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Mining Sandboxes: Are We There Yet?

Lingfeng Bao, Tien-Duy B. Le, David Lo
School of Information Systems

Singapore Management University, Singapore

{lfbao, btdle.2012, davidlo}@smu.edu.sg

Abstract—The popularity of Android platform on mobile
devices has attracted much attention from many developers and
researchers, as well as malware writers. Recently, Jamrozik et al.
proposed a technique to secure Android applications referred to
as mining sandboxes. They used an automated test case generation
technique to explore the behavior of the app under test and
then extracted a set of sensitive APIs that were called. Based
on the extracted sensitive APIs, they built a sandbox that can
block access to APIs not used during testing. However, they
only evaluated the proposed technique with benign apps but
not investigated whether it was effective in detecting malicious
behavior of malware that infects benign apps. Furthermore, they
only investigated one test case generation tool (i.e., Droidmate)
to build the sandbox, while many others have been proposed in
the literature.

In this work, we complement Jamrozik et al.’s work in two
ways: (1) we evaluate the effectiveness of mining sandboxes on
detecting malicious behaviors; (2) we investigate the effective-
ness of multiple automated test case generation tools to mine
sandboxes. To investigate effectiveness of mining sandboxes in
detecting malicious behaviors, we make use of pairs of malware
and benign app it infects. We build a sandbox based on sensitive
APIs called by the benign app and check if it can identify
malicious behaviors in the corresponding malware. To generate
inputs to apps, we investigate five popular test case generation
tools: Monkey, Droidmate, Droidbot, GUIRipper, and PUMA.
We conduct two experiments to evaluate the effectiveness and
efficiency of these test case generation tools on detecting malicious
behavior. In the first experiment, we select 10 apps and allow test
case generation tools to run for one hour; while in the second
experiment, we select 102 pairs of apps and allow the test case
generation tools to run for one minute. Our experiments highlight
that 75.5%–77.2% of malware in our dataset can be uncovered by
mining sandboxes – showing its power to protect Android apps.
We also find that Droidbot performs best in generating test cases
for mining sandboxes, and its effectiveness can be further boosted
when coupled with other test case generation tools.

Index Terms—Mining Sandboxing, Android Malware, Auto-
mated Test Case Generation

I. INTRODUCTION

Android has become the most dominant mobile platform

today. A report from Gartner highlighted that 81.7% of mobile

devices run on Android platform in the 4th quarter of 20161.

With the availability of a huge number of Android apps in

multiple marketplaces (e.g., Google Play), users are given a

wide range of options to select useful apps for their work

and entertainment. Unfortunately, mobile devices running on

Android are increasingly targeted by attackers. Truong et
al. reported that around 0.25% of Android devices were

1https://www.gartner.com/newsroom/id/3609817

Test Generator

Monitored Sensitive APIs

used unused

Mined Sandbox

App

Fig. 1. Mining Sandbox.

infected with malware [1], which is still a large number in

consideration of the total number of Android devices. To secure

Android app users, Android platform provides a permission

based mechanism to protect sensitive resources (e.g., contacts,

networks, locations, etc.). However, these permissions are often

too coarse-grained to prevent malicious behaviors.

Recently, Jamrozik et al. proposed Boxmate [2] to secure

Android apps by mining sandboxes that can protect resources

at a fine-grained level by limiting access to sensitive APIs.

Boxmate can protect against unexpected behaviors introduced

by either an attacker “injecting malware” to a benign app2

or introducing a malicious app that looks benign into an app

market. Figure 1 presents the process of Boxmate for mining

sandboxes. This technique first employs Droidmate [4], which

is an automated test case generation tool, to explore behaviors

of an Android app. During its operation, Boxmate identifies

sensitive Android APIs called during the execution of test

cases and uses them to form a sandbox. The sandbox will

then block calls to sensitive APIs unseen during testing. They

evaluated the proposed technique using twelve apps from the

top downloads of the Google Play Store. They found that the

set of sensitive APIs were quickly saturated by automated test

2Xiao et al. have demonstrated that “an attacker can easily insert malicious
codes into any valid APK, without breaking its signature” using various attack
mechanisms [3].
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generation. They also found that there were few false alarms

by checking Boxmate against 18 use cases reflecting typical

app usage.3

Jamrozik et al.’s work still leave some room for future work.

First, Jamrozik et al. only evaluated the proposed technique

using twelve benign apps. There was no malware evaluated

in their experiment. Thus, there is a need for additional

studies to further demonstrate the applicability of mined

sandboxes to detect and prevent malicious behaviors. Second,

Jamrozik et al. only used one automated test case generation

tool, i.e., Droidmate [4], to build a sandbox. Since there are

many automated test case generation tools proposed in the

literature, e.g., [5], [6], [7], [8], [9], [10], [11], [12], [13], more

investigation is needed to assess: (1) which among these test

case generation tools is more effective for building sandboxes,

and (2) whether they can be used together to mine better

sandboxes.

This study aims to address the above mentioned needs. In

particular, we investigate (1) effectiveness of mining sandboxes

in detecting malicious behaviors, and (2) effectiveness of

multiple automated test case generation tools to mine sandboxes.

Our study makes use of pairs of malware and benign app it

infects. We build a sandbox based on sensitive APIs called

by the benign app and check if it can identify malicious

behaviors in the corresponding malware. To generate inputs to

apps, we investigate five popular and state-of-the-art test case

generation tools: one tool from industry (i.e., Monkey [14]) and

four tools from academia (i.e., Droidmate [4], Droidbot [15],

GuiRipper [7], PUMA [10]).

We conduct two experiments in this work. One of the

experiments is computationally expensive and only considers

a small number of app pairs (SmallE), while another is

computationally inexpensive and considers a larger number

of app pairs (LargeI). In the first experiment, we run the

selected test case generation tools on 10 app pairs for one hour.

Each pair contains one malicious app and one benign app it

infects. We instrument all the tested apps using a tool named

DROIDFAX [16] for collecting the API traces. In the second

experiment, we run these selected tools on 102 pairs of apps

for only one minute. All the apps used in our study are from

a real life piggybacked Android app dataset collected by Li et
al. [17]. Piggybacked apps are built by attackers by unpacking

benign apps and then grafting some malicious code to them.

Most malware is piggybacked of benign apps, e.g., 80% of

the malicious samples in the MalGenome dataset [18] are built

through repackaging.

The first experiment shows that 8 out of 10 malicious apps

can be detected by the sandbox constructed by combining all

the automated test case generation tools, which indicates the

power of mining sandboxes in protecting apps. We notice that

there is only little variation in the effectiveness of the test

3Jamrozik et al. also evaluated the effectiveness of a stricter variant of their
proposed approach that involves per-event access control (wrt. the 18 use
cases), and the readability of the mined sandbox (through a qualitative study
of a sandbox mined from Snapchat). In this work, we focus on per-app access
control and do not consider readability of mined sandboxes.

case generation tools; the numbers of malicious apps detected

by sandboxes constructed by running Monkey, Droidmate,

Droidbot, GUIRipper, and PUMA were 7, 6, 6, 6, and 5,

respectively. We also find that all these tools except Monkey

can detect the malicious behavior within a short amount of

time (i.e., less than one minute). This indicates that sandboxes

built by the test case generation tools can detect malicious

apps efficiently. Then, in the second experiment, we find that

75.5% (77 out of 102) of malicious apps are detected by the

sandbox constructed by combining all these tools. Among these

tools, the sandbox constructed by running Droidbot had the

best performance, i.e., 68 malicious apps were detected. We

also find that if we combined Droidbot with another tool, the

number of detected malicious apps was highly increased, i.e.,

73, 74, 77, and 71 for Monkey, Droidmate, GUIRipper, and

PUMA, respectively.

This paper makes the following main contributions:

• We evaluate mining sandboxes with malware that infects

benign apps. We conduct two experiments with a consid-

erable amount of malware and benign apps they infect,

i.e., 10 app pairs and 102 app pairs, respectively.

• We investigate the effectiveness of five test case generation

tools to construct sandboxes. Our experiments highlight

that the sandboxes constructed by running these tools can

detect malicious apps effectively, i.e., 8 out of 10 malicious

apps in the first experiment and 77 of the 102 malicious

apps in the second experiment are successfully detected.

Also, composition of multiple test case generation tools

can boost the effectiveness of constructed sandboxes.

The remainder of the paper is structured as follows. Section II

presents background materials on Android, sandboxing, and five

automated test case generation techniques. Section III describes

the experiment setup. Section IV presents the experiment results.

Section V discusses some implications and threats to validity

of this work. Section VI reviews related work. Section VII

concludes the paper and discusses future directions.

II. BACKGROUND

A. Android

Android applications are mainly written in Java then com-

piled into Java bytecode and finally converted into Dalvik

bytecode in dex file format. The dex file, native code (if any),

and other resource files are packaged into an APK file for

distribution and installation. Despite being GUI-based and

mainly written in Java, Android apps significantly differ from

Java standalone GUI applications. Android apps have no main

methods but many entry points that are methods implicitly

called by the Android framework. The Android OS defines

a complete lifecycle for all components in an app. There are

four different kinds of components an app developer can

define: Activity, Service, Content Provider, and Broadcast
Receiver; these are the top-level abstractions of user interface,

background service, response to broadcasts, and data storage,

respectively. The Android framework communicates with

applications and manages application executions via various

446



callbacks, including lifecycle methods and event handlers. The

inter-component communication (ICC) in Android OS is via

passing messages called intents. ICCs could be explicit (i.e.,

the targeted component is specified in the intent) or implicit

(i.e., determined by the Android framework at runtime).

There are some resources or data that are deemed private or

security sensitive in mobile devices, e.g., device ID, contacts,

locations, etc. Android provides a permission mechanism to

protect these sensitive data; that is, an app is only allowed to call

certain APIs accessing a particular sensitive data (or resource),

if it has obtained an explicit permission governing access to the

sensitive data, from an authorized user of the Android device

where the app is run on. These sensitive APIs often include

operations that are security-critical as they may lead to private

data leakage. In our study, we use the set of sensitive APIs

defined in the AppGuard privacy-control framework [19]; it

declares a total of 97 APIs that allow access to crucial private

data (or resources) that an average user should be concerned

about as sensitive.

B. Sandboxing

A sandbox is an environment in which the actions of a

guest application are restricted according to a security policy.

Typically, it provides a tightly controlled set of resources (e.g.,

disk, memory, network access, etc.) for the guest applications

to run in. Android apps run on a VM (Virtual Machine), and

are completely isolated from another due to the permissions

Android gives each app. This VM guarded by permissions

functions like a “sandbox”. Unfortunately, Android default

permissions are often too coarse-grained. Moreover, Android

developers often request more permissions than their apps

would actually require – this causes the issue of overprivileged
apps. Felt et al. reported that 33% of Android apps were

overprivileged [20]. One reason that causes overprivileged

apps is the fact that the official Android documentation for

APIs and permissions is incomplete [21]. To address this

limitation, recently, Jamrozik et al. proposed novel approach,

referred to as mining sandboxes; the proposed approach: (1)

runs automated test case generation tools to generate test

cases that are used to explore a target app; (2) monitors

sensitive APIs that are called during the execution of the test

cases; (3) uses the set of sensitive APIs as a sandbox that

can be deployed to prevent execution of additional sensitive

APIs. Thus, the constructed sandboxes of Jamrozik et al. are

capable of detecting and preventing unexpected changes in app

behaviors. In our study, we want to investigate whether the

proposed sandboxing technique is effective to detect malicious

behavior in malware, as well as investigate the effectiveness

of several automated test case generation tools in constructing

sandboxes.

C. Automated Test Case Generation Tools for Android

There are a number of automated test generation tools for

Android proposed in the literature. The primary goal of these

tools is to detect existing faults in Android apps. The test

case generation tools could have different strategies to explore

the behavior of an app under test. Choudhary et al. [22]

have performed a comparative study to evaluate six automated

test case generation tools, i.e., Monkey [14], ACTEve [23],

Dynodroid [5], A3E-Depth-first [8], GUIRipper [7], and

PUMA [10]. They put these tools into three categories, i.e.,

random, model-based, and systematic. Random tools are the

most straightforward; they randomly generate inputs to test

Android apps. A widely used tool named Monkey [14] belongs

to the random category. Random tools may generate a very

large number of test cases. Model-based tools first construct

a model (typically in the form of finite state machines) based

on the GUI of an app; this model is then explored to create

test cases. GUIRipper [7], PUMA [10] and A3E-Depth-first [8]

belong to this category. The final category (i.e., systematic) of

tools uses often complicated and expensive techniques (e.g.,

symbolic execution, evolutionary algorithm) in an effort to more

systematically generate test cases that can possibly achieve

higher coverage. Among the six tools that Choudhary et al.

have investigated, ACTeve [23] belongs to this category.

In this study, we include one random tool (i.e., Mon-

key [14]), and two model-based tools (i.e., GUIRipper [8]

and PUMA [10]) from Choudhary et al.’s study. We exclude

ACTEve, Dynodroid, and A3E-Depth-first because we cannot

run them on our experimental machine due to compatibility

issues. After Choudhary et al.’s study, additional test case

generation tools are proposed in the literature. Therefore, we

include two other tools, i.e., Droidmate [4] and Droidbot [15].

Simple descriptions of the selected tools are given below:

Monkey [14] generates pseudo-random streams of user events

such as clicks, touches, or gestures, as well as a number of

system-level events. As Monkey has become a part of the

Android developer toolkit, it is easy to install and use Monkey.

Users need to configure by specifying the number of events

they want Monkey to generate.

GUIRipper [7] uses a model-based exploration strategy to test

apps and generates test cases in JUnit format. It builds a model

of the app under test on the fly by collecting the information

of the GUI of the app. Each state in the model keeps a list of

events that can be generated. GUIRipper performs a depth-first

search (DFS) procedure to generate input events from the model.

During the DFS procedure, it restarts the exploration from the

starting state when it cannot find new states. GUIRipper can

only generate UI events but not system events; this may limit

its ability to explore some app behaviors.

PUMA [10] is a generic framework that enables scalable

and programmable UI automation. It supports the random

exploration that is implemented by Monkey, as well as model-

based exploration by providing a finite state machine (FSM)

representation of an app under test and allowing users to modify

the FSM and specify logic to generate events from the FSM.

We use a version of PUMA packaged by Choudhary et al. [22]

that is configured to generate test cases by exploring GUI

models of apps.
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Droidmate [4] implements an GUI-state based exploration

strategy, which is inspired by Dynodroid [5]. The key idea

of its exploration strategy is to interact with views (GUI

elements) randomly, but give precedence to views that have

been interacted with the least amount of times so far. Droidmate

monitors sensitive APIs and user resources accessed by the app

under test. During the exploration progress, Droidmate uses

all the observed and monitored behavior of the app to decide

which GUI element to interact with next or if the exploration is

to be terminated. Droidmate terminates when a user-specified

time limit is reached or when there are no views that can

be interacted after two resets in a row. Droidmate needs to

preprocess an app under test to make it inlined, that is, the

app undergoes a slight Dalvik bytecode modification to enable

Droidmate to monitor Android SDK’s API calls.

Droidbot [15] dynamically builds a GUI model of an app

under test by collecting GUI information and running process

information. The model is a state transition graph, in which

each node represents a device state, and each edge between

two nodes represents the test case event that triggers the

state transition. Droidbot uses a simple DFS procedure to

generate test cases. Different from many other model-based

tools, Droidbot is lightweight and does not require system

modification or app instrumentation.

III. EXPERIMENT SETUP

To validate the effectiveness of mining sandboxes, we run

test case generation tools, construct sandboxes for benign apps

based on sensitive APIs called in the execution of the generated

test cases, and investigate the ability of those sandboxes to

detect malicious behaviors in the malware that piggybacks the

corresponding benign apps. Figure 2 presents the experiment

setup process. The following subsections describe our app

instrumentation strategy that we use to identify sensitive APIs

that are called during test case execution, how we run the

different test case generation tools, how we select the benign-

malicious app pairs that we include in this study, and the details

of our two experiments.

A. App Instrumentation

To collect API call traces of the selected apps when running

test case generation tools, we use DROIDFAX proposed by

Cai et al. [16]. DROIDFAX instruments the Android (Dalvik)

bytecode of each app for API call profiling and inter-component

communication (ICC) intent tracing using static program

analysis. DROIDFAX uses Android logging utility and the

logcat 4 tool to record API calls. Each API call recorded

by DROIDFAX is in the format of caller → callee. Based on

generated API call traces, we can build a dynamic call graph.

Each node of the graph is an API (executed as a caller or

callee), and each edge represents an API call which is the

number of times the API is called in the traces.

4https://developer.android.com/studio/command-line/logcat.html

Instrumentation

Test Generator

Sensitive APIs Sensitive APIs

Sandbox Malicious ?

Benign Malicious

Fig. 2. Experiment Setup.

B. Running Automated Test Case Generation Tools

We use 5 automated test case generation tools in our

experiment: Monkey, Droidmate, Droidbot, GUIRipper, and

PUMA. Monkey is part of Android SDK, which requires no

additional effort to install on our experiment environment.

We download the source codes of Droidmate5 and Droidbot6

from their GitHub repositories then installed them according to

instructions included in the repositories. We get GUIRipper and

PUMA from the replication package released by Choudhary

et al. [22] and modify their configuration to make them run in

our experiment machine. As both Droidmate and PUMA work

on Android SDK version 19, we configure the emulator to run

Android SDK version 19. An exception is made for running

GUIRipper; it is not open source and the version that we have

based on Choudhary et al.’s study [22] only works for Android

SDK version 10. Thus, for experiments involving GUIRipper,

we configure our emulator to run Android SDK version 10.

Our emulator is also configured to have 2GB of RAM with

Intel x86 CPU architecture. The emulator in turn is run on a

Mac OS 10.12 (Sierra) laptop running Intel Core i5 CPU (2.3

GHz).

C. App Selection

To investigate the effectiveness of mining sandboxes, we need

pairs of benign app and malicious app that infects the benign

app. The malicious apps used in our study are piggybacked

apps, which are built by unpacking benign apps and grafting

some malicious code to them. Previous studies shows most

malware is piggybacked of benign apps, e.g., 80% of the

malicious samples in the dataset MalGenome [18] are built

through repackaging. Thus, we believe pairs of benign app and

a malicious app that piggybacks it is a good dataset for our

study. We used a piggybacked Android app dataset collected

5https://github.com/konrad-jamrozik/droidmate
6https://github.com/honeynet/droidbot
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TABLE I
TEN PAIRS OF MALICIOUS-BENIGN APPS USED IN OUR FIRST EXPERIMENT.

Pair Index Package Category Functionality

P1 com.google.android.diskusage Tools Find files and directories on storage card
P2 org.pyload.android.client System An Android client for pyload, which is a download manager written in Python
P3 com.chinat2t10513zw.templte Lifestyle Provides wedding ceremony information
P4 com.content.ugly.meter Entertainment Take faces of people and give a rating on ugly scale
P5 andrei.brusentcov.lnguagepazzle.en Education Learn English words by looking pictures then choosing corresponding characters
P6 com.northpark.beautycamera Beauty Take selfie photos and make the photo look more beautiful
P7 pl.netigen.bestbassguitarfree Music & Audio A guitar simulator
P8 oms.wmessage Communication Send text messaging and provide some Chinese text message templates
P9 cz.romario.opensudoku Puzzle An open source sudoku game.
P10 com.nesnet.android.cantonese Book & Reference A cantonese dictionary

by Li et al. [17], which contains 2,750 Android apps and 1,497

app pairs7. Each pair has one benign app and one malicious

app, which is piggybacked on the benign app.

However, not all apps in the dataset can be used in our

study. First, DROIDFAX cannot instrument some apps. Out of

the 2,750 apps, only 844 can be successfully instrumented by

DROIDFAX. Among these 844 apps, we fail to install a number

of them on the emulator used in our study due to various

compatibility issues with the SDK version and other settings

of our emulators. These incompatibilities cause errors to be

thrown or apps end gracefully right after they are started. After

removing incompatible apps, we are left with 112 app pairs

which we use for this study8

D. Two Experiments: SmallE and LargeI

We have two experiments in our study. In the first experiment

(SmallE), to explore behavior of the app under test, we

configure each automated test case generation tool to run for

each individual app for one hour and repeat this process 5

times. We randomly select 10 app pairs for this experiment

since it is not possible to run all 112 pairs of apps in limited

time and resources (112 × 2 apps × 5 tools × 5 runs × 1

hour ≈ 233 days). Table I presents the information of these

selected apps. The columns in the table correspond to short

acronyms that we use to refer to the app pairs (Pair Index),

package names of the app pairs (Package), categories of the

app pairs (Category), and descriptions of the functionalities of

the app pairs (Functionality). These 10 pairs of apps belong

to different categories and have different functionalities. For

example, both of P1 and P2 can access the storage of mobile

devices since they need to manage files; P4 and P6 can take

photos; P5 and P9 are game apps. In the second experiment

(LargeI), we run the remaining 102 pairs but each automated

test case generation tool is only allowed to run for one minute

on each app.

IV. EXPERIMENT RESULTS

In this section, we first present the results of the first

experiment (SmallE). Then, we present the results of the

7All apps can be downloaded from Androzoo [24], which is a collection of
Android applications collected from multiple markets.

8https://github.com/baolingfeng/SANER2018Sandboxes

6

8

10

12

14

Monkey Droidmate Droidbot GuiRipper PUMA

Th
e 

lo
ga

ri
th

m
 o

f t
he

 n
um

be
r o

f A
PI

 tr
ac

es

benign malicious

Fig. 3. Total Number of API Traces Generated by the Five Test Case Generation
Tools.

second experiment that runs inexpensive analysis on 102 app

pairs (LargeI).

A. Experiment One: SmallE

Statistics. We present some statistics based on the API traces

generated by running test cases produced by the five test case

generation tools. Figure 3 shows the number of API traces

across the 10 pairs of apps under test for each tool9. The y-axis

of this plot is the logarithm of the number of API traces as

the range of the number of API traces is too large. Among the

five test case generation tools, Monkey can generate the largest

number of API traces in our experiment (i.e., more than one

million API traces per run). This is because Monkey follows a

random exploration strategy that might generate a large number

of invalid inputs while all the other tools use model-based

exploration strategy. PUMA has the smallest number of API

9Note that the black dots in the boxplots correspond to outliers.
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traces and its average number of API traces is approximately

75,000. The numbers of generated API traces for different apps

are also significantly different. For example, the number of

API traces for apps in pair P4 is much smaller than that of

other pairs.

We also measure the code coverage achieved by the test

case generation tools. We focus on method-level code coverage,

i.e., proportion of methods covered by the generated test cases.

Figure 4 presents the average code coverage of the five test

case generation tools respectively. Although Monkey uses a

simple random exploration strategy to explore the behavior

of the app under test, it achieves the highest code coverage

(0.27 on average for both benign and malicious apps). All the

other tools have similar code coverage. One reason for the low

code coverage might be that many of the unexecuted parts of

the app are third party library code. Li et al. reported that on

average, 41% of an Android app code is contributed by third

party libraries [25]. It is expected that these library code are

not fully covered by the test cases because they are not fully

used by the app. Moreover, Choudhary et al. [22] have also

reported similar code coverage scores.

Effectiveness of Detecting Malicious Behavior. For each test

case generation tool, given a pair of apps, we generate test cases

and then we run them on the two apps. We next construct a

sandbox based on sensitive APIs called by the benign app in the

pair and check if this sandbox can identify the malicious app as

such. The malicious app is detected by the sandbox if it calls

other sensitive APIs but not called by the benign app. Figure 5

presents an example of the sensitive API calls identified from

the API traces generated for the benign and malicious apps

of pair P8. There is only one sensitive API call, i.e., call

Benign API
android.webkit.WebView.loadDataWithBaseURL(...)

Malicious APIs
android.webkit.WebView.loadDataWithBaseURL(...)

android.os.PowerManager$WakeLock.void acquire()

android.telephony.TelephonyManager.getDeviceId()

android.telephony.TelephonyManager.getSubscriberId()

Fig. 5. Sample Detected Malicious Behavior.

TABLE II
EFFECTIVENESS OF SANDBOXES CREATED BY RUNNING DIFFERENT TEST

CASE GENERATION TOOLS.

Pair Monkey Droidmate Droidbot GuiRipper PUMA
P1

√ ⊗ ⊗ ⊗ ⊗
P2 ⊗ ⊗ ⊗ ⊗ ⊗
P3

√ √ √ √ √
P4

√ √ √ √ √
P5 ⊗ ⊗ ⊗ √ ⊗
P6 ⊗ ⊗ ⊗ ⊗ ⊗
P7

√ √ √ √ √
P8

√ √ √
—

√
P9

√ √ √ √ √
P10

√ √ √ √
—√

and ⊗ mean that whether or not the sandboxes created by running
these tool detect the malicious apps, respectively. — means the test
case generation tools fail to run the app.

to “android.webkit.WebView.loadDataWithBaseURL(...)”, in

the API traces of the benign app. However, three additional

sensitive APIs exist in the API traces of the malicious app,

which shows that the malicious app tries to run background

and steal the device and subscriber ID.

Table II presents the results on whether the sandboxes

constructed by running different test case generation tools

can identify the malicious apps. All the sandboxes constructed

by running these tools were able to identify the malicious

behaviors for four pairs, i.e., P3, P4, P7, P9. For pair P8

and P10, there were four tools of which the corresponding

sandboxes identified the malicious apps. GUIRipper and PUMA

failed to run the apps of pair P8 and P10, respectively. The

sandbox constructed by running the Monkey tool detected the

largest number (7) of malicious apps. Only it found that the

malicious app in pair P1, which invoked the sensitive API

“android.webkit.WebView.loadDataWithBaseURL(...)” – see

Table III. The sandboxes built by running Droidmate, Droidbot,

and GUIRipper detected the same number of malicious apps

(6). The malicious apps identified by sandboxes constructed

by running Droidmate and Droidbot were the same. Only the

sandbox built by running GUIRipper detected the malicious

apps for the pair P5. It identified three additional sensitive APIs

invoked by the malicious app – see Table III. The sandbox built

by running PUMA identified the smallest number of malicious

apps, i.e., 5. All the constructed sandboxes did not identify

the malicious apps in pair P2 and P6. This might be because
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TABLE III
DETECTED SENSITIVE API CALLS THAT BREAK THE MINED SANDBOXES.

Sensitive API App Pairs

android.os.PowerManager$WakeLock.acquire() P5

android.telephony.TelephonyManager.getCellLocation() P10

android.telephony.TelephonyManager.getDeviceId() P3, P5, P10

android.telephony.TelephonyManager.getLine1Number() P8, P9

android.telephony.TelephonyManager.getSimSerialNumber() P8, P9

android.telephony.TelephonyManager.getSubscriberId() P5, P10

android.webkit.WebView.loadDataWithBaseURL(...) P1, P7

android.webkit.WebView.loadUrl(java.lang.String) P4

java.net.URL.openConnection() P9
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Fig. 6. Code Coverage of Test Cases Generated by the Five Tools over Time.

the malicious behavior of these two malicious apps were not

covered by the generated test cases or the malicious behavior

did not involve the use of additional sensitive APIs.

We also built a sandbox by combining all the five test case

generation tools together. For each app pair, we used the set

of sensitive APIs of the benign app detected by all the tools to

build a sandbox. Then, we run all the tools for the malicious app

and check if the sandbox could detect the malicious behavior.

This sandbox can identify 8 out of 10 malicious apps except

for the malicious apps in pair P2 and P6.

The sensitive APIs that differentiate the benign and malicious

apps are presented in Table III. They can be divided into

three categories: (1) power management (i.e., the method

“Wakelock.acquire()”), (2) sensitive data access (i.e., the meth-

ods in class “android.telephony.TelephonyManager”), and (3)

network connection (e.g., “java.net.URL.openConnection()”).

These sensitive APIs are often used by malware to execute

malicious operations; for example, a malware can use the APIs

of class “Wakelock” to run in the background, and then access

private data and send it over the network.

Mining sandbox method can effectively identify 8 out of

the 10 malicious apps as such.

TABLE IV
AMOUNT OF ELAPSED TIME TILL MALICIOUS APPS ARE DETECTED BY

MINED SANDBOXES. “—” MEANS THAT THE CORRESPONDING TOOL IS

UNABLE TO DETECT ADDITIONAL SENSITIVE APIS USED BY MALWARE.

Monkey Droidmate Droidbot GUIRipper PUMA

P1 3,412 — — — —
P2 — — — — —
P3 1,642 8 9 35 23
P4 81 10 15 37 24
P5 — — — 13 —
P6 — — — — —
P7 44 13 24 368 26
P8 192 9 37 — 35
P9 352 56 10 33 22
P10 775 7 11 33 —

mean 928.3 17.2 17.7 86.5 26.0
std 1,138.6 17.5 10.0 126.1 4.7

Efficiency of Detecting Malicious Behavior. We also want to

investigate how fast the sandboxes constructed by running these

test case generation tools can identify the malicious behaviors.

In the study of Jamrozik et al. [2], the sensitive APIs of

apps used in the experiment can be called by the test case

generation tool in several minutes [2]. Choudhary et al. [22]

also reported that six test case generation tools evaluated in

their study could hit the maximum coverage within a few

minutes. Figure 6 presents code coverage of these five test

case generation tools over time. The plot reports the mean

coverage across all the 10 pairs of apps over 5 runs. The

results are consistent with the results of Choudhary et al.’s
study. All the tools achieve a coverage value that is close to

the maximum value in one minute except GUIRipper. This is

because GUIRipper frequently restarts the exploration from the

starting state. This operation needs time to restart the emulator.

Next, we want to investigate the minimum amount of time

the generated sandbox can identify malicious apps using test

cases generated by the different test case generation tools. We

show the result in Table IV which is the average minimum

time of 5 runs. The symbol “–” in the table means that the tool

cannot detect additional sensitive APIs used by the malware.

There are no test case generation tools that detect malicious

behaviors for pair P2 and P6. The last two columns correspond

to the mean and standard deviation time across all detected

malicious apps. Test cases generated using Monkey are the least

efficient in detecting malicious apps. The shortest time it takes

to flag a malicious app as such is one minute (P7), while the

longest time is close to one hour (P1). This wide variation may

be caused due to the random nature of Monkey. Interestingly,

for the other tools that follow model-based exploration strategy,

the variation in detection time is small. The average time to

detect malicious apps using all other tools (except Monkey) is

less than two minutes. The efficiency of test cases generated

by Droidmate, Droidbot and PUMA are comparable (mean <
1 minute), while those generated by GUIRipper require a bit

more time to identify malicious behavior (mean ≈ 1.5 minutes).
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Fig. 7. Number of pairs of apps whose sets of sensitive APIs differ.

Sandboxes constructed by running four of the five test

case generation tools (except Monkey) can detect malicious

behaviors in less than two minutes.

B. Experiment Two: LargeI

The result of the first experiment (see Figure 6) shows that

almost all the tools achieve a coverage that is close to the

maximum value in one minute. So, in this experiment, we only

allow each tool to run on each individual app for one minute;

this setting allows us to investigate the effectiveness of mining

sandbox method on 102 pairs of apps.

Figure 7 presents the number of malicious apps detected by

sandboxes constructed by running each tool. Sandboxes built

by running Monkey, Droidmate, Droidbot, GUIRipper, and

PUMA identified 48, 54, 68, 54, and 51 malicious apps among

the 102 malicious apps, respectively. The sandboxes built by

running Droidbot identified the largest number of malicious

apps, which is much more than that of the sandboxes built

by the other tools. The sandboxes built by running the other

four tools have similar effectiveness – they detected 48-54

malicious apps. We also built sandboxes by combining multiple

test case generation tools together. As the sandbox built by

Droidbot had the best performance, we built sandboxes by

combining Droidbot with each of the other four tools. We

found that the number of identified malicious apps detected is

increased to 73 (Droidbot+Monkey), 74 (Droidbot+Droidmate),

77 (Droidbot+GUIRipper), 71 (Droidbot+PUMA), respectively.

We also combined all the five tools together. For this setting,

we found that 77 out of the 102 malicious apps were identified.

The failure cases can be put into two groups: (1) the sets

of sensitive APIs exercised by a test case generation tool for

a benign app and its corresponding piggybacked malware are

identical and non-empty, and (2) no sensitive APIs can be

exercised by a test case generation tool. Table V presents the

number of app pairs that fall into the two cases for each test

case generation tool. We find that most failure cases belong to

the first group.

TABLE V
FAILURE CASES.

Identical Non-Empty No Sensitive APIs
Set of Sensitive APIs

Monkey 34 20
Droidmate 24 24
Droidbot 16 18
GUIRipper 34 14
PUMA 27 24

Sandboxes generated by running automated test case gener-

ation tools for a short time (i.e., 1 minute) are able to detect

77 out of 102 malicious apps. The best test case generation

tool is Droidbot. Still, by combining the tools together we

can boost the performance further.

V. DISCUSSION

In this section, we describe some implications and threats

to validity of this work.

A. Implications

In the following paragraphs, we highlight some implications

based on the findings of the study:

Mining sandboxes can effectively detect malicious behav-
iors. Our experiments show that 75.5%–77.2% of malware we

investigated in this work can be detected by the sandboxes

constructed by running the five selected test case generation

tools. This complements the findings of Jamrozik et al. [2] that

highlight there are only a few false alarms when using mining

sandbox method to protect apps.

Multiple test case generation tools can be used to boost
effectiveness of mined sandboxes. We found that the sand-

boxes built by the studied test case generation tools are capable

of detecting different malicious behaviors for different apps.

In the first experiment SmallE, the sandboxes inferred by

running Monkey detects the largest number of malicious apps

(i.e., 7 out of the 10 malicious apps) despite of its simple

random exploration strategy. But the time it takes to detect

the additional sensitive API calls in the malicious apps is

much longer than that of the other tools. Additionally, if

we combine all the tools together to build sandboxes, we

can identify more malicious apps (i.e., 8 malicious apps). In

the second experiment LargeI, the sandbox constructed by

running Droidbot detects more malicious apps than the other

tools (i.e., 71 vs. 54, 54, 61, and 58 for Monkey, Droidmate,

GUIRipper, and PUMA, respectively). More importantly, we

discover that by combining Droidbot with the other tools

to construct a sandbox, the number of identified malicious

apps increases. Therefore, it is better to use several test case

generation tools together to build sandboxes.

More work is needed to further improve the effectiveness
of mining sandboxes. These following directions seem promis-

ing:
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1) Better automated test generation tools are required to cover

more behavior of an app under test. Both Choudhary et
al.’s study [22] and our study show that the code coverage

of the automated test case generation tools is not high,

and needs improvement.

2) As Android platform evolves rapidly, some tools are not

compatible with latest Android versions. For example,

Droidmate [4] only supports the Android SDK version 19

or 23. Thus, more work needs to be invested in maintaining

automated test case generation tools so that they remain

up-to-date and easy to be used by practitioners.

3) Our sandboxes are simple – they are only collections

of allowable sensitive API calls. A number of malware

that goes undetected in this work may perform malicious

behaviors via a subset of sensitive APIs used by the

benign app. Thus, in the future, it would be interesting to

create more complex sandboxes that can capture additional

constraints. For example, the sandboxes could include

constraints between API calls specified in temporal logics,

etc. These more sophisticated sandboxes could potentially

identify more malware.

4) This work ignores parameter values. Future work can

investigate possibility of mining important constraints

governing parameter values of benign apps (e.g., by using

Daikon [26]).

B. Threats to Validity

Internal Validity. One of threats to internal validity relates to

implementation errors. We have carefully inspected our scripts

to run the selected test case generation tools. However, still

there could be errors that we do not detect. The randomness

involved in the test case generation tools might be a threat to

validity. To reduce this threat, we run each tool on each app

5 times and report the average effectiveness. In the second

experiment, we only run the test case generation tools for one

minute. It is possible that the coverage of the generated test

cases has not converged yet. Still, our first experiment finds

that the coverage of test cases generated by most tools reaches

close to the maximum value within one minute.

Another threat to validity is that we did not reuse the whole

implementation of Boxmate – we simply use its test case

generation tool, i.e., Droidmate. Integrating each test case

generation tool into Boxmate requires a lot of resource and

time, which we leave for future work. Additionally, different

from the original work by Jamrozik et al. that ignores most
parameter values, in this work, we ignore all parameter values.

External Validity. Threats to external validity relates to the

generalizability of our findings. We acknowledge the following

threats:

1) In our first experiment, we only analyzed 10 pairs of

APK files due to limited time and resources. Still, the

number of apps considered is similar to those considered

by many past studies that also perform dynamic analysis

on Android apps [7], [23], [9]. Moreover, to mitigate this

threat to external validity, we have performed a second

experiment which includes 102 more app pairs. In the

future, we plan to analyze more apps using the setting

of the first experiment by devoting more resources and

running the apps in parallel.

2) All the app pairs considered in this work are from piggy-

backed app dataset released by Li et al [17]. Piggybacked

apps do not cover all categories of Android malware. Still,

most malware is piggybacked of benign apps, e.g., 80%

of the malicious samples in the dataset MalGenome [18]

are built through repackaging.

3) We used 5 different test case generation tools to analyze

the selected apps. There are a number of other test case

generation tools that have been proposed in the literature

(see Section VI-B). We have not considered these other

tools.

In the future, we plan to reduce the threats to external

validity by investigating more mobile applications as well as

more automated test case generation tools from the industry

and academia.

VI. RELATED WORK

In this section, we highlight a number of previous research

studies that are related to our work. In section VI-A, we discuss

related works in sandbox mining. Next, Section VI-B describes

state-of-the-art and popular test case generation techniques for

Android apps. Then, we highlight works in adequacy of test

case generations techniques Section VI-C.

A. Sandboxing

Our work extends the first sandbox mining paper by

Jamrozik et al. [2]. While Jamrozik et al.’s have argued for the

effectiveness of Boxmate and demonstrated its low false alarm

rate, they have not evaluated it with real malware. This work

validates the effectiveness of sandbox mining with real malware.

Additionally, we investigated multiple test case generation tools

in addition to the one investigated in their work. There are a

number of other work on developing and analyzing sandboxes.

For example, Cappos et al. proposed a more secure sandbox

with a security layer that can prevent attackers from leveraging

bugs in privileged functionalities [27]. Also, Graziano et al.

proposed a technique to analyze sandboxes that were available

as public online services to identify malware development

activities in those sandboxes so that preventive actions can be

taken early [28].

B. Automated Test Case Generation for Android

Recently, there are several tools that are proposed to generate

test cases for mobile applications (or apps). There are three

major behavior exploration strategies employed by automated

test case generation approaches: random exploration (e.g., [14],

[5], [10], [4]), model based exploration (e.g., [8], [9], [7], [29],

[30], [15], [31]), and systematic exploration (e.g., [32], [12],

[33]) strategies.
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Monkey is a well-known testing tool that comes with

Android Development Kit [14]. The tool is widely adopted

as it is easy to use and highly compatible with different

Android versions. Machiry et al. proposed Dynodroid generates

relevant inputs to apps under test. Dynodroid leverages a novel

“observe-select-execute” strategy to efficiently generate random

events and select the ones related to current execution states

of the apps [5]. Hao et al. proposed a novel tool, named

PUMA, that makes UI automation programmable, and allow

users to implement arbitrary dynamic analyses on Android

applications [10]. Jamrozik et al. proposed Droidmate which

is a fully automated GUI execution generator for Android

applications [4]. Droidmate dynamically monitors sensitive

APIs and resources assessed by an application, and decides

which GUI elements to during exploration process for test case

generation [4].

Azim et al. presented A3E that systematically explores

Android applications without assessing to their source code [8].

A3E contains two distinct exploration strategies: targeted and

depth-first exploration [8]. Choi et al. proposed a machine

learning based approach, named SwiftHand, to actively infer

finite-state machine based models of a GUI application [9].

Amalfitano et al. developed GUIRipper [7] that systematically

explores GUIs of apps by maintaining state-machine models

of GUIs, named GUI Tree models [7]. Amalfitano et al.

extended AndroidRipper to MobiGUITAR by defining new

test adequacy criteria that are based on state machines and

providing fully automated testing that works with mobile

platform security [29]. Yang et al. introduced ORBIT that

performs static analysis on source code to extract actions

associated with GUI states of Android applications [30]. Li et al.

presented a light-weight UI-guided test case generator, named

Droidbot, that supports model-based test case generation with

minimal extra requirements and require no instrumentation [15].

Baek et al. proposed an automated model-based Android GUI

testing framework, named GUICC, that supports multi-level

GUI Comparison Criteria to construct accurate GUI models

for test case generation [31].

Anand et al. presented a new technique, named ACTEve, that

employs concolic execution for generating sequences of events

for Android applications with available source code. Similarly,

Jensen et al. applied concolic execution to generate sequences

of user events that can reach to target states in an Android

application [32]. Mahmood et al. introduced an evolutionary

algorithm based testing framework, named EvoDroid, for

generating relevant test cases for Android application [12].

Wong et al. proposed IntelliDroid that leverages both static and

dynamic analyses to generate test cases for several Android

dynamic analysis tools. [33].

C. Adequacy of Test Case Generation Techniques

Choudhary et al. evaluated the effectiveness of six test

case generation tools for Android applications using different

metrics [22]. According to their findings, the studied tools

from academia are no better than Monkey when generating

test cases for open-source apps [22]. Zeng et al. conducted

an industrial case study by employing Monkey on WeChat as

well as propose a new approach to improve the limitations of

Monkey [34]. Gopinath et al. conducted an empirical study

on hundreds of open-source projects from Github and assess

quality of test cases given various coverage levels. In their

study, they leveraged both of human generated test cases as

well as Randoop [35] generated test cases [36]. According to

Gopinath et al.’s findings, statement coverage is a good indicator

of test suite effectiveness [36]. Inozemtseva et al. generated

31,000 test suites for five large-scale software systems that

contain up to 724,000 lines of source code, and, importantly,

discovered that test coverage is not a good indicator of test suite

effectiveness [37]. Kochhar et al. analyzed Apache HTTPClient

and Mozilla Rhino to understand the correlation between the

test suite coverage, size and effectiveness [38]. Zhang et al.

analyzed five large-scale open-source projects to investigate

the relationship between test suite effectiveness and number

of assertions, types of assertions and assertion coverage [39].

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigate the effectiveness of mining

sandboxes on detecting malicious apps using five test case

generation tools. We make use of pairs of malware and benign

app it infects to investigate whether the sandbox built based

on sensitive APIs called by the benign app can detect the

malicious behavior in the corresponding malware effectively.

We conduct two experiments. In the first experiment, we select

10 pairs of apps and allow test case generation tools to run for

one hour; while in the second experiment, we select 102 pairs

of apps and allow these tools to run for one minute. The results

of the first experiment show that the sandbox constructed by

combining all the five test case generation tools can identify 8

out of 10 malicious apps; while sandboxes built by running

Monkey, Droidmate, Droidbot, GUIRipper, and PUMA can

detect 7, 6, 6, 6, 5 malicious apps, respectively. In the second

experiment, 75.5% (77 out of 102) of malicious apps can be

identified by the sandbox constructed by combining all the five

test case generation tools. The best test case generation tool is

Droidbot. The performance can also be boosted by combing

the other tools together.
As future work, we plan to expand our study to better

address the threats to internal and external validity. We also

plan to build better sandboxes by designing improved test case

generation tools and inferring more sophisticated models of

benign behaviors.
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