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Abstract. Cost-sensitive decision tree learning is very important and popular in 
machine learning and data mining community. There are many literatures 
focusing on misclassification cost and test cost at present. In real world 
application, however, the issue of time-sensitive should be considered in cost-
sensitive learning. In this paper, we regard the cost of time-sensitive in cost-
sensitive learning as waiting cost (referred to WC), a novelty splitting criterion 
is proposed for constructing cost-time sensitive (denoted as CTS) decision tree 
for maximal decrease the intangible cost. And then, a hybrid test strategy that 
combines the sequential test with the batch test strategies is adopted in CTS 
learning. Finally, extensive experiments show that our algorithm outperforms 
the other ones with respect to decrease in misclassification cost. 

1   Introduction 

Inductive learning techniques have met great success in building models that assign 
testing cases to classes in [1, 2]. Traditionally, inductive learning built classifiers to 
minimize the expected number of errors (also known as the 0/1 loss). Cost Sensitive 
Learning (CSL) is an extension of classic inductive learning for the unbalance in 
misclassification errors. Much previous work of CSL has focused on how to minimize 
classification errors. However, there are different types of classification errors, and 
the costs of different types of errors are often very different. For example, for a binary 
classification task in medical domain, the cost of false positive (FP) and the cost of 
false negative (FN) are often quite different. In addition, misclassification cost is not 
the only cost to be considered when applying the model to new cases. In fact, there 
are a variety of costs are often referred in cost-sensitive learning in [3], such as, 
misclassification cost, test cost, waiting cost, teacher cost, and so on.  
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Much precious research focuses on test cost and misclassification cost in [4-7] and 
select some attributes to test in order to minimize the total cost. They considered not 
only the misclassification cost but also test cost instead of the right ratio of the 
classification. But in these work, the test cost and the misclassification cost have been 
defined on the same cost scale, such as dollar, which is incurred in a medical 
diagnosis. For example, the test cost of attribute A1 is 50 dollars, A2 is 20 dollars, the 
cost of false positive is 600 dollars, and the cost of false negative is 800 dollars. But 
in fact, a same cost scale is not always reasonable. For sometimes we may encounter 
difficulty in defining the multiple costs on the same cost scale. It is not only a 
technological issue, but also a social issue [20, 21]. For example, in medical 
diagnosis, how much money we should assign for a misclassification cost? So we 
need to involve the costs with different scales in cost-sensitive learning.  

Next, it is necessary for considering waiting cost, which is defined as “the cost of 
performing a certain test may depend on the timing of the test” [3] in medical 
analysis. Time-sensitive costs are relatively common. For example, in any 
classification problem that requires multiple experts, one of the experts might not be 
immediately available. That will be paid the cost of waiting. The research on waiting 
time has broadly been studied in economics [8], medical service [9], and so on, but a 
little research [6, 10] can be found in cost-sensitive learning. Hence, it is necessary to 
take the waiting time into account in cost-sensitive learning.  

Thirdly, the data is often incomplete in real-world applications, i.e. the data may 
contain missing values. There are many methods [11, 12] to handle the missing data 
and there are only a little literatures [4-7] focused on dealing with missing values in 
cost-sensitive learning. How to deal with the missing values in training sets and in test 
sets is still a hot issue in cost-sensitive learning. 

In this paper, waiting cost (WC) will be defined firstly and talked about with 
misclassification cost and test cost in cost-sensitive learning later. Then cost-time 
sensitive decision tree (referred to CTS decision tree) will be constructed with 
missing values that are appearing in training sets as well in test sets. Next, a hybrid 
test strategy in which the usually sequential test strategy and single batch strategy will 
be combined to consider is proposed after constructing the cost-time sensitive 
decision tree. Different from the existing methods, our method presents some 
characteristics as fellows: 1) Introducing a new cost concept—waiting time cost—in 
details in cost-sensitive learning based on the research in medical application and 
economics. 2) In training set examples, the CTS decision tree is built based on a new 
attribute splitting method which is a trade-off among classification ability, 
misclassification cost and tangible cost (including test cost and waiting cost). 3) A 
hybrid test strategy which can receive the most decrease for misclassification cost or 
intangible cost in limited tangible costs is proposed for the test examples with missing 
values in order to test the constructed CTS decision tree.  

The rest of the paper is organized as follows. In section 2 we review the related 
work. Then we present our methods in section 3 and experimental results will be 
presented in section 4. Finally, in section 5 we will conclude our work with a 
discussion of future work. 
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2   Review of Pervious Work 

Cost-sensitive learning was first applied to the medical diagnosis for solving various 
problems. In real-world applications, there are many other costs besides the 
misclassification cost in [3]. We follow the categorization as mentioned in [13] and 
give a refined review in category 4 on classifiers sensitive to both attribute costs and 
misclassification costs as follows: 

 Classifiers minimizing 0/1 loss 
This has been the main focus of machine learning, from which we mention only 
CART and C4.5. They are standard top-down decision tree algorithms. C4.5 
introduced the information gain as a heuristic for choosing which attribute to 
measure in each node. CART uses the GINI criterion. Weiss et al. [14] proposed 
an algorithm for learning decision rules of a fixed length for classifications in a 
medical application; there are no costs (the goal is to maximize prediction 
accuracy). 

 Classifiers sensitive only to attribute costs  
The splitting criterion of these decision trees combines information gain and 
attribute costs in [15, 16]. These policies are learned from data, and their 
objective is to maximize accuracy (equivalently, to minimize the expected 
number of classification errors) and to minimize expected costs of attributes. 

 Classifiers sensitive only to misclassification costs 
This problem setting assumes that all data is provided at once [17], therefore 
there are no costs for measuring attributes and only misclassification costs 
matter. The objective is to minimize the expected misclassification costs. 

 Classifiers sensitive to both attribute costs and misclassification costs  
More recently, researchers have begun to consider both test and misclassification 
costs: [4-7, 18] proposed a new method for building and testing decision trees 
that minimizes the sum of the misclassification cost and the test cost. The 
objective is to minimize the expected total cost of tests and misclassifications. 
Both algorithms learn from data as well.  

As far as we know, some researchers believe that it is necessary to consider the 
misclassification cost and test cost simultaneously. Under this assumption, the doctors 
must make their optimal decisions concerning the trade-offs between the less test cost 
and lower misclassification cost. Some researchers use a simple strategy to quantify 
the misclassification cost to be the same as the test cost [4, 6, 19] (for example, use 
dollar as cost unit). However, the unit scales for different costs are usually various in 
real-world applications, and it is always difficult for people to quantify these various 
unit scales of costs into a sole unit [20, 21]. The literature [20, 21] proposed a cost-
sensitive decision tree that considers two different unit scales for costs. However, this 
method did not treat the tangible cost (such as test cost and waiting cost etc) and 
intangible cost (such as misclassification cost) as two different resources essentially, 
instead it divides all the costs into two groups of cost, that is the target cost and the 
source cost. 

It often happens that the result of a test is not available immediately. For example, 
a medical doctor typically sends a blood test to a laboratory and gets the result in the 
next day. In [6, 10], they regarded the cost of waiting time as waiting cost or delay 
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cost. In this paper, we give our definition of waiting time and combine it with test cost 
and common cost as tangible cost in our proposed algorithm. 

There exists missing values during the process of cost-sensitive learning. 
Sometimes, values are missing due to unknown reasons or errors and omissions when 
data are recorded and transferred. As many statistical and learning methods cannot 
deal with missing values directly, examples with missing values are often deleted. 
However, deleting cases can result in the loss of a large amount of valuable data. 
Thus, much previous research has focused on filling or imputing the missing values 
before learning and testing. However, under cost-sensitive learning, there is no need 
to impute any missing data and the learning algorithms should make the best use of 
only known values and that “missing is useful” to minimize the total cost of tests and 
misclassifications. There is a little research that has paid attention to this, such as, 
[22]. In this paper, we will talk about the case in which missing values can be 
encountered both in training sets and test sets. 

In summary, waiting cost which will be defined in advanced is combined the others 
costs in order to cost-sensitive learning, a novelty CTS decision tree can be built and a 
hybrid test strategy will be proposed to test the constructed decision tree with missing 
values in the dataset. Extensive experiments will show the efficiency of our method. 

3   Building CTS Decision Tree 

We assume that the training data and test data contain some missing values. In our 
proposed CTS decision tree, these processes will be considered: 1) selecting the 
splitting attributes. 2) building the CTS decision tree. 3) testing the constructed CTS 
decision tree. 

3.1   Some Definition of Costs 

Turney [10] has created taxonomy of the different types of cost in inductive concept 
learning in [3]. According to this taxonomy there are nine major types of costs. In this 
paper, we will take three of them into account. 

3.1.1   Misclassification Cost 
Misclassification cost: costs incurred by misclassification errors. This type of errors is 
the most crucial one and most of the cost-sensitive learning research has investigated 
the ways to manipulate such costs. These error costs can either be constant or 
conditional depending on the nature of the domain. Conditional misclassification 
costs may depend on the characteristics of a particular case, on time of classification, 
on feature values or on classification of other cases.  

3.1.2   Test Cost 
Test cost: costs incurred for obtaining attribute values. The necessity for test cost is 
proportional to the cost of misclassification. If the cost of misclassification surpasses 
the costs of tests greatly, then all tests of predictive value should not be taken into 
consideration. Similar to error costs, test costs can be constant or conditional on 
various issues such as prior test selection and results, true class of instance, side 
effects of the test or time of the test. 
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3.1.3   Waiting Cost 
It often happens that the result of a test is not available immediately. For example, a 
doctor typically sends a blood test to a laboratory and gets the result in the next day. 
A person waiting for the blooding test results will undertake pains, pressures. That is 
to say, a person must pay some cost for waiting the results of test. In this paper, the 
waiting cost only reflects the cost of waiting of results after a test is performed. And 
waiting cost will be confined to the assumption as follows: 

1. Waiting cost relates to the waiting time. Different waiting time presents different 
waiting cost. However, the longer waiting time, the smaller waiting cost maybe. 
For instance, waiting time for 10 minutes will present more serious effect for the 
person with heart attack than the one only with catching a cold. The waiting cost 
of the former will be much more larger than the latter in the same waiting time.  

2. Waiting cost varies from person to person, for place to place. For two persons 
with heart attack, to waiting 10 minutes for the old man is more danger than the 
twenties, so the waiting cost for the former will higher than the latter. 

3. Waiting cost relates the resources of the test. That is to say, a higher income will 
have a higher waiting cost with the same amount of waiting time [8]. It is obvious 
that a rich maybe more care the waiting time than the poor in medical test. 

In this paper, we assume all the waiting cost for each attribute is a constant that 
will be decided by the specialist in the domain, denoted as iWC , 1,...,i n= , where n is 

the number of attributes. For satisfied the above three assumptions, each will be 
multiplied by a coefficientα which is the ratio of a waiting cost to the corresponding 
assumptions. 

In particular, 0iWC = if the result of test can be got at once or means the waiting 

have little impact for the result of later test. iWC = ∞ , if the next test cannot be 

performed until the result of the former is presented even if the real waiting time for 
the result of the test can be got in a finite time, such as several seconds. So the value 
of iWC  is between 0 and ∞ . For ease of calculation, we will regard the scale of 

waiting cost as the same unit of the test cost. Furthermore, in a batch test, for 
example, the attributes 1,... iA A  are tested at the same time, we will get 

1,...

max{ }t
t i

WCWC
=

= .  

3.1.4   Tangible Cost and Intangible Cost 
In this paper, we regard Misclassification Cost as Intangible Cost (we refer it to IC) 
which means the cost exists but cannot be explained with some unit, such as dollar. 
On the contrary, Tangible Cost (noted as T_C) means the cost exists and can be 
explained with some unite, such as dollar, time and so on. The value of T_C for 
attribute i can be defined as follows: 

_ i i iT C TC WCα= + , 1,...,i n= , where n is the number of attributes. 

In particular, in our test strategy shown in section3.3, a number of attributes will be 
test at the same time at the aim to receiving the best system performance. For 
example, a set of blood tests shares the common cost of collecting blood from the 
patient. This common cost (referred to CC) is charged only once, when the decision is 
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made to do the first blood test. There is no charge for collecting blood for the second 
blood test, since we may use the blood that was collected for the first blood test. It is 
practical for considering common cost during the process of test and it is also helpful 
to improve the test accuracy in same test cost. Hence, in batch test, the value of T_C 
can be calculated as follows: 

                                1,...,
1,...1

_ { }max
i

i t t t
t it

T C TC CC WCα
==

= − +∑                          (1) 

3.2   Building CTS Tree 

3.2.1   Selecting the Attributes for Splitting  
There exist many kinds of splitting criterion to construct decision trees. Such as, the 
Gain (in ID3), the Gain Ratio (in C4.5) and minimal total cost. However, the methods 
(for instance, in ID3 or C4.5) consider the classification ability for the attribute 
without taking the costs into account. On the contrary, the method with minimal total 
cost [19] concerns the cost without paying much attention to the classification ability 
of the attribute. In our view, we hope to obtain optimal results both on the 
classification ability and on cost under the assumption of the limited resources. So in 
our strategy, the term ‘Performance’ which is equal to the return (the Gain Ratio 
multiplied by the total misclassification cost reduction) divided by the investment 
(tangible cost) is employed to meet our demand. That is to say, we select the attribute 
with larger Gain Ratio, lower test cost and decrease the misclassification cost. The 
‘Performance’ is defined as follows: 

       iGainRatio(A ,T)
i i iPerformance(A )=( 2  -1)*Redu_Mc(A )/ (TC(A )+1)                 (2) 

Where, GainRatio(Ai,T) is the Gain Ratio of attribute Ai，TC(Ai) is the test cost of  
attribute Ai. Redu_Mc(Ai) is the decrease of misclassification cost brought by the 
attribute Ai, and we get: 

                                      
n

i i
i=0

Redu_Mc(A )=Mc- Mc(A )∑                                          (3) 

Where Mc is the misclassification cost before testing the attribute Ai. If an attribute Ai 
has n branches, then n

ii 0
M c ( A )

=∑ is the total misclassification cost after splitting 

on Ai. 
For example, in a positive node, the Mc = fp * FP, fp is the number of negative 

examples in the node, FP is the misclassification cost for false positive. On the 
contrary, for examples, in a negative node, the Mc = fn * FN, where fn is the number 
of positive examples in the node, FN is the misclassification cost for false negative.  

We select the attribute with maximal values of Performance(Ai) ( i=1,…,n; n is the 
number of attributes) as the current splitting attribute during the process of 
constructing the CTS decision tree. 

3.2.2   Building Tree 
Our algorithm chooses an attribute with maximal Performance based on formula (2) 
to generate a node. Then, similar to C4.5, our algorithm chooses a locally optimal 
attribute without backtracking. Thus the resulting tree may not be globally optimal. 
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However, the efficiency of the tree-building algorithm is generally high. Some notes 
will be presented for constructing as follows: 

Firstly, according to the formula (2), we select the attribute with maximal 
Performance as current splitting attribute to generate a node or a root node. If a 
number of the attributes’ Performance is equal, the criterion to select test attribute 
should follow in priority order:  

1) the bigger Redu_Mc;  
2) the bigger test cost.  

This is because that our goal is to minimize the misclassification cost.  
Secondly, there are missing values in the training set while building the CTS 

decision tree. Zhang et al. [22] experimentally demonstrated all kinds of methods for 
dealing with missing values for constructing cost-sensitive decision tree, and made a 
conclusion that the best method would be the internal node strategy in [19] in which 
the missing values will be handled by internal nodes without being imputed. Hence, 
we will employ the internal nodes method to dealing with missing values in the 
training examples in our cost-time sensitive decision tree. 

Another important point is how to stop building tree. In the process of classify a 
case using a decision tree, the layer that will be visited may be different if the 
resources provided is different. The more resources a case has, the more layers it will 
be visited. For allowing a decision tree that can fit for all kinds of needs, the condition 
of stopping building tree is similar to the C4.5. That is to say, when one of the 
following two conditions is satisfied, the process of building tree will be stopped.  

(a) all the cases in one node are positive or negative;  
(b) all the attributes are used up.  

The next problem is how to label a node when it has both positive and negative 
examples. In traditional decision tree algorithms, the majority class is used to label the 
leaf node. In our case, as the decision tree is used to make predictions to minimize the 
misclassification cost or intangible cost under given resources. That is, at each leaf, 
the algorithm labels the leaf as either positive or negative (in a binary decision case) 
by minimizing the misclassification cost or intangible cost. Suppose that there is a 
node, P denotes that the node is positive and N denotes that the node is negative. The 
criterion is as follows: 

                P     if    p*FN > n*FP  
                N     if    p*FN < n*FP  

Where, p is the number of the positive case in the node, while n is the number of 
negative cases. FN is the cost of false negative, and FP is the cost of false positive. If 
a node including positive cases and negative cases, we must pay the cost of 
misclassification no matter what we conclude. But the two costs are different, so we 
will choice the smaller one. Here we consider that the cost of the right judgment is 0. 
For example, there is a node including 20 positive cases and 24 negative cases, and if 
the cost of the false positive and false negative is the same, the node will be 
considered negative. But in our view, they are different, such as FN is 800 and FP is 
600, the node will be considered positive because 16000 is larger than 14400. In 
reality, considering the situation that a patient (positive) is classified as health  
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(false negative), the result may be that he will lose of his life. On the contrary (false 
positive), he may only need to pay the cost of medicine fee, etc. So the cost is 
different. And in general, we think that the cost of false negative (FN) is larger than 
the cost of false positive (FP). 

Finally, the attribute at the top or root of the tree is likely the attribute which is 
with zero (or small) tangible cost, more decrease of the intangible cost and strongly 
classification ability without missing values base on the principle of our constructing 
cost-time sensitive decision tree.   

3.3   Performing Tests on Test Examples 

After the decision tree is built and all the nodes are labeled, the next interesting 
question is how this tree can be used to deal with test examples and pay the minimal 
misclassification cost or intangible cost confined to any tangible costs. There exist 
many kinds of test strategies in a number of literatures in [4-7, 19]. We can classify 
all these test strategies into three catalogues: sequential test strategies, batch test 
strategies and the hybrid test strategies combined the sequential method with the 
batch one. In our CTS decision tree, it isn’t practical for either the single sequential 
strategies or the batch strategies to be employed after considering waiting cost and the 
test examples with different resources. For example, a test example with enough test 
resources would not care about the test cost but consider the waiting time. In a 
medical test, the rich maybe test all the attributes under the unknown attribute (or 
node) which will be got the result costing more waiting time. This changes the 
sequential strategies to batch one. On the contrary, facing a number of attributes to be 
tested, the poor maybe only select one attribute to test due to the limited resources. 
Hence, in this paper, we will propose a hybrid method in which either sequential 
strategy or batch strategy will be chosen by some principles. The hybrid strategy is 
constructed as follows: 

At first, calculating the utility for each attribute based on the below definition: 

                                              
_

IC
Utility

T C
=                                                      (4) 

Secondly, computing the utility for some batch attributes which will satisfy some 
rules below: 

1) This batch attributes will be recommended by the specialist in these 
domains. These attributes will be combined mainly by some common cost. 

2) All the T_C of these attributes won’t exceed the resource for this test 
example. 

Different from the principle in [6] in which more attributes would be added into the 
batch until ROI does not increase, the time complexity of our method for computing 
utility is only linear because the batch is limited due to introduction by the specialist. 

And the number of the combination will be 2n  in the method in [6]. It is feasible for 
the specialists to decide the batch attributes as the researchers in this domains 
acquaint all the tests which can be grouped better than the single test. This can 
decrease the tangible costs as well as the time complexity of our algorithm. On the 
other hand, the limited resources for the test examples will be considered different 
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from existing methods in which the limited resources have not been taken into 
account, such as, in [4-7, 19]. 

Thirdly, the attribute(s) with the maximal utility for the result coming from the 
former two processes will be tested firstly. And the test strategy will be regarded as 
the sequential strategy while the attribute tested firstly is a single one. Otherwise, it is 
a batch strategy. So we call our method as a hybrid strategy as there exists both 
sequential method and batch strategy in our method. 

This process for testing will be continued until all tests are completed or the 
resources of the test example are used up.  

4   Experimental Analyses 

In this section, we empirically evaluate our algorithm with real-world datasets in 
order to show its effectiveness. We choose two real-world datasets, listed in Table 1, 
from the UCI machine learning repository [23]. Each dataset is split into two parts: 
the training set (60%) and the test set (40%). These datasets are chosen because they 
have some discrete attributes, popular in use and have a reasonable number of 
examples. The numerical attributes in datasets are discretized at first using a minimal 
entropy method [24]. Because there is no missing values in these four datasets, we 
artificially apply MCAR mechanism on these datasets under different missing rates. 
And the missing values in the conditional attributes are under missing rates of 10%, 
20%, 30%, 40%, 50% and 60%, respectively. To assign Test Cost, we randomly 
select a cost value that satisfied the constraint of falling into [1, 100] for each 
attribute. The costs for test are generated at the beginning of each imputation. The 
misclassification cost is set to 600/800(600 for false positive and 800 for false 
negative). Note that here the misclassification cost is only a relative value. It has 
different scales with test costs. 

Table 1. Datasets used in Experiments 

 Instances Attributes Classes(N/P) 

Tic-tac-toe 958 9 332/626 

Mushroom 8124 21 4208/3916 

For comparison, in section 4.1, we construct three CTS decision trees with 
different splitting criterion to demonstrate the efficiency of our splitting criteria 
without concerning about the waiting cost (i.e., the value of waiting cost for each 
attribute in each dataset is equal and constant). One CTS decision tree with the 
splitting criteria of gain ration is denoted as GR, the method with the minimal total 
cost is referred to as MTC and our method is regarded as PM. The experimental 
results of the effect for waiting cost will be presented in section 4.2.  

4.1   Experiments for Algorithm’s Efficiency 

In this section, we evaluate the performances of different algorithms on datasets under 
different levels of missing rates. For each experiment, we do not consider the 
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resources of test example, i.e., each test example has enough test cost to be tested. 
The test cost is 900 and 2100, respectively for dataset Tic-tac-toe and Mushroom. 
Figures 1 and 2 provide detailed results from these two datasets, where the x-axis 
represents the missing rate and the y-axis is the Misclassification Cost.  

 

Fig. 1. The misclassification cost VS the missing rate 

From Figures 1, we can see that with the increase of the missing rate, all methods 
suffer from the increase of misclassification cost, because more missing values have 
been introduced and the model generated from the data has been corrupted. When 
comparing with the different algorithms, we find that PM is the best among these 
methods in terms of misclassification cost at different missing rate. The experimental 
results demonstrate that the method with Formula (2) for spitting attributes is best 
than the naive methods, such as maximal grain ratio method or the minimal total cost 
method under the assumption of without limited resources. 

In the above paragraph, we did not fix the test costs and we assumed each attribute 
will be tested with the enough test resources. However, in real applications, there 
exists a limited resources, such test cost. In this subsection, we will use all kinds of 
test cost levels to test the efficiency of our method comparing with the other two  
 

 

Fig. 2. The misclassification cost VS the test cost 



 Cost-Time Sensitive Decision Tree with Missing Values 457 

methods. The experimental results of dataset Tic-tac-toe are shown in Figure 3 and 4, 
for missing rate 20% and 40% respectively. The domain of test cost is between 100 
and 600 in Figure 3 and 4, the results of MC is presented in y-axis. The results show 
that our PM algorithm performs better than the other two algorithms in the terms of 
limited test costs. 

From Fig. 1 to 2, we can make a conclusion that the splitting criterion of PM 
algorithm is best than the maximal grain ratio and minimal total cost method with all 
kinds of resources, such as test cost. 

4.2   Experiments for Waiting Cost 

In section 3, we analyze it is practical for talking about waiting cost into the CTS 
learning. In this section, we will experimental test this method. In order to investigate 
the effect of various waiting costs, we set up three levels for waiting costs: (a) all 
waiting costs are 0 (denoted as Max0 in Figure 3); (b) all delay costs are randomly 
assigned from 0 to 50; and (c) all delay costs are randomly assigned from 0 to 100. 
We also design some common cost in our experiments. In our opinion, the higher 
waiting cost, the less test cost is. This is because there are more common costs which 
can efficient decrease the test cost for the test examples. From Figure 3, we can see 
this meets our expectations. 

 

Fig. 3. The test cost VS the missing rate 

5   Conclusions 

In this paper, we introduce waiting cost into cost-sensitive learning with 
misclassification cost and test cost to construct CTS decision tree with a new splitting 
criterion. Then a hybrid test strategy is proposed to test the constructed CTS decision 
tree with missing values and limited resources. Extensive experiments show our 
method outperforms the existed methods and it is feasible for talking about waiting 
cost in CTS learning. In the future, we will further demonstrate the advantages of 
CTS decision tree. 
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