Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

10-2014

Analyzing the dangers posed by Chrome
Extensions
Lujo BAUER

Shaoying CAI
Singapore Management University, shaoyingcai.2009@phdis.smu.edu.sg

Limin JIA
Timothy PASSARO

Yuan TTIAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

b Part of the Information Security Commons

Citation

BAUER, Lujo; CAJ, Shaoying; JIA, Limin; PASSARO, Timothy; and TIAN, Yuan. Analyzing the dangers posed by Chrome
Extensions. (2014). Proceedings of IEEE Conference on Communications and Network Security, San Francisco, CA, US, 2014 October
29-31. 184-192. Research Collection School Of Information Systems.

Available at: https://ink.library.smu.edu.sg/sis_research/4193

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized

administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4193&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4193&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Analyzing the Dangers Posed by Chrome Extensions

Lujo Bauer Shaoying Cai'™*

Carnegie Mellon University
{Ibauer,liminjia,tpassaro,yt} @cmu.edu

Abstract—A common characteristic of modern web browsers
is that their functionality can be extended via third-party add-
ons. In this paper we focus on Chrome extensions, to which the
Chrome browser exports a rich API: extensions can potentially
make network requests, access the local file system, get low-
level information about running processes, etc. To guard against
misuse, Chrome uses a permission system to curtail an extension’s
privileges. We demonstrate a series of attacks by which extensions
can steal data, track user behavior, and collude to elevate their
privileges. Although some attacks have previously been reported,
we show that subtler versions can easily be devised that are
less likely to be prevented by proposed defenses and can evade
notice by the user. We quantify the potential danger of attacks
by examining how many currently available extensions have
sufficient privileges to carry them out. As many web sites do
not employ defenses against such attacks, we examine how many
popular web sites are vulnerable to each kind of attack. Our
results show that a surprisingly large fraction of web sites is
vulnerable to many attacks, and a large fraction of currently
available extensions is potentially able to carry them out.

I. INTRODUCTION

Web-based services are increasingly popular. Through web
browsers, users can conveniently access a wide range of
services such as email, cloud-based file sharing, banking,
health-care, and shopping. While a user is interacting with such
services, her sensitive, personal information—such as bank
account numbers and passwords—is exposed to the browser
and to scripts running on web pages. Furthermore, much
functionality in modern browsers is achieved by installing
powerful extensions and plug-ins that can access user resources
(e.g., files, webcam) normally managed by the local operating
system. These powerful add-ons to the browser, combined with
already fragile browser security, further broaden browsers’
attack surfaces. As a result, malicious add-ons—or innocent
but buggy ones—can allow attackers to gain access to a wide
range of private, sensitive data, and computer resources.

These dangers can lead to significant problems. Users and
commercial organizations (e.g., banks) can suffer financial loss
due to theft of financial information or identity theft. Loss of
user confidence can cause decreased use of existing web-based
services or reluctance to try new ones, potentially causing
financial loss and stifling innovation.

Current browsers use permissions and Content Security
Policies (CSP) to protect users’ data and other browser com-
ponents. For instance, a web page can use a CSP to specify
the origin of scripts that it is willing to run. The user can
grant the permissions to allow extensions to access some web
sites, and constrain the behaviors of extensions by assigning
them appropriate permissions. However, these mechanisms in
general are not adequate to protect users’ data.

Limin Jia
Singapore Management University *Institute for Infocomm Research
fshaoyingcai.2009 @smu.edu.sg

Timothy Passaro Yuan Tian

*cais@i2r.a-star.edu.sg

In this paper, we focus on Chrome extensions, add-ons
that extend the functionality of the Chrome browser. Chrome
exports a rich API to extensions: they can potentially make
network requests, access the local file system, get low-level
information about running processes, etc. To guard against
malicious extensions, Chrome uses a permission system to
curtail an extension’s privileges. We demonstrate a series of
attacks by which extensions can steal data, track user behavior,
and collude to elevate their privileges. Although some of the
attacks have previously been reported, we show that subtler
versions of the attacks can easily be devised that are both less
likely to be prevented by proposed defenses and can evade
being noticed by the user. For instance, we implemented an
extension that steals users’ sensitive data such as order history
from ebay.com, even though the extension does not request
the host permission to access content from ebay.com (see
Section III-B for details).

Additionally, we quantify the potential danger of attacks
by examining how many currently available extensions in the
Chrome store (as well as how many of the most popular 1000
extensions) have sufficient privileges to carry out the attacks.
We carry out this analysis by listing the extensions in the
Chrome store by popularity!, downloading all extensions, and
parsing their manifests, which specify permissions. As many
web sites employ defenses against such attacks, we also inves-
tigate how many popular web sites are vulnerable to each kind
of attack. We manually examine the home pages of the global
top 100 sites as reported by Alexa (www.alexa.com/topsites)
for presence of specific defenses against the attacks. Our
results show that a surprisingly large fraction of web sites
is vulnerable to many attacks, and that a large fraction of
currently available extensions is potentially able to carry them
out. For instance, the above-mentioned attack on ebay.com
could be launched by over 82% of the top-1000 popular
extensions, as it requires few permissions. The attack affects
any web page that allows itself to be placed in an iframe. A
manual examination of Alexa’s top-100 sites reveals that this
attack can potentially steal data from over 56% of those sites.

The paper proceeds as follows. Section II reviews
Chrome’s security architecture as it pertains to extensions.
Section III describes data-theft attacks that can be mounted
by a single extension; Section IV focuses on tracking user
behavior; and Section V examines privilege escalation attacks.
Section VI discusses potential countermeasures. Related work
is discussed in Section VII, and we conclude with Section VIII.
Table I summarizes our attacks and analysis results. We have
implemented the majority of described attacks.

Thttps://chrome.google.com/webstore/category/extensions?_sort=1. Unless
otherwise noted, all measurements and experiments were done on 2013-12-15.

II. BACKGROUND

Chrome’s extension architecture is based on component
isolation and privilege separation [7]. A Chrome extension is
a zipped bundle of files—HTML, CSS, JavaScript, images,
etc. [2]. An extension comprises components of three types:
content scripts that directly interact with web pages; an exten-
sion core that interacts with browser; and an optional native
binary that interacts with the OS.

The extension core becomes active when the browser starts
or, if the extension has background permission, after a user
logs into their computer. An extension can inject content
scripts into web pages loaded by the browser; each page has
its own instance of an extension’s content scripts. Each content
script runs in the same process as the web page into which
it is injected. The extension core, of which there is only one
instance per extension, and the extension’s native binary (if
any), each run in a separate process.

Chrome provides more than 40 APIs to extensions.
Through these, extension cores can get real-time status of the
browser, e.g., the list of tabs and installed or running exten-
sions/apps; access and modify user’s data, e.g., bookmarks and
history; change browser settings, e.g., content settings and font
settings; update browser components, e.g., uninstall an exten-
sion, launch an app, close a tab; monitor, hijack, or modify
arbitrary web requests; and send messages to other extensions.
A key security feature of Chrome’s extension architecture is
that the capabilities of components are constrained based both
on their type and on permissions granted to them.

Content scripts have high risk to be exploited by malicious
web sites, as they directly interact with web pages. Hence,
among extension components, content scripts have the lowest
privilege, and can use only the APIs provided to web pages,
called browser APIs, which include XMLHttpRequest, JSON,
and HTMLS5 APIs. Content scripts can only access the subset
of Chrome APIs that supports messaging between an extension
and its content scripts (chrome.extension API).

Chrome APIs, browser APIs, and access to web pages are
guarded by permissions. An extension asks for permissions
by declaring them in its manifest file. Permissions are of two
types: host permissions and API permissions. Host permissions
are a set of URLSs, and specify into which pages an extension
can inject content scripts. For example, if a password manager
only has https://www.ebay.com host permission, then it cannot
access any other web page. An extension core can only
access Chrome extension APIs protected by permissions if
it has the corresponding permissions in its manifest. Access
to certain browser APIs and Chrome extension APIs is also
constrained by host permissions. For example, if an extension
does not have host permission http:/www.google.com (or an
encompassing permission like *://*.*), then it cannot make
an XMLHttpRequest to http://www.google.com, or block a
web request to http://www.google.com, even if it has API
permissions webRequest and webRequestBlocking.

III. THEFT AND FORGERY OF USER DATA

Users’ sensitive data such as usernames, passwords, credit
card numbers, social security numbers, and date of birth are

frequently communicated through web pages. As previously
reported [25], extensions that are granted permissions to access
the pages containing this data can easily steal it. In this section
we demonstrate several variants of this general type of attack.
Some of these variants are difficult for users to detect; others
require fewer permissions than previously reported and may be
more difficult to defeat through previously proposed defenses.

A. Abusing the http//*/* Host Permission

The most common type of permission that extensions are
given is the permissions to inject content scripts into web pages
opened by the browser. This permission enumerates the pages
an extension is allowed to access. Commonly, an extension’s
content scripts are allowed to run on any page browsed by
the user; the permission to do so is denoted http://*/*.2 58.3%
of the top-1000 most popular Chrome extensions, and 38.0%
of all Chrome extensions have this permission. These injected
content scripts can read any content on the page, including
data entered by the user, the browser (the built in form filler),
or other extensions (e.g., password managers like LastPass?).
In the basic scenario, which has been previously reported [25],
when the user visits a web page, the malicious extension
injects scripts into the page. Since they are running in the
page’s environment, these scripts have the ability to read from
the DOM the password that the user enters. To successfully
carry out this basic attack, the extension needs to be installed
and active in the browser at the time when the user accesses the
targeted page. Finding the desired information to be extracted
in the DOM of the target page may be non-trivial and is
often page-specific. More concerningly, similar attacks can be
carried out even against pages that a user has not opened. We
discuss this next.

ATTACK Al. Suppose that a malicious extension is granted
the host permission http://*/*. When at least one page has
been loaded by the browser, the extension becomes active.
At this point, the extension has several methods by which
it can cause a new web page to be loaded without any
input from the user. For example, a content script can invoke
chrome.tabs.update, which doesn’t require any permis-
sion, to redirect a page to a new URL. If the browser or other
extensions have saved auto-fill data for that URL, it will be
entered into this page and available to the malicious extension.

Stealthy attacks using background tabs While such redi-
rection in the active tab might be easily noticed, it can also be
performed more stealthily, in tabs in the background.

There are at least two stealthy ways to open or redirect
a tab to target web pages that do not require additional
permissions beyond the http:/*/* host permission (specifically,
and perhaps surprisingly, the tab permission is not required).
The first method is to redirect an inactive tab to the target
web page; the extension can then steal sensitive information,

2Host permissions have several different forms, including http|https|*://*/*,
non-wildcard versions of the same, and all_hosts. Additionally, content scripts
could be allowed to execute in pages even when the extension core isn’t
allowed to access data from those pages directly. For simplicity of explanation,
we conservatively write that an extension has http://*/* host permission when
its permissions allow it to access any page both using HTTP and using HTTPS.
3www.lastpass.com

(1 F19VL, 99S) HLTVALS 40 STIATT ANV HLAIMANVE INTIHAI1d ONIAGIHOV ANV
‘SNOISSINME ONININOHTY ANOS ‘LNO AAIMVO g8 NVO MOVLLY SIHL 40 SLNVIIVA LNHYHIAIA LYHL SHLVOIANI | "AMOLYNV 1dXd-47TdS 44V SNWNTOD ¥EHLO "AIOYANY SV HONS ‘SIWHO0ALY 1d
YTHLO NO dd.140dd¥ SYOVLLV OL SNODOTYNV FUV (Z-LV ANV [-7V) SMOVLLY dNOS "ddLI0dT ATSNOIATId NIdd SVH LI A1 O ANV “IDVLLY ONILSIXH NV 40 NOISYIA d4LVIILSIHIOS IO
V SI MOVLLV ad41¥0Sad FHL 41 P ‘AdL40dad NId9d ATSNOIATId LON SVH MOVLLV THL A1 @ SMOHS , dIAOYdINI O MAN],, "(DNINLL 4D 'D'd) FWIL V LV SLIF TVITATS YO ANO ATINO YHASNVIL
SNOLLV¥HddO0 TVAAIAIANI 41 O ANV ‘(41000 V NI VIVA DNIYOLS “O'd) ANIL V 1V SALAE 40 SAIYANNH FAOW LVHL SNOLLV¥AdO WO¥d ITINd SI TANNVHD gHL 41 B ‘(ONIDVSSAN LOFAId
“0'd) NOILVYAdO ¥dd SALAGVOTIN FAOIW NVD NOISNTI0D/LITHL Y04 TANNVHD THL J1 @ SMOHS , HLAIMANVE HOIH,, "L4V.LS OL JOVLLY TFHL ¥0d add¥INOa¥ ST LNdINI ¥dSN YTHLIHM SMOHS
ddSN SAIAN],, “99SN LNVTIDIA V A9 AIA¥ASHI0 99 LHOIN (P *¥dSN GHL OL A19VAYASEO0 SLOTIAd ON HAVH LVHL SYOVLLY SALVOIANI @ :¥dSN GHL A9 ADLLON ATISVA ST MOVLLY TFHL JGHLIHM
SMOHS AHLIVALS,, "MOVLLY dHL OL AT9ILdIDSNS ¥VAddV NOILVNINVXA TVANVIN NO LVHL SALIS 00]-dOL Tv40TD VXATY 40 ¥F9NNN dHL SAIII0SAd AdLOFddV SALIS 00]-dOL %,, "SANIL
NOITTIN (] NVHL 940N dddvOINMOA ST NOISNALXA NV NTHM SYTINNN AdVOTINMOA FSIOTYd ONILIOITY SASVAD TIOLS ANOYHD THL HONIS ‘HLVINIXOUddV ¥V SNOISNALXT ¥V INdOd LSOW
FAYHL GHL Y04 SYTIINNN AVOINMOJ "NOISNALXT HOVA 40 SAVOINMOJ 40 YTINNN FHL A€ , ALOTAIV SIXH 9%, SIZITVINION . SAVOINMOA %,, "MOIAVHAL STHL A¥IN0TY LVHL SNOISNALXH
40 AOVINTD¥Ad GHL LI0ddd M ‘NODI NOISNALXT FHL NO MJITD OL ¥dSN HL G¥IN0TY LVHL SMOVLLY M0, "‘SNOISNALXHE 40 40D FHL ANIAVXHE LON dId M LNg ‘dFAV1dSId 99 OL DNINIVM
FNVS GHL SASNVD TTIVO [V NV ASNvOdd A4L0941V 39 NVD SNOILVOITddV TYNOILIAAV ‘daLOTAIV G4V SNOISNALXT %X LSVHAT LV IVHL LVIIANI OL X< ALIAM TA\ "ONINYVM AINVS
THL MOHS SNOISSINYAd FINOS ANV “YVAddV OL SONINYVM 2SAVD LON Od SNOISSIN¥Ad ANOS "MOVLLY FHL LNO AYIVO OL ATdINOTY SNOISSINYAd FHL HLIM LNALSISNOD ONINYVM TNIL-NNY
¥O AIL-NOILVTIVLSNI NV AV1dSId LVHL F90LS NOYHD) HL NI SNOISNALXH (4VI1NdOd LSOW 00 [-dOL) 40 DVLNADYAd dHL SALVIIANI AdLIF4dV SLXA [000[-dOL] %,, FHL 'NMOHS
9 OL ONINYVM TVYNOILLIAAV NV ASNVD LON Od SNOISSINYHAd FNOS $¥dSN TFHL OL NMOHS ONINYVM TGHL SALVIIANI ,NMOHS DNINYVAM,, "SSNISIA M SMIOVLIV 40 AIVININNS ‘1 9T19VL

S[OUURYD 9PIS
[L2] ‘[oc]l@ > Aue suou 1@ N @ 000I 000l 0001 000l suou suou JUIISURI) BIA UOISN[[0D LV
eI pareys
) > Kue Juou 1® N 1@ (000T 000T 000I 000l jouou jouou 3101[dXa BIA UOISN][0D 1-LV
SANIAT)OR FuISmolq Suikds poseq
(]] Aue quou (] N © V/N P8 +'09 el pue sqe) 0) $sad0R ssao0.d -Suriojiuow-ssa001d ()74
SIS gom uorsstuLrod Surumn y3noxyy
[c] “[el ‘[L11O @ Aue suou ® N @ 000l V68 €LL €718 QuIoS 0} $$9008 180y 21408 K1oys1y Sursmorq aimded -6y
SA)ISqIM £K10181y Sursmoliq
) () Kue Juou) N © 0001 €€L 0°8¢ €86 [[e 01 ssado® /20Ny armdes Apyoarrpur 1-SV
SA)ISqIM Sur33orkay
[11C L Kue suou ® N © 000l €¢L 08¢ €8¢ [[[2 @] SRERBIE Wx//-00Y ©IA Jndut ejep yoen eV
S9)ISqoM JUSWIOAOW 9SNOWT
(12l [oc] ‘l6110 @ Aue duou [] N © 0001 €¢L 08¢ €8S [[e 0} $83308 W+//-00Y BIA 1S3I9JUL Iosn 3orIn) vV
S9)ISqoMm S9O1ASD
[82]10 [} Kue Juou ® N © 0001 €€L 08¢ €8S [0] SSaJ9® /200y SSOIO® IOIABYQQ Iosn Yoen [-HY
SIS qom uorssturad K3our eyep
) () Kue Juou) N O 0001 +68 CLL €78 QWOS 0) SSAIE IS0y 2uLos Je[ora / indur 1osn 9310§ A%
Sunsnqgowrey sswexy [Te uorssruirad
[)) J[qeaweIyI ‘suotydo-swerg-x [] A @ 09¢ 9°0< 9I< ¢I< Quou ‘gqe] aAloe 1SOY O/M S)QIOJS [BA)S ara A
J[qISIA Sunsnqgowrey SIS gom vorssrurad uorssturrad 3soy
[cc]l@ @ ‘oIqeowreqyr ‘suotido-sweii-X () A @ 09S 168 SLL €78 QWOS 0) SSIIE IS0y 2ULos O/M $1QI09S J[QISIA [B9)S -V
Buioolg $101008 [B9)S +
Sas -1senbaygam suoTadp-swe i-X
[¥1® ([] Aue duou ® N © 000l S'LT Y ol QAN |18 ©1) SRERRIS “x//-00Yy duns (a4
Sunsnqgourey SoJIS sawel) |e S10I09S [E9)S + QWIBIJT
[sTlO [] Kue ‘suotido-sweri-x @ N © 09¢ €eL 08¢ €8¢ gom [[e 0} $$930' “x//-0ny ur dfed wnoIA peoj I-1v
SoJIS NENGEN
[Y4[®) [J Aue duou ® N O 000l €¢L 0'8¢ €86 gom e 0} Ss9oJe /200y pa[[y-oIne pue a3ed [ea)s v
: 2z £ F F B® B» ¥ Sy wewtwe o wen s
3 < ° s 5= a £ 83 S a ot S5 s a
= 5 s s 2 = ot o] & o] ~
< 5 g g g ¢ & g7 8= z arf =
o 5 = 5 g s g 3 S o
o <] a 2 2 S S = S
vm. & Hﬂ IM » mh. MN S
=] S @ <Y = 2 o o
< & Z S g a g
@ =}

and afterwards redirect the tab to the original web page. More
specifically, by calling chrome.tabs.query (queryInfo),
with queryInfo’s active flag set to false, an extension
can get the list of inactive tabs. The query can be fur-
ther restricted to tabs open in background windows (if the
browser has several windows open), by setting queryInfo’s
currentWindow field to false. Then, the extension can use
chrome.tabs.update to redirect the tab. These tab API
methods are not considered sensitive by Chrome, and so the
extension does not have to claim the tab permission in its
manifest. The only potentially observable visual evidence of
this attack is that the tab icon will redraw when a different
page is loaded. An alternative to using chrome.tabs.query
to determine whether a tab is visible is to use the windows
API, which can be used to determine which browser windows
(if any) are currently focused, i.e., are at the foreground or
have the pointer hovering over them, enabling an extension
to launch attacks only when the user is using an application
other than the browser. Using the windows API in this way
does not require the extension to have any permissions.

To confirm the feasibility of the attack, we implemented a
Chrome extension that successfully “stole” the username and
password from the Facebook.com and PayPal.com accounts
of one of the authors. The extension asks for permission to
all web pages (http://*/*). Once active on a victim page, the
extension waits for 0.5 seconds to give the password manager
time to fill in the username and password fields. It then
collects the information entered into those fields invoking the
document .getElementById method.

Stealthy attack via iframes An even less noticeable way
for extensions to access pages is to load them into iframes,
which can be in background tabs, or fully transparent or of
very small size, rendering them unnoticeable to the user.

ATTACK A1-1. Suppose that an extension’s content script
is running in some page. The extension can then mod-
ify the DOM of that page to create a new iframe (e.g.,
by executing document .write ("<iframe src=\"http://
victim.com\"> </iframe>");). The desired page is
loaded in the iframe, and password-manager extensions or
the browsers auto-fill functionality will automatically fill in
any remembered content for victim.com. To read that content
inside an iframe, an extension needs to have host permission to
the iframed page as well as the al1l_frames option specified
in its manifest. The addition of the a11_frames option causes
no additional warning to be shown to the user on installation.
We have implemented an attack that successfully steals the
account name and password from eBay’s login page.

Of Alexa’s top-100 web sites, 44% cannot be loaded in
an iframe: 36.0% specify this using the Xx-Frame-Options
header; 5.0% use framebusting; and 3% use other types of
defenses against iframes. However, extensions with the we-
bRequestBlocking permission can intercept and rewrite HTTP
headers to strip the Xx-Frame-Options header, and thus make
the pages that use this defense vulnerable.

ATTACK A1l-2. We implemented an extension to demon-
strate the feasibility of stripping X-Frame-Options. The
extension has host permission to all web pages and the

webRequestBlocking permission. It registers a listener for the
chrome.webRequest .onHeadersReceived event, and uses
it to set the Xx-Frame-Options header to ALLOW for pages
being fetched by the browser. Using the extension, we suc-
cessfully loaded yahoo.com, which uses Xx-Frame-Options
to prevent framing, into an iframe, enabling attacks like A1-1.

B. Abusing the capturevVisibleTab Method

Extensions can also steal sensitive data from web sites
for which they don’t have host permissions by using the
captureVisibleTab method of the tab API. This method
enables an extension to capture a screenshot of all the content
on the currently active tab, including any content rendered
in iframes. This method is not protected by any permission,
but is enabled only after the user has manually clicked on
the extension’s icon in Chrome’s address bar (or toolbar or
context menu). We next describe how this can be used to steal
sensitive data without attracting users’ attention.

ATTACK A2-1. Suppose that an extension has a content script
running in a tab that does not contain the victim page (e.g., by
having host permission to the specific page loaded in the tab).
The extension can then create an iframe (see Section III-A)
and load the victim page, allowing a password manager to
automatically fill in any auto-fill content for that page.

The extension can then take a screenshot of the page
on which it is running, and which now includes the auto-
filled content. This method cannot be easily used to steal
passwords or other information that is not visible in clear
text, but a variety of sensitive information, including credit
card numbers, date of birth, and usernames is typically shown
in clear text. Some subtlety is required to ensure that the
user does not notice this kind of manipulation of the page
loaded in the active tab (the page into which the iframe is
injected). The attacker can make the iframe almost transpar-
ent or open keep a very small window for the iframe and
scroll the window to display the content. Another method
to avoid being noticed by the user is to make the area of
the iframe so small as to show only a single character at
a time, and to move the field of view character by char-
acter until the entire secret has been captured by invoking
frame.contentWindow.scrollTo (xcoord, ycoord).

As proof of concept, we developed an extension that steals
a user’s ebay.com account address by loading ebay.com inside
a nearly transparent iframe. Figure 1(a) shows a screenshot of
the host page (at reddit.com) with the eBay iframe loaded but
invisible to the naked eye. Figure 1(b) shows the same image
after adjusting the RGB curve of the layer; there, the account
address is easily perceptible to the attacker.

Sometimes, sensitive information is available only after a
user has logged in to a victim page (e.g., as for the eBay
example above). Capturing such information requires that a
malicious extensions mounts the attack after the user has
logged in but before the user’s session has expired. There are
several ways for the extension to detect that a user has recently
logged in, enabling it to attempt an attack only then. For exten-
sions that have host permission to the desired page, noticing
that a user has logged in is straightforward, since the extension
can observe the loading of the login page. (Other permissions,

—
Billy]oel and]\mmy Fallon Form 2-Man Doo|
’_' s ago by NightHawk_88 to
_ 376 comments share

television

iew more: next » ortry 3 random subreddit

(a) Without image post-processing, the injected iframe is invisible
to the naked eye.

Fig. 1.

like webRequest or history, similarly straightforwardly give
access to this information.) Some server-side defenses against
session stealing may prevent this kind of access to specific
pages [3], but are not uniformly implemented.

A limitation of this attack, beyond that it affects only data
rendered in clear text, is that web pages that cannot be rendered
in an iframe (44% of Alexa top-100 web sites) are not directly
vulnerable. A second limitation is that the user must click
on the extension’s icon in the Chrome address bar for the
extension to be activated, and that the user must already be vis-
iting the victim page. 1.60% of extensions have the activeTab
permission. Hey Girl [11], for example, is an innocent image
find/replace extension; Search the Current Site [34] offers
enhanced search functionality for the current page; Craigslist
Peek [32] shows expanded content on craigslist pages at the
user’s request. Each of these extensions has the activeTab
permission and host permission to only a limited number of
pages; malicious extensions could be similarly disguised.

C. Abusing the activeTab Permission

The attacks described in Sections III-A-III-B relied on the
ability of the malicious extension to inject its content script
into some page within which an attack on a victim page is
then mounted. Here we describe a method for extensions to
gain access to such an intermediary page without having host
permission access to it, using the activeTab permission. This
permission allows an extension to inject content scripts into
the DOM of the currently active tab regardless of whether the
extension has host permission to the page, provided (similarly
to the captureVisibleTab method) that the user has manu-
ally clicked on the extension’s icon. Installing or activating an
extension with the activeTab permission does not involve any
warning dialogs being shown to the user.

Once an extension with the activeTab permission is acti-
vated, the extension can inject content scripts into the page
loaded in the active tab. This gives it similar capabilities as
extensions that have the http://*/* host permission.

ATTACK A2-2. A malicious extension with activeTab permis-
sion can inject a script to the page on which it is activated.
The extension then can cause a victim page to be loaded in an
iframe and steal its visible secrets as described in Section III-B.

A more powerful method of extracting secrets from the
iframed victim page can be used if the malicious extension’s

4+ Billy Joel and Jimmy Fallon Form 2-Man Doo
25 1797 submitted 19 hours ago by NightHawk_88 to television
+ +| 376 comments share

iow more: [o v » (rondom subrodd)

(b) After software manipulation, the attacker can easily extract
sensitive information from the previously invisible iframe.

Screenshots of a reddit.com page into which a malicious extension has injected an iframe that loads the user’s eBay account information.

manifest specifies the al1_frames option (see Section III-A),
which gives an extension the capability to steal secrets like
passwords that are not visible in clear text. In practice, seem-
ingly inconsistently with documentation, and highlighting the
importance of implementing hypothetical attacks, this attack
appears to be limited to iframes whose main page is from the
same domain as the tab’s top-level page.

We implemented an extension that pretends to offer en-
hanced printing functionality (similarly to the “Print Friendly
& PDF” extension, which has been downloaded over 160,000
times [40]); when activated on an Amazon.com page, the
extension loads the user’s Amazon address book in an invisible
iframe and obtains the user’s shipping address.

D. Forging User Input

Extensions can not only steal sensitive data, but also forge
web requests so that it appears that they come from the user.

ATTACK A3. This kind of misbehavior can be used to extend
the ability of malicious extensions to cause harm in several
ways. First, it extends their ability to gather information. An
extension could even log in to victim site on behalf of the user,
and then access information available only when the user is
logged in (e.g., transaction history or addresses on PayPal.
com). Whether and how a malicious extension can log in on
behalf of the user depends on a specific page’s implementation
of the login process. As proof of concept, we extended the
functionality of our extension that implements attack Al to
log in to Facebook.com and PayPal.com with the identity of
the user whose username and password have been auto-filled
by the browser or a password-manager extension.

Second, this kind of misbehavior also allows extensions
to perform data integrity attacks. Examples include changing
passwords filled in by the user or by a password manager to
cause a denial of service (e.g., the above-described extension
that logs into PayPal can be trivially modified to attempt to
log in with an incorrect password, thus locking the user out);
online banking operations can be changed and new ones can
be manufactured (e.g., a user’s request to his bank to pay a
bill can be modified; a new request to transfer money can
be created). As another example, an extension can modify
the password on the login page, lock user out, and trick the
user into resetting the password. Many sites ask the user to
provide answers to pre-selected password-reset questions. The

extension can obtain these answers and leverage them to attack
the user’s other accounts or forge transaction requests.

IV. TRACKING USER BEHAVIOR

Extensions can engage in many malicious behaviors be-
yond those discussed in Section III. In this section we discuss a
range of spying or tracking that extensions can carry out. Some
of these behaviors are closely related to attacks discussed in
Section III; others are enabled directly by the permissions
granted to extensions, and require no trick or exploit. Such
behaviors—even when in retrospect consistent with the per-
missions extensions are explicitly granted—are unlikely to fit
users’ mental models of what those permissions enable.

Cross-device tracking Tracking user browsing behavior is
a common and lucrative endeavor, with companies vying to
get the most complete picture of users’ online behavior [28].
Many techniques have been developed to facilitate this, like
identifying individual users by examining installed fonts and
other system configuration settings, allowing ad networks to
precisely track a single user’s web surfing across sites.

ATTACK A4-1. A malicious extension with the http://*/* host
permission that examined users’ sensitive data could facilitate
tracking not just across sites and sessions, which can already
be easily done without client-side help, but also across multiple
browsers and on shared-use computers (e.g., in libraries,
and on shared family computers). If a single extension (or
colluding extensions) is installed on all the browsers that
some user uses, the extension(s) can identify the specific
user, e.g., by recognizing that the same username has been
used on different instances of Chrome to log in to the same
site (e.g., if the user logs in to Facebook from her work,
home, and friends’ computers). The extension can then inject
information that uniquely identifies the user (e.g., a hash of
the user’s Facebook username and password) into the user’s
web requests, or collude with a third party tracker to link that
user’s various browsing contexts.

Tracking mouse movement A number of efforts have refined
approaches for resolving mouse cursor movement into an
understanding of user intent [19], [20], [21]. Many parties
might seek to exploit extensions’ ability to perform such
spying, from retailers and advertisers to national intelligence
agencies that practice surveillance on a massive scale.

ATTACK A4-2. Extensions that have http://*/* host permission
and inject their content scripts into web pages can access
the state of the mouse pointer (e.g., by registering a listener
for document . onmousemove events, the extension can track
the position of the mouse on a page). This information,
combined with access to DOM content, allows an extension
to track what page content the mouse pointer is hovering
over. This technique could be used, for example, to recognize
which headlines or paragraphs on a news web site a user
is particularly interested in; and even to probe the user for
specific interests by injecting content (e.g., a specific news
article or headline) to actively test the user’s interest in it.

Keylogging An extension with the http://*/* host permission
can capture keystrokes typed into any browser tab, enabling

particularly pernicious tracking. For example, all of a user’s
web-based email communication could be monitored, regard-
less of email provider, and including even web-based anony-
mous remailers and text written in online document editors.
Moreover, keylogging would also capture transient content
that the user decided to delete, e.g., an incautiously composed
email or tweet, or the email address of a contact to whom the
user on second thought decided not to send an email.

ATTACK A4-3. As proof of concept, we developed an ex-
tension that captures keyboard input. The extension waits
for a specific email address to be entered on any page; the
extension then records other keystrokes typed into the page
(presumably, the content of an email), and sends a copy of the
collected keystrokes to a third-party web site. The extension
has only the http://*/* permission, and we successfully used it
to capture messages composed to one of the authors both in
an anonymous remailer* and in Facebook.

A keylogging extension like this could continuously an-
alyze collected text for key phrases or names, which could
trigger an upload of captured data or initiate additional spying.

History sniffing Simpler tracking behaviors are also easily
available to extensions with seemingly safe permissions.

ATTACK AS5-1. Chrome allows only extensions that have the
history permission to access the browsing history. However,
most extensions have the http://*/* host permission, and any
such extension that has been installed for any length of time
can compile a detailed browsing history simply by record-
ing the addresses of all the pages into which its content
scripts have been injected (the content scripts can read the
document . URL field and relay it to the core, which collates
them). Extensions with the tabs permission can read URLs
directly from the tab object URL fields, even without having
host permission.

ATTACK AS5-2. History sniffing can also be implemented more
subtly. For example, it has been shown that page scripts can
detect the difference in rendering time between links that have
already been followed and those that have not [5], [9]. A
malicious extension with host permissions to even a single site
can mount the following attack. The extension first embeds in
a page a link to a (fake) URL that could not have been visited,
causing the browser to render the link text as an unvisited link.
The extension then substitutes, without changing the link text,
the fake URL for a real URL that the user may have visited.
If the URL had been previously visited, the browser will need
to repaint the link, which takes more time than if the link does
not need to be repainted. This attack, as carried out by page
scripts, has already been reported [5], [9]; we only observe
that it can equally be carried out by extension content scripts.

Process monitoring Recent work showed that real-time net-
work usage data (e.g., packet sizes) can be leveraged to track
a user’s location and, coupled with knowledge of application
behavior or other public information, determine activity within
applications (in an extreme case, the content of tweets) [42].

“http://gilc.org/speech/anonymous/remailer.html

ATTACK A6. An extension with the processes permission can
use the processes API to access statistics about real-time
CPU, memory, and network usage of the browser. Such an
extension could use recently developed techniques [42] to gain
significant insight into the behavior of users on pages whose
content the extension is forbidden from accessing (according
to its permissions). The processes API is currently available in
the Canary early-adopters’ release of Chrome; APIs introduced
there usually transition into the public release.

V. EXTENSION PRIVILEGE ESCALATION

Many extension misbehaviors require that an extension has
permission to access sensitive data (e.g., the system clipboard)
as well as permission to access the network to leak the
data to a third party. However, such extensions could raise
a user’s suspicion by requesting more permissions than seem
necessary. To avoid raising suspicion, the functionality of such
an extension could be split among multiple extensions. Each
could have only an innocent-seeming set of privileges, but they
could collude to carry out the same malicious behavior.

Consider, for example, the “Cyberx Password Generator”
extension [29]. The extension’s purpose is to generate pass-
words, which the user can copy-paste into the password fields
of web pages. Since the extension does not have permissions
that would appear to allow it to send data to others (e.g.,
http://*/*), it may seem to the non-expert user that extension
must be safe to run. Similarly, a user may be willing to trust ex-
tensions that have host permission only to their own web sites
(e.g., “Counter Strike Best Online Games Collection” [38],
“Online SpongeBob Games” [39]), since they may appear to
be unable to learn secrets that do not belong to their own site.
However, such trust is misplaced, as we next show.

Colluding via direct messaging Extensions can communicate
(regardless of their permissions) via inter-extension mes-
saging. Using chrome. runtime.onMessageExternal.add
Listener, the receiving extension registers an event han-
dler to wait for messages; the sender calls chrome.
runtime.sendMessage. An extension A that has learned a
secret (e.g., a password) can send the secret directly to another
extension B, which is not able to learn the secret otherwise,
but is able to send data (including the secret) to others.

Extension A can similarly collude with a page script (e.g.,
on a malicious or compromised site accessed by the user), even
if the extension does not have host permission to access that
web page. To do this, the extension lists the sites from which
to allow connections under externally_connectable in its
manifest. This does not incur any warning to the user.

Colluding via shared state Extensions can also collude
via less obvious channels. Given appropriate permissions,
extensions can access many types of shared state, including
history, bookmarks, and the system clipboard. These can be
used to communicate secrets with high bandwidth. Lower-
bandwidth communication can be achieved via shared state
like font settings and power settings (e.g., information can be
communicated one bit at a time by changing the default font
size). Table II enumerates such communication channels.

=
g S
s g SIS
g 7 dg 2 g
channel & & permission &5 & <75
history © © history 94 24 11.1
bookmarks © O© bookmarks 6.5 2.7 10.7
cookies © O© cookies 17.8 8.6 24.5
management O @ management 126 42 138
clipboard ® O clipboardRead, 1.0 09 0.5
clipboardWrite
downloads © O© downloads 0 02 <0.1
contentSettings O © contentSettings 0.6 0.4 0.8
fontSettings O © fontSettings 0.1 0.1 <0.1
message ® @ none 100 100 100
URL redirect © O none 100 100 100
TABLE II. TYPES OF SHARED STATE THAT CAN BE USED BY

COLLUDING EXTENSIONS. WHEN DESCRIBING BANDWIDTH, @ INDICATES
CHANNELS THAT TRIVIALLY GENERALIZE TO ARBITRARY BANDWIDTH; ©
CHANNELS CONSTRAINED BY FORMAT, BUT CAN TRANSFER 1000S OF
BYTES PER MESSAGE; O CHANNELS WHERE MESSAGES TRANSFER
INDIVIDUAL BITS. WHEN DESCRIBING STEALTH, @ MEANS A USER NOT
ACTIVELY ENGAGED IN DEBUGGING WILL NOT NOTICE THE COLLUSION;
© THAT A CASUAL USER WILL NOT NOTICE REGARDLESS OF WHICH
BROWSER INTERFACE SHE OPENS; O THAT A CASUAL USER COULD NOTICE
UNUSUAL BEHAVIOR IF SHE PERFORMED A SPECIFIC COMMON ACTION
(E.G., PASTING FROM THE CLIPBOARD) AT EXACTLY THE RIGHT MOMENT.

ATTACK A7-1. We developed two extensions that communi-
cate arbitrary-length strings to each other via the management
API (which requires the management permission, granted to
12.6% of top-1000 extensions and 4.2% of extensions overall).
The extensions use the enabled/disabled status of an agreed-
upon third extension as the communication channel. The
sender communicates a 0 bit by disabling the third extension
for 500 ms, and a 1 bit by disabling it for 1000 ms. (Smaller
intervals are likely to work as well.) The receiver extension
uses event listeners to observe when the extension is enabled
or disabled; no delay is necessary between sending two bits.

Extensions from the same developer may find it particularly
easy to collude. Among the 12,308 developers who published
extensions in the Chrome Web Store, 14.9% published multiple
extensions. We call the set of extensions authored by the same
developer a group. About 70% of groups request different
permissions for different extensions within the group. The
group with the largest spread of permissions had 6 extensions,
each requiring between 0 and 11 permissions [15]. The largest
number of extensions published by one developer is 125.
Interestingly, this developer, wips.com, offers to others the
service of publishing and maintaining their extensions, giving
it a perfect opportunity to create many colluding extensions.

Colluding via ephemeral state Extensions can also commu-
nicate (and collude) via standard timing channels (like CPU
utilization [27]) and temporary shared state, e.g., the number
and text of URL strings of open tabs. The number of open tabs
is a particularly relevant covert channel, since an extension
requires no permissions to open a new tab, close a tab that it
opened, or count the number of tabs.

ATTACK A7-2. As proof of concept, we implemented two
extensions that send one bit of information to each other in this

manner. One extension opens a tab by calling window.open;
the other counts the number of tabs by first listing all the
windows chrome.windows.getAll, and then adding the
length of window. tab for each window. The extensions agree
a priori on a time to communicate. If the number of tabs
opened at the agreed-upon instant is greater than two, the
receiver interprets that as 1; two or fewer is interpreted as
0. To avoid detection, extensions could communicate at times
when the user is unlikely to be near the computer.

VI. DISCUSSION OF DEFENSES

In this section, we discuss existing and proposed defenses
against attacks described in Sections III-V.

Content Security Policies (CSPs) Web sites can define
CSPs to protect themselves from cross-site-scripting and data-
injection attacks. Such policies specify from which origins
different types of content (e.g., images, scripts) can be loaded;
origins can also include extensions (i.e., a CSP can specify
that scripts and other resources from a particular extension
are allowed). CSPs can be used to defend against attacks
described in Sections III and IV. A web site can specify a CSP
that only allows scripts from vetted sources to be injected.
However, Chrome allows an injected content script to load
content from sources disallowed by the page’s CSP into the
content script’s context. As a result, the content script can
collude with downloaded scripts to carry out attacks.

Fine-grained permissions One proposed defense is to enforce
fine-grained access control to APIs and DOM elements [25].
For instance, if accesses to sensitive data in the DOM are
guarded by a finer-grained permission that is not included
in the http:/*.* host permission, then many of the attacks in
Section III can be prevented. Similarly, if the host permission
to a URL does not include permission to listen to mouse
events, then attacks in Section IV can be prevented as well.
Most of our attacks, however, like collusion attacks, cannot be
prevented by a finer-grained permission system. Permission-
based systems inherently suffer from privilege escalation and
information leaks, no matter how fine-grained the permissions
are (c.f. [23], [13]). The colluding attacks in Section V are
examples of privilege escalation and information leakage.

Enforcing information-flow policies Several works proposed
using static or dynamic taint analysis [6], [16] to ensure that
sensitive data does not flow to unauthorized extensions, web
pages, or remote servers. Some of the simple colluding attacks
can be detected by such analyses.

Much work has investigated preventing information leak-
age via JavaScript in browsers (e.g., [14]). However, browser
architectures include not only scripts from web pages, but
also DOM elements, extensions, and plugins. Recent work
has proposed building browsers ground-up to support rich
information-flow policies [41].

The granularity at which data is protected (e.g., based on
origin versus on arbitrarily fine-grained labels) and the gran-
ularity of the enforcement mechanism (e.g., tracking dataflow
at variable level versus at extension-level granularity) affect

the effectiveness of defenses. Protecting data based on origin
and enforcing policy at component level seems to offer an
attractive tradeoff between the strength of security guarantees
and the efficiency of enforcement. Using such an approach,
existing policies such as SOP, CSP, extension permissions, and
their compositions (including policy conflicts) can potentially
be expressed cleanly in one framework.

Increasing user awareness Mechanisms that allow users to
understand the capabilities of extensions and make informed
decisions about whether to install an extension can also be
part of an effective defense against malicious extensions. For
instance, permissions can be easily abused if users cannot
understand the security and privacy implications of granting
those permissions. Clear and intuitive explanations of the
security implications of permissions are key to defending
against extensions that request too many permisisons.

The Chrome web store could also facilitate the comparison
of extensions based on their capabilities, and steer users to-
wards ones that require fewer privileges but implement similar
functionality. This could incentivize developers to adhere to
least privilege principles to gain traction in the marketplace.

VII. RELATED WORK

Academia and industry have devoted significant effort to
improving the security and reliability of browsers [8], [7], [12],
[18], [31], [35]. Most popular browsers, such as Chrome and
Mozilla, enforce forms of component isolation and privilege
separation. Even with improved architecture designs, new ways
to exploit the users by launching attacks within the browser or
compromising the browser are frequently reported [37], [17],
[22]. Allowing browsers to be further extended by third-party
extensions has brought a new set of security concerns [24],
[36], [6], [26]. For the rest of this section, we focus on
comparing our work with prior work on analyzing the security
of Chrome extensions.

Recently, Carlini et al. performed a security review of 100
Chrome extensions, found 70 vulnerabilities, and demonstrated
several attacks [10]. We consider a different attack model, and
focus on attacks mounted by extensions and compromise the
secrecy and integrity of users’ data; whereas Carlini et al.
focus on benign-but-buggy extensions and network and web
attackers. Proposed defenses include banning insecure coding
practices that commonly lead to vulnerabilities, e.g., the usage
of HTTP scripts and inline scripts. Limiting the capabilities of
extensions, in general, can mitigate attacks mounted by exten-
sions. However, defenses proposed so far cannot prevent all
attacks here without inhibiting useful extension functionality.

Most similar in spirit to our work is Liu et al.’s work that
describes several attacks by extensions [25]. Our attacks Al,
Al-1, and A1-2 are subtler variants of Liu et al.’s password
sniffing-attack [25]. We additionally analyze Chrome extension
APIs that do not cause a warning to be displayed to the user
at install time, but can access sensitive data. Several attacks
we discuss use Chrome APIs (e.g., Attack A2-1 and A6) that
are outside the scope of that work. Liu et al. concluded that
Chrome’s inability to preventing these attacks is rooted in
the violation of the principles of least privilege and privilege

separation, and proposed a set of countermeasures that enforce
micro-privilege management and differentiate DOM elements
based on the level of sensitivity of the data they contain. Most
of our attacks, e.g., the collusion attacks (Section V), cannot
be prevented such countermeasures.

VIII. CONCLUSION

We catalogued a number of ways in which extensions,
individually or via collusion, can steal users’ sensitive data,
track their behavior, and forge their input. Though some of
these attacks have been previously reported, our investigation
shows that the dangers posed by malicious extensions are
greater than commonly thought. We determine that large frac-
tions of popular web sites are vulnerable, and many published
extensions have sufficient privileges to carry out the attacks.

ACKNOWLEDGMENTS

This research was supported in part by US Navy
grant NO00141310156; NSF grants 0917047, 1018211, and
1320470; and the Singapore National Research Foundation
under its International Research Centre @ Singapore Funding
Initiative and administered by the IDM Programme Office.

REFERENCES

[1] “Chrome extension keylogger,”
extensionkeylog/, accessed: 2014-02-11.

http://sourceforge.net/projects/

[2] “Chrome extensions overview,” developer.chrome.com/extensions/
overview.html, accessed: 2013-12-05.

[3] “Cross-site request forgery (CSRF) prevention cheat
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_
(CSRF)_Prevention_Cheat_Sheet, accessed: 2013-12-15.

[4] “Getting around X-Frame-Options DENY in a Chrome extension,” http:
/Istackoverflow.com/questions/15532791, accessed: 2014-02-11.

[S] “Pixel perfect timing attacks with HTMLS,” contextis.com/files/
Browser_Timing_Attacks.pdf, accessed: 2013-12-15.

[6] S. Bandhakavi, N. Tiku, W. Pittman, S. T. King, P. Madhusudan, and
M. Winslett, “Vetting browser extensions for security vulnerabilities
with VEX,” Commun. ACM, vol. 54, no. 9, pp. 91-99, Sep. 2011.

[7]1 A. Barth, A. P. Felt, P. Saxena, and A. Boodman, “Protecting browsers
from extension vulnerabilities,” in Proc. NDSS, 2010.

[8] A. Barth, C. Jackson, C. Reis, and T. G. C. Team, “The security
architecture of the Chromium browser,” Tech. Rep., 2008. [Online].
Available: http://seclab.stanford.edu/websec/chromium/

sheet,”

[9] A. Bortz and D. Boneh, “Exposing private information by timing web

applications,” in Proc. WWW, 2007.

[10] N. Carlini, A. P. Felt, and D. Wagner, “An evaluation of the Google
Chrome extension security architecture,” in Proc. USENIX Sec., 2012.

[11] K. Champagne, “Hey-Girl,” chrome.google.com/webstore/detail/
hey- girl/jcpmmhaffdebnmkjelaohgjmndeongip, accessed: 2013-12-02.

[12] R. S. Cox, S. D. Gribble, H. M. Levy, and J. G. Hansen, “A safety-
oriented platform for web applications,” in Proc. IEEE S&P, 2006.

[13] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on Android,” in Proc. ISC, 2010.

[14] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens, “FlowFox:
A web browser with flexible and precise information flow control,” in
Proc. ACM CCS, 2012.

[15] disconnect.me, “Disconnect search, Facebook disconnect,” chrome.
google.com/webstore/search/disconnect, accessed 2013-12-16.

[16] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song, ‘“Dynamic
spyware analysis,” in Proc. USENIX ATC, 2007.

[17] E. W. Felten and M. A. Schneider, “Timing attacks on web privacy,”
in Proc. ACM CCS, 2000.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

C. Grier, S. Tang, and S. T. King, “Designing and implementing the OP
and OP2 web browsers,” ACM Trans. Web, vol. 5, no. 2, pp. 11:1-11:35,
May 2011.

Q. Guo and E. Agichtein, “Towards predicting web searcher gaze
position from mouse movements,” in Proc. CHI EA, 2010.

J. Huang, R. W. White, G. Buscher, and K. Wang, “Improving searcher
models using mouse cursor activity,” in Proc. ACM SIGIR, 2012.

J. Huang, R. W. White, and S. Dumais, “No clicks, no problem: Using
cursor movements to understand and improve search,” in Proc. ACM
CHI, 2011.

D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An empirical study of
privacy-violating information flows in JavaScript web applications,” in
Proc. ACM CCS, 2010.

L. Jia, J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken,
K. Fukushima, S. Kiyomoto, and Y. Miyake, “Run-time enforcement
of information-flow properties on Android,” in Proc. ESORICS, 2013.

L. Liu, X. Zhang, and S. Chen, “Botnet with browser extensions,” in
Proc. IEEE SocialCom, 2011.

L. Liu, X. Zhang, V. Inc, G. Yan, and S. Chen, “Chrome extensions:
Threat analysis and countermeasures,” in Proc. NDSS, 2012.

R. S. Liverani and N. Freeman, “Abusing Firefox extensions,” 2009.

C. Marforio, H. Ritzdorf, A. Francillon, and S. Capkun, “Analysis of
the communication between colluding applications on modern smart-
phones,” in Proc. ACSAC, 2012.

N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna, “Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting,” in Proc. IEEE S&P, 2013.

realhacker.altervista.org, “Cyberx password generator,” chrome.google.
com/webstore/detail/cyberx-password- generator/mhdpbjioaheebp,
accessed: 2013-12-02.

R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and
X. Wang, “Soundcomber: A stealthy and context-aware sound Trojan
for smartphones,” in Proc. NDSS, 2011.

S. Tang, H. Mai, and S. T. King, “Trust and protection in the Illinois
browser operating system,” in Proc. OSDI, 2010.

tech4computer.wordpress.com, “Craigslist peek,” chrome.google.com/
webstore/detail/craigslist-peek/knpehhedikdgkbmhgagpcpcbclaidlmf,
accessed: 2013-12-02.

Y. Tian, Y.-C. Liu, A. Bhosale, L.-S. Huang, P. Tague, and C. Jackson,
“All your screens are belong to us: Attacks exploiting the HTMLS5
screen sharing APL)” in Proc. IEEE S&P, 2014.

tobias-schmidbauer.de, “Search the current
chrome.google.com/webstore/detail/search-the-current-site/
jliolpcnkmolaaecncdfeofombdekjcp, accessed: 2013-12-02.

H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and
H. Venter, “The multi-principal OS construction of the Gazelle web
browser,” in Proc. USENIX Sec., 2009.

J. Wang, X. Li, X. Liu, X. Dong, J. Wang, Z. Liang, and Z. Feng, “An
empirical study of dangerous behaviors in Firefox extensions,” in Proc.
Intl. Conf. Info. Sec., 2012.

Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen,
and S. King, “Automated web patrol with strider honeymonkeys,” in
Proc. NDSS, 2006.

www.flashgame90.com, “Counter strike best online games col-
lection,” chrome.google.com/webstore/detail/counter-strike-best-onlin/
hbpkcodlmobmmbhdhfembofegbpghdnh?hl=en, accessed: 2013-12-15.
——, “Online SpongeBob games,” chrome.google.com/webstore/detail/
online-spongebob- games/blkommpkadaihnagjpjpjbhkgfoekldk ?hl=en,
accessed 2013-12-15.

www.printfriendly.com, “Print friendly & PDF,” chrome.google.com/
webstore/detail/print- friendly- pdf/ohlencieiipommannpdfcmfdpjjmeolj,
accessed: 2013-12-16.

E. Z. Yang, D. Stefan, J. Mitchell, D. Mazieres, P. Marchenko, and
B. Karp, “Toward principled browser security,” in Proc. HotOS, 2013.
X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt, “Identity, location, disease and more: infer-
ring your secrets from Android public resources,” in Proc. CCS, 2013.

site,”

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	10-2014

	Analyzing the dangers posed by Chrome Extensions
	Lujo BAUER
	Shaoying CAI
	Limin JIA
	Timothy PASSARO
	Yuan TIAN
	Citation

	tmp.1544693182.pdf.3OpsB

