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Abstract

Two test statistics are proposed to determine model specification after a model is
estimated by an MCMC method. The first test is the MCMC version of IOSA test
and its asymptotic null distribution is normal. The second test is motivated from the
power enhancement technique of Fan, Liao and Yao (2015). It combines a component
(J1) that tests a null point hypothesis in an expanded model and a power enhancement
component (J0) obtained from the first test. It is shown that J0 converges to zero when
the null model is correctly specified and diverges when the null model is misspecified.
Also shown is that J1 is asymptotically χ2-distributed, suggesting that the second
test is asymptotically pivotal, when the null model is correctly specified. The main
feature of the first test is that no alternative model is needed. The second test has
several properties. First, its size distortion is small and hence bootstrap methods can
be avoided. Second, it is easy to compute from MCMC output and hence is applicable
to a wide range of models, including latent variable models for which frequentist
methods are difficult to use. Third, when the test statistic rejects the null model and
J1 takes a large value, the test suggests the source of misspecification. The finite
sample performance is investigated using simulated data. The method is illustrated in
a linear regression model, a linear state-space model, and a stochastic volatility model
using real data.
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1 Introduction

Economic theory has long been used to justify a particular choice of econometric mod-

els. These so-called structural econometric models are often based on a set of economic

assumptions used to develop the underlying economic theory. When some of the assump-

tions are invalid, the corresponding structural econometric models may be misspecified.

In many cases, economic theory may not be available and the choice of econometric mod-

els may be arbitrary. Consequently, models in reduced forms are used and reduced-form

models are vulnerable to specification errors.

In general misspecification of econometric models can potentially lead to inconsistent

estimation, which in turn may have serious implications for statistical inferences such as

hypothesis testing and out-of-sample forecasting and for economic decision makings such

as policy recommendation and investment decision. Consequently and not surprisingly, a

considerable amount of strenuous effort has been devoted in econometrics to detect model

misspecification.

One strand of the literature on specification tests unifies under the m-test of Newey

(1985), Tauchen (1985) and White (1987). These tests include as a special case of the

Lagrange multiplier (LM) test, the tests of Sargan (1958) and Hansen (1982), the tests of

Cox (1961, 1962), the Hausman (1978) test, the conditional moment test of Newey (1985),

the information matrix test of White (1982), the IOS test of Presnell and Boos (2004), the

information ratio (IR) test of Zhou et al (2012). These tests are in the frequentist paradig-

m, typically requiring parameters in the null hypothesis be estimated by the maximum

likelihood (ML) method or by generalized method of moments (GMM).

Another strand of the literature is based on tests that rely on the distances between

nonparametric and parametric counterparts. The idea originated from the Kolmogorov-

Smirnov test or the closely related family such as the Cramer-von Mises and Anderson-

Darling tests. Examples in this case include Eubank and Spiegelman (1990), Wooldridge

(1992), Fan and Li (1996), Gozalo (1993), Zheng (2000), Aı̈t-Sahalia (1996), and Hong

and Li (2005). All the tests in this category are also in the frequentist paradigm, but

requiring either a nonparametric estimate of a function or a density.

For many widely used models in economics, such as latent variable models and struc-

tural dynamic choice models (Imai, Jain and Ching, 2009; Norets, 2009), it is not easy

to obtain the ML estimate (MLE) or construct a nonparametric estimate. Not surpris-

ingly, it is difficult to apply any of the specification tests mentioned above. On the other

hand, there has been an increasing interest in using Markov chain Monte Carlo (MCMC)

methods to conduct Bayesian posterior analysis of econometric models. With the rapid

growth in computer capability, fitting models of increasing complexity has become easier

and easier by MCMC.
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In addition, it is well-known that specification tests that are based on the information

matrix, including the information matrix test (IMT) of White (1982), the IOS test of

Presnell and Boos (2004), the IR test of Zhou et al (2012), are subject to severe size

distortions. To reduce the size distortion, bootstrap methods have been used; see for

example, Horowitz (1994), Presnell and Boos (2004), Zhou et al (2012). For models where

MCMC is a popular estimation method, it is computationally infeasible to do bootstrap.

Given the increasing popularity of MCMC in practical applications, it is therefore

natural to introduce specification tests to assess the adequacy of a candidate model after

it is estimated by MCMC. We seek to answer two questions in the present paper. First,

how we can assess the validity of a model specification? Second, is it possible to tell the

source of model misspecification if the null model is rejected?

We propose two new specification tests based on MCMC output. The first test is the

MCMC version of IOSA of Presnell and Boos (2004) and its asymptotic null distribution is

normal. The second test is our main statistic which is motivated by the power enhancement

technique of Fan, et al (2015) and based on a model expansion strategy. It combines a

component (J1) that tests a null point hypothesis in an expanded model and a power

enhancement component (J0) obtained from the first test. It is shown that J0 converges

to zero when the null model is correctly specified and diverges when the null model is

misspecified. Also shown is that J1 is asymptotically χ2-distributed, suggesting that the

proposed test is asymptotically pivotal, when the null model is correctly specified.

The main feature of the first test is that no alternative model is needed. The second

test has several properties. First, its size distortion is small and hence bootstrap methods

can be avoided. Second, it is easy to compute from MCMC output and hence is applicable

to a wide range of models, including latent variable models for which ML and bootstrap

methods are difficult to use. Third, when the test statistic rejects the specification of a

null model and J1 takes a large value, our test suggests the source of misspecification.

However, the proposed test has a lower local power. This is the price we pay for avoiding

using a bootstrap method.

The paper is organized as follows. Section 2 proposes the two test statistics based

on MCMC output and establishes their asymptotic properties. Section 3 illustrates the

method using two simulation studies and three empirical studies. Section 4 concludes the

paper. Appendix collects the proof of the theoretical results in the paper and discusses

how to compute the two test statistics in the context of state-space models. Proofs of

Theorem 2.2 are provided in an online supplement.
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2 Two Specification Tests based on MCMC Output

After a candidate model is estimated by a Bayesian MCMC method, a natural way to check

the validity of the model is to construct an MCMC version of an ML-based specification

test. This is a reasonable way to proceed as both ML and MCMC are full-likelihood-based

approaches.

2.1 An MCMC-based information matrix test

In this subsection, we propose an MCMC-based information matrix test. First we need

to introduce some notations. Let y = (y1, . . . , yn) denote observed variables from a prob-

ability measure P0 on the probability space (Ω, F, P0). Let model P be a collection of

candidate models indexed by parameters θ whose dimension is q. Let Pθ denote P in-

dexed by θ. Following White (1987), if there exists θ, such that P0 ∈ Pθ, we say the

model P is correctly specified. However, if for all θ, P0 /∈ Pθ, we say the model P is mis-

specified. We would like to test the null hypothesis that the model in concern is correctly

specified. Define lt (θ) = log p
(
yt|θ

)
− log p

(
yt−1|θ

)
to be the conditional likelihood for

t observation and ∇jlt (θ) as the jth derivative of lt (θ), we suppress the subscript when

j = 1. Let yt := (y1, . . . , yt), and

s
(
yt,θ

)
:=

∂ log p
(
yt|θ

)
∂θ

=

t∑
i=1

∇li (θ) , h
(
yt,θ

)
:=

∂2 log p
(
yt|θ

)
∂θ∂θ′

=

t∑
i=1

∇2li (θ) ,

st (θ) := ∇lt (θ) = s
(
yt,θ

)
− s

(
yt−1,θ

)
, ht (θ) := ∇2lt (θ) = h

(
yt,θ

)
− h

(
yt−1,θ

)
,

Ĵn (θ) :=
1

n

n∑
t=1

st (θ) s′t (θ) , Ĥn (θ) :=
1

n

n∑
t=1

ht (θ) ,

Jn (θ) :=

∫
Ĵn (θ) g(y)dy,Hn (θ) :=

∫
Ĥn (θ) g(y)dy

Ln (θ) := log p(θ|y), L(j)
n (θ) := ∂j log p (θ|y) /∂θj .

In this paper, we assume that the following mild regularity conditions are satisfied.

Assumption 1: Let θ̂ be the posterior mode such that L
(1)
n (θ̂) = 0. There exists an

integer N1 and some δ > 0 such that for n > N1 and θ ∈ H(θ̂, δ) = {θ : ||θ − θ̂|| ≤ δ},
L
(2)
n (θ̂) is negative definite with probability approaching one.

Assumption 2: The largest eigenvalue of
[
−L(2)

n

(
θ̂
)]−1

goes to zero in probability

as n→∞.

Assumption 3: For any ε > 0, there exists a positive number δ, such that

lim
n→∞

P

 sup

θ∈B
(
θ̂, δ

)
∥∥∥∥[−L(2)

n

(
θ̂
)]−1 [

L(2)
n (θ)− L(2)

n

(
θ̂
)]∥∥∥∥ < ε

 = 1. (1)
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where B
(
θ̂, δ

)
is the neighborhood of θ̂.

Assumption 4: For any δ > 0, as n→∞,∫
Θ−B

(
θ̂, δ

) p (θ|y) dθ = Op
(
n−3

)
,

where Θ is the support space of θ.

Assumption 5: Let g(y) be the true data generating process (DGP), and denote θ0

∈ Θ ⊂ Rq the pseudo-true value that minimizes the Kullback-Leibler (KL) loss between

the DGP and the parametric model,

θ0 = arg min
θ

∫
log

g(y)

p (y|θ)
g(y)dy.

where θ0 is a unique minimizer.

Assumption 6: The prior p(θ) is Op(1) for all θ ∈ Θ.

Assumption 7: Assume

H (θ0) := lim
n→∞

Hn (θ0) and J (θ0) := lim
n→∞

Jn (θ0)

exist and are nonsingular, and limn→∞ n
−1 ∫ ∑n

t=153lt (θ0) g(y)dy exists.

Assumption 8: θ0 ∈ int (Θ) where Θ is a compact, separable metric space.

Assumption 9: {yt, t = 1, 2, 3, . . .} is an α mixing sequence that satisfies, for F t−∞ =

σ (yt, yt−1, . . .) and F∞t+m = σ (yt+m, yt+m+1, . . .), the mixing coefficient α (m) = O
(
m
−2r
r−2
−ε
)

for some ε > 0 and r > 2.

Assumption 10: There exists a function Mt(yt) such that for 0 6 j 6 8, all θ ∈ G
where G is an open, convex set containing Θ, 5jlt (θ) exists, supθ∈G

∥∥5jlt (θ)
∥∥ 6Mt(yt),

and suptE ‖Mt (yt)‖r+δ ≤M <∞ for some δ > 0.

Assumption 11:
{
5jlt (θ)

}
is L2-near epoch dependent with respect to {yt} of size

−1 for 0 6 j 6 1 and −1
2 for j = 2, 3 uniformly on Θ.

Assumption 12: For all θ,θ′ ∈ Θ,
∥∥5jlt (θ)−5jlt

(
θ′
)∥∥ ≤ ct

(
yt
) ∥∥θ − θ′∥∥ for 0 6

j 6 3 in probability, where ct
(
yt
)

is a positive random variable, suptE
∥∥ct (yt)∥∥ <∞ and

limn→∞
1
n

∑n
t=1 (ct − Ect)

p→ 0.

Remark 2.1 Assumption 1-4 have been used to develop Bayesian large sample theory;

see, for example, Chen (1985), Kim (1994, 1998), Geweke (2005). Similar assumptions

have been used to develop asymptotic properties of the Laplace type estimator in Cher-

nozhukov and Hong (2003). The order condition in Assumption 4 is used to develop high-

er order expansions; see, for example, Miyata (2004, 2010). Assumption 5 is a standard

regularity condition to define the pseudo-true value; see Huber (1967), White (1982) and

Müller (2013). Assumption 6 ensures that when the sample size increases, the likelihood
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information dominates the prior information so that the prior information can be ignored

asymptotically. Assumption 7-12 are similar to those made in Rilstone et al (1996), Newey

and Smith (2004), and Bester and Hansen (2006) for developing higher order expansions.

Based on these assumptions, Li, Yu and Zeng (2017) showed that,

θ̄ = E [θ|y] =

∫
p (θ|y)θdθ = θ̂ +Op(n

−1),

V
(
θ̂
)

=

∫ (
θ − θ̂)(θ − θ̂

)′
p (θ|y) dθ =− L−(2)n

(
θ̂
)

+Op(n
−2).

Before we introduce our test statistics, it is important to review some leading specifi-

cation tests based on MLE. One of the earliest specification tests is based on the informa-

tion matrix equivalence due to White (1982). Under the null hypothesis that the model

is correctly specified, it is well-known that H(θ) + J(θ) = 0. White (1982) proposed the

following information matrix test

IMT = nDn

(
θ̂ML

)
V −1n

(
θ̂ML

)
Dn

(
θ̂ML

)
, (2)

where θ̂ML is the MLE of θ, and

Vn

(
θ̂ML

)
=

1

n

n∑
t=1

νt

(
θ̂ML

)
νt

(
θ̂ML

)′
,

νt

(
θ̂ML

)
= d

(
yt, θ̂ML

)
− Ḋn

(
θ̂ML

)
Ĥ−1n

(
θ̂ML

)
s
(
yt, θ̂ML

)
,

Dn

(
θ̂ML

)
=

1

n

n∑
t=1

d
(
yt, θ̂ML

)
, Ḋn =

∂Dn

∂θ
, d(y,θ) = vech

[
h(y,θ) + s(y,θ)s′(y,θ)

]
.

Based on a set of regularity conditions, White (1982) showed that IMT
d→ χ2 as n → ∞

under the null hypothesis.

Presnell and Boos (2004) proposed an alternative test – the “in-and-out” likelihood

ratio (IOS) test for models with i.i.d. observations. Let θ̂
(t)
ML be the MLE of θ when the

t-th observation, yt, is deleted from the whole sample. From the predictive perspective,

the single likelihood p
(
yt, θ̂

(t)
ML

)
can be regarded as the predictive likelihood by the other

observations. Presnell and Boos (2004) defined the “in-and-out” likelihood ratio test as:

IOS = log

∏n
t=1 p

(
yt, θ̂ML

)
∏n
t=1 p

(
yt, θ̂

(t)
ML

) =

n∑
t=1

[
log p

(
yt|θ̂ML

)
− log p

(
yt, θ̂

(t)
ML

)]
,

and showed that the asymptotic form of IOS is

IOSA = tr
[
−Ĥ−1n

(
θ̂ML

)
Ĵn

(
θ̂ML

)]
, (3)
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and IOS− IOSA = op
(
n−1/2

)
. Like IMT, IOSA also compares Ĥn

(
θ̂ML

)
with Ĵn

(
θ̂ML

)
,

but in a ratio form instead of an additive form. Under the null hypothesis, IOSA
p→

q and n1/2 (IOSA − q) converges to a normal distribution with zero mean and a very

complicated variance. Clearly, IOS and IOSA are asymptotically equivalent. Zhou, et al

(2012) proposed a test statistic that takes the form of IOSA/q which is denoted as the

information ratio (IR) test. Zhou, et al (2012) established the asymptotic distribution

of IR. Under the null hypothesis, it was shown that n1/2 (IR− 1) converges to a normal

distribution with zero mean and a very complicated variance.

Unfortunately, it is well-documented that the asymptotic distributions poorly approx-

imate their finite sample counterparts for IMT, IOS, IOSA. As a result, they all suffer

from serious bias distortions if asymptotic distributions are used to obtain critical values.

See Orme (1990), Chesher and Spady (1991), Davidson and Mackinnon (1992), Horowitz

(1994) for evidence of severe oversized problem for IMT. Presnell and Boos (2004) showed

that the convergence of IOS statistic to normality is slow by simulation so they proposed

to obtain the critical values by parametric bootstrap. The poor finite sample performance

of these tests is not surprising as the asymptotic theory relies on the convergence of the

sample high order moments which is slow. Naturally, to reduce the size distortion, the

bootstrap methods can be advocated to be implemented for calibrating better critical

values, see Horowitz (1994), Presnell and Boos (2004) and Zhou et al (2012).

Based on Remark 2.1 and the expression of IOSA given in Equation (3), if we replace

−Ĥ−1n

(
θ̂ML

)
with nV

(
θ̄
)

and Ĵn

(
θ̂ML

)
with Ĵn

(
θ̄
)
, a natural MCMC-based informa-

tion matrix test (which is our first test statistic) can be defined as:

BIMT = tr
[
nV
(
θ̄
)
Ĵn
(
θ̄
)]

= n

∫ (
θ − θ̄

)′
Ĵn
(
θ̄
) (
θ − θ̄

)
p (θ|y) dθ. (4)

Proposition 2.1 Under Assumptions 1-12, we have

BIMT = IOSA +Op
(
n−1

)
= q × IR +Op

(
n−1

)
,

where q is the dimension of parameter θ. If the model is correctly specified, we have

BIMT = q +Op

(
n−1/2

)
.

Remark 2.2 Following Proposition 2.1 and the discussion in Section 2, we can see that

n1/2 (BIMT/q − 1) has the same asymptotic distribution as n1/2 (IOSA/q − 1) and n1/2 (IR− 1).

Hence, BIMT may be regarded as the MCMC version of IOSA. As IMT and IOS, BIMT

does not require an alternative model be specified. Different from IMT, IOS and IOSA,

BIMT is based on MCMC output and hence is easier to obtain for some complex models,

such as latent variable models. However, simulation studies that will be reported in Section

3.1.1 show that BIMT suffers from severe size distortion. Hence, bootstrap methods must

be used, greatly increasing the computational cost.
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2.2 Power enhancement technique

The size problem and the computational cost for the first statistic point to a need for

another test statistic. Before we introduce our second test statistic, it is important to

review the power enhancement technique of Fan, et al (2015). Fan, et al considered

the hypothesis testing problem of H0 : θ = 0 where θ is a high-dimensional vector.

The alternative hypothesis H1 is sparse so that the null hypothesis is violated by only a

few components. They showed that traditional tests, such as the Wald test, have a low

power. To enhance the power, they introduced a power enhancement component which

is zero under the null hypothesis with high probability and diverges quickly under sparse

alternatives.

Their new test statistic (call it J) has the form of

J = J0 + J1,

where J1 is an asymptotically pivotal test statistic, such as Wald test, and J0 is a power

enhancement component. J0 needs to satisfy three properties: (a) J0 ≥ 0 almost surely;

(b) under H0, Pr(J0 = 0|H0) → 1; (c) J0 diverges in probability under some specific

regions of H1. Clearly, property (a) ensures that J is at least as powerful as J1; property

(b) guarantees that the asymptotic distribution of J under H0 is determined by J1 and

hence the size of J is asymptotically equivalent to that of J1; property (c) guarantees that

the power of J improves that of J1.

Motivated by this power enhancement technique, we propose a specification test based

on MCMC output. This new test combines a component (J1) that tests a null point

hypothesis in an expanded model and a power enhancement component (J0) obtained

from the first test.

2.3 The main specification test

As in Fan et al (2015), our second test has two components, J0 and J1. To introduce

J1, we expand p(y|θ), the model in concern, to a larger model denoted by p (y|θL) where

θL =
(
θ
′
,θ
′
E

)′
with θE being a qE-dimensional vector. So the expanded model p (y|θL)

nests the original model p (y|θ). We assume that if the specification p (y|θ) is correct,

then the true value of θE is zero. Let

s (y,θL) =
∂ log p (y|θL)

∂θL
,

C (y,θL) = s (y,θL) s (y,θL)′ ,

V
(
θ̄L
)

= E
[(
θL − θ̄L

) (
θL − θ̄L

)′ |y] =

∫ (
θL − θ̄L

) (
θL − θ̄L

)′
p(θL|y)dθL,

where θ̄L is the posterior mean of θL in the expanded model. The J1 component is

designed to test the point null hypothesis θE = 0 after the expanded model is estimated
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by an MCMC method. In particular, we follow Li, et al (2015) by considering a test

statistic given by

J1 = tr
{
CE
(
y,
(
θ̄,θE = 0

))
VE
(
θ̄L
)}
, (5)

where CE
(
y,
(
θ̄,θE = 0

))
is the submatrix of C (y,θL) corresponding to θE evaluated at(

θ̄,θE = 0
)

and VE
(
θ̄L
)

is the submatrix of V (θL) corresponding to θE evaluated at θ̄L.

As shown in Li, et al (2015), J1 is a MCMC-version of LM test (Breusch and Pagan, 1980)

and J1
d→ χ2 (qE) when θE = 0. Typically, J1 has good size property as it is designed to

test the point null hypothesis.

If J1 rejects the hypothesis θE = 0, it suggests that the original model p (y|θ) is

misspecified and indicates the source of model misspecification in p (y|θ). Unfortunately,

if J1 fails to reject the hypothesis θE = 0, no conclusion can be drawn about the validity

of the original model p (y|θ). This is because, in practice, there are many different paths

to expand the model. While J1 may have good powers in some paths, it may have low

powers in other paths. This problem is similar to that in the Wald statistic in the context

of testing a high-dimensional vector against sparse alternatives, as well explained in Fan

et al (2015).

To deal with this problem of low power, we introduce a power enhancement component

to improve the power based on BIMT, that is,

J0 =
√
n(BIMT/q − 1)2, (6)

and propose the following MCMC-based test for model misspecification

BMT = J1 + J0 = tr
{
CE
(
y,
(
θ̄,θE = 0

))
VE
(
θ̄L
)}

+
√
n(BIMT/q − 1)2. (7)

In the following theorem, we establish large sample properties for J0, J1 and BMT.

Theorem 2.1 Under Assumptions 1-12, when the model is correctly specified, we have,

J1
d→ χ2 (qE) , J0 = op(1), BMT

d→ χ2 (qE) .

Let q∗ := tr
[
−H (θ0)

−1 J (θ0)
]
. If the model is misspecified with q∗ 6= q, we have

J0 =
√
n [q∗/q − 1]2 + 2

√
n (q∗/q − 1) op(1) +Op(n

−1/2) = Op(
√
n),

so that the order of the power of BMT is no less than Op(
√
n).

Remark 2.3 From Equation (6) and Theorem 2.1, it is easy to see that J0 satisfies the

three power enhancement properties listed in Fan, et al. (2015). Since J1
d→ χ2 (qE) and

J0 = op(1), BMT is asymptotically pivotal (χ2) under H0 and the size distortion in BMT

due to adding J0 is asymptotically negligible. Under H1 in the region where q∗ 6= q, J0
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diverges and dominates J1, serving nicely as a power enhancement component. Since our

test relies on selecting particular paths for model expansion, if both BMT and J1 are larger

than the critical value, our approach not only suggests that the original model p (y|θ) is

misspecified but also indicates the source of model misspecification in p (y|θ).

Remark 2.4 BMT has several nice properties. First, compared with IMT, IOS, IOSA

and IR, BMT is based on MCMC output. When the likelihood function is difficult to

optimize but the MCMC draws from the posterior distribution are available, BMT is easier

to compute than the others. Second, when J1 does not have the size distortion problem, it is

most likely that BMT will not suffer from size distortion. As a result, no bootstrap method

is needed and intensive computational effort is avoided. In addition, BMT can be obtained

under other simulation-based approaches, such as sequential Monte Carlo methods, as

suggested by a referee. In addition, by incorporating BIMT into J0, there is no need to

calculate the complicated asymptotic variance of BIMT. These important properties make

BMT applicable to a wide range of models.

Remark 2.5 While J1 depends on the path of model expansion, J0 is always independent

of model expansion. According to Theorem 2.1, as long as q∗ 6= q, J0 = Op (
√
n). Hence,

no matter which path the model is expanded in, even in the path where J1 takes a very

small value, BMT can still detect the model misspecification due to the power enhancement

component.

Remark 2.6 Relative to IOSA, IR and BIMT, BMT has a lower local power. This is the

price we pay for avoiding using bootstrap methods. From Proposition 2.1 and Theorem

2.1, it is easy to show that IOSA, IR and BIMT can detect the local misspecification that

shrinks to the null at the rate of n−1/2 (i.e. q∗ − q = Op(n
−1/2)). Since J0 is Op(1) when

q∗ − q = Op(n
−1/4), BMT can detect the local misspecification that shrinks to the null

at the rate of n−1/4. This comparison suggests that one may define an alternative power

enhancement function such as J0 = nα(BIMT/q−1)2 for α ∈ (1/2, 1) to improve the local

power. While the new J0 can raise the local power, it introduces more size distortion to

BMT. The analysis of such a trade-off is beyond the scope of the present paper.

Remark 2.7 Informative priors impose tight constraints on parameters so that the poste-

rior covariance matrix and hence BIMT and BMT can be sensitive to priors. To minimize

the impact of priors, we suggest the use of non-informative priors or flat priors when im-

plementing our tests.1

BMT requires selecting an auxiliary model to expand the original model. When

the model is misspecified such that q∗ 6= q, BMT can always detect the misspecification

1Loosely speaking, a non-informative prior is referred to a prior with big variance in our paper.
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asymptotically regardless of choice of auxiliary model. However, auxiliary models will

affect the size and power properties of BMT in finite samples. In general, it is very

difficult to specify the “optimal” auxiliary model, as in indirect inference (Gourieroux,

et al, 1993) where an auxiliary model is also needed. Here we provide some practical

guidelines on how to choose an auxiliary model.

First, it is generally preferable to expand the conditional mean than to expand the

conditional variance. Assume that, for a statistical model, the conditional mean and con-

ditional variance are E(y|F ) and V ar(y|F ), respectively, where F is the information set.

Under mild regularity conditions, it is known that if E(y|F ) is misspecified, parameters in

E(y|F ) are often inconsistently estimated, whereas if V ar(y|F ) is misspecified, parame-

ters in E(y|F ) can be consistently estimated (White, 1982). According to this property, if

E(y|F ) is correctly specified, whether V ar(y|F ) is correctly specified or not, J1 will take

a small value. Now consider the following two cases. In the first case E(y|F ) is expanded

while in the second case V ar(y|F ) is expanded. First consider the case when V ar(y|F ) is

misspecified, E(y|F ) is correctly specified, and E(y|F ) is expanded. In this case J1 takes a

small value. Since BMT rejects H0, together with a small value for J1, it suggests that the

source of misspecification is in the conditional variance but not in the conditional mean.

Second consider the case when E(y|F ) is misspecified, V ar(y|F ) is correctly specified,

and V ar(y|F ) is expanded. In this case, J1 takes a large value and rejects H0, incorrectly

indicating that the source of misspecification is in the conditional variance. This strategy

for expanding the conditional mean even when the conditional variance is misspecified will

be implemented in the third empirical example in Section 3.

Second, choice of an auxiliary model can be guided by economic theory. In the second

and third empirical examples, we show how to choose auxiliary models using asset pricing

theories. Third, choice of an auxiliary model can be guided by computational cost. It

is important to specify an auxiliary model that can be quickly estimated. If not, BMT

will be difficult to compute. Fourth, as usual, the law of parsimony is applicable. That

is, when alternative auxiliary models with the same structure but different number of

parameters are available, the model with the smallest number of parameters should be

tried first because the simplest solution tends to be the right one. Of course, there is a

size-power tradeoff here.

2.4 The proposed tests based on MCMC output

Asymptotic properties of BMT have been established based on θ̄ = E(θ|y) and V
(
θ̄
)

=

E
[
(θ − θ̄)(θ − θ̄)′|y

]
. In practice, however, analytical expressions for θ̄ and V

(
θ̄
)

are

often not available and some consistent estimates of θ̄ and V
(
θ̄
)

based on MCMC output

have to be used to approximate θ̄ and V
(
θ̄
)
. Let

{
θ
(m)
n

}M
m=1

be MCMC draws from
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the posterior distribution p(θ|y) of the null model. A consistent estimate of the posterior

mean θ̄ and the posterior variance V
(
θ̄
)

is given by

θ̃ =
1

M

M∑
m=1

θ(m)
n , Ṽ (θ̃) =

1

M

M∑
m=1

(
θ(m)
n − θ̃

)(
θ(m)
n − θ̃

)′
.

Similarly, let
{
θ
(m)
Ln

}M
m=1

be MCMC draws from the posterior distribution p(θL|y) of the

expanded model. Then,

θ̃L =
1

M

M∑
m=1

θ
(m)
Ln , Ṽ (θ̃L) =

1

M

M∑
m=1

(
θ
(m)
Ln − θ̃L

)(
θ
(m)
Ln − θ̃L

)′
.

Based on these estimates of posterior moments, MCMC-based estimates of BIMT and

BMT can be obtained as

B̃IMT = ntr
[
Ĵn(θ̃)Ṽ (θ̃)

]
,

B̃MT = J̃1 + J̃0 = tr
{
CE

[
y, (θ̃,θE = 0)

] [
ṼE(θ̃L)

]}
+
√
n
(
B̃IMT/q − 1

)2
,

where CE

[
y, (θ̃,θE = 0)

]
is the submatrix of C

[
y, (θ̃,θE = 0)

]
and ṼE(θ̃L) is the sub-

matrix of Ṽ (θ̃L).

The number of MCMC draws (M) should be chosen so that B̃IMT and B̃MT enjoy

the same asymptotic properties of BIMT and BMT, respectively, when n is allowed to go

to infinity. To derive the correct orders for M , we need to add Assumption 13 below. The

same assumption was also used in Cheng, et al (2017), Robert and Casella (2004) and

Jones (2004).

Assumption 13: Assume
{
θ
(m)
n

}M
m=1

and
{
θ
(m)
Ln

}M
m=1

are two Markov chains which

are aperiodic, ψ-irreducible, positive Harris recurrent and geometrically ergodic with the

stationary distribution being p(θ|y) and p(θL|y), and maxn≥1E

[∣∣∣θ(1)n ∣∣∣4+ε0 |y] < ∞ ,

maxn≥1E

[∣∣∣θ(1)Ln∣∣∣4+ε0 |y] <∞, for some ε0 > 0.

For a = 1, 2, · · · , q, let θa be the ath component of θ, and σ21n,a be the long run variance

of Markov chain,
{
θ
(m)
a

}M
m=1

. That is,

σ21n,a = V ar (θa|y) + 2
∑∞

k=1
γ1n,a (k|y) ,

where γn,a (k|y) is the kth order autocovariance given by

γ1n,a (k|y) = Cov
(
θ(1)a ,θ(1+k)a |y

)
= E

(
θ(1)a θ

(1+k)
a |y

)
− E

(
θ(1)a |y

)
E
(
θ(1+k)a |y

)
.

Similarly, if we let ϑ = vech
[(
θ − θ̄

) (
θ − θ̄

)′]
and ϑL = vech

[(
θL − θ̄L

) (
θL − θ̄L

)′]
where θ̄ = E [θ|y] and θ̄L = E [θL|y], then we can define σ22n,b to be the long run variance
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of Markov chain,
{
ϑ
(m)
b

}M
m=1

for b = 1, 2, · · · , r (= q(q + 1)/2). Moreover, for b =

1, 2, · · · , rL (= qL(qL + 1)/2) with qL = q + qE , we can define σ2Ln,b to be the long run

variance of Markov chain,
{
ϑ
(m)
Ln,b

}M
m=1

.

Theorem 2.2 Let

σ2∗1n = max
a∈{1,2,...,q}

σ21n,a, σ
2∗
2n = max

b∈{1,2,...,r}
σ22n,b, σ

2∗
Ln = max

b∈{1,2,...,rL}
σ2Ln,b.

Let MBIMT be the number of MCMC draws from p(θ|y) for B̃IMT . Let MBMT and ML

be the number of MCMC draws from p(θ|y) and p(θL|y) for B̃MT . Under Assumptions

1-13, for any c∗i > 0 with i = 1, 2, if we choose

MBIMT = max
{
n1+c

∗
1σ2∗1n, n

3+c∗2σ2∗2n

}
, (8)

then, when the model is correctly specified, we have

√
n
(
B̃IMT −BIMT

)
= op(1).

Furthermore, for any c∗i > 0 with i = 3, 4, 5, if we choose

MBMT = max
{
n1+c

∗
3σ2∗1n, n

2.5+c∗4σ2∗2n

}
, ML = n2+c

∗
5σ2∗Ln, (9)

then, when the model is correctly specified, we have

J̃1 = J̃1 + op(1), J̃0 = op(1), B̃MT = BMT + op(1).

When the model is misspecified such that q∗ 6= q, we have

J̃0 = J0 + op(1) =
√
n [q∗/q − 1]2 + 2

√
n (q∗/q − 1) op(1) +Op(n

−1/2) = Op(
√
n).

Remark 2.8 Theorem 2.2 gives the order for the number of MCMC draws in (8) to

ensure that B̃IMT has the same asymptotic distribution as BIMT and that in (9) to

ensure that B̃MT has the same asymptotic distribution as BMT. In addition, it gives the

condition under which B̃MT has the same order of power as BMT.

Remark 2.9 In practice, the sample size n is often large enough so that MBIMT =

max
{
n1+c

∗
1σ2∗1n, n

3+c∗2σ2∗2n
}

= n3+c
∗
2σ2∗2n and MBMT = max

{
n1+c

∗
3σ2∗1n, n

2.5+c∗4σ2∗2n
}

= n2.5+c
∗
2σ2∗2n.

In this case, MBMT is of a smaller order than MBIMT and the difference in order is
√
n.

When the number of MCMC draws is set at MBIMT = n3+c
∗
2σ2∗2n, Theorem 2.2 suggests that

B̃IMT−BIMT= op(n
−1/2). According to Proposition 2.1, BIMT= q + Op

(
n−1/2

)
under

H0. These two properties imply that both B̃IMT and BIMT converge to the same distribu-

tion. However, if we only choose MBIMT = n2.5+c
∗
2σ2∗2n, then B̃IMT−BIMT= op(n

−1/4),
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suggesting that B̃IMT and BIMT may not converge to the same distribution. When

the number of MCMC draws is set at MBMT = n2.5+c
∗
3σ2∗2n in the original model and at

ML = n2+c
∗
5σ2∗Ln in the expanded model, Theorem 2.2 suggests that B̃MT −BMT = op(1).

According to Theorem 2.1, BMT
d→ χ2 (qE) under H0. These two properties imply that

B̃MT and BMT converge to the same distribution. Hence, for B̃IMT to have the same

asymptotic distribution as BIMT, a stronger order condition is needed for M than that for

B̃MT to have the same asymptotic distribution as BMT. The orders differ by
√
n. This

is additional advantage in using BMT over BIMT. For example, if n = 2000,
√
n ≈ 45. It

means the number of MCMC draws required for B̃IMT is about 45 times as large as that

for B̃MT .

Remark 2.10 In practice, σ2∗1n, σ2∗2n and σ2∗Ln are unknown. Hence, one has to estimate

them from MCMC output. For example, we can estimate them sequentially by consistent

batch means or spectral methods.2 Once the order achieves the desirable one, we may

stop MCMC drawing. Let consistent estimates of σ2∗1n, σ2∗2n and σ2∗Ln be σ̂2∗1n, σ̂2∗2n and σ̂2∗Ln.

Suppose BMT is used. For the null model, we should choose M ≥ n2.5+c
∗
4 σ̂2∗2n. For

the expanded model, we should choose M ≥ n2+c
∗
5 σ̂2∗Ln. Since {c∗i }

5
i=4 are any positive

constants, the lower bound of nc
∗
i is one. In practice, we may set nc

∗
i to be a number

slightly larger than 1.

3 Simulation and Empirical Studies

In this section, we first design two simulation studies to check the finite sample perfor-

mance of BMT. In the first simulation study, we test for heteroskedasticity in a linear

regression model. This study aims to compare BMT with other popular tests in terms

of size and power. We also investigate the performance of BIMT in this model. In the

second simulation study, we test the specification of a linear state-space model where ex-

isting misspecification tests are difficult to use but BMT is easier to obtain. Then, we

consider empirical studies to examine the specification of three models and to highlight

the usefulness of our test. The first model is a linear regression model. The second model

is a linear state-space model where existing tests are difficult to use. This third model is

a stochastic volatility model where existing tests are impossible to use.

2The conditions under which these estimators are strongly consistent are established in Flegal and Jones
(2010) and Jones, et al (2006).
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3.1 Simulation Studies

3.1.1 Test for heteroskedasticity in a linear regression model

To do a Monte Carlo comparison of the IR test with other popular misspecification tests,

Zhou et al (2012) considered the heteroskedasticity testing problem in a linear regression

model. In our first simulation study, we adopt the simulation design of Zhou et al (2012)

and compare the size and the power of BMT with some alternative tests. The linear

regression model is specified as,

yi = 1 + 2xi1 + 2xi2 + εi, εi = σiξi, ξi
i.i.d.∼ N(0, 1),

For this model, the covariates xi1 and xi2 are independently generated from a U [−3, 3]

distribution. We would like to test the following null hypothesis of homoskedasticity, i.e.,

H0 : V ar(εi) = σ2i = σ2, i = 1, 2, · · · , n.

The DGP under the null hypothesis and the alterative hypothesis is, respectively,

H0 : σ2i = 1; H1 : σ2i = exp(xi1 + xi2).

Following Zhou et al (2012), we run 2,000 replications, each of which has three different

sample sizes, 50, 100, 200.

For the expanded model, we use

yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + εi, εi = σξi, ξi ∼ N(0, 1).

Hence, θE = β3.

To implement the proposed test, we need to use the MCMC method to estimate the

model under the null hypothesis and the expanded model. To check the robustness of

priors, we consider two sets of non-informative prior specifications. The first prior is

proper but very vague and given by

β = (β0, β1, ..β3)
′ ∼ N [µβ = 0, σ2V β = 100× I4], σ

−2 ∼ Gamma(a = 0.01, b = 0.01),

where I4 is the identity matrix with dimension 4, (a, b) are hyperparameters of the Gamma

distribution. Both the normal prior distribution and the Gamma prior distribution have

large spread so that they are non-informative. The second is an improper flat prior, i.e.,

p(β, σ2) ∝ σ−2. In this example, since the posterior distribution is available analytically,

we simply make 2,000 draws from the posterior directly.

We first check the size distortion problem in IOSA and BIMT when the flat prior is used.

Table 1 reports the empirical size of IOSA and BIMT based on the asymptotic distribution

and the parametric bootstrap distribution. In this example, the ML method is trivial to
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Table 1: Empirical size for IOSA and BIMT under the asymptotic distribution and the
bootstrap distribution

IOSA BIMT

n Asymptotic Bootstrap Asymptotic Bootstrap

50 0.216 0.049 0.5420 0.0570
100 0.147 0.050 0.3270 0.0525
200 0.136 0.056 0.2155 0.0570

Table 2: Empirical size for alternative tests

n IR IMT IOS BMTv BMTf

50 0.044 0.050 0.060 0.051 0.046
100 0.045 0.059 0.056 0.055 0.050
200 0.046 0.065 0.048 0.050 0.052

implement and hence the bootstrap method is feasible. The method used to obtain the

asymptotic variance was proposed by Lancaster (1984). It can be seen clearly that the

oversized problem for both IOSA and BIMT is severe when the asymptotic distribution

is used. The size distortion is even larger for BIMT than for IOSA, especially when n is

small. For both tests, the bootstrap method can solve the size distortion problem. These

results reinforce the theory developed earlier in the paper.

Let BMTv be BMT under the vague prior and BMTf be BMT under the flat prior.

Table 2 reports the empirical size of IR, IMT, IOS, BMTv and BMTf under H0 and at

the 5% significance level. The results of the first three tests are extracted from Zhou et

al (2012) where critical values are obtained from the bootstrap distribution. The BMT

test entertains similar performance to other tests and shows small size distortions in all

cases. Moreover, the size of BMT is robust against the change in prior. Table 3 reports

the empirical power of IR, IMT, IOS and BMT at the 5% significance level. The results

of the first two tests are extracted from Zhou et al (2012). From this table, it can be seen

that the power of IOS is always the highest, followed closely by BMT and IR, while the

power of IMT can be quite low (when n =50). The power of BMT is compatible with that

of IR. Again, the prior does not have significant influence on the power of BMT.

From this experiment we can conclude that the finite sample performance of BMT is

Table 3: Empirical power under the alternative hypothesis

n IR IMT IOS BMTv BMTf

50 0.85 0.11 0.9837 0.797 0.750
100 0.95 0.46 1.000 0.976 0.961
200 1.00 0.93 1.000 1.000 1.000
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satisfactory with small size distortion and good power. Both the size and the power of

BMT are not sensitive to priors. We should emphasize that critical values of BMT are

obtained from χ2 and hence no bootstrap method is needed.

3.1.2 A linear state-space model

The model under the null hypothesis is the following linear state-space model

Rt = βtR0t + εt, εt
i.i.d.∼ N

(
0, σ2ε

)
, (10)

βt+1 = β̄ + φ
(
βt − β̄

)
+ ηt, ηt

i.i.d.∼ N
(
0, σ2η

)
.

This random coefficient model has found many applications in economics and finance.

While MLE of this model can be obtained by using the Kalman filter, the bootstrap

method will be computationally costly for obtaining critical values for IMT, IOSA, IR and

BIMT. Consequently, we only implement BMT in this example.

The expanded model is

Rt = α+ βtR0t + εt, εt
i.i.d.∼ N

(
0, σ2ε

)
(11)

βt+1 = β̄ + φ
(
βt − β̄

)
+ ηt, ηt

i.i.d.∼ N
(
0, σ2η

)
,

where an intercept is added to the observation equation. If Model (10) is correctly specified,

α = 0 in the expanded model.

For the MCMC analysis, we use the following vague priors for hyper-parameters,

α ∼ N(0, 103), β̄ ∼ N(0, 103), φ ∼ Beta(1, 1), σ−2ε ∼ Γ(10−3, 10−3), σ−2η ∼ Γ(10−3, 10−3).

Based on 20,000 MCMC samples after 2,000 burn-in observations from the posterior dis-

tribution, we compute BMT. We run 1,000 replications, each of which has three different

sample sizes, n =200, 400, 800.

To compute empirical size, we set parameter values at σ2ε = 0.000307, β̄ = 0.96,

φ = 0.5, σ2η = 0.208 and R0t are generated from an i.i.d. normal distribution with mean

0 and variance 0.001. To compute empirical power, we consider two different DGPs. The

first DGP (denoted by M1) is given by

Rt = βtR0t +
σε√

3
εt, εt

i.i.d.∼ t3, (12)

βt+1 = β̄ + φ
(
βt − β̄

)
+ ηt, ηt

i.i.d.∼ N
(
0, σ2η

)
,

where t3 is a t distribution with 3 degrees of freedom, σ2ε = 0.000307, β̄ = 0.96, φ = 0.5,

σ2η = 0.208 and R0t are generated from an i.i.d. normal distribution with mean 0 and

variance 0.001. The second DGP for computing the power of BMT (denoted by M2) is

given by

Rt = α+ βtR0t +
σε√

3
εt, εt

i.i.d.∼ t3, (13)
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βt+1 = β̄ + φ
(
βt − β̄

)
+ ηt, ηt

i.i.d.∼ N
(
0, σ2η

)
,

where α = 0.002, σ2ε = 0.000307, β̄ = 0.96, φ = 0.5, σ2η = 0.208 and R0t are generated

from an i.i.d. normal distribution with mean 0 and variance 0.001.

Table 4: Empirical size and empirical power

n Empirical size Empirical power (M1) Empirical power (M2)
J1 BMT J1 BMT

200 0.074 0.032 0.518 0.300 0.723
400 0.063 0.041 0.804 0.544 0.942
800 0.054 0.050 0.973 0.801 0.998

Table 4 reports the empirical size (at the 5% significance level) and the empirical power

of BMT. To check whether or not J1 is useful to provide the guidance on the possible source

of misspecification, we also report the proportion of the 2,000 replications where J1 rejects

α = 0 in the expanded model (11).

Several interesting findings come from Table 4. First, the size distortion is small and

becomes better and better as the sample size increases, suggesting there is no need to

use bootstrap methods. Second, the power is good and becomes higher and higher as

the sample size increases. Third, the good power of BMT may not come from J1. In

fact, J1 loses power under M1. This finding is not surprising because M1 implies that

E(Rt|βt, R0t) = βtR0t, suggesting the mean structure specified in the null model is correct

and hence α = 0. That is why J1 only rejects α = 0 at about 5% rate in the experiment.

The power of BMT comes from the power enhancement component. Fourth, when the

DGP is M2, E(Rt|βt, R0t) = 0.002 + βtR0t. The mean structure specified in the null

model is wrong and hence α 6= 0. In this case, J1 rejects α = 0 more often. When J1

indeed rejects α = 0, it suggests that the mean structure is the source of misspecification

in Model (10).

3.2 Empirical studies

3.2.1 A linear regression model

In the first empirical study, we test the specification of a model that explains arrest records.

The data set contains data on arrests during the year 1986 and other information on 2,725

men born in either 1960 or 1961 in California. Each man in the sample was arrested

at least once prior to 1986. Let y be the number of times the man was arrested during

1986, x1, x2, x3, x4 be the proportion (not percentage) of arrests prior to 1986 that led

to conviction, average sentence length served for prior convictions, the months spent in

prison in 1986, and the number of quarters during which the man was employed in 1986.
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As to the data, the sample size 2,725. For more details, one can refer to Wooldridge

(2014).

The null model is the following linear regression model

yi = β0 + β1x1i + β2x2i + β3x3i + β4x4i + εi, εi
i.i.d.∼ N

(
0, σ2

)
. (14)

For the expanded model, we use

yi = β0 + β1x1i + β2x2i + β3x3i + β4x4i + β5x
2
1i + εi, εi

i.i.d.∼ N
(
0, σ2

)
. (15)

If Model (14) is correctly specified, β5 = 0 in Model (15). Conjugated vague priors for β

(:=
(
β0 β1 β2 β3 β4 β5

)′
) and σ2 are set at

β ∼ N
(
µβ, σ

2Vβ
)
, σ−2 ∼ Γ (a, b) .

We use very vague priors where hyper-parameters in the priors are set at

µβ = 0, Vβ = 100× I6, a = 0.01, b = 0.01.

For the MCMC analysis, 20,000 random draws are sampled from the posterior distribution.

The posterior mean, standard deviation, 2.5% quantile, and 97.5% quantile of all the

parameters are reported in Table 5 for both models.

Table 5: Posterior quantities of the null model and the expanded model

Linear Regression Model Expanded Model

Mean SD 2.5 Percent 97.5 Percent Mean SD 2.5 Percent 97.5 Percent

β0 0.7067 0.0332 0.6415 0.7717 0.6317 0.0350 0.5634 0.7009
β1 -0.1506 0.0409 -0.2306 -0.0712 0.7897 0.1556 0.4869 1.0942
β2 0.0074 0.0047 -0.0019 0.0167 0.0040 0.0048 -0.0053 0.0134
β3 -0.0374 0.0088 -0.0546 -0.0202 -0.0439 0.0088 -0.0611 -0.0267
β4 0.1033 0.0104 -0.1236 -0.0828 -0.0933 0.0105 -0.1141 -0.0729
σ2 0.7069 0.0193 0.6700 0.7461 0.6970 0.0189 0.6611 0.7347
β5 - - - - -0.9855 0.1576 -1.2981 -0.6776

The critical value of χ2 (1) is 6.63 at the 1% significance level. In this study, the BMT

statistic is 346.6568, suggesting that Model (15) is misspecified. It is easy to find out that

J1 is 38.6919 (i.e., J0=307.9649) which is also greater than the 1% critical value of χ2 (1).

Note that using J1 we can reject β5 = 0 in Model (15), suggesting that the misspecification

of Model (15) comes from the wrong functional form in x1i.

For this model, it is easy to obtain IMT and feasible to obtain the critical value

using a bootstrap method. IMT is 1732 and the 5% bootstrap critical value is 46.0734.

Hence, IMT also suggest that Model (14) is misspecified, reinforcing the result from BMT.

However, IMT does not tell how to improve the model.
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In this example, if we use the consistent batch means of Jones (2006) to estimate

the long run variances by setting the number of batches at
√
M , then we have σ̂2∗1n =

1.51 × 10−3, σ̂2∗2n = 5.55 × 10−6, σ̂2∗Ln = 1.10 × 10−3. According to Remark 3.14, with

nv = 1, the lower bound for the number of MCMC draws is MBMT = 2153 for the null

model and ML = 8168 for the expanded model. Hence, our choice of 20,000 MCMC draws

for both models is large enough to ensure the validity of the asymptotic theory for B̃MT .

3.2.2 A linear state-space model

The capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) is a fun-

damental theory in finance. When investors can borrow and lend at a risk-free rate, the

intercept is expected to be zero in the CAPM. Another important feature of the CAPM is

that beta is constant over time. However, it is well-documented that the systematic risk

of an asset depends on microeconomic factors as well as macroeconomic factors. Hence,

allowing time-varying beta is an important way to generalize the CAPM.

In this section, we extend the traditional CAPM by allowing for time-varying beta in

a state-space form. Following Mergner and Bulla (2008), a CAPM without intercept but

with time-varying beta is given by

Rit = βitR0t + εit, εit
i.i.d.∼ N

(
0, σ2iε

)
, (16)

βit+1 = β̄i + φ
(
βit − β̄i

)
+ ηit, ηit

i.i.d.∼ N
(
0, σ2iη

)
,

where R0t denotes the excess return of the market portfolio and Rit denotes the excess

return to sector i for period t = 1, . . . , T . R0t is the DJ STOXX 600 return index, which

includes the 600 largest stocks in Europe, serves as a proxy for the overall market. The

dataset used are weekly excess returns calculated from the total return indices for pan-

European industry portfolios, covering the period from 2 December 1987 to 14 January

2016. The sample size is 1467. Here we choose the sector to be the insurance industry.

This asset pricing model is used to show that the investor cannot obtain extra return from

investing in the insurance industry.

In this example, we would like to test if the CAPM without intercept and with time-

varying beta can describe a dataset. Naturally, the following CAPM with intercept and

time-varying beta can be chosen as the expanded model,

Rit = αi + βitR0t + εit, εit
i.i.d.∼ N

(
0, σ2iε

)
, (17)

βit+1 = β̄i + φi
(
βit − β̄i

)
+ ηit, ηit

i.i.d.∼ N
(
0, σ2iη

)
,

where an intercept is added to the mean equation. If Model (16) is correctly specified,

αi = 0 in Model (17).
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For the MCMC analysis, we use the following non-informative priors for hyper-parameters

αi ∼ N(0, 103), β̄i ∼ N(0, 103), φi ∼ Beta(1, 1), σ−2iε ∼ Γ(10−3, 10−3), σ−2iη ∼ Γ(10−3, 10−3).

We draw 500,000 MCMC samples after 50,000 burn-in observations from the posterior

distribution for the null model, and 150,000 MCMC samples after 20,000 burn-in for the

expanded model to compute BMT. The posterior mean, standard deviation, 2.5% quantile,

and 97.5% quantile of all the parameters are reported in Table 6 for both models (both αi

and σ2iε are multiplied by 10,000). We do not implement other tests as bootstrap methods

are computationally too expensive in this setup.

Table 6: Posterior quantities of the null model and the expanded model

Linear State Space Model Expanded Model

Mean SD 2.5 Percent 97.5 Percent Mean SD 2.5 Percent 97.5 Percent

σ2
iε 1.3616 0.0756 1.2200 1.5168 1.3603 0.0758 1.2118 1.5158

β̄i 1.2161 0.0270 1.1630 1.2680 1.2186 0.0270 1.1650 1.2710
φi 0.4233 0.0984 0.2241 0.6088 0.4210 0.0950 0.2191 0.6101
σ2
iη 0.1621 0.0266 0.1107 0.2146 0.1627 0.0266 0.1101 0.2158

αi - - - - -3.9226 3.5507 -10.8900 3.0250

BMT is 146.9662, suggesting that Model (17) is misspecified. It is easy to find out that

J1 is 1.2179 (i.e., J0=145.7483) which is less than the critical value of χ2 (1). Interestingly,

using J1 alone suggests that we cannot reject αi = 0 in Model (17). According BMT,

the CAPM without intercept but with time-varying beta is rejected. Hence, a more

appropriate CAPM specification is needed.

The batch means estimates of the long run variances are σ̂2∗1n = 0.59, σ̂2∗2n = 5.51×10−3

and σ̂2∗Ln = 5.42 × 10−3. Hence, the lower bound for the number of MCMC draws is

MBMT = 460, 400 for the null model and ML = 11, 792 for the expanded model. In this

example, we have used M = 500, 000 and ML = 150, 000 which are large enough.

3.2.3 A stochastic volatility (SV) model

The dataset used here contains the daily returns on AUD/USD exchange rates from Jan-

uary 2005 to December 2012. The sample size is 2086. We first test the i.i.d. normal

model with constant mean and constant variance given by

yt = α+ εt, εt
i.i.d.∼ N

(
0, σ2

)
. (18)

We first expand the conditional mean to the following AR(1) model

yt = α+ βyt−1 + εt, εt
i.i.d.∼ N

(
0, σ2

)
. (19)
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The MCMC method is implemented to estimate the parameters with the following non-

informative priors

α ∼ N(0, 100σ2), β ∼ N(0, 100σ2), σ−2 ∼ Γ(0.001, 0.001).

For the above two models, we draw 20,000 MCMC samples from the posterior distribution

and compute BMT. The posterior mean, standard deviation, 2.5% quantile, and 97.5%

quantile of all the parameters are reported in Table 7.

Table 7: Posterior quantities of the null model and the expanded model

IID Normal AR(1) Model

Mean SD 2.5 Percent 97.5 Percent Mean SD 2.5 Percent 97.5 Percent

α -0.0140 0.0201 -0.0536 0.0263 -0.0137 0.0204 -0.0539 0.0270
σ2 0.8026 0.0259 0.7689 0.8727 0.8208 0.0255 0.7726 0.8737
β - - - - -0.0115 0.0216 -0.0524 0.0287

BMT is 251.52, rejecting the i.i.d. normal model at the 1% level. This conclusion is

not surprising as the volatility of stock returns is time-varying. However, J1 is 0.2858 (i.e.,

J0=251.23) which is less than the critical value of χ2 (1). Using J1 alone only suggests

that we cannot reject β = 0 in Model (19). This conclusion is also not surprising as the

daily returns have very weak serial correlations. A large BMT value combined with a

small J1 value suggests that the conditional variance is incorrectly specified even when the

conditional mean was expanded.

That is why in the next study we change the null model to the following basic SV

model which differs from the i.i.d. normal model in the conditional variance specification,

yt = α+ exp (ht/2)ut, ut
i.i.d.∼ N (0, 1) , (20)

ht = µ+ φ (ht−1 − µ) + τνt, νt
i.i.d.∼ N (0, 1) .

The expanded model is as follows,

yt = α+ β1yt−1 + exp (ht/2)ut, ut
i.i.d.∼ N (0, 1) . (21)

ht = µ+ φ (ht−1 − µ) + τνt, νt
i.i.d.∼ N (0, 1) .

The following non-informative priors are used

α ∼ N(0, 100), µ ∼ N(0, 100), φ ∼ Beta(1, 1), τ−2 ∼ Γ(0.001, 0.001), β1 ∼ N(0, 100).

To obtain BMT, for the null model we draw 30,000,000 MCMC samples from the

posterior distribution and discard the first 1,000,000 as burn-in observations, and the

remaining samples are stored as effective observations. For the expanded model, we draw
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14,000,000 MCMC samples and discard the first 1,000,000 as burn-in observations.3 The

batch means estimates of the long run variances are σ̂2∗1n = 0.2057, σ̂2∗2n = 0.1137 and σ̂2∗Ln =

0.0958. The low bound for the number of MCMC draws is MBMT = 22, 570, 000 and ML =

416, 460. In this example, we have used M = 29, 000, 000 and ML = 13, 000, 000 which

are large enough. Based on the MCMC draws, the posterior mean, standard deviation,

2.5% quantile, and 97.5% quantile of all the parameters are reported in Table 8.

Table 8: Posterior quantities of the null model and the expanded model

Basic SV Model Expanded Model

Mean SD 2.5 Percent 97.5 Percent Mean SD 2.5 Percent 97.5 Percent

α -0.0005 0.0126 -0.0252 0.0242 -0.0004 0.0125 -0.0249 -0.0242
µ -1.0174 0.1761 -1.3666 -0.6769 -1.0173 0.1761 -1.3666 -0.6765
φ 0.9761 0.0072 0.9603 0.9887 0.9761 0.0072 0.9603 0.9887
τ2 0.0288 0.0067 0.0182 0.0444 0.0288 0.0067 0.0182 0.0444
β1 - - - - 0.045 0.0227 0.0007 0.899

All the first derivatives required by BMT are calculated based on particle filters.4 The

number of particles in each period is 1000. For the null model, the standard errors for the

first order derivative with respect to α, µ, φ and τ2 are 0.0865, 0.0151, 0.9717, 0.6512. For

the expanded model, the standard errors for the first order derivative with respect to α,

µ , φ, τ2 and β are 0.0900 , 0.0143, 0.9048, 0.6009 and 0.0303. BMT=3.2714 which is less

than 3.84, the critical value of χ2 (1) under 5% significant level, suggesting that the basic

SV model is not misspecified at the 5% significant level.

4 Conclusions

In this paper, we have proposed two new specification test statistics based on MCMC

output to check the validity of a model specification. The first one is the MCMC ver-

sion of IOSA test. We show that it is asymptotically normally distributed under the null

hypothesis but has a complex asymptotic variance. While it does not require the alter-

native model be specified, a bootstrap method is needed to avoid calculating asymptotic

variance. The second test, which is our main test, combines a component (J1) that tests

a null point hypothesis in an expanded model and a power enhancement component (J0)

obtained from the first test. It is shown that J0 converges to zero when the null model is

correctly specified and diverges when the null model is misspecified. Also shown is that

J1 is asymptotically χ2-distributed, suggesting that the proposed test is asymptotically

3In this example, we have written C code to conduct MCMC analysis of the SV models. It takes about
2 hours to draw 30,000,000 MCMC draws using a common desktop PC with Intel(R) Core(TM) i7-7700k
CPU @ 4.20GHz.

4The calculation details are given in Appendix 5. The approach of Chan and Lai (2013) is used to
compute the standard errors of the first derivatives based on particle filters.
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pivotal, when the null model is correctly specified.

When J1 does not suffer from the size distortion problem, the proposed test will have

good size. Consequently, no bootstrap method is needed to correct the size. When J1 loses

power, the power enhancement component (J0) raises the power of the proposed test. If

J1 rejects the null point hypothesis in an expanded model, it provides guidance on the

source of misspecification.

An important feature of the proposed tests is that they are based on MCMC output.

While several specification tests based on the information matrix are available in the lit-

erature, they all require MLE as the input. Moreover, since the asymptotic distribution

of these tests performs poorly in finite sample, bootstrap methods have been suggested to

calculate critical values, increasing the computational cost. For models where MCMC is

a popular method, MLE is very difficult to obtain and bootstrap methods are computa-

tionally too expensive. This may help explain why no specification test has been carried

out to these models in practice.

There is no reason why our proposed tests cannot be used in connection to other

simulation-based methods. One example of simulation-based methods is the sequential

Monte Carlo method of Chopin (2002). Moreover, it is possible to introduce a ML-based

test statistic of the same spirit. When MLE is not difficult to obtain but it is not easy to

find a suitable bootstrap method or all bootstrap methods are too costly to implement,

one can use a ML-based specification test with the power enhancement technique. This

alternative test will be reported in a separate study.

5 Appendix

5.1 Appendix 1: Proof of Proposition 2.1

By using the first-order expansion, we can show that

Ĵn
(
θ̄
)

=
1

n

n∑
t=1

st
(
θ̄
)
st
(
θ̄
)′

=
1

n

n∑
t=1

[
st

(
θ̂
)

+ ht

(
θ̃1

)(
θ̄ − θ̂

)] [
st

(
θ̂
)

+ ht

(
θ̃1

)(
θ̄ − θ̂

)]′
=

1

n

n∑
t=1

st

(
θ̂
)
st

(
θ̂
)′

+
2

n

n∑
t=1

ht

(
θ̃1

)(
θ̄ − θ̂

)
st

(
θ̂
)′

+
1

n

n∑
t=1

ht

(
θ̃1

)(
θ̄ − θ̂

)(
θ̄ − θ̂

)′
ht

(
θ̃1

)′
,

where θ̃1 lies between θ̄ and θ̂. Furthermore, note that

vech
(
Ĵn
(
θ̄
))

=
1

n

n∑
t=1

vech

(
st

(
θ̂
)
st

(
θ̂
)′)

+
2

n

n∑
t=1

[
st

(
θ̂
)
⊗ ht

(
θ̃1

)]
vech

(
θ̄ − θ̂

)
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+
1

n

n∑
t=1

[
ht

(
θ̃1

)
⊗ ht

(
θ̃1

)]
vech

[(
θ̄ − θ̂

)(
θ̄ − θ̂′

)′]
.

By Assumption 10, we have

2

n

n∑
t=1

[
st

(
θ̂
)
⊗ ht

(
θ̃1

)]
= Op (1) ,

1

n

n∑
t=1

ht

(
θ̃1

)
⊗ ht

(
θ̃1

)
= Op (1) ,

and θ̄ − θ̂ = Op
(
n−1

)
from Remark 2.1. Hence, we can show that

Ĵn
(
θ̄
)

= Ĵn

(
θ̂
)

+Op(1)Op(n
−1) +Op(1)Op(n

−1)Op(n
−1)

= Ĵn

(
θ̂
)

+Op(n
−1). (22)

From Li, Yu and Zeng (2017), under Assumptions 1-12, we have θ̂ − θ̂ML = Op(n
−1).

Similar to (22), it can be shown that

Ĵn

(
θ̂
)

= Ĵn

(
θ̂ML

)
+Op(n

−1).

Based on Assumptions 6 and 10, we can get that Ĥn(θ̂) = Op(1). According to Remark

2.1, it is easy to show that

V (θ̄) = E
[(
θ − θ̄

) (
θ − θ̄

)′ |y]
= E

[(
θ − θ̂ + θ̂ − θ̄

)(
θ − θ̂ + θ̂ − θ̄

)′
|y
]

= E

[(
θ − θ̂

)(
θ − θ̂

)′
|y
]

+ 2E
[(
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)
|y
] (
θ̂ − θ̄

)′
+
(
θ̂ − θ̄

)(
θ̂ − θ̄

)′
= E

[(
θ − θ̂

)(
θ − θ̂

)′
|y
]
−
(
θ̂ − θ̄

)(
θ̂ − θ̄

)′
= −L−(2)n (θ̂) +Op(n

−2)

= −
[
nĤn(θ̂) +

∂2 log p(θ)

∂θ∂θ′
|
θ=θ̂

]−1
+Op(n

−2)

= − 1

n
Ĥ−1n (θ̂)

[
Iq +

1

n
Ĥ−1n (θ̂)

∂2 log p(θ)

∂θ∂θ′
|
θ=θ̂

]−1
+Op(n

−2)

= − 1

n
Ĥn(θ̂)

[
Iq +Op(n

−1)
]−1

+Op(n
−2)

= − 1

n
Ĥn(θ̂) +Op(n

−2),

where Iq is q-dimensional identity matrix. Hence, can get that

V (θ̄) = E
[
(θ − θ̄)(θ − θ̄)′|y

]
= − 1

n
Ĥ−1n (θ̂) +Op(n

−2) = Op(n
−1) (23)

In addition, by using the Taylor expansion, similar to (22), we can further get that

Ĥn

(
θ̂
)

=
1

n

n∑
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ht
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θ̂
)

=
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n
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25



=
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n

n∑
t=1
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(
θ̂ML

)
+Op

(
n−1

)
= Ĥn

(
θ̂ML

)
+Op

(
n−1

)
, (24)

where 5l(3)
(
θ̃2

)
is the third order derivative of lt (θ) evaluated at θ̃2, and θ̃2 lies between

θ̂ and θ̂ML.

From the definition of BIMT and (22)-(24), we get

BIMT = ntr
{

Ĵn(θ̄)E
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(θ − θ̄)(θ − θ̄)′|y

]}
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+ Ĵn(θ̂ML)Op(n
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= IOSA +Op(n
−1) = q × IR +Op(n

−1).

Hence, the first part of Proposition 2.1 is proved.

Next, when the model is correctly specified, we derive the order of BIMT−q. According

to White (1987), under H0, it can be shown that, in White’s IMT test, the elements of
√
n
[
Ĵn

(
θ̂ML

)
+ Ĥn

(
θ̂ML

)]
converge to the normal distribution so that

Ĵn

(
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)
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(
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)
= Op(n

−1/2). (25)

Based on (22)-(25), we can further show that
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. (26)

From Li, Yu and Zeng (2017), under Assumptions 1-12, by the Laplace expansion,

tr
(
−nĤn

(
θ̄
)
V
(
θ̄
))

= q +Op
(
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)
. (27)

From (23), (26) and (27), we have
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= tr
[
n
(
−Ĥn

(
θ̄
)
V
(
θ̄
))]

+ nOp

(
n−1/2

)
Op(n

−1)

= tr
(
−nĤn
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Hence, Proposition 2.1 is proved.

5.2 Appendix 2: Proof of Theorem 2.1

When the model is correctly specified, by Proposition 2.1, we can show that

J0 =
√
n(BIMT− q)2 =

√
n(BIMT− q)(BIMT− q)

=
√
nOp(n

−1/2)Op(n
−1/2) = Op(n

−1/2) = op(1).

Furthermore, according to Li, et al (2015), if θE = 0 in the expanded model, as n → ∞,

when the model is correctly specified, we have

J1 = tr
{
CE
(
y, (θ̄,θE = 0)

)
VE
(
θ̄L
)} d→ χ2(qE).

Hence, we get

BMT = J1 + J0 = J1 + op(1)
d→ χ2(qE).

In the following, we derive the power of BMT. Similarly to the proof of Proposition 2.1,

by using the Taylor expansion, we get
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where 5l(3)
(
θ̃3

)
is the third order derivative of lt (θ) evaluated at θ̃3 and θ̃3 lies between

θ̂ML and θ̂ML − θ0 = Op
(
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)
by the quasi-ML theory given in Gallant and White

(1988) and White (1982, 1987).

Furthermore, we can similarly get

Ĵn

(
θ̂ML

)
=

1

n

n∑
t=1

st

(
θ̂ML

)
st

(
θ̂ML

)′
=

1

n

n∑
t=1

[
st (θ0) + ht

(
θ̃4

)(
θ̂ML − θ0

)] [
st (θ0) + ht

(
θ̃4

)(
θ̂ML − θ0

)]′
=

1

n

n∑
t=1

st (θ0) st (θ0)
′ +

2

n

n∑
t=1

ht

(
θ̃4

)(
θ̂ML − θ0

)
st (θ0)

′

27



+
1

n

n∑
t=1

ht

(
θ̃4

)(
θ̂ML − θ0

)(
θ̂ML − θ0

)′
ht

(
θ̃4

)′
,

where θ̃4 lies between θ̂ML and θ0. It can be rewritten as a vector form, that is,

vech
(
Ĵn

(
θ̂ML

))
=

1

n

n∑
t=1

vech
(
st (θ0) st (θ0)

′)+
2

n

n∑
t=1

[
st (θ0)⊗ ht

(
θ̃4

)]
vech

(
θ̂ML − θ0

)
+

1

n

n∑
t=1

[
ht

(
θ̃4

)
⊗ ht

(
θ̃4

)]
vech

((
θ̂ML − θ0

)(
θ̂ML − θ0

)′)
.

Hence, similar to (28), we have

Ĵn

(
θ̂ML

)
= Ĵn (θ0) +Op(1)Op

(
n−1/2

)
+Op(1)Op

(
n−1

)
= Ĵn (θ0) +Op

(
n−1/2

)
. (29)

Based (28) and (29), by Assumption 7 and the central limit theorem, it follows that

IOSA = tr
{
−Ĵn(θ̂ML)Ĥ−1n (θ̂ML)

}
= tr

{
−
[
Ĵn(θ0) +Op(n

−1/2)
] [

Ĥ−1n (θ0) +Op(n
−1/2)

]}
= tr

[
−Ĵn(θ0)Ĥ

−1
n (θ0)

]
− tr

[
Ĵn(θ0)Op(n

−1/2)
]
− tr

[
Ĥ−1n (θ0)Op(n

−1/2)
]

+Op(n
−1)

= tr
[
−Ĵn(θ0)Ĥ

−1
n (θ0)

]
−Op(1)Op(n

−1/2)−Op(1)Op(n
−1/2) +Op(n

−1)

= tr
[
−Ĵn(θ0)Ĥ

−1
n (θ0)

]
+Op(n

−1/2)

= tr
[
− (J(θ0) + op(1))

(
H−1(θ0) + op(1)

)]
+Op(n

−1/2)

= tr
[
−J(θ0)H

−1(θ0)
]

+ op(1) +Op(n
−1/2)

= q∗ + op(1) = Op(1).

By Proposition 3.1, whether the model is misspecified or not, we get

BIMT = IOSA +Op(n
−1).

Hence, we have

J0 =
√
n(BIMT/q − 1)2 =

√
n
[(

IOSA +Op(n
−1)
)
/q − 1

]2
=
√
n
[
IOSA/q − 1 +Op(n

−1)
]2

=
√
n [IOSA/q − 1]2 +

√
n [IOSA/q − 1]Op(n

−1) +
√
nOp(n

−1)Op(n
−1)

=
√
n [IOSA/q − 1]2 +

√
nOp(1)Op(n

−1) +Op(n
−3/2)

=
√
n [IOSA/q − 1]2 +Op(n

−1/2) +Op(n
−3/2)

=
√
n [IOSA/q − 1]2 +Op(n

−1/2)

=
√
n [(q∗ + op(1)) /q − 1]2 +Op(n

−1/2)

=
√
n [q∗/q − 1 + op(1)]2 +Op(n

−1/2)
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=
√
n [q∗/q − 1]2 + 2

√
n (q∗/q − 1) op(1) +Op(n

−1/2)

=
√
n [q∗/q − 1]2 + 2

√
n (q∗/q − 1) op(1) +Op(n

−1/2).

When the model is misspecified so that q∗ 6= q, we have

J0 = Op(
√
n).

Since in J1 is always large than zero, the order of the power of BMT is no less than

Op(
√
n).

5.3 Appendix 3: Computing BMT in Latent Variable Models

MCMC has been popular for estimate an important class of latent variable models – state-

space models. We now discuss how to compute BMT for state-space models after they

are estimated by MCMC. To introduce state-space models, let y be the observed variables

and z = (z1, . . . , zn) be the latent variables. The model is given by{
yt = F (zt, ut,θ)
zt = G(zt−1, vt,θ)

. (30)

The first equation is the observation equation while the second equation is the state

equation. When the distribution of ut and vt is Gaussian and the functional form of F

and G is linear, the model is referred to as the linear Gaussian state-space model. When

the distribution of ut or vt is non-Gaussian or the functional form of F or G is nonlinear,

the model is often referred to as the nonlinear non-Gaussian state-space model in the

literature.

Let p(y|θ) be the observed-data likelihood function, and p(y, z|θ) the complete-data

likelihood function. Obviously these two functions are related to each other by

p(y|θ) =

∫
p(y, z|θ)dz. (31)

The complete-data likelihood function p(y, z|θ) can be expressed as p(y|z,θ)p(z|θ). Usu-

ally analytical expressions for p(y|z,θ) and p(z|θ) are given by the specification of the

model. In particular, the observation equation gives the analytical expression for p(y|z,θ)

while the state equation gives the analytical expression for p(z|θ). However, in general

the integral in (31) does not have an analytical expression. Consequently, the statistical

inferences, such as estimation and hypothesis testing, are difficult to implement if they

are based on the ML approach. For linear Gaussian state-space models, p(y|θ) and its

derivatives with respect to θ can be computed numerically by the Kalman filter. For

nonlinear non-Gaussian state-space models, other methods are needed to compute p(y|θ)

and the derivatives.
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The latent variables models can be efficiently and easily estimated in the Bayesian

framework using MCMC techniques. Let p(θ) be the prior distribution of θ, and p(θ|y)

the posterior distribution of θ. The goal of Bayesian inference is to obtain p(θ|y). The

data augmentation strategy of Tanner and Wong (1987), that expands the parameter

space with the latent variable z, is a Bayesian method that uses an MCMC algorithm to

generate random samples from the joint posterior distribution p(θ, z|y).

To implement our test, we still need to calculate p(y|θ) and its derivatives with respect

to θ. It is important to point out that there is no need to optimize p(y|θ) in our test.

Since there is no analytical expression for the observed-data likelihood function for many

latent variable models, in this section, we show how to use the EM algorithm, the Kalman

filter, and particle filters to calculate p(y|θ) and its derivatives with respect to θ.

5.3.1 Computing BMT by the EM algorithm

The EM algorithm is a powerful tool to deal with latent variable models. Instead of

maximizing the observed-data likelihood function, the EM algorithm maximizes the so-

called Q function given by

Q(θ|θ(r)) = E
θ(r){Lc(y,z|θ)|y, θ(r)}, (32)

where Lc(y,z|θ) := p(y, z|θ) is the complete-data likelihood function. The Q-function

is the conditional expectation of Lc(y,z|θ) with respect to the conditional distribution

p(z|y,θ(r)) where θ(r) is a current fit of the parameter. The EM algorithm consists of

two steps: the expectation (E) step and the maximization (M) step. The E-step evaluates

Q(θ|θ(r)). The M-step determines a θ(r) that maximizes Q(θ|θ(r)). Under some mild

regularity conditions, for large enough r, {θ(r)} obtained from the EM algorithm is the

MLE, θ̂. For more details about the EM algorithm, see Dempster et al. (1977).

Although the EM algorithm is a good approach to dealing with latent variable models,

the numerical optimization in the M-step is often unstable. Not surprisingly, the EM algo-

rithm has been less popular to estimate latent variables models compared with the MCMC

techniques. However, we will show that, without using the numerical optimization in the

M-step, the theoretical properties of the EM algorithm can facilitate the computation of

the proposed test for latent variable models.

Since p(y|θ) and s(y,θ) are not analytically available for latent variable models, we

propose to use the EM algorithm to compute s(y,θ). For any θ and θ
∗
in Θ, it was shown

in Dempster et al. (1977) that

s(y,θ) =
∂Lo(y,θ)

∂θ
=
∂Q(θ|θ∗)

∂θ
|θ=θ∗ = E(z|y,θ)

{
∂Lc(y,z,θ)

∂θ

}
=

∫
∂Lc(y,z,θ)

∂θ
p(z|y,θ)dz.
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If the analytical form of the Q-function is available, we can replace the first derivatives of

the log-likelihood function log p(y|θ) with the first derivatives of the Q-function. A more

general approach to evaluating the Q-function is to use the following formula based on

MCMC output:

s(y,θ) ≈ 1

M

M∑
m=1

{
∂ log p(y, z(m)|θ)

∂θ

}
,

where {z(m),m = 1, 2, . . . ,M} is a random sample simulated from the posterior distribu-

tion p(z|y,θ).

Although EM algorithm is a very general approach for analyzing latent variable models,

it is very cumbersome to deal with the state-space models. This is because we have to

compute the s(y1:t,θ) recursively where the posterior sampling has to be implemented

for n times (Doucet and Shephard, 2012). As a result, it is computationally demanding

although some parallel computing techniques may be used. Alternatively, one can compute

s(y,θ) using the Kalman filter and particle filters.

5.3.2 Computing BMT by the Kalman filter

In economics, many time series models can be represented by a linear Gaussian state-space

form. The Kalman filter is an efficient recursive method for computing the optimal linear

forecasts in such models. It also gives the exact likelihood function of the model. One

may refer to Harvey (1989) for the detailed textbook treatment of the linear Gaussian

state-space model and the calculation of the observed-data log-likelihood recursively.

Similarly, the first order derivative of the observed-data log-likelihood, st(θ), has to

be computed recursively. In Appendix 4, we give the expression of the relevant first order

derivatives that are used to compute BMT.

5.3.3 Computing BMT by particle filters

In practice, the phenomenon of non-Gaussianity or non-linearity is often found. Conse-

quently, the nonlinear non-Gaussian state-space models have been widely used in empirical

studies. However, they cannot be analyzed using the Kalman filter. Instead, one can use

another recursive filtering algorithm known as particle filters. We only present the basic

idea of particle filters here and refer the reader to recent review papers on particle filters

by Doucet and Johansen (2009) and Creal (2012) for greater details.

Let zt+1|zt ∼ f (zt+1|zt,θ) and yt|zt ∼ g (yt|zt,θ). Let the initial density of z be

µ (z|θ). The joint density of
(
zt,yt

)
is

p
(
zt,yt|θ

)
= µ (z1|θ)

t∏
k=2

f (zk|zk−1,θ)

t∏
k=1

g (yk|zk,θ) ,
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and hence

p
(
yt|θ

)
=

∫
p
(
zt,yt|θ

)
dzt.

For nonlinear and non-Gaussian state-space models, neither p
(
zt|yt,θ

)
nor p

(
yt|θ

)
are

available in closed-form. The goal here is to calculate p
(
zt|yt,θ

)
, p
(
yt|θ

)
, and s(yt,θ)

sequentially for t = 1, . . . , n. The idea of particle filters is to approximate the conditional

probability distribution p
(
zt|yt,θ

)
dzt by its empirical measure. An example of parti-

cle filters is the Sequential Important Sampling and Resampling (SISR) algorithm which

iterates the following step for i = 1, . . . , N ,

Step 1: At t = 1, z
(i)
1 ∼ µ (·) ,

w1

(
z1(i)

)
=
µ
(
z
(i)
1 |θ

)
g
(
y1|z(i)1 ,θ

)
q1

(
z
(i)
1

) , W
(i)
1 =

w1

(
z1(i)

)∑N
i=1w1

(
z1(i)

) ,
z1(i) = z

(i)
1 . Resample

(
W

(i)
1 , z1(i)

)
to obtain new particles

(
1
N , z̃

1(i)
)
.

Step 2: At t ≥ 2, z
(i)
t ∼ qn

(
·|z̃t−1(i)

)
,

wt

(
zt(i)

)
=
f
(
z
(i)
t |z̃

(i)
t−1,θ

)
g
(
yt|z̃(i)t ,θ

)
qt

(
z
(i)
t |z̃t−1(i)

) , W
(i)
t =

wt
(
zt(i)

)∑N
i=1wt

(
zt(i)

) ,
zt(i) =

(
z̃t−1(i), z

(i)
t

)
. Resample

(
W

(i)
t , zt(i)

)
to obtain new particles

(
1
N , z̃

t(i)
)
.

Step 3: Approximate the conditional distribution pθ
(
dzt|yt,θ

)
by its empirical mea-

sure

p̂
(
dzt|yt,θ

)
=

N∑
i=1

W
(i)
t δzt(i)

(
dzt
)

or p̃θ
(
dzt|yt,θ

)
=

1

N

N∑
i=1

δz̃t(i)
(
dzt
)

,

and

p̂
(
yt|yt−1,θ

)
=

1

N

N∑
i=1

wt

(
zt(i)

)
,

where N is the number of particles and qt (·|·) is the proposal density.

With the empirical measures
{
p̂
(
dzt|yt,θ

)}
t=1:n

, we can approximate the integral

It =

∫
ϕt
(
zt
)
p
(
zt|yt,θ

)
dzt,

by

Ît =

∫
ϕt
(
zt
)
p̂
(
dzt|yt,θ

)
=

N∑
i=1

W
(i)
t ϕt

(
zt(i)

)
,

for t = 1, · · · , n, where ϕt
(
zt
)

is the target function. If one chooses ϕt
(
zt
)

= ∂ log p
(
zt,yt|θ

)
/∂θ,

then it is easy to show that

s(yt,θ) =

∫
ϕt
(
zt
)
p
(
zt|yt,θ

)
dzt.
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Therefore, s(yt,θ) can be obtained recursively.

Based on the different proposal density qt (·|·), different particle filtering algorithms

have been proposed in the literature, including the bootstrap particle filters of Gordon et

al. (1993) and the auxiliary particle filters of Pitt and Shephard (1999). In this paper,

we use the auxiliary particle filter to compute s(yt,θ) and the proposed test statistic.

Appendix 5 gives the details about how to compute s(yt,θ) using particle filters.

5.4 Appendix 4: The derivation of BMT for the linear state-space model

Consider the state-space system

xt = Txt−1 +Rεt,

yt = D + Zxt + ξt,

where εt ∼ N (0, Q), ξt ∼ N (0, H). Let Ys = (y1, y2..., ys). We define

xt|s = E (xt|Ys) ,

Pt|s = E
[(
xt − xt|s

) (
xt − xt|s

)′ |Ys] .
With the initial condition x0|0 and P0|0, the Kalman Filter algorithm is as follows:

xt|t−1 = Txt−1|t−1,

Pt|t−1 = TPt−1|t−1T
′ +RQR′,

with

xt|t = xt|t−1 +Kt

(
yt −D − Zxt|t−1

)
,

Pt|t = [Ins −KtZ]Pt|t−1,

where Kt = Pt|t−1Z
′ [ZPt|t−1Z ′ +H

]−1
, for t = 1, 2...n.

From the Kalman filter, the observed data likelihood is as follows:

log ` = −
n∑
t=1

[
ny
2

log 2π +
1

2
log |Ft|+

1

2

(
yt −D − Zxt−1t

)′
F−1t

(
yt −D − Zxt−1t

)]

= −
n∑
t=1

[
ny
2

log 2π +
1

2
log |Ft|+

1

2
ω′tF

−1
t ωt

]
,

where

Ft = Z (θ)Pt|t−1Z (θ)′ +H (θ) ,

ωt = yt −D (θ)− Z (θ)xt|t−1.

Before we get the derivatives of the model, we first introduce some notations from

Magnus and Neudecker (2002) about the matrix derivative.
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Definition 5.1 Let F = (fst) be an m×p matrix function of an n× q matrix of variables

X = (xij). Any mp× nq matrix A, that contains all the partial derivatives such that each

row contains the partial derivatives of one function with respect to all variables and each

column contains the partial derivatives of all functions with respect to one variable xij, is

called a derivative of F . We define the α-derivative as:

DF (X) =
∂vech (F (X))

∂ (vech (X))
′ .

In our case, ∂ (vech (θ))
′

= ∂θ′ since θ is a vector.

Definition 5.2 Let A be an m× n matrix. There exists a unique mn×mn permutation

matrix Kmn which is defined as:

Kmn · vech (A) = vech
(
A
′
)
.

Since Kmn is a permutation matrix, it is orthogonal and K−1mn = K
′
mn.

To compute the first order derivative of the likelihood, we have the following

∂vech (ωt)

∂θ′
= −∂vech (D)

∂θ′
−
(
x′t|t−1 ⊗ Iny

) ∂vech (Z)

∂θ′
− (I1 ⊗ Z)

∂vech
(
zt|t−1

)
∂θ′

,

∂vech (Ft)

∂θ′
=

((
Pt|t−1Z

′)′ ⊗ Iny +
(
Iny ⊗

(
ZPt|t−1

))
Knyns

) ∂vech (Z)

∂θ′

+ (Z ⊗ Z)
∂vech

(
Pt|t−1

)
∂θ′

+
∂vech (H)

∂θ′
,

∂vech
(
F−1t

)
∂θ′

= −
((
F−1t

)′ ⊗ F−1t

) ∂vech (Ft)

∂θ′
,

∂vech (log |Ft|)
∂θ′

=
(
vech

[(
F−1t

)′])′ ∂vech (Ft)

∂θ′
,

∂vech
(
ω′tF

−1
t ωt

)
∂θ′

=
[(
F−1t ωt

)′ ⊗ I1]Kny1
∂vech (ωt)

∂θ′
+
(
ω′t ⊗ ω′t

) ∂vech (F−1t

)
∂θ′

+
[
I1 ⊗

(
ω′tF

−1
t

)] ∂vech (ωt)

∂θ′
.

In the above equations, the first order derivatives of the matrix D, Z, Q, H, R are easy

to get.

Given the initial conditions x0|0 and P0|0, we have the following recursions

∂vech
(
xt|t−1

)
∂θ′

= (I1 ⊗ T )
∂vech

(
xt−1|t−1

)
∂θ′

+
(
x′t−1|t−1 ⊗ Ins

) ∂vech (T )

∂θ′
,
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∂vech
(
Pt|t−1

)
∂θ′

=
((
Pt−1|t−1T

′)′ ⊗ Ins) ∂vech (T )

∂θ′
+ (T ⊗ T )

∂vech
(
Pt−1|t−1

)
∂θ′

+
(
Ins ⊗ TPt−1|t−1

)
Knsns

∂vech (T )

∂θ′
+
∂vech (RQR′)

∂θ′
,

∂vech
(
xt|t
)

∂θ′
=

∂vech
(
xt|t−1

)
∂θ′

+
[(
yt −D − Zxt|t−1

)′ ⊗ Ins] ∂vech (Kt)

∂θ′

− (I1 ⊗Kt)
∂vech (D)

∂θ′
−
(
z′t|t−1 ⊗Kt

) ∂vech (Z)

∂θ′
− (I1 ⊗KtZ)

∂vech
(
zt|t−1

)
∂θ′

,

∂vech
(
Pt|t
)

∂θ′
= −

((
ZPt|t−1

)′ ⊗ Ins) ∂vech (Kt)

∂θ′
−
(
P ′t|t−1 ⊗Kt

) ∂vech (Z)

∂θ′

+ (Ins ⊗ (Ins −KtZ))
∂vech

(
Pt|t−1

)
∂θ′

,

where

∂vech (Kt)

∂θ′
=

[(
Z ′F−1t

)′ ⊗ Ins] ∂vech (Pt|t−1)∂θ′
+
[(
F−1t

)′ ⊗ P t−1t

]
Knyns

∂vech (Z)

∂θ′

+
[
Iny ⊗ Pt|t−1Z ′

] ∂vech (F−1t

)
∂θ′

,

and

∂vech (RQR′)

∂θ′
=
[(
RQ′ ⊗ Ins

)
+ (Ins ⊗RQ)Knsne

] ∂vech (R)

∂θ′
+ (R⊗R)

∂vech (Q)

∂θ′
.

The initial condition is given as

x0|0 = 0,

P0|0 = TP0|0T
′ +RQR′.

From the above, we have

vech
(
P0|0

)
=
(
In2

s
− T ⊗ T

)−1
vech

(
RQR′

)
,

∂vech
(
P0|0

)
∂θ′

=
[(
TP0|0 ⊗ Ins

)
+
(
Ins ⊗ TP0|0

)
Knsns

] ∂vech (T )

∂θ′
+(T ⊗ T )

∂vech
(
P0|0

)
∂θ′

+
∂vech (RQR′)

∂θ′
.

5.5 Appendix 5: The derivation of BMT for the nonlinear non-Gaussian
state-space model with particle filters

Let ϕt
(
zt
)

be the first order derive of the complete likelihood function with respect to the

parameter θ. This is just the integrand in Fisher’s identity (Cappé et al., 2005)

∂ log p
(
yt|θ

)
∂θ

=

∫
∂ log p

(
zt,yt|θ

)
∂θ

p
(
zt|yt,θ

)
dzt.
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Then we have the following recursion

ϕt
(
zt
)

= ϕt−1
(
zt−1

)
+ ut (zt, zt−1) ,

where

ϕt
(
zt
)

=
∂ log p

(
zt,yt|θ

)
∂θ

, ut (zt, zt−1) =
∂ log g (yt|zt,θ)

∂θ
+
∂ log fθ (zt|zt−1,θ)

∂θ
.

Hence, following Doucet and Shephard (2012), we get the sample score s(yt,θ) as

s(yt,θ) =

∫
ϕt
(
zt
)
p
(
zt|yt,θ

)
dzt

=

∫ ∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−1|zt,yt−1,θ

)
dzt−1p

(
zt|yt,θ

)
dzt

=

∫
St (zt) p

(
zt|yt,θ

)
dzt,

where

St (zt) =

∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−1|zt,yt−1,θ

)
dzt−1

=

∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−2|zt−1,yt−2,θ

)
dzt−2p

(
zt−1|zt,yt−2,θ

)
dzt−1

=

∫
(St−1 (zt−1) + ut (zt, zt−1)) f (zt|zt−1,θ) p

(
zt−1|yt,θ

)
dzt−1∫

f (zt|zt−1,θ) p (zt−1|yt,θ) dzt−1
.

Then we have

Ŝt (zt) =

∑N
j=1W

(j)
t−1f

(
zt|z(i)t−1, θ

)
∑N

j=1 f
(
zt|z(i)t−1, θ

)
St−1 (z(i)t−1)+

∂ log g (yt|zt,θ)

∂θ
+
∂ log f

(
zt|z(i)t−1,θ

)
∂θ

 .

Let ϕt
(
zt
)

be the first order derive of the complete likelihood function with respect to

the parameter θ. This is just the integrand in Fisher’s identity (Cappé et al., 2005)

∂ log p
(
yt|θ

)
∂θ

=

∫
∂ log p

(
zt,yt|θ

)
∂θ

p
(
zt|yt,θ

)
dzt.

Then we have the following recursion

ϕt
(
zt
)

= ϕt−1
(
zt−1

)
+ ut (zt, zt−1) ,

where

ϕt
(
zt
)

=
∂ log p

(
zt,yt|θ

)
∂θ

, ut (zt, zt−1) =
∂ log g (yt|zt,θ)

∂θ
+
∂ log fθ (zt|zt−1,θ)

∂θ
.

Hence, following Doucet and Shephard (2012), we get the sample score s(yt,θ) as

s(yt,θ) =

∫
ϕt
(
zt
)
p
(
zt|yt,θ

)
dzt
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=

∫ ∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−1|zt,yt−1,θ

)
dzt−1p

(
zt|yt,θ

)
dzt

=

∫
St (zt) p

(
zt|yt,θ

)
dzt,

where

St (zt) =

∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−1|zt,yt−1,θ

)
dzt−1

=

∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−2|zt−1,yt−2,θ

)
dzt−2p

(
zt−1|zt,yt−2,θ

)
dzt−1

=

∫
(St−1 (zt−1) + ut (zt, zt−1)) f (zt|zt−1,θ) p

(
zt−1|yt,θ

)
dzt−1∫

f (zt|zt−1,θ) p (zt−1|yt,θ) dzt−1
.

Then we have

Ŝt (zt) =

∑N
j=1W

(j)
t−1f

(
zt|z(i)t−1, θ

)
∑N

j=1 f
(
zt|z(i)t−1, θ

)
St−1 (z(i)t−1)+

∂ log g (yt|zt,θ)

∂θ
+
∂ log f

(
zt|z(i)t−1,θ

)
∂θ


and

ŝ(yt,θ) =

N∑
j=1

W
(j)
t Ŝt

(
z
(j)
t

)
,

where
(
W

(j)
t , z

(i)
t

)
are the particles to approximate p

(
zt|yt

)
dzt. Then the individual

scores is estimated by

ŝt(θ) = ŝ(yt,θ)− ŝ(yt−1,θ).

For asymptotic properties of ŝt(θ), see Poyiadjis (2011) and Doucet and Shephard (2012).
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Cappé, O., Moulines, E. and Rydén, T. (2005). Inference in hidden Markov models. New

York: Springer.

Chan, H. P., and Lai, T. L. (2013). A general theory of particle filters in hidden Markov

models and some applications. The Annals of Statistics, 41(6), 2877-2904.

37



Chen, C. F. (1985). On Asymptotic Normality of Limiting Density Function with

Bayesian Implications. Journal of the Royal Statistical Society, Series B, 47(3),

540-546.

Cheng, T., Gao, J., and Phillips, P. C. B. (2017). Bayesian estimation based on summary

statistics: double asymptotics and practice. Working Paper.

Chernozhukov, V. and Hong, H. (2003), An MCMC approach to classical estimation.

Journal of Econometrics, 115(2), 293–346

Chesher, A. and Spady, R. (1991). Asymptotic expansions of the information matrix test

statistic. Econometrica, 59, 787–815.

Chopin, N. (2002). A sequential particle filter for static models, Biometrika, 89(3),

539–551.

Cox, D. R. (1961). Tests of separate families of hypotheses. In Proceedings of the fourth

Berkeley symposium on mathematical statistics and probability. Vol. 1, 105-123.

Cox, D. R. (1962). Further results on tests of separate families of hypotheses. Journal

of the Royal Statistical Society, Series B, 24(2), 406-424.

Creal, D. (2012). A survey of sequential Monte Carlo methods for economics and finance.

Econometric Reviews, 31(3), 245-296..

Davidson, R. and MacKinnon, J. G. (1992). A new form of information test. Economet-

rica, 60(1), 145-157.

Dempster, A. P., Laird, N. M. and Rublin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society,

Series B, 39(1), 1-38.

Doucet, A. and Johansen, A.M. (2009). A tutorial on particle filtering and smoothing:

Fifteen years later. Handbook of Nonlinear Filtering, 12, 656-704.

Doucet, A. and Shephard, N. (2012). Robust inference on parameters via particle filters

and sandwich covariance matrices. Working paper, University of Oxford, Depart-

ment of Economics.

Eubank, R.L. and Spiegelman, C.H. (1990). Testing the goodness of fit of a linear

model via nonparametric regression techniques. Journal of the American Statistical

Association, 85, 387-392.

Fan, J. Q., Liao,Y. and Yao, J. W. (2015). Power Enhancement in High-Dimensional

Cross-Sectional Tests. Econometrica, 83(4), 1497-1541.

38



Fan, Y. and Li, Q. (1996). Consistent model specification tests: omitted variables and

semiparametric functional forms. Econometrica, 865-890.

Flegal, J. M., and Jones, G. L. (2010). Batch means and spectral variance estimators in

Markov chain Monte Carlo. Annals of Statistics, 38(2), 1034?70.

Gallant, A. R., and White, H. (1988). A unified theory of estimation and inference for

nonlinear dynamic models. Blackwell.

Geweke, J. F. (2005). Contemporary Bayesian Econometrics and Statistics. Vol. 537,

Wiley-Interscience.

Gourieroux, C., Monfort, A., and Renault, E. (1993). Indirect inference. Journal of

Applied Econometrics, 8(S1), S85-S118.

Gordon, N. J., Salmond, D. J. and Smith, A. F. M. (1993). Novel approach to nonlinear/non-

Gaussian Bayesian state estimation. IEEE Proceedings F, 140, 107–113.

Gozalo, P. L. (1993). A consistent model specification test for nonparametric estimation

of regression function models. Econometric Theory, 9, 451-451.

Hansen, L. P. (1982). Large sample properties of generalized method of moments esti-

mators. Econometrica, 50(4), 1029-1054.

Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter.

Cambridge University Press.

Hausman, J. A. (1978). Specification tests in econometrics. Econometrica, 46, 1251-1271.

Hong, Y., & Li, H. (2005). Nonparametric specification testing for continuous-time

models with applications to term structure of interest rates. Review of Financial

Studies, 18(1), 37-84.

Horowitz, J. L. (1994). Bootstrap-based critical values for the information matrix test.

Journal of Econometrics, 61, 395–411.

Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard

conditions. Proceedings of the fifth Berkeley symposium on mathematical statistics

and probability, 1(1), 221-233.

Imai, S., Jain, N., and Ching, A. (2009). Bayesian estimation of dynamic discrete choice

models. Econometrica, 77(6), 1865-1899.

Jones, G. L. (2004). On the Markov chain central limit theorem. Probability Surveys,

1(299-320), 5-1.

39



Jones, G. L., Haran, M., Caffo, B. S., & Neath, R. (2006). Fixed-width output analysis

for Markov chain Monte Carlo. Journal of the American Statistical Association,

101(476), 1537-1547.

Kim, J. Y. (1994). Bayesian asymptotic theory in a time series model with a possible

nonstationary process. Econometric Theory, 10(3-4), 764-773.

Kim, J. Y. (1998). Large sample properties of posterior densities, Bayesian information

criterion and the likelihood principle in nonstationary time series models. Econo-

metrica, 66, 359-380.

Lancaster, T. (1984). The covariance matrix of the information matrix test. Economet-

rica, 52(4), 1051-1053.

Li, Y., Liu, X. B. and Yu, J. (2015). A Bayesian chi-squared test for hypothesis testing.

Journal of Econometrics, 189, 54-69.

Li, Y., Yu, J. and Zeng, T.(2017). Integrated deviation information criterion for latent

variable models. Working paper, Singapore Management University.

Lintner, J. (1965). The valuation of risky assets and the selection of risky investments in

stock portfolios and capital budgets. Review of Economics and Statistics, 47, 13-37.

Magnus, J. R. and Neudecker, H. (2002). Matrix Differential Calculus with Applications

in Statistics and Econometrics. Wiley, Chichester.

Mergner, S. and Bulla, J. (2008). Time-varying beta risk of Pan-European industry

portfolios: A comparison of alternative modeling techniques. The European Journal

of Finance, 14(8), 771-802.

Miyata, Y. (2004) Fully exponential Laplace approximations using asymptotic modes.

Journal of the American Statistic Association, 81, 82-86.

Miyata, Y. (2010) Laplace approximations to means and variances with asymptotic

modes. Journal of Statistical Planning and Inference, 140, 382-392.

Müller, U. K. (2013). Risk of Bayesian inference in misspecified models and the sandwich

covariance matrix. Econometrica, 81(5), 1805-1849.

Newey, W. K. (1985). Maximum likelihood specification testing and conditional moment

tests. Econometrica, 53(5), 1047-1070.

Newey, W. K., Smith, R. J. (2004) Higher order properties of GMM and generalized

empirical likelihood estimators. Econometrica, 72(1), 219-255.

Norets, A. (2009). Inference in Dynamic Discrete Choice Models with Serially Correlated

Unobserved State Variables. Econometrica, 77(5), 1665-1682.

40



Orme, C. (1990). The small sample performance of the information-matrix test. Journal

of Econometrics, 46, 309-331.

Pitt, M. K., and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters.

Journal of the American Statistical Association, 94, 590-599.

Poyiadjis, G., Doucet, A., Singh, S. S. (2011). Particle approximations of the score and

observed information matrix in state-space models with application to parameter

estimation. Biometrika, 98(1), 65-80.

Presnell, B. and Boos, D. D. (2004). The IOS Test for model misspecification. Journal

of the American Statistical Association, 99, 216-227.

Rilstone, P., Srivatsava, V. K., and Ullah, A. (1996). The second order bias and MSE of

nonlinear estimators . Journal of Econometrics, 75, 369-395.

Robert, C. P., and Casella, G. (2004). Monte Carlo Statistical Methods, Springer.

Sargan, J.D. (1958). The estimation of economic relationships using instrumental vari-

ables. Econometrica, 26, 393-415.

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under con-

ditions of risk. Journal of Finance, 19, 425-442.

Tanner, T. A. and Wong, W. H. (1987). The calculation of posterior distributions by

data augmentation. Journal of the American Statistical Association, 82, 528-540.

Tauchen G. E. (1985). Diagnostic testing and evaluation of maximum likelihood models.

Journal of Econometrics, 30(1), 415-443.

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica,

50(1), 1-25.

White, H. (1987). Specification testing in dynamic models. Advances in Econometrics,

Fifth World Congress of Econometric Society. 1: 1-58.

Wooldridge, J M. (1992). A test for functional form against nonparametric alternatives.

Econometric Theory, 8(4), 452-475.

Wooldridge, J. M. (2014). Introductory Econometrics: A Modern Approach. Nelson

Education.

Zhou, Q. M., Song, P. X. K., and Thompson, M. E. (2012). Information ratio test

for model misspecification in quasi-likelihood inference. Journal of the American

Statistical Association, 107(497), 205-213.

Zheng, X. (2000). A consistent test of conditional parametric distributions. Econometric

Theory, 16(5), 667-691.

41


	Specification tests based on MCMC output
	Citation

	Introduction
	Two Specification Tests based on MCMC Output
	An MCMC-based information matrix test
	Power enhancement technique
	The main specification test
	The proposed tests based on MCMC output

	Simulation and Empirical Studies
	Simulation Studies
	Test for heteroskedasticity in a linear regression model
	A linear state-space model

	Empirical studies
	A linear regression model
	A linear state-space model
	A stochastic volatility (SV) model


	Conclusions
	Appendix
	Appendix 1: Proof of Proposition 2.1
	Appendix 2: Proof of Theorem 2.1
	Appendix 3: Computing BMT in Latent Variable Models
	Computing BMT by the EM algorithm
	Computing BMT by the Kalman filter
	Computing BMT by particle filters

	Appendix 4: The derivation of BMT for the linear state-space model
	Appendix 5: The derivation of BMT for the nonlinear non-Gaussian state-space model with particle filters


