
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

6-2018

To detect stack buffer overflow with polymorphic
canaries
Zhilong WANG
Nanjing University

Xuhua DING
Singapore Management University, xhding@smu.edu.sg

Chengbin PANG
Nanjing University

Jian GUO
Nanjing University

Jun ZHU
Nanjing University

See next page for additional authors

DOI: https://doi.org/10.1109/DSN.2018.00035

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
WANG, Zhilong; DING, Xuhua; PANG, Chengbin; GUO, Jian; ZHU, Jun; and MAO, Bing. To detect stack buffer overflow with
polymorphic canaries. (2018). 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks DSN 2018:
Luxembourg City, 25-28 June: Proceedings. 243-254. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4101

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/DSN.2018.00035
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4101&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Author
Zhilong WANG, Xuhua DING, Chengbin PANG, Jian GUO, Jun ZHU, and Bing MAO

This conference proceeding article is available at Institutional Knowledge at Singapore Management University:
https://ink.library.smu.edu.sg/sis_research/4101

https://ink.library.smu.edu.sg/sis_research/4101?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4101&utm_medium=PDF&utm_campaign=PDFCoverPages

To Detect Stack Buffer Overflow With Polymorphic
Canaries

Zhilong Wang∗, Xuhua Ding†, Chengbin Pang∗, Jian Guo∗, Jun Zhu∗ and Bing Mao∗
∗State Key Laboratory for Novel Software Technology, Nanjing University

Department of Computer Science and Technology, Nanjing University

{mg1633081,mg1733051,mf1733018}@smail.nju.edu.cn, clearscreen@163.com, maobing@nju.edu.cn
†School of Information Systems, Singapore Management University

xhding@smu.edu.sg

Abstract—Stack Smashing Protection (SSP) is a simple and
highly efficient technique widely used in practice as the front line
defense against stack buffer overflow attacks. Unfortunately, SSP
is known to be vulnerable to the so-called byte-by-byte attack.
Although several remedy schemes are proposed in the recent
literature, their security is achieved at the price of practicality,
because their complex logics ruin SSP’s simplicity and high-
efficiency. In this paper, we present an elegant solution named as
Polymorphic SSP (P-SSP) that attains the same security without
sacrificing SSP’s strengths. We also propose three extensions
of the basic scheme for better compatibility, stronger security,
and local variable protection, respectively. We have implemented
both a compiler plugin and a binary instrumentation tool for
deploying P-SSP. Their respective runtime overheads are only
0.24% and 1.01%. We have also experimented with our extensions
and compared their pros and cons with the basic scheme.

Keywords—Stack buffer overflow; brute force attack; canary;

I. INTRODUCTION

For decades buffer overflow remains as one of the main
security threats plaguing the cyberspace, attributing to the
prevalence of the software vulnerability it exploits and the low-
level of complexity to launch it. Among all types of buffer
overflow attacks, stack buffer overflow is arguably the most
dangerous one, as it allows the adversary to tamper with the
victim’s control flow and computation results by modifying the
return address and the local variables, respectively.

Stack Smashing Protection (SSP) is a well-known tech-
nique to detect stack overflow attacks and has been deployed
on mainstream operating systems such as Windows and Linux
for more than ten years [1]. It uses a random number called
the canary loaded in the Thread Local Storage (TLS) dur-
ing program loading and initialization. A function’s prologue
pushes the canary into the stack between the caller’s saved
return address and the callee’s local variables; the function’s
epilogue compares the canary on the stack with the one in the
TLS. A mismatch indicates that the canary is “killed” due to
illegal writes out of the boundaries of the local variables on
the stack.

SSP detects unintended stack buffer overflow with an
overwhelming success probability. Nonetheless, its security
against a determined adversary hinges on the secrecy of the
canary. An exposed canary allows the adversary to craft his
malicious input so that the resulting overflow does not violate

the canary integrity. Since a canary is typically chosen as a 32-
bit or 64-bit random string, its entropy is widely considered
large enough to resist brute force attacks.

However, SSP has three noticeable drawbacks. As shown in
blinded return-oriented-programming attacks [2], the byte-by-
byte attack makes merely a few hundred trials to successfully
recover the canary used by a network server. This efficient
attack exploits the fact that the same canary is repeatedly used
for all worker processes forked out by the network server.
The adversary’s strategy is to independently test correctness of
each byte of the canary, so that its advantage is progressively
accumulated. The other drawback is that it only detects those
buffer overflows that tamper with the return address in order
to manipulate the victim’s control flow. It is incapable of
detecting overflows that only affect local variables in the stack
and leave the return address intact. Lastly, all stack frames of
a thread share the same canary. Hence, if a vulnerability in
one function exposes the canary, the adversary can overflow
all vulnerable functions without being caught.

In this paper, we propose Polymorphic Stack Smashing
Protection (P-SSP) to strengthen SSP from these three aspects.
Our basic P-SSP scheme defeats the byte-by-byte attack by
ensuring that the attacker’s advantage of guessing the canary
is not accumulated along with different trials. The core idea of
P-SSP is to re-randomize the canaries for a new process/thread
or for a new function call. The design of P-SSP ensures that
the execution of the process/thread is not disrupted despite the
fact that different versions of canaries co-reside in the stack. It
also has backward compatibility, as P-SSP protected code can
execute in the same control flow together with legacy binaries
supporting SSP. As compared to existing schemes that also use
refreshed stack canaries, our design is more elegant, because
it does not have the hassle of tracking the function calls as
used in those scheme.

We also make three extensions of P-SSP. The first extension
provides better backward compatibility as it does not incur
any change on the TLS or fork-like functions. The second
extension expands the scope of protection to cover local
variables. The third extension addresses the single-point-of-
failure of SSP. It confines the damage of memory leakage in
the sense that the knowledge of one function’s canary does not
lead to buffer overflow attacks on other functions.

P-SSP can be conveniently deployed in practice and incurs
non-significant runtime overhead. We have modified LLVM

243

2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

2158-3927/18/$31.00 ©2018 IEEE
DOI 10.1109/DSN.2018.00035

Published in 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks DSN 2018:
Luxembourg City, 25-28 June: Proceedings. pp. 243-254
https://doi.org/10.1109/DSN.2018.00035

to support P-SSP. According to the benchmarks, programs
compiled with the P-SSP option takes just 0.24% more CPU
time than their native executions. We have also designed and
implemented a tool to instrument existing binaries to support
P-SSP. Executions with instrumented programs demonstrate a
modest slowdown of 1.01% in average. Both implementations
are publicly available as open-source projects.

ORGANIZATION. The rest of this paper is organized as follows:
Section II discusses the background and related works. We
present the overall design of P-SSP in Section III, and its three
extensions in Section IV. We report the implementation of
our systems in Section V. Section VI gives our evaluation of
performance and effectiveness. We discuss several issues in
Section VII and conclude the paper with Section VIII.

II. BACKGROUND

A. Stack Smashing Protection (SSP)

SSP is a default compilation option widely used nowadays
as the front line defense against stack buffer overflow attacks.
When compiling a function, the compiler produces the function
prologue (as shown in Code 1) that pushes into the stack the
so-called canary (a.k.a. cookie) which is a random number
with the same length of a memory word. All functions in a
thread share the same canary, as the function prologue copies
the canary from the same location in the thread local storage.

1 push %rbp
2 mov %rsp ,% rbp
3 sub $0x10 ,% r s p
4 mov %f s : 0 x28 ,% r a x
5 mov %rax ,−0x8(% rbp)
6

Code 1: Function Prologue of SSP

The canary is stored between the function return address
and the local variables and is checked by the function epilogue
(as shown in Code 2) when the function returns. Any buffer
overflow of the local variables results in a different stack
canary with an overwhelming probability. Hence, the epilogue
code can detect the attack by spotting a different canary in the
stack.

1
2 mov −0x8(% rbp) ,% rdx
3 xor %f s : 0 x28 ,% rdx
4 j e Labe l
5 c a l l q < s t a c k c h k f a i l @ p l t >
6 Labe l :
7 l e a v e q
8 r e t q

Code 2: Function Epilogue of SSP

On a 64-bit platform, the most naive adversary is expected
to correctly guess the canary after making 263 different trials.
Although it is considered as secure against such a brute force
attack, it is not secure against the byte-by-byte attack. We
explain in detail how this attack works and then describe recent
schemes proposed to cope with it.

B. Byte-by-byte Attack

The byte-by-byte attack is targeted at applications where a
parent process keeps forking out child processes to undertake
new jobs or serving new requests sent by external entities.
With a large number of child processes, the application’s
performance is significantly boosted due to a high degree of
execution concurrency.

The vulnerability of such applications is that the child
process’s TLS is cloned from the parent process when it is
forked. Therefore, all child processes use the same TLS canary
as the parent process. Moreover, the function prologue in SSP
copies the TLS canary to its stack. As a result, all stack frames
of all child processes share the same canary. Note that when
one child process crashes, the parent process simply terminates
it and forks out another child.

Intuitively, the byte-by-byte attack essentially treats the
parent process as an “oracle” which tells the attacker whether
its guess is correct or not. Specifically, it runs by gradually
modifying the bytes in the stack canary, starting from the
lowest address. It begins with overflowing only the lowest
byte of the canary with other canary bytes unchanged. If
the modification does not crash the process, the adversary
is confirmed that the guess is correct. Then, it guesses the
second lowest byte by overwriting two bytes of the canary
with the correct lowest byte. In this fashion, it continues until
all canary bytes are revealed. In average, the attacker needs to
make 8 ∗ 27 = 1024 trials to break SSP in a 64-bit platform.

CAVEAT. Note that it is not an attractive approach to assign
a new TLS canary to the child process. Due to the semantic of
process forking, the child process starts to run with an inherited
stack which contains frames belonging to the function calls
made by its parent. A new TLS canary then does not match the
canaries in those inherited stack frames. As a result, it disrupts
the execution when the control returns to those functions.

C. Related Work

Several mechanisms have been proposed to protect the ca-
nary against brute force attacks. Gisbert et al. [3] implemented
canary value randomization . Their technique, known as renew-
after-fork stack smashing protection (RAF SSP), refresh the
canary after the fork() function is invoked. Since it only
updates the canary in the TLS area, this design suffers from
execution failures when the child process returns to the frames
inherited by the parent process. In order to ensure correctness,
Petsios et al. [4] proposed and implemented DynaGuard to
address the issue of inconsistent canaries in stack frames cre-
ated prior to canary update. DynaGuard maintains a linked list
of stack canaries during execution and updates the canaries in
both the TLS and the old stack frame after a new child process
is forked. DynaGuard can be deployed during compilation
with a compiler plugin and at runtime using PIN [5] for
dynamic binary instrumentation. Experiments with the SPEC
CPU2006 benchmarks shows that compiler-based DynaGuard
incurs 1.5% overhead while the instrumentation-based version
incurs 156% overhead, as compared to the SSP protected
executions.

Last year, Hawkins et al. [6] proposed and implemented
Dynamic Canary Randomization technique (DCR). DCR and

244

TABLE I: Comparison of different brute force attack defence tools.

Defence Tools BROP Prevention Correctness Runtime overhead (compiler-based) Runtime overhead (instrumentation-based)

SSP No Yes - -
RAF SSP Yes No negligible negligible

DynaGuard Yes Yes 1.5% 156%
DCR Yes Yes NA >24%

DynaGuard differ in their means of maintaining the linked list
of stack canary’s locations at runtime. DynaGuard allocates
a canary address buffer to store the linked list whereas DCR
utilizes the existing canary reference storage space. To facil-
itate rewriting every canary value on the stack at runtime, in
every canary of DCR, the offsets from address of itself to
address of previous canary is embedded in it. These offsets
are used by DCR to build a linked list of canaries on the
stack during program execution. A pointer to the head of
the list is stored in the TLS. DCR is implemented using
the static binary instrumentation technique for re-randomizing
every stack canaries on the old stack frame, with around a 24%
overhead.

Table I compares the performances of the three schemes
above and SSP. In short, existing schemes follow the approach
of updating the TLS canary, which inevitably faces the chal-
lenge of maintaining canary consistency between the new TLS
canary and the obsolete stack canaries. Our scheme presented
in this paper takes a new approach which only updates the
stack canary for new stacking frames without changing the
TLS canary. Hence, our scheme does not have to deal with
canary consistency and does not incur significant performance
loss.

In a broad sense, our work is related to memory corruption
and control flow integrity. We refer to readers the systemization
of knowledge work by Szekeres et al. [7] for a comprehensive
treatment. As noted in [7], although SSP does not provide the
security assurance as strong as more sophisticated schemes
like shadow stack [8] and CFI [9], it is still popularly used in
practice due to its light overhead.

III. MAIN DESIGN OF POLYMORPHIC STACK SMASHING

PROTECTION

In this section, we begin with a description of the adversary
model and our design goal. We then present the main scheme
of Polymorphic SSP.

A. Adversary Model and Design Goal

The adversary in our model is the software attacker that
feeds malicious inputs to the victim process in order to induce
buffer overflows on the victim’s stack. Depending on the
service offered by the victim process, the adversary can be
either remote or local. We do not assume secrecy of the
victim’s source code, the binary, or the virtual address space
layout. Therefore, the adversary can adaptively choose the
inputs and observe the outputs and behaviors of the victim
process. Nonetheless, we have to assume that the adversary
does not have the capability of direct memory read or write.
With the capability of direct write, the adversary does not need

to launch buffer overflow attacks, and the capability of direct
read totally breaks the security premise of SSP.

Like SSP, we aim to provide a code-level stack buffer
overflow detection mechanism which is secure against the
adversary described above. The basic approach we take is to
re-fresh the canaries in the stack so that information leaked in
one attempt is invalid for other attack attempts.

Design Challenges. The main challenge of re-randomize
the stack canary is to maintain the consistency with existing
canaries in the stack frames, as all canaries are checked
with the common one in the TLS. Prior work [6], [4] has
demonstrated that it is time-consuming to keep tracking or to
locate canaries in the stacks. Another challenge is to minimize
the runtime overhead of canary checking. As noted by Szekeres
et. al [7], the reason why SSP is popularly adopted in practice
despite of its weak security assurance is its high efficiency and
easiness to implement. Hence, it is imperative to preserve the
performance virtues of SSP.

B. System Design

Without loss of generality, we consider 64-bit software
and platform. The techniques we describe below can be easily
customized for 32-bit platforms as well.

The Building Block: Canary Re-Randomization. Intu-
itively, our idea of re-randomizing the stack canary is to make
the TLS canary randomly metamorphose to different forms
as the stack canary, instead of cloning itself as in SSP. For
easiness of description, we use C and C to denote the canaries
stored in the TLS and in the stack, respectively. In SSP, we
have C = C, and both are 64-bit random binary strings. Our
basic algorithm for canary re-randomization is described in
Algorithm 1.

Algorithm 1 Re-Randomize(C):

INPUT: TLS canary C;
OUTPUT: two binary strings of the same length as C;

1: Generate a random binary string C0 satisfying ||C0|| =
||C||, where ||X|| denote the binary size of X;

2: Compute C1 = C0 ⊕C;
3: return C0, C1;

Clearly, the outputs (C0, C1) have the property that C =
C0 ⊕ C1. Note that since C0 is randomly generated, the
exposure of C0 does not leak any information about C.
Moreover, whenever the function is called, it produces a new
pair of outputs which are bound to C like prior outputs, but
are independent of them. In the following we present the
Polymorphic SSP scheme (P-SSP) by using Algorithm 1 as
the building block.

245

The Basic Scheme. We introduce the notion of TLS shadow
canary, which is the outputs from re-randomizing the TLS
canary C. Whenever a child process is forked out, the system
call handler copies the parent’s TLS to the child process’s.
Then, it runs Algorithm 1 and sets (C0, C1) to the child
process’s TLS as the shadow canary. When a function is
invoked in the child process, its prologue simply pushes C0, C1

into the stack between the return address and local variables. In
other words, its stack canary C is in the form of C0||C1 where
|| denotes binary string concatenation. When the function
returns, its epilogue checks whether C = C0 ⊕ C1. If not,
it signals the buffer overflow by jumping to the error handling
code. Figure 1 compares the stack canary in SSP and P-SSP.

�����
��	
��
�
����	�

��
��
�

��
��

��

�	�

�

������

������	�

����

���

(a) Stack layout under SSP

�����
��	
��
�
����	�

��
��
�

��
��

��

�	�

��
��

������

������	�

����

���

(b) Stack layout under P-SSP

Fig. 1: Comparison between stack layouts under SSP and P-
SSP

CAVEAT. Although P-SSP updates the TLS, the TLS canary
is not changed, which is different from all previous schemes.
Hence, the semantics of forking is still preserved. When the
control flow of the child process returns to the parent process’s
functions, the stack canary still matches the TLS canary,
regardless whether P-SSP is used by the parent process or
not.

C. Security of P-SSP

According to our adversary model, the attacker does not
have the capability to directly read the stack canary. Therefore,
we analyze the security based on the efforts for the attacker’s
(random) guesses.

1) Exhaustive Search: The most primitive attack is to
exhaustively search the entire space of the canary. Since the
stack canary’s bit length is twice of the TLS canary’s, the
attacker randomly guesses the TLS canary. For each guess
C′, the attacker generates a random pair of C ′0, C

′
1 satisfying

C ′0 ⊕ C ′1 = C′, and overwrites the stack so that C ′0 and C ′1
replace the stack canary. P-SSP have the same security strength
as SSP in terms of exhaustive search, because both schemes
use the same amount of bits for the TLS canary. Hence, the
adversary spends the same amount of efforts to successfully
guess the TLS canary.

2) Byte-by-byte Attack: Recall that the byte-by-byte attack
uses the strategy of guessing the individual bytes of the
canary from the lower end. P-SSP resists the attack by using
polymorphic canaries in the stack. Namely, a child process’s
stack canary is different from its parent, while their TLS
canaries are the same. With P-SSP, every process fork uses a

freshly generated stack canary which is independent from the
byte(s) exposed to the attacker. Hence, the attacker’s advantage
is not accumulated after its random guesses. We summarize the
security of P-SSP with Theorem 1.

Theorem 1. Suppose that the adversary makes n rounds of
attacks on n fork invocations. Let (Ci

0, C
i
1) denote the stack

canary pair used in the i-th child process’s stack frame. Then,
the adversary does not gain any advantage in guessing the
TLS canary, even if it observes {Ci

1|1 ≤ i ≤ n} of all child
processes. Namely,

Pr(C) = Pr(C|C1
1 , · · ·Cn

1) (1)

Proof: (Sketch) The theorem can be proved by using
an induction on n. Let t be the binary length of C, Ci

0,
and Ci

1 for i ∈ [1, n]. Since C is a random binary string
from the domain {0, 1}t, Pr(C) = 1/2t. When n = 1,
Pr(C|C1

1) = Pr(C, C1
1)/Pr(C

1
1). Since C1

1 = C1
0 ⊕ C,

for every C randomly chosen from the domain of {0, 1}t,
C1

1 has the uniform probability of taking a value from the
same domain, because C0

1 is also randomly generated. Hence,
Pr(C1

1) = 1/2t, and Pr(C, C1
1) = 1/22t. Hence, Equation 1

holds.

Suppose that the equation holds for n = k, it suffices to
prove the theorem by showing that it also holds for n = k+1.
Note that

Pr(C|C1
1 , · · ·Ck

1) =
Pr(C, C1

1 , · · ·Ck−1
1 , Ck

1)

Pr(C1
1 , · · ·Ck−1

1 , Ck
1)

According to P-SSP, whenever an erroneous canary is
detected by a function’s epilogue, that child process is killed
and a new process is forked out with a fresh stack ca-
nary. Hence, Ck

1 is independent of C1
1 , · · · , Ck−1

1 , we have

Pr(C1
1 , · · ·Ck−1

1 , Ck
1) = 1/2kt. With the same argument in the

case of n = 1, we have Pr(C, C1
1 , · · ·Ck−1

1 , Ck
1) = 1/2(k+1)t,

which shows that Equation 1 holds as well and therefore
completes the proof.

D. Elegance of P-SSP

P-SSP is logically much simpler and tidier than existing
scheme such as DynaGuard [4] and DCR [6]. The latter two’s
complex logics not only induce higher overhead, but also
hinder their deployment due to the burden of maintaining
compatibility. Namely, their requirement for a linked list of
canaries in the process space ruins simplicity and transparency
of canary based protection. Hence, exception handling, stack
unwinding, across-modules function calls have to take those
linked canary into consideration. It is therefore difficult to be
applied for legacy binaries. In contrast, P-SSP does not cause
the existing stack canaries to become invalidated by new stack
canaries. Hence, the deployment of P-SSP results in no risk to
program reliability.

IV. EXTENSIONS

We propose three extensions of the main P-SSP scheme
described in the previous section. The first extension avoids
the need of updating the TLS structure during process forking;
the second one expands the protection coverage from the return
address to the non-control data, i.e., the local variables in the

246

stack; and the third extension addresses the single point of
failure of using the same canary for all stack frames in a
process.

A. P-SSP Without TLS Update

In this scheme (denoted by P-SSP-NT), we do not modify
the semantic of forking or the structure of the TLS. As in
SSP, the child process inherits the TLS canary from its parent
without using any shadow canary. At runtime of the child
process, each function prologue randomly and independently
splits C in its TLS by using Algorithm 1, and pushes its own
unique C0, C1 into the stack. The function epilogue remains
the same as in P-SSP. Note that modern x86 processors have
instruction support to generate random numbers. Hence, we do
not need to inject a pseudo random number generation function
to the prologues. We elaborate the details in Section V.

Comparison. The main difference between P-SSP-NT and
P-SSP is the timing of re-randomization, i.e., upon function
invocation v.s. upon process forking. The difference makes
several implications. As shown in Figure 2, P-SSP-NT assigns
different stack canaries to each stack frame while P-SSP uses
the same stack canary for all stack frames in the process.
The deployment of P-SSP requires modification of the fork
implementation and the TLS layout, while P-SSP-NT does not.
Hence, it is easier to deploy P-SSP-NT. In terms of runtime
cost, P-SSP outperforms this extension, since its function
prologue does not require random number generation which
consumes more CPU cycles than memory copying.

���������	
��

���������	
���

������

������

(a) Stack frames use the same ca-
nary P-SSP

���������	
��

���������	
���

��������

���������

(b) Stack frames use different ca-
naries in P-SSP-NT

Fig. 2: Comparison between stack layouts under P-SSP and
P-SSP-NT. The shadowed regions denote the stack canaries.

B. Protection Over Local Variables

In comparison with tampering with the return address in
the stack, the buffer overflow attack’s modification on local
variables is far more stealthy. We extend the P-SSP-NT to
make a postmortem detection of such modification, in a similar
fashion to return address protection. We name this extension
as P-SSP-LV.

Consider that a function has n local variables denoted
by v1, · · · , vn. Without loss of generality, we suppose that
the virtual addresses are sorted in ascending order with their
indexes. Namely v1 has the lowest virtual address and vm has
the highest. Among the n variables, let V be the set of critical

Algorithm 2 function prologue for critical local variable
protection

INPUT: TLS canary C; v1, · · · , vn; V; j = 1;
OUTPUT: m+ 1 canaries in the stack frame;

1: push the stack frame pointer into the stack;
2: /*to protect the return address and the stack frame pointer.

*/
3: generate a random number C0;
4: push C0;
5: /*to push local variables and protect those in V */
6: for i = n down to 1 do
7: push vi and set i=i-1;
8: /* to generate and push canaries for critical variables */

9: if vi ∈ V then
10: if j < |V| then
11: generate a random number Cj and set j = j + 1;
12: else
13: /* the last canary has to be computed properly*/
14: Cj = C⊕ C0 ⊕ · · · ⊕ Cj−1

15: end if
16: push Cj

17: end if
18: end for

variables that demand buffer overflow protection. The logic of
the P-SSP-LV function prologue is shown in Algorithm 2.

Similar to the protection over the return address, each
critical variable is guarded by a distinct canary located in an
adjacent memory word with a lower address. The algorithm of
the prologue ensures that the XOR of all stack canaries in the
function’s stack frame is exactly the TLS canary C. To avoid
verbosity, we do not elaborate the algorithm of the function
epilogue. Essentially, the epilogue is to check whether all stack
canaries are collectively consistent with the TLS canary.

CAVEAT 1. We highlight the differences and advantages of
P-SSP-LV over StackFences [10]. To protect stack variables,
StackFences inserts same canaries for every potentially vul-
nerable variables. Hence, it can not protect program against
brute force attacks. It is evident that the scheme is broken
whenever a single canary is leaked to the attacker. However, for
our scheme, the canaries are dynamically and independently
generated. It is secure against brute force attacks. When one
canary is exposed to the attacker due to one vulnerability, the
attacker does not automatically obtain other canaries.

CAVEAT 2. We remark that the integrity of those critical
local variables is not protected by the P-SSP extension, as those
variables can still be updated by the program (or malware). In
essence, the canaries in use protect the memory layout of those
variables instead of their values, as only out-of-bound writes
are detected.

C. Stack Canary Exposure Resilience

A common drawback of P-SSP and SSP is its single
point of failure. If the stack canary in one stack frame is
exposed (e.g., due to a memory leakage vulnerability in the
corresponding function), the attacker can use it to successfully
overflow all other stack frames. The deep-seated reason of the

247

ripple effect is that the exposure of one stack frame’s canary
leads to the exposure of the TLS canary, which means that the
attacker can compose legitimate canaries for arbitrary stack
frames.

We observe that a solution to deal with the problem must
meet two requirements. Firstly, the adversary cannot derive the
TLS canary from the stack canaries. Secondly, the stack canary
has to be bound to its hosting stack frame so that it becomes
invalid when being copied into a different stack frame. Based
on this observation, the proposed extension is described in
Algorithm 3 and named as P-SSP-OWF.

Algorithm 3 function prologue for exposure resilience

INPUT: the TLS canary C, the return address ret;
OUTPUT: the stack canary C;

1: push the stack frame pointer into the stack;
2: get the nounce n;
3: push n;
4: compute C = F(ret||n,C) where F denote a one-way

function.
5: push C;

Instead of randomly splitting C in P-SSP, the new algo-
rithm evaluates a one-way function over C, the return address,
as well as a nounce n. Note that it is important to add
the nounce n into the evaluation. Without the nounce being
included, the stack frame will have a fixed canary that does not
change with different executions because the one-way function
itself is deterministic. Hence, it is subject to the byte-by-byte
attack. From the cryptography perspective, the resulting stack
canary C is a randomized message authentication code of the
return address using C as the secret key. Hence, the knowledge
of C in one stack frame does not leak the master secret C.
Neither is possible to forge a stack canary for another stack
frame. The function epilogue runs in a similar fashion. It reads
the nounce from the stack and re-evaluates F(ret||n,C) and
checks whether the output is equal to the stack canary. A
mismatch signals a buffer overflow attack and the control is
transferred to the error handling code.

There are two methods to instantiate the one-way function
F , i.e., a hash function (e.g., SHA-1) and a block cipher (e.g.,
AES). Without hardware support, it is prohibitively expensive
to evaluate F in every function’s prologue and epilogue. Mod-
ern Intel processors already provide such a support. We report
its performance overhead using Intel’s AES-NI in Section VI.

V. IMPLEMENTATION OF P-SSP AND ITS EXTENSIONS

To assess P-SSP’s overhead and easiness of use, we imple-
mented an P-SSP compiler plugin and a binary instrumentation
tool which produces function prologues and epilogues sup-
porting P-SSP-NT. In addition, we implement a shared library
which is invoked when a new program is launched or a child
process is forked. The shared library is to handle the updates
on the TLS.

A. P-SSP Shared Library

Note that function prologues and epilogues do not update
the TLS. Hence, runtime support is needed to load the fresh

TLS shadow canary. There are two occasions for TLS cre-
ation: program startup and thread creation which is via the
fork function in Linux. We have implemented a position
independent shared library which exports three functions (i.e.,
setup_p-ssp, fork, and pthread_create) to override
their counterparts in the standard GNU C library.

Function setup_p-ssp is defined with the
constructor attribute. Therefore, it is invoked
automatically before executing main() of a program.
It basically initializes the TLS shadow canary according
to Algorithm 1. Specifically, we use the addresses from
%fs:0x2a8 to %fs:0x2b7 to store the TLS shadow canary
C0, C1 and while addresses from %fs:0x28 to %fs:0x2f hold
the canary C. Function fork() is called when a process
create a child process. We wrap the glibc fork() function to
refresh the TLS shadow canary after the child process’s TLS
is cloned from its parent’s address space. Note that only the
child process’s TLS is updated. The last modified function is
for thread spawning. Similar to fork(), the thread creation
function is wrapped to refresh the TLS shadow canary.

The binary size of the P-SSP shared library is only around
16 KB, which is compiled from about 358 lines of source code.
At runtime, it can be linked to existing binaries by using via
the LD_PRELOAD mechanism.

B. P-SSP Compiler Plugin

We customize the Low Level Virtual Machine (LLVM)
compiler [11] to support P-SSP. Specifically, we implement
the P-SSP compiler plugin which is registered as one LLVM
pass. We declare a P-SSP-Pass class that is a subclass
of FunctionPass which is invoked on each function in
the source code, perform instrumentation on the interme-
diate language (IR) [11]. P-SSP-Pass overloads a vir-
tual runOnFunction method to perform its task. The
runOnFunction() method decides whether to insert P-SSP
canary according to the types and lengths of local variables.
When there exists a local buffer in the stack, it generates both
the function prologue and the function epilogue. Specifically,
after traversing every basic block in the function, it creates the
prologue at the beginning of function and create the epilogue
right before each ret instruction.

We compile the pass into the dynamic library file
libP-SSP.so, then register it in LLVM’s Pass Manager.
The function prologue and epilogue produced by clang are
shown in Code 3 and 4, respectively. As described earlier,
addresses from %fs:0x2a8 to %fs:0x2b7 hold the canary
C0, C1 while addresses from %fs:0x28 to %fs:0x2f hold the
canary C. In the function prologue, a 16-byte storage between
local variables and the return address is allocated to hold a
copy of C0, C1. The function epilogue verifies the C0, C1 in
stack frame:

a. It loads C0 and C1 to register rdx and rdi, respec-
tively;

b. It evaluates the exclusive OR of rdi and rdx, and the
result is saved in rdx;

c. It compares the content in rdx with the TLS canary. A
mismatch leads to a call to __stack_chk_fail.

248

1 push %rbp
2 mov %rsp ,% rbp
3 sub $0x10 ,% r s p
4 mov %f s : 0 x2a8 ,% r a x
5 mov %rax ,−0x8(% rbp)
6 mov %f s : 0 x2b0 ,% r a x
7 mov %rax ,−0 x10(% rbp)
8

Code 3: Function Prologue of Compiler based P-
SSP

1
2 mov −0x8(% rbp) ,% rdx
3 mov −0x10(% rbp) ,% r d i
4 xor %r d i ,% rdx
5 xor %f s : 0 x28 ,% rdx
6 j e Labe l
7 c a l l q < s t a c k c h k f a i l @ p l t >
8 Labe l :
9 l e a v e q

10 r e t q

Code 4: Function Epilogue of Compiler based P-
SSP

C. Binary Instrumentation for P-SSP

We have also developed a tool to instrument legacy binaries
to use P-SSP. Since SSP is one of the default compilation
options (-fstack-protector) of GCC and LLVM, we
assume that function prologues and epilogues in the target
binary already contain SSP instructions. Comprising around
1100 lines of C++ code, our tool is essentially a binary rewriter
that replaces the canary handling instructions emitted by SSP
with P-SSP code in function prologues and epilogues.

Upgrading SSP to P-SSP in the binary level faces two
challenges. The first challenge is that the instrumentation must
preserve the stack layout which is the premise of stack related
code. Any change on the stack layout is likely to disrupt
the execution. For instance, instructions that access to local
variable using a fixed offset from a “stack base pointer” (e.g.,
ebp and rbp) will make erroneous memory accesses if the
stack layout is modified. While the first challenge is unique to
P-SSP, the second one is common for binary instrumentation.
It is to preserve the address layout of the target program. In
other words, the instrumentation does not insert more bytes
to the program than it deletes, so that the offsets of various
sections and functions entrances are not affected.

To cope with the first challenge, we endeavor to strike a
good balance between security, performance and compatibility.
Note that the P-SSP scheme in Section III induces stack layout
changes by adding one more canary to the stack as compared
to the stack of SSP. Hence, we downgrade 64-bit canaries to
32-bit canaries. Namely, C0, C1 are 32-bit long and jointly
form a memory word in the stack, so that the actual storage
for the stack canary does not grow and the stack layout is
therefore consistent with SSP stacks.

CAVEAT. We acknowledge the drop of canary entropy.
Nonetheless, we argue that the drop does not give the ad-

versary significant advantage in practice, especially for 64-bit
platforms. After the failure of one round of attack, the canaries
are refreshed. Therefore, the adversary constantly faces the
challenge of breaking a 32-bit canary. For 32-bit platforms,
the adversary is still expected to make more than ten thousand
of trials to correctly guess the canary, which is still 64 times
more than the byte-by-byte attack on SSP.

To cope with the second challenge, we consider function
prologue and epilogue separately. The P-SSP function prologue
code is exactly the same as the SSP prologue code, except the
source of the TLS canary. The latter copies one 64-bit TLS
canary from the address %fs:0x28 while the former copies two
32-bit TLS shadow canary from the address %fs:0x2a8. Since
both use the same mov instruction, our tool simply replaces
the offset in use. Code 5 presents the P-SSP function prologue
after instrumentation and Line 4 is the only instruction that is
different from the SSP function prologue.

1 push %rbp
2 mov %rsp ,% rbp
3 sub $0x10 ,% r s p
4 mov %f s : 0 x2a8 ,% r a x
5 mov %rax ,−0x8(% rbp)
6

Code 5: Function prologue of instrumentation
based P-SSP

Handling the function epilogue is slightly more difficult
because the P-SSP function epilogue has a more complex
computation logic than the SSP epilogue, which implies that
more instructions are needed. To avoid the inflation of the
epilogue code size, we replace the comparison instruction
with a call instruction to invoke the canary checking function
whose parameters are passed via the rdi register. Therefore,
the register rdi is saved before canary checking and is restored
afterwards. Code 6 presents the epilogue function, which has
the same length as the SSP epilogue.

1 mov −0x8(% rbp) ,% rdx
2 push %r d i
3 push %rdx
4 pop %r d i
5 c a l l q < s t a c k c h k f a i l @ p l t >
6 pop %r d i
7 j e Labe l
8 c a l l q < s t a c k c h k f a i l @ p l t >
9 Labe l :

10 l e a v e q
11 r e t q

Code 6: Function epilogue of instrumentation
based P-SSP

To minimize the modification on the binary, we com-
bine the canary checking function with the existing
__stack_chk_fail function. More specifically, we insert
the canary checking code before those instructions handling
the failure, as shown in Figure 3.

Since the epilogue code loads C0, C1 into the rdi register,
the canary checking code is slightly from the compiler based P-

249

SSP epilogue, although the logics are the same. As illustrated
by Figure 4, it firstly separates C0 and C1 in rdi. Then it
computes the exclusive-OR of them and compares the result
with the TLS canary. A mismatch causes the control flow to
call the __GI__fortify_fail function which aborts the
execution and reports an error; otherwise it sets the zero flag
to true and returns to the caller.

������������	
��	
��	��������	 ��������	����������	
��	
�������
��	
��	
��	��������	�

���������	

����������

�
����������
�����	

�
�������������

���������
������

��������
�����
���������	
�����
���������
�
�
��������

�
�������	

������
��
���
��	�����
���� !����"�����
���������	

�	�����#$$%&$$$�
����'$�	��(

��	�����
���)*!����"�������������
�� ������
������
�	�����#$$%&$$$�
����'$�	��(

Fig. 3: Modification of stack chk fail(). The instructions
in the dashed box are inserted for P-SSP to check the stack
canary.

�� ��

��� ���
��� ������	

…… ��

�� �
	�
����	

…… �� ��

	�� ���	��������

�

��� ��
�
	������	

�
�

�

�� ��

Fig. 4: Canary Check in __stack_chk_fail of Binary
based DCSE.

Finally, we guarantee that the new __stack_chk_fail
is also compatible with SSP. If the SSP detects a mis-
matching canary and invokes the __stack_chk_fail
function, rdi is not equal to the TLS canary with an
overwhelming probability. In such circumstances, the in-
strumented __stack_chk_fail eventually invokes the
__GI__fortify_fail function.

D. Instrumentation On Statically Linked Code

Lastly, we describe how to handle statically linked glibc
C functions that require instrumentation. Although it is not
common, functions like fork(), pthread_created and
__stack_chk_fail() may be statically embedded in the
binary. These functions have to be modified to support P-
SSP. We use Dyninst [12], a binary rewriting tool, to add
a new code section to hold the customized fork() and

__stack_chk_fail(). In a nutshell, Dyninst uses jmp
instruction to hook the relevant function calls so that the
control flow transfers to the customized functions at their
entrances.

E. Implementations of Three Extensions

To assess the feasibility and performance of the three
extensions, we have developed a prototype for each of them.

1) P-SSP Without TLS Update: In this extension, we write
a compiler plugin to emit function prologues and epilogues.
Note that the TLS structure remains the same as in SSP.
It does not require a special shared library to overload
setup_p-ssp, fork, and pthread_create in the glibc
library. The changes on the binary are limited to function
prologues and epilogues.

While The function epilogue of P-SSP-NT is the same as in
P-SSP, its function prologue is different. The main difference
is that we use the instruction rdrand to get a random number
as the canary as shown in Line 3 of Code 7. Supported by both
Intel and AMD processors, this instruction uses the entropy of
the hardware resources to generate a random number.

1 push %rbp
2 mov %rsp ,% rbp
3 r d r a n d %r a x
4 mov %rax ,−0 x18(% rbp)
5 mov %f s : 0 x28 ,% r c x
6 xor %rax ,% r c x
7 mov %rcx ,−0 x20(% rbp)
8

Code 7: Function Prologue of Compiler based P-
SSP-NT

2) P-SSP With Local Variable Protection: It is slightly
more difficult to implement P-SSP-LV using a LLVM plugin.
First of all, many compiler optimization in LLVM re-order the
local variables in functions. To detect corruption between the
local variables, we must place canaries at the address higher
than each local buffer. Variable re-ordering therefore breaks
the bond between variables and their canaries. One possible
solution is to execute the P-SSP pass after all the optimization
passes. Nonetheless, it may lose some benefits of compiler
optimization. Another possible solution is that the P-SSP-LV
pass encapsulate the local variable and its canary as a new
struct type and replace every reference to the local variable
with the reference to the struct’s first member. Alternatively,
the complier can append eight bytes space to the local variable
and use the highest 8 bytes to hold the canary. However, it may
affect functions like sizeof().

Another issue is about the timing of canary checking.
In SSP and P-SSP, the canary is checked by the function
epilogue, namely at the moment of function return, because
the canary is used to protect the return address. For local
variable overflow detection, it could be too late to detect their
overflow at function return. One design option is to inspect the
canary when the variables are written by vulnerable functions.
For instance, the plugin may add canary inspection code after
executing functions like strcpy(), read(), memset(), scanf(),
strcat(), gets() which may write data to a local variable. Since

250

these are widely used C functions, the compiler needs to
determine whether a local variable is the target of writing.

Another design consideration is to select the variables for
protection. One approach is to introduce a new data type and
let the programer to specify the sensitive variables. Another
approach is that the compiler discover sensitive local variables
in the source code and insert canaries in adjacent addresses.

Due to these implementation challenge, we decide to leave
the compiler based P-SSP-LV in the future work. In our present
implementation, we manually identify sensitive variables and
insert the corresponding P-SSP-LV function prologue and
epilogue. Note that it is challenging to implement P-SSP for
legacy binaries, because it totally changes the stack layout and
references to local variables using the stack pointer become all
invalid.

3) P-SSP With Exposure Resilience: We use Intel Ad-
vanced Encryption Standard New Instructions (AES-NI) to
implement P-SSP-OWF. Because the minimum length of key
and plaintext of AES-NI is 128-bits, We treat the canary in
registers r12 and r13 as an AES key and use it to encrypt
unpredictable data (Time Stamp Counter) and function level
independent data (return address) in the function prologue and
can check it in the epilogue.

To prevent the use of r12 and r13 for other purpose,
we define key as global register variables in r12 and r13.
Besides, if a binary, compiled with P-SSP-OWF and therefore
reserves r12,r13, invokes a shared library that uses r12
or r13, the canary in register will not be covered. Because
according to the calling conventions in Windows, Linux and
Mac OS, r12 and r13 are callee-save registers. If the shared
library use this register, it must save it firstly.

In the function prologue, as shown in Code 8, first of all,
cpu cycles data is generated via Time Stamp Counter instruc-
tion rdtsc and loaded to the register rax. Then, we put both
of 8 bytes of cpu cycle data and return address to xmm15 as the
data to be encrypted. Than we move the AES key in r12 and
r13 to xmm1 and call the AES_ENCRYPT_128 to encrypt
the data in xmm15 and return ciphertext in xmm15. At Last,
we place both of the cpu cycle data and the ciphertext onto
stack.

1 push %rbp
2 mov %rsp ,% rbp
3 r d t s c
4 s h l $0x20 , %rdx
5 or %rdx , %r a x
6 movq %rax ,%xmm15
7 movhps 0x8(% rbp) ,%xmm15
8 movq %r13 ,%xmm1
9 punpckhdq %r12 ,%xmm1

10 c a l l q <AES ENCRYPT 128>
11 mov %rax ,−0 x10(% rbp)
12 movdqu %xmm15,−0 x18(% rbp)
13

Code 8: Function Prologue of Compiler based P-
SSP-OWF

1 movq −0x10(% rbp) ,%xmm15
2 movhps 0x8(% rbp) ,%xmm15
3 movq %r13 ,%xmm1
4 punpckhdq %r12 ,%xmm1
5 c a l l q <AES ENCRYPT 128>
6 comiss −0x18(% rbp) ,%xmm15
7 j e Labe l
8 c a l l q < s t a c k c h k f a i l @ p l t >
9 L a b e l

10 l e a v e q
11 r e t q

Code 9: Function Epilogue of Compiler based P-
SSP-OWF

In the function epilogue, we load both of CPU cycle
data and return address, re-encrypt and compare result with
ciphertext saved on stack. Any modification of return address,
CPU cycle data and ciphertext will lead a mismatch and be
detected.

Security of P-SSP-OWF Time Stamp Counter is unique and
linear increasing with the execution of program, however, the
AES encryption is not a linear function and the key in r12
and r13 is randomly generated. So, the canaries in the stack
are unique and unknown for every stack frame. These features
ensure that P-SSP-OWF has the following three effectiveness:
firstly, brute force attack is infeasible; secondly, even if the
attacker get canaries in the stack, it can not figure out the key
because AES is secure against known-plaintext attack; thirdly,
since attacker can not broken the AES key in registers, it
can not successfully construct exploiting script with expectant
return addresses (to hijack control flow) and corresponding
ciphertext.

At last, we emphasize that P-SSP-OWF is different from
return address encryption protections such as RAP [13]
and PointGuard [14]. Encryption in P-SSP-OWF aims to
implement a dynamic and polymorphic canary, which is
unpredictable and imponderable for attackers. Encryption
of Time Stamp Counter can achieve our goals. Besides,
we use return address as part of plaintext because the
shortest encryption length supported by AES-IN is 128-bit
and consequently we make full use of redundant 64-bit to
hold return address. For return address protections When
compare P-SSP-OWF with return address encryption (RAP,
PointGuard), which hide and protect return addresses via XOR
encryption, we find that P-SSP-OWF is more powerful. Return
address encryption can not prevent brute force attack and
memory disclosure. We acknowledge that those effectiveness
is result of the adoption of more secure encryption methods,
AES-IN.

VI. EVALUATION

In this section we evaluate the performance overhead of
P-SSP and its three extensions. Our platform is a PC with 24
GB of main memory, an Intel(R) Core(TM) CPU i7-4770k
processor with 128KB L1, 1MB L2, and 8MB L3 cache. The
operating system is Debian 8.7.1 with a 3.16.0-4-amd64 Linux
kernel.

251

A. Performance

We measure several types of overheads incurred by P-SSP,
including CPU time, code expansion and memory usage. To
assess its overall impact upon network services, we also assess
the increment of the service response time. The applications
we use include the SPEC CPU R©2006 [15], [16], Apache2,
Nginx, MySQL, and SQLite. The latter four are multithreaded
programs running as network servers.

1) Runtime Performance: The industry-standard
SPEC CPU R©2006 benchmark suite includes SPECint R©

[15] benchmark suite for integer operations and
SPECfp R© [16] benchmark suite for floating point
operations. We compile the source code of the
benchmark programs with the P-SSP option. The runtime
environment is configured by applying "submit =
LD_PRELOAD=[path_to_preload_lib]/libpoly_
canary.so $command" and "use_submit_for_
speed=1" to the config file of the benchmark. Native
executions of the benchmarks are performed with the default
compilation option and configuration.

Fig. 5: Runtime Overhead of P-SSP Against Native Executions
Using SPEC CPU2006 Benchmark Suit

Figure 5 summarizes the performance overhead of compiler
based and instrumentation based P-SSP over native executions.
We find that our binary rewriter tools for dynamic linking
program and static linking program have similar runtime per-
formance. The compiler based P-SSP incurs 0.24% slowdown
in average, while the instrumentation based P-SSP incurs
1.01% slowdown in average. As compared to Table I, it
is evident from our experiment results that P-SSP attains
the security RAF [3], DynaGuard [4] and DCR [3] with a
much lighter overhead in both compiler and instrumentation
implementations.

2) Code Expansion: P-SSP uses more instructions than
SSP. We therefore also evaluate the code expansion over the
native code. We use the 28 programs in SPEC CPU2006
benchmarks for evaluation. We measure the size of the bi-
naries compiled with the P-SSP option and the size of the
instrumented binaries, and compare them against the native
code size compiled with the default options.

Table II summarizes the code expansion rates. The com-
piler based version increases the code size by 0.27% while the
instrumentation based version for dynamic linked executable
has code expansion. Static linked binaries under P-SSP in-
strumentation grows about 2.78%, attributing to the two new

TABLE II: Code Expansion Rate by Different P-SSP Imple-
mentation

Compilation Instrumentation (dy-
namic link)

Instrumentation
(static link)

0.27% 0 2.78%

glibc functions, __stack_chk_fail() and fork(). We
remark that static link glibc binaries are not popular. Among
42383 ELF files in Ubuntu and 44837 ELF files in Debian,
only 2 static linked files are found.

3) Response Performance: We run Apache2, Nginx,
MySQL, and SQLite in the multithread mode to evaluate P-
SSP’s overall performance toll on these services. Apache2
and Nginx are stressed by running Apache Benchmark [17]
with 100,000 requests and concurrency degree set as 500. We
measure their average response time under different settings:
native execution (compiled with default options), compiled
with P-SSP, instrumented with P-SSP. The results are re-
ported in Table III. The database services, i.e. MySQL and
SQLite, are benchmarked by using the sysbench application
and threadtest3.c [18], respectively. We measure the average
query execution time and their memory usages. The results are
reported in Table IV.

Both Table III and IV show that P-SSP incurs negligible
overhead to the performance of web and database servers.
The main reason is that the computation overhead of TLS
canary generation and canary checking in function epilogues
only account for a tiny portion of the entire web or database
transactions. Therefore, the overall performance loss is not
significant.

B. P-SSP v.s. Extensions

P-SSP extensions uses cryptographic instructions and more
complicate logics in the function prologue and epilogue. Both
P-SSP-NT and P-SSP-LV use the rdrand instruction to gen-
erate random numbers while P-SSP-OWF uses AES instruc-
tions. As these cryptographic operations consume more CPU
cycles than memory copying and exclusive-OR operations, we
run experiments to measure their overhead.

TABLE V: Average of CPU cycles spent by the function
prologue and epilogue for P-SSP and its three extensions

P-SSP P-SSP-NT P-SSP-LV P-SSP-OWF
2 variables 4 variables

6 343 343 986 278

As shown in the Table V, the rdrand instruction used for
random number generation in P-SSP-NT and P-SSP-LV costs
about 340 more CPU cycles, which is roughly 97 nanoseconds.
The AES operations in P-SSP-OWF costs about 272 more CPU
cycles, which is merely 77 nanoseconds. The experiments of
P-SS-LV with two variables report similar results as in P-
SSP-NT, because only one random number is generated in
both settings. For the similar reason, experiments in P-SSP-
LV with four variables generate three random numbers and
hence report nearly three times more CPU cycles. We argue

252

TABLE III: P-SSP’s Performance Impact on Web Servers (average time per request in milliseconds)

Native Execution Compiler based P-SSP Instrumentation based P-SSP
Apache2 33.006 33.008 33.099

Nginx 3.088 3.090 3.088

TABLE IV: P-SSP’s Performance Impact on Database Servers

Native Execution Compiler based P-SSP Binary based P-SSP
Query Execution(ms) Mem Usage(MB) Speed Mem Usage(MB) Query Execution(ms) Mem Usage(MB)

MySQL 3.33 22.59 3.33 22.59 3.33 22.59
SQLite 167.27 20.58 167.27 20.58 167 20.58

that it seems to be affordable for programs to adopt P-SSP-
NT and P-SSP-OWF, as the incurred CPU time overhead is
negligible as compared to the time for the entire tasks which
is often measured in the order of milliseconds.

C. Compatibility & Effectiveness

We also run two sets of experiments to test the compatibil-
ity between P-SSP and SSP. In the first set of experiments,
we compile SPEC CPU2006 benchmark suites with P-SSP
option, while the glibc libraries are compiled with the default
SSP option. In the second set of experiments, we compile the
glibc libraries with P-SSP option and compile the benchmark
programs with the default option. In both cases, the binaries
have a mixture of P-SSP and SSP. Our experiments corroborate
our analysis that P-SSP is fully compatible with SSP. The
benchmark programs behaves normally without complaining
any error. No false positive occurs when the child process
returns to the stack frames inherited from the parent process.

To test the effectiveness of P-SSP, we run the byte-by-
byte attacks on Nginx and Ali compiled with SSP and P-SSP
options. The attacks are successful upon SSP-compiled Nginx
and Ali. However, the same attack script have failed when
attack the P-SSP compiled version.

VII. DISCUSSION & FUTURE WORK

A. Memory Corruption Attacks

The key value of P-SSP and its variants is that they
eliminate a widely used attack vector. We emphasize that P-
SSP can not address all kinds of memory corruption attacks.
For instance, the format string attack can read or write canary
value directly and therefore bypasses the canary checking.
We refer readers to [7] which systemizes the knowledge of
memory corruption attacks and countermeasures. It remains
as an open problem to develop an efficient and practical
scheme to cope with the full spectrum of memory corruption
attacks. It is more promising to integrate different types of
countermeasures, such as Non-executable stack (DEP) [19],
ASLR [20], CFI [9], and stack canary, so that the attack surface
is minimized.

B. Comparision with DEP, ASLR and CFI

Non-executable stack stops code-injection, and does not
prevent return address manipulation to change the control

flow (e.g., in order to bypass an authentication checking). P-
SSP detects illegal return address when the function returns.
Since code-injection in the stack does not involve function
epilogue, P-SSP cannot detect such attacks. It is more difficult
for integrity protection as it cannot be enforced by using the
MMU.

ASLR aims to hide the address space layout. P-SSP is to
maintain the integrity of critical data in stack, including return
addresses and local variables. A secure ASLR surely increases
the difficulty of breaking P-SSP. Unfortunately, commodity
OSes only use coarse-grained ASLR which can be easily
broken.

CFI and P-SSP overlap in terms of their functionalities, as
the main purpose of P-SSP is to detect illegal return addresses,
which can also be detected by CFI. However, CFI cannot
protect local variables in the stack.

C. Stack Layout and Canary Length

P-SSP places two memory words in the stack as the canary
whose size is therefore twice of the SSP canary’s. As a result,
the stack layout of P-SSP is different from the one for SSP.
Although the layout change does not cause any issue for
binaries compiled with P-SSP, it affects instrumentation based
P-SSP. As shown in Section V-C, we have to sacrifice security
to overcome the challenge by having the size of the P-SSP
stack canary.

One might suggest to place C0 in the TLS as the TLS
shadow canary and compute C1 in every function prologue so
that only C1 is used as the stack canary. The function epilogue
then tests whether C1 ⊕C0 ⊕C equals to 0. Since C1 has the
same length as C in the TLS, this method preserves the stack
layout. Unfortunately, it is not satisfactory as it seems because
it gives rise to another problem. When a process forks out a
child process, the child’s new C0 replaces its parent’s C0 in
the TLS. Hence, when the control flow of the child returns
to its parent’s code using stack frames created before forking,
the parent’s epilogue function does not have the proper TLS
shadow canary (i.e. C0) to check and the program is doomed
to crash.

Hence, we propose a different method to preserve the 64-
bit canary length. As showed in Figure 6, we allocate a global
buffer for each thread (Linux process) to hold half of canaries
corresponding to the other half of canaries in stack. When C0

is pushed into the stack frame, we place the corresponding C1

253

into the global buffer. Once fork() is invoked to generate
a children process, the child processes clones their parent
process’ global buffer.

�����

�

�	

�� �
���
�������

��
��
��

C’	

C’	

C’�

C’	
C’��	

�	

C’�

Fig. 6: Use a global buffer to offer the additional storage for
P-SSP. The shadowed region denotes the canaries created by
the current process’s parent process.

VIII. CONCLUSION

Stack smashing protection is a popular compiler-based
technique for detecting and defeating stack overflow attacks.
However, it is known to be vulnerable to the byte-by-byte
attack. In this paper, we propose P-SSP where the stack
canary is properly re-randomized without affecting the TLS
canary. Hence, the adversary’s advantage acquired via partially
revealing a canary cannot be accumulated. P-SSP is fully
compatible with SSP and it does not require stack frame tracing
as used by existing schemes. We also make three extensions of
P-SSP, namely P-SSP-NT, P-SSP-LV and P-SSP-OWF. P-SSP-
NT update the stack canary for each frame and does not change
the existing TLS; P-SSP-LV widens the protection coverage
from the return address to local variables; P-SSP-OWF uses
a one-way function to attain resilience to memory exposure
so that the canary leakage in one stack frame does not affect
other frames.

We have built an LLVM plugin to emit function prologues
and epilogues using P-SSP, and a binary rewriting tool to
instrument legacy binaries for P-SSP. The benchmark programs
show that P-SSP incurs non-significant runtime overhead. We
have also implemented LLVM plugins for P-SSP-NT and P-
SSP-OWF, and run experiments to compare the CPU time
overheads between P-SSP and three extensions. The results
show that it is promising to deploy these extensions attributing
to the recent hardware support for cryptographic operations.
Our implementation of P-SSP is available at: https://github.
com/zhilongwang/PolymorphicCanaries.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their useful
comments and suggestions. We would like to thank Petsios
et al. for their help when evaluating P-SSP with the SPEC
CPU 2006 benchmark. This work was supported in part by
grants from the Chinese National Natural Science Foundation
(61272078, 61073027, 90818022, and 61321491), and the
Chinese National 863 High-Tech Program (2011AA01A202).
This research was supported, in part, by the Singapore National
Research Foundation under the NCR Award: NRF2014NCR-
NCR001-012.

REFERENCES

[1] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks.” in USENIX Secu-
rity Symposium, vol. 98. San Antonio, TX, 1998, pp. 63–78.

[2] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in Security and Privacy (SP), 2014 IEEE Symposium
on. IEEE, 2014, pp. 227–242.

[3] H. Marco-Gisbert and I. Ripoll, “Preventing brute force attacks against
stack canary protection on networking servers,” in Network Computing
and Applications (NCA), 2013 12th IEEE International Symposium on.
IEEE, 2013, pp. 243–250.

[4] T. Petsios, V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis,
“Dynaguard: Armoring canary-based protections against brute-force
attacks,” in Proceedings of the 31st Annual Computer Security Appli-
cations Conference. ACM, 2015, pp. 351–360.

[5] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in Acm sigplan
notices, vol. 40, no. 6. ACM, 2005, pp. 190–200.

[6] W. H. Hawkins, J. D. Hiser, and J. W. Davidson, “Dynamic canary
randomization for improved software security,” in Proceedings of the
11th Annual Cyber and Information Security Research Conference.
ACM, 2016, p. 9.

[7] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state
of) the art of war: Offensive techniques in binary analysis,” in Security
and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016, pp. 138–
157.

[8] T.-c. Chiueh and F.-H. Hsu, “Rad: A compile-time solution to buffer
overflow attacks,” in Distributed Computing Systems, 2001. 21st Inter-
national Conference on. IEEE, 2001, pp. 409–417.

[9] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM conference on Computer
and communications security. ACM, 2005, pp. 340–353.

[10] A. Zúquete, “Stackfences: a run-time approach for detecting stack
overflows,” Electrónica e Telecomunicações, vol. 4, no. 3, pp. 403–412,
2004.

[11] LLVM, Available: http://llvm.org/.

[12] B. Buck and J. K. Hollingsworth, “An api for runtime code patching,”
The International Journal of High Performance Computing Applica-
tions, vol. 14, no. 4, pp. 317–329, 2000.

[13] B. S. . T. P. Team, “Return address protection,” Available: https:
//grsecurity.net/rap announce2.php.

[14] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “Pointguard tm:
protecting pointers from buffer overflow vulnerabilities,” in Proceedings
of the 12th conference on USENIX Security Symposium, vol. 12, 2003,
pp. 91–104.

[15] “SPEC CPU 2006 int benchmark,” Available: https://www.spec.org/
cpu2006/CINT2006/, Standard Performance Evaluation Corporation.

[16] “SPEC CPU 2006 float benchmark,” Available: https://www.spec.org/
cpu2006/CFP2006/, Standard Performance Evaluation Corporation.

[17] “Apache http server benchmarking tool,” Available: https://httpd.apache.
org/docs/2.4/programs/ab.html, The Apache Software Foundation.

[18] S. Developers, “How sqlite is tested,” Available: https://www.sqlite.org/
testing.html.

[19] S. Andersen and V. Abella, “Data execution prevention. changes to
functionality in microsoft windows xp service pack 2, part 3: Memory
protection technologies,” 2004.

[20] P. Team, “Pax address space layout randomization (aslr),” 2003.

254

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-2018

	To detect stack buffer overflow with polymorphic canaries
	Zhilong WANG
	Xuhua DING
	Chengbin PANG
	Jian GUO
	Jun ZHU
	See next page for additional authors
	Citation
	Author

	To Detect Stack Buffer Overflow with Polymorphic Canaries

