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Exact and Heuristic Approaches for the Multi-Agent
Orienteering Problem with Capacity Constraints

Wenjie Wang, Hoong Chuin Lau * , and Shih-Fen Cheng
School of Information Systems, Singapore Management University, Singapore

{wjwang, hclau, sfcheng}@smu.edu.sg

Abstract—This paper introduces and addresses a new multi-
agent variant of the orienteering problem (OP), namely the
multi-agent orienteering problem with capacity constraints
(MAOPCC). Different from the existing variants of OP,
MAOPCC allows a group of visitors to concurrently visit a node
but limits the number of visitors simultaneously being served at
each node. In this work, we solve MAOPCC in a centralized
manner and optimize the total collected rewards of all agents.
A branch and bound algorithm is first proposed to find an
optimal MAOPCC solution. Since finding an optimal solution for
MAOPCC can become intractable as the number of vertices and
agents increases, a computationally efficient sequential algorithm
that sacrifices the solution quality is then proposed. Finally, a
probabilistic iterated local search algorithm is developed to find a
sufficiently good solution in a reasonable time. Our experimental
results show that the latter strikes a good tradeoff between the
solution quality and the computational time incurred.

I. INTRODUCTION

Orienteering problem (OP) is a specialized single-agent
routing problem whose aim is to produce a sequence of nodes
to visit so that the collected reward from visited nodes is
maximized, while the total travel time is bounded by a given
time budget. Many interesting OP variants have been proposed
over the years for different applications (a recent survey can
be found in [1]). One of the contributions in this paper
is to extend the OP literature by introducing a multi-agent
orienteering problem with capacity constraints (MAOPCC).
This problem is inspired by real-world applications in areas
such as generating itineraries for visitors in leisure settings,
e.g., in theme parks, cities, or museums (as highlighted in
[2]). For ease of explanation, we will use itinerary generation
in a theme park setting as the major example throughout the
paper.

Figure 1 provides an example of a theme park where each
attraction can only simultaneously serve a limited number of
visitors each time (which contributes to capacity constraints).
Each visitor could potentially have heterogeneous preference
over attractions, and each visitor could also have visitor-
specific time budget. And starting from the entrance, they will
try to visit as many preferred attractions as possible in a limited
time like one day. The goal is to develop a centralized planning
algorithm that has the capability to generate itineraries quickly
and collectively for a large number of visitors, where these
itineraries are mutually dependent in terms of their waiting
times in attractions.

*Corresponding Author

Compared to past OP literature, MAOPCC has the following
unique features: 1) there are multiple agents in MAOPCC,
whose goal is to collectively maximize total collected rewards
(in our model, a node can be visited by multiple agents
concurrently, and a distinct reward can be collected for each
agent’s visit; this is different from the team orienteering
problem [3], in which a single agent takes multiple tours in
separate time and a node can be visited at most once by one
of the tours), 2) visiting a node incurs service time, and there
are node-specific capacity constraints defined for all nodes
(queuing is modelled exactly, which makes our model different
from the one proposed in [2], where a worst-case assumption
was made in estimating queuing time).

After describing the MAOPCC model, we will first intro-
duce an exact approach using a branch and bound algorithm.
However, as the exact approach is exponential in the number
of agents and nodes (and thus intractable for even instances
with moderate sizes). Since it is desirable in our problem to
generate real-time guidance for thousands of users (though
not all simultaneously), we propose a computationally fast
sequential algorithm that finds a sub-optimal solution. To deal
with the issue of sub-optimality, we then propose a local
search algorithm that can find sufficiently good solutions in
a reasonable time.

II. RELATED WORK

Many approaches have been proposed to solve a wide
variety of orienteering problems. [4] and [5] proposed exact
approaches for solving OPs optimally. However, since OP is
NP-hard [6], exact approaches ([4], [5]) can only solve OP
instances with size up to hundreds of vertices. [7] and [8]
proposed heuristics to approximate optimal OP solutions. [8]
proposed the use of a greedy randomized adaptive search
procedure (also known as GRASP), which generates initial
solutions using four construction methods, followed by a two-
phase local search procedure using exchange and insertion
operations. Path relinking is also employed to further improve
the GRASP performance.

The orienteering problem with time windows (OPTW) is an
important class of OP which imposes a feasible time interval
during which a particular node can be visited. OPTW can be
solved heuristically [9] and exactly [10]. [9] first described an
insertion heuristic that iteratively inserts a selected node with
the highest ratio of score to shift time into the best available
slot of the route and then proposed a tree heuristic that did a



Fig. 1. Illustrative example in a theme park.

depth-first search to construct a partial route beginning with
the starting vertex. Partial routes are abandoned if they are
infeasible or are not likely to produce a better route. On the
other hand, [10] proposed an exact optimization method based
on a dynamic programming model. Their approach performs a
forward and backward search in a state search space by adding
exact vertices beginning from the starting and end vertices
respectively. A decremental state space relaxation strategy [11]
is then employed so as to reduce the number of states.

The team orienteering problem (TOP) is the major OP
variant that allows multiple agents to jointly traverse a network
of nodes for rewards. A major different between our MAOPCC
variant and TOP is that in TOP, each node can be visited at
most once for rewards (in other words, if multiple agents visit a
particular node, reward of this node is only counted once). The
first heuristic for solving TOP was proposed by [12], which
is derived from their previous work on single-agent OP [7].
[13] proposed a branch and price method for TOP that utilizes
column generation during the branching phase. Heuristic tree-
search is also implemented to improve performance.

Finally, the above two variants are combined to form a new
variant called team orienteering problem with time windows
(TOPTW). An iterated local search (ILS) was proposed to
heuristically solve TOPTW [14]. The heuristic we develop in
this paper is inspired by the one proposed in [14], yet with
modifications necessary for the new features we introduce.

As far as multi-agent version of the OP is concerned, the
first work was found in [2]. There, the authors considered the
setting where agents are self-interested, namely, it is a variant
of the congestion game; rather than an optimal solution, the
concern is to find an equilibrium solution. In that work, an
approach based on sampled fictitious play was proposed. In
that work, the agent queuing sequence was not considered.

III. PROBLEM DEFINITION

We are given m agents and n vertices (attraction nodes) in
a weighted graph G, where each agent Ak (k ∈ {1, ...,m})

has heterogeneous preference over the attraction nodes. Each
node vi (i ∈ {2, ..., n − 1}) has the same service duration
ei and allows concurrent visits by multiple agents. It has a
capacity ci such that at most ci agents can be served at the
node vi concurrently. When more than ci agents visit node
vi concurrently at any time t, the policy of first-come first-
served is employed, and an agent Ak who cannot be served
immediately will have to wait in a queue and lead to a waiting
time wtik at node vi. Assume an agent-specific reward sik
is used to indicate the preference of the agent Ak over the
attraction node vi. Thus, the MAOPCC problem is described
as finding time feasible routes for all agents with the maximum
total rewards such that each agent Ak starts its movement
from an initial node v1 at time step T 1

k , visits a subset of the
attraction nodes vi (i ∈ {2, ..., n−1}) once and finally reaches
a destination node vn before the time step Tnk .

Assuming that the travel time between two nodes vi and vj
is tij . Let qtik denote the queue sequence number of agent Ak
at node vi, i.e. it represents the total number of agents who
have not departed from vi and are or will be served before
Ak. Let xtijk be a binary decision variable that is set to 1 if
agent Ak leaves vi at time t and proceeds to visit vj . Note
that xtiik = 0 for ∀(i, k, t) where i ∈ {1, ..., n}, k ∈ {1, ...,m}
and t ∈ {1, ..., T}. Let ytik be the queuing sequence of agent
Ak at node vi when Ak arrives at vi at time t, which means
the number of agents who arrive at the node vi at time t and
queue before Ak. If Ak has not arrived at vi yet or is being
served at time t, then ytik will be set to 0.

The mathematical model of MAOPCC is given by:

max F (x) =

T∑
t=1

m∑
k=1

n∑
i=1

n∑
j=1

sikx
t
ijk (1)

subject to ∀k ∈ {1, ...,m}, d ∈ {2, ..., n− 1}:
T∑
t=1

n∑
j=1

xt1jk =

T∑
t=1

n∑
i=1

xtink = 1 (2)



T∑
t=1

n∑
i=1

xtidk =

T∑
t=1

n∑
j=1

xtdjk and
T∑
t=1

n∑
j=1

xtdjk ≤ 1 (3)

T∑
t=1

n∑
i=1

(t+ tid + wt+tiddk + ed)x
t
idk =

T∑
t=1

t(

n∑
j=1

xtdjk) (4)

T∑
t=1

n∑
j=1

t ∗ xt1jk = T 1
k and

T∑
t=1

n∑
i=1

t ∗ xtink ≤ Tnk (5)

∀k ∈ {1, ...,m}, d ∈ {2, ..., n− 1}, t ∈ {1, ..., T}:

qtdk = qt−1dk −
k−1∑
a=1

n∑
j=1

xtdja −
m∑

a=k+1

n∑
j=1

xtdja + ytdk (6)

(ytda − ytdb)2 ≥
n∑
i=1

xt−tidida

n∑
i=1

xt−tididb ∀a, b ∈ {1, ..., k}, a 6= b,

(7)

0 ≤ ytdk <
n∑
i=1

xt−tididk

m∑
k=1

n∑
i=1

xt−tididk and ytik ∈ Z (8)

xtiik = 0 and xtijk ∈ {0, 1}∀i, j ∈ {1, ..., n} (9)

where T = maxk(Tnk ). The waiting time wtik for agent Ak at
node vi in function (4) can be computed as

wtik =

t+εtei∑
τ=t

zτik (10)

where εt = b(qtik)/cic, ztik is a binary state variable that is
set to 1 if agent Ak waits to be served at vi at time t(zτik = 1
if ετ > 0). The objective function (1) is the sum of total
rewards collected by all agents. Constraint (2) ensures that
each agent Ak starts its trip at v1 and ends at vn. Constraint
(3) preserves the flow consistency at vd and guarantees that
all nodes are visited at most once. Constraint (4) ensures
that arrival and departure times at all nodes are consistent
at all nodes. Constraint (5) ensures that agent Ak leaves the
starting node v1 at time T 1

k and reaches the destination node
vn before Tnk . Constraint (6) models the queuing sequence
before agent Ak at vd in time t. Constraint (7) ensures that
serving sequences are consistent among all agents at vd at time
t.

Solving this model directly is very challenging computa-
tionally, as it is nonlinear and contains integer variables. In
the following, we will introduce three solution approaches, an
exact method based on branch and bound, and two heuristic
methods.

IV. APPROACHES FOR MULTI-AGENT ORIENTEERING
PROBLEM WITH CAPACITY CONSTRAINTS

Let a route solution be denoted r = (r1, ..., rk, ..., rm),
where rk is an ordered node sequence representing agent
Ak’s route. A solution r is MAOPCC feasible if there is
a time sequence in visiting the route nodes in each rk one
after another such that each agent Ak can satisfy the set
of constraints in (10). A naive yet exhaustive approach for

optimizing MAOPCC is to enumerate and verify the MAOPCC
feasibility of all route solutions. However, for each agent with
n nodes (including starting and ending nodes), there exist
(n− 2)! possible routes. As such, it has to enumerate a total
number of (n−2)!m possible route solutions, which increases
rapidly with the number of nodes and number of agents. To
handle this issue, we first proposed an exact method using
the technique of branch and bound to speed up the search by
pruning the route solutions that are not promising.

A. Branch and Bound (BB)

Starting with null route assignments for all agents, the
branch and bound algorithm branches on the route assignments
for a particular agent rp (1 ≤ p ≤ m) and recursively solves
the remaining sub-problem given the route assignments for
the previous p agents. The BB algorithm will backtracking if
solving the sub-problem cannot produce a better route solution
than the currently found best route solution rbest that is
MAOPCC feasible. To realize this, an upper bound of the sub-
problem is required and it is obtained by solving its relaxed
problem given as follows.

Let the function f(rk) sum up the rewards of all the route
nodes for rk, i.e.,

f(rk) =

T∑
t=1

n∑
i=1

n∑
j=1

sikx
t
ijk. (11)

max
m∑

k=p+1

f(rk) (12)

subject to ∀k ∈ {p+ 1, ...,m}, d ∈ {2, ..., n− 1}:
T∑
t=1

n∑
j=1

xt1jk =

T∑
t=1

n∑
i=1

xtink = 1 (13)

T∑
t=1

n∑
i=1

xtidk =

T∑
t=1

n∑
j=1

xtdjk and
T∑
t=1

n∑
j=1

xtdjk ≤ 1 (14)

T∑
t=1

n∑
i=1

(t+ tid + ed)x
t
idk =

T∑
t=1

t(

n∑
j=1

xtdjk) (15)

T∑
t=1

n∑
j=1

t ∗ xt1jk = T 1
k and

T∑
t=1

n∑
i=1

t ∗ xtink ≤ Tnk (16)

Assume Rk includes all possible candidate routes for the
agent Ak that start its trip from node v1 at the time step T 1

k

and ends its trip at the node vn before the time step Tnk , then
the upper bound g of the sub-problem in (??)-(??) is estimated
according to the function given by

g =

p∑
k=1

f(rk) +

m∑
k=p+1

maxrk∈Rk
f(rk) (17)

The BB algorithm terminates when all the branches have
been explored. The best solution rbest is initially set to ∅ and
it will be updated once a better MAOPCC feasible solution is



found. However, to improve BB’s computational efficiency, a
good solution rbest can be initialized by other heuristics such
as the Sequentail Algorithm (SA) presented below.

B. Sequential Algorithm (SA)

Though BB can prune the solution space quite substantially,
it is still limited by its systematical exploration of all branches.
In addition, the computation of the upper bound of g in (12)-
(16) requires solving a set of computationally hard OP problem
instances, which has a complexity of O(m(n−2)!). As a result,
the computational time of BB still increases rapidly with
increasing number of nodes and agent count. To overcome the
computation issue, we introduce a sequential approach next so
as to find a good MAOPCC solution more quickly.

The Sequential Algorithm decouples the MAOPCC problem
into m sub-problems given by:

max
T∑
t=1

n∑
i=1

n∑
j=1

sikx
t
ijk (1 ≤ k ≤ m) (18)

subject to ∀d ∈ {2, ..., n− 1} :

T∑
t=1

n∑
j=1

xt1jk =

T∑
t=1

n∑
i=1

xtink = 1 (19)

T∑
t=1

n∑
i=1

xtidk =

T∑
t=1

n∑
j=1

xtdjk and
T∑
t=1

n∑
j=1

xtdjk ≤ 1 (20)

T∑
t=1

n∑
i=1

(t+ tid + wt+tiddk + ed)x
t
idk =

T∑
t=1

t(

n∑
j=1

xtdjk) (21)

T∑
t=1

n∑
j=1

t ∗ xt1jk = T 1
k and

T∑
t=1

n∑
i=1

t ∗ xtink ≤ Tnk (22)

∀d ∈ {2, ..., n− 1}, t ∈ {1, ..., T} :

qtdk = qt−1dk −
k−1∑
a=1

n∑
j=1

xtdja +

n∑
i=1

xt−tididk

k−1∑
a=1

n∑
i=1

xt−tidida (23)

xtiik = 0 and xtijk, z
t
ik ∈ {0, 1}, ytik ∈ Z for ∀i, j ∈ {1, ..., n}

(24)
and then solves each sub-problem in a sequential manner,
starting from k = 1 until k = m. Given the obtained solutions
for sub-problems 1 to k − 1, a subsequent sub-problem k
is solved by employing a greedy approach, which repeatedly
inserts an unvisited attraction node into the feasible position
of route rk until no feasible insertion is available. To find the
best insertion position for each unvisited attraction node vd in
the route rk, the minimal traversing time incurred by inserting
this node into the feasible position of the route is determined,
which is recorded as ∆min

dk (∆dk = tid+ed+ tdj− tij if node
vd is inserted between the nodes vi and vj). To be a feasible
insertion position, the new route produced for agent Ak should
satisfy the constraints in (12). Note that ∆min

dk of the unvisited
attraction node will be set to ∞ if it has no feasible insertion
position. To select the unvisited attraction node to be inserted,

(sdk)2/∆min
dk is calculated for each unvisited attraction node

vi and the attraction node with the highest (sdk)2/∆min
dk is

selected. In each sub-problem, a number of (n−2)(n−1)2/4
candidate routes has to be verified for MAOPCC feasibility
in the worst case. As such, SA has a polynomial complexity
of O(m ∗ n3) in verifying the MAOPCC feasibility of route
solutions.

C. Probabilistic Iterated Local Search (PILS)

The Sequential Algorithm decouples the MAOPCC problem
into several sub-problems with lower dimensional search space
and therefore is able to find a MAOPCC solution quickly.
However, the computational efficiency of SA sacrifices the
optimality of the solution. To strengthen the heuristic, we
apply a probabilistic version of the standard iterated local
search (PILS). As in a standard ILS, our proposed PILS
algorithm uses an insertion and an exchange operator to find
a locally optimal solution, and then perturbs the solution so
as to escape from it. Unlike the stardard ILS however, we
introduce two additional parameters (β and ρ below) that
control the search probabilistically, in terms of the adding
and removing attractions nodes from routes. PILS terminates
when the current best solution has not been improved after δ
iterations.

The local search procedure finds a locally optimal solution
by interactively applying an insertion move in line 8 and an
exchange move in line 11 until no further improvement is
possible. The insertion move repeats to probabilistically add
an unvisited attraction node of one of the agents into the
best feasible position of its route until no feasible insertion is
possible. For each unvisited attraction node of all agents, it is
still determined by ∆min

dk described in section IV-B, however,
the selection of an unvisited attraction node to be inserted is
probabilistically chosen, and the selection probability distribu-
tion is directly proportional to their costs of β ∗ (sdk)2/∆min

dk .
The exchange move replaces a visited attraction node in

an agent route with one of its unvisited attraction nodes
until no feasible exchange move can be made. Same with
insertion move, the new route produced by exchange moves is
constrained within its time budget and the selected unvisited
attraction node vi is added into the feasible position of the
route rk with ∆min

ik . Different with insertion move, the visited
attraction node with the lowest score is selected to be replaced
while only the unvisited attraction node with a higher reward
than the selected visited node is accepted in the exchange
move.

To escape from a local optimum, the solution is perturbed
by removing a number of qk number of attraction nodes from
each route rk. The integer value of qk (=0, 1, 2,..., αk, where
αk is the maximum number of attraction nodes in the route
rk) is generated based on the probability function given by

Pαk,ρ(qk) =

{
(1− ρ) ∗ ((αk − qk + 1)/(

∑αk

i=0(i+ 1))) if ρ < 1
1/(αk + 1) if ρ = 1

(25)



Note that as the parameter ρ increases, the probability of qk
with a lower value decreases while the probability of qk with
a higher value increases. In so doing, the perturbation strength
gradually increases when no improving solution is found as
the number of iteration increases. Given a non-uniform value
of qk for each route rk, the attraction nodes are removed based
on a uniform distribution.

V. EXPERIMENTAL RESULTS

The performance of our proposed algorithms are evaluated
and compared on two sets of test instances with uniformly
randomly generated positions and rewards (ranging from 1-
20) for each node and each agent. A set of small instances
with 12 nodes and the agent count ranging from 5 to 20 in a
50x50 grid map are used to compare their performance. Here,
the capacity of each attraction node is set to 2. Another larger
set of instances with 22 nodes and agent number varying from
20 to 100 in a larger 100x100 grid map is used to compare
performance of competing algorithms when instances are
larger. Here, the node capacity in this set is set to 5. In both sets
of instances, time budgets of all agents are set to 100 time units
and all agents start their trips at different times ranging from 0
to m. Without loss of generality, service times of all nodes are
set to 1 time unit. The performance is mainly evaluated based
on two different criteria. The first is total scores, which is
defined as the average total reward of all agents in 10 random
instances. The second is running time, which is defined as
the average computational time taken to compute the solution
in 10 random instances. In addition, an optimality gap and
a relative gap are defined as the percentage of the average
reward loss of the solution obtained compared to the optimal
solution and an upper bound of the solution respectively in 10
random instances, and they are employed here to investigate
the performance of the comparative algorithms. The upper
bound of the solution for each MAOPCC instance is obtained
by solving OP problems for each agent.

The simulation program is coded in C++ programming
language and executed on an Intel Xeon CPU X7542 2.67GHz
24 cores processors with 128GB RAM.

The following experimental results compare the proposed
three approaches on a set of small instances. SA decomposes
MAOPCC problem into several orienteering sub-problems, and
then solves each sub-problem in a sequential manner. Each
subsequent orienteering sub-problem is solved by employing
the insertion move proposed in [14] with respect to the previ-
ously obtained sub-solutions. To speed up the BB algorithm,
the solution obtained by SA is set as the initial best solution
rbest. PILS will be terminated if no improvement is obtained
after δ iterations. For our experiments, we set δ = 80.

For smaller instances, the BB algorithm, specifically de-
signed to find an optimal solution for MAOPCC, is able to
provide the best total scores performance over other competing
algorithms. However, due to its rapidly increasing search
space, its computational time increases rapidly as number
of agents increases (see the results in Table II). By solving
MAOPCC in a decoupled way, SA is very fast in finding a

Total Scores n=12
m=5 m=10 m=15 m=20

BB+SA 357.7 763.9 1109.7 1379.9
SA 347.6 748.1 1060.5 1298.1

(2.96%) (2.17%) (4.8%) (6.1%)
PILS(δ = 80) 354.8 756.9 1094.9 1351.2

(0.79%) (0.93%) (1.52%) (2.13%)
TABLE I

AVERAGE TOTAL REWARDS OF ALL COMPETING ALGORITHMS IN 10
RANDOM SCENARIOS WITH 12 NODES AND AGENT NUMBER RANGING

FROM 5 TO 20. THE OPTIMALITY GAP IS GIVEN IN BRACKETS.

good MAOPCC solution. But it has a larger optimality gap
compared with PILS. From m = 5 to m = 20, the optimality
gap of SA increases from 2.96% to 6.1%. This translates that
the performance of SA in finding a good MAOPCC solution
could deteriorate as the problem size increases. In contrast,
the optimality gap of PILS (δ = 80) is 0.79% when m=5
while 2.13% when m = 20. Moreover, the solution quality
of PILS can be further improved if δ is set to larger values
(see Table III). However, due to its probabilistic and heuristic
nature, the improvement of solution quality in PILS comes at
the expensive of a higher computational time.

Since the proposed PILS algorithm is developed based on
the work in [14], the following experiments will compare our
proposed PILS algorithm with the ILS algorithm proposed
in [14]. However, since ILS is originally proposed to solve
TOPTW, to apply ILS for MAOPCC, its original insertion
move for single agent is replaced with our proposed insertion
move for multiple agents. Apart from the ILS algorithm,
SA was also compared here. The non-improvement iteration
bounds of δ = 80 was used for both ILS and PILS.

Running Time (s) n=12
m=5 m=10 m=15 m=20

BB+SA 2.0 36.0 2210.0 25016.0
SA 0.002 0.005 0.005 0.007

PILS(δ = 80) 1.464 11.7 35.8 98.5
TABLE II

AVERAGE COMPUTATIONAL TIME OF ALL COMPETING ALGORITHMS IN 10
RANDOM SCENARIOS WITH 12 NODES AND THE AGENT COUNT RANGING

FROM 5 TO 20.

PILS δ = 80 δ = 500 δ = 2000 δ = 10000
Total Scores 1351.2 1356.7 1362.5 1362.5

Running Time (s) 98.5 444.8 1992.0 8801.7
TABLE III

SENSITIVITY ANALYSIS OF THE PERFORMANCE OF PILS IN 10 RANDOM
SCENARIOS WITH 12 NODES AND 20 AGENTS AGAINST THE ALLOWABLE

ITERATION BOUND δ.

For the larger instances, SA still exhibits its superior per-
formance in speed and solution quality (see Tables IV and V).
Though ILS is able to produce a better MAOPCC solution,
its solution quality cannot be further improved as the non-
improvement iteration bound increases, due to its monotonic
remove strategy in the perturbation procedure in which a uni-
form number of consecutive attraction nodes are deleted from



Total Scores n=22
m=20 m=40 m=60 m=80 m=100

PILS(δ = 80) 834.3 2094.3 2407.3 3826.3 4332.4
(3.19%) (1.92%) (1.46%) (3.22%) (4.31%)

ILS(δ = 80) 813.3 2018.8 2403.0 3751.6 4216.7
(5.40%) (5.50%) (1.75%) (5.03%) (6.86%)

SA 805.4 1973.8 2372.5 3713.4 4180.4
(6.23%) (7.33%) (2.72%) (6.00%) (7.60%)

TABLE IV
AVERAGE TOTAL REWARDS OF ALL COMPETING ALGORITHMS IN 10

RANDOM SCENARIOS WITH 22 NODES AND THE AGENT COUNT RANGING
FROM 20 TO 100. RELATIVE GAP IS INDICATED IN BRACKETS.

the route of each agent. In the worst case, ILS could be stuck in
a cyclic search for a set of solutions. In contrast, our proposed
PILS algorithm employs a probabilistic remove strategy, which
allows the diverse removal of the visited attraction nodes and
the non-uniform number of attraction nodes to be removed
in order to take into account the difference among agents
like their heterogeneous preference on different attractions and
therefore achieve the coordination between the routes of all
agents. The experimental results in Table IV indeed show
that this consideration contributes to the further improvement
of the solution quality in PILS. Moreover, PILS is able to
produce a better solution than ILS at the expense of a lower
computational time (see Table V).

We have done five independent runs for each algorithm per
instance. According to paired t-test, we can be 95% sure that
PILS is statistically significantly better than SA and ILS.

Running Time (s) n=22
m=20 m=40 m=60 m=80 m=100

PILS(δ = 80) 28.3 403.3 839.6 2217.6 5345.1
ILS(δ = 80) 54.2 766.9 1641.4 4915.6 8000.0

SA 0.005 0.014 0.019 0.025 0.027
TABLE V

AVERAGE COMPUTATIONAL TIME OF ALL COMPETING ALGORITHMS IN 10
RANDOM SCENARIOS WITH 22 NODES AND THE AGENT COUNT RANGING

FROM 20 TO 100.

Finally, the following experiment evaluates the performance
of the SA and PILS algorithms for some specific hard instances
in the 100x100 grid map, in which the scores of two of the
attraction nodes (v11 and v21) are specifically set to a value
of 10 for agents A1−Am/2 and 20 for agents Am/2+1−Am
while others are uniformly set to 1 for all agents, the starting
time of agents A1−Am is randomly chosen between the time
interval 0 to 20, in addition, the capacity and service time of
the attraction nodes v11 and v21 are changed to 1 and 5 while
others are still fixed to 5 and 1. The instances are challenging
as they require fine coordination of priorities in visiting the
attraction nodes between agents.

Being a decoupled approach, SA solves each sub-problem
for each agent in a sequential manner and plans the route
for one agent at a time. This may lead to the issue that the
previously obtained sub-solution may compromise good sub-
solutions for subsequent sub-problems. In these challenging
instances, due to the planning sequence from A1 to Am, the

Total Scores n=22
m=20 m=40 m=60 m=80 m=100

SA 352.9 459.3 510.3 513.9 552.2
(46.1%) (65.7%) (74.6%) (80.3%) (82.9%)

PILS(δ = 80) 566.2 708.8 845.3 863.6 933.8
(13.4%) (46.9%) (57.8%) (66.8%) (71.0%)

TABLE VI
AVERAGE TOTAL REWARDS OF THE SA AND PILS ALGORITHMS IN 10
HARD RANDOM SCENARIOS WITH 22 NODES AND THE AGENT COUNT

RANGING FROM 20 TO 100. RELATIVE GAP IS INDICATED IN BRACKETS.

Total Scores n=22
m=20 m=40 m=60 m=80 m=100

SA 0.022 0.051 0.070 0.064 0.072
PILS(δ = 80) 585.5 2946.3 15595.7 36309.8 69850.3

TABLE VII
AVERAGE COMPUTATIONAL TIME OF THE SA AND PILS ALGORITHMS IN
10 HARD RANDOM SCENARIOS WITH 22 NODES AND THE AGENT COUNT

RANGING FROM 20 TO 100.

previous agents A1−Am/2 may occupy the nodes v11 and v21
and therefore prevent agents Am/2+1 −Am visit v11 and v21
due to the limited capacity. Instead of considering one agent
at a time, PILS plans the routes for all agents simultaneously.
It was observed that PILS is able to find a MAOPCC solution
that is superior to SA.

In summary, we have introduced three approaches to solve
the computationally hard MAOPCC problem for different
purposes. When the problem size is small and solution quality
is a primary concern, the proposed BB algorithm can be used
to find an optimal MAOPCC solution in an acceptable time. As
the problem size becomes larger, our proposed heuristic PILS
algorithm can be used to find a good solution in a reasonable
time. When the running time is more critical, SA could be a
good choice.

VI. CONCLUSION

In this paper, we introduce a multi-agent variant of the
orienteering problem, namely multi-agent orienteering prob-
lem with capacity constraints (MAOPCC), in which multiple
agents concurrently visit the same set of nodes with a capac-
ity constraint for each node. Such capacity constraints limit
the number of agents who can be served concurrently. Our
objective is to find routing sequences for all agents so as
to maximize the sum of collected rewards from all agents.
Besides the exponential growth in problem size, MAOPCC
also faces the modeling difficulty of having to explicitly model
the queueing of agents at crowded nodes.

To address this problem, we propose an optimal branch
and bound approach (BB), a computationally fast sequen-
tial algorithm (SA) and a probabilistic iterative local search
heuristic (PILS). The PILS heuristic employs the technique
of iterated local search that systematically searches in a
combinatorial route space R which is a Cartesian product of
m OP search spaces. For each solution r in the route space
R, we provide an approach that is able to model the exact
queuing sequence between agents at an attraction node given
r and therefore successfully transforms a route solution r to



a MAOPCC solution. Though the performance of BB can be
improved by using initial solutions, it is undeniable that it still
suffers from memory and computational time issues due to its
systematic search in the combinatorial route space. Thus, BB
is appropriate for solving small-scale MAOPCC problems. SA
is computationally very fast in finding a feasible MAOPCC
solution, but it sacrifices the optimality of solution and is not
desirable for MAOPCC scenarios where the solution quality is
one of the primary concerns. In contrast, at each iteration, our
PILS algorithm searches for a locally optimal solution in a
small local neighborhood by using computationally efficient
insertion and exchange moves, and then tries to find an
unexplored and promising local neighborhood by employing
a probabilistic remove operation that favors the coordination
of the routes for all agents. By setting an appropriate iteration
bound, PILS could strike a good tradeoff between the solution
quality and the computational time incurred.
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