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Abstract—We espouse the vision of a smart object/campus
architecture where sensors attached to smart objects use BLE
as communication interface, and where smartphones act as
opportunistic relays to transfer the data. We explore the feasibility
of the vision with real-world Wi-Fi based location traces from
our university campus. Our feasibility studies establish that
redundancy exists in user movement within the indoor spaces,
and that this redundancy can be exploited for collecting sensor
data in an opportunistic, yet fair manner. We develop a couple
of alternative heuristics that address the BLE energy asymmetry
challenge by intelligently duty-cycling the scanning actions of
individual devices. We evaluate the efficacy and tradeoffs of the
proposed approaches by simulation experiments with real-world
location traces.

I. INTRODUCTION

There is considerable excitement around the vision of a
smart city/campus, where sensors attached to objects such as
garbage bins, vending machines and cafeteria seats, provide
continuous reports on their status, such as the level of utiliza-
tion of a garbage bin or the occupancy of a seat. Advances
in miniaturization allow them to be deployed in almost any
environment, in diverse form factors and on different objects.

Our deployment scenarios envision a very dense deployment
of such low-energy, short-range BLE-equipped (Bluetooth Low
Energy [1]) sensors attached to hundreds or thousands of
commonly used objects, across an entire campus or city.
Based on the application requirement, these sensors should
have the capability of transferring back their sensed data
frequently. However, transferring data from the sensors to a
central IT platform remains an unsolved challenge: Wi-Fi is
simply too energy intensive, fiber or Ethernet cabling does
not work with potentially-movable objects (e.g., cafeteria seats
or garbage bins), low-energy protocols such as LoRa have
low bandwidth, and multi-hop wireless approaches such as
802.15.4 are difficult to maintain over extended deployments.

To overcome this limitation, we propose a human-centric
approach, which we call SmartABLE1, where smartphones
carried by users are used to interrogate and collect data from
nearby sensors in an opportunistic and participatory manner.
The phones then transfer this data to the central IT platform
over a conventional Wi-Fi or 4G interface. This approach
eliminates the twin challenges of (i) networking complexity
and (ii) high energy overhead by using phones (referred to
as mules) as opportunistic one-hop relays that provide back-
haul connectivity. The pervasive sensors just support simple,
one-hop short-range communication.

The use of mobile data mules has been extensively studied
in two main domains: (a) in wireless sensor networks (WSNs),
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where a mobile node travels through the sensor field acting as
a collector [2], [3], and (b) in delay-tolerant networks (DTNs),
where mobile nodes carry a packet towards its destination [4],
[5]. Our envisioned scenarios differ in the following ways:

• Unlike WSNs, which focus on directing a mule’s path
to optimize some collection metric, SmartABLE is op-
portunistic, where the data collection is piggybacked on
the non-deterministic movement of hundreds of users.
Hence, it is unclear if the natural ebb and flow of human
movement will provide sufficient coverage throughout
the day and across all locations on a campus. However,
SmartABLE is also centrally coordinated, with the scan-
ning schedule of mules being intelligently orchestrated by
the backend. Also, to work in predominantly indoor en-
vironments, this coordination must work with the coarse-
grained location accuracy (typically 8-10 meters) typical
of currently deployed indoor localization systems.
• Smart city/campus monitoring scenarios usually require
tighter guarantees on the reporting frequency than DTNs
generally provide – for example, the campus facility
manager may desire to know the status of garbage bins
once every 15 minutes and the occupancy status of seats
in the cafeteria every 5 minutes. This can be a challenge
not just because of the time-varying movement patterns
of individuals, but also due to possible fluctuations in the
participation rate of users.

In this paper we analyze the feasibility of realizing a smart
environment, where data mules can assist in relaying infor-
mation from smart sensors to the backend. Additionally, we
discuss about possibility of heuristic based energy reduction
without compromising on the coverage. Through the analysis,
we make the following key contributions:

• Establish both the promise and problem of participatory
data muling: Using real-world indoor location traces of
thousands of users in our University campus [6], we show
that data mules are available at most publicly accessible
parts of the campus, even at different times of the day.
However, we also show that straightforward data mul-
ing scheduling solutions are problematic: having mules
perform continuous BLE scanning consumes too much
energy, while static load-sharing across different mules
results in unacceptably long reporting gaps, especially
from less-traveled locations or during off-peak hours.
• Propose new scheduling heuristics: We explore a family
of heuristics for SmartABLE that schedule BLE scanning
by a group of participating mules (user smartphones),
which achieve different tradeoffs between the goals of
high sensor coverage and low BLE-scanning energy cost.



These include: (a) a myopic approach that uses only
instantaneous location of each available user to decide
the scan schedule; (b) a greedy approach that uses coarse-
grained predictions of a mule’s future movement behavior
(derived from location trace histories) to schedule users,
and (c) an energy-conscious variant, of the greedy ap-
proach, that improves the fairness of the scanning load.

• Evaluation of tradeoffs of proposed heuristics: We eval-
uate the tradeoffs of the scheduling heuristics using sim-
ulations on real-world location traces of thousands of oc-
cupants at the University campus. We identify techniques
which can cater to diverse application requirements, such
as (a) providing frequent updates (once every 20 minutes)
for at least 90% of the resources or (b) reducing the
number of scanning phones by 15x as compared to
approaches that provide frequent updates.

II. RELATED WORK

Works that align closely with our vision of data muling in a
smart campus lie principally in the areas of (a) data muling for
sensor networks, and (b) human mobility-aware urban sensing.

Data Mules in Sensor Networks: The concept of Data
Mules for collecting sensor data in sparse sensor networks was
first introduced in [4]. The key idea was to utilize the motion
of existing entities in the environment to collect sensor data.
Whenever the entities were near a base station, they would
transfer the data, thus making it suitable for delay tolerant
scenarios. There have been many other works (e.g. [2], [3],
[7], [8]) which used the data muling concept to relay data
from WSNs deployed in various domains. However, unlike
WSNs, we envision an opportunistic data collection approach
that relays information from several IoT sensors, piggybacked
on the non-deterministic movement of hundreds of users.

The use of human-carried mobile phones as data mules for
sparse sensornet deployments was first explored in [5],where
the authors have shown that both intentional and opportunistic
mobility can be used for data muling. However, each mule
effectively operated independently, with a pre-specified scan-
ning interval, and the system had no pre-specified reporting
frequency requirements for an individual sensor. Unlike [5],
we specifically investigate how the scanning behavior of
multiple mules can be collectively adapted, while taking into
account explicit reporting frequency requirements. More re-
cently, works such as [9], [10] have used mobile phones as data
mules to opportunistically collect sensor data. In contrast, we
specifically investigate how this approach can take advantage
of the predicted movement of individual mules.

Human Mobility based Urban Sensing: Mobility pat-
terns of humans (both indoor and outdoor) using cell tower
information or GPS traces has been well-studied [11], [12],
[13]. Additionally, [11] studied spatial variations in both
daily human movements and the interactions/communication
behaviors between individuals. However, they do not conduct
studies to understand the temporal variations in movement and
occupancy within indoor environments. Similar to our study,
a coarse grained (both spatial and temporal) campus wide
pedestrian mobility study was conducted [14]. However, the

authors did not evaluate the spatio-temporal coverage at dif-
ferent locations, different times and with different occupancy
levels.

The feasibility of leveraging human mobility patterns for
crowd-sourced urban sensing scenarios has been studied in
some recent works [15], [16], [17]. In [15], the authors
proposed a campus-scale crowd tasking platform that recom-
mended simple tasks to users based on their predicted move-
ment trajectories. [16] assumes that the user’s path between
source and destination is a free variable that we can modify
to maximize coverage. This work also does not try to balance
the energy utilization among users.
III. SmartABLE: ENABLING SMART CAMPUS SCENARIOS

Figure 1 illustrates our vision for a smart campus where sen-
sors are attached to a variety of campus resources and objects.
For example, accelerometers attached to doors (bathroom,
study rooms, etc.) count how many times a door has been used,
capacitive sensors under tables indicate whether a particular
seat is occupied, and light sensors indicate whether lights
in rooms have been left on. These sensors incorporate BLE
stacks that broadcast beacons (advertisements) with embedded
sensor information. Note: these sensors are now commercially
available – e.g., EstimoteTM beacons broadcast advertisement
beacons with embedded raw accelerometer and temperature
sensor readings, or contextual data (e.g., motion status).

Fig. 1: Smart Campus Scenario

Individuals carrying their personal mobile devices move
about the campus freely, based on their daily lifestyle patterns.
These mobile devices have their Bluetooth interfaces activated,
performing BLE scans either continually or intermittently.
Whenever a scanning mobile device comes near such a BLE-
equipped sensor, it picks up the sensor data or context about the
associated object from the corresponding BLE advertisements.
The mobile device then transmits this information back to a
backend infrastructure, using its conventional wireless network
interfaces (e.g., using Wi-Fi or 4G). At the backend, the
data collected is analyzed and aggregated into appropriate
portals, and also published to relevant applications which
have subscribed for the information. For example, a restroom
monitoring application will utilize the continual set of updates
about the motion state of a specific restroom stall door, and
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then alert the cleaning staff when the number of “door open”
events exceeds a specified threshold.

The mobile devices thus act as mobile relays, collecting
sensor data about objects that happen to lie on their paths,
and then transferring such data to a backend infrastructure.
Of course, the periodicity/frequency with which the backend
server receives reports from an individual sensor will depend
on the overall occupancy pattern of the campus: the larger the
gap between successive individuals transiting past a specific
object, the greater the gap between successive updates. Our
hypothesis is that this approach would, however, be very
effective for campuses and commercial spaces that have high
occupancy density (as is the case in many urban environments
in Asia). Moreover, this model, of using mobile devices as a
relay for transferring data from a set of pervasive sensors, can
apply to a variety of other indoor and outdoor environments:
for example, in a hospital, where the mobile devices of hospital
staff are used to continuously collect reports on the status
and location of hospital equipment equipped with such BLE-
enabled tags.

A. Design Goals
In view of the application context, the proposed SmartABLE

framework should meet the following design goals:
(1) Frequent Status Reports: The primary goal of

SmartABLE is to ensure that in the campus, the server fre-
quently receives sensor data from every deployed sensor. The
frequency at which data is received at the server will be
application and sensor specific and will vary based on time
of day.

(2) Energy Conservation: Since an individual’s smartphone
has to perform the BLE scan and relay any sensor data to
the server, SmartABLE should attempt to minimize the energy
consumption of an individual’s smartphone.

(3) Fairness: As there are multiple individual smartphones
that will be scanning the campus to ensure frequent generation
of sensor reports, SmartABLE has to ensure that the battery
level depletion across the smartphones is as fair as possible.
However in certain scenarios, where only one smartphone
can update the status of a sensor (i.e., only one smartphone
is near the sensor), it may be OK to impose short-term
unfairness, unless the phone’s battery has dropped below a
critical threshold.

B. Potential Challenges
For SmartABLE to be an effective approach for smart

campus monitoring, it is essential that this model of oppor-
tunistic mobile relaying be capable of providing some sort of
guarantees about the reporting frequency. Clearly, SmartABLE
can offer only soft real-time guarantees, as its performance
is dependent on the pattern of on-campus movement of all
participating individuals. For a wide variety of practical ap-
plications, such soft guarantees are likely to be sufficient–e.g.,
for restroom monitoring, it should be OK to receive reports on
individual restroom stalls only approx. 15-20 minutes or so.

Given a set of participating individuals, the best performance
(in terms of frequency of reports) would be obtained when
each mobile device performed its BLE scan continuously

(at all times), as this would result in the largest number of
readings obtained from all objects. However, this approach
is not feasible–due to the asymmetric energy expenditure of
BLE scanning [18], individual smartphones would experience
unacceptably high battery drainage. Two key insights suggest
that we can avoid continuous scanning simultaneously by
all participating devices: (i) high occupancy density provides
redundancy, and should thus allow the scanning load to be
distributed among multiple collocated devices, and (ii) there
is no extra benefit from overly frequent updates, as many
smart campus monitoring applications require such updates
only periodically.

C. The SmartABLE Framework & Architecture
These insights motivate our proposed SmartABLE frame-

work. Figure 2 shows the functional architecture of
SmartABLE. SmartABLE assumes the existence of an underly-
ing location tracking infrastructure, that passively captures the
movement history of all mobile devices on a campus. Such a
location tracking solution is in fact an operational reality on our
University campus, where a server-side Wi-Fi fingerprinting
based indoor localization service has been deployed for the
past 3 years [6], providing near-real time tracking of tens of
thousands of Wi-Fi-enabled devices with an average location
error of ±6�8 meters.

Fig. 2: SmartABLE Architecture for energy-efficient BLE
scanning

The Movement Predictor component at the backend lever-
ages upon such movement history to provide short-term pre-
dictions of the movement paths of each participating mobile
device, and thereby derives the redundancy due to the likely co-
location of multiple mobile devices. The Scanning Scheduler
computes a set of activation schedules for such individual
devices, while the Smartphone Manager component instructs
each individual device to performing BLE scanning according
to its specified schedule. The computed schedules: (a) provide
a high likelihood that the interval between successive reports
obtained about a campus object will not exceed a specified
maximum threshold, and (b) distribute the energy overhead of
BLE scanning across the set of participating devices, so that
an individual mobile device does not incur an unacceptably
high battery drain. Each participating mobile client includes a
“SmartCampus client” that receives updated scanning sched-
ules from the server-side “Smartphone Manager”. This client
then performs the actual scanning using a “BLE Manager”
component; the collected scan data is send back to the server
using a “Sensor Uploader” component.



D. Research Questions
To systematically explore the feasibility of SmartABLE

framework, we shall investigate the following questions:
• Given real-world movement patterns, how much redun-

dancy is there in a densely occupied campus, and how
frequently can we expect to receive updates about specific
campus objects? More importantly, how much skewness/
variance of such coverage/redundancy is there at various
times of the day?

• If such redundancy exists, how can one amortize the cost
of relaying among different phones? More specifically, is
it enough to duty-cycle individual devices according to a
static schedule or to just utilize a fixed subset of devices
(chosen randomly) in the scanning/relaying process or is
any better strategy needed?

• If a smart adaptive strategy is needed, what is it?
What are the tradeoffs between a myopic approach that
uses only the current (instantaneous) device locations
vs. an approach that utilizes short-term, but uncertain,
predictions of device movement? What is the resulting
energy cost vs. coverage gain (in terms of the distribution
of the reporting frequency) that can be obtained with
various scheduling heuristics?

IV. SPATIOTEMPORAL CHARACTERISTICS OF USER
MOVEMENTS

We first investigate the feasibility of our envisioned frame-
work by conducting extensive studies to understand the spatio-
temporal characteristics of users in the University campus from
their indoor mobility data traces.
A. Dataset

To understand the movement behavior patterns in indoor
environments, we utilize longitudinal traces of movement data
obtained via our LiveLabs location service [6], which obtains
the location of any Wi-Fi-enabled device by utilizing measured
RSSI values on the uplink captured by multiple Wi-Fi APs,
and thus does not require the installation of any application
on individual mobile devices. The dataset contains movement
traces of any Wi-Fi device which has been heard by an access
point in our university campus. The indoor location service in
our campus spans across five separate academic buildings, in
addition to a connecting public concourses. We divided the
entire area of the campus into 247 logical sections, where
a section can be as small as 18 sq. m to as large as 108
sq. m. For our feasibility study, we compute the coverage
(explained in Section IV-B1) based on these sections. Each
section comprises multiple landmarks, with the inter-landmark
distance being 3 to 6 meters. There are in total 2016 landmarks
across all the sections.

For the feasibility studies, we utilize Wi-Fi data captured
over the period of March 2016. The real-time location system
provides a location update for all available Wi-Fi devices
once every 5 seconds. We consider the location traces from
only devices that are heard at least t times during the month
(we empirically set t = 60, implying a minimum observation
duration of 5 mins over the entire month) and also are not
stationary (stays in one section - e.g. laptops inside labs). We

(a) Coverage on Weekdays (b) Coverage on Weekends

Fig. 3: Temporal Variations of Coverage in University Setting

also considered only devices whose daily movement, averaged
over the month, exceeded 3 sections. After such filtering,
we had 16,907 unique devices for March 2016 that were
considered as regular and mobile users.

B. Feasibility Study Metrics
For the study of real-world user movement behavior, we

user two key metrics: (1) coverage and (2) count.
1) Coverage: Given a data time window (w), the coverage

(C) is defined as the number of covered sections (n) divided by
the total number of sections (N). A section s 2 S is considered
covered if there exist a user u2U located in the section during
a reporting period, w. C = 1 would indicate that the entire
section can be monitored at least once by a user during the
reporting period. Unless specified, we use w = 600 sec. as the
default value for w. We explore how the coverage changes
under various conditions (e.g., time of the day, data collection
window, participation rate, etc.).

2) Count: We also compute the count of a section (Cts),
i.e., the number of people found to be collocated in a specific
section ‘s’ within a single time slot ‘w’ (thus, Cts = 0 !
s is uncovered). Count of a section will assist in understanding
if there is enough user redundancy in each section at different
times of the day. In case there is redundancy, fairness in terms
of the data mules engaged in data collection can be achieved.

C. Results and Observations
1) Mean Coverage and Effect of Window Size: We first study

(a) the skewness/ variance of coverage/redundancy at various
times of the day and (b) if the variation is similar for different
location types.

Figures 3 shows the temporal variation of coverage on
weekdays and weekends. From the figures, we can see that the
coverage varies based on time of day and day of week. We find
that the average coverage is greater than 97% between 11:30
AM and 7 PM in weekdays, i.e. most sections has either one
or more people. The coverage drops during non working hours
and is the lowest during the early morning, exhibiting a sharp
rise from 7:00 AM. In case of weekends, there is no sharp
rise in coverage. The coverage increases gradually and peaks
around 3 PM. We also see that varying the window size does
not have significant effect on coverage. When the window size
is increased 3x (implying phones will have to scan 3x more),
the maximum improvement in coverage is about 5%. Since
the coverage during working hours of weekdays is similar for
w = 10 minutes and w = 30 minutes, the proposed application



(a) Classrooms (b) Common Seating Areas (c) Open spaces (d) Office Spaces

Fig. 4: Coverage across different types of Locations in University Campus

(a) Random Scheduling (b) Round Robin Scheduling

Fig. 5: Coverage with subset of users (based on random and
round robin scheduling) on weekdays in the University campus

scenarios could use a window size w = 10 minutes, so as to
lower the overall energy consumption.

2) User Redundancy: To understand how many users are
present in a section at a particular time and in turn obtain
the redundancy, we divided the entire month’s data into time
slots of w = 10 minutes. We divided the university campus
into four logical groups - (i) classrooms/seminar halls; (ii)
common seating areas (iii) open spaces/corridors and (iv) office
spaces. Figure 4 show the box plots for each of the logical
locations for different times of the day. From Figure 4, we
can see that in the campus, common areas have a median
count of ⇡ 20 users, while classrooms and office spaces have
a median of ⇡ 10 users indicating high redundancy. These
results indicate that there exists enough user redundancy at
different locations across the camous environment and is thus,
promising for our envisioned scenarios and to ensure fairness
across smartphones’ battery depletion level.

3) Effect of Sub-sampling: We also explore how the cov-
erage/count value changes when we drop our assumption of
100% participation of all users. Instead, we investigate two
alternative naı̈ve strategies that reflect reduced participation
rates at any instant:

• Random sampling: In this approach, we randomly se-
lected a specified percentage of the total pool of partic-
ipants; the experiment was repeated 15 different times
(with different randomized selections). For our anal-
ysis, we varied this participation percentage between
{10%,25%,50%,75%}.

• Round Robin: In this approach, we did not reduce the
pool of participants but instead mimicked a time-slotted
scheme, where the user were divided into N separate

groups. BLE scanning was performed by all the members
of a specific group in a particular slot, with the different
groups taking turns across the slots. We experimented
with N = {2,4,10}.

Figure 5(a) shows the variation for random sampling of
users in the campus. From the figures we can see that when
we reduce the sampling rate to 50%, the mean coverage
drop is limited to 92%. This indicates that there is sufficient
redundancy in user locations, showing the feasibility of using
participatory sensing approach. On the other hand, when the
sampling rate is much lower, i.e., 10 %, the coverage dropped
to less than 70%. Of course, if the participant selection is
skewed (e.g., greater proportion of recruits from a particular
school), the coverage rate is likely to be lower. Similarly, in the
case of time-slotted round robin scheduling (see Figure 5(b)),
the coverage drops significantly when the users are divided
into 10 buckets and each user bucket scans periodically in a
round robin manner. This implies that naive random sampling
and round robin sampling approaches would suffer when the
participation rate is low, highlighting the needsfor an intelligent
scheduling algorithm.

D. Summary of Key Insights
We summarize below the key insights from our study:
• The maximum coverage at our University Campus is

high (at working hours across all weekdays), showing
the feasibility of participatory BLE relaying.

• Redundancy exists in the user movement at any point in
time in the campus and exploiting this redundancy will
help in avoiding individual users from performing con-
tinuous scanning while still providing maximum/close-
to-maximum coverage.

• Naı̈ve subsampling methods such as random or round
robin lead to significant drop in coverage. This requires
us to come up with advanced strategies in selecting the
users for data scanning and reporting.

V. HEURISTICS FOR SMART SCHEDULING

In Section IV, we show that the coverage varies across
the day. All the studies in the previous section were done
using a Naı̈ve approach, where either all phones are always
scanning or else are selected randomly at each scanning period.
However this might not be the most efficient approach as
scanning continuously is highly energy intensive. To minimize
the energy consumption on phones, without compromising



significantly on the coverage, we now propose a couple of
heuristics for determining an improved scanning schedule.

A. Instantaneous Scheduling Approach
A straightforward approach of determining the set of scan-

ning users is to use a user’s real time location (obtained
from real time location data) and have them scan for that
particular location for the given time window. The available
users, across all locations, at the beginning of every time
slot are chosen, and we assume that the user will stay at
his current location throughout the time window w. Thus,
unlike the Naı̈ve approach, this appoach does not consider
the changing locations of a user when deriving the scanning
schedule. Our previous studies [18] have shown that requiring
each smartphone to continuously scan for BLE devices is
infeasible as it imposes a very high energy cost. Hence, once
a phone is selected as a mule at the beginning of the time
slot, it keeps itself on with a fixed scan interval (Ts) and duty
cycle (dc). Considering optimized parameters identified in [18],
for our studies, we fix (Ts) to 10 seconds and (dc) to 50%.
(Note: the parameter values can be varied depending on the
application specific mobility characteristics).

We expect that the Instantaneous approach will be highly
efficient in terms of the coverage. However, as this approach
does not use any historical information to know a user’s
expected location at any given time, this approach will result in
more people being scheduled to scan. Also, there are chances
that (i) the coverage would suffer at low participation rates
of users, (ii) users are not scheduled fairly (i.e., certain users
being chosen for scanning multiple times over a day, while
some other users not selected at all).

B. Greedy Approach
We next propose a simple greedy approach that utilizes

probabilistic predictions of user movement in campus. The
Movement Predictor component of SmartABLE framework
predict a person’s stay points for the next w minutes (w =
10 minutes) at section level, based on historical traces of
individual user movement obtained from the server-side Wi-Fi
based indoor location system functional at our campus.

We assume that the BLE beacons (sensors) are at landmark
level (i.e., each section has multiple landmarks). Our location
tracking is at a higher granularity of section level (as landmark
level location predictions will be more erroneous). Thus, if
a person p is predicted to visit location (section) l with a
probability Ppl , we assume that probability of reading data
from sensor i (i 2 l) is Ps. Then, probability of person reading
the sensor i is Ppl ⇤Ps. Based on our empirical studies [18],
considering the beacon miss rate, we set Ps to 0.8.

Utilizing the probabilistic predictions of user movement in
campus, the proposed Greedy approach uses the minimum
dominating set of users at any given time slot to cover the
different locations. For this, the greedy approach first choose
the phones which can cover the maximum number of sections
at any point in time. Hence, other phones who are at similar
locations during the same time could be discarded. The min-
imum dominating set approach is repeated until each sensor
is covered with a probability � Pc (threshold empirically set

to 0.7). Also, as mentioned earlier, the selected phone will
scan throughout the time window with the fixed scan interval
(Ts = 10seconds) and duty cycle (dc = 50%).

The greedy approach avoids scheduling redundant users–
i.e., those who are at the same locations as that covered by the
selected users. Thus, we expect that, compared to the Naı̈ve
approach (everyone available throughout the time window
scans) and the Instantaneous approach, the Greedy algorithm
could reduce the number of scanning users, thus minimizing
the overall energy consumption.

C. Energy-Aware Greedy Approach
We also tested a simple variation of the Greedy approach,

where a user would not scan in consecutive slots. This ap-
proach could reduce the battery drop of individual’s smart-
phone. In this approach, a user can be selected for inclusion in
the scan schedule only if he has not been scheduled in the last
nt time slots (we set nt to 3 in our case). A weight/goodness-
metric is assigned to the user based on the number of locations
he scans: higher the number of locations scanned, higher is the
weight. However, the weight is reduced depending on when the
user last scanned. In this approach, if there is no other person
to scan other than the person who scanned in the last time slot,
then that person will be chosen automatically, thus ensuring
coverage for the sensors in that section.

VI. EXPERIMENTAL EVALUATION

In this section, we present the evaluation and experimental
results for each approach using trace-based simulation with
real location traces. The scan schedules are obtained based on
movement data predictions trained on historical location traces.
A. Trace-based Simulation

We evaluate the efficacy of different scheduling approaches
using simulation experiments conducted with real location
traces. In the experiments, the scan schedule for the greedy
approaches is generated from 20,330 repeatedly visiting in-
dividuals, based on data during the working hours (9AM-
8PM) on weekdays in February 2017. We divided the data
into 10 minutes scan schedules (66 scans scheduled per day).
The impact of the prediction-based schedules was tested using
the movement data for the first two weeks of March 2017.
As the sections vary in size, for the trace-based studies we
assume that a sensor is associated with every landmark and
compute the coverage and other evaluation metrics based on
these landmarks.

To accommodate the uncertainty in the indoor location
prediction approach, we use a 2 level system - where the
currently predicted landmark by indoor localization will have
a probability of 0.5, and the remaining probability of is
distributed among the landmarks that are 1-hop away (i.e.,
each of the n 1-hop landmarks has a residency probability of
0.5/n). In the trace-based studies, we indicate that a “beacon
is read” only if the sum of the probabilities (across all [users,
location data points]) exceeds a threshold Pc set to 0.7 (as
mentioned earlier in Section V-B).

Based on our past studies [18], we make a simplifying
simulation assumption that the probability of reading a sensor s
is either 1 or 0, i.e., a beacon is either within or beyond reading



(a) Coverage at different (b) Coverage at variable
times of a day user participation

Fig. 6: Comparison of Coverage obtained by different schedul-
ing approaches (a) across different time slots in a day and (b) at
variables rates {100%, 75%, 50%, 25%} of user participation

Naı̈ve Instantaneous Greedy Greedy-Energy
Average 6441 1967 122 114
Std. Dev 1478 489 18 15

TABLE I: Average number of users scanning in a day across
all 10 minute time slots between 9am and 8pm

range. (Because of the high beacon reporting frequency, the
probability of reading at least one beacon advt. is high, even
if the miss rate is moderately high.)
B. Evaluation Metrics

Based on the key design requirements for the SmartABLE
framework, we use following evaluation metrics:

1) Coverage: The percentage of sensors covered out of
total (one beacon at each of 2016 landmarks) in each
of the 10 minute time slots over a day.

2) Fairness: The number of times each phone performed
BLE scanning in a given day.

3) Energy-efficiency: The overall-energy consumed by
SmartABLE in a day is computed by multiplying the
total number of people scheduled for scanning in a day
with the number of times they were scheduled to scan.

4) Inter-report gap per sensor: The gap in time (in
minutes) in which a sensor report is heard from each
sensor in a day.

C. Results
1) Coverage: Figure 6(a) show the comparison of coverage

obtained by each of the approaches at different time slots
across working hours of weekdays. From the figure, we
observe that the Instantaneous approach is able to obtain a
high coverage (as expected) of about 89% compared to the
Naı̈ve approach (without any sub-sampling) that achieves 95%
average coverage. The Greedy scheduling approaches obtain
a coverage of only about 62%. The reduction in coverage is
mainly because of two reasons: (i) only the users currently
present in campus and also in the scanning schedule (generated
from training data) are considered, and (ii) certain scheduled
users did not perform scanning as their BLE was manually
turned off at the designated time (note again that the selected
mules scan with a Ts = 10seconds and dc = 50%). However, the
number of phones scanning is significantly fewer in the Greedy
approach compared to the Instantaneous approach. Table I

(a) Fairness of users scanning (b) Inter-report gap per sensor
Fig. 7: Comparison of different approaches for (a) Fairness
and (b) Inter-report gap.

shows the number of phones scanning across 10 minutes time
slots (in a day from 9 am to 8 pm). The Instantaneous approach
uses more than 15x the number of phones, as compared to
Greedy. These results also suggest that, if a higher coverage
rate is desired, Greedy can simply be modified, to include a
larger user pool, by setting a beacon’s ‘coverage threshold’
(Pc) to a higher value.

We next evaluate the variation in coverage at variable par-
ticipation rate of users {100%, 75%, 50%, 25%} throughout
each time slot in a day. Figure 6(b) shows comparison of
average coverage across all time slots of weekdays for different
participation rates. We can see that Naı̈ve approach obtains an
average of above 90% coverage at all participation rates. This
again shows the enough redundancy that exists in user loca-
tions at any time of the day. Both the greedy approaches obtain
almost similar coverage as that obtained at 100% participation
rate. However, in the case of Instantaneous approach, rate of
drop in coverage is high when the participation rate is reduced.
Also, even at lower participation rates, Instantaneous approach
schedules a large number of users (over 1000), whereas Greedy
is more robust, scheduling only about 100 users irrespective
of participation rates.

2) Fairness: To understand the fairness with which phones
are scheduled to scan in a day, we first computed the average
number of w = 10 minutes BLE scans performed by a phone
in a day. For comparing the fairness of different approaches in
scheduling users to scan, we plotted the cumulative distribution
of the numbers of scans in a day for each user.

Figure 7(a) shows the distribution of average number of
per-day (w = 10 minute long) BLE scans performed by each
smartphone. From the figure we can see that the Greedy
approaches are very fair in terms of scheduling users for
scanning as almost all users are selected to scan for only less
than 8 slots in a day. However, the Instantaneous approach
is unfair towards almost 40% of the users who scans for as
high as 24 slots (i.e., 4 hours) in a day. We also observed
the distribution of the consecutive scan periods, across all
users: as expected, the Energy-Aware Greedy approach results
in a lower value for such consecutive scans (only 12.8% of
scanning schedules involved consecutive scans); compared to
the Greedy approach (where consecutive scans occurred in
17.5% of scanning schedules).

3) Energy-efficiency: Table II shows the comparison of
total phone-scans performed over a day by each approach. As
expected, the Naı̈ve scheduling and Instantaneous scheduling



Naı̈ve Instantaneous Greedy Greedy-Energy
10 minutes 407376 64659 7724 7658
phone scans

TABLE II: Comparison of average number of 10 minutes scans
performed over a day by all users scanning

approaches incur a very high number of BLE scans in a day.
In contrast, the Greedy and Energy-aware greedy approaches
generate only ⇠ 10% phone-scans, compared to Instantaneous
approach.

4) Inter-report Gap per Sensor: We study the frequency
of status reports that can be obtained from each of the 2016
sensors present at each landmark. Figure 7(b) plots the CDF of
inter-report gap per sensor obtained using various approaches.
From the figure, we can see that the Naı̈ve and Instantaneous
approaches are able to provide a status report from each sensor
at least every 20 minutes, while the Greedy approach provides
a status report every 20 minutes only for 50% of the sensors
(this coverage rate rises to 80% for hourly reports). Certain
sensors, at less frequented campus locations, are reported very
infrequently using the Greedy scheduling approach.

VII. DISCUSSION AND FUTURE WORK

While our approach can provide frequent updates in densely
populated environments, there are several possible ways to
extend our current framework.

(1) Sensors have different criticality : Currently, we assume
that all sensors have the same inter reporting frequency re-
quirement. However, in a practical scenario, the requirement
might vary based on sensors and time of day. For example, a 30
minute reporting might be okay for monitoring a dustbin which
is placed at a location which is not often visited, but might be
too low for a sensor reporting seat availability in a food court
during lunch time. In future, we plan to explicitly model such
differences in the acceptable inter-report gap across sensors.

(2) Improving Coverage: Currently, we assume that there
is a sensor at every landmark (approx. every 3 meters). Such
dense sensor deployment is probably unlikely. Moreover, in
cases where we do not get sufficiently frequent reports from
a critical section, we can dynamically increase the coverage
threshold Pc for the associated sensors, thereby increasing the
participation rate in that region.

(3) Preserving privacy of the mules: A major concern for
participants in location-driven participatory sensing tasks is
their individual privacy. SmartABLE can be augmented to
include techniques such as differential privacy and randomized
response, which allow the scheduler to obtain aggregated
occupancy statistics, without revealing individual movement
patterns.

VIII. CONCLUSION

In this paper, we propose a framework for smart cam-
pus monitoring, which leverages on participatory relaying by
smartphones to obtain frequent updates from BLE-equipped
sensors attached to various indoor resources/facilities. By
conducting extensive analysis on location traces from our uni-
versity campus, we observe that there is sufficient redundancy
in user occupancy and propose techniques for collecting such

sensor data in an opportunistic, but coordinated, manner. We
develop some smart scheduling strategies and compare their
relative tradeoffs between coverage and relaying energy cost.
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