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a b s t r a c t 

In this paper, we present a new face detection scheme using deep learning and achieve the state-of-the- 

art detection performance on the well-known FDDB face detection benchmark evaluation. In particular, 

we improve the state-of-the-art Faster RCNN framework by combining a number of strategies, including 

feature concatenation, hard negative mining, multi-scale training, model pre-training, and proper calibra- 

tion of key parameters. As a consequence, the proposed scheme obtained the state-of-the-art face detec- 

tion performance and was ranked as one of the best models in terms of ROC curves of the published 

methods on the FDDB benchmark. 1 

© 2018 Published by Elsevier B.V. 

1. Introduction 

Face detection is a fundamental and important problem in com- 

puter vision and pattern recognition, which has been widely stud- 

ied over the past few decades. Face detection is one of the impor- 

tant key steps towards many subsequent face-related applications, 

such as face verification [1,2] , face recognition [3–5] , and face clus- 

tering [5] , etc. Following the pioneering work of Viola Jones ob- 

ject detection framework [6,7] , numerous methods have been pro- 

posed for face detection in the past decade. Early research stud- 

ies in the literature were mainly focused on extracting different 

types of hand-crafted features with domain experts in computer 

vision, and training effective classifiers for detection and recogni- 

tion with traditional machine learning algorithms. Such approaches 

are limited in that they often require computer vision experts in 

crafting effective features and each individual component is opti- 

mized separately, making the whole detection pipeline often sub- 

optimal. 

In recent years, deep learning, especially the deep convolutional 

neural networks (CNN), has achieved remarkable successes in vari- 

∗ Corresponding author at: School of Information Systems, Singapore Manage- 
ment University, Singapore. 

E-mail address: steven@deepir.com (S.C.H. Hoi). 
1 The result of this work ranked #1 on the FDDB leaderboard in Feb 2017. An 

earlier version of this work was submitted to published in arXiv.org on 28 Jan 2017 

ous computer vision tasks, ranging from image classification to ob- 

ject detection and semantic segmentation, etc. In contrast to tra- 

ditional computer vision approaches, deep learning methods avoid 

the hand-crafted design pipeline and have dominated many well- 

known benchmark evaluations, such as ImageNet Large Scale Vi- 

sual Recognition Challenge (ILSVRC) [8] . Along with the popularity 

of deep learning in computer vision, a surge of research attention 

has been emerging to explore deep learning for resolving face de- 

tection tasks. 

In general, face detection can be considered as a special type 

of object detection task in computer vision. Researchers thus have 

attempted to tackle face detection by exploring some successful 

deep learning techniques for generic object detection tasks. One of 

very important and highly successful framework for generic object 

detection is the region-based CNN (RCNN) method [9] , which is a 

kind of CNN extension for solving the object detection tasks. A va- 

riety of recent advances for face detection often follow this line of 

research by extending the RCNN and its improved variants. 

Following the emerging trend of exploring deep learning for 

face detection, in this paper, we propose a new face detection 

method by extending the state-of-the-art Faster R-CNN algorithm 

[10] . In particular, our scheme improves the existing Faster RCNN 

scheme by combining several important strategies, including fea- 

ture concatenation [11] , hard negative mining, and multi-scale 

training, etc. We conducted an extensive set of experiments to 

evaluate the proposed scheme on the well-known Face Detection 

https://doi.org/10.1016/j.neucom.2018.03.030 
0925-2312/© 2018 Published by Elsevier B.V. 
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Dataset and Benchmark (FDDB) [12] , and achieved the state-of-the- 

art performance. 

The rest of this paper is organized as follows. Section 2 briefly 

reviews the related work in face detection literature and recent ad- 

vances of deep learning approaches. Section 3 presents the pro- 

posed deep learning approach for face detection. Section 4 dis- 

cusses our experiments and empirical results. Section 5 concludes 

this work. 

2. Related work 

Face detection has been extensively studied in the literature of 

computer vision. Before 20 0 0, despite many extensive studies, the 

practical performance of face detection was far from satisfactory 

until the milestone work proposed by Viola and Jones [6,7] . In par- 

ticular, the VJ framework [6] was the first one to apply rectangu- 

lar Haar-like features in a cascaded Adaboost classifier for achiev- 

ing real-time face detection. However, it has several critical draw- 

backs. First of all, its feature size was relatively large. Typically, in 

a 24 × 24 detection window, the number of Haar-like features was 

160,0 0 0 [7] . In addition, it is not able to effectively handle non- 

frontal faces and faces in the wild. 

To address the first problem, much effort has been devoted to 

coming up with more complicated features like HOG [13] , SIFT, 

SURF [14] and ACF [15] . For example, in [16] , a new type of fea- 

ture called NPD was proposed, which was computed as the ratio of 

the difference between any two pixel intensity values to the sum 

of their values. Others aimed to speed up the feature selection in 

a heuristic way [17,18] . The well known Dlib C++ Library [19] took 

SVM as the classifier in its face detector. Other approaches, such as 

random forest, have also been attempted. 

Enhancing the robustness of detection was another extensively 

studied topic. One simple strategy was to combine multiple de- 

tectors that had been trained separately for different views or 

poses [20–22] . Zhu and Ramanan [23] applied multiple deformable 

part models to capture faces with different views and expressions. 

Shen et al. [24] proposed a retrieval-based method combined with 

discriminative learning. Nevertheless, training and testing of such 

models were usually more time-consuming, and the boost in de- 

tection performance was relatively limited. Recently, Chen et al. 

[25] constructed a model to perform face detection in parallel with 

face alignment, and achieved high performance in terms of both 

accuracy and speed. 

Recent years have witnessed the advances of face detection us- 

ing deep learning, which often outperforms traditional computer 

vision methods significantly. For example, Zhan et al. [26] em- 

ployed CNN to automatically learn and synthesize feature extrac- 

tors used for face detection. Li et al. [27] presented a method for 

detecting faces in the wild, which integrates a ConvNet and a 3D 

mean face model in an end-to-end multi-task discriminative learn- 

ing framework. Recently, [28] applied the Faster R-CNN [10] , one of 

state-of-the-art generic object detector, and achieved promising re- 

sults. In addition, much work has been done to improve the Faster 

R-CNN architecture. In [29] , joint training conducted on CNN cas- 

cade, region proposal network (RPN) and Faster R-CNN has realized 

end-to-end optimization. Wan et al. [30] combined Faster R-CNN 

face detection algorithm with hard negative mining and ResNet 

and achieved significant boosts in detection performance on face 

detection benchmarks like FDDB. In this work, we propose a new 

scheme for face detection by improving the Faster RCNN frame- 

work. 

3. Our approach 

3.1. Overview of methodology 

Our method follows the similar deep learning framework of 

Faster RCNN, which has been shown to be a state-of-the-art deep 

learning scheme for generic object detection [10] . It essentially 

consists of two parts: (1) a Region Proposal Network (RPN) for 

generating a list of region proposals which likely contain objects, 

or called regions of interest (RoIs); and (2) a Fast RCNN network 

for classifying a region of image into objects (and background) and 

refining the boundaries of those regions. The two parts share com- 

mon parameters in the convolution layers used for feature extrac- 

tion, allowing this architecture to accomplish object detection tasks 

at a fairly competitive speed. In this work, we propose to extend 

the Faster RCNN architecture for face detection towards higher re- 

call and accuracy, and train our face detection model by following 

the proposed procedure as shown in Fig. 1 . 

First of all, we train the CNN model of Faster RCNN using the 

WIDER FACE dataset [31] . We further use the same dataset to test 

the pre-trained model so as to generate hard negatives. These hard 

negatives are fed into the network as the second step of our train- 

ing procedure. By training on these hard negative samples, the re- 

sulting model is able to generate fewer false positives. This model 

will be further fine-tuned on the FDDB dataset. During the final 

fine-tuning process, we apply the multi-scale training process, and 

adopt a feature concatenation strategy to further boost the perfor- 

mance of our model. For the whole training processes, we follow 

the similar end-to-end training strategy as Faster RCNN for its sim- 

plicity and strong performance. As a final optional step, we convert 

the resulting detection bounding boxes into ellipses as the regions 

of human faces are more elliptical than rectangular. 

In the following, we discuss five key steps of our solution in 

detail. 

3.2. Feature concatenation 

For traditional Fast RCNN networks, the RoI pooling is per- 

formed on the final feature map layer to generate features of the 

region, which are then further analyzed by the classification part of 

the network. This ingenious design makes it possible for the clas- 

sification network to utilize the features calculated from RPN, sav- 

ing a lot of unnecessary calculations. However, such an approach is 

not always optimal and sometimes may omit some important fea- 

tures, as features in deeper convolution layer output have wider 

receptive fields, resulting in a grosser granularity. In the proposed 

Fig. 1. Flowchart of the training procedure of the proposed deep learning scheme. 
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Fig. 2. Network architecture of the proposed improved Faster R-CNN scheme. 

solution, in order to capture more fine-grained details of the RoIs, 

we propose to improve the RoI pooling by combining the fea- 

ture maps of multiple convolution layers, including both lower- 

level and high-level features. Inspired by the study in [11] , we pro- 

pose to concatenate the pooling result of multiple convolutional 

feature maps to generate the final pooling features for detection 

tasks. In other words, we utilize some intermediate results along 

with the final feature map in RPN, combining them together to 

yield the final pooling features. Specifically, features from multiple 

lower-level convolution layers are RoI-pooled and L2-normalized, 

respectively. Those resulting features are then concatenated and 

rescaled to match the original scale of the features as if feature- 

concatenation had not been adopted. A 1 × 1 convolution is then 

applied to match the number of channels of the original network. 

As to be later illustrated in the experimental section, the invo- 

cation of feature concatenation in our network boost the perfor- 

mance by around 1% for the FDDB continuous ROC score, and 0.8% 

for the discrete one. The detailed architecture of this approach is 

shown in Fig. 2 . 

3.3. Hard negative mining 

Hard negative mining has been shown as an effective strategy 

for boosting the performance of deep learning, especially for object 

detection tasks including face detection [30] . The idea behind this 

method is that, hard negatives are the regions where the network 

has failed to make correct prediction. Thus, the hard negatives are 

fed into the network again as a reinforcement for improving our 

trained model. The resulting training process will then be able to 

improve our model towards fewer false positives and better classi- 

fication performance. 

In our approach, hard negatives are harvested from the pre- 

trained model from the first step of our training process. We then 

consider a region as hard negative if its intersection over union 

(IoU) over the ground truth region is less than 0.5. During the hard 

negative training process, we explicitly add those hard negatives 

into the RoIs for fine-tuning the model, and balance the ratio of 

foreground and background to be about 1:3, which is the same as 

the ratio that we use in the first step. 

3.4. Model pre-training 

To adapt Faster RCNN to face detection, we opt to fine-tune a 

pre-trained model from ImageNet on a face dataset. As a widely 

acknowledged dataset with unconstrained faces, the FDDB dataset 

serves this purpose well. However, simply fine-tuning on this 

dataset may not be a wise option, as this is a relatively small 

dataset with only 5171 faces in 2845 images. In our approach, 

before fine-tuning on FDDB, we first pre-train our model on the 

WIDER FACE dataset, a much larger face dataset with many more 

difficult examples. To handle those difficult cases, which may dis- 

rupt the convergence of the training process, care must be taken 

to discard some of the training data, where details can be found 

in the experimental section. In addition, hard negative mining is 

essential when pre-training on this dataset, so that the number of 

generated false positives can be minimized. This strategy of pre- 

training, combined with hard negative mining, gives an increase of 

around 1.1% on the FDDB continuous ROC score, and 0.6% on the 

discrete one. 

3.5. Multi-scale training 

The Faster RCNN architecture typically adopt a fixed scale for 

all the training images. By resizing the images to a random scale, 

the detector will be able to learn features across a wide range of 

sizes, thus improving its performance towards scale invariance. In 

this work, we randomly assign one of three scales for each im- 

age before it is fed into the network. The details are given in our 

experimental section. Our empirical results show that the use of 

multi-scale training makes our model more robust towards differ- 

ent sizes, and improve the detection performance on benchmark 

results (around 0.2% boost on FDDB continuous and discrete score). 

3.6. Number of anchors 

In this work, we have tuned several key hyper-parameters in 

the Faster RCNN architecture, where we have found that, among 

others, the most crucial one seems to be the number of anchors in 

the RPN part. Traditional Faster RCNN uses 9 anchors, which some- 

times fails to recall small objects. For face detection tasks, however, 

small faces tend to be fairly common, especially in the case of un- 

constrained face detection. Therefore, instead of using the default 

setting, we add a size group of 64 × 64 (which is smaller than any 

of the default size groups), thus increasing the number of anchors 

to 12. Our experiments show that this modification increases the 

FDDB continuous ROC by around 1.3%, and discrete ROC by around 

2.3%. 

4. Experiments 

4.1. Experimental setup 

We conduct an empirical study of evaluating the proposed face 

detection solution on the well-known FDDB benchmark testbed 

[12] , which has a total of 5171 faces in 2845 images, including var- 

ious detection challenges, such as occlusions, difficult poses, and 

low resolution and out-of-focus faces. 

For implementation, we adopt the Caffe framework [32] to train 

our deep learning models. VGG16 is selected to be our backbone 

CNN network, which has been pre-trained on ImageNet. For the 

first step, WIDER FACE training and validation datasets are se- 

lected as our training dataset. We give each ground-truth anno- 

tation a difficulty value, according to the standard listed in Table 1 . 

Specifically, all faces are initialized with zero difficulty. If a face 

region satisfies a certain condition listed in Table 1 , we add the 

corresponding difficulty value. We ignore those annotations with 
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Table 1 
Difficulty value assignment strategy. 

Blur Expression Illumination Occlusion Pose 

Normal blur Heavy blur Extreme expression Extreme illumination Partial occlusion Heavy occlusion Atypical pose 

0.5 1 1 1 0.5 1 1 

Fig. 3. Comparisons of our results with some of recent and most competitive submissions to FDDB (top: continuous ROC result; bottom: discrete ROC result). Our result 
clearly outperforms those selected in terms of both continuous and discrete ROC. Our result ranked #1 on the leaderboard of FDDB published category in Feb 2017. 

difficulty values greater than 2. Further, all the images with more 

than 10 0 0 annotations are also discarded. 

The pre-trained VGG16 model is trained on this aforementioned 

dataset for 110,0 0 0 iterations with the learning rate set to 0.0 0 01. 

During this training process, images are first re-scaled while al- 

ways keeping the original aspect ratio. The shorter side is re-scaled 

to be 600, and the longer side is capped at 10 0 0. Horizontal flip- 

ping is adopted as a data augmentation strategy. During the train- 

ing process, 12 anchors are used for the RPN part, which covers 

a total size of 64 × 64, 128 × 128, 256 × 256, 512 × 512, and three 

aspect ratios including 1:1, 1:2, and 2:1. After the non-maximum 

suppression (NMS), 20 0 0 region proposals are kept. For the Fast 

RCNN classification part, an RoI is treated as foreground if its IoU 

with any ground truth is greater than 0.5, and background oth- 

erwise. To balance the numbers of foregrounds and backgrounds, 

those RoIs are sampled to maintain a ratio of 1:3 between fore- 

ground and background. 

For the second step, the aforementioned dataset is fed into the 

network. Those output regions, whose confidence scores are above 

0.8 while IoU values with any ground-truth annotation are less 

than 0.5, are regarded as the “hard negatives”. The hard negative 

mining procedure is then taken for 10 0,0 0 0 iterations using a fixed 

learning rate of 0.0 0 01, where those hard negatives are ensured to 

be selected along with other sampled RoIs. Finally, the resulting 

model is further fine-tuned on the FDDB dataset to yield our final 

detection model. 

To examine the detection performance of our face detection 

model on the FDDB benchmark, we conduct a set of 10-fold cross- 

validation experiments by following the similar settings in [12] . For 

each image, in addition to performing the horizontal flipping, we 

also randomly resize it before feeding it into the network. Specif- 

ically, we resize each image such that its shorter side will be one 

of 480, 600, 750. Similar to the policy taken in the first step, we 

ensure that the longer side does not exceed 1250. 
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Fig. 4. Performance of our model on the AFW test set. Data of other models and evaluation code are acquired from [33] . 

During the training process, we apply the feature concatenation 

strategy as introduced in the previous section. Specifically, we con- 

catenate the features pooled from conv3_3, conv4_3, and conv5_3 

layers. As illustrated in [11] , the scale used after the features be- 

ing concatenated can be either refined or fixed. Here we use a 

fixed scale of 4700 for the entire blob, both in the training and 

test phases. We fine-tune the model for 40,0 0 0 iterations using a 

fixed learning rate of 0.001 to obtain our final models. 

For the test phase, a query image is first rescaled by follow- 

ing the same principle as in the first stage. For each image, a total 

of 100 region proposals are generated by the RPN network during 

the region proposal generation step. A selected region proposal is 

regarded as a face if the classification confidence score is greater 

than 0.8. In our approach, the NMS threshold is set to 0.3. For 

the analysis purposes, we also output all the region proposals with 

confidence scores greater than 0.001 in our experiments. 

4.2. Results 

Fig. 3 gives the detailed comparisons of two kinds of ROC scores 

for some of the most recent / competitive published methods sub- 

mitted to the FDDB benchmark. The promising results validate the 

effectiveness of the proposed method for face detection using deep 

learning techniques. 

In addition to the quantitative evaluation results, we also ran- 

domly choose some qualitative results of face detection examples 

for different cases, as shown in Fig. 5 (and more other examples in 

Fig. 7 ). Fig. 5 a demonstrates that our model is able to detect some 

difficult cases, such as non-frontal faces, heavily occluded faces, 

faces with low resolution, and faces with extreme poses and/or 

illumination. Fig. 5 b lists some selected false positives, where it 

seems that most of the false positives are actually missing annota- 

tions. Fig. 5 c lists some of the false negatives, which includes some 

very challenging cases, such as blur faces, heavily occluded faces, 

and extremely small faces. 

The inference speed of this model is around 9 fps on a NVIDIA 

Geforce GTX 1080 GPU. This is limited by the backbone network 

of VGG16. Many new networks [34] and optimization techniques 

[35] exist that could accelerate the model, but the primary focus of 

this work is to apply training tricks to existing models and improve 

detection accuracy. 

Although our model is fine-tuned on the FDDB dataset, we 

show in Fig. 4 that it generalizes well on other benchmarks. The 

FDDB and AFW benchmarks are labeled using completely different 

guidelines, and yet our model is still able to achieve state-of-the- 

art performance against the most competitive models. 

4.3. Ablation experiments 

To further gain the deep insights of the improvements obtained 

by the proposed method, we conduct more additional experiments 

for ablation studies as listed in Table 2 , where we aim to exam- 

ine the effectiveness and contributions of different strategies used 

in the proposed method. Fig. 6 shows the detailed experimental 

results of the ablation studies for examining several different set- 

tings. 

First of all, by examining the impact of anchor size, we compare 

the default setting of 9 anchors with our modification of 12. Using 

this modification would allow our model to detect more small de- 

tection boxes (as shown in Experiment ID 1 vs. ID 2). 

Second, we examine the impact of pre-training on our model 

on additional larger-scale face data sets (such as WIDER FACE in 

our approach), since FDDB is a relatively small dataset. However, 

the pre-training is not trivial as the WIDER FACE dataset is more 
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Fig. 5. Selected detection results. (a) Correctly detected faces; (b) false positives; (c) false negatives (red: annotation; blue: correctly detected faces; cyan: false positives; 
yellow: false negatives). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

challenging than FDDB, as it contains many difficult cases. As seen 

from experiment ID 4, although the detection recall was improved 

compared with Experiment ID 2, a simple training on WIDER FACE 

will yield many more false positives. By using the hard negative 

mining (as shown in Experiment ID 5), the number of false posi- 

tives was reduced significantly. 

Third, we examine the impact of feature concatenation strategy. 

As shown in our ablation study experiments (ID 2 vs. ID 3, and ID 5 

vs. ID 6), feature concatenation turned out to be an effective strat- 

egy. By combining features from multiple layers, the model was 

able to learn features of multiple sizes, and was therefore better at 

classification. 
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Table 2 
Additional experiments for ablation studies of the proposed solution. 

ID # Anchors Train with WIDER FACE Hard negative mining Feature concatenation Multi-scale training 

1 9 No No No No 
2 12 No No No No 
3 12 No No Yes No 
4 12 Yes No No No 
5 12 Yes Yes No No 
6 12 Yes Yes Yes No 
7 12 Yes Yes Yes Yes 

Fig. 6. Comparisons of Continuous ROC curves (top) and discrete ROC curves (bottom) for different experimental settings for our ablation studies. These experimental results 
shown here are only for the fold 7 of our cross-validation experiments; the other experimental folds are similar. The figures on the bottom right are magnified views of the 
selected regions. The detection bounding boxes are not converted to ellipses. (Best viewed in color). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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Fig. 7. More qualitative examples of our face detection results on FDDB (red: annotation; blue: detection results). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fourth, by further examining the impact of multi-scale training, 

we also observe a positive improvement from our ablation experi- 

ments (ID 6 vs. ID 7). Specifically, by adopting the random scaling 

for data augmentation, the detection performance was further in- 

creased. 

Finally, combining all the above strategies yielded the best de- 

tection performance (as shown in experiment ID 7). 

5. Conclusions 

In this work, we proposed a new method for face detection us- 

ing deep learning techniques. Specifically, we extended the state- 

of-the-art Faster RCNN framework for generic object detection, and 

proposed several effective strategies for improving the Faster RCNN 

algorithm for resolving face detection tasks, including feature con- 

catenation, multi-scale training, hard negative mining, and proper 

configuration of anchor sizes for RPN, etc. We conducted an ex- 

tensive set of experiments on the well-known FDDB testbed for 

face detection benchmark, and achieved the state-of-the-art re- 

sults, making it among the best models of all the published meth- 

ods. Future work will further address the efficiency and scalability 

of the proposed method for real-time face detection. 
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