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Abstract. As an important research topic with well-recognized practi-
cal values, classification of social streams has been identified with increas-
ing popularity with social data, such as the tweet stream generated by
Twitter users in chronological order. A salient, and perhaps also the most
interesting, feature of such user-generated content is its never-failing nov-
elty, which, unfortunately, would challenge most traditional pre-trained
classification models as they are built based on fixed label set and would
therefore fail to identify new labels as they emerge. In this paper, we
study the problem of classification of social streams with emerging new
labels, and propose a novel ensemble framework, integrating an instance-
based learner and a label-based learner by completely-random trees. The
proposed framework can not only classify known labels in the multi-label
scenario, but also detect emerging new labels and update itself in the
data stream. Extensive experiments on real-world stream data set from
Weibo, a Chinese micro-blogging platform, demonstrate the superiority
of our approach over the state-of-the-art methods.

Keywords: Stream classification · Emerging new labels
Model update

1 Introduction

Social stream classification has attracted an ever-increasing level of attention
from both academia and industry due to the recent boom of social media plat-
forms such as Twitter, in which the user-generated contents (i.e., tweets) natu-
rally form a data stream by chronological order. As each item could assume one
or multiple labels based on its content, classifying tweets into their corresponding
labels serves as the foundation for profiling both users and information diffusion
processes, in turn contributing to many real-life applications including targeted
marketing, customer relationship management and credit risk evaluation.

c© Springer International Publishing AG, part of Springer Nature 2018
D. Phung et al. (Eds.): PAKDD 2018, LNAI 10937, pp. 16–28, 2018.
https://doi.org/10.1007/978-3-319-93034-3_2
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Fig. 1. An illustration of SSC-NL problem.

The basic process of social stream classification can be described as follows:
with a set of social data which has been preprocessed and manually associated
with concepts (labels), a classification method, such as SVMs or Random Forest,
can be employed to train a model to predict labels for new incoming data. Despite
the wealth of research efforts on social stream classification [1–3], most existing
solutions, which are built with a fixed label set, face serious challenges when
dealing with social data with emerging new labels due to its salient feature of
topic novelty that is typical of social media content.

We therefore address in this paper a more challenging problem of Social
Stream Classification with emerging New Labels (SSC-NL). Compared to previ-
ous social stream classification problems, the SSC-NL problem needs to accom-
plish three tasks simultaneously: (1) detecting emerging new labels; (2) classify-
ing known labels in the multi-label scenario; and (3) updating the model with
new labels identified. We illustrate this problem with a case for tweet stream
classification in Fig. 1. We assume that the model is built initially with labels
such as Politics, Sports, etc. This model is deployed in a tweet stream to clas-
sify each tweet with known labels, and correctly detect tweets with new labels as
they emerge. These tweets with new labels are placed in a buffer, until the model
update is triggered by some pre-defined criteria. Once the update is completed,
the buffer is reset and the new model is ready for the next tweets in the stream.

To address the SSC-NL problem, we propose a novel ensemble framework
named NL-Forest, which involves two cooperating models, an instance-based
model and a label-based model, both composed of completely-random trees.
NL-Forest can predict a ranking of known labels, and identify emerging new
labels in the social streams. Furthermore, the models are to be updated once
some criteria are met. We summarize some key contributions as follows: (1) The
proposed method accomplishes three tasks simultaneously, including detection of
new labels, classification for known labels, and model updating; (2) A straight-
forward approach for SSC-NL problem is to learn a known labels classifier and
a new label detector like [4]. Compared to methods based on two distinct algo-
rithm structures, completely-random trees are used as a single core to provide
the solution to efficient prediction and updating as shown in Sect. 5.3. In addi-
tion, our model achieves better prediction performance and is more robust due to
its ensemble strategy; (3) Experiments are conducted on both a real-world data
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stream and simulated streams where new labels appear under different scenarios.
Our framework outperforms existing state-of-the-art methods.

The rest of this paper is organized as follows: Sect. 2 examines the related
work. We introduce the proposed framework in Sect. 4 and the experimental
evaluation is detailed in Sect. 5. We conclude the paper in Sect. 6.

2 Related Work

Social stream classification has been extensively studied in recent years. Zubiaga
and Spina [3] analyzed social features, and then performed classification experi-
ments with Support Vector Machines (SVMs). In [1], a text-based classification
method and a network-based classification method were proposed for classifying
social data topics. Other than these supervised classification models, unsuper-
vised learning was also widely used. For instance, topic modeling is effective
in grouping documents into a pre-defined number of coarse clusters based on
inter-document similarity or the co-occurrence patterns of terms [5]. However,
existing algorithms normally employ a classifier with a fixed label set, thus are
unable to address the problem of emerging new labels. Though some online set-
ting methods, such as [6], are able to tackle this problem, each item needs to be
manually labeled before update, making them unsuitable for real data streams.

Class-Incremental Learning (C-IL), which is a branch of incremental learning
[7], has attracted much attention recently. The SSC-NL problem is actually a
C-IL problem in social data stream context. In recent years, a number of algo-
rithms [8–11] have been developed for classification under emerging new classes.
For instance, the ECSMiner [12] tackled the novel class detection and classifica-
tion problem by introducing time constraints for delayed classification. Learning
with Augmented Class (LAC) [13] was proposed for identifying emerging new
classes, assuming the availability of an unlabeled dataset to help identifying
these new classes. In [10], an isolation-based idea was used for new class detec-
tion. However, above-mentioned methods are tailored to the single label problem,
and face serious challenges in identifying new labels if instances are with multi-
ple labels. Although, a new effort, MuENL [4], includes one classifier based on
regularized SVMs and one detector based on tree structure which can tackle the
SSC-NL problem, two strategies for model updating are required, resulting in a
high computation cost and being hard to implement in real-time problem.

Other relevant approaches include tree-based methods to address the multi-
label classification problem [14] and the anomaly detection problem [15]. Indeed,
creating models to cope with environment changes [16], is widely studied in the
machine learning and data mining community. Solving the SSC-NL problem can
be seen as a preliminary step in social stream context.

3 Preliminaries

In general, social data stream is in the form of continuous streams of text
data [17]. Text representation is a fundamental component to represent text
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Fig. 2. An example of ANL and PNL. The initial label set contains four labels, the
second tweet shows the ANL, and the third tweet shows PNL.

into an amenable form. Here, we denote x ∈ R
d as a vector representation for

each text data by using a representation model like [18]. The SSC-NL prob-
lem therefore is defined as follows: given a set of social data as the training set
DT = {(xi,yi)}m

i=1, where xi ∈ R
d, yi ∈ Y = {−1, 1}c is the corresponding

label vector, c is the number of labels. yi,j = 1 iff the jth label is assigned
to the example xi and yi,j = −1 otherwise. The streaming instance is from
DS = {(xt,y

′
t)}∞

t=1, where y′ ∈ Y ′ = Y ⋃ Ynew, Ynew = {−1, 1}a, a > 0. The
goal is to learn an initial model f with DT , then f is used as a detector for emerg-
ing new labels (Ynew) and a classifier for known labels (Y) in the data stream.
In addition, f can be updated when it maintains some criteria. The training set
DT is just used for building model at the beginning of the data stream and will
then be discarded. Once update is completed, it is ready for the next instances
in the data stream. Note that the model can detect instances of any number of
emerging new labels, though they are grouped into one new meta-label.

Detecting emerging new labels in SSC-NL problem is a non-trivial task,
because the instance with new labels is likely to contain known labels simul-
taneously. This is a distinct point of difference from the previous works [10,12].
To specify the form of new label emergence in the multi-label scenario, we define
two types of instances with new label as follows, and Fig. 2 shows an illustration.

Definition 1. [Absolutely New Label (ANL)]. Let Y be the known label
space and Ynew be the new label space. An instance with absolutely new label is
defined as (x,y), where y ∈ Ynew and y /∈ Y.

Definition 2. [Partially New Label (PNL)]. Let Y be the known label space
and Ynew be the new label space. An instance with partially new label is defined
as (x,y), where y ∈ Ynew and y ∈ Y.

4 The Proposed Framework

In this section, we propose a novel framework named NL-Forest, which is com-
posed of two cooperating forests. The instance-based forest (I-F) is built on the
whole training data set, and the label-based forest (L-F) consists of multiple
sub-forests by considering label information. The details are provided as follows.
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Algorithm 1. NL-Forest construction
Input: D - input data, Z - number of trees in I-F,

z - number of trees in L-F, ψ, φ - sample size.
Output: NL-Forest
1: initialize: I-F ← {}, L-F ← {}.
2: for i = 1, . . . , Z do
3: D1 ← sample(D, ψ)
4: I-F ← I-F ∪ Tree (D1)
5: end for
6: for j = 1, . . . , c do
7: D2 ← {(x, y)|x ∈ D, y(, j ) = 1}
8: for k = 1, . . . , z do
9: D3 ← sample(D2, φ)
10: L-F(j) ← L-F(j) ∪ Tree(D3)
11: end for
12: compute the threshold in L-F (j).
13: end for
14: return NL-Forest← L-F ∪ I-F

The function Tree(X)
X - input data, MinSize - minimum

internal node size

1: if |X| < MinSize then
2: return LeafNode{F [·], center, v}.
3: else
4: let Q be a list of attributes in X. Ran-

domly select an attribute q ∈ Q and
randomly select a split point p from
max and min values of attribute q in
X.

5: XL ← filter(X, q ≤ p)
6: XR ← filter(X, q > p)
7: return inNode{Left ← Tree(XL),
8: Right ← Tree(XR)}
9: end if

4.1 NL-Forest: Training Process

The training process is detailed in Algorithm1. Steps 2–5 in the left side of Algo-
rithm1 show the process of building I-F. The function sample(D,ψ) is defined
as randomly sampling a subset with size ψ from the data set D. The function
Tree(·) as shown in the right side is defined as building a completely-random
tree, where a partition is produced by randomly selecting an attribute and its
cut-point between the minimum and maximum values in the sample. The split-
ting is stopped when the number of instances is less than MinSize. Note that
in each node, we just record the mean of instances as “centre”, the label dis-
tribution F [·], and the average number of labels per instance as v. Steps 8–11
in the left side of Algorithm 1 show the L-F construction based on the label
information, which is similar to building I-F.

In line 12, a threshold, which is used to measure new labels emerging in
the data stream, is found in each sub-forest. The idea here is inspired by the
model proposed in [15], wherein Liu et al. presented an isolation-based method.
In the NL-Forest framework, each tree is actually built to isolate every instance
from the rest of the instances in the input data set. Threshold determination
is based on the fact that there exist “differences” between instances with new
labels and original training instances, and thus instances with new labels are
more susceptible to isolation than instances with only known labels. In other
words, the instances with new labels will be isolated using fewer partitions1 in
a tree than instances with only known labels. To obtain threshold, because the
sub-forest contains a subset of labels, we select the instances without this subset
of labels in the training data to compute their average height in this sub-forest.
The average height obtained will be finally used as the threshold.

1 The fewer partitions means that instances with new labels are more likely to be of
the shorter height in each tree.
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4.2 NL-Forest: Deployment

Algorithm 2 describes the deployment of NL-Forest in a data stream. NL-Forest
(x) produces a label vector (y1, . . . , yc, ynew) in line 2 and is defined as:

NL-Forest(x) =
{

y1, . . . , yc ← I-F(x) (1)
ynew ← L-F(x,yknown) (2)

where c is the number of known labels and ynew is new label predicted. In Eq. (1),
x falls into one node in each tree in I-F and the distribution F [·] is recorded.
The output of I-F is the average of label vectors in F [·] as follow:

I-F(xtest) = p(y|xtest) = E[
Z∑

i=1

p(y|xtest, F [i])] (3)

where p(y|xtest, F [i]) is the output of ith tree in I-F. I-F can also output an
accurate number of labels by using the average results of v in each node. This is
because previous works [19–21] have shown that, ensemble of completely-random
trees can be successfully applied as a powerful classifier, and it is evident that
the proposed method can be a classifier capable for classification task.

Equation (2) describes that L-F predicts a new label ynew. We first introduce
a cooperating mechanism to detect instances with PNL. From the I-F outputs, we
can obtain the probabilities of known labels in the form of a label vector, as indi-
cated in Eq. (1). Thus, we generate a vector in descending order of known labels
probabilities, denoted as yknown. According to the order of labels in yknown, we
pass xtest to the corresponding sub-forests. The function L-F(·) is as follows:

L-F(xtest,yknown) = E[
u∑

i=1

p(ynew|xtest, yi)], yi ∈ yknown (4)

where p(ynew|xtest, yi) is the output in one sub-forest in L-F and is defined as:

p(ynew|xtest, yi) =
{

1, if Θ(xtest) < thresholdi

0, otherwise
(5)

where Θ(·) is the average height of the instance in ith sub-forest. Note that each
sub-forest is able to partition instances with the specific label. If xtest contains
new labels, it will be partitioned easier in this known label sub-forest, that is,
xtest will have shorter height in this sub-forest. In Eq. (4), xtest is an instance
with new label if the average height of instance xtest in ith sub-forest is less than
the thresholdi. We finally use the top u labels in yknown to predict whether new
label is emerging in Eq. (3). We can use the predicted number of labels as a
measure to guide the setup of u.

Because an instance with ANL is likely to differentiate from original instances
in the training set, detecting ANL is equivalent to detecting new labels in single
label setting. Hence, the instance with ANL can be directly isolated using fewer
partitions in the I-F. Fortunately, some previous works employed random tree
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Algorithm 2. NL-Forest deployment in the data stream
Input: NL-Forest, B - buffer, s - buffer size.
Output: prediction for each x in a data stream
1: while not end of data stream do
2: (y , ynew) ←NL-Forest(x)
3: if ynew > 1

2 then

4: B ← B ∪ {x}
5: NewLable ← 1
6: else
7: NewLabel ← 0
8: end if
9: Output {y1, . . . , yc, Newlabel}
10: if |B| ≥ s then
11: Update (NL-Forest, B) # detailed in Sect. 4.3
12: B ← NULL
13: end if
14: end while

structures for new class detection and can naturally adapt to I-F. In this paper,
we use the method in [10] to detect the ANL. In line 3–8 in Algorithm2, NL-
Forest outputs a positive decision if ynew is greater than a 0.5 threshold. This
threshold corresponds intuitively to majority voting.

Model is updated when buffer B is full (|B| ≥ s) in line 10–13 in Algorithm
2. The size of buffer s is a user-defined parameter and can be set based on the
memory space available2. Similar to [11], we only need to manually annotate
instances with the true label in the buffer instead of labeling all instances in the
data stream. In the following, we introduce two growing mechanisms.

4.3 NL-Forest: Model Update

Growing a subtree in I-F. Updating I-F is to update each leaf node in every
tree using a random sample of size λ from B. The update at each node involves
either (1) a replacement with a simple update label distribution F [·] to include
the new label yc+1 or (2) a newly grown subtree if the total number of instances
falling into the same leaf node exceeds the limit. At each node, growing a subtree
needs to generate pseudo instances in each node which have the same attribute-
values as “centre”. The number of pseudo instances is as recorded in F [·]. The
combined set of pseudo instances and the randomly selected instances which fall
into this leaf node is used as input to build the subtree.

Growing a new sub-forest in L-F. A new sub-forest can be constructed using
instances with the new label from B. Once the new sub-forest is completed, a
threshold is calculated as mentioned in Sect. 4.1 by using pseudo instances.

4.4 Model Complexity

In the training stage, the overall time complexity to construct random tree is
O(Zψ log ψ+czφ log φ). To predict an instance in the stream, it takes O(Z log ψ+
2 This is a trade-off parameter, the larger means method needs more memory. In prac-

tise, we use the value which is greater than ψ to guide the setup of this parameter.
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uz log φ) time to traverse each of the Z trees in I-F and z trees in u L-F. During
the update, growing a subtree using a s size buffer takes O(Zs log s) and growing
a sub-forest takes O(zφ log φ). The total space required includes the buffer with
size s and all centres and label distribution in leaf nodes in I-F. Thus, the space
complexity is O(s + Zdψ).

5 Experiment

5.1 Experimental Setup

Data Sets. A summary of the data characteristics is provided in Table 1. The
real streaming data is collected from Sina Weibo. This stream is about 220k
items with 10 labels, and each item is preprocessed using word2vec3 to produce
a 300-dimension feature vector.

Competing Algorithms. Table 2 is a complete list of the methods used for
new label detection and known label classification. It includes two multi-label
supervised classifiers – binary relevance SVM (BR-SVM) [22], ML-KNN [23]; one
supervised multi-label streaming classifier – SMART [6]; an existing solution for
emerging new labels – MuENL [4]; an outlier detector as new label detector –
iForest [15].

Experiment Settings and Evaluation Metrics. All methods are executed
in the MATLAB environment with the following implementations: SVM is in the
LIBSVM package [22]; MuENL, iForest and ML-KNN are the codes as released
by the corresponding authors; SMART code is developed based on the original
paper [6]. In NL-Forest, we set Z = 200, z = 100, ψ and φ are set by 0.6 ∗ m
and 0.6 ∗ ni, where m and ni are the sizes of D1 and D2 respectively. λ is
set according to label balance in each tree. The trees stop growing when the
total number of instances, which fall into a leaf node, exceeds the limit, e.g.,
MinSize = 10 in the simulated streams and MinSize = 100 in the real stream.
BR-SVM trains a linear classifier for each label independently and parameters
are set according to cross validation. In ML-KNN, K, the number of nearest
neighbors is set as 10. In SMART, the tree height is h = 30, and the number of

Table 1. A summary of data sets.

Emotions Yeast Enron Weibo

#Attributes 72 103 1001 300

#Labels 6 14 53 10

Volume 593 2417 1702 220K

Table 2. Methods used in the experi-
ments.

Method Detector Classifier

BR-SVM+iF iForest BR-SVM

ML-KNN+iF iForest ML-KNN

SMART+iF iForest SMART

MuENL MuENLForest MuENLMNL

NL-Forest NL-Forest

3 https://radimrehurek.com/gensim/index.html.

https://radimrehurek.com/gensim/index.html
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Fig. 3. A simulated stream on emotions data set. (a) There are six labels, the blue
points represent the known labels, and the red points represent the new labels. (b) and
(c) the results of RL and F-measure. (Color figure online)

trees in the ensemble is nt = 30. The number of trees in iForest is nt = 50. In
MuENL, the parameters in classification model are selected via cross validation,
and the setup of detection model is same as iForest. We employed Ranking
Loss (RL ↓4) and Average Precision (AP ↑) for classification performances
and F-measure (↑) for detection results.
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(b) enron
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(c) yeast

Fig. 4. Results of the simulated data streams.

5.2 Simulated Data Stream

To evaluate different scenarios under which new labels appear, we perform exper-
iments in multiple simulated data streams which are generated from three bench-
mark multi-label data sets. In each data set, we first randomly select two labels
as the new labels. The instances with any of these two labels are selected as set
A, and the rest will be randomly divided into training set (80%) and testing set
(20%). Then A is added to the testing set, and we simulate a steam by using
the testing set. RL and AP are computed over the entire stream, F-measure is
4 Here “↓” means the smaller the value, the better the performance; and “↑” means

the larger the value, the better the performance.
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computed when the buffer is full. An example is shown in Fig. 3. The simulation
is repeated 30 times for each data set, the average results are reported in Fig. 4.

Detailed Analysis. The proposed NL-Forest has consistently produced better
performance in all three data sets than any other methods for both emerging new
labels detection and known labels classification. In terms of new label detection,
NL-Forest produces higher F-measure than methods directly using an anomaly
detector (i.e., iForest) which do not consider differences between new labels
and anomaly when detecting the PNL. In terms of classification results (RL
and AP), NL-Forest gives results comparable with state-of-the-art methods, e.g.,
MuENLMNL and ML-KNN. What has greatly contributed to the practical values
of NL-Forest is the fact that it can be applied to a wide range of prediction
problems and has fewer parameters to tune.

Compared to NL-Forest, MuENL consists of two independent models, i.e.,
a detector for new labels and a classifier for known labels. Despite its reason-
able good classification and detection performances in simulations, it is not a
good choice for the SSC-NL problem due to its high computational complexity
in model update and practical difficulty in parameter determination. On the
other hand, ML-KNN, BR-SVM and SMART are state-of-the-art multi-label
classification methods for known labels, but they still require anther framework
to detect new labels. In addition, BR-SVM often comes at high computational
costs in an extensive parameter search.

5.3 Real Data Stream

In this section, we conduct experiments on a social stream and compare the pro-
posed method with SMART+iForest and MuENL which focus on the stream-
ing data problem. Figure 5(a) indicates label distribution in the stream. For
convenience, we use “1st” to “10th” to represent the category “traffic safety”
to “finance”. We regard five labels (6th to 10th) as known labels and collect
extra 15 K instances with them to initialize the model. The 1st to 5th labels are
regarded as new labels which occur in the different periods. To be specific, the
2nd, 3rd and 5th label emerge at around point 0 to 50 K; at around point 50 K to
100 K, the 4th label appears; the 1st label emerges at last 100 K points. Note that
when the buffer is full, model will be updated using buffer data with true label.
Evaluation metrics are computed at different time points as shown in Figs. 5(b)
and (c).

Figure 5(c) shows NL-Forest outperforms other methods in detecting new
labels, and NL-Forest gives comparable results with other methods in classifi-
cation in Fig. 5(b). We also show the time of processing 1000 data items and the
average update time in the stream. In Fig. 5(d), the proposed method achieves
the shorter running time than MuENL for the real data stream, and is com-
parable to the state-of-the-art method SMART, which also employs completely
random trees. Figure 5(e) shows the proposed method can be more efficient in
deploying in the real application with the faster update.
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Fig. 5. Results of the real data stream.
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Fig. 6. Results of the sensitivity of parameters.

5.4 Sensitivity of Parameters

We study the influences of parameters in NL-Forest, i.e., z and Z (the number
of trees), ψ and φ (the sampling sizes). We evaluate NL-Forest on the emotions
data set with different settings of one parameter while the other parameters are
fixed. Figures 6(a) and (b) show that the performance of NL-Forest is stable when
we set the size of tree greater than 100. Therefore, in practice, model parameter
setup can follow such guidelines. In Figs. 6(c) and (d), the X-axis represents
a ratio between the sample size and original data size. Generally, the larger
each random tree is, the better the performance is, but larger trees will consume
memory. We observe that the RL or F-measure of NL-Forest converges at a small
ψ or φ. Hence, the ratio set by half is safe and recommended in practise. Note
that similar results are also observed on the other data sets.

6 Conclusion

This paper introduces a novel framework with an instance-based model and a
label-based model to address the SSC-NL problem. The strength of NL-Forest is
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that the completely-random trees are used as a single core to effectively tackle
emerging new labels detection and known labels classification, and provide the
solution to efficient update. Evaluations on simulated streams and a real-world
stream demonstrate the effectiveness of the proposed framework. In the future,
the broader stream classification problem in real-world applications [24] includ-
ing detection of concept drift, issues with outdated data, adaptation to the cur-
rent state, and recurring contexts will be considered. It is also in our interest
to explore the theoretical foundation for our model and extend the idea of this
work to Multi-Instance Multi-Label learning (MIML) [25].
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