
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

9-2018

Blockchain based efficient and robust fair payment
for outsourcing services in cloud computing
Yinghui ZHANG

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Ximeng LIU

Dong ZHENG

DOI: https://doi.org/10.1016/j.ins.2018.06.018

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Categorical Data Analysis Commons, Data Storage Systems Commons, Information

Security Commons, OS and Networks Commons, and the Technology and Innovation Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
ZHANG, Yinghui; DENG, Robert H.; LIU, Ximeng; and ZHENG, Dong. Blockchain based efficient and robust fair payment for
outsourcing services in cloud computing. (2018). Information Sciences. 462, 262-277. Research Collection School Of Information
Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4213

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/200254343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.ins.2018.06.018
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/817?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/644?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4213&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Blockchain based Efficient and Robust Fair Payment for

Outsourcing Services in Cloud Computing

Yinghui Zhanga,b,c,d,∗, Robert H. Dengb, Ximeng Liub, Dong Zhenga,d

aNational Engineering Laboratory for Wireless Security,
Xi’an University of Posts and Telecommunications, Xi’an 710121, P.R. China
bSchool of Information Systems, Singapore Management University, Singapore

cState Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, P.R. China
dWestone Cryptologic Research Center, Beijing 100070, P.R. China

Abstract

As an attractive business model of cloud computing, outsourcing services usually in-
volve online payment and security issues. The mutual distrust between users and
outsourcing service providers may severely impede the wide adoption of cloud com-
puting. Nevertheless, most existing payment solutions only consider a specific type of
outsourcing service and rely on a trusted third-party to realize fairness.

In this paper, in order to realize secure and fair payment of outsourcing services
in general without relying on any third-party, trusted or not, we introduce BCPay, a
blockchain based fair payment framework for outsourcing services in cloud computing.
We first present the system architecture, specifications and adversary model of BCPay,
then describe in detail its design. Our security analysis indicates that BCPay achieves
Soundness and what we call Robust Fairness, where the fairness is resilient to eaves-
dropping and malleability attacks. Furthermore, our performance evaluation shows
that BCPay is very efficient in terms of the number of transactions and computation
cost. As illustrative applications of BCPay, we further construct a blockchain-based
provable data possession scheme in cloud computing and a blockchain-based outsourc-
ing computation protocol in fog computing.

Keywords: Blockchain, Cloud security, Fair payment, Provable data possession,
Outsourcing computation, Authentication.

∗Corresponding author.
Email addresses: yhzhaang@163.com (Yinghui Zhang), robertdeng@smu.edu.sg (Robert H.

Deng), snbnix@gmail.com (Ximeng Liu), zhengdong@xupt.edu.cn (Dong Zheng)
The paper is published in Information Sciences (https://doi.org/10.1016/j.ins.2018.

06.018) and Elsevier has the copyright. It can be cited as Zhang Y, Deng R H, Liu X, et al. Blockchain
based Efficient and Robust Fair Payment for Outsourcing Services in Cloud Computing[J]. Information
Sciences, 2018, 462: 262-277.

Preprint submitted to Information Sciences August 12, 2018

https://doi.org/10.1016/j.ins.2018.06.018
https://doi.org/10.1016/j.ins.2018.06.018

1. Introduction

As a promising computing paradigm, cloud computing has many attractive bene-
fits, such as flexibility, high efficiency and high availability. It can provide a diversity
of outsourcing services including storage and computations [3]. With the rapid de-
velopment of cloud computing technologies, an increasing number of individuals and
enterprises have uploaded their various data onto third-party cloud platforms either
for ease of sharing or for cost savings. The cloud storage service of Dropbox currently
has approximately 500 million registered users and 500 petabytes of user data [27].
Users can also subscribe to flexible computation resources from cloud service providers
such as Google and Amazon. In order to facilitate the operation of computation, s-
torage and networking services between end users and cloud computing data centers,
fog computing further extends cloud computing to the edge of the network [9]. In fog
computing, the outsourcing computation service is required because end users usually
are resource-constrained. Obviously, outsourcing services play an important role in the
development of cloud and fog computing.

Although cloud computing allows users to customize outsourcing services, its unique
aspects also raise various security and privacy concerns [41, 29, 35, 32, 51, 34, 49, 50].
In cloud storage, for instance, users usually require assurance of data possession besides
confidentiality of outsourced data. As for computation, users expect to get valid and
correct computation results from the outsourcing service provider once the service fee is
paid. Recently, great efforts have been made to realize provable data possession (PDP)
[4, 6] and verifiable outsourcing computation [25, 33, 42, 13, 15]. However, most of
the existing schemes do not consider the payment issues in outsourcing services. Take
PDP as an example. In a challenge proof of PDP, if the server is malicious, a user’s
data may be lost without any compensation even if he/she has paid for the service.
On the other hand, in the case of a malicious user, the server cannot earn the service
fee from the user even if it enforces a valid and correct PDP service. Because of the
distrust between the user and the server [37, 24, 47, 48, 18], the payment issues are
sufficiently challenging for outsourcing services considering fairness.

In order to simultaneously address the payment and security issues, most of the
existing schemes adopt the (default) traditional payment mechanism and rely on a
trusted third-party such as a bank. For example, the Google cloud platform provides
a series of cloud services including computing and data storage, and the registration
requires a bank account [20]. In cloud computing, however, the traditional payment
solution suffers several drawbacks. First, it is assumed that the bank is trusted by all
the users and the server and it deals with all procedures in a fair manner. Second, the
payment mechanism needs to be adapted to multiple banks used by different partici-
pants and has to be updated whenever they change, which will become a bottleneck of
the payment system. Last but not least, users’ privacy associated with bank accounts
may be violated.

Recently, blockchain technologies have gained prominent popularity mostly due

2

to its distributed nature and the lack of a central authority. In blockchain-based
outsourcing services, the service fee is transferred directly between the user and the
server and they do not have to trust any third-party. However, to the best of our
knowledge, blockchain technologies have seldom been used in general for fair payment
of outsourcing services in cloud and fog computing.

1.1. Our Contributions

To eliminate the third-party, trusted or not, while ensuring the fairness of pay-
ment against malicious users and outsourcing service providers, we introduce BCPay,
a blockchain based fair payment framework for outsourcing services in cloud and fog
computing. Our contributions are three-folds:

1. We first propose the system architecture, specifications and adversary model of
BCPay, then describe its design details. We prove that BCPay enjoys Soundness
and Robust Fairness where the latter implies that fairness is resilient to any attacks
including eavesdropping and malleability attacks without relying on any third-party.

2. In BCPay, soundness and robust fairness are achieved by an all-or-nothing checking-
proof protocol. In the protocol, it is ensured that the outsourcing service provider
either earns the service fee and gets his/her guaranty back simultaneously or pays
a penalty in the form of deposit to the user. Besides, our performance evaluation
shows that BCPay is very efficient in terms of the number of involved transactions
and computation cost.

3. To illustrate the applications of BCPay, we propose a blockchain-based PDP scheme
in cloud computing and an outsourcing computation protocol suitable for fog com-
puting.

1.2. Related Work

As an earlier and important application of blockchain technologies, Bitcoin was
announced under the pseudonym Satoshi Nakamoto [39]. To facilitate the wide use of
blockchain technologies, Buterin [10] proposed Ethereum, a next-generation smart con-
tract and decentralized application platform. Later, Andrychowicz et al. [2] proposed a
bitcoin-based timed commitment scheme, in which the committer has to reveal his/her
secret before a specific time, or to pay a fine. With bitcoin-based timed commitments
in place, they further constructed protocols for secure multiparty lotteries. In order
to realize more general computation, Andrychowicz et al. [1] proposed a simultaneous
Bitcoin-based timed commitment scheme. Subsequently, they presented a two-party
computation protocol, which modifies the Bitcoin specifications to resist malleability
attacks. Similar ideas were developed independently by Bentov et al. [8]. Note that all
these bitcoin-based schemes cannot realize what we call all-or-nothing property which
is required in outsourcing services. Specifically, the all-or-nothing property ensures that
the outsourcing service provider either earns the service fee and gets his/her guaranty

3

back simultaneously or pays a penalty to the user. The line of work on outsourcing
service consists of outsourcing storage and outsourcing computation.

As for outsourcing storage, based on RSA homomorphic tags, Ateniese et al. [4]
proposed the first PDP scheme, which allows users to challenge the cloud server for a
proof that the integrity of their data is not violated. Recently, homomorphic signature
and encryption technologies have obtained many attentions [40, 45]. In the same
year, Juels et al. [30] defined and explored proofs of retrievability, which enables
the cloud server to produce a concise proof that a user can retrieve a target file.
Later, Ateniese et al. [7] presented a PDP scheme based on identification protocols
supporting public verification. Data dynamics are further considered in [5, 43, 46].
On the other hand, outsourcing computation enables resource-limited end users in fog
computing to complete computationally expensive tasks with the help of fog nodes
(a.k.a. workers). This introduces the potential of cheating by untrusted participants
in a commercial setting. To protect the rights and interests of users, the concept of
ringer [26] is introduced to verify the validity of outsourcing computation results. In
order to improve efficiency, Du et al. [22] presented a commitment-based scheme to
prevent workers from cheating. Gennaro et al. [25] proposed a verifiable outsourcing
computation scheme while protecting the input and output privacy. Carbunar et al.
[12] proposed several outsourcing computation solutions that simultaneously ensure
correct remuneration for computation tasks completed on time and prevent workers’
laziness. Chen et al. [16] considered outsourcing computation with such workers that
may not send the computation results on time. Chen et al. [14] further proposed a
conditional e-payment system based on a restrictive partially blind signature scheme.
Song et al. [42] proposed a solution to verifiable outsourcing of polynomial evaluation.
Additionally, verifiable computation over large database is studied in [17].

In the above schemes, however, either the payment issue is not taken into account
or the traditional payment framework is adopted, which needs a trusted third-party
to realize fair payment. To solve these problems, blockchain technologies have been
introduced to outsourcing services. Compared to traditional payment technologies,
the independence from central authorities is the key advantage of blockchain-based
solutions. Ateniese et al. [6] introduced accountable storage based on an extension
of invertible Bloom filters, and showed how to combine it with Bitcoin based zero-
knowledge proofs. However, the combination involves a trusted third-party called
Bitcoin arbitrator. Huang et al. [28] proposed a blockchain-based outsourcing com-
putation scheme, in which a trusted third-party is still required. Obviously, all these
schemes [6, 28] fail to truly realize blockchain-based decentralized outsourcing services.
Campanelli et al. [11] defined the notion of zero-knowledge contingent service payment
to realize service payment based on blockchains. They constructed two high-level pro-
tocols and presented a concrete realization based on the proof of retrievability service.
However, the proposed protocols are only conceptual and lack design details, of which
the efficiency remains to be improved because a witness indistinguishable protocol [23]
is used as a building block. Based on game theory and Ethereum smart contracts,

4

Dong et al. [21] proposed a protocol for checking the correctness of computation in
cloud computing. However, it is assumed that users are honest and two clouds can-
not collude. On the other hand, in order to improve the transaction throughput and
latency in blockchains, current efforts focus on off-chain payment channels which can
be combined in a payment-channel network to enable a number of payments without
accessing the blockchain. Khalil et al. [31] presented a solution which allows an arbi-
trary set of users in the payment-channel network to securely rebalance their channels.
Malavolta et al. [36] formalized the security and privacy notions in a payment-channel
network including balance security and value privacy. In this paper, we propose a gen-
eral blockchain-based payment solution for outsourcing services, which can efficiently
address the threat of cheating from malicious participants and offer guarantees that
the service has been correctly enforced.

1.3. Organization

The rest of the paper is organized as follows. Some preliminaries are given in
Section 2. We then present the system architecture, specifications and adversary model
in Section 3. The proposed framework BCPay together with its security analysis are
presented in Section 4. Section 5 shows the performance evaluation of BCPay. In
Section 6, we present several applications of BCPay. Finally, concluding remarks are
made in Section 7.

2. Preliminaries

In this section, we first list some notations and then briefly review blockchains and
Bitcoin-based timed commitments.

2.1. Notations

In Table 1, we present notations mainly used in BCPay.

Table 1: Notations used in BCPay.
C The client

Ii,j
The hash value of the j-th

S The server node with height i in Tℓ

H A hash function
σroot

The ECDSA signature of
rS The secret of S the root of Tℓ

hS The hash value H(rS)
chal

A challenge-related hash value
t A time-lock set used in the service checking
Tℓ A service data tree

chal0
A challenge-related variable set

ℓ The height of Tℓ used in the service checking
(pkA, skA) An ECDSA key pair of A

ChalIndex
A challenge-related index

data0 Service-related local data set used in the service checking
data1 The outsourcing data

maxB

The maximal delay between
chaldata A challenge (data indexes) broadcasting a transaction and

Di The i-th data block in data1 including it on the blockchain

5

Tx2(in: Tx1)

in-script: sigA([Tx2])

out-script(body, σ): verB(body, σ)

val: dB

tlock: t

dB

dB

Figure 1: An example of transaction.

2.2. Blockchain

The blockchain is an essential technology behind many cryptocurrencies, with Bit-
coin and Ethereum as the two most widely used ones. The idea of the blockchain is that
the longest chain is accepted as the proper one. In the following, we describe blockchain
in terms of the Bitcoin currency system, including addresses and transactions.

As an important ingredient of the Bitcoin system, the ECDSA signature is asso-
ciated with a public-secret key pair (pk, sk). Technically, an address is a hash of a
public key pk. To keep the exposition as simple as possible, we use pk to represent an
address. Suppose a user A has a key pair (pkA, skA), then sigA(m) denotes the ECDSA
signature on a message m associated with skA, and vecA(m,σ) denotes the result of
the verification of the ECDSA signature σ on the message m with regard to pkA. The
most general form of a Bitcoin transaction Txx is

((y1, a1, σ1), · · · , (yn, an, σn), (v1, π1), · · · , (vm, πm), t).

The inputs of Txx are triples (y1, a1, σ1), · · · , (yn, an, σn), where yi is the hash of some
previous transaction Txyi , ai is an index of the output of Txyi and σi is called an input
script. The outputs of Txx are a list of pairs (v1, π1), · · · , (vm, πm), where vi is the value
of the i-th output of Txx and πi is an output script. In particular, t is a time-lock, which
means that Txx is valid only if time t is reached. In Ethereum, similar mechanisms can
be realized based on the Ethereum Alarm Clock [38]. Furthermore, the body of Txx is
denoted as

[Txx] = ((y1, a1), · · · , (yn, an), (v1, π1), · · · , (vm, πm), t),

which is equal to Txx without the input script. The transaction Txx is valid if π′
i([Txx], σi)

evaluates to true for 1 ≤ i ≤ n, where π′
i is the output script of the ai-th output of Txyi .

The scripts are written in the Bitcoin scripting language, which is a stack based, not
Turing-complete language. In Figure 1, as an example of transactions, the user A aims
to transfer dB from Tx1 to the user B after time t based on Tx2, where the output
script is an ECDSA signature verification. Similar to [2, 1], to keep the exposition
simple we present our results assuming that the transaction fees are zero.

2.3. Bitcoin-based Timed Commitment

In BCPay, the bitcoin-based timed commitment scheme [2] is used, which is also
adopted by [6, 28]. The commitment scheme is denoted by CS(S, C, d, t, s) and is

6

TxFine(in: TxCommit)

in-script: sigS([TxFine]),

sigC([TxFine]), ⊥

out-script(body, σ):

verC(body, σ)

val: dB

tlock: t

TxCommit(in: T)

in-script: sigS([TxCommit])

out-script(body, σ1, σ2, x):

(verS(body, σ1) ∧H(x) = h) ∨

(verS(body, σ1) ∧ verC(body, σ2))

val: dB

TxOpen(in: TxCommit)

in-script:

sigS([TxOpen]), ⊥, s

out-script(body, σ):

verS(body, σ)

val: dB

dB

dB dB

dB dB

Figure 2: The transactions involved in bitcoin-based timed commitments.

executed between S and C, where the outsourcing service provider S acts as a committer
and the outsourcing service client C acts as a receipt. Concretely, S commits to a secret
s and has to open the commitment before a specific time t to get his/her deposit of
value dB back. Otherwise, the deposit will be given to C. The commitment scheme
consists of three phases: the commitment phase CS.Commit(S, C, d, t, s), the opening
phase CS.Open(S, C, d, t, s) and the punishment phase CS.Fine(S, C, d, t, s). Note that
the punishment phase is performed only if the opening phase is not correctly performed.
Three transactions TxCommit, TxOpen and TxFine, as shown in Figure 2, are involved
in the commitment phase, the opening phase and the punishment phase, respectively.
In Figure 2, the omitted arguments of scripts are denoted by ⊥ and H is a hash
function. Please refer to [2] for more details.

3. System Architecture, Specifications and Adversary Model

In this section, we first present the system architecture and specifications of BCPay.
Then, the adversary model and design goals of BCPay are described in detail.

3.1. System Architecture of BCPay

The system architecture of BCPay is illustrated in Figure 3, and it involves clients
(i.e., users), servers (i.e., outsourcing service providers) and a blockchain. In the rest
of this paper, we use C and S to denote a client and a server, respectively. Suppose
C plans to subscribe to an outsourcing service sv from S. To keep the presentation
compact, we only show the main procedures of BCPay in Figure 3. The procedures
(1), (2), (3.1) and (3.2) are used to implement sv. The procedures (4), (5), (6.1) and
(6.2) are used to check the sv implementation and the checking result is reflected in
the service payment (7) or the service claim (8). In BCPay, a public blockchain is

7

considered, such as the Bitcoin blockchain and the Ethereum blockchain. The entities
C and S are detailed as follows:

(1) Service Subscription

T% T%

Blockchain

Client Server

(3.1) Preliminary Service Confirmation

(6.1) Proof Initiation

(3
.2

)
P

re
li

m
in

ar
y

S
er

vi
ce

 C
on

fi
rm

at
io

n

(2
)

S
er

vi
ce

 E
nf

or
ce

m
en

t

(4) Challenge

(5
)

C
la

im
 C

om
m

it
m

en
t

(6
.2

)
P

ro
of

 I
ni

ti
at

io
n

(7
)

S
er

vi
ce

 P
ay

m
en

t

(8
)

S
er

vi
ce

 C
la

im

Figure 3: The system architecture of BCPay.

• Client C: As a user, C subscribes to an outsourcing service sv from S. After sv is
enforced by S, C can get a preliminary service confirmation from S based on the
blockchain. In order to check the implementation of sv before the payment, C sends
a challenge to S. S first makes a claim commitment to ensure that C will get enough
compensation in the form of deposits if S is malicious. Then, C and S jointly initiate
the service implementation proof by specifying some requirements of sv. If S fails to
provide a valid service proof that the service implementation meets the requirements
before a specific time, C can claim enough deposits by himself from S.

• Server S: As an outsourcing service provider, S aims to earn service fees from C by
enforcing services subscribed by C. Upon receiving the service subscription request
from C, S completes the enforcement of sv based on the blockchain and sends to
C a preliminary confirmation message. Then, S makes the claim commitment after
receiving the challenge from C. Once the joint proof initiation is finished, S provides
a valid service implementation proof to get the service fee from C in the service
payment phase before the specific time.

3.2. Specifications of BCPay

BCPay consists of five phases: the system setup phase, the service implementation
phase, the service checking phase, the service payment phase and the service claim

8

phase. The first four phases are compulsory and the service claim phase is performed
by C only if S is malicious2. The details of the specifications of BCPay are as follows:

3.2.1. System Setup Phase

C and S initialize some parameters such as unredeemed transactions on the blockchain
to be used in the subsequent phases.

3.2.2. Service Implementation Phase

The outsourcing service sv is implemented in this phase. Three procedures, service
subscription, service enforcement and preliminary service confirmation, are sequentially
performed as below.

• Service Subscription: C subscribes to sv from S by sending service-related data to
S.

• Service Enforcement: In this procedure, sv is enforced by S. Upon receiving the
subscription data from C, S enforces sv. Then, S generates a digital signature ac-
cording to the enforcement of sv and stores the signature on the blockchain. Finally,
S sends a confirmation message to C that helps C to obtain the signature from the
blockchain.

• Preliminary Service Confirmation: After obtaining the signature from the blockchain,
C considers that sv has been preliminarily implemented, where “preliminarily” means
that the sv implementation will be checked by C before the payment.

3.2.3. Service Checking Phase

This phase is used by C and S to jointly initiate the service checking. In this
phase, the service requirements are specified. Three sequential sub-phases, challenge
generation phase, claim commitment phase and proof initiation phase, are performed
as below.

• Challenge Generation Phase: In order to check the sv implementation, C sends a
challenge to S besides reaching an agreement beforehand on service-related param-
eters such as the compensation and penalty of S in the case of service failure.

• Claim Commitment Phase: This phase is used by S to make a commitment that
once the sv implementation does not meet the requirements specified in the Proof
Initiation Phase and the malicious S refuses to compensate C in the Service Payment
Phase before a specific time, C is able to claim enough deposits of S by himself/herself
as a penalty in the Service Claim Phase after the specific time.

2Strictly speaking, we mean S fails to provide a valid service implementation proof.

9

• Proof Initiation Phase: This phase is used by C and S to realize the service checking
by temporarily freezing a joint deposit consists of service fee and guaranty respec-
tively from C and S, in which the requirements of sv are agreed upon. After this
phase, honest C can ensure that either a valid sv is achieved in the Service Payment
Phase by paying the service fee or enough deposits are claimed in the Service Claim
Phase no matter how S behaves. On the other hand, honest S can ensure that if the
sv implementation is valid, he/she will earn the service fee no matter how C behaves.

3.2.4. Service Payment Phase

This phase is performed by S to earn the service fee from C by proving that the sv
implementation meets the requirements. Certainly, C can ensure that the service fee is
paid only if the sv implementation is what is expected.

3.2.5. Service Claim Phase

Only if S fails to prove that the sv implementation meets the requirements of C
before a specific time, BCPay comes to the Service Claim Phase. This phase is used
by C to claim enough deposits from S no matter how S behaves.

3.3. Adversary Model and Design Goals of BCPay

In BCPay, both C and S can be malicious and they are of mutual distrust. Con-
cretely, malicious C aims to enjoy the outsourcing service sv provided by S without
paying the service fee while malicious S tries to get the service fee from C without im-
plementing the service sv as specified in the requirements of C. As for the blockchain,
its contents are publicly available and both C and S can verify the authenticity of data
in the blockchain.

In addition, no private channels are required in BCPay. Hence, eavesdropping
attacks and malleability attacks should be taken into consideration. In these attacks,
the adversary aims to undermine the fairness in BCPay.

• Eavesdropping Attacks: The adversary can eavesdrop on the public channel to see
the transactions sent by the honest party, before they appear on the blockchain.

• Malleability Attacks: Based on the eavesdropping, the adversary tries to make some
transactions invalid by modifying their hash values without changing the semantics.

In BCPay, our security goals mainly include soundness and robust fairness as follows3.

• Soundness: If both C and S are honest, then C can obtain the required service
implementation and S can gain the corresponding service fee.

3Because the design of BCPay does not change the underlying blockchains, traditional attacks on
blockchains, such as 51% attacks and Sybil attacks, are not considered in BCPay.

10

• Robust Fairness: The fairness means that it is infeasible for the malicious C to enjoy
the outsourcing service sv provided by S without paying the service fee and it is
infeasible for the malicious S to get the service fee paid by C without providing
a valid sv implementation proof in terms of the requirements of C before a specific
time. Particularly, if malicious S fails to provide such a proof, C is able to get enough
compensation or penalty from S. Robust fairness means that the fairness is resilient
to eavesdropping attacks and malleability attacks, without needing a third-party.

Furthermore, from the standpoint of efficiency, both the number of involved trans-
actions and computation cost should be considered.

• Number of Transactions: The number of transactions involved in BCPay should be
as small as possible.

• Computation Cost: The computation cost of BCPay should be as low as possible
considering resource-constrained users.

4. BCPay: Blockchain-based Fair Payment Framework

In this section, we first present the main idea of BCPay, and then describe the
design details of BCPay together with its security results.

4.1. Challenge and Main Idea

According to the adversary model and design goals in Section 3.3, the main chal-
lenge to design BCPay is Robust Fairness besides efficiency. The basic idea for realizing
Robust Fairness is as follows.

In the service implementation phase, S constructs a Merkle tree based on the data
from C and generates a signature on the root of the tree. The signature is then stored
on the blockchain, which cannot be changed later, and acts as a “root of trust” in the
service checking and payment. The ingredient of ensuring fairness is an all-or-nothing
checking-proof protocol CPAON. The idea of CPAON lies in two aspects:

1. S is able to earn the service fee from C and get his/her guaranty back if and only if
he/she provides a valid service implementation proof, denoted as ServiceProof;

2. If S fails to provide such a proof before a specific time t, C is able to claim from
S either enough compensation together with his/her service fee refund or enough
fines in the form of deposit.

In order to achieve these goals, in BCPay, C and S jointly create a deposit trans-
action TxProofInit, which consists of the service fee from C and the guaranty from S.
In the normal case, TxProofInit can be completely redeemed by S based on his/her
signature and ServiceProof, and hence the Soundness is realized. If S cannot provide
ServiceProof, TxProofInit can be completely redeemed by C based on his/her signature

11

and a secret rS from S. If rS is replaced with the signature of S, BCPay may suffer
from malleability attacks. Because BCPay does not use private channels, ServiceProof
may be eavesdropped by C before honest S gets the service fee. As a result, malicious
C can redeem TxProofInit before honest S, which violates (1) mentioned above. To
overcome this problem, in BCPay, S just makes rS public after redeeming TxProofInit.
Certainly, in this case, malicious S will not publicize rS even if he/she fails to provide
ServiceProof, and hence C cannot redeem TxProofInit to claim compensation, which
violates (2) mentioned above. To tackle this issue, in BCPay, S is required to make a
commitment to rS based on a deposit transaction TxClaimCommitment. The commit-
ment must be opened by S before time t to redeem TxClaimCommitment. Otherwise, C
can redeem TxClaimCommitment himself as a punishment to S after time t. Note that,
the order among the involved transactions and the use of rS make BCPay malleability-
resistant.

In addition, to ensure the efficiency of BCPay, we aim to introduce small and
constant number of transactions in a service implementation checking and proof. In
fact, based on the “root of trust” constructed by S in the service implementation phase,
C is able to specify the service requirements in terms of the authentication path of the
Merkle tree. That is, the service implementation checking can be accomplished in one
round CPAON. Hence, the efficiency of BCPay is assured.

4.2. Design Details of BCPay

As we know, the Bitcoin script is simple, stack-based and purposefully not Turing-
complete. Unlike the Bitcoin protocol, the Ethereum is a programmable blockchain and
it allows users to create their own operations of any complexity they wish [10, 44, 19].
In other words, the Ethereum blockchain is more flexible than the Bitcoin blockchain.
However, in order to achieve easy understanding and keep the exposition simple, we
present BCPay following the style of Bitcoin transactions in the same way as [2, 1, 6, 28].
Now, we present the details of BCPay.

4.2.1. System Setup Phase

Let H be a cryptographic hash function, such as SHA-256. A secure symmetric
encryption algorithm should be chosen for specific services if necessary, such as the
PDP service. For simple exposition, we assume C and S choose their own ECDSA
public-secret key pairs, denoted by (pkC , skC) and (pkS, skS), respectively. S prepares
an unredeemed transaction TxSsig of value dsig B, which can be redeemed with skS.

4.2.2. Service Implementation Phase

In order to realize the outsourcing service sv, the following three procedures are
performed.

• Service Subscription: C preprocesses service-related local data data0 and sends the
result data1 to S for subscribing to sv. Note that the preprocessing is specified by

12

I0,1 I0,2 I0,3 I0,4 I0,5 I0,6 I0,7 I0,8

I1,1 I1,3 I1,5 I1,7

I2,1 I2,5

D1 D2 D3 D4 D5 D6 D7 D8

I3,1 = Iroot

challenge blocks siblings

Figure 4: The example of T3.

concrete outsourcing services. For example, PDP involves encryption and hashing.
Without loss of generality, suppose data1 consists of n = 2ℓ data blocks and data1 =
{D1, D2, · · · , D2ℓ}.

• Service Enforcement: Upon receiving the subscription data data1 from C, S first
enforces sv based on data1. In order to prove the sv implementation to C and earn
the service fee in the subsequent phases, a Merkle tree Tℓ is built by S after the
service enforcement, where ℓ denotes the height of the tree and the leaf nodes have
a height of 0. In Tℓ, each interior node has a hash value. For 1 ≤ i ≤ ℓ , the j-th
node of height i has a value

Ii,j = H(Ii−1,j ∥ Ii−1,j+2i−1),

where Ii−1,j and Ii−1,j+2i−1 represent the hash values of the left child and the right
child of Ii,j, respectively. Furthermore, if i = ℓ, Ii,j = Iℓ,1 is the root node, which
is also denoted by Iroot. If 1 ≤ i < ℓ and Ii,j is a left child, then its right sibling
is Ii,j+2i . Otherwise, Ii,j is a right child and its left sibling is Ii,j−2i . If i = 0,
Ii,j = I0,j represents the j-th leaf and I0,j = Dj. As an example, T3 is shown
in Figure 4. Subsequently, S computes a signature σroot = sigS(Iroot), and stores
σroot on the blockchain by broadcasting a service signature transaction TxServiceSig
shown in Figure 5. Here, σroot is publicly output by TxServiceSig based on the opcode
OP RETURN of Bitcoin transactions.4 Finally, S sends the transaction ID to C.

• Preliminary Service Confirmation: Upon receiving the transaction ID from S, C
first locates TxServiceSig on the blockchain and gets σroot from OP RETURN. Then,
C computes Iroot based on data1. If vecS(Iroot, σroot) = true, C thinks sv has been
preliminarily implemented. According to context of the concrete service under con-
sideration, C could immediately delete data1 or store data1 till a successful service

4In the Ethereum blockchain, each transaction has a data field data, which can also be used to
store σroot on the blockchain.

13

TxServiceSig(in: TxSsig)

in-script: sigS([TxServiceSig])

out-script(body, σ): verS(body, σ)

val: dsig B

dsig B

σroot

Figure 5: The service signature transaction TxServiceSig.

checking proof. In any case, C should store ℓ as metadata, which will be used to
specify the service requirements.

4.2.3. Service Checking Phase

In this phase, C and S jointly initiate the service checking based on three sequential
sub-phases: the Challenge Generation Phase, the Claim Commitment Phase and the
Proof Initiation Phase. Suppose there is an unredeemed transaction TxS0 of value d0 B,
which can be redeemed by S and is used as the penalty of S in the case of service
failure.

• Challenge Generation Phase: To check the sv implementation, C sends a challenge
chaldata to S, which specifies the data blocks to be challenged in Tℓ. Suppose

chaldata = (k1, k2, · · · , kc),

which sequentially specifies data blocks {Dkj}1≤j≤c. For each k ∈ chaldata, denote
by pathk the path from the leaf node I0,k to the root Iroot of Tℓ, and by AuthenPathk
the authentication path of I0,k. To be specific, AuthenPathk consists of I0,k and the
sibling nodes corresponding to I0,k and the interior nodes on pathk. Define

AuthenPath =
∪

k∈chaldata
AuthenPathk −

∪
k∈chaldata

(pathk − I0,k).

Denote by chal the ordered version of AuthenPath such that a node with a smaller first
index and a smaller second index is placed in the front. Formally, given Ii1,j1 , Ii2,j2 ∈
chal, Ii1,j1 is in front of Ii2,j2 if i1 < i2 or (i1 = i2 ∧ j1 < j2). In addition, denote
the challenge index set by ChalIndex = {(i, j)}Ii,j∈chal. For example, in Figure 4,
chaldata = (1, 6), and

path1 = {I0,1, I1,1, I2,1, I3,1},
path6 = {I0,6, I1,5, I2,5, I3,1},

AuthenPath1 = {I0,1, I0,2, I1,3, I2,5},
AuthenPath6 = {I0,6, I0,5, I1,7, I2,1},

chal = {I0,1, I0,2, I0,5, I0,6, I1,3, I1,7},
ChalIndex = {(0, 1), (0, 2), (0, 5), (0, 6), (1, 3), (1, 7)}.

14

TxClaimCommitment(in: TxS
0
)

in-script: sigS([TxClaimCommitment])

out-script(body, σ1, σ2, x):

(verS(body, σ1) ∧H(x) = hS) ∨

(verS(body, σ1) ∧ verC(body, σ2))

val: d0 B

d0 B

d0 B

Figure 6: The claim commitment transaction TxClaimCommitment.

Note that ChalIndex can be computed by C based on the metadata ℓ without knowing
chal. Furthermore, suppose there are unredeemed transactions TxS1 of value dC1 B and
TxS1 of value dS1 B, which can be redeemed by C and S, respectively. In order to force
S to compensate C before a specific time once sv fails, let d0 ≥ dC1 + dS1 . Here, dC1 B
and dS1 B denote the service fee of C and the compensation of S in the case of service
failure, respectively.

• Claim Commitment Phase: Upon receiving chaldata, S performs CS.Commit(S, C, d0, t, rS),
where t is a specific time and rS ∈R {0, 1}∗. Specifically, S posts a deposit trans-
action TxClaimCommitment of value d0 B on the blockchain, which makes a commit-
ment that once the sv implementation does not meet the requirements specified in
the Proof Initiation Phase and malicious S refuses5 to compensate C in the Service
Payment Phase before time t, C is able to claim d0 B of S by himself/herself as a
penalty in the Service Claim Phase after time t. After TxClaimCommitment is in-
cluded on the blockchain, S creates the body of the punishment transaction TxFine,
which will be used by C to claim the penalty, signs it and sends the signed body
sigS([TxFine]) to C. The details of TxClaimCommitment are shown in Figure 6, where
hS = H(rS). TxOpen and TxFine will be detailed in the Service Payment Phase and
the Service Claim Phase, respectively. Certainly, if the sv implementation is valid,
S will eventually get his/her deposit back no matter how C behaves.

• Proof Initiation Phase: If TxClaimCommitment is included on the blockchain with
enough confirmations and the signature sigS([TxFine]) is received, C initiates the
service proof request based on ChalIndex and σroot, which can be obtained from
the blockchain. Generally speaking, C chooses a single variable x and a variable
set chal0 = {xi,j}(i,j)∈ChalIndex, which can be chosen by S based on chaldata and Tℓ.
Also, C and S jointly make a deposit transaction TxProofInit, which specifies the
requirements of sv implementation and is finally posted on the blockchain by S.
The idea of joint deposit has been used in [2, 1]. The joint deposit in TxProofInit
consists of the service fee dC1 B from C and the guaranty dS1 B from S, where the
guaranty is used as the compensation in the Service Claim Phase. Please find the

5Refusing to compensate means that S does not redeem TxClaimCommitment based on the opening
transaction TxOpen before time t, that is, rS is not revealed by S before time t.

15

TxRefund(in: TxProofInit(1))

in-script: sigC([TxRefund]), rS , ⊥

out-script(body, σ): verC(body, σ)

val: dC
1
B

int-script1: sigC([TxProofInit])

out-script1(body, σ, x, chal0):

(verC(body, σ) ∧H(x) = hS) ∨ (verS(body, σ) ∧ check(chal0, σroot))

val: dC
1
B

int-script2: sigS([TxProofInit])

out-script2(body, σ, x, chal0):

(verS(body, σ) ∧ check(chal0, σroot)) ∨ (verC(body, σ) ∧H(x) = hS)

val: dS
1
B

TxGuaranty(in: TxProofInit(2))

in-script: sigS([TxGuaranty]), ⊥, ServiceProof

out-script(body, σ): verS(body, σ)

val: dS
1
B

TxProofInit(in: TxC
1
, TxS

1
)

TxServiceFee(in: TxProofInit(1))

in-script: sigS([TxServiceFee]), ⊥, ServiceProof

out-script(body, σ): verS(body, σ)

val: dC
1
B

TxCompensation(in: TxProofInit(2))

in-script: sigC([TxCompensation]), rS , ⊥

out-script(body, σ): verC(body, σ)

val: dS
1
B

d
C

1 B d
S

1 B

d
C

1 B d
S

1 B

d
S

1 Bd
C

1 B

d
C

1 B d
S

1 B

d
C

1 B d
S

1 B

Figure 7: The transactions involved in the service implementation checking and proof of BCPay

details of TxProofInit in Figure 7, in which check(chal0, σroot)
∆
=vecS(I∗root, σroot) and

I∗root is computed based on chal0 in the same way as Iroot is computed based on
chal according to the construction of Tℓ. Obviously, hashing and ECDSA signature
verification are involved in the output script. More details of the service proof are
given based on a checking-proof protocol CPAON performed by C and S, which is
described in Figure 8 and additionally involves the Service Payment Phase and the
Service Claim Phase. We call CPAON an all-or-nothing protocol in the sense that
either the service fee and the guaranty are redeemed by S at the same time or more
deposit of S will be paid to C.

4.2.4. Service Payment Phase

In this phase, if S can provide a valid proof ServiceProof before the specific time
t − 2 maxB to prove that the sv implementation meets the requirements, S can earn
the service fee dC1 B of C and get his/her guaranty dS1 B back by redeeming TxProofInit
based on TxServiceFee and TxGuaranty, respectively. The transactions TxServiceFee and
TxGuaranty are shown in Figure 7. Furthermore, S performs CS.Open(S, C, d0, t, rS),
in which S opens the claim commitment made in the Claim Commitment Phase by
posting the opening transaction TxOpen on the blockchain before time t. The details
of TxOpen are shown in Figure 9. Note that TxOpen redeems TxClaimCommitment and
hence S can get his/her commitment deposit back. Finally, S quits.

4.2.5. Service Claim Phase

Suppose S fails to provide a valid service implementation proof ServiceProof in the
Service Payment Phase before time t − 2 maxB, BCPay comes to the Service Claim

16

CPAON(C,S, {TxC
1
, dC

1
}, {TxS

1
, dS

1
}, σroot, hS) :

C and S do the following:

(1) Both C and S compute the body of the transaction TxProofInit using TxC
1

and TxS
1

as inputs.

(2) C signs the transaction TxProofInit and sends the signature sigC([TxProofInit]) to S. According to the definition of check, C does
not need to know Iroot.

(3) If S does not receive sigC([TxProofInit]) before time t−4maxB , where maxB is the maximal delay between broadcasting a transaction
and including it on the blockchain, then S redeems TxS

1
and quits. Otherwise, S signs TxProofInit and broadcasts it.

(4) C waits until TxProofInit is included on the blockchain. If TxProofInit is not included on the blockchain before time t − 3maxB , C
immediately redeems TxC

1
and quits.

(5) S provides the service proof ServiceProof, and broadcasts TxServiceFee and TxGuaranty to earn the service fee dC
1
B and get back

the guaranty dS
1
B, respectively.

(6) If ServiceProof cannot pass check before time t− 2maxB , C performs the Service Claim Phase.

(7) Otherwise, ServiceProof passes check before time t − 2maxB , and hence C obtains a valid outsourcing service from S. C quits and
S opens his/her commitment.

Figure 8: The all-or-nothing checking-proof protocol CPAON.

TxOpen(in: TxClaimCommitment)

in-script: sigS([TxOpen]), ⊥, rS

out-script(body, σ): verS(body, σ)

val: d0 B

d0 B

d0 B

Figure 9: The opening transaction TxOpen.

Phase. In this phase, C is able to get enough deposit from S no matter how S behaves.
Two cases should be taken into account.

• Case 1. S refuses to pay the compensation dS1 B to C, that is, S does not open the
claim commitment made in the Claim Commitment Phase and TxOpen is not includ-
ed on the blockchain before time t. In this case, C performs CS.Fine(S, C, d0, t, rS),
in which C gets the penalty d0 B by posting the punishment transaction TxFine on
the blockchain, and then quits. The detail of TxFine is given in Figure 10.

• Case 2. S refuses to pay the penalty d0 B to C, that is, S opens the claim commit-
ment by posting the opening transaction TxOpen on the blockchain before time t.
In this case, C gets both the refund dC1 B and the compensation dS1 B by immediately
posting the refund transaction TxRefund and the compensation transaction TxCom-
pensation on the blockchain, respectively. Then C quits. The details of TxRefund
and TxCompensation are given in Figure 7.

TxFine(in: TxClaimCommitment)

in-script: sigS([TxFine]), sigC([TxFine]), ⊥

out-script(body, σ): verC(body, σ)

val: d0 B

tlock: t

d0 B

d0 B

Figure 10: The punishment transaction TxFine.

17

4.3. Security Analysis

In this section, we present the results of security analysis of BCPay in Theorem 1
and Theorem 2. As mentioned before, eavesdropping attacks and malleability attacks
are considered and no third-party is involved in BCPay.

Theorem 1. Based on the collision-resistance of the adopted hash function H and the
unforgeability of ECDSA, BCPay satisfies the property of soundness.

Proof. Suppose both C and S are honest and they follow the procedures of BCPay.
We show that even outside adversaries make eavesdropping attacks and malleability
attacks, C and S will always obtain the required service implementation and the cor-
responding service fee at the end, respectively. As a matter of fact, in the service
enforcement procedure of the service implementation phase, S computes a signature
σroot which is stored on the blockchain by broadcasting the service signature trans-
action TxServiceSig. After a challenge is generated by C in the challenge generation
phase, S makes a commitment based on CS.Commit. Subsequently, C and S perform
the all-or-nothing checking-proof protocol CPAON, in which only the proof initiation
phase and the service payment phase are involved if both parties are honest. In the
proof initiation phase, after C initiates the service proof based on σroot, C and S make
a joint deposit transaction TxProofInit, which is finally posted on the blockchain by S.
In the service payment phase, S provides a service implementation proof ServiceProof
to earn the service fee from C and get his/her current guaranty back by redeeming
TxProofInit based on TxServiceFee and TxGuaranty, respectively. According to the def-
initions of check and ServiceProof in Section 4.2, if a ServiceProof, which is deduced by
outside adversaries based on eavesdropping attacks and malleability attacks, can pass
check, then either a hash collision is found or ECDSA is forgeable. In other words,
if the adopted hash function is collision-resistant and ECDSA is unforgeable, it is en-
sured that check has the value true only if ServiceProof meets the service requirements
specified in the proof initiation phase. Therefore, if C and S are honest and follow the
procedures of BCPay, they will always obtain the required service implementation and
the corresponding service fee, respectively.

Theorem 2. BCPay satisfies the property of robust fairness without needing a third-
party if the adopted hash function H is collision-resistant and ECDSA is unforgeable.

Proof. As mentioned in Section 3.3, no private channels are required in BCPay. So,
eavesdropping attacks and malleability attacks may be made by a malicious party to
undermine the fairness for the honest party. In the following, we first prove the robust
fairness for C against malicious S, and then consider the robust fairness for S in the
case of malicious C.

Case 1. Suppose C is honest and S is malicious. In this case, S aims to get the
service fee from C without providing a valid service implementation proof in terms
of the requirements specified by C before time t − 2 maxB. At the same time, S is

18

reluctant to pay compensation and penalty to C. Assume that C does not get a valid
service implementation proof from S in terms of his/her requirements before time t,
which means the service implementation proof ServiceProof is invalid. Hence, the joint
deposit transaction TxProofInit cannot be redeemed by S based on TxServiceFee and
TxGuaranty before time t − 2 maxB in the service payment phase. According to the
definitions of check and ServiceProof in Section 4.2, we know S cannot get the service
fee dC1 B from C unless S is able to forge an ECDSA signature or find a collision of
the hash function H. Furthermore, S may make malleability attacks by eavesdropping
transactions on the public channel. However, the attacks are meaningless because the
transactions involved in BCPay are posted on the blockchain in order and C is still able
to claim enough compensation or penalty from S. Please refer to Figure 7 and Figure
8 for more details.

Specifically, if S refuses to pay the compensation dS1 B to C, which means S does
not open the claim commitment made in the claim commitment phase by broadcasting
TxOpen based on CS.Open before time t, C performs CS.Fine, in which C gets the penalty
d0 B with d0 ≥ dC1 +dS1 by posting the punishment transaction TxFine on the blockchain.
If S refuses to pay the penalty to C, which means S opens the claim commitment by
performing CS.Open to post TxOpen on the blockchain before time t, C can claim both
the refund dC1 B and the compensation dS1 B by posting TxRefund and TxCompensation
on the blockchain, respectively. Accordingly, in any case, if malicious S fails to provide
a valid service implementation proof, C is able to claim enough compensation besides
the service fee refund or penalty from S no matter how S behaves.

Generally speaking, the robust fairness for C is ensured in BCPay without needing
a third-party if the hash function H is collision-resistant and ECDSA is unforgeable.

Case 2. Suppose S is honest and C is malicious. In this case, C aims to obtain a valid
service implementation proof in terms of his/her requirements before time t− 2 maxB

without paying the corresponding service fee to S. Assume that S provides a valid
service implementation proof in terms of the requirements of C before time t. It follows
that the service implementation proof ServiceProof is valid. According to the details
of BCPay, C only puts service fees in the generation of the joint deposit transaction
TxProofInit, which can be successfully redeemed by S in the service payment phase
based on TxServiceFee and TxGuaranty before time t − 2 maxB only if ServiceProof is
valid. In fact, malicious C may try to eavesdrop TxServiceFee and TxGuaranty on the
public channel to get the service proof ServiceProof together with sigS([TxServiceFee])
and sigS([TxGuaranty]), respectively. After that, C mauls the joint deposit transaction
TxProofInit to prevent S from earning the corresponding service fee. As we know,
however, the service payment phase is behind the proof initiation phase in BCPay,
hence this malleability attack is meaningless.

On the other hand, malicious C may try to claim compensation or penalty from S
after ensuring that the service proof is valid in terms of his/her requirements. Obvi-
ously, it is infeasible for C to claim compensation from S because TxGuaranty has been
posted on the blockchain. In particular, C cannot redeem TxProofInit before S unless

19

he/she finds a collision of H or forges an ECDSA signature. According to the service
payment phase of BCPay, CS.Open is immediately performed by S to open the claim
commitment and hence to get the punishment deposit back before time t. From the
property of transaction lock-time, it follows that C cannot get a penalty from S even
if malleability attacks are made.

Therefore, the robust fairness for S is ensured in BCPay without needing a third-
party if H is collision-resistant and ECDSA is unforgeable.

5. Performance Evaluation

In this section, we evaluate the performance of our proposed BCPay in terms of the
number of involved transactions and computation cost.

5.1. Number of Transactions

As for BCPay, in the Service Implementation Phase, only one transaction TxSer-
viceSig is required. In the Service Checking Phase, transactions TxClaimCommitment
and TxProofInit are involved. In the Service Payment Phase, transactions TxOpen,
TxServiceFee and TxGuaranty are needed. In the Service Claim Phase, either the trans-
action TxFine or transactions TxRefund and TxCompensation are created. Note that
TxServiceFee and TxGuaranty can be replaced with one transaction because they only
need signatures of the server. Similarly, TxRefund and TxCompensation can also be
combined into one transaction. Accordingly, as shown in Figure 11, the number of
involved transactions is small and constant and it is affected neither by the height of
the data tree nor by the number of challenge data blocks.

5.2. Computation Cost

In BCPay, the most common operations are hashing and ECDSA signature oper-
ations. Considering that the computation cost of a hashing is far less than that of
an ECDSA signature, we take ECDSA signature into account in the following. In
our experiments, we evaluate the computation time of the ECDSA signature used in
transactions on a virtual machine (3.6 GHz single-core processor and 6 GB DDR3-1600
RAM memory) based on Ubuntu 16.04 LTS and OpenSSL 1.0.2g. In particular, a spe-
cific elliptic curve called secp256k1 with the equation y2 = x3 + 7 is adopted, which
is used by Bitcoin and can also be used in Ethereum. Additionally, in the following
figures, we display the computation time with data trees of height 7, 10, 13, and 16,
respectively. In any case, the number of challenge data blocks can reach 100 (< 27).

BCPay is very efficient because the computation cost is not related to the height of
the data tree and the number of challenge data blocks. If the server is honest, the client
only participates in creating the transaction TxProofInit in the Service Checking Phase,
and hence only one ECDSA signature is needed. The computation time of the client
is presented in Figure 12(a). On the other hand, if the server is malicious, the client
only computes one ECDSA signature in the Service Claim Phase. The corresponding

20

20
40

60
80

100

1
2

4

6

8

1

0

0.5

1

1.5

2

2.5

3

3.5

4

T
he

 N
um

be
r

of
 T

ra
ns

ac
tio

ns

The Number of Challenge Blocks

The Height of the Data Tree

Service Checking (or Service Payment)
Service Claim (or Service Implementation)

Figure 11: The number of transactions in BCPay.

claim time for the client is presented in Figure 12(b). In BCPay, the server creates
TxServiceSig, TxClaimCommitment, TxOpen, TxProofInit, TxServiceFee and TxGuaranty.
Note that, even if TxServiceFee and TxGuaranty are combined, the number of ECDSA
signatures is not reduced. In addition, the creation of TxFine also needs a signature
of the server. Therefore, the server has to perform 7 ECDSA signature operations in
BCPay. Computation time of the server is presented in Figure 12(c).

6. Decentralized Applications of BCPay

BCPay is a blockchain-based fair payment framework. In this section, we show how
to realize two important decentralized applications based on BCPay.

6.1. Blockchain-based PDP

In the case of sv= PDP, according to the details of BCPay, we only need to display
the Service Implementation Phase, which is implemented based on the following three
procedures.

• Service Subscription: Let data0 = {F1, F2, · · · , F2ℓ} be the plaintext data collection.
C encrypts data0 based on a symmetric encryption algorithm and sends the resulting
ciphertext data collection data1 to S for subscribing the PDP service. Suppose
data1 = {D1, D2, · · · , D2ℓ} in which Dk is the ciphertext of Fk for 1 ≤ k ≤ 2ℓ.

21

10 20 30 40 50 60 70 80 90 1001
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Number of Challenge Blocks

T
he

 C
om

pu
ta

tio
n

T
im

e
of

 C
lie

nt
 (

m
s)

Height of 7
Height of 10
Height of 13
Height of 16

(a) Computation time of the client with an honest

server

10 20 30 40 50 60 70 80 90 1001
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Number of Challenge Blocks

T
he

 C
om

pu
ta

tio
n

T
im

e
of

 C
lie

nt
 (

m
s)

Height of 7
Height of 10
Height of 13
Height of 16

(b) Claim time of the client with a malicious server

10 20 30 40 50 60 70 80 90 1001
0

1

2

3

4

5

6

7

8

9

10

The Number of Challenge Blocks

T
he

 C
om

pu
ta

tio
n

T
im

e
of

 S
er

ve
r

(m
s)

Height of 7
Height of 10
Height of 13
Height of 16

(c) Computation time of the server

Figure 12: Computation time in BCPay

22

• Service Enforcement: Upon receiving the subscription data data1 from C, S con-
structs a Merkle tree Tℓ. Subsequently, S computes σroot = sigS(hr), and stores σroot

on the blockchain by broadcasting TxServiceSig as shown in Figure 5. Finally, S
sends the transaction ID to C.

• Preliminary Service Confirmation: Upon receiving ID from S, C first locates TxSer-
viceSig on the blockchain and gets σroot. Then, C computes hr based on data1. If
vecS(hr, σroot) evaluates to true, C stores the height ℓ of the Merke tree. Based on
his/her practical outsourcing strategies, such as redundant outsourcing, C immedi-
ately deletes data1 or stores data1 until a successful service checking proof.

Note that a challenge-response mechanism is needed in the traditional PDP. In
blockchain-based PDP, C can challenge S based on the Service Checking Phase of
BCPay for data integrity. S can response to C based on the Service Payment Phase.
To further support data dynamics, the user only needs to store the structure of the
Merkle tree as metadata in Preliminary Service Confirmation.

6.2. BCOC: Blockchain-based Outsourcing Computation

In this section, we show the application of BCPay in outsourcing computation,
and propose a blockchain-based outsourcing computation scheme, denoted as BCOC.
BCOC can be used in fog computing, where a fog user with limited resources wants to
outsource distributed computation tasks to the fog node. For consistency, we use C and
S to represent the fog user and the fog node, respectively. Based on the definition in
[26], a distributed computation involves a function, a screener and a payment scheme.
However, a trusted third-party is introduced in [26]. In BCOC, we realize both the
screener and the payment based on blockchain and no third-party is required. Formally,
let f be a one-way function from X to Y , denoted as f : X 7→ Y . Suppose y∗ = f(x)
for x ∈ X. Note that multiple such x may exist. Given f and y∗ only, the objective
of the computation is to discover all such x by exhaustive search of the domain X.
According to the design details of BCPay, we show the outsourcing of inverting a hash
function. Based on the original procedures of BCPay, C and S further perform the
following.

• System Setup Phase: C specifies a task task = (f,X, y∗), where X = {x1, x2, · · · , xN}.

• Service Implementation Phase:

– Service Subscription: C sends task to S.

– Service Enforcement: For 1 ≤ i ≤ N , S computes yi = f(xi). Without loss of
generality, suppose

{x ∈ X|f(x) = y∗} = {x1, x2, · · · , x2ℓ}
∆
=X∗,

where ℓ ≤ logN . S constructs a Merkle tree based on X∗ as before and sends ℓ
to C.

23

– Preliminary Service Confirmation: C stores ℓ.

• Service Checking Phase:

– Challenge Generation Phase: As before.

– Claim Commitment Phase: As before.

– Proof Initiation Phase: C and S jointly create TxProofInit based on check and y∗

by putting H(x′
k) = y∗ for k ∈ chaldata in the output script, where the value of x′

k

is from xk provided by S in the Service Payment Phase. That is, the service proof
provided by S in the Service Payment Phase should satisfy the basic correctness
requirement besides check.

• Service Payment Phase: S provides {xk}k∈chaldata besides ServiceProof.

• Service Claim Phase: As before.

7. Conclusion

In this paper, we introduced BCPay, a blockchain based fair payment framework
for outsourcing services in cloud computing. Specifically, we presented the system
architecture, specifications and adversary model, and described the design details of
BCPay. Our security analysis indicated that BCPay enjoys Soundness and Robust
Fairness. Our performance analysis showed that BCPay is very efficient in terms of
the number of involved transactions and computation cost. To illustrate the applica-
tions of BCPay, we presented a blockchain-based PDP scheme and a blockchain-based
outsourcing computation protocol based on BCPay.

Acknowledgment

We are grateful to the editors and reviewers for their invaluable suggestions. This
research is supported by the National Key R&D Program of China (2017YFB0802000),
the AXA Research Fund, the National Natural Science Foundation of China (Nos.
61772418, 61472472, 61402366), the Natural Science Basic Research Plan in Shaanxi
Province of China (No. 2015JQ6236). Yinghui Zhang is supported by New Star Team
of Xi’an University of Posts and Telecommunications (No. 2016-02).

References

[1] Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L., 2014. Fair two-
party computations via bitcoin deposits. In: International Conference on Financial
Cryptography and Data Security (FC). Springer, pp. 105–121.

24

[2] Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L., 2014. Secure
multiparty computations on bitcoin. In: IEEE Symposium on Security and Privacy
(SP). IEEE, pp. 443–458.

[3] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M., 2010. A view of cloud
computing. Commun. ACM 53 (4), 50–58.

[4] Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D., 2007. Provable data possession at untrusted stores. In: Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS). ACM, pp.
598–609.

[5] Ateniese, G., Di Pietro, R., Mancini, L. V., Tsudik, G., 2008. Scalable and efficient
provable data possession. In: Proceedings of the 4th International Conference on
Security and Privacy in Communication Netowrks (SecureComm). ACM, pp. 1–10.

[6] Ateniese, G., Goodrich, M. T., Lekakis, V., Papamanthou, C., Paraskevas, E.,
Tamassia, R., 2017. Accountable storage. In: International Conference on Applied
Cryptography and Network Security (ACNS). Springer, pp. 623–644.

[7] Ateniese, G., Kamara, S., Katz, J., 2009. Proofs of storage from homomorphic
identification protocols. In: International Conference on the Theory and Applica-
tion of Cryptology and Information Security (ASIACRYPT). Springer, pp. 319–
333.

[8] Bentov, I., Kumaresan, R., 2014. How to use bitcoin to design fair protocols. In:
International Cryptology Conference (CRYPTO). Springer, pp. 421–439.

[9] Bonomi, F., Milito, R., Zhu, J., Addepalli, S., 2012. Fog computing and its role in
the internet of things. In: Proceedings of the first edition of the MCC workshop
on Mobile cloud computing. ACM, pp. 13–16.

[10] Buterin, V., 2014. A next-generation smart contract and decentralized application
platform. White paper, 1–36.

[11] Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L., 2017. Zero-knowledge
contingent payments revisited: Attacks and payments for services. In: Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM, pp. 229–243.

[12] Carbunar, B., Tripunitara, M. V., 2012. Payments for outsourced computations.
IEEE Transactions on Parallel and Distributed Systems 23 (2), 313–320.

25

[13] Chen, X., Li, J., Huang, X., Ma, J., Lou, W., 2015. New publicly verifiable
databases with efficient updates. IEEE Transactions on Dependable and Secure
Computing 12 (5), 546–556.

[14] Chen, X., Li, J., Ma, J., Lou, W., Wong, D. S., 2014. New and efficient conditional
e-payment systems with transferability. Future Generation Computer Systems 37,
252–258.

[15] Chen, X., Li, J., Ma, J., Tang, Q., Lou, W., 2014. New algorithms for secure
outsourcing of modular exponentiations. IEEE Transactions on Parallel and Dis-
tributed Systems 25 (9), 2386–2396.

[16] Chen, X., Li, J., Susilo, W., 2012. Efficient fair conditional payments for outsourc-
ing computations. IEEE Transactions on Information Forensics and Security 7 (6),
1687–1694.

[17] Chen, X., Li, J., Weng, J., Ma, J., Lou, W., 2016. Verifiable computation over large
database with incremental updates. IEEE transactions on Computers 65 (10),
3184–3195.

[18] Chen, X., Zhang, F., Susilo, W., Tian, H., Li, J., Kim, K., 2014. Identity-based
chameleon hashing and signatures without key exposure. Information Sciences 265,
198–210.

[19] Community, E., 2016. Ethereum homestead documentation. Online document.
URL http://ethdocs.org/en/latest/index.html

[20] Developers, G., 2017. Google cloud platform. Online document. URL https://

cloud.google.com/free/docs/frequently-asked-questions

[21] Dong, C., Wang, Y., Aldweesh, A., McCorry, P., van Moorsel, A., 2017. Betrayal,
distrust, and rationality: Smart counter-collusion contracts for verifiable cloud
computing. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, pp. 211–227.

[22] Du, W., Jia, J., Mangal, M., Murugesan, M., 2004. Uncheatable grid computing.
In: Proceedings of the 24th International Conference on Distributed Computing
Systems (ICDCS). IEEE Computer Society, pp. 4–11.

[23] Feige, U., Shamir, A., 1990. Witness indistinguishable and witness hiding proto-
cols. In: Proceedings of the twenty-second annual ACM symposium on Theory of
computing. ACM, pp. 416–426.

[24] Gao, C., Cheng, Q., He, P., Susilo, W., Li, J., 2018. Privacy-preserving naive
bayes classifiers secure against the substitution-then-comparison attack. Informa-
tion Sciences 444, 72–88.

26

http://ethdocs.org/en/latest/index.html
https://cloud.google.com/free/docs/frequently-asked-questions
https://cloud.google.com/free/docs/frequently-asked-questions

[25] Gennaro, R., Gentry, C., Parno, B., 2010. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In: Annual Cryptology Confer-
ence (CRYPTO). Springer, pp. 465–482.

[26] Golle, P., Mironov, I., 2001. Uncheatable distributed computations. In: Cryptog-
raphers’ Track at the RSA Conference (CT-RSA). Springer, pp. 425–440.

[27] Hardson, K., 2017. Monitoring at dropbox. Online document. URL https:

//www.usenix.org/conference/srecon17asia/program/presentation/

hardson-hurley

[28] Huang, H., Chen, X., Wu, Q., Huang, X., Shen, J., 2018. Bitcoin-based fair pay-
ments for outsourcing computations of fog devices. Future Generation Computer
Systems 78, 850–858.

[29] Huang, Z., Liu, S., Mao, X., Chen, K., Li, J., 2017. Insight of the protection for
data security under selective opening attacks. Information Sciences 412, 223–241.

[30] Juels, A., Kaliski Jr, B. S., 2007. Pors: Proofs of retrievability for large files.
In: Proceedings of the 14th ACM Conference on Computer and Communications
Security (CCS). ACM, pp. 584–597.

[31] Khalil, R., Gervais, A., 2017. Revive: Rebalancing off-blockchain payment net-
works. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, pp. 439–453.

[32] Li, B., Huang, Y., Liu, Z., Li, J., Tian, Z., Yiu, S.-M., 2018. Hybridoram: practical
oblivious cloud storage with constant bandwidth. Information Sciences. Online
publication. URL doi.org/10.1016/j.ins.2018.02.019

[33] Li, J., Huang, X., Li, J., Chen, X., Xiang, Y., 2014. Securely outsourcing attribute-
based encryption with checkability. IEEE Transactions on Parallel and Distributed
Systems 25 (8), 2201–2210.

[34] Li, J., Zhang, Y., Chen, X., Xiang, Y., 2018. Secure attribute-based data sharing
for resource-limited users in cloud computing. Computers & Security 72, 1–12.

[35] Li, T., Li, J., Liu, Z., Li, P., Jia, C., 2018. Differentially private naive bayes
learning over multiple data sources. Information Sciences 444, 89–104.

[36] Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M., Ravi, S., 2017. Concur-
rency and privacy with payment-channel networks. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security (CCS).
ACM, pp. 455–471.

27

https://www.usenix.org/conference/srecon17asia/program/presentation/hardson-hurley
https://www.usenix.org/conference/srecon17asia/program/presentation/hardson-hurley
https://www.usenix.org/conference/srecon17asia/program/presentation/hardson-hurley
doi.org/10.1016/j.ins.2018.02.019

[37] Meng, W., Tischhauser, E., Wang, Q., Wang, Y., Han, J., 2018. When intrusion
detection meets blockchain technology: a review. IEEE Access 6, 10179–10188.

[38] Merriam, P., 2015. Ethereum alarm clock. Online document. URL http://docs.

ethereum-alarm-clock.com/en/latest/

[39] Nakamoto, S., 2008. Bitcoin: A peer-to-peer electronic cash system, 1–9. Online
document. URL http://bitcoin.org/bitcoin.pdf

[40] Lin, Q., Yan, H., Huang, Z., Chen, W., Shen, J., Tang, Y., 2018. An id-based
linearly homomorphic signature scheme and its application in blockchain. IEEE
Access 6, 20632–20640.

[41] Shen, J., Gui, Z., Ji, S., Shen, J., Tan, H., Tang, Y., 2018. Cloud-aided lightweight
certificateless authentication protocol with anonymity for wireless body area net-
works. Journal of Network and Computer Applications 106, 117–123.

[42] Song, W., Wang, B., Wang, Q., Shi, C., Lou, W., Peng, Z., 2017. Publicly verifiable
computation of polynomials over outsourced data with multiple sources. IEEE
Transactions on Information Forensics and Security 12 (10), 2334 – 2347.

[43] Wang, Q., Wang, C., Ren, K., Lou, W., Li, J., 2011. Enabling public auditability
and data dynamics for storage security in cloud computing. IEEE transactions on
parallel and distributed systems 22 (5), 847–859.

[44] Wood, G., 2014. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151, 1–32. Online document. URL http://www.

cryptopapers.net/papers/ethereum-yellowpaper.pdf

[45] Xu, J., Wei, L., Zhang, Y., Wang, A., Zhou, F., Gao, C.-z., 2018. Dynamic fully
homomorphic encryption-based merkle tree for lightweight streaming authenticat-
ed data structures. Journal of Network and Computer Applications 107, 113–124.

[46] Yan, H., Li, J., Han, J., Zhang, Y., 2017. A novel efficient remote data possession
checking protocol in cloud storage. IEEE Transactions on Information Forensics
and Security 12 (1), 78–88.

[47] Zhang, X., Tan, Y.-A., Liang, C., Li, Y., Li, J., 2018. A covert channel over volte
via adjusting silence periods. IEEE Access 6 (1), 9292–9302.

[48] Zhang, Y., Chen, X., Li, J., Wong, D. S., Li, H., You, I., 2017. Ensuring attribute
privacy protection and fast decryption for outsourced data security in mobile cloud
computing. Information Sciences 379, 42–61.

28

http://docs.ethereum-alarm-clock.com/en/latest/
http://docs.ethereum-alarm-clock.com/en/latest/
http://bitcoin.org/bitcoin.pdf
http://www.cryptopapers.net/papers/ethereum-yellowpaper.pdf
http://www.cryptopapers.net/papers/ethereum-yellowpaper.pdf

[49] Zhang, Y., Li, J., Chen, X., Li, H., 2016. Anonymous attribute-based proxy re-
encryption for access control in cloud computing. Security and Communication
Networks 9(14), 2397–2411.

[50] Zhang, Y., Zheng, D., Chen, X., Li, J., Li, H., 2016. Efficient attribute-based data
sharing in mobile clouds. Pervasive and Mobile Computing 28, 135–149.

[51] Zhang, Y., Zheng, D., Deng, R. H., 2018. Security and privacy in smart health:
efficient policy-hiding attribute-based access control. IEEE Internet of Things
Journal. Online publication. URL https://ieeexplore.ieee.org/document/

8334589/

29

View publication statsView publication stats

https://ieeexplore.ieee.org/document/8334589/
https://ieeexplore.ieee.org/document/8334589/
https://www.researchgate.net/publication/325784483

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	9-2018

	Blockchain based efficient and robust fair payment for outsourcing services in cloud computing
	Yinghui ZHANG
	Robert H. DENG
	Ximeng LIU
	Dong ZHENG
	Citation

	Introduction
	Our Contributions
	Related Work
	Organization

	Preliminaries
	Notations
	Blockchain
	Bitcoin-based Timed Commitment

	System Architecture, Specifications and Adversary Model
	System Architecture of BCPay
	Specifications of BCPay
	System Setup Phase
	Service Implementation Phase
	Service Checking Phase
	Service Payment Phase
	Service Claim Phase

	Adversary Model and Design Goals of BCPay

	BCPay: Blockchain-based Fair Payment Framework
	Challenge and Main Idea
	Design Details of BCPay
	System Setup Phase
	Service Implementation Phase
	Service Checking Phase
	Service Payment Phase
	Service Claim Phase

	Security Analysis

	Performance Evaluation
	Number of Transactions
	Computation Cost

	Decentralized Applications of BCPay
	Blockchain-based PDP
	BCOC: Blockchain-based Outsourcing Computation

	Conclusion

