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Capsule endoscopy identifies damaged areas in a patient’s 

small intestine but often outputs poor-quality images or misses 

lesions, leading to either misdiagnosis or repetition of the lengthy 

procedure. The authors propose applying deep-learning models 

to automatically process the captured images and identify 

lesions in real time, enabling the capsule to take additional 

images of a specific location, adjust its focus level, or improve 

image quality. The authors also describe the technical challenges 

in realizing a viable automated capsule-endoscopy system.
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Capsule endoscopy is an 
effective means of diag-
nosing lesions (damaged 
areas) in the small intes-

tine. Unlike the stomach or large intes-
tine, which can be reached using wired 
endoscopes through the mouth or 
anus, investigating the small intestine 
using a wired endoscope is challenging 
due to the organ’s position and length. 
Capsule endoscopy overcomes this 
problem by having the patient swallow 
a tiny pill-like device with a camera and 
wireless radio—for example, Given 
Imaging’s PillCam SB series (www 
.givenimaging.com/en-int/Innovative 
-Solutions/Capsule-Endoscopy/Pages 
/default.aspx) or IntroMedic’s Miro-
Cam (www.intromedic.com/item/item 
_010100.asp)—that periodically takes 
images of the small bowel and sends 
them to an external storage device while 
moving along the intestine. Physicians 
manually analyze the collected images 
to identify lesions, which can be signs 
of various diseases such as obscure gas-
trointestinal (GI) bleeding, small-bowel 
tumors, and Crohn’s disease. 

However, state-of-the-art capsule 
endoscopy suffers from two critical 
shortcomings. First, it might not take 
clear pictures of lesions or could even 
completely miss them in many cases. 
Ideally, the capsule should take more 
images when moving through pos-
sible areas of damage and take fewer 
images in nonproblematic areas. 
However, due to the capsule’s tiny size 
and limited battery, it defaults to tak-
ing pictures at regular intervals (for 
example, 2–4 fps) without any intelli-
gent sampling. Second, doctors must 
manually go through a large num-
ber of images (approximately 50,000 
images per patient) to make a proper 
diagnosis. This process is highly 
labor-intensive, requiring about 4 

hours of doctor’s time per patient, and 
thus highly costly.

To address these challenges, we pro-
pose an autonomous feedback-based 
capsule endoscopy system that uses 
lesions-aware adaptive sampling and 
intelligent image-review interfaces. The 
former lets the capsule take more 
high-quality pictures near poten-
tial lesion areas, which significantly 
increases the possibility of accurate 
diagnosis. The latter helps doctors 
quickly find images of lesions without 
having to spend multiple hours man-
ually going through all of the cap-
tured images.

The key idea is to utilize deep- 
learning algorithms—for example, a 
convolutional neural network (CNN) 
and a generative adversarial network 
(GAN)—to accurately classify images 
as “normal” or “(potential) lesion” in 
real time and control the in-body cap-
sule based on classification results. 
We first train our deep-learning mod-
els using images gathered from pre-
vious patients diagnosed with differ-
ent small-bowel-related diseases. We 
pre-load the model on the external 
computing platform (typically worn 
at the patients’ waist throughout the 
capsule-endoscopy procedure), which 
then uses the model to classify images 
in real time. When the image is recog-
nized as a lesion (with high probability), 

the system sends a control signal to the 
capsule device to temporarily increase 
its image quality and frame rate. If no 
further lesion images are detected, the 
capsule reduces its sampling rate to the 
normal 2–4 fps to conserve energy. Fur-
thermore, the systems tags the classifi-
cation results to the collected images, 
which it then organizes in a classified 
timeline to help doctors quickly find 
images of interest.

In the rest of this article, we detail 
the design of our autonomous feedback- 
based capsule endoscopy system and 
its challenges. In particular, using an 
endoscopy dataset of 133,000 images 

collected from three patients, we pres-
ent our preliminary deep-learning 
model design for lesion classification. 
We then outline remaining challenges 
and research directions in implement-
ing the system.

CAPSULE ENDOSCOPY
The capsule-endoscopy device includes 
a tiny camera, LED, transceiver, and 
battery to capture images of the gas-
trointestinal tract. As the blue arrow 
in Figure 1a shows, the capsule takes 
images and sends them to a waist-
worn embedded device. In current 
capsule-endoscopy practices, images 
are simply stored until the capsule 
exits the body. Upon the completion 
of image collection, the doctor reviews 

THE KEY IDEA IS TO UTILIZE DEEP-
LEARNING ALGORITHMS TO ACCURATELY 

CLASSIFY IMAGES AS “NORMAL” OR 
“(POTENTIAL) LESION” IN REAL TIME.
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the images to identify lesions on intes-
tine walls.

While considered an effective way 
to capture small-bowel lesions, current 
capsule endoscopy has limitations. 

First, unlike colonoscopy or gastro-
scopy, where doctors have full control 
to observe specific locations, the cap-
sules take images usually at a fixed 
frame rate and do not have any adaptive 

control to focus on particular areas. 
Thus, in many cases, getting enough 
images of specific areas requires mul-
tiple rounds of lengthy and costly pro-
cedures. Second, doctors must spend 
hours manually reviewing all the taken 
images to find anomalies.

Autonomous feedback-
based capsule endoscopy
To overcome these challenges, we 
propose the inclusion of a deep- 
learning-based classification feedback 
loop, indicated by the black arrow 
in Figure 1a. Specifically, we plan to 
classify lesions in real time using the 
images that the capsule sends to the 
external embedded device and use 
this result to dynamically change the 
capsule’s frame rate and/or image res-
olution. This process can provide doc-
tors with enough image samples of 
lesions to make an accurate diagnosis 
with a single capsule-endoscopy pro-
cedure. Nevertheless, given that the 
capsule-endoscopy process takes as 
long as 8 to 10 hours to complete, the 
system must ensure that the frame-
rate and image-resolution changes 
do not cause early shutdown of the 
capsule.

Figure 1b shows a flowchart of our 
proposed feedback process. Upon 
the arrival of images, the exter-
nal computing platform operates a 
deep-learning model based on a CNN, 
customized to produce results with 
low latency. Our endoscopic image 
dataset is unique in that images have 
high similarities and small features 
represent the differences (for exam-
ple, red bleeding dots or scars on the 
bowel surface). This makes the use 
of most existing (ImageNet-trained) 
CNN-based image-classification mod-
els difficult because they focus on clas-
sifying significantly different objects 

(a)

(b)

Start

Take an image

External platformCapsule

Send image to
external platform

Start timer

Is timer
expired?Yes

No

No

No

No

Yes

Yes

Yes

Lesion?
Set default

frame rates/
quality

Increase
frame rate/quality

Pending for image

Duplicate image
detector

sb == true

Organ classi�er

In small
bowel?

Set �ag sb to true
(sb = true)

Lesion classi�er

Send feedback

Start

Take an image

External platfo

Pending for 

Duplicate im
detecto

External computing
platform installed on waist

Endoscopy capsule paired
with external receiver

FIGURE 1. Autonomous feedback-based capsule endoscopy. (a) The blue arrow shows 
the transmission of endoscopy images from the capsule to the external computing plat-
form, and the black arrows shows the platform sending feedback based on image classi-
fication results. (b) Flowchart of the feedback process; the “sb” flag indicates whether or 
not the capsule entered the small bowel.
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such as cats and dogs. To overcome this 
limitation, we empirically design the 
model and select the hyperparameters 
by training the network on a training 
dataset from scratch until it converges, 
and we continuously modify the model 
based on a validation dataset.

Figure 2 shows our CNN, which con-
sists of three convolutional layers. The 
first two layers are followed by batch 
normalization and rectified linear unit 
(ReLU) activation, respectively. ReLU 
is a frequently used nonlinear acti-
vation function, allowing the neural 
network to detect nonlinear features, 
and batch normalization normalizes 
the input data to avoid gradient van-
ishing.1 The third convolutional layer 
is followed by global average pooling, 
and we add a final softmax layer for 
classification. Table 1 presents details 
of each network layer.

After running this model, the 
embedded computing platform out-
puts a classification result on whether 
or not the image possesses potential 
lesions. Although the hardware speci-
fications can vary, the embedded com-
puting platform is typically a resource- 
constrained device—for example, 
equipped with an ARM Cortex-A class 
processor (www.arm.com/products 
/processors/cortex-a). Nevertheless, for  
running deep-learning models, inte-
grating embedded GPUs (such as 
NVIDIA Jetson-series processors) can 
be a plausible option. The following 
subsections present details on the com-
ponents of our proposed system.

Duplicate image detector
Typically, capsule-endoscopy images 
have many duplicates. For exam-
ple, the device might not (or will very 
slowly) move while navigating curves 
or encountering contents in the intes-
tines, producing multiple images of 
the same scene. Quantitatively, pre-
vious work suggests that removing 
duplicate images from a capsule- 
endoscopy image set can reduce the set 
size by about 68 percent.2

In our design, it is also important 
to filter out these duplicate images 
at the external computing device for 
two major reasons. First, filtering 
duplicate images minimizes resource 
usage. By not classifying duplicate 
images, we can reduce the latency for 
lesion recognition sufficiently to pro-
vide real-time feedback to the capsule 

device.3 Second, given that doctors 
must review the entire image set to 
identify and confirm the (non)exis-
tence of lesions, minimizing duplicate 
images can help save time to provide 
high-quality care to many patients. 
In doing so, previous works estimated 
camera motions or designed similarity 
computation algorithms such as SIFT 
and SURF.4,5 Our system also aims to 
identify images with high similarity 
by exploiting pixel-level correlations 
across a series of subsequent images.

Designing low-latency 
lesion classifiers
The key design goal of our CNN-based 
classifier is low latency to provide real-
time feedback to the capsule device 
(see Figure 2). Currently, the model 
parameters are tuned empirically with 
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FIGURE 2. Customized three-layer convolutional neural network (CNN) model for lesion classification. We structure our model to 
achieve high accuracy with low computational latency.

TABLE 1. Network architecture for endoscopy lesion 
detection with hyperparameter details.

Type/stride Filter shape Input shape

Conv1/s4 7 × 7 × 3 × 16 112 × 112 × 3

Batch normalization and rectified linear unit (ReLU) activation

Conv2/s2 5 × 5  × 16 × 32 28 × 28 × 16

Batch normalization and ReLU activation

Conv3/s2 3 × 3 × 32 × 48 13 × 13 × 32

Global average pool/s1 Pool 7 × 7 7 × 7 × 48

Fully connected 64 1 × 48

Softmax Classifier 1 × 64
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the aim of detecting images for obscure 
GI bleeding, Crohn’s disease, surveil-
lance of polyps, and detection of small-
bowel tumors. We note that endoscopic 
images for these different lesions show 
small but noticeable differences (for 
example, red or rash-shaped surfaces), 
which makes it promising to design a 
deep-learning-based lesion identifier/
classifier.

Re-training and fine-tuning the 
deep-learning model with domain- 
specific datasets is a common practice 
to increase its accuracy (for example, 
VGG-166 and ResNet-1517). However, 
prior domain-specific models are not 
optimized for latency or memory usage, 
which are critical requirements in our 
scenario. A few recently proposed sys-
tems accelerate deep-learning-based 
classifiers on mobile devices by apply-
ing various optimization strategies 
such as layer decomposition and cach-
ing to improve latency. For exam-
ple, DeepX8 classifies an image using 
AlexNet at 500 ms latency, while Deep-
Mon9 further enhances latency to 260 
ms by leveraging mobile GPUs. Never-
theless, prior systems are limited in 
supporting high-frame-rate image 
analysis in real time. Our optimized 
inference model contains 32,000 
parameters and computes 4.7 million 
multiply–accumulate operations. As a 
reference, AlexNet contains 61 million 
parameters and computes 721 mil-
lion multiply–accumulate operations, 
suggesting that our model is relatively 
lean. In terms of latency, our prototype 
model classifies a single image within 
about 1.14 ms on the Jetson Tegra K1 
embedded GPU.10

Increasing lesion-
detection probabilities
A major drawback of capsule endos-
copy is that doctors cannot maneuver 

the capsule to make detailed obser-
vations of target locations. Conse-
quently, images can be blurred or only 
parts of the lesion might be present in 
an image. Under such circumstances, 
the only option is to redo the proce-
dure in the hopes of getting a better 
view of the lesion or to diagnose based 
on limited information. 

Our feedback-based system tries 
to overcome such limitations by forc-
ing the capsule to perform two dif-
ferent actions. First, we can config-
ure the capsule to take images at 
higher frame rates, which allows 
context-based image-quantity adjust-
ment. Second, we can have the cap-
sule take higher-quality images. Due 
to battery limitations, the capsule 
takes images at low resolution (320 × 
320 pixels). While capturing higher- 
quality images during the entire pro-
cess can stress the battery, defining 
short bursts of high-resolution images 
improves the chances of a better diag-
nosis on the first capsule-endoscopy 
trial. As a preliminary evaluation, we 
conducted experiments to distinguish 
normal images from erosion images 
(which take up 40 percent of the entire 
lesion dataset). We were able to detect 
erosion images with 86 percent accu-
racy and successfully classify normal 
images with 94.4 percent accuracy.

Minimizing battery usage 
with organ classification
While not yet part of our system, 
we plan to add an organ classifier to 
identify the capsule’s location. This 
is important in conserving battery 
resources given that it takes more than 
an hour for a capsule to pass through 
the stomach after swallowing,11 which 
translates to approximately one eighth 
of its expected lifetime in the human 
body. Suppressing image taking (or at 

least reducing frame rate) before the 
capsule enters the small bowel would 
improve the lifetime. As Figure 1b 
shows, organ classification would be a 
preliminary screening phase. Once the 
capsule is determined to be in the small 
bowel, a flag is set so that the images 
received at the external platform can 
bypass this preliminary filter. Previous 
work shows that such classification is 
possible using a CNN variant,12 and we 
plan to take a similar approach.

TECHNICAL CHALLENGES
Despite our efforts to date, there are 
numerous technical (and nontechni-
cal) hurdles we still must overcome 
before designing a fully autonomous 
feedback-based capsule endoscopy 
system. 

System-level challenges
Some challenges relate to building the 
overall system.

Low latency for the feedback process. 
The feedback process to autonomously 
control the capsule requires multi-
ple message transmissions (including 
image transmissions) and computa-
tion (for example, image classification). 
Thus, the overall process can encounter 
layers of delay. Long delays in the feed-
back can lead to the capsule moving to 
a new location before receiving control 
commands, making low-latency feed-
back an important requirement. Typi-
cally, commercial capsule-endoscopy 
products take images at about 2 fps, 
which suggests that an image of a new 
location is expected to be taken every 
500 ms.11 We calculate that the capsule 
moves at about 0.56 mm/s, as the small 
bowel is some 8 meters in length and 
the capsule can exit the small bowel in 
about 4.5 hours. Therefore, it is import-
ant that the feedback procedures occur 
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prior to the capsule moving signifi-
cantly far away from a suspected lesion. 
The MiroCam transmits its images at 6 
Mbps, which takes about 140 ms for a 
standard 100-Kbyte image (for exam-
ple, a 320 × 320 pixel image in raw Bayer 
pattern). This unavoidable transmis-
sion latency further challenges the sys-
tem design. Note that these numbers 
represent the tightest timing limits for 
the capsule-endoscopy system and 
assume that the capsule does not take 
any reverse actions (such as go back 
up the bowel).

Image pre-filtering. To achieve real-
time image classification, we must 
reduce the number of images to be pro-
cessed by the deep-learning models by 
pre-filtering images that are certain 
to not have lesions (due to location or 
image quality) or duplicate images 
similar to previously processed sam-
ples. Figure 3a shows images that can 
be pre-filtered due to image quality. 
Specifically, these images captured 
variants of bubble-shaped intesti-
nal fluids, which, even when passed 
through a properly trained model, 
will not be useful in detecting tar-
get lesions. Figure 3b shows duplicate 
images taken by the capsule device, 
which also require filtering.

Low energy consumption. Once swal-
lowed, the capsule-endoscopy device 
should monitor the entire small bowel. 
Starting from the throat, the capsule 
will pass through the stomach and 
enter the small bowel; this time is 
called the gastric transit time (GTT). 
The GTT can differ among people by as 
little as 30 minutes to as long as multi-
ple hours. The capsule device is active 
for the entire GTT and continuously 
takes images, lighting the scene with 
its embedded LED and transmitting/

receiving data from the external 
embedded device. It is particularly vital 
that the capsule remains active during 
the entire small-bowel transit time 
(SBTT). The mean and standard devi-
ation for the SBTT is 4.1 and 2.2 hours, 
respectively.13 A recent study reports 
that the completion rate of capsules 
with 12-hour lifetimes are about 9 per-
cent higher than capsules with 8-hour 
lifetimes.14 This lengthy investigation 
time makes it vital that our proposed 
adaptive image-taking algorithms are 
as energy efficient as possible.

Capsule localization. Identifying the 
location of the capsule is very use-
ful to ensuring that it remains active 
during the SBTT. To do this, we pro-
pose using a simple image-processing 
technique to determine the capsule’s 
transition from the stomach to the 
duodenum, which is where the small 
bowel begins. In addition, while less 
related to detecting lesions, knowing 
the capsule’s location can also help 
physicians perform better operations 

when lesions are detected. To do this 
effectively will require new solutions 
(for example, use of inertial sensors), 
as using just images will not achieve 
good localization accuracy due to the 
similarity of images.

Challenges for designing 
learning models
Other challenges pertain to designing 
the classification model.

Dataset asymmetry. By nature, deep- 
learning model training requires a 
large volume of labeled data. Also, 
ideally, the training dataset should 
not be overly biased toward a cer-
tain class. However, it is difficult to 
secure an equal balance of data sam-
ples for normal and lesion images. 
For example, a dataset of capsule- 
endoscopy images from six patients 
with small-bowel-related diseases 
holds more than 133,000 images, while 
the count of images with lesions is 
only about 100. This is inevitable given 
that the entire small bowel needs to be 

(a)

(b)

FIGURE 3. Endoscopy image pre-filtering. (a) Images with bubble-shaped intestinal flu-
ids taken from the small bowel. (b) Duplicate images. Ideally, both types of images should 
be filtered prior to classification to conserve limited resources.
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monitored to capture a few problem-
atic instances. Magnifying the prob-
lem, these 100 images include images 
for six different types of diseases 
(bleeding, erosion, ulcer, tumor, and 
so on), which further reduces the num-
ber of samples for each category. Such 
biased training data makes it difficult 
to design an accurate deep-learning 
model for capsule-endoscopy images.

Gathering “labeled” ground-truth 
data. It is well known that hospitals 
are stacked with massive amounts 
of patient data. However, the main 
problem that many researchers face 

is the lack of ground-truth labeling. 
For example, for capsule-endoscopy 
images, all of the images are labeled as 
“with lesion” if the particular patient 
has issues “somewhere” in the dataset. 
This does not necessarily mean that all 
of the images in the set include lesions. 
Tagging individual images is labor- 
intensive and costly, taking more than 
four hours for each capsule-endos-
copy image set. Nevertheless, previous 
work by Google15 shows that computer- 
based medical-image classification, with 
expert guidance, is feasible. Their sys-
tem, which aims to detect diabetic reti-
nopathy using approximately 130,000 
images labeled by 54 ophthalmologists, 
shows 96 percent sensitivity using the 
Inception-v3 network.

Achieving both low latency and high 
classification accuracy. To achieve 
real-time feedback-based capsule con-
trol, we must perform low-latency clas-
sification on the external platform. 
However, the model must also achieve 
low false-negative and false-positive 
rates, which impacts the system’s 
clinical reliability and the capsule’s 
energy efficiency, respectively. These 
are usually conflicting tradeoffs; thus, 
it is important that the system be well 
tuned to meet both requirements.

Untrained cases. While there are a 
limited number of diseases that occur 

in the small bowel, symptoms can be 
diverse. For example, a bleeding symp-
tom detected at the intestine can have 
different spreading patterns. A tumor 
or ulcer can form in various shapes. 
Unlike clinically trained humans, 
deep-learning models cannot easily 
classify unique variants with high 
accuracy.

RESEARCH DIRECTIONS
We now outline interesting future 
research directions.

Artificial data generation
The heavy asymmetry between pos-
itive and negative samples within 
clinical datasets makes it challeng-
ing to build an accurate model. 

Unfortunately, collecting additional 
samples is costly, time-consuming, or 
sometimes impossible. Fortunately, 
new unsupervised learning tools and 
techniques such as autoencoders and 
GANs can help generate “fake” yet 
meaningful samples. In particular, 
these fake images are structurally 
similar to yet different enough from 
real images to build accurate pre-
dictive models with less overfitting 
issues. However, a key limitation is 
that fake data generation is not always 
contextually meaningful and the core 
features that represent a lesion could 
be absent in some cases.

We currently use the VAE-GAN 
model16 with a network consisting of 
an encoder, a decoder, and a discrim-
inator. The encoder and decoder act as 
the image generator, and the discrimi-
nator tries to determine which images 
are real. Figure 4a shows original 
images and Figure 4b shows visually 
similar images generated by the GAN 
using features extracted from the orig-
inal images.

We believe that with more lesion 
images for training, GANs poten-
tially offer higher-quality “lesion-like” 
image samples. Note that doctors still 
must verify these “generated” images 
before they can be used. Overall, we 
believe research in generating realis-
tic artificial clinical images can help 
in the development of many medical 
learning/classification systems.

Accurate capsule localization 
As mentioned above, a remaining key 
challenge is accurately locating the cap-
sule inside the small bowel. However, 
adding additional sensors is difficult 
due to power, weight, and interference 
concerns. A better solution is to locate 
the capsule using the captured images. 
Unfortunately, this is difficult due to 

THE MODEL MUST ACHIEVE LOW FALSE-
NEGATIVE AND FALSE-POSITIVE RATES, WHICH 
IMPACTS THE SYSTEM’S CLINICAL RELIABILITY 
AND THE CAPSULE’S ENERGY EFFICIENCY.
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the lack of properly labeled location 
data and the similarity of small-bowel 
images at different locations. Creating 
an accurate model would require tech-
nical and clinical staff help to gather 
large amounts of labeled image data 
and verify the network model.

Zero false-negative classifier
It is vital that our solution, even with 
high base accuracy levels, does not 
misclassify any images with symp-
toms as normal images (generate false 
negatives). While false positives can 
be filtered out manually, even a single 
false-negative case can lead to critical 
errors in the clinical domain. Unfor-
tunately, training a low or zero false- 
negative model is a challenging task, 
in particular due to the asymmetry of 
the dataset. However, another prob-
lem is the lack of a well-defined cost 
function to penalize the neural network 
when making false-negative inferences. 
Commonly used cost functions, such 
as categorical cross-entropy, penalize 
false-negative and false-positive results 
simultaneously. Therefore, research on 
identifying proper cost functions and 
generating usable images of various 
lesions can help in designing an effec-
tive neural network for autonomous 
feedback-based capsule-endoscopy 
systems.

In this article, we described our ini-
tial efforts at designing an enhanced 
capsule-endoscopy system to address 

the two key challenges of current 
state-of-the-art technology: poor- 
quality or missed images of lesions, and 
a labor-intensive manual review pro-
cess. In particular, we presented a low- 
latency, accurate, deep-learning-based 
autonomous feedback mechanism that 
recognizes possible images of lesions 

in real time to dynamically increase 
the sampling rate or image resolutions. 
We also reviewed various system-level 
and deep-learning-related challenges, 
such as real-time feedback, energy con-
straints, and image quality, that must 
be addressed for autonomous feed-
back-based capsule-endoscopy sys-
tems to become viable. Finally, we are 
designing an intelligent image-review 
interface that uses our lesion classifier 
to help doctors focus on a much smaller 
set of possible lesion images. 
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