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Obfuscation At-Source: Privacy in Context-Aware Mobile
Crowd-Sourcing

THIVYAKANDAPPU, ARCHANMISRA, SHIH-FENCHENG, RANDYTANDRIANSYAH, andHOONG
CHUIN LAU, Singapore Management University

By e�ectively reaching out to and engaging larger population of mobile users, mobile crowd-sourcing has become a strategy
to perform large amount of urban tasks. The recent empirical studies have shown that compared to the pull-based approach,
which expects the users to browse through the list of tasks to perform, the push-based approach that actively recommends
tasks can greatly improve the overall system performance. As the e�ciency of the push-based approach is achieved by
incorporating worker’s mobility traces, privacy is naturally a concern. In this paper, we propose a novel, 2-stage and user-
controlled obfuscation technique that provides a tradeo�-amenable framework that caters to multi-attribute privacy measures
(considering the per-user sensitivity and global uniqueness of locations). We demonstrate the e�ectiveness of our approach
by testing it using the real-world data collected from the well-established TA$Ker platform. More speci�cally, we show that
one can increase its location entropy by 23% with only modest changes to the real trajectories while imposing an additional
24% (< 1 min) of detour overhead on average. Finally, we present insights derived by carefully inspecting various parameters
that control the whole obfuscation process.

CCS Concepts: • Security and privacy→ Privacy protections; Usability in security and privacy; •Human-centered
computing → Empirical studies in collaborative and social computing; Empirical studies in ubiquitous and mobile
computing;

Additional Key Words and Phrases: Privacy, Mobile Crowd-sourcing platforms, obfuscation, trajectory, context-aware
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1 INTRODUCTION

In recent years, many operators (such as GigWalk and FieldAgent) have embraced “mobile crowd-sourcing”
as a viable commercial paradigm, where individual workers are incentivized to perform a variety of location-
speci�c urban tasks (e.g., reporting on the queuing times at various food outlets, picking up and dropping o�
packages and checking inventory or prices in retail stores). In such platforms, each crowd-worker typically “pulls”
tasks from the entire list of available tasks, often selecting to execute tasks based on a proximity-based �lter.
More recently, an alternative “push” based approach has been suggested [5], where the crowdsourcing platform
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proactively recommends tasks to best match an individual crowd-worker’s anticipated mobility patterns (e.g.,
daily commuting behavior).
Experimental deployments have demonstrated [19] that such a mobility pro�le-driven, globally-coordinated

“push" approach can signi�cantly improve the productivity of workers. However, current push-based strategies
have one drawback: by requiring detailed individual-speci�c movement traces from each worker (to generate
personalized task recommendations), they heighten potential privacy concerns. Workers may be unwilling to
have the mobile crowdsourcing application continually collect their location traces in the background, as such
detailed movement traces can be used for tracking (including predicting future movement), stalking (ability to
isolate favorite/recently visited locations) and unwanted pro�ling (exploit the knowledge gained from mobility
traces for targeted advertising). This issue has garnered signi�cant attention recently–e.g., Apple introduced
some form of di�erential privacy-driven techniques (on iOS 10 and later versions) to obfuscate the location
trajectories collected from a mobile device.

Prior studies have tackled the issue of “location privacy”, specially in the context of location-based services (e.g.,
�nding nearby restaurants through Google Maps). The proposed solutions span both (a) centralized: k-anonymity
[26], di�erential privacy [31], usage of trusted server [16] and, (b) decentralized solutions [3]. In this paper, we
consider the introduction of user-controlled obfuscation-based location privacy, speci�cally tailored to the push
based mobile crowd-sourcing application. We present a new technique that has two unique features: (a) No
Central Trusted Server: we do not assume (unlike approaches such as k-anonymity or di�erential privacy) the
existence of any trusted middleman; instead, each worker performs it own location obfuscation independently,
without ever needing to reveal its true location; and (b) Obfuscation based on both global and personal
movement behavior: our location obfuscation model allows each worker to adjust his degree of obfuscation on
a per-location basis, based on each location’s global popularity and personal sensitivity.
Broadly speaking, our goal is to develop a technique by which a mobile crowd-sourcing client (i.e, App)

can avoid revealing location details (especially ones that it deems sensitive), while still being able to take
advantage of the push-based crowd-sourcing paradigm. Push-based crowd-sourcing sets up a novel tension
between application utility and privacy, as the platform’s ability to recommend low-detour tasks (which maximize
a worker’s productivity) inherently depends on its awareness of the worker’s true movement patterns. Three
unique characteristics of mobile crowd-sourcing make the problem more involved: (a) the recommendations for
di�erent workers are coupled: as the platform seeks to globally coordinate the per-worker task recommendations,
the recommended tasks for a speci�c worker are implicitly a�ected by the movement trajectories reported by
other workers; (b) the impact of obfuscated location reports on the resulting recommendation is also a function
of the spatial distribution of tasks; and (c) in many scenarios, the price or reward that the platform o�ers for
executing a task is tied to the popularity of the task’s location (e.g., tasks in less popular locations have higher
rewards [19]), and it requires the server to have an accurate estimate of the aggregated movement patterns.

To achieve the right balance between application utility and privacy, we propose a novel 2-stage obfuscation
approach that utilizes the well-known randomized response [34] technique. Under this approach called Location
Obfuscation via 2-Step Randomized Response or LORR, at the �rst stage, the client reveals its true location (l) to
the platform along with n � 1 other erroneous locations (chosen based on probability p via randomized response).
The server aggregates such randomized responses to estimate the overall population-level visit distribution (e.g.,
to assign appropriate task rewards) for di�erent locations and shares this with worker clients. In the second
stage, each client generates an obfuscated location update by choosing one of these n locations (based on both
the global popularity and personal sensitivity of these locations), so that the perceived obfuscation bene�t is
maximized. Key questions that naturally arise include: (a) How should the mobile client compute the obfuscation
bene�t, so as to ensure that its reported trajectory lies close enough to its real one (to ensure that it gets tasks
that do not impose high travel detour), while still concealing its most sensitive locations? and (b) How does LORR
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perform–i.e., what is the typical tradeo� between privacy gain (in terms of location entropy) vs. performance
degradation (in terms of additional detour overhead) that LORR can achieve?

Key Contributions: The paper makes the following key contributions:

• Multi-attribute Privacy Measure: To support an obfuscation-based approach, we propose a novel model,
where the privacy gain of a candidate obfuscated location is determined by both the location’s global
popularity as well as user-speci�c measures of the sensitivity of both the true location and the candidate
obfuscated output. This dual determination is based on the observation that individuals are typically more
concerned about revealing locations that are either unique/less popular (i.e., not many people visit, implying
that side-channel information might more easily reveal the worker’s identity) or dominant (i.e., places such
as home or o�ce where the worker usually has high residency times).
• Tradeo�-amenable 2-Stage Obfuscation Framework: We describe a per-user location obfuscation framework
for mobile crowd-sourcing that considers both the anticipated quality of recommendations generated (i.e.,
the application utility) and the enhanced degree of location privacy achieved. The unique 2-stage strategy
uses a randomized response technique to allow the server to obtain statistically accurate estimates of
aggregated movement behavior, while providing each worker client the �exibility to chose the obfuscated
location that it eventually reports. More speci�cally, clients compute the overall obfuscation gain of a
potential alternative location as a linear combination of both the increased privacy (entropy gain) achieved
and the likely quality of the recommendations that the platform will generate. Di�erent choices of a single
coe�cient (denoted as q) allow users to tradeo� between these two con�icting objectives.
• Empirical Validation using TA$Ker:We validate LORR using two datasets: the primary one being a real-world
campus-level (mostly indoors) deployment of the TA$Ker mobile crowdsourcing platform (440 users, more
than 25,000 total tasks, duration of 4 weeks), with the secondary one being a city-scale movement pattern
of workers (100 users, 4 weeks, over 25,000 trips, derived from commuter transit records). We �rst show the
inherent privacy dangers of the push crowd-sourcing approach, even when users reveal only the locations
where they complete tasks: an adversary has a much higher likelihood of recovering the worker’s overall
movement trace, compared to traditional pull-based crowd-sourcing solutions. We then quantify LORR’s
ability to provide a linear tradeo� between privacy gains and worker productivity: Fig. 1 summarizes this
observed tradeo� for both the SMU WiFi and commuter transit data, obtained by varying q. Speci�cally, on
the university campus, when q = 0.5, LORR can increase average location entropy of crowd-workers by
23%, while imposing an additional average 24% (< 1 min) detour overhead. When q=0.9, a user is able to
gain 60% uncertainty, while experiencing a relatively modest 54% increase in the travel overhead (detour).
Similar tradeo� is observed on the city-scale (outdoors) dataset (depicted in Fig. 1).
• Comparative Performance: Based on the TA$Ker dataset, we compare LORR’s performance to prior privacy
approaches. In particular, we show that: (a) compared to the di�erential privacy approach, LORR o�ers
a better privacy-vs-detour tradeo�: to achieve similar privacy gain (as a function of change in entropy
and adversary’s knowledge with respect to the true user location), di�erential privacy incurs additional
59% of detour (while compromising entropy by 15.3%), and LORR gains 30% of entropy while incurring
modest 29% increase in detour; (b) LORR also outperforms traditional k-anonymity techniques. In particular,
k-anoymity is not only unable to provide privacy guarantees to all nodes (in fact, 45% of worker routes are
not anonymized when k = 4), but also o�ers lower privacy gain (tradeo� frontier is on right to the tradeo�
of LORR ) as it does not consider the worker-speci�c sensitivity of di�erent locations.

We believe that our work is the �rst to demonstrate a technique, which provides a tradeo� between individual-
speci�c location privacy and application utility (detour) in context-aware mobile crowd-sourcing, without
assuming any trusted intermediary.
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Fig. 1. LORR : Achievable Tradeo� between privacy and application utility

2 RELATED WORK

Mobile crowd-sourcing has become an increasingly popular paradigm for executing location-speci�c tasks in
urban areas. Commercial operators, such as FieldAgent (www.�eldagent.net), GigWalk (www.gigwalk.com), and
NeighborFavor (www.favordelivery.com) employ the conventional pull based models, where, crowd-workers
independently browse the list of tasks sorted by proximity to their current locations. In contrary, push-based
models [5, 6] leverage on the historical mobility patterns of users to predict likely movement behavior and then
recommend tasks that lie close to the predicted paths.
Past work on anonymization focused on sanitizing the user data by removing/hiding personally identi�able

information (PII). Techniques like k-anonymity [15, 25, 28] and its variants l-diversity [23] and t-closeness [22]
were shown to be vulnerable to composition attacks [14], and do not provide desired privacy guarantees for
larger k values without distorting the utility of the data [29]. Another major threat with these approaches is
that the trusted third party in the middle becomes a single point of attack. Another alternative approach [20]
requires workers to collaborate with nearby peers to generate aggregated (and thus non-personally identi�able)
queries–this approach is appropriate only for the pull-based model where workers explicitly query for tasks.
Alternately, micro-aggregation based techniques [17] (where the reports from multiple workers are aggregated
together) have been suggested for concealing the true location of a crowd-worker. However, this model works for
participatory sensing applications where workers choose their reporting locations; in contrast, in our model, the
platform explicitly speci�es the location associated with each available task.

In recent line of work, the concept of di�erential privacy [11–13] has been studied for mobility-aware applica-
tions [30–33]. The key idea here is to perturb the true location to produce an obfuscated location by applying
Laplace noise calibrated using pre-de�ned parameters. To et al [31] used di�erential privacy speci�cally for mobile
crowdsourcing. In this approach, a trusted intermediary hides individual locations but advertises a noisy estimate
of the number of workers within a variable geographic region. The crowdsourcing platform then geocasts a task
to all nodes within a certain designated region. Note that this approach tries to match each task instantaneously
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to workers in the vicinity, unlike our push-based model which tries to recommend individual workers tasks that
may align with their regular movement trajectory at some future time instant. Moreover, our goal is to empower
each worker to make user-controllable, location-speci�c tradeo�s between privacy and application utility while
revealing his trajectory, without relying on any trusted intermediary.

In contrary to the centralized server based mechanisms detailed above, user-controlled release of location data
is studied in [4], where the authors assume a pull based model of mobile crowd-sourcing. The proposed system
utilizes a mobile App, installed by a worker on her mobile device, that alerts the worker about the potential
resultant privacy/entropy loss if she actually completed the task. This approach does not recommend tasks to the
worker.

Several recent works considered entropy as a measure of privacy by using the frequency of visitations [2–4] to
estimate the probability of a user being at a certain location. While these approaches use entropy as a quanti�able
anonymity or uncertainty measure, in our work we primarily use it as a canary to calculate the perceived privacy
– utility gain and subsequently to decide which location (out of n locations chosen probabilistically) to reveal to
the crowd-sourcing platform.

In our work, we consider a push-based crowd-sourcingmechanism, where the continual update of user locations
is essential to generate e�ective task recommendations. We shall develop a 2-stage obfuscation technique that has
far better assignment precision, even with the perturbed trajectories. The approach presented in [27] is the closest
to our proposed approach, and focuses on accurately estimating the number of people at subway stations and
urban/rural area. This system describes the SpotME client that uses the randomized response algorithm (originally
introduced in [34]) to mask a user’s current locations by choosing multiple other erroneous locations. While
LORR’s �rst stage is very similar to SpotME, the resulting aggregate popularity count is merely an intermediate
step for us, and helps facilitate the second step of user-controlled obfuscation (where the worker chooses to
report one of multiplicate candidate locations, based on her sensitivity to the resulting privacy loss vs. quality of
task recommendation tradeo�).

3 OVERVIEW

Our privacy-preserving mobile crowd-sourcing platform consists of two major components: (1) the mobile
client (or simply client): i.e., the App installed on user’s smartphone, which users use to receive and perform
tasks, and which also performs the location sensing and reporting tasks described in LORR, and (2) the back-
end server/platform: receives information from the mobile client, derives and predicts movement patterns, and
generates task recommendations. The design of the platform is depicted in Fig. 2.

More speci�cally, the mobile client aims to obfuscate the current whereabouts of the user that it reports to the
server, by considering both (a) the improved location privacy, and (b) the likely loss in the quality of the task
recommendations it would receive, as a result of such obfuscation. While the entire crowdsourcing work�ow
contains 5 stages, the privacy-related actions which constitute the novel contributions of this paper are manifested
in 2 stages – (1) using Randomized Response to enable the server to derive global counts of workers at di�erent
locations, without requiring any client’s true location, and (2) the client subsequently reporting a (potentially)
obfuscated location that maximizes the obfuscation bene�t.

The entire work�ow for our context-aware mobile crowd-sourcing platform is described below.
Step 1: Client Query: This query is initiated by the mobile client, prior to obfuscating the user’s “true” location.

This query helps the client to obtain an estimate of the popularity distribution (i.e., number of devices residing
in each region) of locations in its vicinity. In this step, the client uses the well-known randomized response

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 2, No. 1, Article 16. Publication date: March 2018.
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S1. Query the server to know the over-all crowd distribution
(using Randomized Response mechanism)

S2. Platform estimates the distribution and forward to the 
client

S3. Calculate “gain” and update the trace
(heart of the proposed LORR approach)

Mobile Client Crowd-sourcing 
Platform

Q{u, (l1, l2, . . ln), t}

A{ <l1,R1>, <l2,R2> . . <ln,Rn>, t}

Update(u, l3, t)

S4. Predict routine routes based on obfuscated trace 
updates (following the approach in [19])

S5. Generate task recommendations
(following the approach in [19])

Fig. 2. Proposed System Architecture

technique [34] to choose a varying number of erroneous locations (along with its true location) that it sends to
the server, requesting the global residency count of those locations.

Step 2: Platform Response: In this step, the server (i.e., the crowd-sourcing platform) responds with its
estimated location count for each of these locations. Note that the randomized response approach allows the
server to estimate the true residency counts e�ectively by utilizing knowledge of p, the probability of coin
�ipping (see §4.2 for more details), compared to alternate approaches. For example, an approach where clients
preferentially choose only popular locations will result in a skewed estimate.

Step 3: Client-side Obfuscation: This stage is the heart of LORR’s novel privacy strategy. Upon receiving the
popularity scores from the platform, the client now picks one of these locations (so as to maximize the perceived
obfuscation bene�t), and updates the platform with this obfuscated location. As we shall see in §4.3, the selection
of the obfuscated location is based on a combination of (a) the location’s popularity score (determines uniqueness
of a location, globally), (b) the location’s entropy (measured based on his residency time at each location in the
past–this measure captures the client’s dominant locations), (c) the historical spatial distribution of tasks and (d)
the distance from the client’s true location.

Step 4: Trajectory Prediction: In this paper, the platform uses the state-of-the-art route prediction algorithm
(previously described in [19]) on these obfuscated location updates (traces), received from all the users, to predict
their expected trajectories.

Step 5: Task Recommendation: The platform now generates task recommendations for individual workers,
based on client’s predicted trajectories, while minimizing the additional detour overhead. The platform is based
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on the recommendation engine proposed by Cheng et al. [7], which recommends tasks so as to maximize the
expected total rewards (cumulatively across all workers), while adhering to (i) a user-speci�c detour bound
and (ii) stochastic uncertainty in a user’s movement trajectory. Note that this framework recommends tasks
by optimizing globally, based on future movement trajectories; this is quite distinct from other privacy-aware
approaches such as [31], which match tasks to workers on a per-task basis, as soon as each such task arrives.

4 PRIVACY FRAMEWORK

In this section, we describe the core privacy-related components of the LORR crowd-sourcing framework–i.e.,
steps 1-3 of the 5-step work�ow for LORR outlined in Section 3. This section is organized as follows: in §4.1, we
describe how the mobile clients would choose locations to query, in §4.2, we describe how the platform would
periodically estimate the true popularity distribution and its accuracy, in §4.3, we describe how the client would
obfuscate its current location and update the platform. In addition, for completeness, in §4.4, we summarize the
mechanisms for predicting each user’s trajectory and for generating trajectory-aware recommendations for each
worker.

4.1 Client�ery

l1 l2 l3 l4 . . . . lN-1 lNGlobal list of locations               

Coin flips H T H - H T

Y N Y Y Y NYes/No answers

User query l1 l3 l4 . . . lN-1

Fig. 3. Randomized Response Mechanism

The mobile client’s main goal is to obfuscate its current location (so as to enhance the privacy guarantees
without su�ering a signi�cant degradation in the quality of the recommendations). However, the client must
consider the sensitivity of a location not only based on the user’s perspective (i.e., is this a dominant location that
reveals key lifestyle details of the user?) but also on its global popularity (i.e., uniqueness). For example, revealing
a particular location that is very popular and visited by many other individuals (e.g., a campus cafeteria or a
train station) is unlikely to incur signi�cant privacy loss: the user e�ectively “hides” among the larger pool of
users. While the client can obviously determine the individual client’s sensitive locations, the need to determine
a location’s global popularity leads to an apparent catch-22 situation: to establish whether the location is heavily
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visited or not, the user has to directly query the platform (this query will implicitly reveal his whereabouts),
which in turn needs to have accurate knowledge of the spatio-temporal location distribution of the aggregate set
of workers.

To mitigate this situation, we adopt the well-known randomized response technology, based on a biased-coin
�ipping mechanism. Randomized response o�ers two bene�ts: (a) the client queries for the popularity of additional
erroneous locations (in addition to its true location), thereby concealing its true location, and (b) it allows the
platform to accurately estimate the true aggregate popularity count of workers at each of these distinct queried
locations.

The randomized response algorithm works as follows (the strategy is illustrated in Fig. 3):

• The client chooses a set of minimum n locations from the global list (e.g., all the geographic postal-districts
in a city) of locations (total of N ). Among those n locations, one is the user’s actual location (marked in red
in Fig. 3).
• For each of the N locations in the global list, randomized response algorithm is executed.
– The client �ips a biased coin (with the probability p of head) and say he is present at the location if head
appears.

– Or says the truth if tail appears (with probability 1 � p).
• The client creates a list of plausible locations, consisting of the subset of N locations where he declares
himself to be present. The query to the platform will consist of all elements of this plausible location list.

4.2 Estimating Popularity Distribution

The platform �rst collects all the queries received from the clients and estimates the proportion of users currently
present (i.e., footfall) at each of the N locations. If the platform receives a report for location l from a worker,
there can be two possibilities: (a) head appeared during the coin �ip, and the client thus declared “yes, I’m present
at location l” or (b) tail appeared during the coin �ip, and he said declared “I’m present at location l”, only if l is
his true location. Note that because this �ipping is done by the user, the platform does not directly know the true
location of the worker.
Let the probability of head appearing be p (note: p is assumed to be a common value that is shared by all

clients).

• Because a client responds with a “no”, i� tail appears during the coin �ipping, the observed proportion of
“no” answers can be formulated by FRno,l,t = (1 � p).Rno,l,t , where FRno,l,t denotes the observed proportion
of users who claim to be not at location l at time t (obtained by dividing the number of “no” responses by
total number of users) and Rno,l,t denotes true proportion of the same.
• Similarly, as the observed proportion of “yes” comprises of the truthful “yes” answers (does not depend on the
coin �ip) and the responses that falsely report “yes” whenhead appears, we have: FR�es,l,t = R�es,l,t+p.Rno,l,t ,
where FR�es,l,t and R�es,l,t denote the observed and true proportion of the users reported at location l at
time t .

From these responses, the true proportion of “no” users (Rno,l,t )and “yes" users (R�es,l,t ), at location l and at
time t can be estimated as :

Rno,l,t =
FRno,l,t
(1 � p) ; R�es,l,t =

FR�es,l,t � p
1 � p (1)

By periodically estimating the true population scores, the platform is now able to send the respective scores of
the queried locations to the clients.
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4.3 User Obfuscation

Queried locations

Popularity scores

Gain (α)

Update query Update(u, l3, t)

l1 l3 l4 . . . lN-1

R1 R3 R4 . . . RN-1

α1 α3 α4 . . . αN-1

Fig. 4. Strategy for User Obfuscations

This step is the heart of the LORR framework. After receiving the respective popularity scores of each location
that it queried, the client now has to select one of these candidate locations as its reported location–i.e., the one
that it will indicate to the platform as its current location. To evaluate the overall bene�t of choosing a location
(both in terms of the additional privacy achieved and the expected drop in the quality of the recommendations),
we propose a novel mechanism that combines the gain factors into a single score, obfuscation gain. To express
the importance of privacy guarantees and quality-of-recommendations, we introduce a parameter q 2 [0,1] that
can be set by each individual agent. The total obfuscation gain of a user u by choosing location i over his true
location l is then given by:

�u,i = q · R�es,i,t ·
Hu,i

Hu,l
+ (1 � q) · Fi,t ·

Du

d (i,l )
, (2)

where Hu,i captures the sensitivity of the location i of user u (as a measure of entropy) while Hu,l represents the
sensitivity of his actual location l . Further Fi,t considers the historical task distribution of location i , Du denotes
the detour budget of user u and d (i,l ) estimates the distance between the true and chosen location l . Note that
from the list of n locations queried initially, the user will choose the location that has higher gain values to update
the platform (depicted in Fig.4 and the corresponding maximum � is represented in red).
The �rst operand considers the privacy gain, as a function of (a) the popularity of the location – how many

other users are available there (choosing the locations with higher popularity scores will enable the user to hide
among many other users), and (b) relative entropy gain (or loss). The second term considers the quality of the
recommendations that will be generated based on the obfuscated locations, as a function of (a) historical task
distribution of the location of interest (as an indicator of task availability at the obfuscated location), and relative
consumption of the detour budget (as each user can only spare D minutes to perform tasks on a day) – higher the
fraction, lower the over-all detour. The overall gain is a dimensionless score that takes linear combination of the
two gains, weighted by q:
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• When q ! 0, the user is primarily concerned about the quality of the recommendations, and will end up
choosing locations that are closer to the actual location and that have had higher number of tasks posted
in the past.
• Conversely, when � ! 1, the user is less focused on the quality of the recommendations, and ends up
choosing locations that yield higher entropy gain (places that he usually does not visit very often) and that
are globally more popular, even though these places may be farther away from his current location.

4.4 Trajectory Prediction & Task Recommendation

Once the platform receives the intermittent, potentially-obfuscated, location updates from the individual workers,
it is then responsible for predicting each individual’s movement trajectory, and then generating appropriate task
recommendations. The route prediction algorithm �rst transforms the raw data to routes. It extracts reference
locations–i.e., the location where the user spends the largest amount of time in any given time segment (for
the evaluation results in this paper, we consider 30 minute time segments for the campus dataset, and 60 mins
for the outdoor commuting dataset). The algorithm then formulates the movement pattern of a user in a given
time window as a transition graph and �nds the best probable k routes (represented as a sequence of reference
locations), based on the past traces of movement trajectory of the worker. Given a speci�c route (i.e., ordered list
of reference locations), the real movement path is constructed by computing the standard shortest path between
each consecutive pair of reference locations.

Subsequently, the task recommendation engine utilizes the following inputs: (1) the topology of the environment:
represented as a graph, where stay points are denoted as nodes and links represent travel path, (2) set of clients:
each client is characterized by the detour time limit and the routine trajectories inferred from the reported
locations (routine trajectories can be probabilistic), and (3) set of tasks: each task is characterized by its location,
validity time window, execution and reward. Task recommendation is formulated an integer linear program,
which is essentially a special variant of the routing problem, with possibly additional side constraints–e.g.,
mandating that a task be recommended to exactly � workers or not at all (if not possible). Because the exact
optimization problem is computationally intractable, a Lagrangian relaxation algorithm, described in Cheng et al.
[7], is utilized to derive a heuristic solution for practical, large-scale crowd-sourcing scenarios. This setup has
been proven in our past �eld experiments [18] to be robust and reliable, and we can directly adopt it without
major changes.

5 EVALUATION

The clients in the system obfuscate user locations (before revealing them to the server) in such a way that the
quality of the recommendations they receive (made to match their trajectories) is not greatly diminished, while
still getting desirable privacy guarantees. To empirically evaluate the LORR framework, and understand the
performance tradeo�s associated with various parameter choices, we will be measuring the following metrics.

• Location Fidelity: How accurately does the trajectory de�ned by the set of reported locations (obfuscated)
match with the user’s actual mobility patterns?
• Obfuscation Tradeo�s: How e�ectively can the worker obfuscate his true location while considering the
desired trade-o�s? In particular, we study how the parameter q controls the tradeo�s between privacy and
utility, on a per-worker basis, and the impact that q has on the following:
– Gain in entropy as a result of the obfuscation strategy
– Increase in detour overheads incurred as a resultant of recommendations generated based on obfuscated
traces
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– Change in worker productivity (measured by the average amount of rewards earned in a unit of time – $
earned per minute)

• Randomized Response Performance: How accurately can the platform infer the true popularity distribution
of a location using the randomize response-based queries periodically issued by individual workers? More
speci�cally, we are interested to see the impact of the probability p on the following:
– Accuracy of the popularity distribution estimation by the platform.
– Vulnerability of the users to inference attacks.

5.1 Experiment Study Details

To study the above mentioned points, we run experiments on two di�erent datasets: (a) WiFi based traces of
worker movement while using a mobile crowd-sourcing platform on the SMU campus, and (b) traces of commuting
using Singapore’s public transport data, based on trip transaction records on public buses and trains (MRT).
The SMU WiFi data is our primary dataset, and will be used not just to study the e�ectiveness of LORR, but
also to compare its performance to prior privacy approaches used in mobile crowd-sourcing. The Bus/MRT is
used as a secondary, lower-�delity dataset, primarily as a means to validate our key �ndings–i.e., to ensure that
our �ndings on SMU’s primarily-indoor campus are replicated even under a hypothetical wide-area, city-scale
deployment.
SMU WiFi data: Our primary dataset involves large-scale traces of indoor movement captured at Singapore
Management University– an urban campus consisting of 4 distinct academic buildings, 1 library, and 1 admin-
istrative building. As part of a large-scale experimental mobile testbed [24] (which comprises a pool of over
3,500 undergraduate students), the university operates a passive indoor location service [21]. The location data is
obtained using server-side Wi-Fi �ngerprinting techniques and o�ers a median accuracy of 6-8 meters, with a
latency of 5 seconds.

For �ner-grained localization of users in such an indoor environment, we consider a collection of landmarks in
each �oor level of the building and group them as a section (each level can have more than one section). Each
section is called a re�ion or location throughout the rest of the paper. During the �rst stage of the randomized
obfuscation process, each user will choose n locations from the building where they are currently located. For
example, if the true location is on level 3 of buildingA, then all the erroneous locations chosen will be constrained
by the same building A. For the purpose of this experiment, we consider the indoor-localization mobility data for
the entire month of March, 2017.

To see the e�cacy of the two-level obfuscation on the quality of the recommendations received, we consider
the existing mobile crowd-sourcing platform called TA$Ker that has been operationally deployed on our urban
campus for 2.5 years, with a participation base of more than 1,000 users [18, 19]. TA$Ker utilizes the above
mentioned historical mobility traces (unobfuscated) of the users to generate trajectories and then match the
available list of tasks to the users’ predicted trajectories so as to maximize the task completion in expectation.
These tasks are location speci�c and require the user to navigate to the task location in order to perform and
submit the response – e.g., report us on the status of the rubbish bin near level 2 lift lobby of SIS building, check
whether the seminar room 3.1 of SIS is occupied. In this paper, we use the mobility traces collected from the
TA$Ker platform as the data source for an empirical, data-driven study to understand how the quality of the
recommendations and user e�ciency will be a�ected (compared to the TA$Ker baseline) if users utilize the LORR
framework to modify the location data that they reveal to the crowd-sourcing platform.
Bus/MRT data:We also use the public transport data (bus and MRT/train) of 5.1 million commuters of Singapore,
collected during the month of August 2013. This data consists of comprehensive records of the tap-in (entry) and
tap-out (exits) details (i.e., bus stop or train station) of approx. 127 million trips made by commuters during that
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month, using both public buses and the train network. The average trip distance and sojourn times are 7.4 km
and 20.03 minutes, respectively. The data spans 4608 bus stops and 131 MRT stations. Each trip record captures
the unique card ID of a user, tap-in time, boarding station/bus stop, tap-out time and alighting station/bus stop.

Using the data, we �rst construct the network map as a graph where each bus stop and MRT station is a node,
and an edge between 2 nodes exists if at least one bus or MRT directly connects them. Now we hypothesize a
scenario, where residents of Singapore are using a TA$Ker like App to report on the status on various municipal
services related facilities. We assume the residents can report on the following: (a) historical sites, monuments
and museums (e.g., checking the condition of these heritage buildings), (b) heritage trees (e.g., report on fungal
infestation), and (c) bicycle parking racks (e.g., check and report on number of vacant bicycle stands). Based on
these assumptions, we identify 805 unique locations of above mentioned facilities/resources as task locations
spread across the city.
To set the baseline (no privacy) we deduce the origin-destination pairs of each trip as stay locations and

generate recommendations for 100 most frequent travellers. We assume that the user performs the tasks either
before boarding or after alighting from the bus/train, and that a user will be willing to spend a maximum of 15
minutes or 1km worth of walking distance (the detour budget) in performing tasks. During the obfuscation phase
the user �rst chooses n erroneous stations/stops that lie within ± 3 hops along the same transport service (the
locations lie along the same line of MRT/bus route) of the current trip. He then updates his obfuscated location
to the crowd-sourcing platform based on previously described LORR steps. For brevity, we only provide the
performance trade-o� results derived based on this dataset in Section 5.4.

5.2 Implicit Revelation of Task Locations

Before we evaluate the e�cacy of the proposed privacy mechanism for our mobile crowd-sourcing system,
in this section we consider another potential breach of privacy that occurs when the users implicitly reveal
their locations while performing and submitting the tasks’ responses. More speci�cally, we are interested to
see whether an adversary can reproduce the trajectories (or patterns of movements) by only observing the
task completion locations in space and time. Our investigation is shown in Fig. 5a and 5b, where we depict the
percentage of the total residency time and submitted reports at each location on our campus for a particular
push and pull class user of TA$Ker (we consider the most active user/highest performer from each category).
The X-axis denotes unique section ID of all the sections on our campus. While the primary Y-axis captures the
percentage of total residency time (deduced from the true mobility traces) and the secondary Y-axis depicts the
percentage of tasks performed (calculated based on the submitted responses).

For push class users (Fig. 5a), we can see that there are strong correlations between task submission locations
and the locations where the user spent large amount of time (the correlation score for residency time & percentage
of tasks performed is 0.65). This is not surprising as recommendations are generated by considering predicted
dwell locations. On the other hand, for the pull class user (who has to browse and choose his own tasks), the
correlation is absent (a mere 0.04), as shown in Fig. 5b. This may be due to the opportunistic nature of the pull
class user, who performs tasks spontaneously at the locations while being on the move. Although the �gures
illustrate only a single user for each class, we have con�rmed that these observations are representative: similar
correlation scores were observed across all the users in the respective pools (push: 0.54–0.68 and pull: 0.03–0.08).
These results indicate that while the push � based mobile crowd-sourcing o�ers compelling bene�ts, it does

pose potential privacy concerns, even with just the task performance locations. This alone is not entirely a
weakness, as we have shown that the e�ciency of the push-based mobile crowd-sourcing is derived from the fact
that recommendations are generated based on highly accurate trajectory predictions. Instead of scrapping all
the bene�ts that a push-based system would bring, we thus recommend an active privacy management scheme:
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sacri�cing some less-sensitive location traces, reaping the bene�ts of push-based system in those places, while
protecting the most sensitive locations.

(a) Push class (b) Pull class

Fig. 5. The true trajectory and completed task locations of (a) push and (b) pull class user

5.3 Stage-01: Client�ery via Randomized Response

5.3.1 Frequency of Client �ery: The accuracy of the ground-truth estimation depends on two parameters, (a)
the frequency in which the client queries the platform, and, (b) the probability p of head appearing in coin �ipping.
One may expect that higher frequency will lead to accurate popularity estimation. But the trade-o� between
the accurate estimation and localizing the user (i.e., privacy invasion) naturally occurs when the frequency is
high and the user is stationary – the passive adversary (who observes the periodic location queries and tries
to infer/localize the user based on the possible transitions of the user between subsequent queries) can easily
localize the user by matching two subsequent queries when the user is stationary. On the other hand, choosing
coarser-grained frequency will render the platform to be unable to capture transitions of users. Hence, choosing
the right frequency is important to balance both privacy guarantees and accurate ground-truth estimation.
In this paper, we study how the mobility pattern of a student evolves on our urban campus by translating

the observed raw traces to trajectories. We use the Wi-Fi indoor localization data described earlier. We de�ne
a user’s residency period in a location as an episode . These spatio-temporal occurrences of residency episodes
are observed longitudinally, per user basis, to derive the stay-time distribution. We eliminated the devices (or
users) that are extremely stationary (such as laptops) by avoiding any stay episode that is longer than 4 hours
(typical class duration is 3 hours and 15 minutes). We also eliminated episodes that are shorter than 5 minutes
in order to remove very transient users. Our goal here is to see whether even after this �ltering, the episodes
show the generic pattern of user movements on our campus. These insights are used to deduce a right location
update frequency that captures the majority of transitions that users typically make, without compromising their
location details. We report the average stay time distribution (per user, per day) measured in minutes in Tab. 1.
We consider 3 classes of users: (1) all the users who turned ON their WiFi interface, (2) the users enrolled with
the TA$Ker platform, and (3) relatively larger but more representative group of users who are signed up with the
LiveLabs testbed [24]. From the study, it suggests that choosing the frequency = 5 minutes (the value we chose
earlier to �lter out the transient users) does not distort the mobility patterns. As a sanity check we report the
distributions for 3 di�erent types of locations (1) the whole campus, (2) food-courts, and (3) classrooms. It rightly
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captures the average stay distributions (a typical stay duration in a classroom would span for 3 hours in a day vs.
a user would spend nearly an hour at food-courts during the lunch and tea breaks) across various locations of
interest. Throughout the rest of the analyses, we set the frequency of querying at 5 minutes.

Table 1. Stay time distribution – per user, per-day (in minutes)

Location All TA$Ker LiveLabs
Min Max Avg Med Min Max Avg Med Min Max Avg Med

Whole Campus 5 527 158 137 5 486 188 173 5 512 184 169
Food-court 5 405 30 16 5 171 25 13 5 174 28 15
Classrooms 5 476 78 58 5 288 68 521 5 236 75 58

5.3.2 Accuracy of the Ground-truth Estimation: Studying the accuracy of estimation of the true popularity
distribution is important because the user’s decision to choose a location to obfuscate mainly depends on how
many active users are available there. To capture the accuracy metric, we calculated the error (denoted by el )
in estimation (obtained and forwarded to the client by the platform using Eq. 1) as a di�erence from the actual
ground-truth (which can be obtained for our studies using the non-obfuscated/original traces collected by the
TA$Ker system):

el =

P
8t2T (Rl ,t�Rl ,t )

Rl ,t

|T | , (3)

where Rl,t denotes the actual ground-truth and T represents the collection of timestamps in which the platform
estimated the popularity scores at location l in a day. Note that el is a location speci�c metric (in contrary to the
conventional metric that considers the over-all error – averaged across all the locations, at a given time), meaning
we’re observing it as a per location score. The motivation behind this way of capturing the error is due to the fact
that di�erent locations exhibit their own intrinsic nature of occupancy – e.g., places like library and food-courts
have relatively smoother tra�c while classrooms may have bursty arrival of students (occupied only during the
class timings). We shall show how this intrinsic nature of location occupancy a�ects the error in estimation.

The probability p determines the number of locations to be queried (higher the p value, more the locations to
be queried). While higher values of p enable the users to mask themselves among multiple other locations, lower
values of p allow the platform to predict the population density more accurately (mainly because the number of
people who falsely report their presence at a location is smaller, compared to higher values of p). To see the e�ect
of p on prediction error, we plot in Fig. 6, the error in estimation (calculated using Eq. 3) for various p values. As
mentioned earlier, to see how the intrinsic nature of the locations (i.e., temporal variations on ingress and egress
�ow of users of a location) a�ect the error in prediction, we consider three di�erent locations: (1) food-court
(we can expect to have a smoother tra�c here as it’s accessed by the users commonly), (2) classrooms (where a
bursty tra�c is expected during the scheduled class time), and (3) the whole campus. For sanity checking, we
plot the fraction of distinct users appearing at each minute (obtained by dividing the number of users appear in a
minute by total number of unique users observed at the location on the same day) at the food-court (in Fig. 7a)
and a classroom (seminar room 2.2 in one of the academic building – depicted in Fig. 7b) on a typical Tuesday in
March (note that each data point is an average of 4 Tuesday’s user availability at that location). We observe from
Fig. 7a that the �ow of tra�c in food-court is smoother than the �ow in classroom – the tra�c �ow nature we
observed here is validated against the publicly available campus class timetable – this particular seminar room
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2.2 is occupied on Tuesdays during the �rst semester of 2017 between 08:15 and 11:30 and again between 15:30
and 18:45.

Fig. 6. Error vs. p

From Fig. 6, and using the auxiliary details we found about various locations (depicted in Fig. 7a and Fig. 7b),
we conclude:

• The estimation error increases with the probability p, regardless of the tra�c �ow nature of the locations.
• The typical user �ow in a speci�c location also a�ects the estimation accuracy. In particular, the tra�c-
�uctuations of a location cause the platform to overestimate the population density, especially in situations
where the location has a very small set of real workers. More quantitatively, locations with high occupancy
�uctuations bear higher estimation error – 28% more compared to locations with smoother tra�c (i.e., the
whole campus) when the users prefer stronger privacy protection while querying (e.g., p=0.9).

(a) Food-court (b) Classroom

Fig. 7. Tra�ic flow of (a) food-court, and (b) classroom on a typical Tuesday in March 2017.
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5.3.3 Inference A�ack: Though the client is not explicitly revealing its true location to the platform (by
querying along with n � 1 other erroneous locations), a passive adversary can observe subsequent queries and the
time gap between them to infer the potential whereabouts of the user. For example, assume the user is querying
the platform to know the popularity distribution of locations (l1,l2,l3 and l4) and t minutes later, he queries again
for the locations (l5, l6 and l7). By collating the list of locations that can be reached from l1–l4 within t minutes
(inter-query time gap) with the locations the user queried (l5–l7), the adversary can easily localize the user.

To see the role of parameter p on adversary’s ability to localize the user, we plot the fraction of feasible locations
(over all locations) versus the number of queries made (see Fig. 8). As expected, fraction of feasible locations
are roughly the same as the p values initially, yet as the user issues more queries, the fraction decreases; this is
most evident for small p values (e.g., for p = 0.1). Though our study is conducted in a smaller urban campus, it’s
worthwhile to note that the results corroborate well with large scale studies conducted with subway data in [27].

Fig. 8. Knowledge gained by an adversary over consecutive queries.

5.4 Stage-02: User Obfuscation

5.4.1 Entropy gain and q: Once the location is updated by the user, the platform generates trajectories (based
on these obfuscated traces) in order to make task recommendations. In order to do so, the platform uses the same
technique described in §4.4 (adopted from the state-of-the-art algorithm described in [19]) – �rst extracts the
stay episodes for each time segment and form a transition graph to list all the possible routes. For the analysis,
we considered top 5-routes per user – aiming to capture majority of all the possible paths.

To see the impact of the parameter q (of Eq. 2), we �rst examine how close the obfuscated trajectory of a user
is from the true one. In Fig. 9, we plot an aggregate distance metric (averaged over all the users) as a histogram
for 3 di�erent q values: (a) 0.1, (b) 0.5, and (c) 0.9. Our motivation is to understand the severity of the location
obfuscation needed to achieve desirable privacy guarantees. By considering top-5 trajectories per user, the average
distance between true and the corresponding obfuscated trajectory is calculated (initially between a pair of true
and obfuscated trajectory and averaged over all 5 pairs) across a single time window. This metric is averaged
across multiple time-windows and then across multiple days to obtain a per-user based distance metric across our
study period. From Fig. 9, we see that when lower values of q are chosen, the distribution is skewed towards “left”,
implying that the locations that are closer to the original one was given priority while updating the trajectories –
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Fig. 9. Histogram of distance values between the true and
obfuscated trajectories Fig. 10. Impact of q on Entropy Gain

at least 67% of the chosen locations are within the same level of the building (distance  1 minute). On the other
hand, higher q values make the skew towards “right” – letting the user to choose and update locations that yields
higher privacy gain (entropy) while eliminating the locations that are close-by – 59% of the chosen locations are
at least 3-4 levels away from the true location (distance � 4 minutes).

Next, to see the achieved privacy guarantees by obfuscation, we use entropy as a measure of privacy. For each
user, �rst we estimate the probability of appearing at location l as an aggregate residency score observed in the
history – by averaging the scores at each location (where score of user u is calculated per user, per location
basis and given by scoreu,l = stay time at location l/total stay time across all the locations). This estimation is
repeated on both true (T ) and obfuscated (T́ ) trajectories to calculate entropy values of the same (denoted by
H (T ) = �Pl 2T Pr (l )lo�(Pr (l )), and H (T́ ) = �Pĺ 2T́ Pr (ĺ )lo�(Pr (ĺ )). We use the di�erence between H (T́ ) and
H (T ) to determine the entropy gain, �(H ): the improvement in unpredictability of trajectories. In Fig. 10, we
present the entropy gain (in Y-axis) while choosing di�erent q values (depicted in X-axis). We see that as expected,
the gain in entropy increases with q value (lower q values imply that users choose locations that are closer to the
original one, while being oblivious to the privacy parameters). Even with the moderate balancing between the
privacy and utility (i.e., q=0.5), the user is able to gain 23% in entropy, while not distorting the trajectory greatly –
by choosing q=0.5, a user’s obfuscated trajectory will be 2 minutes away from the true one (refer Fig. 9). This
suggests that even a “neutral” user (one who balances the privacy and quality-of-recommendation objectives)
would receive reasonable privacy guarantees, without severely obfuscating the entire trajectory.

5.4.2 �ality of the Recommendations: In Fig. 11a, on the primary Y-axis, we depict the performance loss
observed in SMU WiFi dataset – measured by the di�erence in detour when obfuscated vs. non-obfuscated
trajectories were used to generate recommendations, for various q values. We note that, for smaller q values
( 0.5), the privacy-imposed obfuscation does not signi�cantly a�ect the user detour (not more than 24%). This
increase is, however, signi�cant at higher values of q. We see that with q = 0.9, a user will incur 54% more detour,
on average. Note that, at this point, the system e�ectively provides 61% more uncertainty (higher entropy) in
user trajectories.

In Fig. 11a, on secondary Y-axis, we illustrate the average number of tasks a user can complete with a detour
budget of 30 minutes. We plot the percentage of recommended tasks completed when di�erent q values are chosen
as compared to the non-private system. In the hypothetical private scenario, we assumed users complete the tasks
in the order of recommendation. We see that as q grown larger (or being more privacy-centric), the completion
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rate drops. This is because of the fact that larger q values tend to choose the location that yield more privacy
guarantees while avoiding the locations that are too close-by. For example, even with more conservative privacy
measures (q=0.9), the users are able to complete 65% of the tasks that he would complete normally when the
true trajectories were exposed. This means that, the user can achieve greater level of privacy without incurring
prohibitive increase in detour or loss in rewards.

(a) SMU WiFi Dataset (b) Outdoor Dataset

Fig. 11. Impact of q on Detour Incurred and % of Tasks Completed – (a) SMU WiFi and (b) Outdoor dataset

We plot the same measures observed in Outdoor dataset in Fig. 11b. We observed similar trend – as we traverse
through q, the additional detour incurred becomes progressively larger, specially for higher values of q. This in
turn a�ects the productivity of the worker – with strict privacy measure of q=0.9, the users are able to complete
64% of the tasks that he would complete normally (when the user reveals his true location).

5.5 Comparison Against Existing Approaches

In this section we provide a detailed comparison of our approach against two alternative, previously-proposed loca-
tion privacy preserving techniques, namely, k�anonymity and Di�erential privacy. Note that neither k-anonymity
nor di�erential privacy has been explicitly explored for “push-based” mobile crowd-sourcing; accordingly, we
adapt the schemes (as explained below) to best �t our operating model. Moreover, both these models assume a
trusted intermediary, unlike LORR, where clients do not reveal their true locations to anybody.
We particularly consider 3 metrics to evaluate the performance tradeo� across multiple privacy techniques:

(a) entropy gain/loss– �(H ) (private vs. non-private), (b) radius of gyration– r (distance between the true and
obfuscated location) and (c) additional detour incurred due to the privacy mechanism. To comprehend the total
gain in privacy we consider exp(�(H )) ⇤ r as a combined privacy gain after employed the privacy technique. This
is particularly important in scenarios, where obfuscation is performed by choosing a location of coarser granularity
(by combining multiple neighbouring locations) which will eventually lead to loss in entropy (i.e., �(H )  0).

5.5.1 k-Anonymity. k-anonymity is a trajectory anonymization technique that groups k co-localized tra-
jectories (i.e., the trajectories that share the same spatial locations within the same time span) to form a k-
anonymized aggregated trajectory. We speci�cally adopt the clustering-based anonymization approach [1], with
the anonymization approach consisting of three phases [8]:
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• Pre-processing phase: In this phase, the algorithm �rst identi�es the trajectories that share the same (start,
end) timings and groups them together. A crucial step during this phase is to prune the head or tail of the
trajectories to make sure that the resulting set of co-localized trajectories can have a common duration (i.e.
the same (start, end) times).
• Clustering phase: A greedy approach is then employed to create k-anonymity sets of at least k co-localized
trajectories–i.e., given 2 trajectoriesTa andTb sharing the same time span between [ts , te ], they are de�ned
as co-localized if the Euclidean distance between each pair of location samples of the trajectories is less
than or equal to the threshold d). It does so by �rst choosing pivot trajectories, one per each group de�ned
in the pre-processing step, as centers of the anonymity clusters. It will keep adding trajectories that are
co-localised with the center until the cluster has k members.
• Space Transformation phase: Once all the trajectories are grouped into respective k-anonymity clusters, an
aggregate (or representative) trajectory that resides within the cluster’s bounding volume is generated and
released. This representative trajectory acts as a proxy for the corresponding k trajectories, in subsequent
data analysis.

Although k-anonymity’s use of a trusted broker implies a fundamental di�erence with LORR’s obfuscation-at-
client paradigm, we utilize it as a representative approach for location anonymity. We shall show that k-anonymity
becomes vulnerable to privacy attacks even in the relatively small geographical space of our university campus,
and also that it is unable to consider the individualized location sensitivity (captured by per-worker entropy).

To study clustering-based k-anonymity on our WiFi-based indoor location data, we de�ne two trajectories to
be co-localized if they share spatial samples within the same building (i.e., d = 5 minutes) over the same interval.
To bootstrap the algorithm, we randomly choose a trajectory within each group (that share same start and end
timing) and �nd k � 1 other co-located trajectories. After the initial phase of clustering, we prune either the
head or tail of the currently non-clustered trajectories (pruning is restricted to the initial or �nal 10% of each
trajectory’s length), and repeat the process, so as to maximize the number of trajectories that get anonymized.
Table 2 illustrates the results for di�erent values of k (varying from 2 � 5).

Table 2. k-anonymity

k Fraction of users clustered
2 74%
3 63%
4 55%
5 42%

Results:

• Based on the experiments conducted using indoor localization data, we consider one more additional metric
specially for the case of k-anonymity along with the 3 measures mentioned earlier in this section. We use
the fraction of trajectories that could not be clustered – this helps us to understand the uniqueness of the
trajectories that caused the extreme case of non-clustering. First, we plot the trade-o� between additional
detour and weighted privacy gain for various k values in Fig. 12. We observe similar trend in k-anonymity
as compared to our approach LORR – the additional detour and gain in privacy increases as k becomes
progressively larger. However, the gain in privacy is signi�cantly lesser – if a user wants to conceal his
location within the distance of 3.5 minutes away from his true location, he incurs 25% of additional detour
with LORR and 31% with k-anonymity (when k = 4).
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Fig. 12. Comparison of Privacy Techniques: Tradeo� between privacy and application utility

• We also �nd out that the fraction of trajectories that are non-clustered is considerably high, specially when
k grows larger (refer to Table. 2). This higher fraction also raises a question of users being re-identi�ed
due to the uniqueness [10] and low-diversity of their trajectories (similar to the diversity issue reported
in an urban campus environment in [29]). Even with modestly larger k (=4), 45% of worker routes are
not anonymized. However, in the approach we proposed, direct obfuscation of each location sample in
client-side reduces the uniqueness of the original trajectory (unique locations or lower density locations
are not favoured in the stage 2 of our approach, and replaced by the locations that are less sensitive and
highly occupied).

5.5.2 Di�erential Privacy. Di�erential privacy [11, 13] is a well explored concept, with both centralised and
de-centralised implementations. The mathematical framework associated with this technique helps a user to
quantify the worst-case privacy loss incurred due to the presence of an individual user’s record in a dataset, even
when the adversary has access to the auxiliary information about that speci�c user. In this paper we consider the
recent approach presented in [31] where the authors use di�erential privacy to protect user location data from
the crowd-sourcing platform. Their model consists of 3 main entities: (a) users, whose true location details are
known to the cell service provider, (b) cell service provider, a trusted broker who collects user location details,
and (c) crowd-sourcing platform, who disseminates the task requests to the users without knowing their actual
whereabouts. More speci�cally their approach consists of the following steps:

• Release of private spatial decomposition [9]: In this phase the cell service provider releases the spatial
dataset in a di�erentially private manner to the crowd-sourcing platform, by adding carefully calibrated
noise (drawn from a Laplace or Gaussian distribution, such that the noise satis�es the di�erential privacy
constraint) to the true count of users available in a particular region/grid. It partitions the spatial map
adaptively (based on the location density) into 2 levels and add noise to the count of workers in each level-2
cell.
• Estimate the Geocast region: When the crowd-sourcing platform receives a new task request, it uses the
released (noisy) spatial map to estimate the geocast region, over which the task request is to be disseminated
to the available users. The proposed approach in [31] uses a greedy selection algorithm, initially choosing
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the grid that contains the task location and progressively expanding by adding neighbouring grids that
yield the maximum increase in utility. The utility is measured by the probability that a user in the chosen
geocast region accepts the disseminated task (it can be modeled as a Binomial distribution).
• Dissemination of the task: The service provider then disseminates the task to all the users in the geocast
region chosen in the above step.

Results:

• In Fig. 12, we plot the privacy – utility tradeo� of di�erential privacy technique for various � values (ranging
from 0.1 to 1.0). We see that LORR enables better tradeo� than the di�erential privacy technique – to
achieve same weighted privacy gain, di�erential privacy incurs 30% more additional detour as compared to
LORR . This is due to the fact that, though, di�erential privacy o�ers lower detour (by greedily starting
from the task location and expand the geocast region by adding neighbouring nodes), the perceived change
in entropy is negative – when the geocast region is growing larger, a user will lose his entropy (as he may
have more than one residency episode in the geocast region). Hence the resultant weighted privacy gain is
comparatively lesser.
• Further this technique also imposes the risk of (a) service provider colluding with the crowd-sourcing
platform and exposes the true trajectories, and (b) ability to estimate the users’ true location from the task
reports the platform received.

Key Takeaways: The comparative results show two key capabilities of LORR:

• Personalization: Unlike k-anonymity and di�erential privacy approaches, which focus on only aggregate
counts/statistics, LORR is able to personalize the obfuscation steps. In particular, LORR allows each client
to choose an obfuscated location, based on both the global occupancy counts and its own sensitivity to
revealing this location. As a result, the average entropy gain in LORR is demonstrably higher than the
alternative approaches.
• Robust Tradeo�s: LORR enables a better tradeo� between privacy gain and loss of crowd-sourcing produc-
tivity (as a result of higher detours) than the other approaches. More speci�cally, in our datasets, LORR
provides an almost-linear tradeo� between these two competing metrics. In contrast, the k-anonymity
approach of enabling this tradeo� (by varying k) also signi�cantly increases the fraction of non-anonymized
workers (as k increases), whereas the di�erential privacy tradeo� parameter (�) generates a tradeo� frontier
that is strictly worse (to the right of) LORR’s tradeo� curve.

6 DISCUSSION

While our results demonstrate the promise of the LORR framework, there are several future directions of
investigation.

6.1 Randomized Response and Di�erential Privacy

It is well studied that randomized response can be represented as (� ,� )–di�erential privacy, providing stronger
mathematical validation and quanti�cation of privacy loss to the probabilistic randomized response approach
[13]. However, we did not choose � to quantify the privacy loss for the following reasons: (a) even for relatively
smaller values of coin �ipping probability p the equivalent � will be considerably larger – for example, when p =
0.1, the resultant � will be more than 2, and (b) since each coin �ip per user is a randomized responses technique,
when the user attempts to query to obfuscate single location (by doing n �ips) his additive � will be signi�cantly
larger (note that preferred � value is <1).
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6.2 Heterogeneous Location Obfuscation

In this paper, we consider homogeneous obfuscation by the clients in the system: in our trace-driven studies,
we assume all the clients use the same parameter q during the second-stage of the user-controlled obfuscation
strategy. However, in reality, user perceptions may vary and di�erent users may prefer di�erent values of q. The
resulting dynamics needs to be studied carefully to derive additional insights. For example, it is unclear how the
performance of the proposed approach will be a�ected when various proportions of users adopt di�erent gain
co-e�cient (q).
More interestingly, this heterogeneous nature may be perceived as the prisoner’s dilemma, specially when 2

highly-correlated users (in terms of mobility patterns) obfuscate with di�erent q values. It is possible that users
choices of q may be modeled as non-cooperative games.

6.3 Adaptive Privacy Control

The novel user-controlled data obfuscation approach we introduced in this paper allows the user to tweak the
gain coe�cient longitudinally to toggle between the states of being privacy conscious and quality oriented. For
example, if a user �nds out he’s revealing more sensitive details to the platform (e.g., if he observes that he is
receiving a large number of recommendations closer to his dominant locations), he can now modify the parameter
q (to be higher) to increase the level of obfuscation. This feature is not studied in this paper and allocated for
future work.

6.4 Pricing E�ects

The obfuscation of individual trajectories not only a�ects the estimation of occupancy levels of di�erent locations,
but can also implicitly a�ect the prices (rewards) associated with di�erent tasks. Many practical crowd-sourcing
platforms assign higher rewards to tasks located at less popular locations. However, current popularity-sensitive
models for setting task rewards may not be e�ective when the underlying movement traces (of each individual
worker, as well as at an aggregate level) do not represent the true movement behavior. It is possible that the
added amount of privacy also results in an additional cost (in terms of reward prices) on the overall platform.
Further studies are needed to quantify this possibility.

7 CONCLUSIONS AND FUTURE WORK

Recent empirical studies have shown the advantages of push-based mobile crowd-sourcing, where users receive
recommendations that are tailored based on their predicted movement behaviors. However, it comes with various
privacy threats imposed to the users: when the raw traces are exposed to the system, it can be exploited for
tracking and stalking purposes. In this paper, we propose a novel, two-stage obfuscation mechanism for push-
based mobile crowd-sourcing platforms while allowing the user client to balance the tradeo� between privacy
and recommendation accuracy. During the stage one, the client allows the platform to estimate accurate measure
of popularity scores by claiming that he is present at n locations (one of those is the true location) chosen based
on randomized response mechanism. In stage two, we provide a parameter for user clients to control the privacy
loss, by obfuscating locations while maximizing the its perceived bene�ts. We empirically validate our proposed
approach by using TA$Ker :

• By utilizing the data collected from the TA$Ker platform, we �rst exhibit that even task completion locations
provide a su�ciently strong prediction on user’s dwell time and location. This illustrates the needs for
location obfuscation in push-based mobile crowd-sourcing.
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• We show how a user can e�ectively control the parameter q to achieve desired privacy and/or application
utility guarantees. More quantitatively, we show that with same preference for both privacy gain and
quality of recommendation objectives, we can increase the location entropy of crowd-workers by 23% while
imposing an additional 24% detour overhead.
• We further explore how the overall system performance is a�ected by di�erent parameters, such as the
probability p, intrinsic properties of locations and obfuscation coe�cient q.
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