networks → Network measurement; Location based ser-
vices; • Human-centered computing→ Empirical studies in
ubiquitous and mobile computing;

KEYWORDS
WiFi, Localization, Server-side, Device-agnostic, Large-scale Mea-
surements.

,
.

1 INTRODUCTION
There has been a long and rich history of WiFi-based indoor lo-
calization research [1–3, 6, 9, 12, 13, 15, 18–20, 22, 23, 27–30, 32,
33, 35, 36, 39, 42–47, 49, 50]. However, in spite of several break-
throughs, there are very few real-world deployments of WiFi-based
indoor localization systems in public spaces. The reasons for this
are many-fold, with three of the most common being – (a) the high
cost of deployment, (b) arguably, the lack of compelling business
use, and (c) the inability of existing solutions to seamlessly work
with all devices. In fact, current solutions impose a tradeoff between
universality, accuracy, and energy, for example, client-based solu-
tions that combine inertial-based tracking with WiFi scanning offer
significantly better accuracy but require a mobile application which
will possibly drain energy faster and which will be downloaded by
only a fraction of visitors [53].

In this paper, we present our experiences with deploying and
operating a WiFi-based indoor localization system across the entire
campus of a small Asian university. It is worth noting that the
environment is very densely occupied, by ≈ 10, 000 students and
1, 500 faculty and staff. The system has been in the production for
more than four years. It is deployed at multiple venues including
two universities (Singapore Management University, University of
Massachusetts, Amherst), and four different public spaces (Mall,
Convention Center, Airport, and Sentosa Resort) [21, 40]. These
venues use the localization system for various real-time analytics
such as group detection, occupancy detection, and queue detection
while taking care of user privacy.

Our goal is to highlight challenges and propose easy to inte-
grate solutions to build a universal indoor localization system – one
that can spot localize all WiFi enabled devices on campus without
any modifications whether client or infrastructure-side. The scale
and the nature of this real environment, presents unique set of
challenges – (a) infrastructure i.e. controller and APs do not allow
any changes, (b) devices cannot be modified in any way i.e. no
explicit/implicit participation for data generation, no app down-
load allowed, and no chipset changes allowed, and (c) only available
data is RSSI measurements from APs, which are centrally controlled
by the controller, using a Real-Time Location Service (RTLS) inter-
face [8]. It is worth noting that within the face of these challenges
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we have to rule out more sophisticated state-of-the-art schemes,
such as fine-grained CSI measurements [28], Angle-of-Arrival [9],
Time-of-Flight [29], SignalSLAM [37], or Inertial Sensing [14].

Given the challenges, we adopt an offline fingerprint-based ap-
proach to compute each device’s location. Fingerprints have been
demonstrated to be more accurate than model-based approaches
in densely crowded spaces [26] and hence widely preferred. Our
localization software processes the RSSI updates using well-known
“classical" fingerprint-based technique [36]. Given the wide usage
of this approach, our experiences and results apply to a majority of
the localization algorithms.

Our primary contribution is to detail the cases where such a
conventional approach succeeds and where it fails. We highlight
the related challenges for making the approach work in current,
large-scale WiFi networks, and then develop appropriate solutions
to overcome the observed challenges. We collect three weeks of
detailed ground truth data (≈ 200 landmarks) in our large-scale
deployment, carefully construct a set of experimental studies to
show two unique challenges –CardinalityMismatch andHigh Client
Scan Latency associated with a server-side localization approach.
The three weeks of data is representative of our four years of data.

(a) Cardinality Mismatch: We define cardinality as the set of APs
reporting for a client located at a specific landmark. We first show
that the cardinality, during the online phase, is often quite different
from the cardinality in the offline phase. Note that this divergence
is in the set of reporting APs, and not just merely a mismatch in
the values of the RSSI vectors. Intuitively, this upends the very
premise of fingerprint-based systems that the cardinality seen at
any landmark is the same during the offline and online phases. This
phenomenon arises from the dynamic power and client manage-
ment performed by a centralized controller in all commercial grade
WiFi networks (for example, those provided by Aruba, Cisco, and
other vendors) to achieve outcomes such as (i) minimize overall
interference (shift neighboring APs to alternative channels), (ii) en-
hance throughput (shift clients to alternative APs), and (iii) reduce
energy consumption (shut down redundant APs during periods of
low load).

(b)High Client Scan Latency:Most localization systems use client-
side localization techniques where clients actively scan the network
when they need a location fix. However, when using server-side
localization, the location system has no way to induce scans from
client devices. Hence, the system can only “see” clients when clients
scan as part of their normal behavior. However, as we show in
Section 4, scanning frequency of clients is low for lower RSSI.

These phenomena do not exist in small-scale deployments often
used in the past pilot studies, where each AP is configured inde-
pendently. In large-scale deployments, where it is fairly common
to use controller-managed WLANs with a large number of devices,
these phenomena invariably persist to a great extent. To exemplify,
we noticed 57.30% instances of cardinality mismatch in 2.4 GHz
and 30.60% in 5 GHz in our deployment. We saw 90th%ile of client
scan interval to be 20 minutes. While localizing with fingerprint-
based solutions in such environments, these phenomena translate
to either minimal or even worse no matching APs, resulting in
substantial delays between client location updates and “teleporting”
of clients across the location.

It is important to note that not only the schedule of these algo-
rithms is non-deterministic but also their distribution during offline
and online phases. This is attributed to the fundamental fact that
the dynamics of WiFi networks such as load and interference, is
non-deterministic in most of the cases and that the controller algo-
rithm is a black-box to us. Furthermore, the differences in signal
propagation and scanning behavior of 2.4 and 5 GHz contribute
to these problems. We believe that we are the first to present the
challenges of server-side localization as well as their mitigation.
Our proposals are device-agnostic, simple, and easily integrable
with any large-scale WiFi deployment to efficiently localize devices.

Key Contributions:

• We identify and describe a couple of novel and fundamental
problems associated with a server-side localization frame-
work. In particular, we provide evidence for the (i) “Cardinal-
ity Mismatch” and (ii) “High Client Scan Latency” problems,
explain why these problems are progressively becoming
more significant in commercial WiFi deployments. We dis-
cuss the reasons why these problems are non-trivial to be
solved given the challenge of no client/infrastructure-side
allowed. Our entire analysis is for both frequency bands –
2.4 and 5 GHz.

• We provide valuable insights about the causes of these prob-
lems with extensive evaluations based on the ground truth
data collected over three weeks for 200 landmarks. We pro-
pose heuristics to improve the accuracy of the localization in
the face of these problems. We see an improvement from a
minimum of 35.40% to a maximum of 100%. We show an im-
provement in the higher percentiles over SignalSLAM [37].
This shows that our lessons learned have the potential of
improving the existing localization algorithms.

• We describe our experiences with deploying, managing,
and improving a fingerprint-based WiFi localization system,
which has been operational, since 2013, across the entire
campus of Singapore Management University. We not only
focus on the final “best solution” that uses RTLS data feeds,
but also discuss the challenges and pitfalls encountered over
the years.

Paper Organization: We discuss the related works in Section 2.
We present the system architecture and the details of data collection
in Section 3. We introduce the challenges, their evidences, and
propose the solutions in Section 4. We discuss the challenges of
localizing clients in real world deployments and the limitations of
our proposed solutions in Section 5. We conclude in Section 6.
2 RELATEDWORK
In this section, we discuss existing solutions and their limitations
for indoor localization.

Fingerprint vs. Model-based Solutions: One of the oldest lo-
calization techniques use either a fingerprint-based [2, 19, 27, 30,
33, 36, 42, 55] or model-based [1, 10, 16, 22] approach, or a com-
bination of both [24]. Overall, fingerprint-based solutions tend to
have much higher accuracies than other approaches albeit with a
high setup and maintenance cost [26]. The fingerprint-based ap-
proach was pioneered by Radar [36] and has spurred numerous
follow-on research. For example, Horus [33] uses a probabilistic
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technique to construct statistical radio maps, which can infer lo-
cations with centimeter level accuracy. PinLoc [42] incorporates
physical layer information into location fingerprints. Liu et al. [27]
improved accuracy by adopting a peer-assisted approach based on
p2p acoustic ranging estimates. Another thread of research in this
line is to reduce the fingerprinting effort, for example, using crowd-
sourcing [2, 6, 52, 55] and down-sampling [19]. The mathematical
signal propagation model approach [1, 22] has the benefit of easy
deployment (no need for fingerprints) although its accuracy suffers
when the environment layout or crowd dynamics change [10]. Sys-
tems, such as EZ, improve the accuracy by additionally using GPS
to guide the model construction.

Client vs. Infrastructure-based solutions: There is a rich his-
tory of client-based indoor location solutions, to name a few, Sig-
nalSLAM [37], SurroundSense [30], UnLoc [15], and many oth-
ers [2, 3, 6, 35, 39, 44]. All of them share some commonalities in
that they extract sensor signals (of various types) from client devices
to localize. The location algorithms usually run on the device itself;
however, it is also possible to run the algorithm on a server and use
the signals from multiple clients to achieve better performance [27].
Overall, client-based solutions have very high accuracy (centimeter
resolution in some cases [33, 42]). An alternative would be to pull
signal measurements directly from the WiFi infrastructure, similar
to what our solution does. The research community has only lightly
explored this approach since it requires full access to the WLAN
controllers, which is usually proprietary. Our main competitors
are the commercial WiFi providers themselves. In particular, both
Cisco [7] and Aruba [4] offer location services. These solutions
use server-side tracking coupled with model-based approaches (to
eliminate fingerprint setup overhead).

Other Solutions: There are several other solutions, comple-
mentary to the signal strength-based technique. Time-based so-
lutions [12, 29, 32, 43, 45] use the arrival time of signals to esti-
mate the distance between client and AP, while angle-based solu-
tions [9, 18, 20, 28, 46] utilize angle of arrival information, estimated
from a antenna array, to locate mobile users. Recently, the notion
of passive location tracking [13, 23, 47, 49, 50] has been proposed,
which does not assume people carry devices. In large and crowded
venues, however, the feasibility and accuracy of such passive track-
ing is still an open question. Other systems like light-based local-
ization [25, 34, 38] and acoustic-based localization [31, 41, 48, 54].

Limitations of above solutions: These solutions can achieve
higher accuracy, but they have at least one of the following lim-
itations – (a) need of a customized hardware, which cannot be
implemented in large-scale deployments, (b) installation of client
application, making them hard to scale, (c) rooting client OS - An-
droid or iOS, which limits their generalizability, (d) energy savvy,
(e) high error rates in dense networks, and (f ) proprietary and
expensive to deploy (especially, solutions from vendors like Cisco
and Aruba).

To summarize, even though several wonderful solutions are
available, their scalability is still a question. Therefore, we advocate
using server-side localization approach with fingerprints. Our aim
is not to compare the efficacy of different approaches, but to address
the challenges of practical and widely deployed device-agnostic
indoor localization using today’s WiFi standards and hardware, for
example, use of 5 GHz band and controller-based architecture.

Figure 1: Block diagram of Indoor Localization System. Note
that lines between AP and C denote the coverage area of AP
and not the association. Legend: AP - Access Point, C - Client,
WLAN - Wireless LAN, RTLS - Real-Time Location System

Table 1: Details of RTLS data feeds

Field Description
Timestamp AP Epoch time (milliseconds)
Client MAC SHA1 of original MAC address

Age #Seconds since the client was last seen at
an AP

Channel Band (2.4/5 GHz) on which client was seen
AP MAC address of the Access Point

Association Status Client’s association status (associ-
ated/unassociated)

Data Rate MAC layer bit-rate of last transmission by
the client

RSSI Average RSSI for duration when client was
seen

3 SYSTEM ARCHITECTURE AND DATA
COLLECTION

In this section, we present the details about system architecture
and the dataset.

3.1 Background & Deployment
This work began in 2013 when we started deploying a WiFi-based
localization solution across the entire campus. It has since gone
through much major and minor evolutions. However, in this paper,
we focus our evaluation and results on just one venue – a university,
as we have full access to that venue.

Our university campus has seven schools in different buildings.
Five buildings have six floors, remaining two have five and three
floors respectively, with a floor area of ≈ 70, 000m2. Landmarks,
characterized by water sprinklers are deployed every three me-
ters, on a given floor denote a particular location. There are 3203
landmarks across thirty-eight floors of seven schools. WLAN de-
ployment includes 750+ dual-band APs, centrally controlled by
eleven WiFi controllers, with ≈ 4000 associated clients per day.

3.2 System Architecture
Figure 1 represents the primary building blocks of the system. The
system is bootstrapped with APs configured by the WLAN con-
troller to send RTLS data feeds every 5 seconds to the RTLS server.
Most commercial WLAN infrastructures allow such a configuration.
Once configured, APs bypass WLAN controller and report RTLS
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data feeds directly to our Location Server. Table 1 presents all the
fields contained in an RTLS data feed per client. The reported RSSI
value is not on a per-frame basis, but a summarized value from
multiple received frames. The Location Server analyzes these RTLS
data feeds for the signal strengths reported by different APs to
estimate the location of a client. Note that the APs do not report the
type of frames. They gather information from their current chan-
nel of operation and scan other channels to collect data. Vendors
have microscopic details of what APs measure [5], however as an
end-user we do not have access to any more information than what
is specified. Nevertheless, even this information at large-scale gives
us a view of the entire network from a single vantage point.

3.3 Recording of the Fingerprints
We define a fingerprint as a vector of RSSI from APs for a given
client. We consider two types of fingerprints – offline and online.
An offline fingerprint is collected and stored in a database before the
process of localization is bootstrapped, while an online fingerprint
is collected in real-time.

Offline Fingerprinting A two-dimensional offline fingerprint
map is prepared for each landmark on the per-floor basis. The client
devices used for fingerprinting were dual-band Android phones,
which were associated with the network, and they actively scanned
for APs. For each landmark, the device collected data for 5 minutes.
While the clients scan their vicinity, APs collate RSSI reports for
the client and send their measurements as RTLS data feeds to the
Location Server. For a given landmark Li , an offline fingerprint
takes the following form:

< Li ,B,AP1 : RSSI1; ...;APn : RSSIn ;> (1)
We maintain fingerprints for both 2.4 and 5 GHz frequency bands.
Band B, in the above equation, takes a value of band being recorded.
The vectors are stored in a database on the Location Server.

Online Fingerprinting Localization of a client is done with
online fingerprints. An online fingerprint takes the same syntax as
offline fingerprints in Equation 1, except the landmark, as shown
below:

< B,AP1 : RSSI1; ...;APm : RSSIm ;> (2)
Now, we match this online fingerprint with offline fingerprints of

each landmark to calculate the distance in signal space, as discussed
in [36]. The landmark with minimum distance in signal space is
reported as the probable location of the client.

3.4 Pre-processing of the Data
Now, we present the details of data collection and its processing.

3.4.1 Collection of the Ground Truth. We collect the ground
truth data for online fingerprints. We want to correlate the data col-
lection with real-world usage scenarios. Therefore, we choose four
most common states of WiFi devices as per their WiFi association
status and Data transmission. The states are – (i) Disconnected,
(ii) WiFi Associated – (ii .a) Never actively used by user, (ii .b) In-
termittently used, and (ii .c) Actively used. These states implicitly
modulate the scanning frequency. We use a separate phone for each
state; thus, we use 4 Samsung Galaxy S7 phones to record ground
truth for each landmark.

Figure 2: FloorMap of the school where we collected ground
truth data.

State (a) client is disconnected. In this state, WiFi is turned on
but not associated with any AP and screen remains off throughout
the data collection. Therefore, only traffic generated from this client
is scanning traffic and no data traffic. We ensure that this client did
not follow MAC address randomization, which most latest devices
follow in the unassociated state [17]. State (b) client is associated
but inactive. In this state, WiFi is turned on, it is associated but the
screen remains off throughout the data collection. State (c) client
is associated and intermittently used. In this state, WiFi is on, the
client is associated and user intermittently uses the device. This
is one of the most common state for mobile devices and previous
research [11] states scanning is triggered whenever screen of the
device is lit up. State (d) client is associated and actively used. In
this state, WiFi is on, the client is associated, and a YouTube video
plays throughout the data collection. This state generates most data
traffic, i.e. non-scanning traffic. Each client stayed at a landmark for
about a minute before it moved to the next landmark. We manually
noted down start time and end time for every landmark at the
granularity of seconds. We did this exercise for 3203 landmarks
of our university, collected 86 hours worth of data, that accounts
for 54, 096 files carrying 274 GB of data. The amount of time to
localize a client is 40 seconds. Processing the entire dataset would
take ≈ 100 days. Therefore, given the size of the entire dataset, we
present our analysis of 200 landmarks, which accounts for 3121
files with 15.3 GB of data. Figure 2 shows the floor map of one of
the schools whose data we refer for our analysis.

Our aim is to demonstrate the challenges associated with finger-
print-based localization. These challenges apply to all the solutions
that employ fingerprint-based localization, irrespective of the type
of device present in the network. The variation of RSSI with device
heterogeneity is well known [51] and that will further exacerbate
the problems identified by this paper. We collect ground truth with
only one device so that we can highlight issues without any com-
plications added by heterogeneous devices.
3.4.2 Pre-processing of the RTLS Data Feeds. Our code reads
every feed to extract the details of APs reporting a particular client.
RTLS data feeds, may obtain stale records for a client. Therefore,
we filter the raw RTLS data feed for the latest values, with age less
than or equal to 15 seconds, and the RSSI should be greater than or
equal to −72 dBm. The threshold for age is a heuristic to take the
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Figure 3: Cardinalities observed during the offline and online phases. For both the phases, the cardinalities are lower for 5GHz.
During the online phase, there is a substantial decrease in the cardinality for both bands as compared to the offline phase.

most recent readings. The threshold for RSSI is decided based on
the fact that a client loses association when RSSI is below −72 dBm.

For our analysis, we classify MAC layer frames in two classes
(a) Scanning Frames – high power and low bit rate probe requests
and (b) Non-Scanning Frames – all other MAC layer frames. Of-
fline fingerprints are derived from the scanning frames, which are
known to provide accurate distance estimates as they are trans-
mitted at full power. In the offline phase, a client is configured
to scan continuously. However, in the online phase we have no
control over the scanning behavior of the client, resulting in a mix
of scanning and non-scanning frames. Therefore, while localizing
with the fingerprints, RSSIs available for matching are from the
different categories of frames. RTLS data feeds do not report the
type of frame and do not have a one-to-one mapping of MAC layer
frames to the feeds. Therefore, we devise a probabilistic approach
to identify these frames.

We design with a set of controlled experiments, where we config-
ured the client in one of the two settings at a time (a) send scanning
frames only and (b) send non-scanning frames only. These two
settings are mutually exclusive. We collected the traffic from the
client with a sniffer as well as the corresponding RTLS data feeds.
Then, we compare both the logs – sniffer and RTLS, to confirm the
frame types and the corresponding data rates.

Our analysis reveals that when a client is associated and sending
non-scanning frames, the AP to which it is associated reports the
client as associated. The data rates of the RTLS data feeds vary
among various 802.11д rates, e.g. 1, 2, 5.5, ...,54Mbps. Even though,
our network deployment is dual-band and supports the latest 802.11
standards including 802.11ac , still the rates reported in the RTLS
data feeds follow 802.11g. We do not have any visibility in the
controller’s algorithm to deduce the reason for this mismatch in the
reported data rates. However, when a client sends scanning frames,
all the APs that could see the client report the client as unassociated
and the data rates reported is fixed at either 1, 6, or 24Mbps, as per
the configured probe response rate.

We use these facts to differentiate non-scanning and scanning
RTLS data feeds. We believe this approach correctly infers scanning
frames because (a) the data rates are fixed to 1, 6, or 24Mbps, (b)
when an associated client scans, other APs report that client as

unassociated, and (c) an unassociated client can only send either
scanning or association frames. However, our approach may still
incorrectly identify a scanning frame as non-scanning in the follow-
ing cases – (a) When an associated client scans and the AP, to which
it is associated, reports. This AP reports the client as associated and
its data rate as 1, 6, or 24Mbps. In this case, these rates may also
be because of the non-scanning frames. We identify such feeds as
non-scanning. (b) When an unassociated client sends association
or authentication frames. In this case also, the rates overlap with
the scanning data rates and the association status is reported as
unassociated. Here, we incorrectly identify non-scanning frames
as scanning frames. However, these cases are rare. For other cases,
our approach is deterministically correct.

4 CHALLENGES DISCOVERED
In this section, we give evidence of the issues, namely Cardinality
Mismatch and High Client Scan Latencies. We compare the severity
of these issues for both the frequency bands. We identify the causes
behind these issues and measure their impact on the issues.

4.1 Evidence of the Issues
The CardinalityMismatch arises from the dynamic power and client
management performed by a centralized controller as well as the
client-side power management. Given the dynamic nature of these
management policies, it is not possible to estimate their implications
on the Cardinality Mismatch, and thereby on the localization errors.
We take an empirical approach to seewhether (a) we can find out the
severity of these implications on the Cardinality Mismatch and the
localization error and (b) identify the tunability of the implicating
factors.

Figure 3 plots the differences in cardinality between the offline
and online phases for 2.4 and 5GHz. Figure 3a shows the cardinality
observed in our offline fingerprints. Figure 3b shows the cardinality
observed during the online phase. While the maximum cardinality
is 16 during the offline phase, it is merely 6 in the online phase.
This shows the spectrum of the Cardinality Mismatch. In the online
phase, 80% of the time only 1 AP reports for a client in 5 GHz
while 40% in 2.4 GHz. Any fingerprint-based algorithm will be
adversely affected by such a big difference in the cardinality. For
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Figure 4: Variations in RSSI for scanning and non-scanning frames in two scenarios – (a) client close to the AP and (b) client
far from the AP. For both cases the RSSI from scanning frames vary far lesser than the non-scanning frames.
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Figure 5: Frequency of scanning in both band increases as
RSSI reduces. 2.4 GHz experiences higher scan frequencies.
each band, we find out how much is the extent of the Cardinality
Mismatch. Overall, across all the cardinalities, 2.4 GHz has 57.30%
mismatches and 5 GHz has 30.6% mismatches. The 5 GHz band is
more adversely affected by the Cardinality Mismatch issue because
it experiences lower cardinality, which increases the chances of a
mismatch. Overall, 2.4 GHz always sees higher cardinality than
5 GHz, both during the offline and online phases. This is because
signals in 2.4 GHz travel farther than that of 5 GHz. However, it is
not the only reason. The other reason is the number of scanning
frames transmitted. Unlike the data frames, the scanning frames
are broadcasted and hence heard by more number of APs. As the
number of scanning frames increases, more APs hear them and
revert, thereby increasing the cardinality.

Besides, the RSSI variation for the scanning frames is lesser
compared to that of the data frames. To validate, we perform a
controlled experiment with a stationary client and collect client’s
traffic using a sniffer. The client has an ongoing data transmission
and periodic scanning is triggered every 15 seconds. From the
sniffed packet capture, we extract per-frame RSSI. The experiment
is repeated for two scenarios- (a) the client is close to the AP and (b)
the client is far from the AP. With these two scenarios, we simulate
the client behavior for low and high RSSI from the AP.

Figure 4 shows the RSSI measurements in two cases. In the first
scenario, when the client is close to an AP, RSSI of the scanning
frames varies by up to 10 dB and for non-scanning frames it varies

by up to 50 dB. Similarly, in the second scenario, when the client is
far from AP, RSSI of scanning frames varies by up to 5 dB and for
non-scanning frames it varies by up to 30 dB. Both our experiments
validate that the RSSI from scanning frames vary far lesser than the
non-scanning frames. This means the online RSSI from scanning
frames match more closely and is a much more reliable indicator of
the client’s position. We want to study how clients in their default
configuration behave in real networks; therefore we do not modify
the default behavior of client driver in any way. We repeated the
experiment with devices of Samsung, Nexus, Xiaomi, and iPhone.

Next, we study the effect of the band on the frequency of scan-
ning. We collect WiFi traffic with sniffers listening on the channels
in operation at that time in both the bands for 6 hours. Data from
200WiFi clients is recorded. Figure 5 shows the plot. For both 2.4
and 5 GHz bands, the frequency increases as RSSI reduces. Overall,
the frequency is lesser for 5 GHz, even though most (≈ 2X ) of the
clients in our network associate in 5 GHz. More the frequency of
scanning, lesser is the chance of Cardinality Mismatch. Our com-
parative analysis of the two bands revealed that the instance of
frame losses and poor connection quality, which cause scanning,
are much lower in 5 GHz due to lower interference. The analysis
of the scanning behavior of our clients reveals that – (a) 90th %ile
values of scanning intervals is in the order of few 1000 seconds,
which is a lot for fingerprint based solutions, (b) 5 GHz is the least
preferred band of scanning, and (c) clients rarely scan both the
frequency bands. Hence, we rule out the possibility of the reduced
range of 5 GHz resulting in lesser scanning frames.

4.2 Causes Behind the Issues
Next, we study the combined effect of frequency of scanning, i.e.,
number of scans per hour, and transmission distance on the cardi-
nality. For this, we consider clients configured in one of the four
states as discussed in Section 3.4.1. Note that each state implicitly
controls the amount of scanning. We do not manually control scan-
ning behavior to imitate the real-world. In the absence of client
scans, APs get only non-scanning frames. For each of the four states
of the client, we study how many APs report that client i.e. the car-
dinality. With this analysis, we are able to compare the cardinality
in the presence and absence of scans, for both 2.4 and 5 GHz bands.
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Figure 6: Cardinality in the absence and presence of client scans. More APs report during scanning.
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Figure 7: Variations in RSSI in 2.4 GHz and 5 GHz for a sta-
tionary client as measured at the server. Notice that 5 GHz
is relatively stable than 2.4 GHz.

We see that as the frequency of scanning increases, more number
of APs respond and the cardinality increases. Due to lack of space,
we don’t show the results for individual states of the clients. Fig-
ure 6 shows the aggregated results. The cardinality is consistently
higher for 2.4 GHz than that of 5 GHz. This implies that higher
frequency of scanning possibly reduces the Cardinality Mismatch
and vice-versa.

However, a downside for 2.4 GHz is that the frames (both scan-
ning and non-scanning) have higher variation in RSSI. This means,
even though the extent of the Cardinality Mismatch is lower, the
RSSI will differ more in 2.4 GHz. To confirm this, we analyze the
RSSI from a stationary client by enabling its association in one band
at a time and disabling the other band altogether. We use the RSSI
recorded at the RTLS server for a duration of 1 hour. As shown in
Figure 7, even with more scanning information available 2.4 GHz
is more prone to RSSI fluctuations than 5 GHz. The reasons for this
behavior are (a) the range of 2.4 GHz is almost double than that of
5 GHz and (b) a lesser number of non-overlapping channels makes
it susceptible to interference. Therefore, RSSI from 2.4 GHz results
in predicting distant and transient locations. We validate this in
different locations with devices of four other models.

To summarize, there is a significant extent of Cardinality Mis-
match and High Client Scan Latency. There is a difference in the
extent of the issues for the two classes of frames and the two bands

Table 2: A summary of the causes and their impact (✓- Re-
duces Localization Errors, ✗- Increases Localization Errors).
Causes conflict with each other, making server-side localiza-
tion non-trivial.

Frames Transmission
Distance

RSSI
Variation

Frequency
of Trans-
mission

Scanning High – ✓ Low – ✓ Low – ✗

Non-Scanning Low – ✗ High – ✗ High – ✓

Band Transmission
Distance

RSSI
Variation

Frequency
of Scan-
ning

2.4 GHz High – ✓ High – ✗ High – ✓

5 GHz Low – ✗ Low – ✓ Low – ✗

of operation. While scanning frames has a longer distance of trans-
mission and less variation in RSSI, they are not often sent by the
clients. The factors favoring 2.4 GHz are longer distance of trans-
mission and higher frequency of scanning. However, low variation
in RSSI works in favor of 5 GHz. We summarize these observations
in Table 2.

4.3 Impact of Causes on Localization Errors
We now evaluate the impact of the causes on the localization er-
rors. We implemented a server-side localization using well known
fingerprint-based method [36]. Since we use server-side processing,
we do not require any client-side modification. Our proposals do
not make assumptions about hardware or OS of the clients or the
controller. Although each adaptation of fingerprint-based technique
from the existing body of work may result in different errors, our
exercise gives us a baseline that cuts across all the adaptations. The
2.4 and 5 GHz bands differ in distance of transmission, variation
in RSSI, and frequency of scanning. We measure the localization
errors for both the bands.

We report localization errors for each value of the cardinality in
online phase to understand how the error varies as a function of the
cardinality. We measure the errors in terms of (a) Different Floor
and (b) Same Floor errors. Different Floor error is the percentage
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Table 3: Localization errors with different floor detection heuristics (C - Cardinality, SF - Same Floor [85th%ile (meters)], DF
- Different Floor [%], NA - Not Applicable). Cardinalities >3 are not applicable to 5 GHz due to cardinality mismatch. Lowest
localization errors obtained using AP of Association.

Baseline Maximum Number of APs AP with Maximum RSSI AP of Association
2.4 GHz 5 GHz 2.4 GHz 5 GHz 2.4 GHz 5 GHz 2.4 GHz 5 GHz

C SF DF SF DF SF DF SF DF SF DF SF DF SF DF SF DF
1 >50 20.00 29.50 03.10 >50 48.00 29.60 03.49 49.20 14.70 28.30 02.09 32.30 04.90 27.60 01.28
2 >50 18.30 26.80 02.00 >50 33.33 27.00 05.60 24.20 05.60 27.00 03.46 21.60 00.70 25.80 01.48
3 >50 33.15 20.12 00.00 >50 40.00 24.00 00.00 36.00 14.70 20.12 00.00 22.80 05.50 20.12 00.00
4 >50 18.49 NA NA 33.00 13.40 NA NA 24.00 11.00 NA NA 18.90 04.40 NA NA
5 19.20 10.25 NA NA 26.00 14.60 NA NA 17.49 00.00 NA NA 17.49 00.00 NA NA
6 23.00 04.17 NA NA 22.00 00.00 NA NA 16.00 00.00 NA NA 22.00 00.00 NA NA
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Figure 8: Localization errors with three floor detection
heuristics – (a) Maximum Number of APs, (b) AP with Maxi-
mum RSSI, and (c) AP of Association at Cardinality=1 for 2.4
GHz. AP of Association performs the best for both bands.
Maximum Number of APs performs worse than the Base-
line, while the other two significantly reduced the errors.

of total records for which a wrong floor is estimated. These are
seen at the higher percentiles. For the rest of the records, the Same
Floor error is the distance in meters between the actual and the
predicted landmark on the floor. The errors at the higher percentiles
are essential for security applications, for example, an error by a
floor in localizing a suspect can make or break the evidence. We
want to minimize both the errors.

The columns under Baseline in Table 3 show the results. The er-
rors are high for the low cardinalities. We see that the errors for 2.4
GHz are more significant compared to that of 5 GHz. This is despite
the fact that more APs hear clients and frequency of transmission of
scanning frames is more for 2.4 GHz. This means that the variation
in RSSI, including that induced by the transmission power control,
has a significant impact on the cardinality and therefore on the
localization errors.

4.4 Reducing the Localization Errors
As seen in Table 2, the causes are conflicting to each other. Neither
2.4 nor 5 GHz has all the causes in its favor. Therefore, getting rid
of the two issues is not trivial. For improvement, we take a position
to make the best use of whatever RSSI we receive during the online

phase. We use heuristic to select the APs from the online phase to
reduce localization errors.

We know the location of each AP. We use this information to
shortlist the APs from the online fingerprint. The algorithm first
selects a floor and then shortlists all the APs that are located on the
same floor. We use the shortlisted APs to find a match with offline
fingerprints. For selecting the floor, we explore three heuristics –
(a) Maximum Number of APs - the floor for which the maximum
APs are reporting the client, (b) AP with Maximum RSSI - the floor
from which the strongest RSSI is received, and (c) AP of Association
- the floor of AP to which the client is presently associated with.

Table 3 shows how the localization errors vary for the three
heuristics for 85th percentile values. There is clearly an improve-
ment for both Same Floor and Different Floor errors. Floor detection
with Maximum Number of APs gives the least improvement. In
fact, until cardinality 4 it performs worse than the Baseline. A cause
behind this is that the distant APs, specially in 2.4 GHz that has
longer transmission distance, respond and thus localization errors
increase. Next, is the floor detection with the AP with Maximum
RSSI and AP of Association. The AP with Maximum RSSI or the AP
of Association are typically closest to the client, except when the
controller does load balancing and transmit power control. There
is marginal improvement for 5 GHz. Since the Table 3 only showed
data for 85th percentile, we plot the CDF of error for cardinality=1
in Figure 8 for 2.4 GHz. We see that the error reduces for all the
percentiles. We see similar results for other cardinalities, but we
don’t include them due to space constraint.

We compare our results with Signal SLAM [37] which is deployed
in a public space like mall since we also have similar deployments.
We have similar observations in other venues too. We find their
90th percentile is about 15 meters. We perform similar. In fact,
their AP visibility algorithm has 90th percentile as 24.3 meters. We
perform better than this in 5 GHz. Given the complexity of the
algorithm Signal SLAM incorporates and the amount of sensing it
needs, we believe even with few meters of accuracy our approach
is better; particularly because its simple and scalable.

5 DISCUSSION
Now, we discuss the practical challenges encountered while local-
izing clients in real deployments and limitations of our solution.
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5.1 Challenges Of Real Deployments
Real deployments have myriad of practical challenges that hamper
the efficiency and the accuracy of an empirical study. For instance,
there can be sudden and unexpected crowd movement which is
known to increase signal variations. Furthermore, as and when
required network administrators either replace old APs or deploy
new APs. These administrative decisions are not under our control.
However, such changes severely affect the offline fingerprints and
change the floor heat maps that ultimately affect location accuracy.
Preparing fingerprints for an entire campus with several thousands
of landmarks is already tedious, such developments make the pro-
cess of iterations even more cumbersome.

Beyond insufficient measurement and latency issues, various con-
textual dynamics makes the fingerprint-based system erroneous.
The primary reason is that such dynamic changes results in signifi-
cant fluctuation in RSSI measurements, which affects the distance
calculation of the localization algorithms. These fluctuations can
happen quite frequently as there are many different factors affect-
ing RSSI between an AP and its clients, such as crowds blocking the
signal path, AP-side power-control for load balancing, and client-
side power control to save battery. In Section 4 we shed light on
most of these factors. However, we leave a full evaluation for future
work. Lastly, all MAC addresses in our system are anonymized. We
do not do a device to person mapping to preserve user privacy.

5.2 Limitations
A major limitation of this work is that we have not considered an
exhaustive set of devices. Given a multitude of device vendors, it
is practically impossible to consider all set of devices for this kind
of in-depth analysis. We did cover the latest set of devices, though,
including iPhone and Android devices. The second limitation is
that even though we collected the data for both lightly (semester
off, very few students on campus) and heavily loaded (semester
on, most students on campus) days. We tested our observations on
the lightly loaded dataset but, only on a subset of heavily loaded
days. We do not yet know the behavior of system during heavily
loaded days, in its entirety. Specifically, the load, concerning the
number of clients and traffic is expected to increase interference and
thus, signal variations. However, this study is still a part of future
work. The third limitation of this work is that we do not consider
the effect of MAC address randomization algorithms which make
clients intractable. Although there is an active field of research that
suggest ways to map randomized MAC to actual MAC [17], but
given its complexity we do not employ these.

6 CONCLUSION
To conclude, we presented two major issues that need to be ad-
dressed to perform server-side localization. We validated these
challenges with a huge data from a production WLAN deployed
across a university campus. We discussed the causes and their im-
pact on these challenges. We proposed heuristics that handle the
challenges and reduce the localization errors. Our findings apply to
all the server-side localization algorithms, which use fingerprint-
ing techniques. Most of this work provides real-world evidence of
“where” and “what” may go wrong for practically localizing clients
in a device agnostic manner.
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