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Abstract—Social networks generate a massive amount of inter-
action data among users in the form of streams. To facilitate social
network users to consume the continuously generated stream and
identify preferred viral social contents, we present a real-time
monitoring system called River to track a small set of influential
social contents from high-speed streams in this demo. River has
four novel features which distinguish itself from existing social
monitoring systems: (1) River extracts a set of contents which
collectively have the most significant influence coverage while
reducing the influence overlaps; (2) River is topic-based and
monitors the contents which are relevant to users’ preferences;
(3) River is location-aware, i.e., it enables user influence query
on the contents falling into the region of interests; and (4) River
employs a novel sparse influential checkpoint (SIC) index to
support efficient updates against the streaming rates of real-
world social networks in real-time.

Keywords—Social network analysis, influence maximization,
Twitter, location-based service.

I. INTRODUCTION

The last few decades have witnessed the booming of online
social networks (OSNs) where hundreds of millions of people
interact with each other and produce an unprecedented amount
of content. The prevalence of OSNs has prompted much
interest in the study of information diffusion, as a piece
of information could quickly become pervasive through the
“word-of-mouth” propagation among friends in the network.
Such a diffusion phenomenon has been shown to be powerful
in many applications, such as viral marketing [1], [2], network
monitoring [3], and recommendation systems [4]. As such,
there have been extensive studies on social influence due to
its immense value in real-world scenarios. See a recent survey
[5] on social influence for a more comprehensive discussion.

Most existing studies focus on analyzing static social inter-
action data, e.g., retweets on Twitter and shares on Facebook,
and build models to understand social influence [6], [7]. In
reality, social influences are highly dynamic and the interac-
tions between users can be altered drastically by breaking news
and trending topics [8]. Thus, the influence model built on
static data can quickly become outdated. Although there are
some efforts on dynamic influence analytics, e.g., the dynamic
influence maximization (IM) problem [9]–[13] that tracks a
set of k influential users with the largest influence from an
evolving network, the performance is still unsatisfactory to

meet the demand for large-scale applications. For example,
the state-of-the-art dynamic IM solutions can only process a
few hundreds of updates per second [9]–[11], which is far
lower than the update rates of real-world social streams, e.g.,
about 7500 tweets are generated on Twitter per second.

In this demo, we present River: a real-time influence moni-
toring system on dynamic social streams. River tracks influen-
tial social elements (e.g., tweets/blogs) against social streams
updated at high rates. River is equipped with the following
unique features, which distinguish itself from existing dynamic
social influence analytic solutions.

• River is based on the influence maximization problem
(IM) over social streams [8], [14]. By taking into account
the influence overlaps among different social elements, it
extracts a set of contents collectively achieving the largest
influence coverage on social audiences. Such requirement
makes the influence monitoring problem to be NP-hard.

• River is topic-aware and query-specific. Users can input
keywords/hashtags as queries to the system. River will
extract the topical information of queries and proceed to
track influential elements on the corresponding topics.

• River is location-aware. Many OSNs are equipped with
location-based services. For example, geo-tagged tweets
can be posted from GPS-enabled devices. River can lever-
age such spatial information to capture region-constrained
influences. When a user specifies a region of interest,
River will track the elements which are the most influen-
tial over the social audiences in the region.

• River employs a novel sparse influential checkpoint (SIC)
index proposed in our previous work [8] to enable real-
time stream processing. By exploiting the submodularity
of the influence function, the results returned by SIC are
guaranteed to be ( 1

4−ε)-approximate to the optimal ones
where ε ∈ (0, 1) is a tunable parameter to achieve the
trade-off between efficiency and quality. In the Twitter
application, River can perform 30K updates per second,
which is much higher than the update rate of the Twitter
stream, i.e., 7.5K updates per second.

The rest of the paper is organized as follows. The related
work is discussed in Section II. Section III presents a general
working scenario of River. Subsequently, Section IV intro-



(a) Web interface of River (b) Interactive influential tweet exploration

Fig. 1: In 6th July 2017, Donald J. Trump visited Poland and gave a speech at 1:19 PM, Warsaw (4:19 AM, PST). He posted
a tweet to mention this event at 1:45 PM.

duces the streaming model as well as the monitoring problem
of River. Section V describes River’s processing framework
and the SIC index. Section VI presents the demonstration
details and Section VII concludes the whole paper.

II. RELATED WORK

Social media users often rely on keyword search to explore
rich contents that are continuously generated on social media
platform [15]–[17]. However, keyword search does not con-
sider the topical information as well as the social influence,
which leads to suboptimal search results. There have been
some existing studies on tracking topic-aware influencers in
social streams [18]. [18] computes the influence scores of users
based on information flows and proposes a method to track
top-k influential users on a specific topic. Several commercial
websites such as Lithium 1 and Keyhole 2 also provide services
for social influence analytics. Lithium provides a social impact
ranking to measure the influence scores of users. It collectively
considers the number of tweets, followers, active audience,
mentions, and replies, as well as the overall sentiment to
compute the influence score. Keyhole tracks the trends for
hashtags, accounts, keywords, and mentions in real-time and
provides query interfaces and visualization tools to show the
various statistics of a specific topic, i.e., top posts, influencers,
location distribution, sentiment, and etc. However, the above
solutions ignore the influence overlaps among users and may
lead to the redundancy issue. In addition, all of them except
Keyhole are location-unaware. Keyhole only provides the
location distribution of users concerning a fixed topic, but it
cannot handle ad-hoc region queries.

To the best of our knowledge, River is the first real-time
social influence monitoring system which simultaneously sup-
ports the aforementioned features that are vital for real-world

1https://www.lithium.com
2http://keyhole.co

applications. For example, a senate candidate could leverage
River to track sets of tweets that influence the most people in
the state of California on different political issues, such as “Tax
Reform”, “Refugee Ban”, and “Healthcare Policy”. Accessing
such real-time information would help the candidate identify
sudden public opinion swings and assist her in planning for
subsequent public speeches or tweets.

III. SYSTEM OVERVIEW

The working scenarios of River are illustrated in Figure 1.
Figure 1a is the web interface of River and Figure 1b is a view
of River’s user interaction. In Figure 1a, users can input a set
of query keywords to specify their tracking preference, e.g.,
“Poland” showed in the search bar. Users can also restrict
the region of interest. In this example, we are interested in
all the tweets posted in the United States. Subsequently, River
starts to stream in new tweets and track influential ones. There
are three main components in the web interface that visualize
the results to end users. First, a timeline on the right of the
interface shows when the influential tweets (marked as colored
nodes), which are related to “Poland”, are posted. The color
represents a tweet’s degree of influence impact, and Trump’s
tweet (marked as red) achieves the largest influence among
all tweets during this period. Meanwhile, these influential
tweets are also illustrated as nodes in the map which can be
hovered over to show the full contents. The timeline slides
when a batch of new tweets are streamed into the system and
the influential tweets are updated in real-time. Second, the
heatmap demonstrates the degree of influence achieved by the
extracted tweets in different regions. Third, a time series on
the bottom show the influence trend of the tracked tweets to
demonstrate the variation of the public opinion on the user
query keywords. Figure 1b illustrates that users can click on
a certain node which attracts their interest in terms of the
influence impact, and the tweets which are influenced (i.e.,

https://www.lithium.com
http://keyhole.co


replies/retweets) will be shown in the map. A child node can be
expanded recursively if possible and all nodes are interactive
to show the contents of the tweet chain.

In this demo, we showcase River’s efficiency in handling
massive updates of the twitter stream. In particular, we allow
users to specify the rate of twitter stream updates. We keep
collecting a sample stream of incoming tweets from Twitter
streaming API3 and users can fast forward the stream by
specifying different timeline shift (minute/hour/day) of the up-
dates. River employs a novel SIC index to selectively maintain
O( logN

ε ) checkpoints for a sliding window of N tweets, and
each of which tracks the candidate solution w.r.t. different
starting timestamps of the sliding window. As a consequence,
this allows the system to always utilize the first non-expired
checkpoint to extract the influential tweets w.r.t. the up-to-date
sliding window, while still guarantees the approximation ratio.

IV. MONITORING PROBLEM

Social Element. A social element e is defined as a tuple
e = 〈u, t, doc, loc, par〉 where e.u is the user who per-
forms/posts e, e.t is the timestamp, e.doc is the textual content
of e represented by a bag of l words {m1, . . . ,ml} drawn
from a vocabulary, and e.loc is the location where the social
element is posted. In addition, e.par represents the element
which e responds to (e.g., retweets/replies) and captures the
influence from e.par to e. In reality, “tweet” and “retweet” on
Twitter are typical social elements, which are associated with
timestamps and contents. A tweet/retweet will have a geo-tag
if the user posts it from a GPS-enabled device and allows for
position sharing.
Social Stream. A social stream comprises a sequence of n
social elements indexed by 1, . . . , n and ordered by their
timestamps. To capture the temporal information, we adopt
the sliding window model [19]. Given a window of length N ,
a sliding window Wt contains social elements whose indices
are between t−N + 1 and t.
Topic-Aware Relevance. We model the content of each social
element as a set of weighted topics. We treat the topic model,
e.g., LDA, as a black box and any topic extractions or mining
techniques can be adopted to transform the social content into
a latent space Z and the output is a weighted vector He

with |Z| dimensions. Such topical distribution can be assumed
to remain stable in a period of time, and the model can be
retrained whenever necessary.

Given a set of query keywords, i.e., q, we can measure
the topic-aware relevance between the user query and a social
element. By treating the query keywords as a document, q
can also be projected into a |Z| dimensional topical vector.
We follow several previous works, e.g., [15], [16], to measure
the relevance between the social element e and the query q.

φ(e, q) =
∑
z∈Z

rel(e.doc, z) · rel(q, z) (1)

3https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/
GET statuse sample

12/19/2017
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Fig. 2: Processing framework of the SIC index.

where rel(e.doc, z) and rel(q, z) represent the relevance of
the topic z against the social element and the query keywords
respectively.
Region-constrained Social Influence. We follow [8] and use
social interaction data to quantify social influence. We say a
social element e influences a user u in Wt w.r.t. a region R,
denoted by (e u)Rt , if there exists a social element e′ posted
by user u such that e′ ∈Wt and e′.loc ∈ R, and e′ is directly
or indirectly influenced by e. Given a user specified region R
and a set of social elements S, we measure the influence of S
over the current sliding window Wt by defining the influence
set of S w.r.t. R.

Definition 1: (Influence Set) The influence set of a social
element set S w.r.t. the query region R at time t, denoted
as IRt (S), is the set of users influenced by at least one of
the social elements in S. Equivalently, IRt (S) = {u|∃e ∈
S s.t. (e u)Rt }.
Intuitively, the influence set of S denotes the set of users who
recently post a social element under the impact of S. With the
aforementioned setup, we are now ready to define the problem.
Influential Social Element Set Selection. Given the user
keyword query q and a region of interest R, the goal of River
is to maintain a set of social elements which are topic-wise
relevant to the query while achieving the largest influence w.r.t.
the up-to-date window Wt. We define the ranking function
fR,q
t (S) to quantify the utility of a social element set S:

fR,q
t (S) =

λ

n
· IRt (S) + (1− λ) ·

∑
e∈S

φ(e, q) (2)

where n is a factor to normalize IRt (S) into the same scale as
φ(e, q) and λ is a tunable parameter to balance between topic
relevance and social influence. Then, we formally define the
influential social element selection problem.

Definition 2: Given a set of keywords q, a region R, and the
result size k, the influential social element selection problem
aims to extract the optimal set S∗t that maximizes fR,q

t (·) at
any time t, given at most k elements can be selected, i.e.,
S∗t = arg maxS:|S|≤k f

R,q
t (S).

V. RIVER PROCESSING FRAMEWORK

It can be shown that it is NP-hard to extract the influ-
ential elements for each sliding window Wt, since it is a
general version of the problem defined in [8]4. Although

4When λ=1, the problem is equivalent to the one defined in [8].

https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/GET_statuse_sample
https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/GET_statuse_sample


Algorithm 1: SIC MAINTENANCE

1 Required: SIC at time t− 1: {Λt1 ,Λt2 , . . . ,Λts};
2 while receiving element et at time t do
3 Create Λts+1 where ts+1 = t;
4 foreach Λti do
5 Push et to Λti ;
6 if t1 ≤ t−N then
7 Delete Λt1 from SIC;
8 foreach Λti do
9 Λ− ← ∅;

10 foreach Λtj such that tj > ti do
11 if Λtj ≥ (1− ε)Λti ∧ Λtj+1 ≥ (1− ε)Λti then
12 Λ− ← Λ− ∪ {Λtj};
13 else
14 Λti ← Λtj ;
15 break;
16 Delete the checkpoints in Λ− from SIC;
17 Retrieve the result of Λt1 for the query at time t;

a greedy heuristic, which iteratively selects a element with
the maximum gain in fR,q

t (·), achieves (1 − 1
e )-approximate

to the optimal solution because fR,q
t (·) is monotone and

submodular5 [20], the efficiency of the greedy heuristic is far
from satisfactory to handle massive updates of social streams.

To process massive updates, River employs our novel SIC
index [8] to dynamically extract the influential elements. As
shown in Figure 2, SIC stores a number of checkpoints
which starts at different timestamps of the sliding window.
Each checkpoint maintains the influential element set for the
corresponding interval, e.g., checkpoint Λta keeps the solution
among social elements contained in the time interval [ta, t−1]
at time t− 1. In this way, the first non-expired checkpoint is
used as the solution for the entire window. There are two steps
for SIC to handle an incoming social element6: (1) A push step
which updates each of the checkpoints with the new element;
(2) A delete step which deletes both the expired checkpoint
and the checkpoints which are unnecessary to store.
Push. Let us picture a sliding window at time t−1 which con-
tains N active social elements7 (Figure 2). Given an incoming
social element et which falls into the user specified region R,
the push step uses et to update each of the checkpoints in
the window. As the checkpoints only need to handle insertion
rather than deletion and our ranking function is monotone
and submodular, we invoke existing append-only streaming
algorithm for submodular optimization to update the influential
element set that corresponds to different starting points. We
note that each checkpoint takes O( log k

ε ) ranking function calls
to update and maintains a ( 1

2−ε)-approximate solution against
the append-only stream.
Delete. After updating all checkpoints with the new social
element, we first delete the expired checkpoint as the window

5A set function f is monotone iff f(A) ≤ f(B) for any A ⊆ B, and f is
submodular iff f(A∪ {x})− f(A) ≥ f(B ∪ {x})− f(B) for any x 6∈ B.

6Note that our processing framework can also handle a batch of updates.
We present the scenario for single element update for simplicity.

7SIC can also handle varying length sliding windows, e.g., the time-based
sliding window which maintains a number of elements in a fixed time interval.
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Fig. 4: A comparison of the result quality of IM methods

slides (Λt−N in Figure 2). To speed up the processing effi-
ciency, SIC leverages the monotone and submodular property
of the ranking function to delete checkpoints which can be
approximated by nearby checkpoints. In particular, SIC keeps
a sequence s of checkpoints {Λt1 ,Λt2 , . . . ,Λts}. Intuitively,
given any three consecutive checkpoints Λta , Λtb , Λtc kept by
SIC where ta < tb < tc and a parameter ε ∈ (0, 1), as long
as (1− ε)Λta (we also use Λta to denote the utility value of
the solution maintained in Λta ) is less than those of Λtb and
Λtc , we delete Λtb as Λtc is (1− ε)-approximate to Λtb .

The pseudo code of the SIC maintenance is presented in
Algorithm 1. We perform the push step in Lines 3-5 and the
delete step in Lines 6-16. Note that the deletion procedure
can be done with only one swipe over the checkpoints in SIC.
After the procedure for SIC maintenance, the result of Λt1 is
always retrieved for the monitoring query at any time. It has
been shown in [8] that only O( logN

ε ) checkpoints need to be
maintained. The overall processing complexity of SIC is thus
O( log k·logN

ε2 ) function calls, which is significantly lower than
the greedy algorithm that requires O(k · N) function calls.
In addition, SIC maintains a ( 1

4 − ε)-approximate solution
according to the theoretical result of [8].

We compare our SIC algorithm with two state-of-the-art IM
algorithms: (1) IMM [21] for IM in static social networks; and
(2) UBI [10] for dynamic IM in evolving networks. The results
for efficiency are shown in Figure 3. We can see SIC has



(a) 9 PM, 8th June (the last game of 2018 NBA Finals starts) (b) 12 AM, 9th June (2018 NBA Finals Championship announced)

(c) 4AM, 9th June (4 hours after the game ends) (d) 8PM, 21st June (the 2018 NBA Top Draft Pick announced)

Fig. 5: The last game of NBA Finals between Golden State Warriors (home to Oakland, California, pointed by red arrow)
and Cleveland Cavaliers (home to Cleveland, Ohio, pointed by blue arrow) started at 9PM, 8th June. Phoenix Suns (home to
Phoenix, Arizona, pointed by green arrow) won the NBA Top Draft Pick at 8PM, 21st June. All times are in EDT.

much higher throughputs (i.e., the average number of elements
processed per second) than UBI and IMM. It is able to process
over 30K elements per second when k = 50, which can meet
the requirement for processing real-world social streams. The
results for influence spread (i.e., the average number of users
influenced by the element sets returned by each method) are
illustrated in Figure 4. The quality of the results returned by
SIC is always close to IMM with varying k. The differences
in influence spread are always less than 3%. Conversely, UBI
can only return high-quality results when k is small but its
result quality degrades when k increases.

VI. DEMONSTRATIONS

We will demonstrate River to the conference audiences
using the web interface that we have prototyped. We keep
collecting the incoming tweets via the Twitter Streaming API
over months, and the average incoming rate is about 20 tweets
per second. Among all tweets, about 12% have the fine-
grained geographic information (i.e., GPS coordinates), and

the rest contains coarse-grained geographic information (i.e.,
rectangular bounding boxes). As of the date of publication,
we have collected more than 100 million tweets. We use a
server running Ubuntu 16.04 as the back-end, with four Intel
E7-4820 1.9GHz processors and 128 GB memory.

The conference attendees will be able to experience three
main scenarios with River, namely query processing, interac-
tive influential tweet exploration, and scalability demonstra-
tion. Next, we will present the above scenarios in detail based
on two examples: (i) Trump’s visit to Poland (as shown in
Figure 1) and (ii) 2018 NBA Finals and Draft Pick (as shown
in Figure 5).
Scenario 1: Query Processing. Users can input a set of
keywords, e.g., “Poland” or “NBA”, and River will analyze
the keywords to extract the latent topic interest of the users.
Moreover, River’s interface can support to circle an area in the
map if users wish to constrain the region of the interests, e.g.,
within the United States. After users confirm their query (key-
words and region), the system initializes and starts to stream



in tweets. As shown in Figure 1a, a sliding timeline is placed
on the right of the interface and a set S of k influential tweets
that are relevant to the user’s query are always maintained and
visualized. The collective influence score of S at time t, i.e.,
IRt (S), is presented as a time-series trend chart placed on the
bottom, which shows obvious influence fluctuations in some
important moments. To demonstrate the impact region of S,
a heatmap visualizes degree of the influence impact of S in
different parts of the region.
Scenario 2: Interactive Influential Tweet Exploration.
Users can stop the stream by pushing the “pause” button
and closely examine the influential tweets extracted from the
snapshot. As shown in Figure 1b, user can hover on one of the
influential tweets in the timeline to access its full content and
the influence region of the hovered tweet will be visualized
using a heatmap. The user can also click on one of the
influential tweet to explore in detail. Specifically, we visualize
the retweets/replies triggered by the selected influential tweet
on the map according to their geo-location and user can further
click the retweets/replies on the map to see the full contents.
This demonstration scenario allows the attendees to access the
effectiveness of the extracted influential tweets on the spot.
The attendees can then resume the stream to see the variation
of the monitored influential tweets and impact regions.
Scenario 3: Scalability. We demonstrate the scalability of
River in two ways. First, the attendees can increase the
parameter k to track a larger number of influential tweets.
Second, the attendees can fast forward the Twitter stream
by choosing different timeline shifts (minute/hour/day). With
an increasing timeline shift, every single update contains a
more significant amount of incoming tweets, which stresses
the River processing framework. Other than demonstrating
the efficiency, the attendees can also visualize the influence
fluctuation over a longer period of time with the fast forward
feature. For instance, Figure 5 illustrates the evolving of
influence distribution when “NBA” is chosen as the keyword
and sliding in the timeline around June of 2018. Then, the
influence distributions before, during and after the 2018 NBA
Champion announce are shown in Figures 5a, 5b, and 5c
respectively. Different from Figure 5b in which most areas
have a large influence, Figures 5a and 5c emphasize that
the locations of both teams are more influential, which in-
dicates that the people in these locations pay attention to the
game more continuously during the whole period. The same
phenomenon can be observed in the 2018 NBA Draft Pick
which is illustrated in Figure 5d. Specifically, we can see that
Phoenix is enjoying an unusually large influence as it wins
the first overall pick. To summarize, this example shows that
River enhances the real-time, topic-aware and location-aware
influence monitoring on social media streaming data.

VII. CONCLUSION

In this paper, we introduced our River system that aimed to
provide a real-time monitoring service for influential contents
tracking against high-speed social streams. We presented the

problem context of River and demonstrated its novel features
in a user-friendly interface, powerful processing framework
over a novel index structure, and analysis efficiency. For future
work, we plan to incorporate personalized topical influence in
finding the relevant social contents [22].
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