
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

1-2018

Multi-target deep neural networks: Theoretical
analysis and implementation
Zeng ZENG
Institute for InfoComm Research

Nanying LIANG
Institute for InfoComm Research

Xulei YANG
Institute of High Performance Computing

Steven C. H. HOI
Singapore Management University, CHHOI@smu.edu.sg

DOI: https://doi.org/10.1016/j.neucom.2017.08.044

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the OS and Networks Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
ZENG, Zeng; LIANG, Nanying; YANG, Xulei; and HOI, Steven C. H.. Multi-target deep neural networks: Theoretical analysis and
implementation. (2018). Neurocomputing. 273, 634-642. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4200

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/200254224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.neucom.2017.08.044
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4200&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4200&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Neurocomputing 273 (2018) 634–642

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Multi-target deep neural networks: Theoretical analysis and

implementation

Zeng Zeng
a , Nanying Liang

a , ∗, Xulei Yang
b , Steven Hoi c

a Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis (South Tower), 138632 Singapore
b Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, 138632 Singapore
c Singapore Management University, 81 Victoria Street, 188065 Singapore

a r t i c l e i n f o

Article history:
Received 8 June 2017
Revised 11 August 2017
Accepted 31 August 2017
Available online 8 September 2017

Communicated by Prof. Zidong Wang

Keywords:
Deep neural networks
Multi-target deep learning
Object detection
Segmentation
Learning path

a b s t r a c t

In this work, we propose a novel deep neural network referred to as Multi-Target Deep Neural Network

(MT-DNN). We theoretically prove that different stable target models with shared learning paths are sta-

ble and can achieve optimal solutions respectively. Based on GoogleNet, we design a single model with

three different targets, one for classification, one for regression, and one for masks that is composed of

256 × 256 sub-models. Unlike bounding boxes used in ImageNet, our single model can draw the shapes

of target objects, and in the meanwhile, classify the objects and calculate their sizes. We validate our

single MT-DNN model via rigorous experiments and prove that the multiple targets can boost each other

to achieve optimization solutions.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Deep neural networks have shown great promise in many prac-

tical applications. State-of-the-art performance has been reported

in several domains, ranging from image classification [1] , speech

recognition [2] , to text processing [3] , playing Atari games [4] . The

latest and greatest honor of deep neural networks belongs to Al-

phaGo [5] that has defeated Lee Sedol, one of the best human pro-

fessional Go game players in the world, a feat previously thought

to be at least a decade away.

Deep neural networks are networks of neurons, which can ex-

ecute different simple functions and are connected following pre-

defined topologies [6] . Unlike the networks we are familiar with,

e.g., mobile networks, computer networks, sensor networks, which

have multiple entries and multiple exits, deep neural networks

have only one entry, where data can be poured into the networks,

and one exit, where the target functions can obtain the results.

All the neurons in the networks learn synchronously (the neurons

within the same layers) or asynchronously (the neurons in differ-

ent layers) to achieve optimal solutions of single target models [7] .

∗ Corresponding author.

E-mail addresses: zengz@i2r.a-star.edu.sg (Z. Zeng), liangny@i2r.a-
star.edu.sg , nanying@gmail.com (N. Liang), yangx@ihpc.a-star.edu.sg (X. Yang),
chhoi@smu.edu.sg (S. Hoi).

Hence, from the view of layers, deep neural networks are end-to-

end links, instead of networks.

In our real world, we have many multi-label problems [8] . In

the famous ImageNet data set, millions of images have got at least

one label [1] . Initially, ImageNet required the competitors to iden-

tify which class the target image belongs to within 1 k or 22 k

known categories. Little by little, ImageNet starts to provide images

with additional locations of target objects that are indicated by

bounding boxes, and then, the competitions become solving multi-

label problems. Now, the most successful solutions are to deliber-

ately integrate the different labels into a single target function, and

then using deep neural networks to achieve optimization results of

the targets [8,9] . However, no matter how many labels the target

models may have, the deep neural networks are end-to-end links,

solving “Single-Target” problems, instead of end-to-ends networks

that can solve “Multi-Target” problems.

Inspired by communication networks [6,10,11] , we propose a

novel learning network, Multi-Target Deep Neural Networks (MT-

DNN), based on which we can construct scalable deep neural net-

works. In each Source–Destination pair, there is at least one learn-

ing path, through which the source data can be transformed into

some kinds of values that can be used in the destination as the

target. Some learning paths may be shared by different Source–

Destination pairs where some shared features can be extracted by

different target models. We theoretically prove the stabilities of

http://dx.doi.org/10.1016/j.neucom.2017.08.044
0925-2312/© 2017 Elsevier B.V. All rights reserved.

Published in Neurocomputing, Volume 273, 17 January 2018, Pages 634-642.
https://doi.org/10.1016/j.neucom.2017.08.044
Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License

http://dx.doi.org/10.1016/j.neucom.2017.08.044
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.08.044&domain=pdf
mailto:zengz@i2r.a-star.edu.sg
mailto:liangny@i2r.a-star.edu.sg
mailto:nanying@gmail.com
mailto:yangx@ihpc.a-star.edu.sg
mailto:chhoi@smu.edu.sg
http://dx.doi.org/10.1016/j.neucom.2017.08.044

Z. Zeng et al. / Neurocomputing 273 (2018) 634–642 635

MT-DNN and prove that all the target learning paths can converge

to their optimal solutions, respectively.

Based on the concept of MT-DNN, we design a novel model

that has three branches above the main layers of GoogleNet [12] .

Branch 1 is aiming at object classifications, branch 2 is used to cal-

culate the size of the objects, and branch 3 is composed of W × H

sub-models working as compound eyes of bees. The target of each

sub-model is to figure out whether the corresponding pixel in the

image belongs to the object or not. Unlike ImageNet that uses

bounding boxes to indicate the locations and sizes of objects, we

use masks with size of W × H , where mask [w, h] = 1 if the point of

image [w, h] belongs to the target object and mask [w, h] = 0 other-

wise. If we set W = H = 256 , that means 65,536 sub-models have

to be trained. We carry out rigorous experiments with respect to

several influencing conditions and prove that our MT-DNN with

multi-targets are stable and convergent, and can solve some prob-

lems that single-target models cannot do.

1.1. Our contributions

The specific contributions of this work are as follows: a). We

propose the concept of MT-DNN; b). We theoretically demonstrate

that multiple targets can converge respectively by using Stochas-

tic Gradient Descent (SGD) [5,8,12] . Adjusting the learning rate of

each target, we can roughly guarantee all the targets can converge

synchronously; c). We present a study case to describe the pro-

posed MT-DNN and design a single model with three different tar-

get models; d) We carry out series of experiments to examine the

performance of the model and demonstrate that multiple targets

can boost each other to achieve optimization solutions. It is the

first time in the domain that a single model can identify objects,

obtain their sizes, and point out their locations and shapes at the

same time.

The rest of the paper is organized as follows. Section 2 dis-

cusses relevant research work. Section 3 illustrates the main def-

initions and theorems. In Section 4 , we describe a study case for

ease of understanding, and discuss the main target functions. In

Section 5 , we show the results of our experiments. We conclude

our work and discuss some future work in Section 6 .

2. Related work

The winner of ILSVRC 14 is “GoogleNet”, which is a 22 layers

deep network [12] . The main hallmark of this architecture is the

improved utilization of the computing resources inside the net-

work by a carefully crafted design. Besides of the top layer that

is a softmax function used to calculate the logarithm loss and

the beginning of back-forwards learning, there are two more same

branches below that carry out the same procedures in different

lower layers. In this way, the depth and width of the network are

increased while the computational budget is kept constant. This

crafted design can help to converge faster, but contributes little

to the final accuracy. Although there are three result outputs in

GoogleNet, the outputs are aiming at the same target and hence,

in our definition, it is still an end-to-end deep neural network.

The problem of object classification is the recognition of the

class of an object belongs to. CNNs represent the-state-of-the-art

approaches to address this problem. However, to solve this prob-

lem alone cannot fully fulfill the requirement in some other real

applications. For example, it could be favorable to extraction the

location and size information about the object in addition to its

class information at the same time, which represents a multiple

targets application scenario.

In order to achieve f 1 (x 2) , f 2 (x 2) , . . . , minimized (or maxi-

mized) at the same time, linear integration of multiple models into

a single target optimization problem is applied [13,14] , i.e., these

Fig. 1. Transformations of layers to learning links.

functions can be added together with some trade-off parameters,

λ, as: minimized : f all = λ1 f 1 (x 1) + λ2 f 2 (x 2) + · · · . One type of the

method applied in deep neural networks is named as shared com-

putation of convolutions that has been attracting increasing at-

tention for efficient, yet accurate, visual recognition [9,15–19] . In

[7] , Andrew et. al. used linear combination to integrate sparsity

and reconstruction models as the target optimization problem with

λ1 = 1 and λ2 = 0 . 1 . They trained their network to obtain 15.8%

accuracy in recognizing 22,0 0 0 object categories from ImageNet, a

leap of 70% relative improvement over the previous state-of-the-

art. In [8] , Ren et al. proposed Faster R-CNN model that can ob-

tain very high object classification accuracy, while detect the po-

sitions of the objects with low errors. They define a loss function,

L cls (p), where p is object’s probability, for object classification, and

a loss function, L reg (t), where t is Euclidean position of object, for

position detection, respectively. Then, they obtain the optimization

problem L (p, t) = L cls (p) + λL reg (t) with λ set to be 10, and hence,

both L cls (p) and L reg (t) are roughly equally weighted. In ILSVRC and

COCO 2015 competitions, the model is the foundation of the 1 st -

place winning entries in several tracks.

3. Concept of multi-target deep neural network

Layers of neural networks consist of neurons that are connected

in pre-defined topologies and have one data input and one data

output as shown in Fig. 1 (a). Neural network layers can “learn”

from batches of data by Stochastic Gradient Descent (SGD) func-

tions and update their own parameters through back-forward in

up-to-down fashion [5,16] . Referring to Fig. 1 , we can observe

that layer 1 × 1 Conv , referred to as i , can be transformed to a

link (a → b) or l i and the function of the layer can be denoted as

out i = f a → b (in i) or out i = f l i (in i) , where in i and out i are layer i ’s

data input and data output, respectively. Layer i can be transferred

to link l i with a mapping function f l i from in i �→ out i . When two

links l i and l j need to be combined to a single link, we define two

different combination functions: element-wise addition denoted as

l i � l j �→ l a and concatenation addition denoted as l i � l j �→ l a .

For example, in Fig. 1 (a), layer 1 × 1 Conv and layer Conv can be

transferred into learning link (a → b) and learning link (b → c), re-

spectively as shown in Fig. 1 (b).

AlphaGo has two deep neural networks: policy network and

value network. We transfer the networks into two independent

learning paths as shown in Fig. 2 (a). Now, if we merge the two

learning paths together, we can have many potential topologies. In

Fig. 2 (b), there are two main learning paths that are left one (S

⇒ n ⇒ D 1) and right one (S ⇒ n ⇒ D 2). We can observe that

636 Z. Zeng et al. / Neurocomputing 273 (2018) 634–642

Fig. 2. Illustration of merging multiple learning paths. (a) We use policy network
and value network as examples of two independent deep neural networks which
share the same inputs. They are annotated as two independent learning paths. (b)
A two-target learning network is derived after merging policy network and value
network via their shared learning layers. (c) is an extension of (b) by supplying the
input sources together with the shared features to the learning branches. (d) is a
possible variance of (c) by removing the shared features from learning branch D1.

the learning path (S ⇒ n) is shared by path (S ⇒ D 1) and (S ⇒

D 2). This topology has been used in [9,15–18] with the name of

shared computation of convolutions. However, these learning paths

are trained in alterative fashion. In this work, one of the learn-

ing paths is trained first and then, the training procedure stops

to start training another learning path. The training phases will

be repeated till some threshold achieved. Please note that in our

proposal, different learning paths in the same network will be

trained synchronously. Topology of Fig. 2 (b) can be further ex-

tended to Fig. 2 (c), in which there is a learning path (S ⇒ n)

shared by the two main learning paths. The shared learning path

can learn the shared features belonging to both learning paths. Be-

sides the shared learning path, the main learning paths have inde-

pendent learning paths (S ⇒ D 1) and (S ⇒ D 2), respectively, that

can discover the features unique to the main learning paths only.

In Fig. 2 (d), there is an interesting learning path (n ⇒ D 2) whose

source node is in the middle of another main learning path (S ⇒

D 1). In this topology, main learning path (S ⇒ D 2) can learn some

features from (S ⇒ D 1), but not vice versa. Without (n ⇒ D 2), the

two main learning paths are independent to each other.

The advantages of merging two learning paths together are

twofold: First, by merging learning paths, the learning features

are shared by different targets and thus it can reduce the feature

computational cost; Secondly, the optimization solution is achieved

by considering the constrains of all learning targets without the

need of an explicit global loss function. In the following, we shall

present some theoretical analysis of learning networks.

3.1. Theoretical analysis

At first, we present Theorem 1 that can guarantee the stability

of learning paths that have some shared learning path(s).

Theorem 1. Given the same data input S, if independent learning

path (S ⇒ D 1) is stable and can achieve optimal solution f 1 (S| θ ∗
1) ,

and another independent learning path (S ⇒ D 2) is stable and can

achieve optimal solution f 2 (S| θ ∗
2) , then the joint network of the two

learning paths as shown in Fig. 2 (b), is also stable.

Proof. We assume that although the two learning paths are inde-

pendently, they have some same structure of layers as in [5,9,15–

18] . Then, we have the learning function of (S ⇒ n) in Fig. 2 (b)

as f s (S | θ s), and the branches of the learning paths are f l (S n | θ l) and

f r (S n | θ r), respectively, where S n is the data output at node n . Ob-

viously, S n = f s (S| θs) and hence, we obtain the function of inde-

pendent learning path (S ⇒ D 1) is f 1 (S| θ1) = f l (f s (S| θs) | θl) and

the function of independent learning path (S ⇒ D 2) is f 2 (S| θ2) =

f r (f s (S| θs) | θr) .

Since we assume that the independent learning paths (S ⇒

D 1) and (S ⇒ D 2) are stable and can achieve optimal solutions,

the learning procedures by SGD are θl ← θl − ηl
∂ f 1
∂θl

and θr ← θr −
ηr

∂ f 2
∂θr

, respectively, where ηl and ηr are their learning rates and

can be variant [5] . Hence, we obtain that
∂ f 1
∂θl

→ 0 ,
∂ f 2
∂θr

→ 0 and

θl → θ ∗
l , θr → θ ∗

r . When the two learning paths are joint, the learn-

ing path (S ⇒ D 1) has been divided into two parts: (S ⇒ n) and (n

⇒ D 1) and then, we denote θ1
l and θ2

l for these two parts, respec-

tively, as the target parameters. Again, if we consider learning path

(S ⇒ D 2), we can obtain θ1
r and θ2

r , for (S ⇒ n) and (n ⇒ D 2),

respectively. For the left branch in Fig. 2 (b), we can have θ2
l ←

θ2
l − ηl

∂ f 1
θ2

l
and for the right branch, we have θ2

r ← θ2
r − ηr

∂ f 2
θ2

r
.

Since we assume that the independently learning path (S ⇒ D 1)

has the same structure of shared learning path (S ⇒ D 1), and the

same to the second learning path, we have θ2
l = θl and θ2

r = θr .

Then, we can obtain
∂ f 1
θ2

l
∝

∂ f 1
θl

→ 0 and
∂ f 2
θ2

r
∝

∂ f 2
θr

→ 0 . Obviously,

learning paths (n ⇒ D 1) and (n ⇒ D 2) are independent and stable,

and they can learn without any interactivities.

Now we consider the shared learning path (S ⇒ n). If we let

one branch trained only, say left branch, we can have the learning

procedure as θs ← θs − ηl
∂ f 1
∂θs

and it is stable. For right branch, we

also obtain θs ← θs − ηr
∂ f 2
∂θs

. If we train the two branches together,

we shall have:

θs ← θs −
(

ηl
∂ f 1
∂θs

+ ηr
∂ f 2
∂θs

)
. (1)

From Eq. (1) , we can observe that different learning paths up-

date the shared paths independently and have no idea that there

exists other learning paths updating the parameters too. In deep

neural networks, there are dropout layers that can randomly se-

lect part of neurons to update and keep the rest unchanged [12] .

Furthermore, there are ReLU layers that are sensitive to some out-

put greater than some thresholds [20] and have no activities if

the output are less than the thresholds. By using dropout layers,

we can differentiate the neurons and make them sensitive to dif-

ferent features. By using ReLU layers, we can isolate some neu-

rons that have no relations with the target models. Hence, we

assume that during the back-forward procedures, in the shared

learning path (S ⇒ n) in Fig. 2 (b), left branch updates θ1
l and right

branch updates θ1
r , respectively, instead of all of θ s . Obviously,

θ1
l ⊂ θs , θ1

r ⊂ θs hold and learning procedures are θ1
l ← θ1

l − ηl
∂ f 1
∂θ1

l

and θ1
r ← θ1

r − ηr
∂ f 2
∂θ1

r
. Then, Eq. (1) can be transformed to θs ←

θs − (ηl
∂ f 1
∂θ1

l
+ ηr

∂ f 2
∂θ1

r
) . If θc = θ1

l ∩ θ1
r
 = ∅ holds, that means θ c are

sensitive to the features common to the target models. Hence,

through shared learning paths, different learning paths can learn

the features unique to themselves, discover the shared features to-

gether, and ignore the unrelated features.

Since the two independent learning paths are stable, we have
∂ f 1
∂θs

∝
∂ f 1
∂θ1

l
→ 0 and

∂ f 2
∂θs

∝
∂ f 2
∂θ1

r
→ 0 . Hence, the joint network of two

independent learning paths is stable too. �
Theorem 1 can guarantee that if two independent learning

paths are stable and have some same layers, they can be merged

to a single joint stable neural network.

Z. Zeng et al. / Neurocomputing 273 (2018) 634–642 637

Fig. 3. Examples of ultrasound images and their corresponding mask labels. (a) an
ultrasound images containing nerve structure (above) and its according nerve mask
(below). (b) an ultrasound image containing no nerve structure (above) and its ac-
cording nerve mask (below) showing no object was identified.

Theorem 2. In a multi-target learning network, each independent

single learning path i can achieve its optimal solution to the target

function f i .

Proof. We assume, without loss of generality, a multi-target learn-

ing network consists of a learning path (S ⇒ D 1) with target func-

tion f 1 and a learning path (S ⇒ D 2) with target function f 2 . These

two learning paths share (S ⇒ n), as shown in Fig. 2 (b).

Now, let’s consider the left branch in Fig. 2 (b). When the branch

becomes stable, we have
∂ f 1 (S| θb)

∂θ∗
b

= 0 for learning path (n ⇒ D 1),

and
∂ f 1 (S| θs)

∂θ∗
s

=
∂ f 1 (S| θ1

l)

∂θ1 ∗
l

= 0 for learning path (S ⇒ n). For the right

branch, we have the similar solution
∂ f 2 (S| θb)

∂θ∗
b

= 0 and
∂ f 2 (S| θs)

∂θ∗
s

=

∂ f 2 (S| θ1
r)

∂θ1 ∗
r

= 0 , where θ1
l and θ1

r are parameter sets belonging to left

and right learning path, respectively. Hence, f 1 and f 2 achieve their

own optimal solutions in this learning network without imposing

any formality on their relationship. �
Theorem 2 can guarantee that true optimal solutions to mul-

tiple task-dependent loss functions are obtained, while the strat-

egy of a simple linear combination of them f all (S| θ) = λ1 f 1 (S| θ) +

λ2 f 2 (S| θ) doesn’t guarantee this. This makes MT-DNN more signif-

icant than multi-task models. In the proposed MT-DNN, different

learning paths may have different learning rates ηi . These learning

rates can control the convergent rates of the corresponding learn-

ing paths and in the meanwhile, deliberately adjusted ηi can avoid

the situations that some learning paths converge too fast, while

some others learn too slowly.

4. Case study

We are interested in a competition “Ultrasound Nerve Segmen-

tation” on Kaggle [21] , in which, there are thousands of ultra-

sound images of patients provided with the mask labels created

by experienced doctors. Examples with and without nerve in an

ultrasound image are given in Fig. 3 . Fig. 3 (a) shows an ultra-

sound image containing nerve structure (above) and its according

nerve mask which indicate the position and the shape of the nerve

structure is provided (below). Fig. 3 (b) shows an ultrasound image

without any identified nerve structures. Then, we have the prob-

lem statement: Given an ultrasound image, the proposed models

could generate a mask image as output. If there is no nerve struc-

ture found in the image, a mask with all black should be pro-

vided. Otherwise, the position and the shape of the nerve struc-

ture should be labeled as white pixels in the mask image. In the

dataset, the images are all with the size of 580 × 420 pixels in

TIFF format. In the training dataset, there are 5635 patients’ im-

ages with corresponding masks provided, among which there are

2323 images with positive masks and 3312 images are normal.

We choose this dataset used in our experiments due to the

following reasons: a) There is no research work on shape detec-

tion in ultrasound images by using deep neural networks and it is

challenging; b) This problem can be easily transformed into multi-

target problem; c) This problem is a classic problem and the re-

search work can be extended to many other domains, such as X-

ray detections in hospitals, fault detections in industry, etc.

4.1. Training dataset preparations

In the dataset provided, the images are all black-white and have

only one channel. Color image files have (r, g, b) three channels

[22] . We use the TIFF data as g channel, and set r channel to be 0

and b channel to be 255. By adding extra channels into the images,

we can have color images as shown in Fig. 8 (a). In [5] , the authors

also added constant planes with 0 and 1 into their data source as

independent channels.

Through analysis, we find that although the original images are

580 × 420, the nerve structures’ sizes are all within 256 × 256 and

then, we set the size of our scanner to be 256 × 256, in order to

minimize the computational requirement. By using rotating and

cropping, we obtain millions of small images and attempt to avoid

the notorious overfitting [9] .

4.2. Implementation of our proposed neural networks

Unlike faster R-CNN in [8] that proposed thousands of region

anchors in a single image, we focus on the design of a fixed size

scanner that can be used to scan much bigger images, in order find

the potential objects, their locations and shapes. By using the scan-

ner, we can know in the scanned part of the images, whether there

is an object. If yes, what the size of the object is, and what the

shape of the object is. Compared with the work in [8] , our solu-

tion is more scalable and much easier for implementations. Fur-

thermore, our model can predict the shapes of objects, while the

work only provide bounding boxes that may cover the objects.

In the scanner, there is a learning network which has one

data input and three target models. The first target is to identify

whether there is nerve structure or not in the images. This target

is the same as ImageNet and can be considered as classification

problem. The second one is to tell the sizes of the nerve structures

or the ratio of the number of pixels belonging to objects and the

number of pixels that have been scanned. This goal can be con-

sidered as regression problem. The third target is to present the

masks with pixels labeled as 0 or 1 and we can consider this one

as classification problem too. The three different targets have dif-

ferent models as shown in the following.

Model of Target 1: For object classification, we adopt the widely

used Log-likelihood Loss function [8,20,23–25] . This is equivalent to

maximizing the likelihood of the data set D under the model pa-

rameterized by θ . We have the likelihood L and the loss of Target

1, T 1 , as follows:

T 1 (D| θ) = −L (D| θ) = −
|D| ∑

i =0

log (P (Y = y (i) | x (i)) , θ) , (2)

where normally θ = { W, b} [1,8,24,25] .

Model of Target 2: This target is to estimate the size of object in

the range of [0, 1]. If there is no object, the value of size s = 0 . If

638 Z. Zeng et al. / Neurocomputing 273 (2018) 634–642

Fig. 4. MT-DNNs based on GoogleNet. (a) The GoogleNet model. (b) GoogleNet model is annotated as learning paths. (c) A two-target learning network is derived by adding
a second learning path to (b) model. (d) is a variant of (c) by adding input source paths to the learning branches. (e) A three-target learning network is derived by adding a
third learning path to (c) model.

there is only an object with black background, the value is s = 1 .

If there is an object with some background (noise), the value is in

the range of (0, 1). We use mean squared error (MSE) [5,26] as the

loss function. Then we have the loss of Target 2, T 2 , as follows:

T 2 (D | θ) =
1

|D |
|D| ∑

i =0

(̂ s (i) − s (i)) 2 , (3)

where ˆ s is the predicted value with given θ .

Model of Target 3: This target is to predict the shape of the ob-

ject. In a TIFF image file, if the pixel’s value is 0, the point is black.

If the value is 255, it is white. We normalize pixels’ values to 0 and

1 in the mask images. We assume the shape of our scanner is (W s ,

H s), then we have W s × H s -dimension vector with value of 0 or 1.

We use Sigmoid Cross Entropy Loss function as the target function

[27] . Then, we obtain the loss of Target 3, T 3 , in the following:

T 3 (D | θ) =
1

|D |
|D| ∑

i =0

[p (i) log ˆ p (i) + (1 − p (i) log (1 − ˆ p (i))] , (4)

where ˆ p (i) is the estimated probability that the target pixel i in the

matrix is 1.

4.3. Design of MT-DNN

Convolutional Neural Networks (CNN) and Full-Connected Net-

works (FC) are two main layers of deep neural networks. Along

with CNN, there are other layers, such as pooling (max, average,

etc.) [28] , ReLU, which can help to discovery significant features.

Normally, multiple layers of FCs are used, in order to select the

features that are useful to the final results. Hence, no matter how

deep or how complicated a neural network may be, we function-

ally divide the network into two learning paths: (S ⇒ n) that

mainly extract and discover the features and (n ⇒ D) that mainly

select from available features to minimize the target loss models.

So, GoogleNet can be transformed from Fig. 4 (a) to (b), while at

node n , GoogleNet’s learning path has been divided into two con-

nected learning paths. As we mentioned before, Target 1 is the

same to GoogleNet, we set D 1 in Fig. 4 (c) is equal to D in (b). From

n , we have a new branch (n ⇒ D 2) that is a duplication of (n ⇒

D) with D replaced by D 2 , Target 2. Then, we have the learning

network with Target 1 and Target 2 as shown in Fig. 4 (c).

We may consider that besides the shared features learned

through path (S ⇒ n), each target shall learn the features that

are belonging to their models only, we can add an independently

learning path to each target as we discussed above. As shown in

Fig. 4 (d), based on Fig. 4 (c) we add extra paths (S ⇒ n 1) and (S ⇒

n 2) for Target 1 and 2, respectively, which are duplications of path

(S ⇒ n) in Fig. 4 (b). Here we use lines without arrow to denote the

links that can pass data only.

In order to improve the performance of each learning path, we

can design the layers of individual learning path, instead of du-

plicating other learning path in this case. Then, the topologies of

learning networks will be more complicated and it is worth our

research in the near future.

5. Experimental results

In this section, we will carry out serials of experiments to eval-

uate our proposed MT-DNN. The models in the Experiment-1 and

Experiment-2 are trained from scratch and the weights of param-

eters are initiated randomly. The main shared structure (S ⇒ n)

is based on GoogleNet. We chose the parameter for our proposed

algorithm the same as those used by GoogLeNet: momentum =

0.9, weight decay = 0.0 0 02, learning rate = 0.01, and batch size =

32. In Experiment-1, we slightly modify GoogleNet with two more

additional layers and name this new model as GoogleNet Learn-

ing Net (GLN) that is with the two first branches in the following

list. In Experiment-2, we further merge GLN with Auto-Encoder

[29] and name this new model as GLN auto that have three main

learning branches as:

1. Branch 1: Classification, the same to GoogleNets final structure.

2. Branch 2: Regression, three layers of fully-connected neural

networks.

Z. Zeng et al. / Neurocomputing 273 (2018) 634–642 639

Fig. 5. Comparisons of D 1 branch of our modified GLN models with GN cls , w.r.t. accuracy.

3. Branch 3: Mask, five groups of deconvolution CNN to remap

features back to an output of the same size as original input

images.

5.1. Experiment settings

We comprehensively evaluate our methods on a server

equipped with Dual 8-Core Intel@Xeon Processors 2.4 GHz, 128 GB

memory, 4 × 3TB Enterprise SATA3 hard disk, and 4 × nVidia Ti-

tan X 12GB GDDR5 GPU cards. The OS is Ubuntu 14.04 with Cuda,

cudnnlib, Caffe [30] , installed. The learning rate is 0.01 throughout

of our experiments.

5.2. Experiment-1

Based on Fig. 4 (a) and (b), we add a new average pooling layer

and full-connected layer above node n . In Fig. 4 (c), the number of

output of D 1 branch is 2 that are probabilities of two classifica-

tions, respectively. The number of output of D 2 branch is 1 that is

the size of object in the range of [0, 1]. We also change GoogleNet

as the learning path (S ⇒ D 1) which has two outputs and uses

log-likelihood loss as the loss function (2) . We denote this mod-

ified GoogleNet as GN cls . In order to compare the performance of

T 2 , we design another model based on GoogleNet too that has one

output and uses loss function (3) of MSE as learning path (S ⇒ D 2).

This model is referred to as GN rgs .

In Fig. 4 (c), for D 1 , we use (2) as the target loss function, and

for D 2 , we use (3) as the target loss function. We fix λ1 = 1 and

variate λ2 to be 0.05, 0.1, 0.2, 1, and these models are denoted as

GLN 0.05 , GLN 0.1 , GLN 0.2 , GLN 1 , respectively. We compare the results

of D 1 branch with GN cls and present the results of D 2 branch of

GLN 0.05 under comparisons of GN rgs . Please note that GN cls and

GN rgs are two different models and have to be trained indepen-

dently. It takes around 8 h to train each model under consideration

for 50,400 training iterations.

Now, we carry out experiments on models GLN 0.1 , GLN 0.2 , and

GLN 1 , in order to examine the effects of weights on the perfor-

mance of multiple learning paths. In these experiments, we record

the testing results of the models very 50 0 0 iterations by using val-

idation dataset. In Fig. 5 , we show the accuracy of the models on

the tests. In Fig. 6 , we present the MSE of GLN models and that of

GN cls in the experiments. From these results, we can observe that

the branches of our GLN models with variant weights can both

converge to their own optimal solutions synchronously. To our

surprise, till 50,400 training iterations, D 1 branch and D 2 branch

of GLN 0.2 perform even better than GN cls and GN rgs , respectively.

It seems that when λ = 0 . 2 , the two learning paths of GLN can

converge with nearly the same rates and hence, they can help each

other learning faster. After some training iterations, we can expect

that all the models can achieve their optimal solutions eventually.

Practically, these experiments prove our Theorem 1 and

Theorem 2 : our proposed MT-DNN with multiple targets are sta-

ble and different targets can converge to their optimal solutions

independently. In the following, we shall combine GoogleNet with

Auto-Encoder and construct more complicated learning networks

with three different targets of (2), (3) , and (4) .

5.3. Experiment-2

In the previous experiments, we can observe that D 1 branch of

our model can tell us what kinds of the objects are and D 2 branch

can figure out the sizes of the objects. In the following experi-

ments, we attempt to draw the shapes of objects. In order to ob-

tain the masks of objects in the images, based on learning network

as shown in Fig. 4 (c), we add a new learning path (n ⇒ D 3) from

node n and obtain the learning network in Fig. 4 (e). The function

of learning path (S ⇒ D 3) can be described as: given an image, the

learning path shall tell us whether the target pixel in the image

belongs to the target object or not.

In our experiments, we set W s = H s = 256 and then, we have

256 × 256 = 65,536 pixels under consideration. We observe that at

point n in GoogleNet, the images have been transformed into 1024

small matrixes with the size of 8 × 8. It is worth noting that these

matrixes are extracted features and have no information on posi-

tions. Based on these features, D 1 and D 2 branches can figure out

the objects’ classifications and their sizes respectively, but cannot

tell us the locations of the objects within the images. In order to

detect target objects, numerous research works have been carried

640 Z. Zeng et al. / Neurocomputing 273 (2018) 634–642

Fig. 6. Comparisons of D 2 branch of our modified GLN models with GN rgs , w.r.t. MSE.

out in both academia and industry [8,9] . The discussion on this

part is beyond the scope of this work that focuses on efficiency and

convergency of MT-DNN only. We will explore the performance of

(S ⇒ D 3) and compare our methods with other famous algorithms

in our future work.

Based on the features extracted by D 1 and D 2 branches, we add

a new learning path with the hypothesis that the features can be

mapped into the channels and the numbers of sequential chan-

nels can present the positions of the features extracted from the

images. For example, in MNIST competitions, the images of size

32 × 32 can be reshaped into C × H × W as 1 × 32 × 32, where C

is the number of channel. By using Auto-Encoder [29] , we can

transform the pixels into channels as 724 × 1 × 1 where channel 1

presents pixel in position (1, 1) of the original image. In this way,

we can obtain the features and we also can reserve the positions

based on channel numbers.

From node n in Fig. 4 (c), we add 3 more convolutional neu-

ral network layers following by ReLU and pooling layers. These

layers transform the features at node n from 1, 024 × 8 × 8 to 16,

384 × 1 × 1. In this way, all features have been mapped into chan-

nels and the channel numbers can be mapped into the pixel po-

sitions in the images. Following these layers, there are 5 full con-

nected neural network layers working as Auto-Encoder that map

the 16,384 channels into 65,536 channels. In the last layer, we re-

shape the channels into 1 × 256 × 256 and reconstruct the chan-

nels into image matrix. We compare the outputs with the mask

labels and use (4) as the loss function. In this model, each pixel is

handled by an independent sub-model that can judge whether the

pixel belongs to the target object or not. All the sub-models can be

trained synchronously.

Again, we extract the learning path (S ⇒ D 3) from the model

and construct an independent model as the benchmark model,

which is referred to as GN auto . We present the results in Fig. 7 .

From this figure, we can observe that the loss of GN auto with sin-

gle target drops from 0.7 to 0.17 from iteration 0 to the first vali-

dation, but after that the loss is vibrating with very small variance

(less than 5 × 10 −4). Obviously, the model learns nothing from the

training procedures. On the contrary, D 3 branch of our learning

network converges from 0.7 to 0.12 step by step. We can antici-

Fig. 7. Comparisons of D 3 branch of our GLN auto models with GN auto , w.r.t. log-
likelihood loss.

pate that with more iterations, our model can converge to some

optimal point and the system is stable.

Unlike the previous experiments, without D 1 and D 2 branches,

the learning path (S ⇒ D 3) performs very poorly. It is reason-

able, since (S ⇒ D 1) and (S ⇒ D 2) can help extracting the fea-

tures through the learning path (S ⇒ n). Then, the following full-

connected layers can find the patterns based on the features that

exist in different channels. A good classifier shall discover the same

feature-based patterns no matter of the objects’ positions, where

there are some cropped images from one original image with the

corresponding mask. When we slide the scanning window on the

original images, we found the features slide among the channels

too. Hence, if the features slide among the channels, we also know

that the object slide in the image too. Based on the sliding features

among channels, we can determine the position of target object.

GN auto has no features of target object that would have been ob-

Z. Zeng et al. / Neurocomputing 273 (2018) 634–642 641

Fig. 8. The prediction of D 3 branch of our proposed learning network GLN auto . (a)
Two examples of the input ultrasound images; (b) The according ground-true mask
labels for the input images; (c) The predicted mask of D 3 branch of our GLN auto
model.

tained by learning paths (n ⇒ D 1) and (n ⇒ D 2), without which

GN auto cannot learn the positions of target objects.

In Fig. 8 , we present some examples of the predicted masks of

D 3 branch, where Fig. 8 (a) are input images and (b) are label masks

that can indicate the object’s shape and location within the im-

age, and (c) are the output masks of D 3 branch of the model. From

these figures, we can observe that (c) are very similar to (b) and

our hypothesis works!

6. Conclusions and future work

In this work we have proposed novel multi-target deep neu-

ral networks, referred to as MT-DNN. Unlike multi-task methods or

shared computation of convolutions in the literature that have sin-

gle target model only, MT-DNN can handle several different targets

at the same time. Based on GoogleNet we design a single model

with three different targets, one is for classification that can tell

whether there is a nerve structure inside or not, one is for regres-

sion that can figure out what the size of the nerve structure is, and

the rest one is for masks that is composed of 65,536 sub-models.

For each pixel in the image with the size of 256 × 256, there is

a corresponding sub-model that can just figure out whether the

pixel belongs to the nerve structure or not. Furthermore, we find

that without the help of target one and two, target three cannot

converge. That means the proposed MT-DNN can solve some prob-

lems that single-target model cannot achieve.

In our experiments, we noticed that when multiple branches

are combined together, the models may become too big to be

supported by single-GPU based computing platforms and novel

divide-and-conquer distributed computing methods for deep learn-

ing should be proposed. In our future work, we plan to extend

MT-DNN for processing 3D images based on 3D-CNN neural net-

work architectures for biomedical image applications. Furthermore,

MT-DNN can also be applied to industry domains by providing AI-

based prognosis and diagnosis solutions for vehicle/aircraft main-

tenance.

Acknowledgment

The work was supported by Singapore-China NRF - NSFC Grant

[No. NRF2016NRF-NSFC001-111]

References

[1] O. Russakovsky , J. Deng , H. Su , J. Krause , S. Satheesh , S. Ma , Z. Huang , A. Karpa-
thy , A. Khosla , M. Bernstein , A.C. Berg , L. Fei-Fei , Imagenet large scale visual
recognition challenge, Int. J. Comput. Vis. 115 (2015) 211–252 .

[2] G. Dahl , D. Yu , L. Deng , A. Acero , Context-dependent pre-trained deep neural
networks for large vocabulary speech recognition, IEEE Trans. Audio, Speech,
Lang. Process. (2012) 30–42 .

[3] Y. Bengio , R. Ducharme , P. Vincent , C. Jauvin , A neural probabilistic language
model, J. Mach. Learn. Res. 3 (2003) 1137–1155 .

[4] V. Mnih , K. Kavukcuoglu , D. Silver , A .A . Rusu , J. Veness , M.G. Bellemare ,
A. Graves , M. Riedmiller , A.K. Fidjeland , G. Ostrovski , S. Petersen , C. Beattie ,
A. Sadik , I. Antonoglou , H. King , D. Kumaran , D. Wierstra , S. Legg , D. Hassabis ,
Human-level control through deep reinforcement learning, Nature 518 (2015)
529–533 .

[5] D. Silver , A. Huang , C.J. Maddison , A. Guez , L. Sifre , G. Driessche , J. Schrit-
twieser , I. Antonoglou , V. Panneershelvam , M. Lanctot , S. Dieleman , D. Grewe ,
J. Nham , N. Kalchbrenner , I. Sutskever , T. Lillicrap , M. Leach , K. Kavukcuoglu ,
T. Graepel , D. Hassabis , Mastering the game of go with deep neural networks
and tree search, Nature 529 (2016) 4 84–4 89 .

[6] Z. Zeng , V. Bharadwaj , Design and performance evaluation of
queue-and-rate-adjustment dynamic load balancing policies for distributed
networks, IEEE Trans. Comput. 55 (11) (2006) 1410–1422 .

[7] Q.V. Le, Building high-level features using large scale unsupervised learning,
in: 2013 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, 2013, pp. 8595–8598, doi: 10.1109/ICASSP.2013.6639343 .

[8] S. Ren , K. He , R. Girshick , J. Sun , Faster r-cnn: towards real-time object detec-
tion with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell. PP
(99) (2016) . 1–1

[9] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. Lecun, Overfeat: in-
tegrated recognition, localization and detection using convolutional networks,
CoRR (2013) . http://arxiv.org/abs/1312.6229 .

[10] D. Bertsekas , R. Gallager , Data Networks (2Nd Ed.), Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1992 .

[11] Z. Zeng , V. Bharadwaj , Design and analysis of a non-preemptive decentralized
load balancing algorithm for multi-class jobs in distributed networks, Comput.
Commun. 27 (2004) 679–694 .

[12] C. Szegedy , W. Liu , Y. Jia , P. Sermanet , S. Reed , D. Anguelov , D. Erhan , V. Van-
houcke , A. Rabinovich , Going deeper with convolutions, in: The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9 .

[13] M. Avriel , Nonlinear Programming: Analysis and Methods, Prentice-Hall, Engle-
wood Cliffs, NJ, 1976 .

[14] D.P. Bertsekas , Nonlinear Programming, Belmont, Mass. Athena Scientific, 1995 .
Lccopycat

[15] K. He, X. Zhang, S. Ren, J. Sun, Spatial Pyramid Pooling in Deep Convolutional
Networks for Visual Recognition, Springer International Publishing, Cham, pp.
346–361.

[16] R. Girshick , Fast r-cnn, in: 2015 IEEE International Conference on Computer
Vision (ICCV), 2015, pp. 1440–1448 .

[17] E. Shelhamer , J. Long , T. Darrell , Fully convolutional networks for semantic seg-
mentation, IEEE Trans. Pattern Anal. Mach. Intell. PP (99) (2016) . 1–1

[18] J. Dai , K. He , J. Sun , Convolutional feature masking for joint object and stuff

segmentation, in: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015, pp. 3992–40 0 0 .

[19] D. Eigen , R. Fergus , Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture, in: The IEEE International
Conference on Computer Vision (ICCV), 2015, pp. 2650–2658 .

[20] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet classification with deep con-
volutional neural networks, in: F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Wein-
berger (Eds.), Advances in Neural Information Processing Systems 25, Curran
Associates, Inc., 2012, pp. 1097–1105 .

[21] K. Competitions, Ultrasound nerve segmentation, 2016. https://www.kaggle.
com/c/ultrasound- nerve- segmentation .

[22] P. Dollar , Z. Tu , P. Perona , S. Belongie , Integral channel features, in: Proceedings
of the British Machine Vision Conference, BMVA Press, 2009, pp. 91.1–91.11 .
Doi:10.5244/C.23.91

[23] B. Settles , Active Learning Literature Survey, Computer Sciences Technical Re-
port, University of Wisconsin–Madison, 2009 .

[24] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, CoRR (2014) . http://arxiv.org/abs/1409.1556 .

[25] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016, pp. 770–778, doi: 10.1109/CVPR.2016.90 .

[26] Y. Ephraim , D. Malah , Speech enhancement using a minimum-mean square
error short-time spectral amplitude estimator, IEEE Trans. Acoust. 32 (1984)
1109–1121 .

[27] P. Vincent , H. Larochelle , I. Lajoie , Y. Bengio , Pierre-Antoine Manzagol , Stacked
denoising autoencoders: learning useful representations in a deep network
with a local denoising criterion, J. Mach. Learn. Res. 11 (2010) 3371–3408 .

[28] K. Jarrett , K. Kavukcuoglu , M. Ranzato , Y. LeCun , What is the best multi-stage
architecture for object recognition? in: ICCV, IEEE, 2009, pp. 2146–2153 .

[29] L. Deng , M. Seltzer , D. Yu , A. Acero , A.-r. Mohamed , G. Hinton , Binary coding
of speech spectrograms using a deep auto-encoder, in: Interspeech 2010, Inter-
national Speech Communication Association, 2010 .

http://dx.doi.org/10.13039/501100001381
http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0001
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0002
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0003
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0004
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0005
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0006
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0006
http://dx.doi.org/10.1109/ICASSP.2013.6639343
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0008
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0008
http://arxiv.org/abs/1312.6229
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0009
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0010
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0011
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0012
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0013
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0014
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0015
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0016
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0017
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0018
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0018
https://www.kaggle.com/c/ultrasound-nerve-segmentation
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0019
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0020
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0020
http://arxiv.org/abs/1409.1556
http://dx.doi.org/10.1109/CVPR.2016.90
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0023
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0024
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0025
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0026
http://refhub.elsevier.com/S0925-2312(17)31465-0/sbref0026

642 Z. Zeng et al. / Neurocomputing 273 (2018) 634–642

[30] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R.B. Girshick, S. Guadar-
rama, T. Darrell, Caffe: convolutional architecture for fast feature embedding,
CoRR (2014) . http://arxiv.org/abs/1408.5093 .

Dr. Zeng Zeng received the Ph.D. degree in electrical and
computer engineering from the National University of-
Singapore, Singapore, in 2005, and the B.S. and M.S. de-
grees in automatic control from the Huazhong Univer-
sity of Science and Technology, Wuhan, China, in 1997
and 20 0 0, respectively. Currently, he works as a Scien-
tist III in Data Analytics Department, I2R, A ∗Star, Sin-
gapore. From 2011 to 2014, he worked as a Senior Re-
search Fellow with the National University of Singapore,
and he was the Founder of GoGoWise Cloud Educa-
tion Pte. Ltd., Singapore. From 2005 to 2011, he worked
as an Associate Professor in Computer and Communi-
cation School, Hunan University, China. From 2008 to

2011, he was a Senior Engineer and Senior Consultant of CSR Zhuzhou Insti-
tute Co. Ltd, Hunan, China. In the meanwhile, he was a Senior member of IEC
High Speed Train Group and participated in the draft proposals of IEC-61375, IEC-
62580, etc. His research interests include distributed/parallel computing systems,
data stream analysis, deep learning, multimedia storage systems, wireless sen-
sor networks, onboard fault diagnosis and fault pre-alerting, and controller area
networks.

Dr. Nanying Liang received the Ph.D. degree in Electrical
and Electronic Engineering from Nanyang Technological
University, Singapore in 2007, and B.E. degree in Biomed-
ical Engineering from Jilin University, China in 2002. She
is a scientist in Data Analytics Department, Institute for
Infocomm Research, A ∗STAR, Singapore. From 20 07–20 09,
she worked as a post-doctor in INRIA-LORIA, France and
in VTT, Finland. Her research interests are in Neural Net-
work, Deep Learning, Bioinformatics, Biomedical Image
Analysis and Healthcare Data Analytics.

Dr. Yang Xulei (IEEE Senior Member) is a research sci-
entist from Institute of High Performance Computing,
A ∗STAR, Singpaore, with many years of research experi-
ences in image analysis and machine learning. His cur-
rent research interests focus on deep learning for biome-
cial image analysis. He has published more than 50 scien-
tific papers and international patents.

Dr. Steven Hoi is an Associate Professor in the School
of Information Systems (SIS), Singapore Management Uni-
versity (SMU), Singapore. Prior to joining SMU, he was
a tenured Associate Professor at the School of Com-
puter Engineering of the Nanyang Technological Univer-
sity (NTU), Singapore. He received his Bachelor degree
from Tsinghua University, and his Master and Ph.D de-
grees from the Chinese University of Hong Kong. His re-
search interests include large-scale machine learning (on-
line learning and deep learning) with application to tack-
ling big data analytics challenges across a wide range
of real-world applications, including multimedia retrieval,
social media, web search and information retrieval, com-

puter vision and pattern recognition, computational finance, cyber security, mobile
and software data mining, etc. He has published over 150 papers in premier con-
ferences and journals, and served as an organizer, area chair, senior PC, TPC mem-
ber, editors, and referee for many top conferences and premier journals. He is the
recipient of the Lee Kong Chian Fellowship Award due to his research excellence.
Currently he is the Editor in Chief of Neurocomputing, a premier journal for neural
networks & deep learning.

http://arxiv.org/abs/1408.5093

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-2018

	Multi-target deep neural networks: Theoretical analysis and implementation
	Zeng ZENG
	Nanying LIANG
	Xulei YANG
	Steven C. H. HOI
	Citation

	Multi-target deep neural networks: Theoretical analysis and implementation
	1 Introduction
	1.1 Our contributions

	2 Related work
	3 Concept of multi-target deep neural network
	3.1 Theoretical analysis

	4 Case study
	4.1 Training dataset preparations
	4.2 Implementation of our proposed neural networks
	4.3 Design of MT-DNN

	5 Experimental results
	5.1 Experiment settings
	5.2 Experiment-1
	5.3 Experiment-2

	6 Conclusions and future work
	 Acknowledgment
	 References

