
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

10-2018

Teaching adult learners on software architecture
design skills
Eng Lieh OUH
Singapore Management University, elouh@smu.edu.sg

Yunghans IRAWAN

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Computer and Systems Architecture Commons, Software Engineering Commons,

and the Systems Architecture Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
OUH, Eng Lieh and IRAWAN, Yunghans. Teaching adult learners on software architecture design skills. (2018). Proceedings of the 48th
Annual Frontiers in Education 2018: Fostering Innovation Through Diversity, San Jose, California, October 3-6. 1-9. Research Collection
School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4171

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/200254176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4171&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4171&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

Teaching Adult Learners on

Software Architecture Design Skills

Ouh Eng Lieh
School of Information Systems

Singapore Management University
elouh@smu.edu.sg

Yunghans Irawan
Institute of Systems Science

National University of Singapore
yirawan@nus.edu.sg

Abstract— Software architectures present high-level views of

systems, enabling developers to abstract away the unnecessary
details and focus on the overall big picture. Designing a software
architecture is an essential skill in software engineering and adult
learners are seeking this skill to further progress in their career.
With the technology revolution and advancements in this rapidly
changing world, the proportion of adult learners attending
courses for continuing education are increasing. Their learning
objectives are no longer to obtain good grades but the practical
skills to enable them to perform better in their work and advance
in their career. Teaching software architecture to upskill these
adult learners requires contending with the problem of how to
express this level of abstraction practically and also make the
learning realistic. We provide here our seven years’ history of
teaching software architecture of information systems to these
adult learners as a part of a public continued education program.
We describe our key challenges encountered at these levels and
go on to analyze the results of the course design we have taken
over the years. We also compare our teaching methods based on
problem-based and case-based learning and examine their
effectiveness for adult learners. We hope this discussion can help
educators design and improve software architecture curriculum
and support education researchers in investigating pedagogical
approaches and tools to better support adult learners.

Keywords—software architecture, adult learners, case-based
learning, problem-based learning, peer learning

I. INTRODUCTION

Software architecture remains an abstract and challenging
subject for learners to grasp and for educators to teach. In most
cases, a system that can be comprehended quickly by learners
would be too simple to have a significant architectural
discussion. The skill set expected for a software architect is
also multi-faceted which increases the level of difficulty to
train one to be a competent software architect. The role of a
software architect typically entails one to have the technical
skills that minimally include software design and development
experiences and understanding of system and networking
concepts, analytical skills to grasp the problem quickly,
diagnose the possible root causes and leadership skills to make
significant decisions for the project based on the context and
environment.

With the rapid advancements in the technology world, the
proportion of adult learners attending information technology
courses are increasing. Adult learners typically bring with them
a wealth of practical experiences and in some cases, also

constraints within their field or organization. Their key learning
objective is to learn the practical skills to for them to perform
better in their work and advance in their career. Concepts and
theories are great to know but if the learners do not find them
practical in the real world, they will not be able to apply it. Our
findings are derived from teaching software architecture of
information systems to adult learners who are information
technology (IT) practitioners having a certain degree of IT
experiences and wish to or require to upskill in software
architecture design.

One key challenge is to be able to impart the practical skills
such that the adult learners can apply immediately on their
information system projects when they are back to work. From
an educator’s perspective, we need to recognize the importance
of imparting practical software architecture skills. We should
seek to validate the practicality and relevance of the course
contents by asking questions such as “Is this methodology too
heavy-weight?”, “Does this model which measure a specific
software quality requires the components to be built first?”,
“When should I use this architectural style?” and “When
should I not use this architectural style?” For example, when
given a problem of enterprise application integration, the
learners tend to adopt the broker style using the enterprise
service bus (ESB) to transform and route messages to achieve
loose coupling between software systems. Although there are
many useful features in a broker, implementation of a broker
can also be impractical due to organizational constraints. An
organization with an existing tightly coupled integration
architecture but with only a handful of software systems might
not see the need to re-design their architecture with a broker
and undertake project risks and additional costs. The cost of
implementing an ESB can also outweighs the benefits to the
organization. The learners must be aware of such
considerations in order to apply these skills effectively in their
workplace. During the conduct of the course, we usually find
ourselves either giving or being asked by learners to give
examples of how this concept, software, model or tool can or
had been applied in an information system project.

Another challenge is to be able to design the course that is
relevant to the learner’s environment. Software architecture is
defined as the fundamental organization of a system embodied
in its components, their relationships to each other, and to the
environment, and the principles guiding its design and
evolution [1] [2]. The learners’ environment can differ from
each other which can influence the significant decisions to be
made to the software architecture. For example, a software

978-1-5386-1174-6/18/$31.00 ©2018 IEEE

architecture which proposes to implement Simple Object
Access Protocol (SOAP) web service call to integrate two
systems might work in most environments but will not work if
the two systems are located on opposite side of an “air gap”
network environment. While the components and their
relationships in the software architecture can be taught using a
lecture-based method, the environment and principles aspects
vary with the learner’s experiences and background. It is not
possible to completely cover the variants of the learner’s
environment given the limited course duration.

Another challenge in teaching software architecture to these
adult learners is how to make these abstract concepts easy to
comprehend. To learners new to architectural design, this is a
mindset switch from the concrete aspect of software
programming and low-level software design to abstract
architectural design. For one who is used to writing code and
compiles to get a deterministic result, the mindset of
structuring components together in a diagram, justifying their
key decisions with potential trade-offs without any concrete
output and there is no one single perfect solution is a frustrating
divergence from what they are doing.

When we design our approaches for the course, we need to
consider these challenges in totality and not as separate
challenges. Failure to do that can disengage the learner’s
interest and affects their learning outcomes. For example, we
initially thought by demonstrating program codes that can
achieve a specific software quality, it can help them to better
comprehend abstract architectural design concepts in a
practical manner. However, this approach surprisingly
backfires several times due to their prior IT experiences of the
learner and also due to the longer time taken to teach and learn.
More experienced learners commented that this is too low level
and not necessary while less experienced learners got distracted
by the programming aspect. During the design and conduct of
the course, it is crucial to be aware of the adult learners’
background, pace the lesson accordingly and find the right
balance.

Our pedagogical approach to deliver the software
architecture course centered on applying a combination of
traditional lecture-based and workshops. The lecture-based
session focuses on imparting the underpinning knowledge in
architecting a software system and providing the essential
background for the learners to do the workshops. For the
conduct of the workshops, we have two variants– one based on
the problem based learning (PBL) method and the other based
on the case-based learning (CBL) method. These methods are
already widely applied in domains such as the medical fields.
For workshops based on PBL, we group the learners into teams
of 4-5 and they are given an open-ended problem with many
exit solutions. Instructors play a minimal role and do not
interfere in the discussion, even when learners explore off the
tangents. For workshops based on CBL, we also group the
learners into teams of 4-5 and give them a case-study with
some advance preparation. When learners begin to explore off
the tangents, instructors can play as facilitators and use guiding
questions to bring them back to the primary learning objective.
In this case, both students and instructors share the
responsibility to draw conclusions on the learning points. Both
variants do have something in common which is to allow the

learners to focus on the process of discovery, stimulate
problem-solving, independent learning, and teamwork. Some
have called PBL an open inquiry approach while CBL is a
guided inquiry approach. We evaluated the impact of these two
methods to the adult learners when they give their ratings on
relevance and practicality in the course feedbacks.

We seek to address the following two research questions
for the rest of the paper.

1. How do we design the software architecture course for
adult learners that is practical, relevant and easy to
comprehend?

2. Which teaching method (PBL or CBL) enables the
adult learners to learn more effectively in terms of
practicality and relevance?

The rest of the paper is organized as follows: We first
present the related work in Section II and the background of
our course in Section III. Our course design and its evolution
from 2011 to 2017 are discussed in Section IV to address our
first research question. We describe how we apply PBL and
CBL methods in Section V to address our second research
question. The course feedbacks and analysis are summarized in
Section VI to measure the effectiveness of our approaches to
both research questions. The study results show that our efforts
to design a course that is practical, relevant and easy
comprehend are rewarded with improving feedback ratings
from our profile of adult learners who also express higher
preferences for the teaching method based on PBL. Threats to
the validity of our result are discussed in Section VII and the
conclusion in Section VIII. The two key contributions in this
paper are: (1) the design of a software architecture course for
adult learners and (2) Insights into the pedagogical approach
adopted for adult learners.

II. RELATED WORK

A framework to classify software architecture teaching
challenges: Galster and Angelov [3] describe the framework
involving the relationship of concept (software architecture),
representation (architecture description), referent (software
architecture practice) to the learner element in the learning
space. In addition to the vagueness of the concept of software
architecture itself, architecture problems are usually “wicked”.
Asking students to create an architecture is different to e.g.,
asking them to write a Java program - students have a much
clearer understanding of what the expected outcome is.
Visualizing and document software architectures can be
challenging and clear guidelines on what and how to document
has to be given. There is often a distinction between high-level
architecting and low-level implementation activities.
Overcoming this requires the creation of a mindset in students
to not treat architectural decisions in isolation.

The need to teach software architecture design course
that is industrially relevant: Mannisto, Savolainen and
Myllarniemi [3] discuss on the means for teaching students
what it takes to face software architecture design problems with
some characteristics of wicked problems and providing
students some methodological tooling for coping with the
problems in their profession as software architects. Industrial

environments can differ significantly from typical exercises in
software architecture teaching and constraints often dominate
the development process. Ouh and Jarzabek [4] demonstrate
how constraints regarding tenant base or service costs affect the
service architectures and eventually service profitability. We
agree to the need of the course to be industrially relevant and
our course for adult learners is designed with this in mind.

Challenges in teaching software architecture courses to
undergraduates: Rupakheti and Chenoweth in [5] described
their experiences and learnings in teaching software
architecture course to undergraduates. Their systematic
problem in getting architecture concepts across to
undergraduates is similar to our challenge for learners,
primarily those with programming but limited design
experiences. They advocated that the overall design of their
software architecture course at the undergraduate level should
consider how ambitious the course developer’s goals will be,
given the students are unlikely to take the role of the architect
in their first job. In terms of our course design for adult
learners, we seek to be practical and relevant so that the
learners can apply their new skills immediately in their work
after the course.

A Community of Learners Approach to Software
Architecture Education: Boer, Farenhorst and Vliet in [6]
described their experiences on applying community of
learner’s approach in which students are treated as partners in
the knowledge development process to learn about the wicked
nature of software architecture. Wicked problems cannot be
solved by following a strictly sequential and fixed number of
steps and the inquiry learning cycle of the Community of
Learners approach instead provides for a good fit with the
wicked nature of software architecture design. We do find this
mode of teaching useful especially for adult learners who are
able to learn from other learners willing to share their project
experiences.

Comparing Problem-Based Learning with Case-Based
Learning: Effects of a Major Curricular Shift at Two
Institutions: Srinivasan, Wilkes, Stevenson, Nguyen and
Slavin in [7] described their experiences in applying and
comparing problem-based learning (PBL) and case-based
learning (CBL) methods to the medical curriculum for students
studying in two major academic medical centers. The results of
their study showed that learners and faculty overwhelmingly
preferred guided inquiry-based of CBL over open inquiry-
based of PBL for their medical curriculum. In our case, the
study results show otherwise. The possible reasons for this
difference might be due to the learner’s profile, experiences
and needs.

In this section, we highlight some of the existing work and
their challenges to design software architecture courses,
primarily focused on undergraduates or university level
students. We also highlight the comparison of the case-based
learning and problem-based learning methods applied in the
medical curriculum. This paper seeks to address the education
of another unique group of learners (adult learners) for a
software architecture course and assess the effectiveness of
applying the PBL and CBL methods for this group of adult
learners.

III. COURSE BACKGROUND

A. Adult Learners

Over seven years, we developed, delivered and evolved a
software architecture course to meet the needs of the IT
practitioners taking our public course as part of a nation-wide
continued education program. The continued education
program is a government initiative to incentivize IT
practitioners to upgrade their skills in a series of accredited
courses.

The profiles of the learners are typically IT practitioners
having an average of 5 years working experiences, taking the
roles of program project manager, project lead, senior software
engineer and business analyst. There is a small percentage of
outliers – learners with less working experiences but these
learners generally have sufficient technical background.

B. Course Objectives

The primary objectives of the course during is to prepare
adult learners to appreciate, design and evaluate software
architecture designs in the industry. These are the expected
learning outcomes which are also reviewed and accepted by the
relevant authority of the continued education program to assess
the learner’s competency.

1. Explain how the application architecture fits into the
broader context of organizational business goals and
enterprise architecture.

2. Design the architecture with an emphasis on the
common application integration components.

3. Describe the software architecture with views and
viewpoints

4. Analyse software architecture designs with respect to
the quality attributes and their tradeoffs.

C. Course Structure

The course schedule is structured around a 32.5 hours
classroom contact time and can be delivered in consecutive
days or in weeks, allowing us the flexibility in conducting for
adult learners who are working IT practitioners. For example,
when a company decides to enroll a substantial number of their
staff for this course, we will have to conduct the lesson
according to the availability of these company participants.

The course agenda is split into 2 broad categories of topics
in architectural fundamentals and software qualities. For the
topics on architectural fundamentals, learners will get to
appreciate the different types of architectures styles and
reference architectures. For the topics on software qualities,
learners will get to learn key concepts in software qualities
such as availability, security and performance to further
improve the quality of their architecture. These topics can be
conducted either purely lecture-based or with workshops.
However, we ensure that the proportion of the workshops time
is at least 50% of the total course duration for the learners to
have the opportunities to work on problems based on what they
have taught in the classroom. The structure and conduct of
these workshops are discussed with more details in Section V.

At the start of each course, we conduct a kick-off session
for the adult learners, primarily to understand the learner’s
background and needs. This session also helps the learner to
better reflect on their learning outcomes at the end of the
course.

IV. COURSE DESIGN AND EVOLUTION

The design of an actual software architecture can be used as
an analogy to design a software architecture course. The topics
(components) have to be correctly integrated (relationships)
and right course design approaches (principles) have to be
made to accommodate the learner (environment). Our course
design focus on architecting for information systems which
most of our learners required back at their workplace. A
summary of the following discussions and its applicability to
address earlier stated challenges are available in Table I.

A. Coverage of Architectural Styles

Architectural styles like design patterns are the general
reusable solution to a commonly occurring within a given
context but at the architectural level. In the first few years, we
cover these the traditional styles of client-server, data-centric,
event-driven, and layered that are generally more applicable for
an information system architecture. In the subsequent years, we
structured them into structural styles (component),
communication styles (relationships). Structural styles relate to
how the components are structured in a software architecture
while communication styles are the relationships among the
components. We categories the common architectures that
utilize these structural and communication styles into reference
architectures. We regularly review our contents for their
relevance to the industry practices before each run. For
example, we included the reference architectures on Service-
Oriented Architecture (SOA), Microservices, Broker, Cloud
Computing, Internet of Things, and Big Data.

Over the years, the time allocated to the traditional styles
gradually reduced to allow for more recent reference
architectures. The conduct of the architectural patterns session
also moved from explaining the “what and how to implement
each style” to “What are the considerations when using this
style?” We further provoke their thinking to understand the
style deeper with this kind of discussion. This change is an
example of how we keep the course practical and attempts to
address the diverse background of the adult learners. Using
examples and analogies to explain each of the styles to make it
easier to comprehend. For example, receiving mobile app
notifications is a good case of how publish-subscribe works.

B. Coverage of quality attributes

Bass, Clements, and Kazman in [8] described an approach
to use quality attribute scenarios to document the qualities of
availability, modifiability, performance, security, testability
and usability. In our initial course design, we use the same
format of the quality attribute scenarios but adapt for
information systems which are more relevant to our learners.
Over the years, we also adopted the format of the misuse cases
due to its relevance to other artifacts in the Rational Unified
Process (RUP) [9] that is already widely adopted by our

learners. However, we do acknowledge that the quality
attribute scenarios are more structured and specific to describe
qualities scenarios.

During 2013, the coverage of the quality attributes is
evolved to refer the list of software qualities in ISO 25010
Product Quality Model [10] which provides a more
comprehensive and clearly defined set of quality attributes.
Using the ISO standard gives learners a commonly accepted
list of software qualities to discuss and apply.

The lesson conduct for quality attributes evolved from
understanding the quality attributes and describing the quality
attribute scenarios to including trade-offs and mitigation
measures, increasing the practicality of the lesson. For
example, one question we typically asked is whether we should
separate web, application and database tiers into multiple nodes
with firewalls in between to limit access and monitor data for
confidentiality (security). This design improves security but
introduces a tradeoff which is the additional points of failures
(availability). The availability tradeoff can be mitigated to a
certain extent by clustering the nodes for higher availability.
Another example is the development of a product-line
improves maintainability but tradeoff additional upfront costs
which can be mitigated with an adaptive reuse technique as
described by Khue, Ouh and Stan [11] for a set of related
mobile apps and by Koznov, Luciv, Basit, Ouh and Smirnov
[12] for a set of related software technical documentation.
Due to the learners’ project experiences, the outcomes of the
described scenarios are mostly unique. To make it relevant to
their environment, we design for the learners to describe their
real-life design decisions and we discuss the potential software
qualities, trade-offs and how they can mitigate the trade-offs.
This kind of discussion becomes an interesting learning process
for both the learners and the instructors and it is also a good
exercise for the learners to switch their mindset from software
design and development to architectural design. We also tend
to give thought-provoking questions for learners to further
reflect on their learnings. For example, we ask “Does designing
for security always negatively trade-off other qualities in your
architecture? We often find it is useful and important to
highlight the fundamental theorem of software engineering -
We can solve any problem by introducing an extra level of
indirection [13] with the extension “except for the problem of
too many levels of indirection.”, emphasis that each design
decision also has its own impact and trade-offs.

C. Practice of soft skills

Soft skills such as communication and leadership skills are
essential for an architect to lead, present, negotiate and justify
their architectural designs and decisions. In this course, the
learners are given the opportunities to take turns to lead their
team and present their designs in the workshops.

We generally do not have many issues with their
presentation skills as the learners have been practicing their
soft skills in their workplace. However, we do find the lack of a
solid technical foundation in some learners when they justified
their design decisions which constrained their ability to explain
their designs convincingly.

D. Usage of tools

The usage of the tools to achieve the learning outcomes has an
interesting development. Initially, we would like the learner to
learn a new tool that allows them to document their designs
and at the same time, check for inconsistencies in their views.
We introduce a commercial tool to do that and the learners
have to install, learn to use the tool (if they have not) and
address the questions in the required deliverables. However, we
realize the use of learners’ time is not maximized within the
limited course duration. Subsequent feedbacks are also mixed
with more than 50% indicated that they would rather have a
simpler UML Modelling tool or even paper and pen due to the
impracticality of the commercial tool to be applied
immediately back at their workplace. Over the years, we decide
to fall back to the key objective of drawing an architectural
view which is to effectively communicate the design that
addresses stakeholder’s concerns. We confine ourselves to only
teach the notations and its purpose in the architectural view,
usage of our proposed tool or any other tools (e.g., paper and
pen) are acceptable as long as the notations are articulated
clearly and effectively.

E. Design method and Assessment

The selection of the right methodology is being debated
during the initial course design. There are many available
architecture design methodologies that can be adapted for a
software architecture course. The criteria lie in the usefulness
of the method to the learner’s workplace and the reputation of
the method in the industry. We narrowed down to Rational
Unified Process (RUP) [9] and The Open Group Architecture
Framework (TOGAF) [14]. Eventually, we adopted RUP
primarily due to the existing adoption of the same method in
other courses in our institution including one of our
postgraduate programme. Both of these methods are also
accredited under the Open Group Certified Architect (Open
CA) program [15] which allows the learners to apply the
methods in their workplace and subsequently submit their
experiences for Open CA certification. This decision stays
since the beginning of our course design.

The goal of the assessments is to determine the level of
competency of the learner. The adult learners need to achieve a
certain level of competency to enjoy the incentives provided by
the relevant authority for taking this course under the continued

TABLE I. SUMMARY OF THE COURSE DESIGN AND EVOLUTION

Dimension and Applicability -
(1) Practical Skills

(2) Relevance (3) Easy to
Comprehend

Initial Design Current Design

Coverage of Architectural Styles

Type of Architectural Styles (2)

Client-server, tiered computing
data-centric, call-and-return, event-driven

layered, virtualization

Added reference architectures on SOA/Microservices, Cloud
Computing, Internet of Things, Big Data

Lesson Conduct (1) (2) (3)

Focus on “what and how to implement each
style.”

Focus on “What are the considerations
when using each style?”

Use more examples and analogies.

Coverage of Quality Attributes

List of Quality Attributes (3) Availability, modifiability, performance,
security, testability and usability

List of software qualities in ISO 25010 Product Quality
Model.

Description of Quality Attributes (2) Quality attributes scenarios with examples
focused on information systems

Inclusion of misuse case.

Learning Conduct (1) (2) (3) Understanding the quality attributes and
describing the quality attribute scenarios

Including discussion on the
trade-offs and mitigation measures

Practice of Soft Skills

Leadership skills (1) (2)

Workshops
Project presentation

No Change

Communication and
Negotiation Skills (1) (2)

Justifications of decisions made
including technical explanation and trade-offs

No Change

Usage of Tools

Types of Tools (2) Commercial Tooling UML Modeling, Free Form – paper and pen

Purpose of Usage (1) Documentation and View Consistency Notation Consistency

Design Method and Assessment

Selection of Method (1) (2)

Rational Unified Process (RUP)
The Open Group Architecture Framework

(TOGAF)

No Change

Design of the Assessment (1) (2) Based on written deliverables (70%) and
participation in workshops (30%)

We scale down the assessment portion of written
deliverables (50%) and focus more on their participation in

workshops (50%)

education program. We evaluate the learners based on their
written deliverables to the workshops and observe their
participation in workshops as to whether they sufficiently
demonstrate their capabilities to practically apply the concepts
and methods. For passive learners in the workshops, we find
opportunities for them to participate by consciously rotating the
learner’s turn to present. As these adult learners are being
assessed for their competency to apply the knowledge gained
in the course, they are not given a specific grade but a general
“competent/not competent” result. Their real test is applying
these learnings back at their workplace, not in the classroom.
Due to this reason, we scale down the number of written
deliverables being assessed and focus more on their active
participation in workshops over the years.

This section addresses the first research question on how
we design our software architecture course for adult learners.
We evaluate the effectiveness of our course designs decisions
made over the years when we analyze the course feedbacks in
section VI.

V. CONDUCT OF THE WORKSHOPS

For the learners to better appreciate the software
architecture and the practical aspect of it, we conduct
workshops during the course duration, applying the problem-
based learning and case-based learning methods. A summary
of how the workshops are conducted is given in Table II.

For problem-based learning, we assign open-ended
architectural problems to each group. Within their group,
learners are supposed to discuss their design solution, research
on more information and present their findings and conclusion
to the instructor and other learners. During the conduct of the
workshop, learners play the role of an architect and the
instructor play the role of a facilitator providing minimum
guidance in the architecture design.

For case-based learning, each group is given some readings
and articles on a project scenario which they are required to
read before the lesson. Each group is required to solve the
given questions within the scenario. The scenario involves
architecting a complex distributed information system and the
learners to apply the architectural concepts and address
challenging software quality requirements. During the conduct
of the workshop, learners play the role of an architect and the
instructor play the role of the other stakeholders (for example,
healthcare staff, internal IT team) clarifying functional
requirements with guidance to the technical design of the
architecture.

For both methods, we adopted a peer learning strategy for
each group to hear comments from other groups. However,
there is a minor problem. Constrained by the presentation time,
the learners might not be able to grasp the problem or the
design solution of another group thoroughly to evaluate it and
limits their capability to ask questions during the presentation.
We modified the conduct of the workshop by dividing the
learners of each group into two sub-groups. One of the sub-
group is required to explain their design solution. The other
sub-group is required to understand the design solution from
another assigned group so that they can prepare their questions
for the actual presentation. This peer-learning greatly advances

the learning process as now each learner will be able to hear
from multiple learner’s experiences and thinking, applied to a
real-life scenario.

VI. COURSE FEEDBACKS AND ANALYSIS

A. Course Runs

The public course is conducted 4 times a year with an
average of 15 learners per class in the earlier years to currently
25 learners per class in recent years. Each run of the class spans
over 5 full days and conducted by two instructors to give the
learners additional exposure to the experiences of different
instructors. We have trained 524 IT professionals from the
beginning of 2011 to the end of 2017 over a total of 28 runs of
the course. There is no cancellation of the scheduled classes
since the launch of the course.

Each learner is given a list of feedback questions and they
are required to hand in their answers and comments at the end
of the course. The metric-based questions are rated on a 5-point
Likert scale metric ranging from 1 – strongly dissatisfied to 5 –
strongly satisfied.

The four questions asked for the overall of the course are:
(1) “Does this course fulfilled course learning objectives and
outcome?” (2) “How well does this course impart knowledge
and skills needed for you to apply and practice?” (3) “How are
the logistics and administrations provided?” and (4) “What is
the overall satisfaction level for this course?” There are also
questions for the adult learners to give feedback on the specific
workshops. The four questions asked for the workshops are: (1)
“Is the module conducted practical and applicable to your
work?” (2) “How is the quality of materials provided?” (3)
“Does it meets the module objectives?” and (4) “How is the
level of class interaction?” The ratings for the course overall
are available for every runs from 2011 to 2017. However, the
ratings for each of the lecture and workshop session are only
available for the runs from 2011 to 2016 due to a simplification
of the feedback form that took effect in 2017.

There are also open-ended questions which allow the
learners to write their comments on other areas of the course.
The questions asked include “How do you apply the lesson
learnt in the workplace?”, “What do you like BEST about the
course?”, “What do you like LEAST about the course?” and
“Do you have suggestions to improve the course?”

B. Analysis of the Public Course Feedback

For the evaluation of the course design to answer the first
research question, we measure the ratings for the following
metric-based questions - “How well does this course impart
knowledge and skills needed for you to apply and practice?”
and “What is the overall satisfaction for this course?” The
rating results of these two feedback questions for conducting
the course is shown in Fig. 1. It illustrates an upward trend in
overall satisfaction and practicality of the course as rated by the
public course participants over time, indicating that the
improvement to the course design over time has effectively
improved the public course learners experience in going
through the course. Using Analysis ToolPak Add-in for
Microsoft Excel [16], we perform a correlation analysis

between this two set of ratings and the resulting value is 0.84,
indicating a high correlation between the practicality and
applicability of this course and its relationship to the overall
satisfaction.

We also review the textual comments from the open-ended
questions to understand with regards to the course overall and
the perform sentiment analysis based on Amazon Comprehend
service [17]. This service returns a score between 0 – 1
indicating the degree of confidence for that sentiment. The
positive responses with a positive sentiment score higher than
0.75 generally fall under the following categories:

- Participants can understand the abstract concepts
taught easily with practical examples. E.g., “Both
instructors are very knowledgeable. One provided a lot
of actual use cases to relate to the topic on hand, while
the other uses appropriate analogies to explain the
concept easily.”

- Appreciation of abstract architectural thinking. E.g., “l
learnt to think like an architect as in how to solve and
plan problems in a higher view, the strategies and
principles will definitely help to solve security,
performance and maintainability in my current
project.”

The negative responses with a negative sentiment score
higher than 0.75 gathered from the participants also have some
common themes:

- The course duration is too short to cover the all the
concepts. E.g., “5 days was too rushed for the course”.

- Participants are not familiar with the type of system
used in the examples. E.g., “Too much information to
digest for me because I have the least background on
web application.”

The negative sentiments illustrate the constant challenge
that we always have in terms of balancing the amount of time
with the amount of teaching materials that we wish to cover.
The diversity of the past experiences of the course participant
also post a challenge of making some examples of a particular
domain to be less relevant to other participants. We seek to
provide some fundamental background knowledge to our
course contents as pre-reading materials so that participants can
be more prepared for the course.

For the second research question on our teaching methods
in workshops, we evaluate the ratings for the feedback question
“Is the module conducted practical and applicable to your
work?” for the workshops conducted based on PBL and CBL.
Fig. 2 shows the overview of the trend based on this feedback
to this question, illustrating that ratings for the PBL being
consistently higher than CBL. Using Analysis ToolPak Add-in
for Microsoft Excel [16], a paired sample t-test for the
workshops ratings based on PBL and CBL indicates a
significant difference in the ratings for PBL (mean=4.12,
variance=0.03) and the ratings for CBL (mean=3.96,
variance=0.04) with t(21)=4.54 and p-value=0.0002.

Some learners commented that they could discover and
learn more because of the open inquiry aspect of the workshop
based on the PBL method and workshops based on the CBL
method are not time efficient. Adult learners who need to
sacrifice their working time to attend courses would also better

TABLE II. CONDUCT OF THE WORKSHOPS

Instructional
Element

Workshop Example based on
Problem Based Learning (PBL) method

Workshop Example based on
Case-Based Learning (CBL) method

Problem / Case
Study

Learners are required to address a problem – How to support the
existing systems to integrate to a new backend system.

Learners are given a School Healthcare Project scenario and they
are given specific questions to be addressed during the design of

the architecture

Time allocated
for each session

2 hours 4 hours

Learner Pre-
Preparation

None.
Pre-readings related to the School Healthcare Project such as

requirements and background are given before the class.

Instructor Pre-
Preparation

Effort to design the problems ensuring limited but sufficient
information are given in the class to allow the learners to have

open-ended discussions

Effort to design the workshop case study scenario and questions to
be answered

Instructor’s
approach during
the session

Act as the facilitator providing minimum guidance but can give
alternative views to provoke discussions.

Act as the stakeholder of the project, clarify the requirements and
give guidance in the actual design of the architecture.

(CBL) Questions
to be addressed
(PBL) Comments
to provoke
discussions

“Will the existing systems be adversely impacted by your
architectural decisions?”

 “Is enterprise service bus (ESB) required for this project?”
“Does introduce another layer of ESB degrades performance?”

“What are your logical and physical designs of the architecture?”
“What are your measures to ensure availability and security of

the system in the school?”
“What do you think are the quality trade-offs in your design and

how can you mitigate these tradeoffs?”

Assessment
Method

Adopt a peer learning strategy where the learner is able to hear from multiple learner’s experiences and thinking

Learner’s
Deliverables

Presentation
Self-Reflection Report

Presentation
Self-Reflection Report

Software Architecture Report

appreciate the open inquiry aspect of PBL where they can learn
from other learners’ experiences and thinking within a short
time span. PBL based approach, which does not have any pre-
set goals and expected outcomes like CBL, tends to in a way
works well with adult learners. On the other hand, there are
also learners who appreciate the guided and structured aspects
of the workshop based on the CBL method. We suspect this
difference may be due to the level of experiences of the adult
learners and leave this be concluded in future studies. We will
continue to fine-tune the course but we do not intend to
completely replace the workshops based on the PBL method.
We believe both methods address the needs of the learners to a
certain degree depending on their profile and adds variance in
our teaching methods. The structured characteristic of the CBL
method also enables the level of competency to be assessed
easily for the continued education program.

We are encouraged to see that our efforts to teach
architectural design in a more practical and relevant manner is
well-recognized by the participants over the years. Our use of
case studies, analogies, demonstrations and discussions help in
fostering a learning environment that learners can easily
comprehend especially crucial in this today’s fast-paced
environment where abundant information is available over the
Internet. However, we do caution to adopt this approach for
less experienced learners as they might not be equipped with
the necessary background knowledge to fully appreciate the
lectures and workshops. From the instructor’s perspective,
substantial effort is required to prepare the course especially
the workshops. There is also a need to consistently collaborate
with the industry to stay relevant and practical in the course
design.

VII. THREATS TO VALIDITY

While the software architecture has to be designed within
the context of its environment, the findings in this study are
also confined by the profile of our learners. Although we have
accumulated these results over many years and our learners’
profile varies in the type of industry and country, these results
will require further validation when the environment (learner’s
profile) changes significantly.

The course contents are designed for learners who are
required to develop software architectures of information
systems. Even though these architectural design concepts are
also applicable in other types of system (e.g., embedded

systems), the design of our approaches might not be applicable
(or have to be adapted) to a learner who is working on other
types of systems.

VIII. CONCLUSION

We believe that with technology revolution and
advancements in this rapidly changing IT industry, the need to
learn software architectures become more evident as software
architectures enable one to visually communicate the key
features of each new technology in terms of the components,
its relationship and principles of the architecture. However,
teaching software architecture to adult learners poses unique
challenges as compared to other areas of software engineering
or other types of learners. We summarize these challenges into
three aspects (need to impart practical skills, relevance to the
learner’s environment and easy to comprehend) and describe
how we design our course to address these challenges. We also
highlight and compare our teaching methods based on PBL and
CBL. Our evaluation on the effectiveness of our course design
and the teaching methods for the workshops are based on the
adult learners’ feedback ratings over a period of 7 years and 28
runs of the course. Our results indicate an encouraging trend of
improving ratings for our course as a whole with the adapted
PBL method being preferred by our adult learners.

In this paper, we highlight how abstract concepts in
software architecture design can be taught in public courses for
adult learners and how we have designed our course to meet
the practicality and relevance needs for this group of adult
learners. Over the years, this course has evolved with the
feedbacks of the learners and their organizations and we are
glad that it has become one of the essential course to take in
these IT organizations. We hope this discussion and insights
can support education researchers in investigating better
pedagogical approaches for adult learners, help educators
design better software architecture curriculum and are useful to
educators who encountered similar challenges in teaching
abstract concepts.

In our future work, we plan to provide our experiences and
insights in designing software architecture courses to another
two type of learners – undergraduates and experienced adult
learners with more than 10 years of working experiences. We
also plan to perform a comparison study to collate our findings
in teaching software architecture course to all these three
groups of learners and derive further insights.

FIG. 1. OVERALL SATISFACTION RATING OF SHORT COURSE PARTICIPANTS

FROM 2011-2017

FIG. 2. RATING FOR THE SESSION CONDUCTED BASED ON CBL AND PBL
FROM 2011-2016

REFERENCES

[1] P. Kruchten, "The Software Architect," Springer, Boston, MA, 1999, pp.
565-583.

[2] "ANSI/IEEE 1471-2000 - IEEE Recommended Practice for Architectural
Description for Software-Intensive Systems," 2001. [Online]. Available:
https://standards.ieee.org/findstds/standard/1471-2000.html.

[3] T. Mannisto, J. Savolainen and V. Myllarniemi, "Teaching software
architecture design.," in Seventh Working IEEE/IFIP Conference on
Software Architecture, WICSA 2008. , 2008.

[4] E.L. Ouh and S. Jarzabek, “An Adaptability-Driven Model and Tool for
Analysis of Service Profitability.” In: Nurcan S., Soffer P., Bajec M.,
Eder J. (eds) Advanced Information Systems Engineering. CAiSE 2016.
Lecture Notes in Computer Science, vol 9694. Springer, Cham

[5] C. R. Rupakheti and S. V. Chenoweth, "Teaching software architecture
to undergraduate students: an experience report.," in IEEE/ACM 37th
IEEE International Conference on Software Engineering (ICSE), 2015,
2015.

[6] R. C. d. Boer, R. Farenhorst and H. v. Vliet, "A community of learners
approach to software architecture education," in 22nd Conference on
Software Engineering Education and Training, 2009. CSEET '09, 2009.

[7] M. Srinivasan, M. Wilkes, F. Stevenson, T. Nguyen and S. Slavin.
“Comparing problem-based learning with case-based learning: effects of
a major curricular shift at two institutions.” Academic Medicine, 82(1),
74-82, 2007.

[8] L. Bass, P. Clements and R. Kazman, Software Architecture in Practice,
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,
1998.

[9] P. Kruchten, The rational unified process: an introduction, Addison-
Wesley Professional, 2004.

[10] "ISO/IEC 25010:2011 Systems and software engineering -- Systems and
software Quality Requirements and Evaluation (SQuaRE) -- System and
software quality models.," 2011. [Online]. Available:
https://www.iso.org/standard/35733.html.

[11] K. L. Minh, E. L. Ouh, and S. Jarzabek. "Mood self-assessment on
smartphones." In Proceedings of the conference on Wireless Health, p.
19. ACM, 2015.

[12] D. Koznov, D. Luciv, H. A. Basit, E. L. Ouh, and M. Smirnov. "Clone
detection in reuse of software technical documentation." In International
Andrei Ershov Memorial Conference on Perspectives of System
Informatics, pp. 170-185. Springer, Cham, 2015.

[13] D. Abrahams and A. Gurtovoy, C++ Template Metaprogramming:
Concepts, Tools, and Techniques from Boost and Beyond, Portable
Documents, Pearson Education, 2004.

[14] "TOGAF®, an Open Group standard," [Online]. Available:
http://www.opengroup.org/subjectareas/enterprise/togaf.

[15] "Methods, Open Group - List of Recognized Methods," [Online].
Available: http://www.opengroup.org/openca/cert/methods.tpl

[16] Analysis ToolPak Add-in for Microsoft Excel [Online]. Available:
https://support.office.com/en-us/article/use-the-analysis-toolpak-to-
perform-complex-data-analysis-6c67ccf0-f4a9-487c-8dec-bdb5a2cefab6

[17] Amazon Comprehend - Discover insights and relationships in text
[Online]. Available: https://aws.amazon.com/comprehend/

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	10-2018

	Teaching adult learners on software architecture design skills
	Eng Lieh OUH
	Yunghans IRAWAN
	Citation

	tmp.1543484410.pdf.VhXoz

