
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

12-2018

Typing-Proof: Usable, secure and low-cost two-
factor authentication based on keystroke timings
Ximming LIU
Singapore Management University, xmliu.2015@phdis.smu.edu.sg

Yingjiu LI
Singapore Management University, yjli@smu.edu.sg

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

DOI: https://doi.org/10.1145/3274694.3274699

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
LIU, Ximming; LI, Yingjiu; and DENG, Robert H.. Typing-Proof: Usable, secure and low-cost two-factor authentication based on
keystroke timings. (2018). ACSAC '18: Proceedings of the 34th Annual Computer Security Applications Conference, San Juan, Puerto Rico,
December 3-7. 53-65. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4211

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/3274694.3274699
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4211&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Typing-Proof: Usable, Secure and Low-Cost
Two-Factor Authentication Based on Keystroke Timings

Ximing Liu, Yingjiu Li, Robert H. Deng
School of Information Systems, Singapore Management University, Singapore

{xmliu.2015,yjli,robertdeng}@smu.edu.sg

ABSTRACT
Two-factor authentication (2FA) systems provide another layer of
protection to users’ accounts beyond password. Traditional hardware
token based 2FA and software token based 2FA are not burdenless
to users since they require users to read, remember, and type a one-
time code in the process, and incur high costs in deployments or
operations. Recent 2FA mechanisms such as Sound-Proof, reduce
or eliminate users’ interactions for the proof of the second factor;
however, they are not designed to be used in certain settings (e.g.,
quiet environments or PCs without built-in microphones), and they
are not secure in the presence of certain attacks (e.g., sound-danger
attack and co-located attack).

To address these problems, we propose Typing-Proof, a usable,
secure and low-cost two-factor authentication mechanism. Typing-
Proof is similar to software token based 2FA in a sense that it uses
password as the first factor and uses a registered phone to prove the
second factor. During the second-factor authentication procedure, it
requires a user to type any random code on a login computer and
authenticates the user by comparing the keystroke timing sequence
of the random code recorded by the login computer with the sounds
of typing random code recorded by the user’s registered phone.
Typing-Proof can be reliably used in any settings and requires zero
user-phone interaction in the most cases. It is practically secure
and immune to the existing attacks to recent 2FA mechanisms. In
addition, Typing-Proof enables significant cost savings for both
service providers and users.

ACM Reference Format:
Ximing Liu, Yingjiu Li, Robert H. Deng. 2018. Typing-Proof: Usable, Secure
and Low-Cost Two-Factor Authentication Based on Keystroke Timings. In
2018 Annual Computer Security Applications Conference (ACSAC ’18),

December 3–7, 2018, San Juan, PR, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3274694.3274699

1 INTRODUCTION
Two-factor authentication (2FA) systems are pervasively used for
protecting login attempts and online transac-tions. They require users
to provide two separate pieces of credentials for user authentication.
The first factor (credential) is typically a knowledge factor, where
passwords or PINs serve as something that only legitimate users

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274699

should know. The second factor (credential) is typically a possession
factor, where hardware tokens (e.g., ID cards, USB tokens, and
wireless tags) or software tokens (e.g., smart-phones or smart-
watches) serve as something that only legitimate users should
possess.

Hardware token based 2FA introduces extra burden to users since
they typically require a user to carry and interact with a hardware
token. A one-time code displayed on the hardware token should be
submitted by the user to a server for user authentication. Besides
its usability issue, a service provider must manufacture a number
of hardware tokens and distribute them to all customers, which is
expensive (e.g., $60 per token [2]) if the customer base is large. A
hardware token usually has a lifetime around 3 years; therefore a
service provider needs to distribute new tokens to each customer
every 3 years, which also adds to the costs.

In recent years, due to the pervasive use of phones, SMS-based
2FA becomes more popular. After a user’s first factor is verified
by a service provider, a verification code is sent to the user via
SMS. The user needs to use this code to prove the possession of the
second authentication factor. This solution relaxes the requirement
on additional hardware but still requires users to interact with
their phones so as to read and input verification codes during
authentication processes. In addition, a service provider bears a
significant cost for sending verification codes via SMS to users’
phones to complete all authentication sessions in daily operations.

To eliminate the user-phone interactions, Karapanos et al. pro-
posed Sound-Proof [23] recently which enables a server to verify a
user’s second factor by matching two pieces of ambient sounds
recorded respectively by the user’s phone and by the browser
in a login computer during a short period of time (5 seconds
in [23]) right after the server verifies the user’s first factor (i.e.,
username and password submitted to the server via the browser in
the login computer) for each authentication session. However, it
has usability limitations such that it is not designed to be used in
quiet environments and it cannot work when the login computer has
not been equipped with a microphone or the browser in the login
computer does not support audio recording. In addition, this solution
is vulnerable to certain practical attacks, including sound-danger
attack [43] and co-located attack [23].

In this paper, we propose Typing-Proof, a usable, secure and low-
cost two-factor authentication system. In Typing-Proof, the second
factor is the proximity of a user’s phone to the computer being used
to log in to an authentication server. A user needs to place his/her
registered phone near the login computer. After the user passes the
first-factor authentication using a browser in the login computer,
he/she is required to type a random code by the user’s choice (i.e.,
a sequence of any keys) on the computer’s keyboard. During the
typing, the browser in the login computer records the keystroke

53

https://doi.org/10.1145/3274694.3274699
https://doi.org/10.1145/3274694.3274699

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Ximing Liu, Yingjiu Li, Robert H. Deng

timing sequence (i.e., a sequence of all keystrokes’ timestamps)
by JavaScript and the user’s phone records the keystroke sound.
After finishing the typing, the keystroke timing sequence is sent to
the user’s phone via the server. Then the user’s phone compares
the keystroke timing sequence with the recorded keystroke sound,
and approves the second factor if they “match”, meaning that
the registered phone is near the computer. If this second-factor
authentication fails, Typing-Proof provides a backup solution where
the user’s phone displays the random code through an application.
The user checks whether it matches the code typed and displayed on
the browser, and presses an “Approve” or “Deny” button accordingly.

Typing-Proof is user-friendly. It requires no user-phone interac-
tions in most cases, and one-button press in the backup case. Typing-
Proof works in any environment, even in a noisy place. It can be
easily deployed since it is compatible with all major browsers, login
computers, and smartphones, and does not require any additional
plug-ins or external hardware to be used.

Typing-Proof is practically secure. In particular, Typing-Proof is
more secure than Sound-Proof since it is immune to sound-danger
attack and co-located attack. In sound-danger attack, an attacker
deliberately makes a victim’s registered phone to produce particular
sounds. However, it is difficult to simulate keystroke sound on a
victim’s side remotely and such simulation can be easily blocked in
Typing-Proof. In co-located attack, an attacker logins to a victim’s
account using 2FA in the same environment with the victim. It
is still difficult for the victim’s phone to capture the attacker’s
keystroke sound in Typing-Proof, except that the distance between
the attacker’s login computer and the victim’s phone is sufficiently
short (e.g., within 100cm), which may raise the victim’s awareness.

Typing-Proof incurs significant lower costs compared to other
solutions, including Sound-Proof, hardware token based 2FA, and
SMS-based 2FA. In particular, Typing-Proof lowers the charges of
data transfer compared to Sound-Proof. Only a keystroke timing
sequence and a random code (around 250 bytes) need to be sent
from a user’s login computer to the user’s phone in Typing-Proof
during the second-factor authentication; this is smaller in size than
the audio signal transmitted in Sound-Proof. For hardware token
based 2FA and SMS-based 2FA, they do not involve any data transfer
cost, but they cost much more on manufacturing hardware tokens
and sending short messages, respectively.

We have implemented a prototype of Typing-Proof for Android
devices. Compared to password-only authentication mechanisms,
Typing-Proof takes around 4.3 seconds longer for completing
user authentication on average. This additional time is not only
substantially shorter than the time overhead of 2FA mechanisms
based on verification codes (roughly 10.4 seconds longer than
the password-only solution) but also shorter than Sound-Proof
mechanisms (around 5 seconds longer than the password-only
solution). A user study we conducted shows that users prefer Typing-
Proof over both SMS-based 2FA [19] and Sound-Proof [23].

2 ASSUMPTIONS AND GOALS
System Model. Our two-factor authentication system requires
two devices – a computer and a phone on the user side, and an
authentication server on the server side (hereinafter referred as
the “server”). The computer is used to login to the user’s account

through a web browser application (hereinafter referred as the “login
computer”). The phone is installed with a “Typing-Proof” application
which is bound to the user’s account (hereinafter referred as the
“registered phone”). Note that the login computer and the registered
phone can be the same physical device when a user logs in from the
browser on his/her registered phone.

During an authentication procedure, a user points his browser to
the server’s webpage and enters his/her username and password. The
server verifies the user’s credential and challenges the user to prove
the second authentication factor.
Threat Model. We assume that an adversary has obtained a
victim’s username and password. This assump-tion is reasonable
since password database suffers from various cyber-attacks. Many
companies, including Dropbox [24], LinkedIn [21], Yahoo [34],
are targets of password database leakage recently. An adversary is
successful in impersonating a victim user if the adversary is able to
convince the server that he/she also holds the second authentication
factor of the victim.

We further assume that the adversary cannot compromise the
victim’s registered phone. In other words, the victim’s registered
phone is trusted by the server. This assumption is also shared by
other two-factor authentication systems based on software tokens.

We do not consider Man-In-The-Middle attack. Client-web
authentication cannot fully prevent such attacks even if web ap-
plications employ HTTPS communications [22]. We leave out active
phishing attack where attackers trick users to visit phishing websites
and relay stolen credentials to legitimate websites in real-time. Such
attacks can be defended using anti-phishing technologies [17, 36].
Design Goals of 2FA Mechanism.

• Usability. A 2FA mechanism should be easy to learn and efficient
to use. In most cases, users should not be asked to interact with
their phones. In particular, a registered phone (i.e., software
token) should work well even when the phone is locked or
the authentication application in it runs in its background. In
addition, the second authentication factor should require no
memory demand for users.

• Security. A 2FA mechanism should be secure under a general
threat model shared by other 2FA mechanisms. It should be
resilient to guessing. The second factor should be independent
with the first factor. This implies that the leak of any single factor
should not affect the security of the other factor.

• Low-cost. A 2FA mechanism should not consume too much
computing resources, especially for the authentication applications
installed on registered phones. The total costs using 2FA, including
the costs at the server’s end (e.g., SMS fee and data transfer cost)
and at the user’s end (e.g., data transfer cost), should be low or
negligible.

3 RELATED WORK
In this section, we review two traditional 2FA mechanisms, including
hardware token and SMS-based software token, as well as several
recent 2FA proposals which incur less user-phone interactions. We
show that why these solutions fail to satisfy our design goals.

54

Typing-Proof: Usable, Secure and Low-Cost
Two-Factor Authentication Based on Keystroke Timings ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

3.1 Traditional 2FA
Hardware Token. Hardware token based 2FA is a widely deployed
2FA solution in practice (e.g., in financial industry). It requires
users to carry and use hardware tokens for authentication. During
an authentication session, a hardware token is used to generate
an authentication code at fixed time intervals (usually 60 seconds)
according to a built-in clock and a factory-encoded random key
(known as "seed"). A user reads the authentication code from the
hardware token and inputs it to a login computer after the user inputs
the first factor.

Hardware token based 2FA requires users to interact with
their hardware tokens, read and remember authentication codes
temporarily before input them on login computers. It also requires a
service provider to manufacture a number of hardware tokens and
distribute them to all customers. The cost of tokens is considerably
high (e.g., $60 per token [2]), which is usually bore by service
providers. In addition, a hardware token usually has a limited lifetime
of around 3 years, which implies that service providers should
distribute new tokens to each customer every 3 years. In contrast,
our solution does not need any additional hardware except users’
smartphones and it does not require users to interact with their
smartphones in most cases.
SMS-based Software Token. Due to the pervasive use of phones,
SMS-based software token is becoming more popular in recent years.
After a user inputs the first factor on a login computer which sends
it to the corresponding server, the server sends a verification code to
the user’s registered phone via SMS. The user reads the verification
code from the registered phone and inputs this code to the login
computer to complete an authentication session. This solution does
not require any additional hardware but it still requires the user to
interact with his/her phone, temporarily remember a verification
code, and manually inputs the code on the login computer. In this
solution, the service provider bears the cost for sending verification
codes via SMS to users’ phones. In comparison, our solution releases
users from user-phone interactions in most cases and the data transfer
cost required in our solution is much cheaper than sending SMS.

3.2 2FA with Less User-Phone Interactions
Sound-Proof. Sound-Proof is a recent 2FA solution proposed to
eliminate user-phone interactions and lower the cost [23]. After a
user inputs the first factor, both login computer and registered phone
begin to record background sounds simultaneously; then, the login
computer sends the recorded audio data to the registered phone via
server; a Sound-Proof application installed in the registered phone
compares whether the two pieces of background sounds are similar,
and determines if the login computer and the phone are located in
the same environment, and thus decides whether the login attempt is
legitimate or fraudulent.

Sound-Proof has a limitation that it rejects the login attempt if
the average power of any recorded audio sample is below certain
threshold in order to prevent an impersonation attack in the case that
a victim’s environment is quiet (e.g., while the victim is sleeping).
This lowers its usability since it is common for a user to login to
his/her accounts in a quiet place (e.g., home, office, and library).
The sound introduced by user’s typing would not make Sound-
Proof work since the average power of keystroke sound is around

30dB as we measured while the threshold for sound recording is
set to 40dB in Sound-Proof [23]. Sound-Proof suggests users make
certain noise (by, e.g., clearing throat, knocking on the table) in
quiet environments; however, it may be awkward for some users.
It cannot work either if the login computer is not equipped with a
built-in microphone since it cannot record the background sounds.
We notice that most desktops are not equipped with microphones. In
such cases, Sound-Proof demands additional hardware (i.e., external
microphone) which may not be always convenient. Compare to
Sound-Proof, our solution can be reliably used in any environment
and is compatible with major browsers and PCs without requiring
any external hardware.

From a security point of view, Sound-Proof is vulnerable to certain
practical attacks. Zhang et al. [43] proposed a sound-danger attack

where an attacker may deliberately make a victim’s registered phone
to produce previously known sounds (e.g., making a phone call or
VoIP call, sending an SMS, and triggering an app-based notification)
remotely at the time of an attack. Therefore, the attacker can make
the same ringtone on his/her side at the same time to bypass the
second-factor authentication since both ambient sounds of the victim
and of the attacker are the same ringtone in such case. Another
potential attack is co-located attack [23] where an attacker and a
victim stay in the same environment (e.g., in the same café). The
ambient sounds of the victim and of the attacker are obviously the
same so that the attacker can bypass the second-factor authentication.
Compare to this work, typing random code in our solution can be
fully controlled by users, which provides adjustable security, and
makes it immune to co-located attacks and sound-danger attacks.
One-Button Authentication. One-button authentication requires a
user to install an application on user’s smartphone and bind the
application to the user’s account. Whenever a login attempt occurs
on a user’s account, the user is notified via the application and
prompted to approve or reject the request. For certain one-button
authentication applications, users can approve login requests with
notifications without even opening the applications. This solution
makes two-factor authentication more user-friendly than SMS-based
2FA. It has been adopted by several enterprises, including Microsoft
Authenticator [28], Blizzard Entertainment [9], Duo Security [14],
LastPass [31], and Futurea [16].

However, most one-button authentication systems are not secure
against synchronized login attack. If an attacker and a victim login to
the victim’s account at the same time, the victim cannot distinguish
which login request sent to his/her registered phone is legitimate,
and he/she may mis-approve the login request sent from the attacker.
Although some one-button authentication applications display IP
addresses of login computers along with authentication requests,
it is still difficult for the users who have no knowledge about
the IP addresses to distinguish which login request is legitimate.
Furthermore, an attacker may forge an IP address if he/she knows the
victim’s IP address. In contrast, our solution enhances the existing
one-button authentication systems in a special case in which it
requires a user to check whether the random code displayed on
his/her phone is the same as the one displayed on the login computer.
Short-Range Communication. Short-range communications, such
as Bluetooth, WiFi, or NFC, are also widely adopted to support
two-factor authentication.

55

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Ximing Liu, Yingjiu Li, Robert H. Deng

An authentication service provider – SAASPASS [32] leverages
on location-based iBeacon Bluetooth Low Energy (BLE) technology
to authenticate users via Bluetooth communications between their
registered phones and nearby login computers. Similarly, another
2FA proposal, PhoneAuth [13], sets up unpaired Bluetooth commu-
nications between a login computer and user’s phone via Bluetooth
using a new challenge-response protocol. However, these solutions
may not be always applicable since most browsers (e.g., Firefox,
Internet Explorer, and Safari [26]) do not support Bluetooth APIs. In
addition, these solutions are not secure if adversaries set up Bluetooth
connections to victims’ phones to bypass 2FA.

Instead of using Bluetooth, Shirvanian et al. [33] proposed using
WiFi communications between login computer and user’s phone
for 2FA. However, this solution works only when both devices are
connected to the same network.

As NFC is widely embedded into today’s commodity smart-
phones, Facebook [15] introduced a physical NFC security key that
allows users to login to their accounts on their smartphones via NFC.
This solution makes hardware token based two-factor authentication
process faster. Instead of reading an authentication code from a
hardware token and inputting it to a login computer, a user just taps
a NFC security key against his/her smartphone so as to complete
an authentication session. However, this solution requires additional
hardware and its cost is of similar concern as in the case of hardware
token based 2FA.

4 TYPING-PROOF
In this section, we introduce Typing-Proof in detail. Our solution
uses password as the first factor and the proximity of a user’s
registered phone to a login computer as the second factor. The
proximity of the two devices is determined by comparing the
keystroke timing sequence recorded by the login computer for the
user’s typing of a random code on the computer with the keystroke
sound recorded by the user’s registered phone which is placed closed
to the login computer. We analyze that our approach is usable, secure
and low-cost.

4.1 Enrollment and Login
Similar to other 2FA mechanisms based on software tokens, Typing-
Proof requires a Typing-Proof application to be installed on a user’s
smartphone as a software token and be bound to his/her account on
the server. This is a one-time operation, which can be carried out
using similar existing techniques to enroll software tokens (e.g., [19,
23]).

Figure 1 shows an overview of the login procedure, in which a
user places his/her registered phone near a login computer and uses
the login computer to login to a server. In the login procedure, a user
points the browser to the URL of the server on a login computer
and enters his/her username and password. If both username and
password are correct, the server sends two separate indicators to
the login computer and the user’s registered phone, respectively
for activating the second authentication process. Upon receiving an
indicator, the browser pops up an input box for the user to type a
random code by the user’s choice. At almost the same time, the
registered phone receives another indicator and starts recording
audio through its embedded microphone. During the user’s typing,

Computer Server Phone
Username and

Password (HTTPS)

Begin

End Recording

Keystroke Timing

Indicator

Typing Random Code

Indicator

Sequence (HTTPS)
Keystroke Timing
Sequence (HTTPS)

Login
Accepted

Matched?Yes

Display the code, the
user checks and presses
‘Approve/Deny’ button

No
Login

Accepted/Rejected

End Recording

Begin

Figure 1: The overview of Typing-Proof two-factor authentication login
procedure.

the browser records a timing sequence of the user’s keystrokes using
JavaScript. After finishing typing, the browser stops recording and
sends the random code as well as the keystroke timing sequence
to the registered phone through the server. When receiving the
random code and the keystroke timing sequence, the registered
phone stops recording and compares the keystroke timing sequence
with the recorded audio signal for the second-factor authentication.
In particular, it calculates a similarity score between the two. If and
only if the similarity score is above a threshold �sim , the Typing-
Proof application in the registered phone concludes that it is close
to the login computer and informs the server that this login attempt
is legitimate. Note that this second-factor authentication process is
automatically carried out without any user-phone interactions.

When a user logins to his/her account using Typing-Proof in an
abnormal environment, such as the keyboard is soundless, or the
environment is too noisy, the automatic second-factor authentication
may fail. Typing-Proof provides a backup solution where the
registered phone displays the random code and ‘Approve/Deny’
buttons. The user presses an ‘Approve’ and ‘Deny’ button to
manually accept or reject the login attempt after checking whether
the random code displayed on the registered phone is the same as
the one typed and displayed on the login computer. Our approach
is specific to our proposed scheme and securer than the existing
one-button authentication solutions described in Section 3.2 since
it is immune to the synchronized login attack: the user can easily
identify his/her login request by checking the random code displayed
on the registered phone.

For the security reason that an attacker may infer the password
from keystroke timing information [35, 42], the keystroke timing
sequence is recorded from typing a random code instead of from
password entry. In addition, all browser-server and phone-server
communications over the Internet are transmitted via HTTPS and
the server does not need to store any keystroke information (i.e.,
keystroke timing sequence, random code, and keystroke audio
sample).

56

Typing-Proof: Usable, Secure and Low-Cost
Two-Factor Authentication Based on Keystroke Timings ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

(a) The raw audio signal (b) The filtered audio signal

(c) The energy level signal (d) The energy level signal with
corresponding keystroke timing vertical

Figure 2: Example of an audio signal which is recorded in a café.

4.2 Similarity Score
The Typing-Proof application on a registered phone computes a
similarity score between a keystroke timing sequence and a piece of
audio signal in three main steps including noise reduction, energy
level extraction, and cross-correlation.
Noise Reduction. The environment where a user conducts his/her
authentication may have various kinds of noise, such as other users’
typing on their computers, people’s talking, and background music.
A user’s keystroke sound using Typing-Proof may be covered by
such noise. We observe that the keystroke sound mainly lies in the
frequencies higher than 15,000Hz. Therefore, we utilize a high pass
filter to remove the noise below. Figure 2(a) and Figure 2(b) show a
raw audio sample recorded in a Starbucks café and the corresponding
filtered audio sample. We have evaluated this step over a number
of samples, and it turns out that keystroke signals can be correctly
‘sanitized’ in most cases.
Energy Level Extraction. Similar to previous study [3, 8, 38, 44],
we observe that the acoustic signal of one keystroke usually involves
three peaks: touch peak, hit peak, and release peak. According to
our experiments, when a registered phone is placed more than 50cm
away from the keyboard of a login computer or the environment
is too noisy, the touch peak and the release peak may become
inconspicuous while the hit peak remains clear. We thus use the
hit peak to serve as a landmark of a keystroke. To highlight the hit
peak, we transform the signal sequence into energy levels using time
windows. Particularly, we calculate the energy levels of a keystroke
sound using windowed discrete Fourier transform (DFT) and take
the sum of all FFT coefficients as its energy. Figure 2(c) shows the
energy-level signal corresponding to the filtered audio signal that is
shown in Figure 2(b).
Cross-correlation. We choose cross-correlation as our similarity
metrics. Cross-correlation is a standard measure of similarity
between two time series. We use x to denote the energy-level signal
converted from the audio signal recorded by a registered phone and
use k to denote the keystroke timing sequence recorded by the login
computer. First, we transform the keystroke timing sequence k into
a pulse sequence �:

�[t] =
(
0 if t is not a element in k

1 if t is a element in k
(1)

where t ranges from 0 to the length of the energy-level signal x .
Given two time series x and �, we then let:

CCx,� (l) =
n�1’
i=0

x[i] · �[i � l] (2)

This is a sliding dot-product of the two time series, where � is shifted
by l samples over x . To accommodate different amplitudes of the
two signals, the cross correlation is normalized as:

CC 0
x,� (l) =

CCx,� (l)p
CCx,x (0) ·CC�,� (0)

(3)

where CCx,x (0) and CC�,� (0) is the auto-correlation. The cross-
correlation is maximized at the offset l where the two time series
are most similar. We definemaxl (CC 0

x,�) to be the similarity score
between the keystroke timing sequence and the audio signal where
l is bounded between 0 and tmax . Figure 2(d) shows a plot of the
keystroke timing sequence and the audio signal where the two time
series are matched best. The red vertical lines in the Figure 2(d)
denote the timestamps of all keystrokes.

4.3 Usability Analysis
Typing-Proof requires users to place their phones near the login
computer but it does not require users to interact with their phones
in most cases. Users need not take any action to launch the Typing-
Proof application on their registered phones before they conduct
authentications. Even the Typing-Proof application is running in
the background, or the registered phone is locked, the Typing-Proof
application can still be activated to record keystroke sound in the
second-factor authentication process as long as the registered phone
is connected to a network.

The usability of Typing-Proof is slightly lower than the user
authentication with password only. In most cases, Typing-Proof
requires no user-phone interactions for 2FA. It takes 4.3 seconds
on average without user-phone interactions, and it takes additional
7.1 seconds on average for using the backup solution in case it is
triggered.

The usability of Typing-Proof is significantly higher than Sound-
Proof. First, Sound-Proof is not designed to work in a quiet
environment while Typing-Proof works well in various environments.
Second, Sound-Proof requires a login computer to equip with
a microphone for audio recording while Typing-Proof does not
require any additional hardware. Third, many browsers (e.g., Internet
Explorer and Safari [27]) do not support audio recording. In
comparison, Typing-Proof can work with all major browsers since
they all support keydown event API. On the other hand, we
acknowledge that Sound-Proof is convenient to use since it does not
require random typing.

The usability of Typing-Proof is also significantly higher than
hardware token based 2FA and SMS-based 2FA. Typing-Proof does
not require users to remember anything. In the backup solution,
users need to check whether the random code displayed on the
registered phone is the same as the one typed and displayed on
the login computer. According to a quantitative usability analysis
framework [41] shown in Appendix A, the cognitive workload of
this comparison can be calculated by 0.4077 · dx/4e = 0.101925 · x
(seconds), where x is the length of random code. The cognitive

57

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Ximing Liu, Yingjiu Li, Robert H. Deng

workload is about 1.02 seconds for x = 10. However, for hardware
token based 2FA and SMS-based 2FA, a user needs to memorize
the verification code (in most case, the length of the code is 6)
temporarily and then inputs it into the browser on a login computer.
The memory demand in these solutions can be calculated by
d6/4e /29.6% = 6.76 (seconds) when the length of a verification
code is 6 [41]. Therefore, Typing-Proof takes a shorter time for
cognitive operations than hardware token based 2FA and SMS-based
2FA.

4.4 Cost Analysis
The costs for Typing-Proof stem from data transfer. During the
second-factor authentication of Typing-Proof, a random code and
its corresponding keystroke timing sequence (around 250 bytes)
are sent from a login computer to a registered phone via server. In
comparison, Sound-Proof transmits a piece of audio signal (around
250k bytes) whose data size is about 1000 times larger than that in
Typing-Proof. Thus, Typing-Proof costs significant less than Sound-
Proof for data transfer. For hardware token based 2FA and SMS-
based 2FA, they do not involve any data transfer cost (e.g., $0.09 per
GB [4]), but they cost more on manufacturing hardware tokens (e.g.,
$60 per token1 [2]) and sending short messages (e.g., $0.00645 per
SMS [5]), respectively.

5 EVALUATION
In this section, we conduct an experiment to examine the effective-
ness of Typing-Proof. We implement Typing-Proof on a prototype
which consists of three components, including a web server, a web
client, and a mobile client. Please refer to Appendix B for our
prototype implementation, including time synchronization between
web client and mobile client. We use our prototype to collect a
large number of keystroke timing sequences and their corresponding
audio samples. Following the similarity score calculation algorithm
described in Section 4.2, we find the threshold of the similarity score
that leads to the best results in terms of false rejection rate (FRR)
and false acceptance rate (FAR).The performance evaluations of
Typing-Proof are conducted in different settings.

5.1 Data Collection
Two volunteers recruited from our university logged in their accounts
using Google Chrome, Internet Explorer, and Microsoft Edge2 over
2 weeks. At each login, the volunteers are required to type at least
5 characters for the second-factor authentication. A login computer
records keystroke timing sequence and a registered phone records
audio through its microphone. This pair of data samples was stored
for post-processing. The login attempts were conducted in various
settings:
Environment: Different environment settings were used in our
experiments, including a one-person office which is quiet, a research
lab where many users sitting surrounding the user type on their own
computers at the same time, and a Starbucks café with people’s
talking and background music. Figure 3 provides an illustration
1The price of hardware token may drop significantly if a large number of hardware
tokens are purchased.
2We used Google Chrome, Internet Explorer, and Microsoft Edge since they are
currently most popular browsers [30]. We also test Typing-Proof with other browsers
during our user study and experience similar performance.

One-person Office Research Lab Starbucks Café

Figure 3: An illustration of the three different environments tested in
our experiment: One-person Office, Research Lab, Starbucks café.

Table 1: The number of the login attempts per volunteer for each
combination of settings.

One-person Office Research Lab Café
Desktop Keyboard 50S, 50M, 50L1 50S, 50M, 50L1

Laptop Keyboard 50S, 50M, 50L1 50S, 50M, 50L1 50S2

Software Keyboard 50 50 50
1 50S, 50M, and 50L refer to collecting 50 login attempts per volunteer
in the setting of short, medium, and long phone-keyboard distance,
respectively.
2 The table in the Starbucks is small so that we only consider the cases
where users place registered phones 20cm away from keyboards.

of the three environments tested in our experiment. Note that the
cubicle in the research lab environment was surrounded by other 5-8
cubicles with a distance of around 1.5 meter between two cubicles
next to each other.
Phone Position: In our experiment, the volunteers place their
registered phones at various distances from the corresponding login
computers, including a short distance (i.e., 20cm), a medium distance
(i.e., 50cm), and a long distance (i.e., 100cm). Here, the phone-
keyboard distance is measured from the center of a registered phone
to the center of a login computer’s keyboard.
Keyboard Model: We tested three different keyboard models for
volunteers to use Typing-Proof on login computers, including a
standard QWERTY keyboard (Acer PR1101U), a laptop keyboard on
Mac Book Pro 13”, and a software keyboard on Google Nexus 5x. In
particular, the software keyboard setting refers to the scenario where
a login computer and a registered phone are the same device (i.e.,
the registered phone). In our experiment, we used Google Keyboard-
English (US) for the input, with the keypress vibration turned on and
the keypress sound turned off. Therefore, for the software keyboard
on a smartphone, we record the sound of keypress vibration instead
of directly recording the sound of touching on the screen which is
too slight to be recorded.

We collected 50 login attempts per volunteer for each combination
of settings, totaling 1600 login attempts (1600 keystroke timing
sequences and 1600 audio samples). Table 1 shows the structure of
our dataset.

5.2 Parameters Configuration
The collected data is used to discover the best threshold �sim
for comparing keystroke timing sequences with keystroke sound.
The best threshold is selected according to FRR and FAR, where
FRR measures the proportion of legitimate logins which are
falsely rejected by the server, and FAR measures the proportion

58

Typing-Proof: Usable, Secure and Low-Cost
Two-Factor Authentication Based on Keystroke Timings ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

0.31 0.33 0.35 0.37 0.39
Threshold

0.02

0.04

0.06

0.08

0.10

0.12

Ra
te

(0.3652, 0.0156)

false rejection rate
false acceptance rate

Figure 4: False rejection rate and false acceptance
rate as a function of threshold �sim .

5 6 7 8 9 10 11 12 13 14 15
The minimum length of random code

0.006

0.008

0.010

0.012

0.014

0.016

E
q

u
a

l
E

rr
o

r
R

a
te

0.01562
0.01533

0.01489

0.0121

0.00882

0.00738
0.00702

0.00635

0.00566

0.00468
0.00443

Figure 5: The relationship between ERR and the
minimum length of random code.

5 6 7 8 9 10 11 12 13 14 15
The minimum required length of random code

0.000

0.001

0.002

0.003

0.004

0.005

F
a

ls
e

 A
c
c
e

p
ta

n
c
e

 R
a

te

0.00433

0.00095

0.00032

0.00129

0.00018

0.00003

FRR=0.1

FRR=0.2

FRR=0.3

Figure 6: The relationship between FAR and the
minimum length of random code when FRR is
fixed.

Table 2: FRR and FAR when usability and security have different
weights.

FRR FAR Threshold
� = 0.1, � = 0.9 0.07625 0.00603 0.394
� = 0.2, � = 0.8 0.02188 0.01336 0.370
� = 0.3, � = 0.7 0.00125 0.01961 0.358
� = 0.4, � = 0.6 0.00125 0.01961 0.358
� = 0.5, � = 0.5 0.00125 0.01961 0.358
� = 0.6, � = 0.4 0.00000 0.02091 0.356
� = 0.7, � = 0.3 0.00000 0.02091 0.356
� = 0.8, � = 0.2 0.00000 0.02091 0.356
� = 0.9, � = 0.1 0.00000 0.02091 0.356

of fraudulent logins which are falsely accepted by the server. Note
that in Typing-Proof, the use of backup solution ensures that FRR is
negligible assuming that users do not make any mistakes using the
backup solution3. Therefore, we use “FRR” to denote how frequent
the backup solution is activated in the following evaluations. We set
tmax to 200ms since this is the highest clock difference experienced
while testing our synchronization protocol (see Section B). Using
Typing-Proof, a volunteer/user is authenticated if and only if the
similarity score is greater than the threshold �sim and l < tmax ,
where l is the offset where the two time series are most similar.

To compute FAR, we use the following strategy. For each
audio sample recorded from one of the volunteers (acting as the
victim), we use all the keystroke timing sequences recorded from
the other volunteer as the attacker’s samples. We then switch
the roles of the two volunteers and repeat the above process.
Since the length of the victim’s audio sample and the duration
of the attacker’s keystroke timing sequence are mostly different,
we cut the longer sample/sequence according to the shorter one
for similarity comparison. The total number of comparisons is
800*800*2=1,280,000 in our experiment.

3No mistake was observed in our experiments for users to compare two random codes
displayed on a browser and on a registered phone, using the backup solution. The
cognitive workload of comparing two random codes in Typing-Proof is significantly
lower than remembering of a code displayed on a hardware token or phone and typing
it on a browser [41] as it is required by hardware token based 2FA and SMS-based 2FA.

Figure 4(a) plots FRR curve and FAR curve as a function of
threshold �sim when the backup solution of Typing-Proof is not
used. The threshold �sim for similarity score can be determined
based on the Equal Error Rate (ERR). ERR is the rate at which FRR
and FAR are equal. The value of ERR is derived from the crossing
point of FRR and FAR, which is 0.015625. We have �sim = 0.365235
at this point.

The threshold for similarity score can also be computed when
usability and security are weighted differently by the service provider.
In particular, we compute the threshold that minimizes f = � ·FRR+
� · FAR, for � 2 [0.1, ..., 0.9] and � = 1 � � . Table 2 provides FRR
and FAR when usability and security have different weights. In
Typing-Proof, we value security higher than usability since we have
the backup solution which reduces FRR to almost zero. The FAR
can be reduced to 0.006 if we set � = 0.1, � = 0.9.

We observe that FAR is highly correlated with the length
of random code. If the length of random code is longer, the
keystroke patterns of different users are more diverse so that
an attacker has a lower probability to bypass the second-factor
authentication. Figure 5(a) shows the relationship between ERR
and the minimum length lmin of random code. Figure 6(a) further
shows the relationship between FAR and lmin for fixed FRRs. The
FAR can be reduced significantly if users are required to type longer
random codes for the second-factor authentication. For example, if
it is acceptable to resort to the backup solution by 30% of chance,
the FAR is 0.003% for 10-digit or longer random codes.

In the following evaluations, we provide the performance of
Typing-Proof under two configurations: a general configuration
and a recommended configuration. The general configuration is set
according to ERR: tmax = 200ms, lmin = 5, and �sim = 0.365235.
In practice, we recommend service providers to value security higher
than usability and require users to type at least 10 characters for the
second-factor. Our recommended configuration sets � = 0.1, � = 0.9,
tmax = 200ms, lmin = 10, and �sim = 0.37.

5.3 False Rejection Rate
We evaluate the impacts of settings, including different environments,
phone positions, and keyboard models, to FRR if the backup solution
is not in use. The results are shown in Figure 7. The overall
FRR is 0.015625 in the general configuration and 0.01847 in the

59

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Ximing Liu, Yingjiu Li, Robert H. Deng

0.04 0.02 0.00 0.02 0.04 0.06

FRR

Software
Keyboard

Laptop
Keyboard

Standard
Keyboard

Long
Dis tance

Medium
Dis tance

Short
Dis tance

Café

Research
Lab

One-person
Office

D
if

fe
re

n
t

S
e

tt
in

g
s

0.024190.02667

0.030470.02143

0.003060.00500

0.022220.02000

0.014710.01000

0.004930.00400

0.070590.04000

0.015960.01285

0.008550.01285

General Configuration Recommended Configuration

0.020 0.015 0.010 0.005 0.000 0.005

FAR

Software
Keyboard

Laptop
Keyboard

Standard
Keyboard

Long
Dis tance

Medium
Dis tance

Short
Dis tance

Café

Research
Lab

One-person
Office

D
if

fe
re

n
t

S
e

tt
in

g
s

0.005160.01022

0.005440.01390

0.006130.02033

0.005180.01391

0.005030.01511

0.007120.01727

0.005280.01013

0.005000.01853

0.006510.01428

General Configuration Recommended Configuration

Figure 7: Impacts of different environments, phone positions, keyboard models to FRR and FAR in different configurations.

recommended configuration. This implies that the frequency of
Typing-Proof resorting to the backup solution is relatively low since
users do not need to interact with their registered phones in most
cases (i.e., over 98%). As a comparison, the FRR due to mistyped
passwords is around 0.04 [23, 25].

Typing-proof performs equally well in one-person office and
research lab, which implies that the sounds of many users’ typings
at the same time do not affect the performance of Typing-Proof.
In terms of phone positions, Typing-Proof performs best when the
registered phone is placed 20cm away from the keyboard of a login
computer. The performance of the long distance (i.e., 100cm) is
5 times worse than that of the short distance (i.e., 20cm). As for
keyboard models, the standard QWERTY keyboard performs the
best since this kind of keyboards produces loudest and clearest
keystroke sound while laptop keyboard and software keyboard
perform much worse. However, even in the worst case, the FRR
is around 3% which is still low for resorting to the backup solution.

5.4 False Acceptance Rate
We further evaluate FAR in Figure 7. The overall FAR is 0.015625
in the general configuration and 0.00569 in the recommended
configuration. In comparison, the FAR of Sound-Proof is 0.00200.
It is worth noting that the FAR of Typing-Proof is measured in
the worst case scenario where a victim is typing at the time of an
attack. In practice, if the victim is not typing or his/her phone is put
away from the victim’s keyboard at the time of the attack, the attack
may easily fail unless the attacker’s keyboard is close enough to
the victim’s phone. We argue that the FAR of Typing-Proof is small
enough for protecting not-so-sensitive user accounts such as those in
online social networks. While for highly sensitive user accounts such
as those in financial services, FAR of Typing-Proof can be further
reduced (e.g., 0.003%) by setting higher FRR (e.g., 30%) as shown
in Figure 6(a).

With regard to FAR in different settings, we observe that the
setting which leads to lower FRR would make FAR higher. In
particular, Typing-Proof has a lower probability to be attacked when
a victim stays in a noisier environment, places his/her registered

phone farther away from the keyboard, and uses sound-lighter
keyboard.

6 SECURITY ANALYSIS
Remote Attack. A remote attack requires an attacker to obtain a
victim’ username and password, pass the first-factor authentication,
submit a keystroke timing sequence as the second factor on a login
computer. The keystroke timing sequence is then sent to a victim’s
registered phone for similarity comparison. It also requires the victim
to type at the same time so that the keystroke timing sequence x
submitted by the attacker and the keystroke sound � recorded by the
victim’s registered phone are highly correlated within certain time
lag tmax , that is,maxl (CC 0

x,�) > �sim with l < tmax .
The security of Typing-Proof against remote attack stems from the

attacker’s inability to know whether the victim is typing and guess
what the victim is typing at the time of the attack. We bound the time
lag l between 0 and tmax to enhance the security of Typing-Proof.
Known Typed-Text Attack. A known typed-text attack is that a
remote adversary could correctly guess what a victim is typing or
predict what a victim will type at some point in time and submit
the same typing sequence at the same time. Note that during such
attack, the victim might be typing certain meaningful text rather than
random code. However, it is still difficult to bypass Typing-Proof
because the keystroke patterns of typing a same code are typically
different for different users [7, 29]. To prove this, we conduct an
experiment to evaluate the success rate of known typed-text attacks.

In this experiment, we select 25 frequently-used 5-letter words
(e.g., ‘there’, ‘would’, ‘about’, and etc.) and 25 frequently-used
words or phrases with no less than 10 characters (e.g., ‘thanks so
much’, ‘for instance’, and etc.). One volunteer (acting as the victim)
is required to type these words or phrases using Typing-Proof. The
audio samples of his typing are collected. Another 9 volunteers
(acting as attackers) are asked to type the same words or phrases
as the victim has typed. Each word or phrase is typed for 5 times
per volunteer and the corresponding keystroke timing sequences are
recorded. In total, 50 ⇤ 5 ⇤ 9 = 2250 attacking cases are generated.

60

Typing-Proof: Usable, Secure and Low-Cost
Two-Factor Authentication Based on Keystroke Timings ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

We calculate the similarities between an attacker’s keystroke
timing sequences and the victim’s audio samples for typing a same
word or phrase. All similarities are lower than the thresholds selected
in the Section 5.2 (i.e., �sim = 0.365235 for the general configuration
and �sim = 0.37 for the recommended configuration), which implies
that all known typed-text attacks failed. It is observed that if the
minimum required length of random code is longer, the similarities
in the attacking cases are lower. In particular, the average similarity
of attacking a 5-letter word and attacking a word or a phrase no
shorter than 10 characters are 0.17750, 0.12895, respectively. This
indicates that service providers may set the minimum required length
of random code to 10 or more so as to provide better protection
against known-typed text attacks.
Co-located Attack. In a co-located attack, an attacker logins to a
victim’s account and types a random code in the same environment
where the victim stays. Typing-Proof can withstand such attack since
it is difficult for the victim’s registered phone to capture the attacker’s
keystroke sound unless the victim’s registered phone is very close
to the attacker’s keyboard. We conduct an additional experiment to
evaluate the success rate of such co-located attack.

In this experiment, we assume that a victim and an attacker
are located in a same environment and there is a certain distance
between the attacker’s keyboard and the victim’s registered phone.
In particular, in the one-person office and research lab environments,
we set the distance between the attacker’s keyboard and the victim’s
registered phone as 150cm and 200cm, respectively. In the café
environment, we let the attacker sit at the same table with the victim
(phone-keyboard distance is around 50cm), and the attacker sit at the
next table to the victim (phone-keyboard distance is around 100cm).
We also consider the cases where the attacker and the victim typing
at the same time and the cases where the victim is not typing at the
time of co-located attack in each environment and for each phone
position. In each test case, we run the attack 50 times and calculate
the similarity between each audio sample collected by the victim’s
registered phone and the corresponding keystroke timing sequence
generated by the attacker.

Our results show that the success rate of co-located attack is
0.00667 (4 out of 600 cases). In particular, 3 successful cases occur
when the attacker sits at the same table with the victim in a Starbucks,
and the rest successful case occurs when the attacker sits 150cm
away from the victim in the one-person office. The victim is not
typing at the time of attack in all four successful attacking cases.
In order to launch a successful attack, the attacker needs to sit very
close to the victim’s registered phone and ensures that the victim
himself/herself does not make any keystroke sound. However, this
is likely to raise the victim’s suspicion anyway. In suspicious cases,
awared users can simply move their registered phones farther away
(e.g., larger than 150cm) from the keyboards used by suspicious
attackers.
Relay Attack. A relay attack is that an attacker obtains a victim’
username and password, passes the first-factor authentication,
records the keystroke sound of his/her typing of a random code,
and plays the keystroke sound near a victim’s registered phone
with a speaker in real time. In a legitimate authentication, the real
keystrokes are produced from different positions on a keyboard
unless a user types repeated keys as random code. In a relay attack,
however, the sounds played from a speaker come from the same

source. Such relay attack can be detected by analyzing the time-
difference-of-arrival of keystroke sound and determining whether
the sound source is moving. This approach was first proposed by
Zhang et al. for voice liveness detection [43]. It requires that the
registered phone is equipped with two microphones, which is met
by most popular smartphones (the smartphone products of Samsung,
Apple, Huawei, and Xiaomi whose total market share is more than
62.32% [37] are equipped with at least two microphones). Although
an attacker may deliberately choose to type repetitive “random"
code like “aaaaa" in a relay attack, we recommend users not to type
repetitive codes and if such codes are sent to the registered phones,
Typing-Proof is switched to the backup solution.
Sound-Danger Attack. A sound-danger attack [43] is that an
attacker deliberately makes a victim’s registered phone to produce
previously known sounds (see Section 3.2). In order to launch a
successful sound-danger attack against Typing-Proof, an attacker
needs to trigger the victim’s registered phone to produce the
keystroke sound that matches the timing sequences of the attacker’s
typing for 2FA.

While an attacker may use ringtone, notification tones or no-
tification vibrations to simulate keystroke sound on the victim’s
phone, such attack can be detected by checking the signatures of
keystroke sound which are different from the signatures of triggered
tones/vibrations [38]. Another countermeasure is to temporarily dis-
able the function of a Typing-Proof application on a registered phone
whenever a notification is received. Android platform provides Class
NotificationListenerService [20] to monitor whether
any new notification is received.

Alternatively, an attacker may choose a random code, craft an
audio signal which contains the keystroke sound for typing this
code, hide the audio signal into a video or audio recording, and
trick a victim to play the recording (e.g., through a manipulated
website or YouTube video). At the same time when the victim plays
the recording, the attacker submits the chosen random code to the
victim’s account. Since Typing-Proof uses only the frequency higher
than 15000Hz from an audio sample, it is even easier to hide the
high-frequency part of the keystroke sound, which is inaudible to
human. However, such attacks can still be detected by analyzing the
time-difference-of-arrival of keystroke sound, which is the same as
the countermeasure of relay attacks.

7 USER STUDY
An IRB-approved user study was conducted to evaluate the usability
of Typing-Proof and to compare it with the usability of Sound-Proof
and SMS-based 2FA.

7.1 Procedure
Our user study involved 25 participants, including 16 males and 9
females with ages from 21 to 27. All participants were students or
staff in a university. All participants were informed that no personal
information is collected and that the survey in the user study is
anonymous.

The user study took place in a classroom. Most participants used
their own laptops and their own Android smartphones for 2FA logins.
For the participants who did not have any Android phones, we
provided our test-phones for them. All devices were connected to

61

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Ximing Liu, Yingjiu Li, Robert H. Deng

the Internet through WiFi. We set up a server on a desktop, Acer
Veriton M4630G running Windows 7, and created a website that
integrates Typing-Proof, Sound-Proof, and SMS-based 2FA. All
participants were required to install our application on their phones
which supports all three authentication mechanisms.

During the user study, each participant was asked to log in to the
server using all three mechanisms in random order and for several
times. After using all 2FA mechanisms, participants were required
to fill in a survey. The survey includes three parts: demographic
information, System Usability Scale (SUS) [11], and a post-test
questionnaire which covers various aspects of 2FA mechanisms that
are not covered by the SUS.

7.2 Usability
Survey Results. All participants had ever used 2FA for online
banking and 88% of them had the experience of using 2FA for online
payment. Only 28% and 24% of them respectively ever used 2FA in
Google Services (e.g., Gmail) and Apple Services (e.g., iCloud). Our
experience is that many finance-related services, like online banking
or online payment, enforce users to use 2FA, while other services,
such as Gmail or iCloud, make 2FA optional, in which case many
users choose to opt out.

The System Usability Scale (SUS) is widely used to assess the
usability of IT systems [6]. Its score ranges from 0 to 100, where
a higher score indicates better usability. Appendix C reports the
items of SUS. The mean SUS scores for Typing-Proof, Sound-Proof,
and SMS-based 2FA are 81.7 (±14.68), 69.2 (±18.02), 73.4 (±12.62),
respectively. The result shows that the usability of Typing-Proof is
obviously better than the other two mechanisms. One interesting
observation is that the mean SUS score of Sound-Proof is a little bit
lower than that of SMS-based 2FA while the standard deviation of
Sound-Proof’s SUS score is larger than that of SMS-based 2FA. One
potential reason is that some participants’ browsers do not support
audio recording, which contributes to the low scores on the usability
evaluation of Sound-Proof.

The post-test questionnaire is similarly designed as that in [23],
aiming to collect information on the perceived quickness of the
three mechanisms (2FA-quick for short in Figure 8) and participants’
willingness to adopt them (2FA-mandatory in mandatory setting,
and 2FA-optional in optional setting for short in Figure 8). It also
inquires of participants whether they feel comfortable using the
mechanisms in different environments, including use @ home, use
@ workplace, use @ café, use @ library in Figure 8. The full post-
test questionnaire is listed in Appendix D. Figure 8 summarizes the
participants’ answers on 5-point Likert-scales in a radar chart plot. In
general, participants show the strongest willingness to adopt Typing-
Proof. Most participants evaluated that both Typing-Proof and Sound-
Proof are much quicker than SMS-based 2FA. Similar to [23], our
results show that participants tend not to use SMS-based 2FA if it is
optional, while for Typing-Proof and Sound-Proof, the difference in
users’ acceptance between mandatory setting and optional setting
is much less significant. More than 88% of participants evaluated
that Typing-Proof is suitable to be used at home, at their workplace,
while fewer participants would use Typing-Proof in a public place
(i.e., at a café or library). As for SMS-based 2FA, participants shared
a similar willingness in various scenarios.

Figure 8: Answer to the post-test questionnaire.

Login Time. The login time we measured in our user study is from
the start of the second-factor authentication (i.e., after username
and password is verified), to the moment when the login attempt is
accepted. We did not witness any login failure in our experiment.
Therefore, the login time of Typing-Proof does not include the
potential time of one-button authentication in the backup solution,
which takes 7.1 seconds on average as measured separately in
our experiments. The averaged login time for Typing-Proof is 4.3
seconds while it is 5.0 seconds for Sound-Proof and 10.4 seconds
for SMS-based 2FA. Among the three mechanisms, Typing-Proof is
the most favorable in terms of login time.

8 DISCUSSION
Adjustable Security. When Typing-Proof is used, a longer random
code makes it more difficult for an attacker to launch a successful
attack. On the other hand, typing longer random codes will lower the
usability of Typing-Proof. Therefore, users may take different typing
strategies according to their needs. For important authentications in
a less secure environment, users may choose to type longer random
codes, while for less important authentications in a more secure
environment, users may choose to type shorter random codes.
Transaction Authentication. Transaction authentication is another
important application of 2FA. Transaction authentication may suffer
from Man-in-the-Mobile attack and Man-in-the-Browser attack [1]
in which an attacker may change the content of a transaction such
as destination account number and transaction amount. To solve
this problem in Typing-Proof, user’s transaction details should be
sent to user’s registered phones via the server. Users should use the
backup solution of Typing-Proof and check it out before pressing
the ‘Approve’ button for transaction authentication.
CAPTCHA. Many existing authentication systems involve the use
of CAPTCHA. Typing-Proof can be easily used when CAPTCHA
is involved. Instead of typing random codes, users may type
CAPTCHA codes for 2FA. The overall user experience of Typing-
Proof is same with CAPTCHA-based password authentication if the
backup solution is not triggered.
Keyboard Protector. Some users may place keyboard protectors
on their keyboards in order to prevent dust entry or liquids.
Commercial keyboard protectors made of silicone can effectively
reduce keystroke sound. It may lead to high FRR when users

62

Typing-Proof: Usable, Secure and Low-Cost
Two-Factor Authentication Based on Keystroke Timings ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

login to their accounts using Typing-Proof. In the light of this, we
recommend users to take the keyboard protector off when they use
Typing-Proof (otherwise they need to resort to the backup solution).
Combined with other mechanisms. Typing-Proof can be com-
bined with other 2FA mechanisms, including Sound-Proof, hardware
token based 2FA, and SMS-based 2FA. Furthermore, Typing-Proof
and Sound-Proof can work simultaneously to make authentications
more usable and secure. In particular, if a user logins to his/her
account in a quiet environment where Sound-Proof does not work,
the server can rely on Typing-Proof for 2FA. On the other hand, if
the user uses 2FA in a noisy environment, Sound-Proof activated for
a better decision.
Alternative Devices. Currently, Typing-Proof uses a smartphone as
a software token. It is straightforward to replace it with other smart
devices such as smartwatch for 2FA. Compared to using smartphone,
the use of smartwatch in Typing-Proof may further lower FRR since
the distance between the keyboard of a login computer and the
smartwatch of a user who logins to his/her account wearing the
smartwatch should be shorter than the short distance (i.e., 20cm)
that is used in our experiments.
Comparative Analysis. The framework of Bonneau et al. [10] can
be used to compare Typing-Proof, Sound-Proof and SMS-based
2FA in terms of usability, deployability, and security. Table 3 in
the Appendix E shows the comparison. In general, both Typing-
Proof and Sound-Proof achieve better usability than SMS-based
2FA. The deployability of Typing-Proof is better than Sound-Proof
since Sound-Proof may not be exactly browser-compatible. We
observed several cases where participants’ browsers did not support
audio recording in our user study. As for the security aspect of the
comparison, Typing-Proof is better than Sound-Proof.

9 CONCLUSION
This paper presents Typing-Proof, a usable, secure, and low-cost
two-factor authentication mechanism. Typing-Proof does not require
a user to interact with his/her phone in most cases and does not
have any memory demand. It can be used in any environment and is
compatible with major browsers, PCs, and phones without requiring
any additional plug-ins or hardware. Typing-Proof is secure against
practical attacks, including remote attack, sound-danger attack,
co-located attack, and relay attack. Compared to hardware token
based 2FA, SMS-based 2FA and Sound-Proof, Typing-Proof enables
significant cost saving for both service providers and users. This
brings in high commercial potential which may foster large-scale
adoptions.

REFERENCES
[1] Manal Adham, Amir Azodi, Yvo Desmedt, and Ioannis Karaolis. 2013. How to

attack two-factor authentication internet banking. In International Conference on

Financial Cryptography and Data Security. Springer, 322–328.
[2] Aladdin. 2018. Two-Factor Authentication – The Real Cost of Ownership. https:

//mpa.co.nz/media/4410/twofactorauthenticationtherealcostofownership.pdf.
(2018).

[3] Dmitri Asonov and Rakesh Agrawal. 2004. Keyboard acoustic emanations. In
IEEE Proceedings of the 2004 Symposium on Security and Privacy. 3–11.

[4] AWS. 2018. Amazon EC2 Pricing. https://aws.amazon.com/cn/ec2/pricing/on-
demand. (2018).

[5] AWS. 2018. Worldwide SMS Pricing. https://aws.amazon.com/cn/sns/sms-
pricing. (2018).

[6] Aaron Bangor, Philip T Kortum, and James T Miller. 2008. An empirical
evaluation of the system usability scale. Intl. Journal of Human–Computer

Interaction 24, 6 (2008), 574–594.
[7] Francesco Bergadano, Daniele Gunetti, and Claudia Picardi. 2002. User

authentication through keystroke dynamics. ACM Transactions on Information

and System Security (TISSEC) 5, 4 (2002), 367–397.
[8] Yigael Berger, Avishai Wool, and Arie Yeredor. 2006. Dictionary attacks using

keyboard acoustic emanations. In Proceedings of the 13th ACM Conference on

Computer and Communications Security. ACM, 245–254.
[9] Blizzard. 2015. Introducing The One-Button Authenticator. http://us.battle.net/

heroes/en/blog/20152210/introducing-the-one-button-authenticator-6-16-2016.
(2015).

[10] Joseph Bonneau, Cormac Herley, Paul C Van Oorschot, and Frank Stajano. 2012.
The quest to replace passwords: A framework for comparative evaluation of web
authentication schemes. In Security and Privacy (SP), 2012 IEEE Symposium on.
IEEE, 553–567.

[11] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability

evaluation in industry 189, 194 (1996), 4–7.
[12] Nelson Cowan. 2001. The Magical Number 4 in Short-term Memory: A

Reconsideration of Mental Storage Capacity. Behavioral and Brain Sciences

24 (2001), 87–114.
[13] Alexei Czeskis, Michael Dietz, Tadayoshi Kohno, Dan Wallach, and Dirk Balfanz.

2012. Strengthening user authentication through opportunistic cryptographic
identity assertions. In Proceedings of the 2012 ACM conference on Computer and

Communications Security. ACM, 404–414.
[14] Duo-Security. 2018. DUO PUSH: Quickly Verify Your Identity.

https://duo.com/product/trusted-users/two-factor-authentication/authentication-
methods/duo-push. (2018).

[15] Facebook. 2017. Security Key for safer logins with a touch.
https://www.facebook.com/notes/facebook-security/security-key-for-safer-
logins-with-a-touch/10154125089265766. (2017).

[16] Futurea. 2018. Futurae Authentication Suite. https://futurae.com/product/. (2018).
[17] Sujata Garera, Niels Provos, Monica Chew, and Aviel D Rubin. 2007. A framework

for detection and measurement of phishing attacks. In Proceedings of the 2007

ACM workshop on Recurring malcode. ACM, 1–8.
[18] GOOGLE. 2018. Firebase Cloud Messaging. https://firebase.google.com/docs/

cloud-messaging. (2018).
[19] GOOGLE. 2018. Google 2-Step Verification. https://www.google.com/landing/

2step. (2018).
[20] Google. 2018. NotificationListenerService. https://developer.android.com/

reference/android/service/notification/NotificationListenerService.html. (2018).
[21] Robert Hackett. 2016. LinkedIn Lost 167 Million Account Credentials in Data

Breach. http://fortune.com/2016/05/18/linkedin-data-breach-email-password.
(2016).

[22] Nikolaos Karapanos and Srdjan Capkun. 2014. On the Effective Prevention of
TLS Man-In-The-Middle Attacks in Web Applications.. In Proceedings of the

23th Conference on USENIX Security Symposium.
[23] Nikolaos Karapanos, Claudio Marforio, Claudio Soriente, and Srdjan Capkun.

2015. Sound-Proof: Usable Two-Factor Authentication Based on Ambient Sound..
In Proceedings of the 24th Conference on USENIX Security Symposium. 483–498.

[24] Swati Khandelwal. 2018. Download: 68 Million Hacked Dropbox Accounts
are Just a Click Away! https://thehackernews.com/2016/10/dropbox-password-
hack.html. (2018).

[25] Manu Kumar, Tal Garfinkel, Dan Boneh, and Terry Winograd. 2007. Reducing
shoulder-surfing by using gaze-based password entry. In Proceedings of the 3rd

symposium on Usable privacy and security. ACM, 13–19.
[26] MDN. 2018. Bluetooth.requestDevice(). https://developer.mozilla.org/en-US/

docs/Web/API/Bluetooth/requestDevice. (2018).
[27] MDN. 2018. MediaDevices.getUserMedia(). https://developer.mozilla.org/zh-

CN/docs/Web/API/MediaDevices/getUserMedia. (2018).
[28] Microsoft. 2018. One easy-to-use app for all your multi-factor authentication

needs. https://dirteam.com/sander/2016/08/15/microsoft-authenticator-one-easy-
to-use-app-for-all-your-multi-factor-authentication-needs/. (2018).

[29] Fabian Monrose and Aviel D Rubin. 2000. Keystroke dynamics as a biometric for
authentication. Future Generation Computer Systems 16, 4 (2000), 351–359.

[30] NetApplications. 2018. Browser Market Share. https://www.netmarketshare.com/
browser-market-share.aspx. (2018).

[31] Eric Ravenscraft. 2018. LastPass Authenticator Now Has a One-Button Approval
Option. https://lifehacker.com/lastpass-authenticator-now-has-a-one-button-
approval-op-1785138823. (2018).

[32] SAASPASS. 2018. Two-factor Authentication with Proximity Uses
iBeacon Bluetooth Low Energy (BLE) to Authenticate Users Instantly.
https://saaspass.com/technologies/proximity-instant-login-two-factor-
authentication-beacon.html. (2018).

[33] Maliheh Shirvanian, Stanislaw Jarecki, Nitesh Saxena, and Naveen Nathan. 2014.
Two-Factor Authentication Resilient to Server Compromise Using Mix-Bandwidth
Devices.. In Proceedings of the 21st Annual Network and Distributed System

Security Symposium, NDSS.
[34] Agent Smith. 2016. 1 Billion Accounts are leaked from yahoo’s

database. https://latesthackingnews.com/2016/12/15/1-billion-accounts-leaked-

63

https://mpa.co.nz/media/4410/twofactorauthenticationtherealcostofownership.pdf
https://mpa.co.nz/media/4410/twofactorauthenticationtherealcostofownership.pdf
https://aws.amazon.com/cn/ec2/pricing/on-demand
https://aws.amazon.com/cn/ec2/pricing/on-demand
https://aws.amazon.com/cn/sns/sms-pricing
https://aws.amazon.com/cn/sns/sms-pricing
http://us.battle.net/heroes/en/blog/20152210/introducing-the-one-button-authenticator-6-16-2016
http://us.battle.net/heroes/en/blog/20152210/introducing-the-one-button-authenticator-6-16-2016
https://duo.com/product/trusted-users/two-factor-authentication/authentication-methods/duo-push
https://duo.com/product/trusted-users/two-factor-authentication/authentication-methods/duo-push
https://www.facebook.com/notes/facebook-security/security-key-for-safer-logins-with-a-touch/10154125089265766
https://www.facebook.com/notes/facebook-security/security-key-for-safer-logins-with-a-touch/10154125089265766
https://futurae.com/product/
https://firebase.google.com/docs/cloud-messaging
https://firebase.google.com/docs/cloud-messaging
https://www.google.com/landing/2step
https://www.google.com/landing/2step
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html
http://fortune.com/2016/05/18/linkedin-data-breach-email-password
https://thehackernews.com/2016/10/dropbox-password-hack.html
https://thehackernews.com/2016/10/dropbox-password-hack.html
https://developer.mozilla.org/en-US/docs/Web/API/Bluetooth/requestDevice
https://developer.mozilla.org/en-US/docs/Web/API/Bluetooth/requestDevice
https://developer.mozilla.org/zh-CN/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/zh-CN/docs/Web/API/MediaDevices/getUserMedia
https://dirteam.com/sander/2016/08/15/microsoft-authenticator-one-easy-to-use-app-for-all-your-multi-factor-authentication-needs/
https://dirteam.com/sander/2016/08/15/microsoft-authenticator-one-easy-to-use-app-for-all-your-multi-factor-authentication-needs/
https://www.netmarketshare.com/browser-market-share.aspx
https://www.netmarketshare.com/browser-market-share.aspx
https://lifehacker.com/lastpass-authenticator-now-has-a-one-button-approval-op-1785138823
https://lifehacker.com/lastpass-authenticator-now-has-a-one-button-approval-op-1785138823
https://saaspass.com/technologies/proximity-instant-login-two-factor-authentication-beacon.html
https://saaspass.com/technologies/proximity-instant-login-two-factor-authentication-beacon.html
https://latesthackingnews.com/2016/12/15/1-billion-accounts-leaked-yahoos-database
https://latesthackingnews.com/2016/12/15/1-billion-accounts-leaked-yahoos-database

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA Ximing Liu, Yingjiu Li, Robert H. Deng

yahoos-database. (2016).
[35] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. 2001. Timing Analysis

of Keystrokes and Timing Attacks on SSH.. In Proceedings of the 10th Conference

on USENIX Security Symposium. USENIX Association.
[36] Routhu Srinivasa Rao and Alwyn R. Pais. 2017. Detecting Phishing Websites

Using Automation of Human Behavior. In Proceedings of the 3rd ACM Workshop

on Cyber-Physical System Security. ACM, 33–42.
[37] StatCounter. 2018. Mobile Vendor Market Share Worldwide. http://

gs.statcounter.com/vendor-market-share/mobile/worldwide. (2018).
[38] Zhu Tong, Qiang Ma, Shanfeng Zhang, and Yunhao Liu. 2014. Context-free

attacks using keyboard acoustic emanations. In Proceedings of the 21st ACM

Conference on Computer and Communications Security. ACM, 453–464.
[39] W3school. 2018. jQuery keydown() Method. https://www.w3schools.com/jquery/

eventkeydown.asp. (2018).
[40] Wikipedia. 2018. Network Time Protocol. https://en.wikipedia.org/wiki/

NetworkTimeProtocol. (2018).
[41] Qiang Yan, Jin Han, Yingjiu Li, and Robert H. Deng. 2012. On Limitations of

Designing Leakage-Resilient Password Systems: Attacks, Principles and Usability.
In Proceedings of the 19th Annual Network and Distributed System Security

Symposium, NDSS. Internet Society.
[42] Kehuan Zhang and XiaoFeng Wang. 2009. Peeping Tom in the Neighborhood:

Keystroke Eavesdropping on Multi-user Systems. In Proceedings of the 18th

Conference on USENIX Security Symposium. USENIX Association, 17–32.
[43] Linghan Zhang, Sheng Tan, Jie Yang, and Yingying Chen. 2016. Voicelive:

A phoneme localization based liveness detection for voice authentication on
smartphones. In Proceedings of the 23rd ACM Conference on Computer and

Communications Security. ACM, 1080–1091.
[44] Li Zhuang, Feng Zhou, and J. Doug Tygar. 2009. Keyboard acoustic emanations

revisited. ACM Transactions on Information and System Security 13, 1 (2009),
3:1–3:26.

A QUANTITATIVE USABILITY ANALYSIS
FRAMEWORK

A quantitative analysis framework can be used for evaluating
the usability cost of authentication systems [41]. This framework
decomposes the process of human-computer interaction into atomic
cognitive operations in psychology. The quantitative analysis frame-
work consists of two components, including cognitive workload and
memory demand.
Cognitive Workload. Cognitive workload is measured by the total
reaction time required by the involved cognitive operations. Parallel
recognition is a major cognitive operations in human-computer
interactions. It can be considered as a matching process of comparing
presented items with those stored in memory. According to the short-
term memory capacity theory [12], the maximum number of parallel
recognition channels is limited to 4 for an average volunteer. The
reaction time of recognizing x items displayed simultaneously can
be estimated as RT = 0.4077 · dx/4e.
Memory Demand. For memory demand, the cost for recalling k
items is k/29.6%. For memorizing a verification code, we consider
the x-digit code as dx/4e items since the short-term memory capacity
is 4 for an average volunteer [12]. Therefore, the memory demand
for recalling x-digit code is dx/4e /29.6%.

B PROTOTYPE IMPLEMENTATION
Web Server Settings. Authentication server is implemented using
CherryPy web framework. SQLite database is used to store username
and password information. For experimental evaluation, we store
each keystroke timing sequence and the corresponding random code
into a text document and store the corresponding audio data into a 16-
bit byte array in the debug version for data collection. In the released
version of Typing-Proof, no keystroke timing information or audio
is stored on server side. HTTPS is supported for communications

between browsers/login computers and server, and between server
and registered phones.
Web Client Settings. All major browsers support our prototype
without any browser code modifications or plug-ins. In our ex-
periment, we test our prototype on Google Chrome (version
55.0.2883.87), Internet Explorer 11 (version 11.0.9600.18860) and
Microsoft Edge (version 41.16299.15.0). The client website is
written entirely in HTML and JavaScript. We use jQuery keydown()
Method [39] to record the timestamp of each key press event. We
use Ajax to send and retrieve data from the server to the client
asynchronously.
Mobile Client Settings. We develop an Android application and
test it on a Google Nexus 5x, a Google Nexus 6 (both running on
Android version 6.0.1) and a Huawei P10 (running on Android 8.0.1)
smartphones. We use the Google Firebase Cloud Messaging (FCM)
service [18] to send indicators to Android devices.
Time Synchronization. Typing-Proof requires that registered phones
and corresponding login computers are loosely synchronized. For
this reason, login computers and registered phones run a simple time-
synchronization protocol (Network Time Protocol [40]) with the
server. In a server-client scenario (where the client can be either login
computer or registered phone), the client initiates a time-request
exchange with the server so that the client is able to calculate the
link delay and its local offset, and adjust its local clock to match
the clock at the server’s computer. The protocol can synchronize all
participating devices and mitigate the effects of variable network
latency. According to our experimental results, the NTP protocol
usually maintains clock difference within tens of milliseconds, which
is good enough for Typing-Proof.

C SYSTEM USABILITY SCALE
We list the items of the System Usability Scale [11]. All items are
answered with a 5-point Likert-scale from Strongly Disagree to
Strongly Agree.
Q1 I would like to use this system frequently.
Q2 I found the system unnecessarily complex.
Q3 I thought the system was easy to use.
Q4 I would need the support of a technical person to be able to use

this system.
Q5 I found the various functions in this system were well integrated.
Q6 I thought there was too much inconsistency in this system.
Q7 I would imagine that most people would learn to use this system

very quickly.
Q8 I found the system very cumbersome to use.
Q9 I felt very confident using the system.

Q10 I needed to learn a lot of things before I could get going with
this system.

D POST-TEST QUESTIONNAIRE
We list the items of the post-test questionnaire. All items are
answered with a 5-point Likert-scale from Strongly Disagree to
Strongly Agree.
Q1 I thought this system was quick. (2FA-quick)
Q2 If 2FA were mandatory, I would use this system to log in (2FA-

mandatory).
Q3 If 2FA were optional, I would use this system to log in (2FA-

optional).
Q4 I would feel comfortable using this system at home (Use @

home).

64

https://latesthackingnews.com/2016/12/15/1-billion-accounts-leaked-yahoos-database
http://gs.statcounter.com/vendor-market-share/mobile/worldwide
http://gs.statcounter.com/vendor-market-share/mobile/worldwide
https://www.w3schools.com/jquery/event_keydown.asp
https://www.w3schools.com/jquery/event_keydown.asp
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/Network_Time_Protocol

Typing-Proof: Usable, Secure and Low-Cost
Two-Factor Authentication Based on Keystroke Timings ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Table 3: Comparison of Typing-Proof against Sound-Proof [23] and SMS-based 2FA [19] using the framework of Bonneau et al. [10]. We use ‘Y’ to
denote that the benefit is provided and ‘S’ to denote that the benefit is somewhat provided.

Usability Deployability Security

Scheme M
em

or
yw

is
e-

Ef
fo

rtl
es

s

Sc
al

ab
le

-f
or

-U
se

rs

N
ot

hi
ng

-to
-C

ar
ry

Ph
ys

ic
al

ly
Ef

fo
rtl

es
s

Ea
sy

-to
-L

ea
rn

Ef
fic

ie
nt

-to
-U

se

In
fr

eq
ue

nt
-E

rr
or

s

Ea
sy

-R
ec

ov
er

y-
fr

om
-L

os
s

A
cc

es
si

bl
e

N
eg

lig
ib

le
-C

os
t-p

er
-U

se
r

Se
rv

er
-C

om
pa

tib
le

B
ro

w
se

r-
C

om
pa

tib
le

M
at

ur
e

N
on

-P
ro

pr
ie

ta
ry

R
es

ili
en

t-t
o-

Ph
ys

ic
al

-O
bs

er
va

tio
n

R
es

ili
en

t-t
o-

Ta
rg

et
ed

-I
m

pe
rs

on
at

io
n

R
es

ili
en

t-t
o-

Th
ro

ttl
ed

-G
ue

ss
in

g

R
es

ili
en

t-t
o-

U
nt

hr
ot

tle
d-

G
ue

ss
in

g

R
es

ili
en

t-t
o-

In
te

rn
al

-O
bs

er
va

tio
n

R
es

ili
en

t-t
o-

Le
ak

s-
fr

om
-O

th
er

-V
er

ifi
er

s

R
es

ili
en

t-t
o-

Ph
is

hi
ng

R
es

ili
en

t-t
o-

Th
ef

t

N
o-

Tr
us

te
d-

Th
ird

-P
ar

ty

R
eq

ui
rin

g-
Ex

pl
ic

it-
C

on
se

nt

U
nl

in
ka

bl
e

Typing-Proof Y S Y Y Y S S Y Y Y Y S S Y Y Y Y Y Y Y
Sound-Proof Y S Y Y Y S S Y Y S Y S S Y Y Y Y Y Y
SMS-based 2FA S Y S S S S S Y Y Y S S Y Y Y Y Y Y Y

Q5 I would feel comfortable using this system at workplace (Use @
workplace).

Q6 I would feel comfortable using this system at café (Use @ café).
Q7 I would feel comfortable using this system at library (Use @

library).

E COMPARISON RESULTS
Table 3 shows the comparison results. In particular, the metrics
of usability include the columns from “Memorywise-Effortless”
to “Easy-Recovery-from-Loss”. The metrics of deployability in-
clude the columns from “Accessible” to “Non-Proprietary”. The
metrics of security include the columns from “Resilient-to-Physical-
Observation” to “Unlinkable”.

65

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	12-2018

	Typing-Proof: Usable, secure and low-cost two-factor authentication based on keystroke timings
	Ximming LIU
	Yingjiu LI
	Robert H. DENG
	Citation

	i01-1-mishra
	i01-2-kouwe
	Abstract
	1 Introduction
	2 Background
	2.1 Use-after-free
	2.2 Uninitialized reads
	2.3 Type safety

	3 Threat Model
	4 Overview
	5 Heap
	5.1 Typed memory allocations
	5.2 Wrapper detection and inlining

	6 Stack
	6.1 Guaranteed initialization on the safe stack
	6.2 Typed unsafe stacks

	7 Implementation
	8 Evaluation
	8.1 Security
	8.2 Type detection
	8.3 Wrapper detection and inlining
	8.4 Memory overhead
	8.5 Run-time overhead
	8.6 Firefox case study

	9 Limitations
	10 Related Work
	11 Conclusion
	References

	i01-3-farkhani
	Abstract
	1 Introduction
	2 Background and Problem Definition
	2.1 Control Flow Integrity (CFI)
	2.2 Runtime Type Checking
	2.3 Arity Checking
	2.4 Reuse Attack Protector (RAP)
	2.5 Type Collisions
	2.6 Research Questions

	3 Attack Overview
	3.1 Threat Model
	3.2 Attack Preliminaries
	3.3 Finding Gadgets
	3.4 Constraint Solving

	4 Proof-of-Concept Exploits
	4.1 Nginx Exploit
	4.2 Exim Exploit
	4.3 Summary

	5 Evaluation
	5.1 Type Collisions
	5.2 Gadget Distribution
	5.3 Libc
	5.4 Type Checking vs. Points-to Analysis

	6 Discussion
	6.1 Type Diversification
	6.2 Separate Compilation
	6.3 Mismatch types
	6.4 Support for Assembly Code

	7 Related work
	8 Conclusion
	References

	i01-4-ahmadvand
	Abstract
	1 Introduction
	2 Background & Related work
	2.1 Software integrity protection
	2.2 Nondeterministic code detection

	3 Design
	3.1 Segregation of input data/control-flow dependent instructions
	3.2 Short Range Oblivious Hashing (SROH)
	3.3 Data-Dependent Instructions (DDIs)
	3.4 Intertwined protection

	4 Implementation
	4.1 Protection process
	4.2 Input dependency detection
	4.3 Oblivious hashing (OH)
	4.4 Short Range Oblivious Hashing (SROH)
	4.5 Self-checksumming (SC)
	4.6 Response mechanism

	5 Evaluation
	5.1 Dataset
	5.2 Preparation
	5.3 Coverage
	5.4 Performance analysis
	5.5 Security analysis

	6 Discussion
	6.1 Coverage
	6.2 Implicit protection with OH/SROH
	6.3 Performance

	7 Conclusions
	References
	A A full example of OH+SROH utilization

	i02-1-liu
	Abstract
	1 Introduction
	2 Assumptions and Goals
	3 Related Work
	3.1 Traditional 2FA
	3.2 2FA with Less User-Phone Interactions

	4 Typing-Proof
	4.1 Enrollment and Login
	4.2 Similarity Score
	4.3 Usability Analysis
	4.4 Cost Analysis

	5 Evaluation
	5.1 Data Collection
	5.2 Parameters Configuration
	5.3 False Rejection Rate
	5.4 False Acceptance Rate

	6 Security Analysis
	7 User Study
	7.1 Procedure
	7.2 Usability

	8 Discussion
	9 Conclusion
	References
	A Quantitative Usability Analysis Framework
	B Prototype Implementation
	C System Usability Scale
	D Post-test Questionnaire
	E Comparison Results

	i02-2-mccully
	Abstract
	1 Introduction
	2 Related Work
	2.1 Keystroke dynamics
	2.2 Collaborative editing
	2.3 Identification vs. Authentication

	3 Study: User Identification in Collaboration Services
	3.1 The UB Data Set
	3.2 Log replay data set (LRDS)
	3.3 Feature engineering
	3.4 Random forest classification
	3.5 Model improvements
	3.6 Results

	4 Indirect Typing Biometric Attack
	4.1 Authentication service
	4.2 Forgery attack scenario
	4.3 Creating a forgery
	4.4 TypingDNA Forgery Attack

	5 Discussion
	5.1 Generalizability
	5.2 Practical implications
	5.3 Broader implications

	6 Conclusions
	References

	i02-4-lu
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Online Password Guessing Attacks
	2.2 Defenses against Online Password Attacks
	2.3 Offline Password Attacks

	3 Methodology
	3.1 Modeling Lockout Threshold and Counting Mechanism
	3.2 Black-box Tests

	4 A Measurement Study of Rate Limiting Implementations
	4.1 Experiment Setup
	4.2 Data Collection

	5 Evaluation and Analysis
	5.1 Data Analysis
	5.2 Security Analysis
	5.3 Interesting Observations
	5.4 Recommendations

	6 Limitations and Discussion
	7 Conclusion
	Acknowledgments
	References

	i03-1-copty
	Abstract
	1 Introduction
	2 An extremely abstract OS
	2.1 Implementation details
	2.2 Multiple paths

	3 Malware classification
	3.1 Features
	3.2 Experimental setup
	3.3 Experimental Results

	4 Related work
	4.1 Extreme abstraction
	4.2 Lightweight symbols
	4.3 Malware classification

	5 Future work
	6 Conclusion
	Acknowledgments
	References

	i03-2-machiry
	Abstract
	1 Introduction
	2 Threat Model
	3 Approach Overview
	3.1 Why Loops?
	3.2 Loop Characterization
	3.3 Application Classification

	4 Resilience to Feature-unaware Perturbations
	4.1 Application Transformations
	4.2 CFG Obfuscation
	4.3 Reflection
	4.4 Loop Perturbations

	5 Classification Evaluation
	5.1 Datasets
	5.2 Iterative Pruning Performance
	5.3 Malware Classification Results
	5.4 Importance of Loops and Semantic Labels
	5.5 Resilience to Feature-unaware Perturbations

	6 Discussion
	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

	i03-3-oprea
	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Enterprise Perimeter Defenses
	2.2 Problem definition and adversarial model
	2.3 System Overview
	2.4 Comparison with previous work
	2.5 Ethical considerations

	3 MADE Training
	3.1 Data Filtering and Labeling
	3.2 Feature Extraction
	3.3 Feature Selection
	3.4 Model Selection

	4 Testing and Evaluation
	4.1 MADE Testing
	4.2 Evaluation, Analysis, and Feedback
	4.3 Discussion and Limitations

	5 Related Work
	6 Conclusion
	References

	i03-4-echeverria
	Abstract
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Bot Datasets
	3.2 Aggregated Bot Dataset
	3.3 User Dataset
	3.4 Botometer Scores

	4 Methodology - The LOBO test
	5 Features for Classification
	5.1 User Features
	5.2 Tweet Features

	6 Experiments
	6.1 Subsampling
	6.2 General Classifiers
	6.3 LOBO Test I - C30K
	6.4 LOBO Test II - C500

	7 Beyond the LOBO test
	7.1 Relatively Stable Results
	7.2 Learning Rate
	7.3 TSNE plot

	8 Discussion
	8.1 Accuracy and Generalization
	8.2 Improvements with small data additions
	8.3 Scalability

	9 Conclusion
	References

	i04-1-tuveri
	Abstract
	1 Introduction
	2 Background
	2.1 SM2: Chinese Cryptography Standards
	2.2 Remote Timing Attacks
	2.3 Cache Timing Attacks
	2.4 EM Analysis
	2.5 SM2 Implementation Attacks: Previous Work

	3 SM2 in OpenSSL
	4 SM2DSA: Remote Timings
	5 SM2DSA: Cache Timings
	5.1 Scalar Multiplication
	5.2 Modular Inversion

	6 SM2PKE: EM Analysis
	7 SCA Mitigations
	7.1 Scalar Multiplication: SCA Mitigations
	7.2 Modular Inversion: SCA Mitigations
	7.3 SCA Mitigations: Evaluation

	8 Conclusion
	Acknowledgments
	References
	A Remote Timings SCA Evaluation: ECDSA

	i04-2-wichelmann
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Analysis Setup and Targeted Software

	2 Background
	2.1 Dynamic Binary Instrumentation
	2.2 Microarchitectural Leakage
	2.3 Mutual Information Analysis
	2.4 Signing Algorithms

	3 MicroWalk Analysis Technique
	3.1 Leakage Analysis Model
	3.2 Capturing Internal States
	3.3 Preparing State Variables
	3.4 Leakage Analysis
	3.5 Interpretation of MI Score

	4 MicroWalk Framework
	4.1 Investigated Binary
	4.2 Input Generation
	4.3 Trace Generation
	4.4 Trace Preprocessing
	4.5 Leakage Analysis
	4.6 Manual Inspection and Visualization

	5 Case Study I: Intel IPP
	5.1 Applying MicroWalk MI Analysis to IPP
	5.2 Discovered leakages in Intel IPP

	6 Case Study II: Microsoft CNG
	6.1 Applying MicroWalk MI Analysis to CNG
	6.2 Discovered leakages in Microsoft CNG

	7 Related Work
	8 Conclusion
	8.1 Future Work

	References

	i04-3-zhang
	Abstract
	1 Introduction
	2 Background
	2.1 Cache Side-channel Attacks
	2.2 Cache Side-channel Defenses
	2.3 Deep Neural Networks

	3 Methodology Overview
	4 Dataset Construction
	4.1 An Abstract Model
	4.2 Modeling Specific Attacks
	4.3 Modeling Defense Solutions

	5 DNN Training and Inference
	5.1 Dataset Processing
	5.2 Training
	5.3 Inference

	6 Evaluation
	6.1 Attack Strategies
	6.2 Defense Strategies

	7 Methodology Validation
	8 Related Work
	9 Conclusion
	References

	i04-4-liang
	Abstract
	1 Introduction
	2 Problem
	2.1 Side-Channel Attack over Memory Accesses
	2.2 Burdensome Obfuscation of Access Pattern
	2.3 Toward Practically Efficient Obfuscation

	3 Overview
	3.1 Motivation
	3.2 Challenge
	3.3 Methodology

	4 Design
	4.1 Architecture
	4.2 Position Map Compression
	4.3 Position Map Update

	5 Implementation
	6 Evaluation
	6.1 Memory Access Randomness
	6.2 Execution Time
	6.3 Memory Usage

	7 Discussion
	8 Conclusion
	References

	i05-1-junaid
	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivating Example
	2.3 Challenges

	3 StateDroid Overview
	3.1 Architecture
	3.2 Advance Over State-of-the-Art Work

	4 API Call Detector
	4.1 Reengineering Lifecycle Models
	4.2 Deriving Event & Callback Sequences
	4.3 Detecting API Call Sequences

	5 Action Detector
	5.1 Object State Machines
	5.2 API & Action Formalization
	5.3 Generating API Call Sequences
	5.4 Constructing Object State Machines

	6 Attack Detector
	6.1 Action-Effect & Attack Formalization
	6.2 Frame Axioms

	7 Evaluation
	7.1 RQ1: Accuracy of Action Detector
	7.2 RQ2: Accuracy of Attack Detector
	7.3 RQ3: Comparison with Existing Tools
	7.4 RQ4: StateDroid's Performance

	8 Related Work
	9 Discussion
	10 Conclusion
	11 Acknowledgments
	References

	i05-2-allen
	Abstract
	1 Introduction
	2 Rethinking Contextual Awareness
	2.1 Less Effective Contextual Information
	2.2 Case Study: Identifying Informative Context Factors
	2.3 Calling for Lightweight Context Dependencies

	3 PikaDroid
	3.1 Overview
	3.2 Static Analysis Module
	3.3 Learning Module

	4 Implementation
	5 Dataset
	6 Evaluation
	6.1 Effectiveness
	6.2 Comparison with Prior Work
	6.3 Robustness
	6.4 Classification Models
	6.5 Performance

	7 Related work
	8 Conclusion
	9 Acknowledgments
	References

	i05-3-wermke
	Abstract
	1 Introduction
	2 Android Obfuscation Techniques
	3 Detecting ProGuard Obfuscation
	4 Large Scale Obfuscation Analysis
	4.1 Obfuscation Trends

	5 Developer Survey
	5.1 Results and Takeaways

	6 Obfuscation Experiment
	6.1 Results and Takeaways

	7 Discussion
	8 Threats to Validity
	9 Related Work
	10 Conclusion
	References
	A Ethical Considerations
	B Online Survey
	B.1 ProGuard Study - Exit Survey

	i05-4-chau
	Abstract
	1 Introduction
	2 Scope
	2.1 Attack Surfaces
	2.2 Platform and Test Setup
	2.3 Threat Model
	2.4 App Selection

	3 App Weaknesses & Network Attacks
	3.1 Raw Content Transfer In Clear
	3.2 Bootstrap Information Transfer in Clear
	3.3 Raw Content Transfer over TLS
	3.4 Bootstrap Information Transfer over TLS
	3.5 Threats to User Security and Privacy

	4 App Weaknesses & Local Attacks
	4.1 Log File Leakage
	4.2 Raw Content on External Storage
	4.3 Raw Encryption Key on External Storage
	4.4 Raw Content on Internal Storage
	4.5 Raw Encryption Key on Internal Storage
	4.6 Direct Content Source on Internal Storage
	4.7 Client-Side Authorization
	4.8 Raw Encryption Key in Memory

	5 Discussions
	5.1 Responsible Disclosure and Aftermath
	5.2 Possible Countermeasures and Challenges

	6 Related Work
	7 Conclusion
	References
	A APPENDIX
	A.1 Legal and Ethical Matters
	A.2 Table of Apps and CWEs

	i06-1-mani
	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology & Experimental Setup
	5 Proxy Availability & Performance
	5.1 Performance
	5.2 Expected vs. Unexpected Content
	5.3 Anonymity

	6 HTML Manipulation
	7 File Manipulation
	7.1 Detailed Findings
	7.2 Network Diversity and Consistency of Malicious Proxies

	8 SSL/TLS Analysis
	9 Comparison With Tor
	10 Ethical considerations
	11 Conclusion
	Acknowledgments
	References
	A Examples of HTTP Proxy Protocols
	B Client locations
	C File Manipulation Infections

	i06-2-ramanathan
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Volumetric Attacks
	2.2 Related Work
	2.3 SENSS vs First-ISP vs Clouds

	3 SENSS
	3.1 Challenges
	3.2 SENSS Architecture
	3.3 ISP Implementation
	3.4 Client Programs
	3.5 Security and Robustness

	4 Evaluation
	4.1 Evaluation Methodology
	4.2 2016 attack on Dyn
	4.3 Effectiveness in Sparse Deployment
	4.4 Comparison of SENSS and Cloud Defenses
	4.5 Delay, Traffic and Message Cost
	4.6 Scalability within an ISP

	5 Conclusion
	6 Acknowledgement
	References

	i06-3-baek
	Abstract
	1 Introduction
	2 Wi-Fi Calling
	2.1 Wi-Fi Calling Architecture
	2.2 Wi-Fi Calling Handshakes

	3 Security in Wi-Fi Calling
	3.1 Privacy of Users
	3.2 Availability of Services
	3.3 Attacks Originating From Victim's UE and Attacker's AP

	4 IMSI Privacy Attack
	4.1 Attack Scenario
	4.2 Attack Setup
	4.3 Results of Attacks
	4.4 Impact and Applicability

	5 DoS Attacks
	5.1 Attack Scenarios
	5.2 Attack Setup
	5.3 Results of Attacks
	5.4 Impact and Applicability

	6 Countermeasures
	6.1 IMSI Privacy Attack Countermeasures
	6.2 DoS Countermeasures

	7 Discussion
	7.1 Trade-off Between Security and Usability
	7.2 Trade-off Between Security and Deployment

	8 Related work
	9 Conclusion
	References

	i06-4-sy
	Abstract
	1 Introduction
	2 Background
	2.1 Session ID Resumption
	2.2 Session Ticket Resumption
	2.3 Session Resumption via Pre-Shared Keys
	2.4 Comparison of Session Resumption Mechanisms

	3 Privacy Problems with TLS Session Resumption
	3.1 Lifetime of Session Resumption Mechanisms
	3.2 Third-Party Tracking via Session Resumption

	4 Data Collection
	4.1 Alexa Top Million Data Set
	4.2 Browser Measurements
	4.3 DNS Data Set

	5 Evaluation
	5.1 Evaluation of Server Configurations
	5.2 Evaluation of Browser Configurations
	5.3 Evaluation of Real-World User Traffic

	6 Countermeasures
	7 Related Work
	8 Conclusion
	References

	i07-1-garmany
	Abstract
	1 Introduction
	2 Model and Assumptions
	2.1 Modern Vulnerability Exploitation

	3 Design
	3.1 Knowledge Base
	3.2 Propagating Control
	3.3 Finding Sinks
	3.4 Program Paths
	3.5 Triggering Input

	4 Implementation Details
	5 Evaluation
	5.1 Exploitation Primitive Trigger (EPT)
	5.2 Fine Tuning

	6 Discussion and Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	Appendices
	A JavaScript Code Corresponding to Running Example
	B SSA-map

	i07-2-rodriguez
	Abstract
	1 Motivation
	2 Problem Statement
	3 Methodology
	3.1 Data Collection
	3.2 Labeling
	3.3 Feature Selection
	3.4 Learning

	4 Evaluation
	4.1 Detection
	4.2 Impact on the Page Loading Time

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References
	A Theoretical Upper Bound for False Positives and Negatives
	B Additional Plots and Tables

	i07-3-xu
	Abstract
	1 Introduction
	2 Problem Statement and Related Work
	2.1 Multi-tab Threat Model
	2.2 Related work

	3 Overview of Multi-tab Attacks
	4 Dynamic Page Split
	4.1 Challenges in Identifying True Split Points
	4.2 BalanceCascade-XGBoost Algorithm

	5 Chunk-Based Page Classification
	5.1 Feature Selection
	5.2 Classifier Design

	6 Experimental Results
	6.1 Experiment Setup
	6.2 Evaluation of Multi-tab] Attacks
	6.3 Evaluation of Page Split
	6.4 Evaluation of Chunk-Based Classification
	6.5 Evaluation with More Than Two Tabs

	7 Conclusion and Future Work
	References
	A The Rest Features in Feature Set
	B Feature Selection

	i07-4-acker
	Abstract
	1 Introduction
	2 Background
	3 Mechanism design
	3.1 Overview
	3.2 Configuration structure
	3.3 Client-side application
	3.4 Misconfiguration

	4 Policy comparison and combination
	4.1 for policy comparison
	4.2 and for policy combination

	5 Prototype implementations
	5.1 Client-side enforcement
	5.2 Server-side manifest handling
	5.3 Automated manifest generation from observed traffic
	5.4 Limitations and considerations

	6 Evaluation
	6.1 Functional evaluation
	6.2 Longitudinal study
	6.3 Performance measurement

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Statistical data

	i08-1-ziegeldorf
	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Scenario and Requirements
	2.2 Analysis of Related Work

	3 Cryptographic Building Blocks
	4 SHIELD Framework
	4.1 Overview of Supervised Classification
	4.2 Secure Building Blocks
	4.3 Implementation and Evaluation Setup

	5 Hyperplane Classifiers
	5.1 Evaluation

	6 Artificial Neural Networks
	6.1 Evaluation

	7 Naive Bayes
	7.1 Evaluation

	8 Hidden Markov Models
	8.1 Evaluation

	9 Outsourcing
	9.1 Evaluation of Outsourcing

	10 Conclusion
	References
	A Detailed Protocols for Secure Building Blocks
	A.1 Max and Argmax
	A.2 Scalar Products
	A.3 Polynomial Approximation of Arbitrary Functions
	A.4 OT-based Evaluation of Discrete Functions
	A.5 Evaluating Gaussians
	A.6 Backtracking

	B Security Discussion
	B.1 Security of the Building Blocks
	B.2 Security of the Classifier Designs

	C Evaluation of Outsourcing for the service provider

	i08-2-kesarwani
	Abstract
	1 Introduction
	2 related work
	3 Problem Framework
	4 Model Extraction Warning
	4.1 Strategy 1: Providing model extraction warnings using information gain metric
	4.2 Strategy 2: Providing model extraction warnings using coverage metric

	5 Experiments
	5.1 Model extraction status for source DT Models
	5.2 Model extraction status for source NN Models

	6 Conclusion and Future Work
	References

	i08-3-fang
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Collaborative Filtering
	2.2 Attacks to Recommender Systems

	3 Problem Formulation
	3.1 Threat Model
	3.2 Attacks as an Optimization Problem

	4 Our Poisoning Attacks
	4.1 Overview
	4.2 Approximating the Optimization Problem
	4.3 Solving the Optimization Problem
	4.4 Generating Rating Scores

	5 Experiments
	5.1 Experimental Setup
	5.2 Attacking Graph-based Systems
	5.3 Transferring to Other Systems

	6 Detecting Fake Users
	7 Conclusion and Future Work
	References

	i08-4-wei
	Abstract
	1 Introduction
	2 Background
	3 Threat Model
	4 Overview
	5 Power Extraction
	5.1 Interference Sources
	5.2 Extraction Methods

	6 Background Detection
	6.1 Intuition
	6.2 Attack Method
	6.3 Evaluation

	7 Image Reconstruction via Power Template
	7.1 Intuition
	7.2 Attack Method
	7.3 Evaluation

	8 Related Work
	9 Conclusion
	A Preliminaries
	A.1 Convolutional Neural Network
	A.2 CNN Accelerator Design
	A.3 Basics on Power Side Channel

	B Discussion and Future Work
	C Attack results on the MNIST dataset
	References

	i09-1-proskurin
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Exception Levels
	2.2 Guest Physical Memory Architecture
	2.3 Debug Exceptions
	2.4 Translation Lookaside Buffer
	2.5 Threat Model

	3 Guest Kernel Monitoring Primitives
	3.1 Implementing Kernel Tap Points
	3.2 Novel Single-Stepping Mechanism
	3.3 Xen altp2m on ARM
	3.4 Splitting the TLBs

	4 Evaluation
	4.1 System Setup
	4.2 DRAKVUF on ARM
	4.3 Performance
	4.4 Effectiveness

	5 Discussion
	5.1 Alternative Tracing Methods
	5.2 Limitations

	6 Related Work
	7 Conclusion
	References

	i09-2-lin
	Abstract
	1 Introduction
	2 Background
	2.1 Linux Container
	2.2 Linux Kernel Security Mechanisms
	2.3 CPU Protection Mechanisms

	3 Attack Dataset Description
	3.1 Exploit Collection
	3.2 Attack Taxonomy
	3.3 Exploit Dataset

	4 Security Evaluation of Container
	4.1 Experiment Setup
	4.2 Result Overview
	4.3 Analysis of Privilege Escalation Attacks
	4.4 A Brief Summary

	5 Defeating Kernel Privilege Escalation Attacks
	5.1 Kernel Privilege Escalation Attack Model
	5.2 Countermeasures
	5.3 Effectiveness and Performance

	6 Discussion on Limitation
	7 Related work
	7.1 Container Security
	7.2 Attack Taxonomy

	8 Conclusion
	Acknowledgments
	References

	i09-3-futagami
	Abstract
	1 Introduction
	2 Out-of-band Remote Management
	3 VSBypass
	3.1 Assumptions and Threat Model
	3.2 Architecture

	4 Implementation
	4.1 Proxy VM
	4.2 I/O Interception
	4.3 Redirection of Virtual Interrupts
	4.4 Sharing VRAM
	4.5 VM Migration

	5 Experiments
	5.1 Eavesdropping on I/O data
	5.2 Performance of a Virtual Serial Console
	5.3 Performance of GUI Remote Access

	6 Related Work
	7 Conclusion
	References

	i09-4-cho
	Abstract
	1 Introduction
	2 Background
	2.1 ARM Architecture and TrustZone
	2.2 Legitimate Channels between the Normal and Secure Worlds
	2.3 ARM Cache Architecture
	2.4 Previous Cache Attacks

	3 Assumptions and Attack Model
	4 Cross-world Covert Channels
	4.1 Prime+Count Overview
	4.2 Prime the Cache
	4.3 Count Using Cache Refill Events
	4.4 A Simple Message Encoding Method
	4.5 Cross-Core Covert Channels

	5 Implementation
	6 Evaluation
	6.1 Effectiveness of Prime+Count
	6.2 Choosing Bucket Ranges
	6.3 Capacity Measurement
	6.4 Image Transfer

	7 Discussion
	7.1 Limitations of Prime+Count
	7.2 Cross-world Covert Channels without Normal World Kernel Privileges
	7.3 Limitations of Our Experiments

	8 Related Work
	9 Conclusion
	References

	i10-1-aviv
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Study Design and Materials
	3.2 Live Simulation Setup and Coordination
	3.3 Procedure
	3.4 Recruitment

	4 Realism and Limitations
	5 Results
	5.1 Comparing Attack Rates Across Video and Live Studies
	5.2 Post-Hoc Participant Feedback

	6 Implications
	7 Conclusions
	References
	A Survey Material
	A.1 Ante Hoc Demographic Questionnaire
	A.2 Post Hoc Participant Strategies Questionnaire Questions
	A.3 Observation Forms
	A.4 Guide/Script for Administering Study

	B Visualization of Authentication
	B.1 Patterns
	B.2 PINs

	i10-2-neupane
	i10-3-wiese
	Abstract
	1 Introduction
	2 Ethical considerations
	3 Threats and Opportunities
	4 Form Factor Survey
	4.1 Materials and Methods
	4.2 Results
	4.3 Discussion
	4.4 Limitations

	5 Field Study
	5.1 Methods
	5.2 Materials

	6 Field Study Results & Discussion
	6.1 Participants and Confidants
	6.2 Recovery Rate
	6.3 Task Durations
	6.4 Security and Trust
	6.5 Sentiments and Token Handling

	7 Limitations
	8 Related Work
	9 Conclusions
	Acknowledgments
	References
	A Form Factor Study Materials
	B Results of form factor survey
	C Questionnaire 1
	D Questionnaire 2
	E Questionnaire for Confidants

	i10-4-farhang
	Abstract
	1 Introduction
	2 Related Work
	2.1 Software Upgrades
	2.2 Software Updates
	2.3 Purchasing New Devices

	3 Methodology
	3.1 Online Survey
	3.2 Measures
	3.3 Study Procedures
	3.4 Participants

	4 Results
	4.1 To Upgrade, or Not to Upgrade?
	4.2 Perceived Usefulness and Satisfaction
	4.3 Measuring Upgrade Cost
	4.4 Security Concerns
	4.5 Free Upgrade and Notification Approach
	4.6 Purchasing New Device

	5 End of Life (EOL) and Security after EOL
	5.1 Security after EOL

	6 Discussion
	6.1 Better Communication to Address Privacy Concerns
	6.2 Better Upgrade Messaging
	6.3 Security and the Need for a Roadmap after EOL
	6.4 Reduce Perceived Cost

	7 Limitations
	8 Conclusion
	References
	A Survey Instrument
	B Code-book
	B.1 Code-book: Not Upgrade
	B.2 Code-book: Upgrade

	i11-1-jain
	Abstract
	1 Introduction
	2 Motivation
	2.1 Evolutionary Fuzzing
	2.2 Motivating Example
	2.3 Lessons learned

	3 Overview
	3.1 Input Execution and Fitness Function
	3.2 DTA and Input Type Inference
	3.3 Type Based Mutation

	4 Input Type Inference
	4.1 In-memory Data Structure Identification for Input Offsets
	4.2 Basic Data Type Identification
	4.3 Array Detection
	4.4 Precise Data Type Identification

	5 Type Inference-assisted Mutation
	5.1 Coverage-oriented Mutation
	5.2 Bug-oriented Mutation

	6 Implementation
	7 Evaluation
	7.1 LAVA-M Dataset
	7.2 MA Dataset
	7.3 Crash Analysis

	8 Related Work
	8.1 Directed Fuzzing Approaches
	8.2 Input Grammar-Based Fuzzing Approaches
	8.3 Evolutionary Fuzzing Approaches

	9 Conclusions
	References
	9.1 Mutation Cycle Algorithm
	9.2 Howard Implementation Details
	9.3 Crash Analysis Details
	9.4 Results on MA dataset for 24hr Run

	i11-2-pang
	Abstract
	1 Introduction
	2 Background
	2.1 C++ Inheritance and Cast Operations
	2.2 Type Confusion
	2.3 Defenses against Type Confusion

	3 Threat Model
	4 Bitype Design and Implementation
	4.1 Overview
	4.2 Safe Encoding Scheme
	4.3 Object Tracing
	4.4 Typecasting Verification
	4.5 Optimization
	4.6 Implementation

	5 Evaluation
	5.1 Coverage
	5.2 Performance Overhead
	5.3 Memory Overhead
	5.4 Compilation Time Overhead

	6 Discussion
	7 Related Work
	8 Conclusion
	References

	i11-3-liu
	Abstract
	1 Introduction
	2 Related Work
	2.1 Static Analysis to Detect Concurrency Problems
	2.2 Concurrency Error Detection
	2.3 Logic-Based Methods
	2.4 Fuzz Testing

	3 Case Study of Concurrency Vulnerabilities
	3.1 Real-World Concurrency Vulnerabilities
	3.2 Characteristics of Concurrency Vulnerabilities

	4 Static Analysis
	4.1 Shared Memory Discovery
	4.2 Sensitive Operation Marking
	4.3 Data-flow Merging
	4.4 Vulnerability Categorization
	4.5 Semantic Checking

	5 Thread-Aware Fuzzing
	5.1 Interleaving Exploring Priority
	5.2 Targeted Priority
	5.3 Load Balance

	6 Implementation
	6.1 Implementation of Static Analysis
	6.2 Implementation of Thread-Aware Fuzzing

	7 Evaluation
	7.1 Benchmark Suite
	7.2 Experimental Results
	7.3 Validation of Detected Concurrency Vulnerabilities
	7.4 Analysis of Static Analysis Results
	7.5 Abnormal Time Cost of Static Analysis

	8 Limitations and Future Work
	8.1 Scalability of Static Analysis
	8.2 Capacity of AFL in Exploring Paths
	8.3 Restrictions of Manual Validation
	8.4 Additional Limitations

	9 Conclusion
	References

	i11-4-ye
	Abstract
	1 Introduction
	2 System Architecture
	3 Proposed Method
	3.1 Feature Extraction
	3.2 HIN Constructor
	3.3 snippet2vec: HIN Representation Learning
	3.4 Multi-view Fusion Classifier

	4 Experimental Results and Analysis
	4.1 Experimental Setup
	4.2 snippet2vec based on Different Sets of Meta-path Schemes
	4.3 Comparisons with Different Network Representation Learning Models
	4.4 Comparisons with Traditional Machine Learning Methods
	4.5 Evaluation of Parameter Sensitivity, Scalability, and Stability
	4.6 Case Studies

	5 Related Work
	6 Conclusion
	References

	i12-1-etigowni
	Abstract
	1 Introduction
	2 Background
	2.1 Drone Flight Dynamics
	2.2 Offline Controller Code Verification
	2.3 Limitation of Existing Solutions

	3 Overview
	3.1 Threat Model
	3.2 Crystal Architecture
	3.3 Safety Requirement Definition
	3.4 Predictive Flight Modeling
	3.5 Just-Ahead-of-Time Verification

	4 Drone Physics Modeling
	4.1 Normal Operation Mode Physical Modeling
	4.2 Failure Mode Data-Driven Modeling
	4.3 Full Flight Operation mode

	5 Cyber-Physical Security Modeling
	6 JAT Verification and Recovery
	7 Evaluations
	7.1 Evaluation on 3DR Solo Quadcopter

	8 Related Work
	9 Conclusion
	A Global safety conditions
	B normal Operation Mode Physical Modeling
	Acknowledgments
	References

	i12-2-mujeeb
	i12-3-castellanos
	Abstract
	1 Introduction
	2 Background
	3 Approach
	3.1 Attack points and cyber-to-physical interfaces
	3.2 Attacker profile
	3.3 Modelling a CPS as a Data Flow Graph
	3.4 White-box analysis of controller's source code
	3.5 Extracting graphs from a controller's code
	3.6 Reachability analysis
	3.7 Shortest path analysis and attack diagrams

	4 Implementation
	4.1 The testbed
	4.2 PLC code parser

	5 Evaluation
	5.1 Interactions between attack points and Cy2Phy interfaces
	5.2 Choosing suitable attack points
	5.3 Testing attack points in a real scenario

	6 Discussion
	7 Related work
	8 Conclusions and future work
	References
	A List of components in SWaT
	B Shortest path distance between attack points and Cy2Phy interfaces

	i12-4-schilling
	Abstract
	1 Introduction
	2 State of the Art and Background
	2.1 Threat Model and Attack Vector
	2.2 Error Detection Codes
	2.3 ARM Pointer Authentication

	3 Pointer Protection with Residue Codes
	3.1 Overview
	3.2 Pointer Layout and Residue-Code Selection
	3.3 Pointer Operations

	4 Evolved Memory Access Protection
	4.1 Overview
	4.2 The Linking Approach
	4.3 Memory-Mapped I/O

	5 Architecture
	5.1 New Instructions
	5.2 Hardware
	5.3 Software

	6 Evaluation
	6.1 Future Work

	7 Conclusion
	8 Acknowledgment
	References

	i13-1-wang
	Abstract
	1 Introduction
	2 Motivating Example
	3 System Overview
	4 Design and Implementation
	4.1 Library Call Tracing
	4.2 Lprov Kernel Module
	4.3 Lprov Daemon Process and Log Analysis

	5 Evaluation
	5.1 Performance Overhead
	5.2 Case Study

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Kernel Event Tracing
	A.2 Log Analysis Algorithm
	A.3 Additional Performance Evaluation

	i13-2-deGoer
	Abstract
	1 Introduction
	2 Problem
	2.1 Statement
	2.2 Notations and definitions
	2.3 Scope

	3 Approach
	3.1 Overview
	3.2 Heuristics

	4 Implementation
	4.1 Ground-truth - oracle
	4.2 Naive implementations of call detection
	4.3 Implementation details of iCi

	5 Experiments
	5.1 Methodology
	5.2 Platform
	5.3 General results
	5.4 SPEC CPU2006
	5.5 Influence of the compiler
	5.6 Discussion

	6 Applications
	7 Conclusion
	References

	i13-3-im
	Abstract
	1 Introduction
	2 Background
	2.1 Android security architecture
	2.2 Example: Location services
	2.3 SEAndroid policy rules
	2.4 The complexity of SEAndroid policy

	3 Methodologies
	3.1 The ``box'' metric
	3.2 Git repository analysis
	3.3 Our measurement tool

	4 Measurement Results
	4.1 Boxes vs. rules
	4.2 Number of boxes in a rule
	4.3 Number of rules per box
	4.4 Ratio of rule vs. box changes
	4.5 Summary

	5 An Historical Analysis
	5.1 The ``age'' of rules
	5.2 The increasing policy complexity
	5.3 The effect of multiple branches
	5.4 Case study: Stagefright
	5.5 Contributor comparison

	6 Discussion
	6.1 SEAndroid vs. Smack
	6.2 Android Treble
	6.3 Android for Work

	7 Related work
	8 Conclusion
	9 Acknowledgment
	References

	i13-4-rahman
	Abstract
	1 Introduction
	2 Background
	3 Intent-driven Access Control
	3.1 Threat Model and Assumptions
	3.2 IAC via BCI

	4 Experiment Design
	4.1 Single App Experiment
	4.2 Multiple Apps Experiment
	4.3 Experimental Procedures

	5 Data Process and Analysis
	6 Feasibility Test
	6.1 Single App Analysis
	6.2 Cross-app Portability Analysis
	6.3 Results Analysis
	6.4 Authorization Accuracy

	7 Discussion
	8 Related Work
	9 Conclusion
	10 Acknowledgment
	References

	i14-1-nikolic
	Abstract
	1 Introduction
	2 Problem
	2.1 Ethereum Smart Contracts
	2.2 Contracts with Trace Vulnerabilities
	2.3 Our Approach

	3 Trace Vulnerabilities
	3.1 EVM Semantics and Traces
	3.2 Safety Violations
	3.3 Liveness Violations

	4 The Algorithm and the Tool
	4.1 Symbolic Analysis
	4.2 Concrete Validation

	5 Evaluation
	5.1 Results
	5.2 Case Studies: True Positives
	5.3 Case Studies: False Positives
	5.4 Summary and Observations

	6 Related Work
	7 Conclusion
	References

	i14-2-torres
	Abstract
	1 Introduction
	2 Background
	2.1 The Ethereum Virtual Machine
	2.2 The Solidity Programming Language
	2.3 Integer Bugs in Ethereum Smart Contracts

	3 Methodology
	3.1 Type Inference
	3.2 Finding Integer Bugs
	3.3 Taint Analysis
	3.4 Identifying Benign Integer Bugs

	4 Osiris
	4.1 Design Overview
	4.2 Implementation

	5 Evaluation
	5.1 Empirical Analysis
	5.2 Detection of Real-World Vulnerabilities

	6 Discussion
	6.1 Causes for Integer Bugs
	6.2 Ways Towards Safe Integer Handling

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Control Flow Graph Example
	B The DAO Hack

	i14-3-greubel
	Abstract
	1 Introduction
	2 Background
	2.1 Tor Bandwidth Measurements
	2.2 Trusted Execution Environments
	2.3 Blockchain and Smart Contracts

	3 System and Adversary Model
	4 Design
	4.1 Entity Communication
	4.2 Relay Registration
	4.3 Bandwidth Measurer Registration
	4.4 Join Measurement Process
	4.5 Bandwidth Measurements
	4.6 Reporting and Aggregating Results
	4.7 Malfunction Detection

	5 Security Analysis
	5.1 Group Compromise
	5.2 Attacks from a malicious Host
	5.3 Attacks from compromised TEEs
	5.4 Attacks on the SC

	6 Implementation
	6.1 Smart Contract
	6.2 Bandwidth Measurement Script
	6.3 Bandwidth Measurement Host

	7 Evaluation
	7.1 Measurement script
	7.2 Smart Contract

	8 Related Work
	9 Conclusion and Future Work
	References
	A Intel SGX Details
	B Tor Speedracer Measurements
	C Smart Contract Implementation
	D Measurement Data

	i14-4-tran
	Abstract
	1 Introduction
	2 Problem Definition
	2.1 Preliminaries
	2.2 Threat Model
	2.3 Scope, Assumptions, and Limitations

	3 Obscuro
	3.1 Solution Overview
	3.2 Obscuro Protocol
	3.3 Indirect Participation Mechanism
	3.4 Detection of Malicious Blockchain Forks
	3.5 Collecting Deposits

	4 Security Analysis
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation

	6 Discussion
	6.1 Recipient of the Mixing Fees
	6.2 Multiple Obscuro Instances

	7 Related Work
	7.1 Existing Bitcoin Mixer Solutions
	7.2 Privacy Improvements in other Cryptocurrencies
	7.3 TEE for Cryptocurrency Applications

	8 Conclusion
	9 Acknowledgments
	References
	A Structure of the Deposit Transaction

	i15-1-continella
	Abstract
	1 Introduction
	2 Background
	2.1 Amazon S3
	2.2 Threats

	3 Methodology
	3.1 Enumeration & Data Collection
	3.2 Security Analysis

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Enumeration & Data Collection
	4.3 Scanning Results
	4.4 Vulnerable Websites

	5 Mitigation
	6 Discussion
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

	i15-2-demoulin
	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Strawman solutions
	2.2 DeDoS solution

	3 DeDoS Design
	3.1 Minimum splittable units
	3.2 Inter-MSU communication
	3.3 Routing tables
	3.4 DeDoS runtime API
	3.5 Support for existing applications

	4 Resource Allocation
	4.1 Machine-local scheduling
	4.2 Initial MSU assignment
	4.3 Cloning and merging

	5 Implementation
	5.1 Overview
	5.2 DeDoS local runtime

	6 Case Studies
	7 Evaluation
	7.1 Overheads
	7.2 Attack mitigation

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

	i16-1-blanchard
	Abstract
	1 Introduction
	2 Method
	2.1 Word choice
	2.2 Protocol
	2.3 Design choices

	3 Demographic information
	3.1 Participant selection
	3.2 Recruitment of volunteers
	3.3 Statistics

	4 Results
	4.1 Word selection
	4.2 Memorization
	4.3 Guessing

	5 Statistical modelling
	5.1 Strategies and entropy
	5.2 Semantic aspects

	6 Limitations
	6.1 Ecological validity
	6.2 Short-term and long-term memory
	6.3 Free choice of words

	7 Discussion
	8 Conclusion
	References

	i16-2-mayer
	Abstract
	1 Introduction
	2 Related Work
	3 Development of the Awareness-Raising Material
	3.1 First Iteration - Based on Literature
	3.2 Second Iteration - Incorporation of Structured Expert Feedback
	3.3 Third Iteration - Visual Elements and Lay-User Feedback

	4 User Study Methodology
	4.1 Hypotheses
	4.2 Procedure
	4.3 Questionnaires
	4.4 Analysis

	5 Results – Pre-Treatment and Post-Treatment Questionnaires
	5.1 Assessment of Scenarios
	5.2 Password Security Ratings
	5.3 Qualitative Results

	6 Results – Retention Questionnaires
	6.1 Assessment of Scenarios
	6.2 Password Security Ratings

	7 Discussion
	7.1 Improvements Derived from the User Study
	7.2 Limitations

	8 Conclusion
	References
	A.1 Introductory Sections
	A.2 Attacks
	A.3 Technologies to Protect User Credentials

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

