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VPSearch: Achieving Verifiability for
Privacy-Preserving Multi-Keyword
Search over Encrypted Cloud Data

Zhiguo Wan and Robert H. Deng , Fellow, IEEE

Abstract—Although cloud computing offers elastic computation and storage resources, it poses challenges on verifiability of

computations and data privacy. In this work we investigate verifiability for privacy-preserving multi-keyword search over outsourced

documents. As the cloud server may return incorrect results due to system faults or incentive to reduce computation cost, it is critical to

offer verifiability of search results and privacy protection for outsourced data at the same time. To fulfill these requirements, we design a

Verifiable Privacy-preserving keyword Search scheme, called VPSearch, by integrating an adapted homomorphic MAC technique with

a privacy-preserving multi-keyword search scheme. The proposed scheme enables the client to verify search results efficiently without

storing a local copy of the outsourced data. We also propose a random challenge technique with ordering for verifying top-k search

results, which can detect incorrect top-k results with probability close to 1. We provide detailed analysis on security, verifiability,

privacy, and efficiency of the proposed scheme. Finally, we implement VPSearch using Matlab and evaluate its performance over three

UCI bag-of-words data sets. Experiment results show that authentication tag generation incurs about 3 percent overhead only and a

search query over 300,000 documents takes about 0.98 seconds on a laptop. To verify 300,000 similarity scores for one query,

VPSearch costs only 0.29 seconds.

Index Terms—Cloud computing, verifiability, keyword search, privacy

Ç

1 INTRODUCTION

CLOUD computing revolutionizes the computation model
by offering elastic computation and storage resources. A

client can outsource his data to the cloud server and later
access the data with other devices from anywhere. The client
can further ask the cloud server to perform some computa-
tion over his data on his behalf. These advantages lead to
great success of cloud computing, but they also raise security
and privacy concerns with respect to the client’s data [1].
The concerns come from the fact that the service providers
can not be fully trusted. To protect data privacy, data should
be encrypted before being outsourced to the cloud. However,
this is nontrivial as the encryption scheme need to support
computations over encrypted data. Although fully homomor-
phic encryption provides a seemingly perfect solution for
supporting arbitrary computations over encrypted data, its
prohibitive computation cost makes it impractical currently.

One of the fundamental and most frequent data opera-
tions is keyword search. How to perform efficient and
versatile search operations on encrypted cloud data has
been an important research direction since the seminal
work of Song et al. [2]. More recent works have achieved
keyword privacy for keyword search over encrypted data,

i.e., the keywords in queries are protected from the cloud
server. Solutions for both single-keyword search [2], [3], [4]
and multi-keyword search [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14] have been proposed in the literature. Unfortunately,
all these schemes assume the cloud server will follow the
designated protocols honestly, i.e., the honest-but-curious
model, while whether the computation result is authentic is
not considered in those proposals. However, as the cloud
may return false results to the client either due to system
faults or incentive to reduce computation cost, the keyword
search results cannot be fully trusted, especially for very criti-
cal computation results. Thus, it is important for the client to
be able to verify the keyword search results over encrypted
cloud data, but this has not been studied sufficiently.

Verifiability of delegated computation over outsourced
data is an important research problem for cloud computing.
This problem has attracted considerable research interests,
and many solutions have been proposed, including veri-
fiable computation [15], [16], [17], [18], [19], [20], [21], homo-
morphic MACs/signatures [22], [23], [24], [25] as well as
other proposals. However, most of these proposals suffer
from various limitations. Verifiable computation schemes
aim to minimize computation effort of the client, but not
storage or communication cost. They require the client and
the server to interactively authenticate the computation
result. Moreover, the client needs to have a copy of the
outsourced data, and the data over which computation is
verified cannot be changed in the future.

Homomorphic message authenticator schemes [22], [23],
which were proposed recently, avoid a local copy of the out-
sourced data on the client side. Homomorphic message
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authenticator schemes allow a client to authenticate a collec-
tion of data m1; . . . ;mn with his secret key sk, and later to
authenticate the computation result m ¼ Pðm1; . . . ;mnÞ of a
running program P over the data. The authentication tag s

that certifies m can be produced without knowing sk. Con-
sequently, anyone who knows sk can certify the computa-
tion result m of the outsourced data with a short
authentication tag s. A recent homomorphic MAC scheme
proposed in [24] improves the verification efficiency, but
the same as all aforementioned proposals, it does not con-
sider the problem over encrypted data. To achieve verifiable
computation over encrypted cloud data, Fiore et al. [26]
recently proposed a general scheme based on homomorphic
MACs. Nevertheless, their homomorphic MAC scheme con-
sider integer computation only and do not support compu-
tations over real numbers.

Our Contribution. In this paper, we investigate the problem
of achieving verifiability for privacy-preserving multi-key-
word search over encrypted cloud data. Different from the
honest-but-curiousmodel used in existing privacy-preserving
keyword search schemes, we assume a partially honest
model, in which the cloud server may return wrong results
due to system faults or incentive to reduce computation cost.

To this end, we adapt the efficient homomorphic MAC
scheme from [23] to support privacy-preserving multi-key-
word search. The original homomorphic MAC is designed
for computations over plaintexts in finite fields only, while
privacy-preserving multi-keyword search schemes deal
with encrypted real numbers. Moreover, because the homo-
morphic MAC scheme in [23] uses modulo operations, one
cannot compare or sort the computation results. As a result,
it is necessary to adapt the homomorphic MAC to support
privacy-preserving multi-keyword search schemes.

We choose to work on a privacy-preserving multi-
keyword ranked searchable encryption (MRSE) scheme in
[11], which uses matrix multiplication to encrypt data index
and inner product to compute similarity scores. By applying
our adapted homomorphic MAC, our proposed scheme is
able to achieve verifiable privacy-preserving multi-keyword
search over encrypted cloud data. To our best knowledge,
our solution is the first to use the homomorphic MAC to
achieve both verifiability and privacy for multi-keyword
search. VPSearch is highly efficient as it uses only a one-
way function (pseudorandom function) for security, making
it scalable to large databases. Since top-k retrieval for search
results is a commonly used operation, we further propose a
random challenge technique to verify top-k multi-keyword
search results. This technique enables the client to detect
wrong top-k results with probability close to 1.

We implement VPSearch using Matlab and evaluate its
performance over three UCI bag-of-words data sets [27].
Compared with the privacy-preserving keyword search
scheme without verifiability, VPSearch incurs only about
3 percent overhead for authentication tag generation. For
keyword search, VPSearch can finish a query over 300,000
documents in 0.98 seconds. Parallel execution of keyword
search over multiple servers can be used to further speed up
this operation.

The contributions of our work can be summarized as
follows:

� Wedesign anefficient, verifiable andprivacy-preserving
multi-keyword ranked searchable encryption scheme

for outsourced cloud data under the partially honest
cloud server model. It is realized by integrating an
adapted homomorphic MAC technique with a
privacy-preserving multi-keyword search scheme.
The proposed scheme is very efficient as it relies on
only one-way function for security.

� We also provide the random challenge technique to
verify top-k search results for a given query. With
this solution, the client can be sure that the top-k
results are authentic for probability close to 1.

� We provide detailed analysis on security, privacy,
verifiability and efficiency of VPSearch. Specifically,
the underlying homomorphic MAC scheme used in
VPSearch can be proved to be secure in the same
way as [23].

� We implement VPSearch using Matlab and evaluate
its performance over three UCI data sets. Experiment
results on a laptop show that VPSearch is very effi-
cient on authentication tag generation and keyword
search operations.

More importantly, although we only describe how to
implement verifiability for a specific MRSE scheme [11], our
solution can be extended to other MRSE schemes adopting
the similar models, e.g., [12], [13], [28].

Paper Organization. We review related work in the next
section, then some preliminaries on homomorphic MAC
are provided in Section 3. System model, threat model
and design goals of our proposed scheme are presented
in Section 4. Detailed description of our scheme is given
in Section 5, followed by discussion and security analysis.
Then we present performance evaluation of our scheme
and conclude the paper after that.

2 RELATED WORK

2.1 Verifiable Computation

Our work is closely related to verifiable computation, which
has been an active area in the past few years, and many
schemes with different design goals have been proposed in
the literature. Verifiable computation enables a client to del-
egate a computationally heavy task to a server with strong
computation capability, and then verify correctness of the
computation result.

Existing works can be categorized into generic protocols
[15], [16], [17], [18] which allow arbitrary computations and
ad hoc protocols which deal with specific classes of computa-
tion [19], [20], [21]. Generic protocols for verifiable computa-
tion are computationally more expensive than ad hoc ones
which aim at efficient computation for specific classes of
functions, e.g., high-degree functions [21].

Most verifiable computation schemes aim at reducing
computation cost of the delegator, while storage cost of the
delegator is not considered, i.e., the delegator needs a copy
of the data for verification. Our work enjoys the advantage
over verifiable computation in that the client does not need
to maintain a local copy of the outsourced data. This advan-
tage is becoming increasingly important for big data appli-
cations which compute over huge volume of data. Another
advantage of our solution over verifiable computation is
that we deal with encrypted data while most existing
schemes consider plaintext data only.
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2.2 Homomorphic Signatures and MACs

Homomorphic message authentication codes and signatures
with restricted homomorphism have been investigated for
securing network coding since Johnson et al.’s work [29].
Most works since then focus on linear functions until Boneh
and Freeman [25] proposed a homomorphic signature scheme
for bounded constant degree polynomials. After that, homo-
morphic signatures andMACs are used to verify authenticity
of computation results.

Gennaro and Wichs [22] constructed the first fully homo-
morphic message authenticator based on fully homomor-
phic encryption. Though it has great theoretic significance,
the scheme suffers from significant computation overhead
due to fully homomorphic encryption. Following this work,
Catalano and Fiore [23] proposed a more computation-
efficient homomorphic MAC for arithmetic circuits. Backs
et al. [24] utilized the amortized closed-form efficiency tech-
nique [21] to reduce verification overhead. However, none
of these solutions consider verification of computation over
encrypted data, so privacy of the outsourced data is not
preserved.

Although a straightforward enhancement is to apply
homomorphic encryption on client data before outsourcing
[26], it has an obvious drawback on computation overhead.
Libert et al.’s scheme [30] deals with evaluation of linear
combination over encrypted data, which is not applicable
under our setting. Homomorphic authenticated encryption
has been used by [31], [32] to verify computations over
encrypted data. Different from existing schemes on verifi-
able computation over encrypted data, our work achieves
efficient and verifiable keyword search by using the more
efficient homomorphic MAC with the privacy-preserving
keyword search scheme from [11]. The reader is referred to
[24] for a more complete discussion.

2.3 Privacy-Preserving Keyword Search over
Encrypted Data

Song et al. [2] initiated the research on keyword search over
encrypted data, and proposed a scheme enabling single key-
word search over an encrypted document. The basic idea is to
build an encrypted searchable index while hiding the content
of the corresponding document. Noticing the importance of
keyword privacy, researchers proposed enhanced schemes
capable of protecting keywords [3], [4]. Unfortunately, these
schemes can onlyprocess single keyword search, so they obvi-
ously lack flexibility and expressiveness.

Multi-keyword search over encrypted data has been real-
ized in the public key settingwith conjunctive keyword search
[5], [6], [7]. Some works like [8] employ predicate encryption
technique to support conjunctive and disjunctive search.
These schemes have several limitations due to the underlying
cryptographic techniques. On one hand, they incur significant
computation overhead due to expensive computations like

bilinear mapping; on the other hand, conjunctive and disjunc-
tive search fall short of search expressiveness.

Cao et al. [10], [11] designed a privacy-preserving multi-
keyword ranked search based on “Coordinate matching”.
More recently, Xia et al. [28] further improve keyword
search efficiency using a tree-based index. This tree-based
index is combined with the vector model and the TF�IDF
model. Fu et al. [12] considered the user search experience
problem, and proposed a personalized multi-keyword
searchable encryption scheme using a user’s search history
to build an interest model. This scheme can improve user
search experience while preserving user privacy. Fu et al.
[13] studied multi-keyword fuzzy ranked searchable
encryption problem, and proposed an efficient solution
using keyword transformation and word stemming. This
scheme can deal with several types of keyword spelling
errors. With appropriate modification, our solution can also
be applied on the schemes in [12], [13], [28], [33] similarly.

All the above privacy-preserving keyword search schemes
assume an honest-but-curious model, in which the cloud
server strictly follows the designated protocol while being
curious about privacy of the clients. These schemes did not
consider verifiability of keyword search results, but it is pos-
sible the returned results may be incorrect due to system
faults or incentive to reduce computation cost.

Sun et al. [34] employs multi-dimensional-B (MDB) tree
to implement multi-keyword search and search result verifi-
ability. Although this approach achieves efficiency and veri-
fiability, it does not support dynamic operations for file
addition and deletion. Whenever a new file is outsourced to
the cloud, the data owner needs to generate a new signature
for verification. Cheng et al.’s work [35] is based on indistin-
guishability obfuscation technique. Indistinguishability
obfuscation may incur high computation overhead. In con-
trast, our work achieves both keyword privacy and verifi-
ability for searchable encryption at modest cost.

3 PRELIMINARIES

We review the definition of the labelled program in [22] and
present our homomorphic message authenticator scheme
for real numbers adapted from [23].

1) Labelled Programs: The labelled program is composed
of a function1 f and n input variables with each input
assigned a label Liði ¼ 1; 2; . . . ; nÞ. Li is a unique string to
“label” the variable of the function f . For example, suppose
a company outsources its employee payroll database D to
the cloud, and then asks the cloud server to compute f as
the average salary of all its employees. Then Li can be con-
structed as (“the ith employee’s salary”) where i is the index
of an employee. Then the salary amountmi can be authenti-
cated with respect to the label Li, which essentially binds
the datamwith the corresponding label.

2) Our Homomorphic MAC for Real Numbers: As the hom-
omorphic MAC in [23] only supports computations over
finite fields, we propose an adapted homomorphic MAC
for real numbers, which is to be used in our proposed
scheme.

TABLE 1
UCI Bag-of-Words Data Sets

Data set Name Short Name # Documents # Keywords

NIPS full papers NIPS 1,500 12,419
Enron Emails Enron 39,861 28,102
NYTimes news articles NYTimes 300,000 102,660

1. More accurately, an arithmetic circuit that defines a polynomial
function.
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The underlying idea for the homomorphic MAC is sim-
ple but effective. Each message mi is encoded as a degree-1
polynomial yðxÞ such that yð0Þ ¼ mi and yðaÞ ¼ ri where
a; ri are secrets known only to the verifier. That is, yðxÞ ¼
mi þ ðri �miÞ � x=a. As elementary arithmetic operations
over polynomials are homomorphic, the cloud server can
compute a function f , which involves only elementary
arithmetic operations, over these degree-1 polynomials to
obtain a polynomial gðxÞ. Then one can verify fðm1; . . . ;
mnÞ ¼ gð0Þ if fðr1; . . . ; rnÞ ¼ gðaÞ.

Our modification to the homomorphic MAC scheme is to
treat all messages, e.g., mi and ri, as real numbers encoded
by a format like the double-precision floating point format
defined in IEEE 754 standard. Then the new MAC scheme
can deal with real numbers, while the homomorphic prop-
erty of the MAC scheme is preserved. The details of our
homomorphic MAC scheme RealHomMAC for real num-
bers is as follows:

� KeyGenð1�Þ: This algorithm generates a secret key
sk from the security parameter �. Specifically, it
chooses a seed K of a pseudo-random function

FK : f0; 1g� ! R�, where R� is the set of real num-
bers that is encode with � bits. The algorithm also
selects a random value a 2 R�, and the secret key
is sk ¼ ðK;aÞ.

� Authðsk; L;mÞ: This algorithm takes as inputs the
secret key sk, a label L and a message m 2 R�, gener-
ates the authentication tag s. Specifically, the algo-
rithm computes rL ¼ FKðLÞ, sets y0 ¼ m and y1 ¼
ðrL �mÞ=a, and outputs s ¼ ðy0; y1Þ as the authenti-
cation tag form.

� Evalðf;~sÞ: This algorithm performs evaluation of f
on a vector of tags ~s ¼ ðs1; . . . ; snÞ, and outputs the
resulting tag s. f can be viewed as a circuit com-
posed of addition and multiplication gates.

The algorithm processes each gate of the circuit f

as follows. At each gate fg, given two tags sð1Þ; sð2Þ, it
runs the algorithm s  GateEvalðfg; sð1Þ; sð2ÞÞ as

described below to derive a new tag s. The new tag
is in turn passed on as input to the next gate in the
circuit f . The tag s obtained at the last gate of the cir-
cuit f is the final output. The subroutine GateEval is
defined as follows:
- GateEvalðfg; sð1Þ; sð2ÞÞ. Let sðiÞ ¼ ~yðiÞ ¼ ðyðiÞ0 ; . . . ; y

ðiÞ
di
Þ

for i ¼ 1; 2 and di � 1.
1) fg ¼ þ: The algorithm computes the coeffi-

cients ðy0; . . . ; ydÞ of the polynomial

yðxÞ ¼ yð1ÞðxÞ þ yð2ÞðxÞ where d ¼ maxðd1;
d2Þ. This can be done by simply adding the

two vectors of coefficients,~y ¼ ~yð1Þ þ~yð2Þ.
2) fg ¼ �: The algorithm computes the coeffi-

cients ðy0; . . . ; ydÞ of the polynomial yðxÞ ¼
yð1ÞðxÞ � yð2ÞðxÞ using the convolution oper-
ator �, where d ¼ d1 � d2. That is,

yk ¼
Pk

i¼0 y
ð1Þ
i � yð2Þk�i 8k ¼ 0; . . . ; d.

Finally the algorithm returns s ¼ ðy0; . . . ; ydÞ, the vector of
coefficients of a d-degree polynomial.

� Verðsk;P;m; sÞ: This algorithm verifies that m is the
correct computation result of a labeled program
P ¼ ðf; L1; . . . ; LnÞ with the secret key sk and a tag
s ¼ ðy0; . . . ; ydÞ.

Specifically, this algorithm computes f0 ¼ f
ðrL1 ; . . . ; rLnÞ where rLi ¼ FKðLiÞ. Finally, it verifies

the result by checking the following two equations:

m ¼ y0 (1)

f0 ¼
Xd
k¼0

yka
k: (2)

It accepts the result if both equations hold, and
rejects otherwise.

4 PROBLEM FORMULATION

4.1 System Model

Our scheme involves two different players: the client C who
outsources her encrypted documents to the cloud, and a
cloud server S that provides data storage and keyword
search service to the clients.

To enable keyword search over encrypted documents, C
constructs an encrypted searchable index for the encrypted
documents, generates authentication tags for the index.
Then she outsources the authenticated index and the
encrypted documents to the cloud. When C wants to search
the documents for some keywords, she prepares an authen-
ticated search trapdoor for the cloud. On receiving the
search trapdoor from C, the cloud server performs search
using the trapdoor and return the result to C.

The cloud server should be able to order the search
results according to a given ranking criteria, so as to enable
the client C to get the most relevant documents with respect
to the query. To reduce unnecessary communication, C can
ask the cloud server to returns the k most relevant docu-
ments only, which is called top-k queries.

4.2 Threat Model

In contrast to the honest-but-curious cloud server assump-
tion in most privacy-preserving keyword search schemes,
we assume a partially honest model, in which the cloud
server may return wrong results due to system faults or in
order to reduce computation cost. More specifically, the
cloud may finish only a part of the delegated computation
task to reduce cost, and return the wrong result to the cli-
ent [34]. However, to gain trust from the clients, the cloud
server will not misbehave when the misbehavior detection
probability is non-negligible.

The client C, who takes both roles of data owner and data
user, is assumed to be always honest in the entire process.
That is, the client honestly encrypts outsourced documents,
builds encrypted the searchable index, generates authenti-
cation tags, and composes search trapdoors.

As analyzed in existing privacy-preserving keyword
search schemes, there are two types of knowledge held by
the cloud server: 1) known ciphertext: the cloud server only
knows the encrypted documents and the searchable index;
2) known background knowledge: the cloud server also has
some background knowledge, e.g., statistics of the out-
sourced documents or relationship between different
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trapdoors. In this work, we consider the case that the cloud
server can combine its knowledge on ciphertext and back-
ground knowledge to deduce privacy about documents or
keywords in the queries.

4.3 Design Goals

Our scheme is designed to achieve the following goals:

� Verifiability. The cloud server is able to produce a
proof certifying correctness of the delegated multi-
keyword search results, and the client is able to ver-
ify the results using the proof returned by the server
without storing the outsourced data locally.

� Efficiency. The client is able to produce authentication
tags for outsourced data and verify the search results
efficiently. On the other hand, the server should be
able to accomplish keyword search and produce
authentication tags for the search results efficiently.

� Keyword Privacy. The cloud server should not be able
to learn keywords in trapdoors or authentication
tags generated by the client. Moreover, even if the
server gains some background knowledge about the
outsourced documents, it should not be able to infer
any information about the queried keywords with
such knowledge.

� Data Privacy. The server should not be able to deduce
any information about the outsourced data, includ-
ing the documents and the index.

� Unbounded Storage. The client should be able to con-
tinuously outsource any amount of data to the cloud.

5 VERIFIABLE PRIVACY-PRESERVING

MULTI-KEYWORD SEARCH OVER

ENCRYPTED DATA

In this section we present VPSearch, the Verifiable Privacy-
preserving multi-keyword Search scheme over encrypted
cloud data. We first offer a high-level description of
VPSearch before we present its details. After that, we
describe a technique for VPSearch to support verifiability
for top-k search results.

5.1 Overview of Our Scheme

Our scheme builds on the privacy-preserving multi-
keyword search scheme in [11], which is integrated with
our homomorphic MAC RealHomMAC to achieve both veri-
fiability and privacy. The keyword search scheme is chosen
for two reasons: (i) it supports flexible and expressive
multi-keyword searches; (ii) its keyword search operation is
actually inner product, which is fully supported by our
homomorphic MAC.

An overview of our schemes is illustrated in Fig. 1. The
client first encrypts the plaintext index, then the encrypted
index is authenticated with our homomorphic MAC tech-
nique, which produces authentication tags for the encrypted
index. Next, the index and authentication tags are uploaded
to the cloud. Then the client can generate a search trapdoor,
and uses our homomorphic MAC technique to authenticate
the trapdoor. With the authenticated trapdoor, the cloud
server can homomorphically execute the search function
over the authentication tags to derive the result with a
proof, which can certify the search result.

Suppose the document set D to be outsourced contains N
documents. For the ith document, its subindex Di is con-
structed as an n-dimensional bit vector. Di½j� is set to 1 if
this document contains the jth keyword in a given dictio-
nary; otherwise, it is set as 0. Similarly, the query Q is also
an n-dimensional bit vector, with the bits corresponding to
the keywords interested by the client set to 1. Then the sub-
index Di and the query Q are encrypted using matrix multi-

plication, i.e., eDi ¼MTDi and eQ ¼M�1Q where M is a real
secret matrix. The similarity score can still be obtained via
inner product of the encrypted index and query, i.e.,

ðMTDiÞTM�1Q ¼ DT
i Q. To mask the real similarity scores

for stronger privacy, the document index and the query vec-
tor can be extended with random numbers as in [11]. Specif-

ically, a document index is extended to ~Di ¼ ðDi; �i; 1Þ,
while the query vector is extended to ~Q ¼ ðrQ; r; tÞ, where
�i; r; t are random numbers and t is relatively small. At last,
the final similarity score computed by the cloud server will
be rðDi �Qþ �iÞ þ t. Although the similarity scores are ran-
domized with the random numbers, the cloud server is still
able to rank the results without knowing the real scores.

We apply our homomorphicMAC technique on the encry-

pted index eDi and query eQ (trapdoor) to generate authentica-
tion tags for them, then the cloud server homomorphically
executes the multi-keyword search function (inner product)
over the authentication tags to obtain the results. Since our
homomorphic MAC technique is adapted to support opera-
tions over real numbers, it supports keyword search opera-
tions perfectly. Using a one-way function, our homomorphic
MAC technique is highly efficient in computation.

For each value in the encrypted document subindex and
query, authentication tags are produced as follows. VPSearch
authenticates each item (a real number) in the encrypted indexeDi and query eQwith two coefficients of a degree-1 polynomial.
Verifiability of keyword search results is achieved by homo-
morphically evaluating the search function over the authentica-
tion tags. The cloud server performs the multi-keyword search

function as showed in Fig. 2, i.e., calculating eDT
i
eQ.

The labeling approach in our homomorphic MAC can
effectively reduce storage space compared to arbitrarily

Fig. 1. Overview of our verifiable privacy-preserving multi-keyword
search scheme.
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labeling large amount of data. Therefore, the client needs to
compute the value fðFKðL1Þ; . . . ;FKðLnÞÞ for verification for
each file. As the function f is lightweight, the verification
can be performed efficiently.

5.2 VPSearch: Verifiable Privacy-Preserving
Multi-Keyword Search Based on
Homomorphic MAC

We present the verifiable privacy-preserving multi-
keyword search scheme based on one-way functions, which
is referred to as VPSearch. The homomorphic MAC tech-
nique used in VPSearch can authenticate computations over
real numbers, and its security relies on existence of one-way
functions. Without any public key operation, this scheme
enjoys great computational efficiency.

VPSearch consists the following six algorithms: Setup,
Index, Trapdoor, Auth, KeywordSearch and Verify.

� Setupð1�; nÞ: This algorithm takes as inputs a secu-
rity parameter � and the dictionary size n. n is the
number of keywords in a given dictionary (in the
next algorithm), and it also represents the length of
the document index.

Given the security parameter �, C invokes

KeyGenð1�Þ of RealHomMAC to obtain two secrets

ðK;aÞ as the secret key. Then C selects two
ðnþ 2Þ � ðnþ 2Þ invertible matrix M1 and M2 in

R
ðnþ2Þ�ðnþ2Þ
� . C also chooses an ðnþ 2Þ bit random

vector S. The bit vector S is used to randomly split
the document sub-indices for privacy as [11]. The
secret key held by C is sk ¼ ðK;a; S;M1;M2Þ.

� IndexðD; sk; dictÞ: This algorithm takes as inputs the
document set containing N plaintext documents, the
secret key sk, and a dictionary dict of size n, and out-
puts the encrypted document index for outsourcing to
the cloud. Its goal is to protect the document index
from the cloud server. It processes the document index
as follows:

For the ith document in D, its subindex Di is first
constructed as a bit vector.Di½j� is set as 1 if this docu-
ment contains the jth keyword wj in dict; otherwise, it

is set as 0. Then Di is extended to be ~Di ¼ ðDi; �i; 1Þ
where �i is a random number conforming to normal
distribution.

Next, ~Di is split into two vectors ~D0i and ~D00i accord-
ing to the following rule (Split in Fig. 3): if S½j� ¼ 0,
~D0i½j� ¼ ~D00i ½j� ¼ ~Di½j�; otherwise, ~D0i½j� þ ~D00i ½j� ¼ ~Di½j�
(i.e., random split of ~Di½j�).

At last, C encrypts the subindex (~D0i, ~D
00
i ) using the

secret matricesM1;M2, yielding eDi ¼ ðMT
1
~D0i;M

T
2
~D00i Þ

(Encrypt in Fig. 3). The encrypted document index,

containing all sub-indices eDi, alongwith the encrypted
document will be uploaded to the cloud along with
some authentication tags generated by the Auth
algorithm.

� TrapdoorðQ; skÞ: This algorithm takes as inputs a
search query in plaintext and the secret key sk, and
outputs the encrypted query as a trapdoor. Its goal is
to protect the keyword information in the query
from the cloud server. It processes the keyword
query as follows:

The search query is constructed as a bit vector,
with Q½j� set to 1 if the client is interested in keyword
wj in the dictionary or 0 otherwise. Then C generates

Fig. 2. The circuit structure of the keyword search (inner product) func-
tion f and the homomorphic MACs for the document index eDi and the

query eQ. eDi½j� or eQ½j� is authenticated with an authentication tag

sD
j ¼ ðyðjÞ0 ; y

ðjÞ
1 Þ or sQ

j ¼ ðyðjÞ0;Q; yðjÞ1;QÞ, the coefficients of a degree-1 polyno-

mial. The keyword search function f outputs a new authentication tag
s ¼ ~y ¼ ðy0; y1; y2Þ. n is the length of the document index.

Fig. 3. Illustration of the VPSearch Scheme: an extended document index ~Di is split into two vectors ~D0i and ~D00i according to the secret S; then they

are encrypted by multiplying with secret matrices M1;M2; the resulting vector is authenticated using our homomorphic MAC, yielding eDi and eDi;1;
the authentication tags of the document index and the query are multiplied to obtain the final result si ¼ ðy0; y1; y2Þ, which is used by the client to verify
the search result.
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two random numbers r; t 2 R�, and extends Q to
~Q ¼ ðrQ; r; tÞ. Next, C split ~Q according to the follow-

ing rule: if S½j� ¼ 0, ~Q0½j� þ ~Q00½j� ¼ ~Q½j� (i.e., random
split of ~Q½j�); otherwise, ~Q0½j� ¼ ~Q00½j� ¼ ~Q½j�.

Finally, C generates the keyword search trapdoor

as eQ ¼ ðM�1
1

~Q0;M�1
2

~Q00Þ.
� Authðsk; L; eDi or eQÞ: This algorithm produces

authentication tags for each item in the encrypted

subindex eDi or the search trapdoor eQ. Each item in

the encrypted subindex eDi and eQ is labeled by a

string L. For instance, the jth item in eDi is labeled
LeDi;j

= “The jth item in the index for the ith doc-

ument”. The jth item in the trapdoor is labeled as

LeQ;j
= “The jth item in trapdoor eQ”.

To authenticate a message m 2 R� with label
L 2 f0; 1g�, C invokes RealHomMAC:Authðsk; L;mÞ
to output a tag s. Specifically, the algorithm com-
putes rL ¼ FKðLÞ, sets y0 ¼ m, y1 ¼ ðrL �mÞ=a, and
outputs an authentication tag ðy0; y1Þ. Note y0 is just
the original messagem.

Therefore, for the encrypted subindex eDi, the

authentication tag is sDi
¼ ð eDi; eDi;1Þ; while for the

trapdoor eQ it will be sQ ¼ ð eQ; eQ1Þ. The first item in
the authentication tag corresponds to y0 ¼ m, the
message to be authenticated, and the second item
corresponds to y1.

Since authentication tags are generated over the
extended index, including not only the original
index, but also additional random numbers (i.e., �; r
and t) and dummy keywords, they can be used to
verify search results with errors due to random num-
bers and dummy keywords.

� KeywordSearchðf;~sD; sQÞ: This algorithm takes as
inputs the keyword search function f , the authenti-
cation tags of the document index ~sD and the search
trapdoor sQ. ~sD is parsed as fsD1

; sD2
; . . . ; sDN

g.
Then for each subindex Di it performs keyword
search by invoking RealHomMAC:Evalðf;~sÞ where
~s ¼ fsDi

; sQg. Essentially, it homomorphically eval-

uates the search function f over sDi
and sQ, and out-

puts coefficients (also seen as an authentication tag)
si ¼ ðy0; y1; y2Þ.

Among the coefficients returned by this algo-
rithm, y0 is the actual similarity score. According to
the keyword search function showed in Fig. 2, the
three coefficients are calculated as follows:

y0 ¼ eDi � eQ (3)

¼ ðMT
1
~D0i;M

T
2
~D00i Þ � ðM�1

1
~Q0;M�1

2
~Q00Þ (4)

¼ rðDi �Qþ �iÞ þ t (5)

y1 ¼ eDi � eQ1 þ eDi;1 � eQ (6)

y2 ¼ eDi;1 � eQ1: (7)

Accordingly, the polynomial corresponding to si

evaluates to fðrL1 ; . . . ; rL2nÞ at the secret point a, i.e.,

y0 þ y1aþ y2a
2. Note here keyword search f has 2n

inputs as illustrated in Fig. 2. L1; L2; . . . ; Ln are labels
for the document subindex, and Lnþ1; Lnþ2; . . . ; L2n
are for the search trapdoor.

� Verifyðsk; f;~L;m; sÞ:C parses ~L as ðL1; . . . ; L2nÞ and s

as ðy0; y1; y2Þ. Then it sets P ¼ ðf; L1; . . . ; L2nÞ, and
invokes RealHomMAC:Verðsk;P;m; sÞ to obtain the
result. Specifically, the algorithm computes f0 ¼ f
ðrL1 ; . . . ; rL2nÞ where rLi ¼ FKðLiÞ. Finally, C verifies

the result by checking the following equation:

m ¼ y0 (8)

f0 ¼
X2
k¼0

yka
k: (9)

According to the definition of our homomorphic
MAC given in Section III, f0 ¼ fðrL1 ; . . . ; rL2nÞ is actu-
ally the search function f computed over the pseu-
dorandom numbers generated from labels, so it
should be equal to the result evaluated at point a for
the polynomial defined by ðy0; y1; y2Þ. If both equa-
tions are satisfied, C accepts y0 as the search result;
otherwise C rejects the result.

Fig. 3 illustrates the proposed scheme with a simple
example. Besides Setup is omitted in the figure, Trapdoor is
not showed as it is similar to Auth. In this example, an

extended document index ~Di is split into two vectors ~D0i
and ~D00i according to the secret S. Then they are encrypted

by multiplying with secret matrices M1;M2, and the result-
ing vector is authenticated using our homomorphic MAC,

yielding eDi and eDi;1. Here eDi and eDi;1 can be viewed as

coefficients of a degree-1 polynomial, and the polynomial

evaluates to eDi at point 0 and eDi;1 at point a.
The authentication tags of the document index and the

query are multiplied to obtain the final result si ¼ ðy0;
y1; y2Þ. The KeywordSearch is basically a multiplication of

two polynomials defined by the authenticated tags of eDi

and eQ.

5.3 Support for Top-k Verification

Usually the client is only interested in receiving k most rele-
vant results for his search query so as to save communica-
tion cost. However, the scheme described above achieves
verifiability for every single similarity score, not for top-k
search results. The cloud server may return incorrect top-k
results either because it wants to save energy or the cloud
computing system goes faulty. For instance, the cloud
server only searches a part of the document set and returns
the top-k search results.

It is not easy for the client to discover that since the client
does not know all similarity scores computed by the cloud
server. To solve this problem, we propose the random chal-
lenge technique to achieve verifiability for VPSearch.

Random Challenge. A natural way to achieve verifiability
for top-k results is for the client to verify similarity scores of
some documents randomly selected by the client. Only if all
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these documents have smaller similarity scores than those
of the top-k results returned by the cloud server, can the cli-
ent be sure that the returned k results are truly top-k for
some probability.

Suppose the client C has outsourced N documents to the
cloud, and the client expects to receive top-k results with
the highest scores with respect to a query Q for some
k	 N . C randomly chooses m documents and requests for
their similarity scores from the cloud server S. Thus the
probability of C detecting a fraction p of top-k results are not
returned by S can be computed as follows:

Pdetect ¼ 1�
�
1� pk

N � k

�m

: (10)

When pk	 N � k, the detection probability is close to pkm
N .

Given k;N and p, the client can control trade-off between
the detection probability Pdetect and communication cost
OðmÞ. With Fig. 4a we show the relationship between the
probability of detection Pdetect and the number of randomly
selected documents m for k ¼ 100 and p ¼ 0:1. For instance,
given N ¼ 10;000; k ¼ 100 and p ¼ 0:1, one can choose
m ¼ 100 resulting in Pdetect ¼ 9:6 percent; or one chooses
m ¼ 1;000 so that Pdetect ¼ 63:6 percent.

Fig. 4b shows the relationship between the probability of
detection Pdetect and k of top-k retrieval for N ¼ 100;000 and
m ¼ 1;000. It can be seen that the detection probability
increases as the number of returned results k increases. It is
highly possible that misbehaviour of the cloud server is
undetected for small k.

Random Challenge with Ordering. As the above detection
probability of incorrect top-k results is too low for large N
(though it can detect incorrect top-k results returned by a
malicious cloud server), we propose the following enhance-
ment called random challenge with ordering.

First, after the cloud server has searched all documents
for the client, the cloud server sorts the resulted similarity
scores in descending order. The sorting operation will incur
an overhead of complexity OðN logNÞ. Then the sorted list,
along with the top-k results, is returned to the client.

Next, the client challenges the cloud server with m ran-
domly selected documents, and the cloud server returns the
similarity scores with authentication tags to the client.

Finally, the client verifies: 1) the similarity scores of them
documents are correct; 2) all the m similarity scores are less
than that of the top-k results; 3) the ordering of the m simi-
larity scores is correct. If all verifications are successful, the
client accepts the top-k results.

Suppose the cloud server calculates similarity scores for
only a fraction q of the N outsourced documents. For the
remaining ð1� qÞN documents, the cloud server decides not
to compute their similarity scores. Then the cloud server
needs to compose a sorted list of documents in descending
order with only qN similarity scores. Without knowing other
ð1� qÞN similarity scores, the cloud server can only return a
random permutation of the ð1� qÞN documents. When the
client challenges the cloud server for similarity scores of m
random documents, the client would detect that the top-k
results are incorrect with the following probability:

Pdetect ¼ 1� 1

P
ð1�qÞm
ð1�qÞm � Cm

qm

¼ 1� ðqmÞ!
m!

;

where Pm
n denotes permutation and Cm

n denotes
combination.

Note the above probability is independent of N and k.
When m ¼ 20 and q ¼ 0:9, meaning that the cloud server
has honestly searched 90 percent documents, the detection
probability is Pdetect ¼ 99:7 percent. So it is a significant
improvement over the random challenge approach without
ordering. If a partially honest cloud server has calculated all
similarity scores, it will returns the correct top-k results to
the client as this is in its best interest.

6 ANALYSIS AND DISCUSSION

6.1 Security of RealHomMAC

VPSearch employs the homomorphic MAC technique
RealHomMAC adapted from HomMAC in [23], thus it has
similar features and security properties, namely authentica-
tion correctness, evaluation correctness, succinctness and
authenticator security.

Authentication correctness means that the authentication
tag output by Auth correctly authenticates the data m under
the corresponding label. Evaluation correctness means that
if ~s authenticates data m1; . . . ;mn, then s authenticates the
the output of fðm1; . . . ;mnÞ. Succinctness means the size of
tag s is bounded by a polynomial in the security parameter
�, and is independent from the number of inputs or the size
of circuit f . Authenticator security means the homomorphic
MAC scheme is secure against forgery.

First of all, RealHomMAC satisfies authentication correct-
ness and evaluation correctness like HomMAC. This can be
readily proved in the same way as in [23]. Second,
RealHomMAC also satisfies succinctness as the size of the
resulting authentication tag is independent of the number
of inputs of the evaluated function.

Security of RealHomMAC can be argued intuitively. As
described in Section 3, the cloud server knows only coeffi-
cients of a set of polynomials, i.e., ðmi; ðri �miÞ=aÞ where ri
and a are unknown to the cloud server. Hence, there are
nþ 1 unknowns while the cloud server can only establish
an equation system of n linear equations. So it is impossible
for the cloud server to solve the linear equation system if ri
is generated from a pseudorandom function and a is a ran-
dom secret.

The main difference between our homomorphic MAC
technique and HomMAC is that RealHomMAC deals with
real numbers while HomMAC deals with integers in finite

Fig. 4. Pdetect as a function of the number of randomly selected docu-
mentsm,N, p and k.
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fields. Therefore, our MAC scheme is expected to have simi-
lar security property as HomMAC.

However, RealHomMAC has overflow problems which
can have impact on its security. Suppose we adopt the dou-
ble precision floating number format defined in IEEE
754 standard. A double-precision floating number of 64-bit

size ranges from �ð2� 2�52Þ � 21023 to ð2� 2�52Þ � 21023, with
11 bits for the exponent and 52 bits for the fraction. To pre-
vent overflowproblems in VPSearch, we can restrict the larg-
est values in the matrices and vectors. According to
VPSearch, the largest possible value comes from y1 in Equa-
tion (6). For dictionary size n ¼ 100;000 and the largest dou-

ble-precision floating number allowed M, y1 
 4n2M4 ¼ 4�
1010 � ðMÞ4 
 21023. Solving this inequation, we get M 
 2246.
So the exponent part of the floating number should be less
than 246, i.e., only 8 bits (1 as the exponent sign) instead of 11
bits can be freely used for the exponent. That is, for l-bit float-
ing numbers, the actual security of VPSearch is � ¼ l� 3 bits.

Formally, security of RealHomMAC can be obtained from
the following theorem:

Theorem 6.1. RealHomMAC is a secure homomorphic MAC
scheme that is secure against forgeries if FKðÞ is a pseudoran-
dom function.

The above theorem can be rigorously proved in the same
way as in [23], and it is omitted to avoid repetition.

6.2 Verifiability

Verifiability achieved by VPSearch is the key to motivate a
partially honest cloud server to act honestly. For a partially
honest cloud service provider, it tries its best to reduce
energy cost while maximizing revenue. If there is no verifi-
cation mechanism in the keyword search algorithm, then
the cloud server might simply return a wrong result with-
out doing any computation.

Verifiability of VPSearch directly follows from the evalu-
ation correctness and authenticator security property of
VPSearch. With evaluation correctness, VPSearch guaran-
tees that the client can correctly verify the authentication
tag produced by the cloud server. With the authenticator
security property, VPSearch ensures that the client would
not accept any forged authentication tag produced by a
malicious cloud server.

Top-k Verifiability. With the random challenge technique
with ordering, the detection probability can reach close to 1
for just tens of challenges, independent of the number of
documents and k. However, we emphasize that a malicious
cloud server, i.e., not partially honest, can still manage to
cheat in answering top-k queries.

6.3 Efficiency

In the following analysis, n denotes the dictionary size and
N is the number of documents. We analyze complexity of
each algorithm in VPSearch as follows:

Setup. The main computation cost in this algorithm is

inversion of two matrices, whose complexity is Oðn3Þ. How-
ever, this step is one-time and can be pre-computed, so it
will not have impact on runtime performance of VPSearch.

Index. The complexity of constructing a plaintext index
for a document set depends on the underlying data set, so

we cannot give an analytic complexity for it. For index

encryption, its complexity is Oðn2NÞ. This operation is also
a one-time computation, and it will not have impact on run-
time performance of VPSearch.

Trapdoor. Trapdoor is generated by multiplying with

M�1
1 and M�1

2 , so the complexity of constructing a trapdoor

for keyword search is Oðn2Þ for each query.
Auth. The cost of generating authentication tags for a doc-

ument index is linear to the dictionary size and the number
of documents, i.e., OðnNÞ. This computation is one-time,
and will not have impact on performance of VPSearch dur-
ing keyword search.

To generate authentication tags for trapdoors, one needs
to compute coefficients of a degree-1 polynomial for each
item in each trapdoor. This computation cost is OðnÞ, inde-
pendent of the dictionary size.

KeywordSearch. This algorithm involves inner product
of a search trapdoor and each document subindex, so its
complexity is OðnNÞ for each query.

Verify. This algorithm is run by the client, and its com-
plexity is OðnNÞ to verify search results of one query. For
verification of top-k results, the random challenge technique
with ordering requires the cloud server to order all search
results, so its complexity is OðN logNÞ.

With regard to storage cost, the encrypted document
index takes up 8nN bytes if we adopt 64-bit double-precision
floating number format. The authentication tags takes up
another 8nN bytes. That is, the storage required by VPSearch
is twice as that of Cao et al.’s scheme.

6.4 Data/Keyword Privacy

VPSearch inherits the privacy-preserving feature of Cao
et al.’s scheme in [11], which has shown that this scheme
can achieve data privacy, index privacy, keyword privacy
and trapdoor unlinkability under the known ciphertext
model. Under the known background knowledge model, sim-
ple modification can be applied to make it secure.

More specifically, it uses secret matrix multiplication to
encrypt the index and the queries. Without the secret matrix
M1 and M2, the cloud server has no way to figure out the
keywords queried by the client or the index associated with
a file. The similarity score is masked with secret random
number r and t, which ensures privacy of the search results.
As this is not the focus of our work, we refer the readers to
[11] for more detailed discussion.

6.5 Unbounded Storage

Because each document subindex is independent of others,
there is no restriction on the number of documents out-
sourced to the cloud. As a result, the client can continuously
upload documents onto the cloud, and performs search
over all documents later.

However, because the index is encrypted by matrix mul-
tiplication, the encryption matrices should also be extended
if a new keyword is added. So if a new keyword is added,
the whole index should be rebuilt. As a result, VPSearch as
well as the underlying MRSE scheme does not support key-
word dynamics. For the same reason, multi-keyword
ranked searchable encryption schemes proposed in [12],
[13], [28] do not support keyword dynamics either.
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7 PERFORMANCE EVALUATION

To demonstrate performance of the proposed scheme
VPSearch, we have implemented a prototype of VPSearch
using Matlab. Then a set of experiments are conducted to
evaluate its performance. All experiments are conducted on
a laptop equipped with an Intel Core i7-6560U CPU (2-core
2.2 GHz) and 16 GB RAM running 64-bit Ubuntu 16.04. We
use 64-bit Matlab R2015b for Linux to implement VPSearch
and python to process the document indices.

We evaluate VPSearch’s performance on three UCI bag-
of-words data sets:

We pad the Enron data set to 40,000 documents and
remove meaningless keywords of the NYTimes data set.
These three data sets are chosen as they have different docu-
ment numbers and the performance over them can provide
insights of our proposed scheme. We conduct comprehen-
sive experiments over dictionaries with different sizes and
different number of documents from these data sets.

As VPSearch is designed by integrating the homomor-
phic MAC technique with Cao et al.’s scheme in [11], we
compare the its performance with that of VPSearch.

7.1 Index Construction

The index construction is the most time-consuming step in
VPSearch, but note that this step is executed only once.

Fig. 5 shows the time cost for index construction. Fig. 5a
illustrates the time for index construction when the dictio-
nary size is 4,000. The solid lines in Fig. 5a represent the
time cost of plaintext index generation. The plaintext index
generation is done by scanning the bag-of-words format
files with a python program. To save storage space and
speed up processing time, we use bit array to construct the
indices. The dashed lines in Fig. 5a represent the time for

index encryption. For each data set, we obtain the computa-
tion time for 20, 40, 60, 80 and 100 percent of the documents
in the data set.

It can be seen that the time cost for either plaintext index
generation or index encryption is linear to the number of
documents when the dictionary size is fixed. When the dic-
tionary size is 4,000, the time to construct plaintext docu-
ment index is around 34 seconds for 1,500 documents
(NIPS), 181 seconds for 40,000 documents (Enron), and
3,693 seconds for 300,000 documents (NYTimes); the time to
encrypt document index is around 1.2 seconds for 1,500
documents (NIPS), 40 seconds for 40,000 documents
(Enron), and 300 seconds for 300,000 documents (NYTimes).

Figs. 5b, 5c, and 5d show the time cost for index encryp-
tion for all three data sets respectively. The time cost is
approximately linear to the dictionary size, i.e., the number
of keywords in the dictionary.2 Although it takes about 2,500
seconds to encrypt the entire document index for NYTimes,
this time cost is acceptable for a one-time operation. Note
that the index generation/encryption of VPSearch is essen-
tially the same as that of Cao et al.’s scheme [11].

7.2 Trapdoor Generation and Authentication

Fig. 6 illustrates the time cost of trapdoor generation and
authentication respectively.

According to Fig. 6a, the time cost of trapdoor generation
exhibits quadratic growth with respect to dictionary size.
It costs only 8.24 seconds to generate 1,000 trapdoors for
dictionary size 12,000. Fig. 6b shows that the trapdoor
authentication time is almost strictly linear to dictionary
size and the number of queries. It costs only 0.252 seconds
to authenticate 1,000 trapdoors for the dictionary with
12,000 keywords, which is about 30 times faster than trap-
door generation. VPSearch and Cao et al.’s scheme have the
same trapdoor generation operation, so the above results
mean that trapdoor authentication incurs about 3 percent
overhead on top of Cao et al.’s scheme.

7.3 Authenticating Data Set Index

Fig. 7 shows the time cost for generating authentication tags
for the document indices of Enron and NYTimes.

From Figs. 7a and 7b it can be seen that the time cost is
roughly linear to the size of dictionary and the number of

Fig. 5. Time cost for index construction.

Fig. 6. Time cost for trapdoor generation and authentication.

2. In our experiments, dictionary size ranges from 2,000 to 12,000.
For larger dictionary sizes, the computation cost is too much for our
laptop.
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documents to be authenticated. VPSearch takes 9.80 seconds
and 73.81 seconds to generate authentication tags for all
documents in Enron (40,000 documents) and NYTimes
(300,000 documents), respectively. The time cost of authenti-
cating index is less than 3 percent of that of index encryp-
tion operation (cf. Figs. 5c and 5d), which means index
authentication of VPSearch adds only 3 percent overhead
compared to Cao et al.’s scheme.

7.4 Keyword Search

Fig. 8 shows the time cost for keyword search for 100 ran-
domly generated queries over Enron and NYTimes. In accor-
dance with our analysis, the cost of keyword search is linear
to the dictionary size and the number of documents to be
searched. As showed in Figs. 8a and 8b, it costs 13.76 seconds
to finish 100 searches over all 40,000 documents in Enron, and
98 seconds over all documents inNYTimes.

The keyword search complexity of VPSearch is four
times as that of Cao et al.’s scheme [11], since VPSearch
operations on two coefficients of degree-1 polynomials
while Cao et al.’s scheme works directly on real numbers.
Note that the keyword search operation can be executed on
multiple servers in parallel to reduce time.

7.5 Verification

In Fig. 9 we show the verification cost for Enron and
NYTimes for 100 randomly generated queries. In accor-
dance with our analysis, the verification cost is roughly lin-
ear to the size of dictionary and the number of results
(searched documents). As showed in Figs. 9a and 9b, it costs
3.27 seconds to verify results of 100 query for all 40,000
documents in Enron, and 28.75 seconds to verify results of
100 query for all documents in NYTimes. Note that for each

query, there are N similarity scores to be verified where N
is the number of documents.

Normally, the client only requests top-k results, so the
verification cost will be significantly less than our results.

7.6 Runtime Performance

We compare the runtime performance of VPSearch with
that of Cao et al.’s scheme in [11] for 100 queries over the
entire Enron data set in Fig. 10, which includes time costs of
trapdoor generation, trapdoor authentication, keyword
search and verification. Time costs of index construction
and index authentication are excluded as these two opera-
tions can be pre-computed.

Fig. 10 shows that the performance of VPSearch at runtime
is roughly three times slower than that of Cao et al.’s scheme.
Themain cost comes from keyword search, which can be exe-
cuted onmultiple servers in parallel to reduce time.Neverthe-
less, VPSearch is still efficient as the total time cost is less than
18 seconds for 100 queries over the entire Enron.

8 CONCLUSION AND FUTURE WORK

In this paper we have proposed the first verifiable privacy-
preserving multi-keyword search scheme for cloud comput-
ing. Our scheme is implemented by applying an efficient

Fig. 7. Time cost for authenticating document indices.

Fig. 8. Time cost for 100 keyword search queries).

Fig. 9. Time cost for verification of 100 queries.

Fig. 10. Runtime performance of VPSearch and comparison with Cao
et al.’s scheme [11] for 100 queries over the entire Enron. The left bars
are for Cao et al.’s scheme, and the right bars are for VPSearch.
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homomorphic MAC scheme on a privacy-preserving multi-
keyword scheme, andwe havemade necessarymodifications
to the homomorphicMAC scheme so that it supports privacy-
preserving multi-keyword search. We also provide a verifica-
tion technique called random challengewith ordering for top-
k search results. We have analyzed security of our scheme
and showed that it fulfills the requirement of verifiability, effi-
ciency, data/keyword privacy, and unbounded storage.

However, VPSearch is not efficient for large-scale data-
bases since the cloud needs to search through the whole
database, which is very inefficient. Our future work in this
line will be enhancements for efficient verification for large-
scale outsourced data.
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