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Sparse Passive-Aggressive Learning for Bounded Online
Kernel Methods

JING LU and DOYEN SAHOO, School of Information Systems, Singapore Management University,

Singapore

PEILIN ZHAO, School of Software Engineering, South China University of Technology, China

STEVEN C. H. HOI, School of Information Systems, Singapore Management University, Singapore

One critical deficiency of traditional online kernel learning methods is their unbounded and growing number

of support vectors in the online learning process, making them inefficient and non-scalable for large-scale

applications. Recent studies on scalable online kernel learning have attempted to overcome this shortcoming,

e.g., by imposing a constant budget on the number of support vectors. Although they attempt to bound the

number of support vectors at each online learning iteration, most of them fail to bound the number of sup-

port vectors for the final output hypothesis, which is often obtained by averaging the series of hypotheses

over all the iterations. In this article, we propose a novel framework for bounded online kernel methods,

named “Sparse Passive-Aggressive (SPA)” learning, which is able to yield a final output kernel-based hypoth-

esis with a bounded number of support vectors. Unlike the common budget maintenance strategy used by

many existing budget online kernel learning approaches, the idea of our approach is to attain the bounded

number of support vectors using an efficient stochastic sampling strategy that samples an incoming training

example as a new support vector with a probability proportional to its loss suffered. We theoretically prove

that SPA achieves an optimal mistake bound in expectation, and we empirically show that it outperforms

various budget online kernel learning algorithms. Finally, in addition to general online kernel learning tasks,

we also apply SPA to derive bounded online multiple-kernel learning algorithms, which can significantly im-

prove the scalability of traditional Online Multiple-Kernel Classification (OMKC) algorithms while achieving

satisfactory learning accuracy as compared with the existing unbounded OMKC algorithms.

CCS Concepts: • Theory of computation→ Online learning theory; • Computing methodologies→

Kernel methods;
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1 INTRODUCTION

Online learning with kernels represents an important family of machine-learning techniques
for learning nonlinear hypotheses in large-scale machine-learning tasks [17, 23, 35]. Due to the
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curse of kernelization [45], a major deficiency of many online kernel learning techniques is their
unbounded number of support vectors, which can explode for large-scale learning applications.
This has raised a huge challenge when applying these techniques in practical applications, since
computational complexity (of both time and space) for an online kernel learning algorithm is
proportional to the support vector size.
Recent years have witnessed a variety of emerging studies for budget online kernel learning.

Examples include Budget Perceptron [11], Randomized Budget Perceptron (RBP) [4], Forgetron
[14], Projectron [30], Budget Passive-Aggressive (BPA) learning [47], Bounded Online Gradient
Descent (BOGD) [45, 53], among others. Although budget online kernel learning has been actively
studied, most existing algorithms suffer from two key drawbacks as follows.
First, existing budget online kernel learning algorithms are not suitable for online-to-batch con-

version, a process that aims to convert online classifiers for batch classification purposes [5, 13, 15].
Specifically, one of the most commonly used approaches for online-to-batch conversion is to take
the averaging classifier, that is the mean of all the online classifiers at every online iteration, as the
final classifier for batch classification. This simple technique is not only computationally efficient,
but also enjoys theoretical superiority in generalization performance compared to the classifier
obtained in the last online iteration [38]. Unfortunately, most existing budget online kernel learn-
ing algorithms only guarantee that the support vector size at each online iteration is bounded, but
they fail to yield a sparse averaging classifier after online-to-batch conversion.
Second, conventional budget online kernel learning algorithms may not be effective for bound-

ing the support vector size of the kernel classifiers learned by OMKL [20, 28], a technique that
learns multiple-kernel classifiers and their linear combination weights in the online learning pro-
cess simultaneously. Although one may apply an existing budget online algorithm to bound each
individual single-kernel classifier in OMKL with a uniform budget, such a simple approach is not
desirable, since it treats all the kernels equally and wastes resources in learning with poor ker-
nels, which could result in a large total budget due to many kernels (or equally very poor learning
performance if the given total budget is small).
In this article, we present a novel method for bounded online kernel learning method, named

“Sparse Passive-Aggressive” (SPA) learning, which extends the Passive-Aggressive (PA) learning
method [10] to the context of bounded online kernel learning. Specifically, the basic idea of our
method is to explore a simple yet effective stochastic sampling strategy, which turns an incoming
training example into a new Support Vector (SV)with a probability proportional to the loss suffered
by the example. Unlike many other existing budget online kernel learning methods, our algorithm
ensures that the final output averaging classifier has a bounded number of support vectors after
online-to-batch conversion. In addition, this algorithm can accelerate OMKL for classification by
not only limiting the number of SVs but also focusing on the best kernel function in an online
fashion. We theoretically prove that the proposed algorithm not only bounds the number of sup-
port vectors but also achieves an optimal mistake bound in expectation, in both single-kernel and
multiple-kernel settings. Finally, we conduct an extensive set of empirical studies that show that
the proposed algorithm outperforms a variety of budget online kernel learning algorithms. Note
that a short version of this journal manuscript was published in our previous conference article
[25]. However, this journal manuscript has been extended significantly and rewritten carefully by
including a substantial amount of new content.
The rest of this article is organized as follows. Section 2 reviews the background and related

work. Section 3 formulates the problem and then presents the proposed SPA algorithm. Section 4
is an extension of the SPA algorithm to address the bounded OMKL problem. Section 5 gives our
theoretical analysis. Section 6 presents our experimental studies and empirical observations, and
finally Section 7 concludes this article.
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2 RELATEDWORK

Our work is closely related to three major categories of machine-learning studies in literature:
online learning, kernel methods, and multiple-kernel learning. Below, we briefly review some rep-
resentative related work in each category.

2.1 Online Learning

Online learning represents a family of efficient and scalable machine-learning algorithms [5, 10, 12,
21, 32]. Unlike conventional batch learning methods that assume all training instances are avail-
able prior to the learning task, online learning algorithms receive data in a stream and repeatedly
update the predictive models sequentially, which are more appropriate for large-scale real-world
applications. In literature, a variety of online learning methods have been proposed under varied
settings. In the following, we focus on reviewing some important work in the context of online
classification tasks. More comprehensive surveys of online learning can be found in Reference [36].
For (online) classification tasks, a classical online learning technique is the Perceptron algo-

rithm [17, 32], which updates the model by adding a new example with some constant weight onto
the current model when the example is misclassified. Another notable and important technique
in this category is the online PA learning method [10], which updates the classification function
when a new example is misclassified or its classification score does not exceed some predefined
margin. PA algorithms are very successful and popular for solving many real-world applications.
More generally, the popular family of online learning algorithms for online classification, re-

ferred to as “online linear learning,” learn a linear predictive model in the input feature space. The
key limitation of these algorithms lies in that the linear model sometimes is restricted to making
effective classification only if training data are linearly separable in the input feature space, which
is not a common scenario for many real-world classification tasks. This limitation motivates the
studies of “online kernel learning” [23], which aims to learn kernel-based predictive models for
solving the challenging tasks of classifying sequentially arriving linearly nonseparable instances.

2.2 Kernel Methods

Kernel methods [19, 39, 40], such as Support Vector Machine (SVM) [9, 34], have proven to be
powerful for many problems. With the application of kernel functions, which could be regarded
as the inner product between two instances in high dimensional feature space, kernel methods
can learn nonlinear hypothesis for complicated patterns without explicit computation in the high
dimensional feature space.
Earlier studies on kernel methods usually follow the batch setting [3], where all the instances

are available prior to training. Along with the increasing demand for learning with stream data in
real-time applications, there are increasing studies on efficient kernel learning methods in online
settings. Some pioneering works in online kernel learning [23, 52] usually deal with relatively
small datasets because of “the curse of kernelization” [45]. Namely, the number of SV’s grows
linearly with the number of received instances, which results in a large amount of memory cost
for storing SVs and a high computational cost for prediction per iteration, making it unsuitable for
large-scale applications.
This shortcoming motivates the active studies of bounded online kernel learning [11], which

aims to bound the number of SVs in online learning. One common strategy is through budget
online learning, which adopts some budget maintenance strategies to impose a budget on the total
number of SVs, such as SV removal (Randomized Budget Perceptron (RBP) [4], Forgetron [14],
Bounded Online Gradient Descent (BOGD) [53]), SV projection (Projectron [30], Budget Passive-
Aggressive Projection [47]), and SV merging (Twin Support Vector Machine [46]). While budget

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 45. Publication date: January 2018.
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algorithms have shown encouraging scalability to pure online classification tasks, they are not suit-
able for online-to-batch conversion, since the averaging classifier over all iterations is not sparse.
Recently, some emerging work has attempted to address the above challenge, which are able to

yield a sparse output classifier [50, 51]. However, one of themain limitationswith the existingwork
is that their settings are restrictive by assuming only several smooth loss functions. Such settings
are restrictive for many scenarios (e.g., SVM) where non-smooth loss functions (e.g., hinge loss)
are commonly used. Unlike the restrictive assumptions by Reference [51], we assumemore relaxed
settings with non-smooth loss functions. Besides, compared with the existing work in Reference
[51], our theoretical analyses are cleaner, simpler, and easier to understand by following standard
theoretical analysis of online learning algorithms.

2.3 Multiple-Kernel Learning

Multiple-Kernel Learning (MKL) [2, 24] aims to find the optimal (linear) combination of a pool of
predefined kernel functions in learning kernel-based predictive models. In comparison to single-
kernel learning, MKL not only is able to avoid heuristic manual selection of best kernels, but it also
is able to achieve better performance whenever there are multiple kernels that are complementary
for training a better predictive model by combining them, particularly for learning from data with
heterogeneous representations. MKL has achieved great successes in many applications, ranging
from multimedia [48], signal processing [42], biomedical data fusion [49], mobile app mining [7,
8], and beyond.
Although batch MKL methods have been extensively studied recently [1, 18, 31, 41, 44], unfor-

tunately, the generalization from batch MKL to its online counterpart is far from straightforward.
First, different from batchMKL, which can in principle be solved via cross-validation, online learn-
ing with multiple kernels [20, 22] has no foresight on the best kernel function before data arrival
but needs to learn kernel classifiers and their combination weights simultaneously from sequential
data. Second, online learning with multiple kernels suffers more from the curse of kernelization,
becausemore kernel classifiers getting updatedwould result in even greater complexity and higher
computation cost.
Recent years have witnessed a variety of emerging studies that successfully addressed the first

challenge of OMKL and learnt effective multiple-kernel classifiers from data stream [20, 22, 26–29,
33, 48]. Despite the active explorations, it remains an open challenge of making these algorithms
scalable for large-scale applications. In this work, we aim to study bounded online kernel learning
to ensure the number of SVs bounded and therefore make the resulting OMKL algorithm scalable.
To the best of our knowledge, few existing works have solved the problem of bounded online
kernel learning with multiple kernels in a systematic way.

3 SPARSE PASSIVE-AGGRESSIVE LEARNINGWITH KERNELS

In this section, we first formulate the problem of online learning with kernels, then review the
online PA algorithm [10], and finally present the proposed SPA algorithm for bounded online
kernel learning.

3.1 Problem Setting and Preliminaries

We consider the problem of online learning by following online convex optimization settings. Our
goal is to learn a function f : Rd → R from a sequence of training examples {(x1,y1), . . . , (xT ,yT )},
where instance xt ∈ Rd and class label yt ∈ Y . We refer to the output f of the learning algorithm
as a hypothesis and denote the set of all possible hypotheses byH = { f | f : Rd → R}. We will use
�( f ; (x,y)) : H × (Rd × Y ) → R as the loss function that penalizes the deviation of estimating
f (x) from observed labels y. Further, we considerH a Reproducing Kernel Hilbert Space (RKHS)

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 45. Publication date: January 2018.
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endowed with a kernel function κ (·, ·) : Rd × Rd → R [43] implementing the inner product〈·, ·〉
such that: (1) κ has the reproducing property 〈f ,κ (x, ·)〉 = f (x) for x ∈ Rd ; (2)H is the closure of
the span of all κ (x, ·) with x ∈ Rd , that is, κ (x, ·) ∈ H ∀x ∈ X. The inner product 〈·, ·〉 induces a
norm on f ∈ H in the usual way: ‖ f ‖H := 〈f , f 〉 12 . To make it clear, we denote by Hκ an RKHS
with explicit dependence on kernel κ. Throughout the analysis, we assume κ (x, x) ≤ X 2 ∀x ∈ Rd .

PA algorithms [10] are a family of margin-based online learning algorithms, which can achieve
a bound on the cumulative loss comparable with the smallest loss that can be attained by any fixed
hypothesis. Specifically, consider an online binary classification task with label set Y = {−1,+1},
and the widely used hinge loss function:

�( f ; (x,y)) = [1 − y f (x)]+,
where [z]+ = max(0, z). We denote �t ( f ) = �( f ; (xt ,yt )) for simplicity. The PA algorithm sequen-
tially updates the online classifier. At the t th iteration, the online hypothesis will be updated by
the following strategy:

ft+1 = arg min
f ∈Hκ

1

2
‖ f − ft ‖2Hκ

+ η�t ( f ),

where η > 0 is the learning rate parameter. This optimization trades off between two desires:
(i) keeping the new function close to the existing one, (ii) minimizing the loss of the new function
on the current example.
This optimization problem enjoys a simple closed-form solution:

ft+1 (·) = ft (·) + τtytκ (xt , ·),τt = min(η,
�t ( ft )

κ (xt , xt )
).

We further rewrite the classifier as

ft+1 (·) =
t∑

s=1

τsysκ (xs , ·),

and whenever �s � 0, we have τs � 0.
Obviously, like conventional online kernel learning methods, the critical limitation of PA is the

unbounded number of SVs. This limitation makes online kernel learning extremely computation-
ally expensive in both time and memory cost for large-scale applications.
Some existing works have attempted to learn a bounded classifier at each iteration using some

budget maintenance strategy (e.g., replacing an old SV when adding a new one). Think about the
toy example below, where the budget size is set to B = 3. At time t , we have the classifier,

ft = τ1y1κ (x1, ·) + τ2y2κ (x2, ·) + τ3y3κ (x3, ·).
After the update, a new support x4 is added to the classifier. To maintain the budget size B = 3, an
existing SV should be discarded, and we get a new classifier:

ft+1 = τ2y2κ (x2, ·) + τ3y3κ (x3, ·) + τ4y4κ (x4, ·).
In the iteration t + 1, we add a new support vector x5 and discard another existing SV and get

ft+2 = τ3y3κ (x3, ·) + τ4y4κ (x4, ·) + τ5y5κ (x5, ·).
Note that in many online learning tasks, especially in Online-to-Batch Conversion, we need an
averaged classifier over all iterations, which has been proven to have higher accuracy than the
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classifier in the last iteration fT . Now, we try to average the classifiers in the toy example above
and get

faveraдe =
1

3
( ft + ft+1 + ft+2)

=
τ1y1
3

κ (x1, ·) + 2τ2y2
3

κ (x2, ·) + τ3y3κ (x3, ·) + 2τ4y4
3

κ (x4, ·) + τ5y5
3

κ (x5, ·).

Here, we find the problem of most of the existing online kernel learning algorithms. Although the
number of SVs in each iteration is bounded, the number of SVs for the averaged classifier over all
the learning iterations is often not bounded. The averaged classifier contains the union set of SV
sets in all iterations, which is exactly all the SVs appeared in the classifier, including the discarded
ones.
This drawback limits the application of existing budget online kernel learning algorithms for

online-to-batch conversion tasks where the output final classifier is typically obtained by aver-
aging the classifiers obtained at every learning step. Furthermore, even in a pure online setting,
where the aim is not to achieve a good generalization accuracy on test set but to achieve accurate
predictions along the online learning process, the prediction using the averaging classifier, i.e.,
1
t

∑t
i=1 fi (xt ) usually outperforms a single online classifier ft (xt ).

Our motivation is to build an algorithm whose averaged classifier is also bounded, so that we
can use the averaged classifier instead of the fT to get higher accuracy.

3.2 Sparse Passive-Aggressive Algorithm (SPA)

To overcome the above limitation, we propose a novel SPA learning algorithm, which not only
guarantees that the kernel classifier is bounded at each iteration but also ensures the SV size of
the final averaging classifier is always bounded in expectation, a salient property that is crucial
for online-to-batch conversion to obtain bounded kernel classifiers.
Unlike conventional approaches using budget maintenance to bound the SV size at each itera-

tion, which fails to bound the averaging classifier, we propose a stochastic sampling strategy that
sequentially constructs the set of support vectors by sampling from the sequence of incoming in-
stances. The key challenge is how to design an appropriate sampling strategy so that the support
vector size of the kernel classifiers is always bounded while the learning accuracy of the classifier
could be maximized. To tackle this challenge, we propose a simple yet effective sampling rule,
which decides if an incoming instance should be a support vector by performing a Bernoulli trial
as follows:

Pr(Zt = 1) = ρt , ρt =
min(α , �t ( ft ))

β
,

where Zt ∈ {0, 1} is a random variable such that Zt = 1 indicates a new support vector should be
added to update the classifier at the t th step, and β ≥ α > 0 are parameters to adjust the ratio of
support vectors with respect to some given budget. The above sampling rule has two key concerns:

(i) The probability of the t th step update is always bounded by α/β , which avoids assigning
too large probability on noisy instances, meanwhile bounding the number of SVs of the final
classifier by α

β
T in expectation (detailed discussions are given in Theorem 2 in Section 5).

(ii) An example suffering a higher loss will be assigned to the support vector set with a higher
probability. This aims to update the classifier by adding only very informative support vec-
tors or equivalently avoid making unnecessary updates when the example is not difficult to
be classified.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 45. Publication date: January 2018.



Sparse Passive-Aggressive Learning for Bounded Online Kernel Methods 45:7

ALGORITHM 1: Sparse PA Learning with Kernels (SPA)

Input: aggressiveness parameter η > 0, and parameters β ≥ α > 0

Initialize: f1 (x) = 0

for t = 1, 2, . . . ,T do

Receive example: (xt ,yt )
Suffer loss: �t ( ft ) = �( ft ; (xt ,yt ))

Compute ρt =
min(α, �t (ft ))

β

Sample a Bernoulli random variable Zt ∈ {0, 1} by: Pr(Zt = 1) = ρt
Update the classifier (using Proposition 1):

ft+1 = minf ∈Hκ

1
2 ‖ f − ft ‖2Hκ

+
Zt
ρt
η�t ( f )

end for

Output: f̄T (x) =
1
T

∑T
t=1 ft (x)

Following the PA learning principle, we propose the following updating method:

ft+1 = arg min
f ∈Hκ

Pt ( f ) :=
1

2
‖ f − ft ‖2Hκ

+
Zt
ρt

η�t ( f ). (1)

Note when �t ( ft ) = 0, then ρt = 0 and Zt = 0, we set Zt/ρt = 0 so that no update is needed. We
adopt the above update, because its objective is an unbiased estimate of that of PA update, that is,

E(Pt ( f )) =
1

2
‖ f − ft ‖2Hκ

+ η�t ( f ).

We can derive a closed-form solution for the optimization Equation (1) as follows.

Proposition 1. When �t ( f ) = [1 − yt f (xt )]+, the optimization Equation (1) enjoys the following

closed-form solution:

ft+1 (·) = ft (·) + τtytκ (xt , ·), τt = min ��ηZtρt
,
�t ( ft )

κ (xt , xt )
��.

The above proposition can be easily verified. We omit the detailed derivations. Finally, we sum-
marize the proposed SPA algorithm in Algorithm 1.

4 BOUNDED ONLINE MULTIPLE-KERNEL LEARNING

In this section, we first introduce the problem setting for OMKL [20, 22], and then we extend the
proposed SPA algorithm to address the Bounded Online Multiple-Kernel Classification (BOMKC)
problem. Note that our discussions will be focused on online classification tasks, but they can be
easily extended to other online learning tasks, such as online regression [33], similarity learning
[48], and beyond.

4.1 Problem Setting and Preliminaries

Consider a binary classification task, our goal is to learn a hypothesis f : Rd → R from a se-
quence of training examples {(x1,y1), . . . , (xT ,yT )}, where xt ∈ X ⊂ Rd and its class label yt ∈
Y = {+1,−1}. We denote by ŷ = sign( f (x)) the predicted class label, and | f (x) | the classification
confidence.
Consider a collection of m kernel functions K = {κi : Rd × Rd → R, i = 1, . . . ,m}. Each ker-

nel can be a predefined parametric or nonparametric function. MKL aims to learn a kernel-based
prediction model by identifying the best linear combination of them kernels whose weights are
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denoted by θ = (θ1, . . . ,θm ). The learning task can be cast into the following optimization:

min
θ ∈Δ

min
f ∈HK (θ )

1

2
‖ f ‖2HK (θ )

+C
T∑
t=1

�( f (xt ),yt ),

where Δ = {θ ∈ Rm+ |θT 1m = 1}, K (θ ) (·, ·) = ∑m
i=1 θiκi (·, ·), and �( f (xt ),yt ) is a convex loss func-

tion that penalizes the deviation of estimating f (xt ) from observed labels yt . For simplicity, we
denote �t ( f ) = �( f (xt ),yt ).
The above convex optimization of regular batch MKL has been resolved using various optimiza-

tion schemes [18]. Despite the extensive studies in literature, they suffer some common drawbacks
of batch learning methods, i.e., poor scalability for large-scale applications, expensive retraining
cost for increasing data, and cannot adapt to fast-changing patterns.
To address the challenges faced by batch MKL methods, OMKL techniques have been proposed

to resolve the multiple kernel classification tasks in an online learning manner [20]. In particular,
the Online Multiple-Kernel Classification (OMKC) method in Reference [20] consists of two major
steps. First, it learns a set of single-kernel classifiers f it ∈ Hκi , i = 1, . . . ,m using some existing
online kernel learning algorithms (such as kernel Perceptron or kernel Passive-Aggressive). Sec-
ond, it learns to find the optimal linear combination of these single-kernel classifiers to yield an
effective final classifier ft (x):

ft (x) =
m∑
i=1

θ it f
i
t (x), (2)

where θ it ∈ [0, 1] is the combination weight of the classifier with respect to κi at time t . The combi-
nationweights can be updated during the online learning process by adopting theHedge algorithm
[16].
Compared with batch learning methods, these OMKC algorithms are more scalable for large-

scale applications and more natural for learning from sequential data. Despite these merits, one
major deficiency of the existing OMKC algorithms is their unbounded support vector size. In par-
ticular, whenever a new instance is misclassified, it will be always added into the SV set. The
unbounded support vector size will eventually lead to increasing cost for both computational time
and memory space when dealing with very large-scale applications.

4.2 Bounded Online Multiple-Kernel Learning Using the SPA Algorithm

Similar to budget online kernel learning, the goal of bounded online multiple-kernel learning is
to ensure the total number of support vectors in the final multi-kernel classifier is bounded by a
given budget. To achieve this, the basic idea is to apply an existing bounded online kernel learning
algorithm to bound the support vector size of each individual single-kernel classifier, which in
turn can bound the total SV size given the fixed number of kernels. However, given the number
of kernels can be potentially large, the challenge of bounded online multiple-kernel learning is
not only to bound the number of SVs for each kernel classifier, but also to minimize the overall
computational cost and maximize the learning accuracy.
In the following, we propose a novel BOMKC approach by extending the proposed SPA algo-

rithm for multiple-kernel settings, which not only ensures the SV sizes are always bounded during
the online learning process but also attempts to minimize the unnecessary updates for the poor
quality kernels, which thus can improve both the overall efficiency and learning effectiveness.
Specifically, similar to the single-kernel SPA algorithm, we adopt a stochastic sampling strategy

to decide if an incoming training instance should be added to the SV set. In particular, the sampling
probability has two concerns:
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ALGORITHM 2: Bounded OMKC Algorithm using SPA “BOMKC(SPA)”

INPUT:

Kernels: ki (·, ·) : X × X → R, i = 1, . . . ,m; Aggressiveness parameter η > 0, and parameters β ≥ α > 0;

Discount parameter γ ∈ (0, 1) and smoothing parameters δ ∈ (0, 1).
Initialization: f i1 = 0,θ i1 =

1
m , i = 1, . . .m

for t = 1, 2, . . . ,T do

Receive an instance xt ;

Predict ŷt = sign
( ∑m

i=1 θ
i
t · sign[f it (xt )]

)
;

Receive the true class label yt ;
for i = 1, 2, . . . ,m do

Compute pit = (1 − δ ) θ it

maxj θ
j
t

+ δ , ρit =
min(α, �t (f

i
t ))

β
;

Sample a Bernoulli random variable Z i
t ∈ {0, 1} by Pr(Z i

t = 1) = ρit ∗ pit
if Z i

t = 1 then

Update the ith kernel classifier using Proposition 1

end if

Update weight θ it+1 = θ
i
tγ

M i
t , whereMi

t = I(yt f
i
t (xt ) < 0)

end for

Scale the weights θ it+1 =
θ i
t+1∑m

j=1 θ
j

t+1

, i = 1, . . . ,m

end for

(i) The probability of updating the ith kernel classifier in the t th iteration should be related to
the loss suffered by the current instance, as discussed in the single-kernel case (Section 3),

ρit =
min(α , �t ( f

i
t ))

β
.

(ii) To make the algorithm efficient and avoid wasting time in learning with poor quality ker-
nels, a kernel classifier with higher accumulated learning accuracy will be assigned with a
higher sampling probability,

pit = (1 − δ ) θ it

maxj θ
j
t

+ δ ,

whereθ it is the importanceweight variable for kernel combination, which reflects the histor-
ical classification performance of the ith kernel classifier, and δ ∈ (0, 1) is a small constant
for smoothing purpose (which ensures every kernel has a certain small probability to be
sampled). This sampling strategy was originally proposed in the SD algorithm of OMKC
using the stochastic updating strategy in Reference [20].

By combining the above strategies, we can now form the final updating strategy for BOMKC by
performing a Bernoulli trial (for each kernel i at each step t ) as follows:

Pr(Z i
t = 1) = ρit ∗ pit ,

where Z i
t ∈ {0, 1} is a random variable such that Z i

t = 1 indicates if the incoming instance should
be added as a new support vector to update the ith kernel classifier at the t th step. After a specific
kernel classifier is selected, we then apply the proposed SPA algorithm for bounded online kernel
learning with the individual kernel by Algorithm 1.
The remaining problem is how to learn the appropriate kernel combination weights θ it for the

set of single-kernel classifiers according to their classification accuracy at each online learning
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iteration. Specifically, we initialize their weights by a uniform distributionθ i1 =
1
m
. Then, theHedge

algorithm [16] is adopted to update the combination weights of the kernel classifiers, during the
online learning process, i.e.,

θ it+1 = θ
i
tγ

M i
t ,

where M i
t = I(yt f

i
t (xt ) < 0) indicates if there is a mistake, and γ ∈ (0, 1) is a discount weight pa-

rameter. Finally, we summarize the proposed BOMKC using the SPA algorithm in Algorithm 2.

5 THEORETICAL ANALYSIS

In this section, we give detailed theoretical analysis on the mistake bounds of the proposed SPA
algorithm for both online single-kernel and multiple-kernel classification tasks. We denote by f∗ =
argminf ∈Hκ

∑T
t=1 �t ( f ) the optimal classifier inHκ space with the assumption of the foresight to

all the instances.

Theorem 5.1. Let (x1,y1), . . . , (xT ,yT ) be a sequence of examples where xt ∈ Rd , yt ∈ Y =
{−1,+1} for all t . If we assume κ (x, x) = 1 and �t (·) is the hinge loss function, then for any β ≥ α > 0,
α ≤ 1 and η > 0, when using the proposed SPA update strategy to generate a sequence of single-kernel

classifiers in spaceHκ , we have the bound for the expected number of mistakes,

E

⎡⎢⎢⎢⎢⎣
T∑
t=1

Mt

⎤⎥⎥⎥⎥⎦ ≤ max

(
1

η
,
β

α

) ⎡⎢⎢⎢⎢⎣2η
T∑
t=1

�t ( f∗) + | | f∗ | |2Hκ

⎤⎥⎥⎥⎥⎦ ,
whereMt = I(yt � ŷt ).

Proof. We first generalize the Lemma 1 in Reference [10] to space Hκ and get the following
inequality:

T∑
t=1

τt (2�t ( ft ) − τtκ (xt , xt ) − 2�t ( f∗)) ≤ || f∗ | |2Hκ
,

where τt = min(
ηZt
ρt
,

�t (ft )
κ (xt ,xt )

). Plugging τtκ (xt , xt ) ≤ �t ( ft ) into the above inequality gives

T∑
t=1

τt (�t ( ft ) − 2�t ( f∗)) ≤ || f∗ | |2Hκ
.

Re-arranging the above inequality gives

T∑
t=1

τt �t ( ft ) ≤
T∑
t=1

2
ηZt
ρt
�t ( f∗) + | | f∗ | |2Hκ

.

Combining the above inequality with the fact �t ( ft ) > 1 when yt � ŷt gives

T∑
t=1

min

(
ηZt
ρt
, 1

)
Mt ≤

T∑
t=1

τtMt ≤
T∑
t=1

τt �t ( ft ) ≤
T∑
t=1

2
ηZt
ρt
�t ( f∗) + | | f∗ | |2Hκ

, (3)

where Mt = I(yt � ŷt ). Now, we can take conditional expectation with respect to Zt (given all
random variables Z1, . . . ,Zt−1) to get

E

[
min

(
ηZt
ρt
, 1

)
Mt |Z1, . . .Zt−1

]
= min(η, ρt )Mt ,

E

[
Zt
ρt
|Z1, . . . ,Zt−1

]
= 1.
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Note that when Mt = 1, i.e., there is a mistake at the t th iteration, we have �t ( ft ) > 1. Due to the
assumption that α ≤ 1, we have ρt =

α
β
,

E

[
min

(
ηZt
ρt
, 1

)
Mt |Z1, . . .Zt−1

]
= min

(
η,

α

β

)
Mt .

Plugging the above two equalities into the inequality Equation (3) gives

min

(
η,

α

β

)
E

⎡⎢⎢⎢⎢⎣
T∑
t=1

Mt

⎤⎥⎥⎥⎥⎦ ≤ 2η
T∑
t=1

�t ( f∗) + | | f∗ | |2Hκ
.

Re-arranging the above inequality concludes this proof. �

Remark. This lemma indicates that the accuracy of the proposed SPA algorithm decreases when
β

α
increases, i.e., when less support vectors are sampled. In addition, it is easy to justify that the

minimum of the mistake bound is achieved when setting 1
η
=

β

α
, which is identical to the mistake

bound proposed for PA-I (Theorem 4, [10]). Namely, although only a small fraction of the SVs are
sampled, the proposed algorithm achieves a strong mistake bound in expectation.
Next, we will bound the number of SVs of the single-kernel classifier fT in expectation.

Theorem 5.2. Let (x1,y1), . . . , (xT ,yT ) be a sequence of examples where xt ∈ Rd , yt ∈ Y =
{−1,+1} for all t . If we assume κ (x, x) = 1 and the hinge loss function �t (·) is 1-Lipschitz, β ≥ α > 0,
α ≤ 1, and η > 0, for any i = 1, . . .m, then the expected number of support vectors yielded by the

proposed SPA algorithm satisfies

E

⎡⎢⎢⎢⎢⎣
T∑
t=1

Zt

⎤⎥⎥⎥⎥⎦ ≤ α

β
T .

Proof. Since Et [Zt ] = ρt , where Et is the conditional expectation, we have

E

⎡⎢⎢⎢⎢⎣
T∑
t=1

Zt

⎤⎥⎥⎥⎥⎦ = E
⎡⎢⎢⎢⎢⎣
T∑
t=1

EtZt

⎤⎥⎥⎥⎥⎦ = E
⎡⎢⎢⎢⎢⎣
T∑
t=1

ρt

⎤⎥⎥⎥⎥⎦ = E
⎡⎢⎢⎢⎢⎣
T∑
t=1

min

(
α

β
,
�t ( ft )

β

)⎤⎥⎥⎥⎥⎦ ≤ α

β
T . �

Remark. First, this theorem indicates the expected number of support vectors is less than αT
β
.

Thus, by setting β ≥ αT
B

(1 < B ≤ T ), we guarantee the expected number of support vectors of the
final classifier is bounded by a budget B. In practice, as the online multiple-kernel classifier using
Hedge algorithm trends to converge to the single best kernel classifier, the total number of support
vectors of all classifiers is only slightly larger than that used by the best classifier.
We have demonstrated that the number of mistakes made by a single-kernel online classifier is

bounded by some constant factor of its batch counterpart in Theorem 5.1. While in the multiple-
kernel classification task, the performance of single-kernel classifiers varies significantly, and we
have no foresight to the winner. In the following, we will show that the final multiple-kernel
classifier in our proposed algorithm achieves almost the same performance as that of the best
online single-kernel classifier. We denote f i∗ = argminf ∈H i

κ

∑T
t=1 �t ( f ) as the optimal classifier in

H i
κ space with the assumption of the foresight to all the instances.

Theorem 5.3. Let (x1,y1), . . . , (xT ,yT ) be a sequence of examples where xt ∈ Rd , yt ∈ Y =
{−1,+1} for all t . If we assumeκi (x, x) = 1 and �t (·) is the hinge loss function, then for any β ≥ α > 0,
α ≤ 1, and η > 0, γ ∈ (0, 1), δ ∈ (0, 1), the expected number of mistakes made by the multiple-kernel
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classifier generated by our proposed SPA algorithm satisfies the following inequality:

E

⎡⎢⎢⎢⎢⎣
T∑
t=1

Mt

⎤⎥⎥⎥⎥⎦ ≤ min
i ∈[m]

2 lnm − 2 lnγ max( 1
ηδ
,

β

αδ
)
[
2η

∑T
t=1 �t ( f

i∗ ) + | | f i∗ | |2H i
κ

]
1 − γ ,

whereMt = I(yt � ŷt ).

Proof. In the following proof, we first generalize the loss bound of the Hedge algorithm [16] to
a different situation, where stochastic update and stochastic combination are adopted. Using the
analysis in Theorem 2 [16] and the initializationw i

1 with 1/m, we have

T∑
t=1

m∑
i=1

θ itM
i
t ≤

lnm − lnγ ∑T
t=1M

i
t

1 − γ , (4)

whereM i
t = 1 indicates that classifier f i makes a mistake in time t . Since

T∑
t=1

Mt =

T∑
t=1

I ��
m∑
i=1

θ itM
i
t > 0.5�� ≤ 2

T∑
t=1

m∑
i=1

θ itM
i
t ,

we have

T∑
t=1

Mt ≤ 2 lnm − 2 lnγ ∑T
t=1M

i
t

1 − γ . (5)

Now, we need to bound the number of mistakes of a single classifier,
∑T

t=1M
i
t .

In Theorem 1, we give the mistake bound of one single-kernel classifier learnt by SPA assuming
E[Zt ] = ρt in Equation (3). Similarly, we have the following inequality for each single classifier in
multi-kernel SPA algorithm:

T∑
t=1

min

(
ηZ i

t

ρit
, 1

)
M i

t ≤
T∑
t=1

2
ηZ i

t

ρit
�t ( f

i∗ ) + | | f i∗ | |2H i
κ
. (6)

Here, according to Algorithm 2, E[Z i
t ] = ρit ∗ pit , where δ < pit < 1. Now, we can take conditional

expectation with respect to Z i
t (given all random variables Z i

1, . . . ,Z
i
t−1) to get

E

[
min

(
ηZ i

t

ρit
, 1

)
M i

t |Z i
1, . . .Z

i
t−1

]
≥ δ min(η, ρit )M

i
t = δ min

(
η,

α

β

)
M i

t ,

E

[
Z i
t

ρit
|Z i

1, . . . ,Z
i
t−1

]
≤ 1,

where the fact α ≤ 1 is used for the first equality. Plugging the above two equalities into the in-
equality Equation (6) gives

E

⎡⎢⎢⎢⎢⎣
T∑
t=1

M i
t

⎤⎥⎥⎥⎥⎦ ≤ max

(
1

ηδ
,
β

αδ

) ⎡⎢⎢⎢⎢⎣2η
T∑
t=1

�t ( f
i∗ ) + | | f i∗ | |2H i

κ

⎤⎥⎥⎥⎥⎦ .
Combining the above inequality with inequality Equation (5) concludes this proof. �

Remark. The key difference between the single-kernel bound and multiple-kernel bound is the

factor −2 lnγ
1−γ , which is a decreasing function of γ and limγ �→1 −2 lnγ

1−γ = 2. For example, we set γ =

0.99 in our experiments and −2 lnγ
1−γ = 2.01. This theorem implies that even without any foresight

of which kernel would achieve the best accuracy, the mistake rate of our proposed bounded online
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Table 1. Summary of Binary Classification
Datasets in Our Experiments

Dataset # instances #features
KDD08 102,294 117
A9a 48,842 123
W7a 49,749 300
Codrna 59,535 8
Covtype 581,012 54
SUSY 1,000,000 18

multiple-kernel classifier is near to the best single-kernel classifier. This algorithm is powerful
when there is a large set of kernels to choose from and their performance varies significantly.

6 EXPERIMENTS

In this section, we conduct an extensive set of experiments to evaluate the empirical performance
of the proposed SPA algorithms for online binary classification tasks in both single-kernel and
multiple-kernel settings.

6.1 Experiments for Single-Kernel Classification

We first evaluate the empirical performance of the proposed SPA algorithm on single-kernel clas-
sification tasks.

6.1.1 Experimental Testbed. Table 1 summarizes details of some binary classification datasets
in our experiments. The first five can be downloaded from LIBSVM1 or KDDCUP competition site.2

The original SUSY dataset contains 5,000,000 instances, we randomly sampled a subset.

6.1.2 Compared Algorithms and Experimental Setup. We evaluate the proposed SPA algorithm
by comparing with many state-of-the-art online kernel learning algorithms. First, we implement
the following non-budget kernel learning algorithms as a yardstick for evaluation:

• “Perceptron”: the kernelized Perceptron [17];
• “OGD”: the kernelized Online Gradient Descent algorithm [23];
• “PA-I”: the kernelized Passive-Aggressive algorithm with soft margin [10].

Further, we compare a variety of budget online kernel learning algorithms:

• “RBP”: the Randomized Budget Perceptron by random removal [4];
• “Forgetron”: the Forgetron by discarding oldest support vectors [14];
• “Projectron”: the Projectron algorithm using the projection strategy [30];
• “Projectron++”: the aggressive version of Projectron algorithm [30];
• “BPA-S”: the Budget Passive-Aggressive algorithm [47], for which we only adopt the BPA-

Simple algorithm, since the other two variants are too computationally expensive for large
datasets;

• “BOGD”: the Bounded Online Gradient Descent algorithm [45, 53];
• “OSKL”: the Online Sparse Kernel Learning algorithm [51].

1http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/.
2http://www.sigkdd.org/kddcup/.
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As the SPA and OSKL algorithm are designed for online-to-batch conversion problem, we report
the online prediction results of the averaged classifier 1

t

∑t
τ=1 fτ . While for the other budget algo-

rithms, we report the online prediction results of ft . There are two reasons for not reporting their
performance of averaged classifier 1

t

∑t
τ=1 fτ . First, these budget algorithms were designed for

pure online learning, not online-to-batch conversion. Second, for some of the budget algorithms
that discard SVs along the learning process (RBP, Forgetron, BPA-S, and BOGD), the averaged
classifier 1

t

∑t
τ=1 fτ is unbounded; i.e., they contain almost the same SVs as that of non-budget

Perceptron.
To make a fair comparison, we adopt the same experimental setup for all the algorithms. We use

the hinge loss for gradient-based algorithms (OGD and BOGD). For all the algorithms, we adopt
a Gaussian kernel exp(−γ | |x1 − x2 | |2) with parameter γ set to 0.4 for all the datasets. The learn-
ing rate parameter η for OGD, BOGD, OSKL, and SPA is automatically chosen by searching from
{103, . . . , 10−3} based on a random permutation of each dataset. We adopt the PA-I algorithm for
comparison, since it was proved to be robust to noise and achieved better performance than orig-
inal PA without soft margin. The soft margin parameter C is optimized by searching from range
{0.25, 0.5, 1, 2}. The support vector size of the proposed SPA algorithm depends on the choices of
parameters α and β . In our experiments, the parameter α = 1 is chosen for all other datasets. Then,
we choose a proper β parameter so that the resulting support vector size is roughly a proper frac-
tion of that of the non-budget OGD algorithm (specifically, we set β = 20 for three small datasets,
and β = 200 for three large datasets). Note that the OSKL algorithm also adopts a stochastic ap-
proach to sample the support vectors, which may generate varied number of support vectors when
choosing different parameters. This raises some practical challenge in choosing the budget on the
size of support vectors when comparing with our algorithm. To achieve the most fair comparison,
we tune the sampling probability parameterG in the OSKL algorithm so that the average number
of resulting support vectors is closest to that of our proposed algorithm. Finally, to ensure that all
budget algorithms adopt the same budget size, we choose the budget size B of all the other com-
pared algorithms according to the average number of support vectors generated by the proposed
SPA algorithm.
For each dataset, all the experiments were repeated for 20 times on different random permu-

tations of instances in the dataset and all the results were obtained by averaging over these 20
runs. For performance metrics, we evaluate the online classification performance by mistake rates
and running time. Finally, all the algorithms were implemented in C++, and all experiments were
conducted in a PC with 3.2GHz CPU.

6.1.3 Evaluation of Online Single-Kernel Learning Performance. The first experiment is to eval-
uate the performance of kernel-based online learning algorithms for online classification tasks.
Table 2 shows the experimental results. To examine the superiority of averaging classifier in on-
line setting, the accuracies of both our SPA and OSKL algorithms were obtained using the averaged
classifier 1

t

∑t
i=1 fi . Since most of the existing algorithms don’t have a bounded averaged classifier,

we use ft for prediction. The aim of this experiment is to show the advantages of our averaged
classifier in accuracy and time cost in comparison to existing algorithms under the same SV setting.
We can draw some observations below.
First, by examining the time cost comparisons, all the budget algorithms are significantly more

efficient than the non-budget algorithms (Perceptron, OGD, and PA-I) for most cases, especially
on large-scale datasets. This validates the importance of studying bounded online kernel learning
algorithms. Second, by comparing different budget algorithms, Projectron++ is the least efficient
due to its expensive projection strategy, and the proposed SPA algorithm is the most efficient.
The other budget algorithms (RBP, Forgetron, BPAS, BOGD) are in general quite efficient as they
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Table 2. Evaluation of Online Kernel Classification on Six Datasets

KDD08, β = 20 a9a, β = 20

Algorithm Accuracy (%) Time #SVs Accuracy (%) Time #SVs
Perceptron 99.04±0.01 11.58 0.9k 79.40± 0.11 19.93 9.9k
OGD 99.44±0.01 14.54 1.2k 83.41 ± 0.05 54.20 23.5k
PA-I 99.45±0.01 39.53 3.2k 84.07±0.08 57.91 22.8k
RBP 98.96±0.03 3.24 149 78.83±0.38 5.34 1,350
Forgetron 98.93±0.03 3.28 149 78.08±0.22 6.45 1,350
Projectron 99.02±0.01 4.19 149 79.25±0.13 32.47 1,350
Projcetron++ 99.32±0.01 4.86 149 79.35±0.13 150.63 1,350
BPAS 99.41±0.01 3.93 149 80.44±0.14 7.75 1,350
BOGD 99.39±0.01 3.40 149 80.97±0.04 6.17 1,350
OSKL 99.41±0.01 2.63 149 82.01±0.32 4.08 1,344
SPA 99.41±0.01 2.60 149 82.04± 0.25 3.84 1,350

w7a, β = 200 codrna, β = 20

Algorithm Accuracy (%) Time #SVs Accuracy (%) Time #SVs
Perceptron 97.64 ±0.04 2.50 1.1k 90.79 ±0.09 6.21 5.4k
OGD 98.06±0.02 38.16 10.1k 93.31±0.05 10.41 8.8k
PA-I 98.16±0.02 63.47 19.6k 93.65±0.05 15.82 12.4k
RBP 96.36±0.06 0.72 175 86.59±0.22 1.68 822
Forgetron 95.19±0.39 0.87 175 86.62±0.15 1.91 822
Projectron 95.19±0.39 0.87 175 83.35±0.23 19.38 822
Projectron++ 95.90±0.38 3.01 175 84.71±0.19 32.99 822
BPAS 96.83±0.23 1.77 175 91.23±0.05 2.21 822
BOGD 96.75±0.03 1.05 175 85.62±0.06 1.92 822
OSKL 96.98±0.43 0.71 177 92.07±0.37 1.37 825
SPA 97.05±0.13 0.56 175 91.59±0.35 1.31 822

covtype, β = 200 SUSY, β = 200

Algorithm Accuracy (%) Time #SVs Accuracy (%) Time #SVs
Perceptron 73.08±0.03 2861 156.0k 71.69±0.04 7298 283.2k
OGD 78.34±0.03 5113 296.7k 78.97±0.01 13648 491.7k
PA-I 78.18±0.05 4402 298.2k 78.96± 0.01 14715 507.2k
RBP 65.63±0.23 50.27 1,510 66.44±0.26 96.7 1,933
Forgetron 65.33±0.22 67.60 1,510 66.31±0.33 131.5 1,933
Projectron 57.82±6.09 316.05 1,510 54.46±0.10 4523.0 1,933
Projcetron++ 59.33±5.85 470.35 1,510 60.01±1.62 3738.6 1,933
BPAS 72.37±0.13 73.48 1,510 74.85±0.07 157.4 1,933
BOGD 68.75±0.03 54.44 1,510 68.75±0.03 105.0 1,933
OSKL 72.11±0.67 29.77 1,508 73.57± 0.47 74.3 1,957
SPA 71.34±0.59 27.53 1,510 80.04± 0.34 49.2 1,933

Time in seconds.

all are based on simple SV removal strategy for budget maintenance. The reason that our SPA
algorithm is even more efficient than these algorithms is because our algorithm adds the support
vectors incrementally, while the other algorithms perform the budget maintenance only when
the support vector size reaches the budget. This encouraging result validates the high-efficiency
advantage of our stochastic support vector sampling strategy.
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Next, by comparing online classification accuracy results of different algorithms, we found
that the non-budget algorithms generally achieve better accuracy results than their budget vari-
ants. This is not surprising as the non-budget algorithms use a much larger SV size. Further-
more, by comparing different budget algorithms, we found that PA- and OGD-based algorithms
(BPAS, BOGD, and SPA) generally outperform Perceptron-based algorithms (RBP, Forgetron, Pro-
jectron) due to more aggressive and precise updating strategies. Finally, the proposed SPA algo-
rithm achieves the best accuracy among all the budget algorithms for most cases, and is at least
comparable to, if not better than, the OSKL algorithm. These results again validate the effectiveness
of the proposed bounded learning strategy.

6.1.4 Evaluation of Output Single-Kernel Classifiers on Test Data. A key advantage of SPA is that
it assures the final output averaged classifier is sparse, which is very important when applying the
output classifier in real applications. Our last experiment thus is to examine if the final output
classifier of SPA is effective for batch classification. We evaluate two SPA classifiers: “SPA-last”
that simply outputs the classifier at the last iteration ft as the final classifier, and “SPA-avg” that
outputs the average of classifiers at every iteration, i.e., 1

T

∑T
t=1 ft .

We compare our algorithms with two state-of-the-art batch algorithms for SVM classifications:
(1) LIBSVM, awidely used and themost accurate solution of kernel SVM for batch classification [6];
(2) Pegasos3 [37], an efficient stochastic gradient descent solver for SVM, for which we adapt it for
kernel learning. Moreover, we compare our solutions with the output classifiers by two bounded
kernel-based online algorithms: BOGD and BPAS, as they achieve the highest accuracy among
all the existing algorithms in previous experiments of Table 2. For these two algorithms, as their
average classifier is not sparse, we use their last classifiers for comparisons.
To enable fair comparisons, all the algorithms follow the same setup for batch classification.

We conduct the experiments on 4 medium-scale datasets as used in previous online experiments:
“a9a,” “codrna,” “w7a,” and “KDDCUP08” (the other two large datasets were excluded due to too
long training time by LIBSVM). We use the original splits of training and test sets on the LIBSVM
website. We adopt the same Gaussian kernel with the same kernel parameter γ for all the algo-
rithms.We perform cross validation on the training set to search for the best parameters of different
algorithms. In particular, we search for the best kernel parameterγ in the range of {25, 24, . . . , 2−5},
the parameterC of SVM in the range of {25, . . . 2−5}, both the regularization parameter λ in Pegasos
and BOGD, and the learning rate parameterη in BOGD and SPA in the range of {103, 102, . . . , 10−3}.
For the proposed SPA-last and SPA-avg, we set α = 1 and β = 5 for all the datasets.
Table 3 shows the results, where we only report the test set accuracy and training time (we

exclude the test time as it is proportional to SV sizes). We can draw some observations. First, in
terms of training time, the budget algorithms run much faster than LIBSVM and Pegasos, in which
our SPA algorithm achieves the lowest training time among all. Specifically, compared with batch
algorithms, SPA achieves the speedup of training time for about 20 to 30 times over LIBSVM, and
about 5 times over Pegasos.
Second, by examining the test set accuracy, we found that LIBSVM always achieves the best. The

proposed SPA-avg algorithm achieves the best accuracy among all the budget algorithms, which
is slightly lower but fairly comparable to LIBSVM, and even beats the accuracy of Pegasos that has
almost 4 times more SVs than our SPA algorithm. This promising result validates the efficacy of
our SPA algorithm for producing sparse and effective average classifier.
Third, we notice that BOGD, BPAS, and SPA-last achieve similar test set accuracy, but their

standard deviations are in general much larger than that of SPA-avg for most cases. This shows

3http://www.cs.huji.ac.il/shais/code/.
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Table 3. Evaluation of Final Classifiers for Test Data

KDD08 w7a

Algorithm Accuracy (%) Time #SVs Accuracy (%) Time #SVs
LIBSVM 99.39 577.3 14.6k 98.31 92.61 8.0k
Pegasos 99.50±0.01 976.8 81.8k 97.56±0.01 29.21 24.7k
BOGD 99.37±0.01 31.84 1,760 97.05±0.01 8.33 3,710
BPAS 99.22±0.29 37.48 1,760 97.75±0.40 13.95 3,710
OSKL-last 99.20±0.01 22.79 1,752 97.92±0.20 5.08 3,726
OSKL-avg 99.20±0.01 22.79 1,752 97.94±0.07 5.08 3,726
SPA-last 99.41±0.07 19.42 1,760 97.49±2.05 5.04 3,710
SPA-avg 99.46±0.01 19.42 1,760 97.97±0.04 5.04 3,710

a9a codrna

Algorithm Accuracy (%) Time #SVs Accuracy (%) Time #SVs
LIBSVM 85.04 97.8 11.5k 96.67 80.2 8.0k
Pegasos 84.66±0.21 15.8 11.0k 95.63±0.43 14.9 12.2k
BOGD 82.49±1.22 5.85 2,079 92.10±1.32 5.34 2,386
BPAS 82.11±0.83 7.59 2,079 93.12±2.01 6.98 2,386
OSKL-last 80.17±3.91 3.19 2,073 94.15±1.66 3.42 2,410
OSKL-avg 84.28±0.21 3.19 2,073 95.67±0.13 3.42 2,410
SPA-last 82.97±2.59 3.16 2,079 91.23±3.40 3.03 2,386
SPA-avg 84.88±0.10 3.16 2,079 96.05±0.09 3.03 2,386

Time in seconds.

Fig. 1. Evaluation of different budget single-kernel algorithms on a9a and codrna datasets. The curves of
online mistake rates vs. time costs were obtained by choosing varied budget values.

that employing the averaged classifier with SPA for test data classification leads to more accurate
and more stable performance than many budget learning algorithms that output the last classifier,
which again validates the advantage of our technique.

6.1.5 Experiments on Various Budget Sizes. In the previous experiments, we compared many
state-of-the-art online budget learning algorithms under fixed budget size. To be more convincing,
in this subsection, we show the “time versus accuracy” of all compared algorithms under varied
SV size setting in Figure 1.
The train and test splitting and parameter setting are identical to that used in Table 3, except

the β and B. We adopt various β and B values to show the different performance of all algorithms
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Fig. 2. Impacts of parameters α and β for #SV, time cost and accuracy by SPA on “a9a.”

under various SV’s set size. Finally, we plot the accuracy on the same time axis for fair comparison.
Several observation can be drawn as follows:
First, for all algorithms, more support vectors (larger B, smaller β) result in higher accuracy.

Consequently, it is important for the learner to choose a proper trade-off between efficiency and
accuracy. Second, when comparing the “averaged classifiers” (SPA-ave and OSKL-ave) and their
corresponding “last classifiers,” we find that the averaged classifiers always achieve higher accu-
racy, which validates our main motivation. Third, by comparing the accuracy between different
algorithms, we find our proposed algorithm, SPA-ave, gets better accuracy than most of the com-
pared algorithms and sometimes comparable to that of OSKL. These observations consist with that
in Table 3.

6.1.6 Parameter Sensitivity ofα and β . The proposed SPA algorithm has two critical parameters,
α and β , which could considerably affect the accuracy, support vector size, and time cost. Our
second experiment is to examine how different values of α and β affect the learning performance
to give insights for how to choose them in practice. Figure 2 shows the performance (support
vector size, time, accuracy) of the SPA algorithm on the “a9a” dataset with varied α values ranging
from 0.1 to 3, and varied β in the range of {2.5, 5, 10, 20, 40}. Several observations can be drawn
from the experimental results.
First, when β is fixed, increasing α generally results in (i) larger support vector size, (ii) higher

time cost, but (iii) better classification accuracy, especially when α is small. However, when α is
large enough (e.g.,α > 1.5), increasingα has veryminor impact to the performance. This is because
the number of instanceswhose hinge loss aboveα is relatively small.We also note that the accuracy
decreases slightly when α is too large, e.g., α >= 3. This might be because some (potentially noisy)
instances with large loss are given a high chance of being assigned as SVs, which may harm the
classifier due to noise. Thus, on this dataset (“a9a”), it is easy to find a good α in the range of [1, 2].
Second, when α is fixed, increasing β will result in (i) smaller support vector size, (ii) smaller

time cost, but (iii) worse classification accuracy. On one hand, β cannot be too small as it will lead
to too many support vectors and thus suffer very high time cost. On the other hand, β cannot be
too large as it will considerably decrease the classification accuracy. We shall choose β that yields
a sufficiently accurate classifier while minimizing the support vector size and training time cost.
For example, for this particular dataset, choosing β in the range of [5, 10] achieves a good trade-off
between accuracy and efficiency/sparsity.
Third, we would like to discuss about the impact of the number of SVs on the accuracy. As the

proposed algorithm is an approximation of the kernel PA algorithm by sampling a subset of SVs,
increasing the number of SVs usually leads to higher accuracy. However, when the number of SVs
is already large, increasing it does not have much influence on the accuracy. In other words, the
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Table 4. Summary of Binary Classification
Datasets in the OMKC Experiments

Datasets # instances #features
German 1,000 24
Svmguide3 1,243 21
Madelon 2,000 500
Magic04 19,020 10
A9a 48,842 123
Ijcnn1 49,990 22
Kdd08 102,294 117
Codrna 271,617 8
Susy 1,000,000 18

marginal utility of increasing SVs decreases. This can be easily observed from Figure 1. When the
number of SVs increases from 5,000 to 9,000, the accuracy nearly stays unchanged.

6.2 Experiments for Online Multiple-Kernel Classification

We now evaluate the empirical performance of the proposed SPA technique for bounded online
multiple-kernel classification tasks.

6.2.1 Experimental Testbed. All datasets used in our experiments are commonly used bench-
mark datasets and are publicly available from LIBSVM, UCI,4 and KDDCUP competition site. These
datasets are chosen fairly randomly to cover a variety of different dataset scales. We summarize
the details of the datasets in Table 4.

6.2.2 Kernels. In our experiments, we examine BOMKC by exploring a set of 16 prede-
fined kernels, including 3 polynomial kernels κ (xi , xj ) = (xi xj )

p with the degree parameter

p = 1, 2, 3; 13 Gaussian kernels κ (xi , xj ) = exp(− | |xi−xj | |
2
Hκ

2σ 2 ) with the kernel width parameter

σ = [2−6, 2−5, . . . , 26].

6.2.3 Compared Algorithms. First, we include an “ideal” baseline algorithm, which assumes
the best kernel among the pool of kernels can be disclosed prior to the arrival of training data
at the beginning of online learning. Specifically, we search for the best single-kernel classifier
from the set of 16 predefined kernels using one random permutation of all the training examples.
Using this best kernel, we then construct an “ideal” kernel classifier using the Perceptron
algorithm [32], denoted as “Per(*)” in later discussion.

The second group of compared algorithms are the existing OMKC algorithms in Reference [20],
including three variants of OMKC:

• “U”: the OMKC algorithm with a naive Uniform combination;
• “DD”: OMKC with Deterministic combination and Deterministic update;
• “SD”: OMKC with Stochastic update and Deterministic combination.

Since all single-kernel component classifiers in the above OMKC algorithms are updated by
Perceptron, we amend the two existing OMKC algorithms by adopting the Passive-Aggressive
[10] update strategy to obtain two stronger baselines for comparison, including:

4http://archive.ics.uci.edu/ml/.
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ALGORITHM 3: The Bounded OMKC-DD Using the Deterministic Update

for t = 1, 2, . . . ,T do

Receive an instance xt ;

Predict ŷt = sign
( ∑m

i=1 θ
i
t · sign[f it (xt )]

)
Receive the true class label yt
for i = 1, 2, . . . ,m do

Update weight θ it+1 = θ
i
tγ

M i
t , whereMi

t = I(yt f
i
t (xt ) < 0)

if #SVi <
B
m then

Normal update;

else

Budget maintenance;

end if

Scale the weights θ it+1 =
θ i
t+1∑m

j=1 θ
j

t+1

, i = 1, . . . ,m

end for

end for

• “DDPA”: we replace Perceptron with the PA algorithm in OMKC-DD;
• “SDPA”: we replace Perceptron with the PA algorithm in OMKC-SD.

Finally, to test the efficiency and effectiveness of our budget strategy, we should also compare
with budget OMKC algorithms. Since very few existing work has attempted to address this is-
sue, we then construct a few baselines by turning the above OMKC algorithms (“DD” and “SD”)
into budget OMKC by replacing its unbounded single-kernel classifiers with some existing budget
online (single) kernel learning algorithms. These result in the following BOMKC algorithms for
comparisons:

• “RBP”: the Random Budget Perceptron algorithm [4];
• “Forgetron”: budget Perceptron by discarding the oldest SV [14];
• “BOGD”: the Budget OGD algorithm [53];
• “BPAS”: the Budget PA algorithm [47].

Due to the highly intensive computational costs, we exclude the comparisons with other insuffi-
cient budget online kernel learning algorithms such as Projectron and its variants. Although the
procedure of both DD and SD algorithms was clearly presented in Reference [20], we still describe
its budget variants used in our comparison in Algorithms 3 and 4 for easier understanding, where
B is the total budget size of all component classifiers and the “budget maintenance” step denotes
any of the four budget algorithms.

6.2.4 Parameter Settings. To make a fair comparison, we adopt the same experimental setup
for all the algorithms. The weight discount parameter γ is fixed to 0.99 for all multiple-kernel
algorithms on all datasets. The smoothing parameter δ for all stochastic update algorithms is fixed
to 0.001. The learning rate parameters in PA-based algorithms (SPA, BPAS, DDPA, SDPA) are all
fixed to 0.1. The regularization parameter λ and learning rate parameter η in BOGD is searched in
the range of {1, 0.1, . . . , 0.0001}. For the proposed SPA algorithm, we set α = 1 for all the datasets.
In addition, as discussed in the theoretical analysis, the number of SVs is bounded by αT /β , which
indicates that β should vary according to the number of instancesT in a dataset. We thus set β = 3
for smaller datasets (T < 105) and β = 10 for other datasets. For fair comparison, we choose the
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ALGORITHM 4: The Bounded OMKC-SD Using the Stochastic update

for t = 1, 2, . . . ,T do

Receive an instance xt ,

Predict ŷt = sign
( ∑m

i=1 θ
i
t · sign[f it (xt )]

)
Receive the true class label yt
for i = 1, 2, . . . ,m do

Compute pit = (1 − δ ) θ it

maxj θ
j
t

+ δ ;

Sample a Bernoulli random variable Z i
t ∈ {0, 1} by Pr(Z i

t = 1) = pit
if Z i

t = 1 then

Update weight θ it+1 = θ
i
tγ

M i
t , whereMi

t = I(yt f
i
t (xt ) < 0)

if
∑m
i=1 #SVi < B then

Normal update;

else

Budget maintenance;

end if

end if

Scale the weights θ it+1 =
θ i
t+1∑m

j=1 θ
j

t+1

, i = 1, . . . ,m

end for

end for

budget size B for all the other compared budget algorithms the same as the total number of SVs
yielded by our proposed SPA algorithms.
All experiments were repeated 10 times on different random permutations of instances and all

the results were obtained by averaging over 10 runs. The algorithms were implemented in C++ on
a PC with 3.2GHz CPU. We report the online mistake rates along the online learning process, the
total number of SVs used by all single-kernel classifiers and the running time.

6.2.5 Evaluation by Comparing BOMKC(SPA) with Unbounded OMKC. The first experiment is
to evaluate the performance of BOMKC(SPA) for binary classification tasks by comparing it with
the existing unbounded OMKC algorithms. Note that we did not report the results on three large-
scale datasets in this experiment, since it is simply computationally prohibited to run the non-
budget algorithms on such large datasets due to time and memory limits. Table 5 summarizes the
results. We can draw some observations below.
First, we compare the three unbounded OMKC algorithms using deterministic updates (Percep-

tron(*), OMKC(U), OMKC(DD)). Obviously, the mistake rate of OMKC(DD) is much lower than
that of OMKC(U), which indicates that OMKC(DD) can build more effective multiple-kernel clas-
sifiers through learning the best combination. It is a bit surprised that, even with the unrealistic
assumption of choosing the best kernel prior to online learning, the Perceptron algorithm using
the best kernel did not achieve the lowest error rate. We conjecture that there might be two rea-
sons. First, the optimal kernel is searched only on one random permutation, which might not be
the best kernel for other permutations, while OMKC(DD) always learns the best combination of
the kernel functions. Second, on some datasets, no single-kernel function has a significant advan-
tage over the others, while an optimal weighted combination might outperform any single-kernel
classifier. This further validates the significance of exploring multiple-kernel learning algorithms.
Second, we found that despite generating fewer SVs, the OMKC(SD) algorithms using sto-

chastic updates sometimes achieve even lower mistake rates compared with OMKC(DD) using
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Table 5. Evaluation of Online Classification on Small-scale and Medium-scale Datasets
by Comparing BOMKC(SPA) with Unbounded OMKC Algorithms

Algorithm

german madelon

Error(%) #SVs Time Error(%) #SVs Time

Per(*) 31.87±1.61 318.8±16.1 0.04 48.65±1.57 973.0±31.4 0.81

U 35.75±1.52 6904.1±101.3 0.38 50.00±0.00 26498.2±92.6 35.27

DD 30.71±1.25 6904.1±101.3 0.38 41.15±0.50 26498.2±92.6 35.46

SD 34.83±1.54 5723.3±95.1 0.34 50.00±0.00 13872.3±150.6 20.67

DDPA 28.92±0.90 12481.5±60.9 0.70 37.55±1.00 28918.0±95.7 39.39

SDPA 28.88±0.63 6794.6±93.5 0.45 50.00±0.00 23837.2±29.7 33.93

SPA 28.57±0.51 2388.2±95.2 0.16 39.39±1.12 2285.2±68.8 3.58

Algorithm

a9a magic04

Error(%) #SVs Time Error(%) #SVs Time

Per(*) 20.43±0.13 9980.1±67.4 22.5 24.29±0.13 4620.9±25.9 1.94

U 20.60±0.10 234008.7±373.8 1178.5 28.70±0.12 157922.7±164.4 199.5

DD 19.20±0.12 234008.7±373.8 1178.6 22.58±0.46 157922.7±164.4 199.0

SD 18.93±0.10 155393.9±560.9 778.9 22.39±0.11 73433.4±320.1 69.4

DDPA 15.82±0.07 491137.2±237.2 3061.3 18.91±0.10 243950.0±106.9 352.8

SDPA 20.70±0.48 214751.2±474.8 1051.6 34.57±0.01 92635.9±560.1 94.6

SPA 16.31±0.11 14540±1779.4 58.0 19.62±0.23 7452.3±869.2 5.10

Algorithm

KDD08 svmguide3

Error(%) #SVs Time Error(%) #SVs Time

Per(*) 0.94±0.01 963.5±11.0 14.7 25.98±0.51 323.0±6.3 0.03

U 0.66±0.01 32665.1±199.7 829.7 28.25±0.80 6166.9±100.1 0.36

DD 0.72±0.01 32665.1±199.7 829.0 25.41±0.95 6166.9±100.1 0.37

SD 0.63±0.01 17218.5±95.3 450.8 24.65±0.46 5550.8±95.8 0.36

DDPA 0.60±0.01 473444.2±124.6 12371 21.81±0.21 13734.9±61.6 0.87

SDPA 0.59±0.01 409441.0±7293.0 10834 21.64±0.11 12596.2±217.9 0.80

SPA 0.59±0.01 13749.1±858.2 331.5 22.21±0.24 2777.1±92.50 0.20

Time in seconds.

deterministic updates, which is consistent with the previous observations in Reference [20]. This
indicates that not all SVs are essentially useful for constructing an accurate final classifier. This
supports our main claim that when the added SVs are wisely selected, the accuracy may not be
degraded much while the efficiency can be significantly improved.
Finally, we found that most PA-based algorithms significantly outperform the Perceptron-based

ones in terms of accuracy, but paid by requiring much higher time and space costs due to more
aggressive updates. We then make a comparison among the three PA-based algorithms. Although
only a small fraction of SVs are adopted, the proposed SPA algorithm still achieves comparable
or sometimes even better accuracy compared with its unbounded counterparts. Moreover, the
time cost reduction by the proposed SV sampling strategy is especially more significant on the
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Table 6. Evaluation of BOMKC Using Different Budget Learning Algorithms

Algorithm

KDD08 ijcnn1

Error(%) #SVs Time Error(%) #SVs Time

DD

RBP 0.72±0.01 13744.0±0.0 520.6 9.23±0.54 4384.0±0.0 14.5

Forgetron 0.74±0.01 13744.0±0.0 537.0 9.27±0.49 4384.0±0.0 17.1

BOGD 0.61±0.00 13744.0±0.0 792.4 9.71±0.01 4384.0±0.0 17.0

BPAS 0.61±0.00 13744.0±0.0 718.0 9.70±0.01 4384.0±0.0 16.3

SD

RBP 0.64±0.01 4384.0±0.0 385.2 7.82±0.18 4384.0±0.0 14.6

Forgetron 0.64±0.01 4384.0±0.0 380.2 8.21±0.05 4384.0±0.0 16.4

BOGD 0.61±0.00 13744.0±0.0 773.9 9.24±0.04 4384.0±0.0 16.7

BPAS 0.61±0.00 13744.0±0.0 758.8 9.71±0.01 4384.0±0.0 16.6

SPA 0.59±0.01 13749.1±858.2 331.5 7.06±0.32 4391.1±1164.7 8.8

Algorithm

codrna a9a

Error(%) #SVs Time Error(%) #SVs Time

DD

RBP 12.44±0.27 5744.0±0.0 85.5 19.90±0.49 14544.0±0.0 81.5

Forgetron 13.39±0.28 5744.0±0.0 109.1 20.03±0.22 14544.0±0.0 118.4

BOGD 12.59±0.04 5744.0±0.0 98.9 17.12±0.08 14544.0±0.0 99.4

BPAS 7.06±0.15 5744.0±0.0 100.2 16.66±0.07 14544.0±0.0 95.1

SD

RBP 9.06±0.29 5744.0±0.0 84.8 18.15±0.13 14544.0±0.0 78.2

Forgetron 10.24±0.26 5744.0±0.0 97.2 18.83±0.14 14544.0±0.0 96.5

BOGD 13.38±0.17 5744.0±0.0 98.0 17.46±0.11 14544.0±0.0 89.7

BPAS 10.59±0.20 5744.0±0.0 93.2 17.01±0.11 14544.0±0.0 93.4

SPA 5.94±0.17 5745.1±647.2 46.2 16.31±0.11 14540.0±1779.4 58.0

Time in seconds.

large datasets (e.g., KDD08 and a9a). In fact, when the datasets are very large (such as “Codrna”
and “Susy,” as shown in later experiments), it is even impossible for non-budget algorithms to
complete the whole online learning process due extremely huge time cost and memory space
needed for storing the unbounded SVs, which grows continuously in the online learning process
for large-scale datasets.

6.2.6 Evaluation of Different Bounded OMKC Algorithms. The last experiment is to test the
accuracy and efficiency of our proposed SPA algorithm in comparison to the other variants of
Bounded OMKC algorithms using traditional budget maintenance strategies. Table 6 summarizes
the experimental results on several large-scale datasets.
First, we compare the accuracy of the two groups of traditional budget algorithms, bounded

OMKC(DD) using the Deterministic updating strategy (denoted as “DD” for short) and bounded
OMKC(SD) using Stochastic updating strategy (denoted as “SD” for short). For the two
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Fig. 3. Evaluation of different Bounded OMKC algorithms on two large-scale datasets. The curves of online
mistake rates vs. time costs were obtained by choosing varied budget values. As bounded SD algorithms have
no significant advantages over Bounded DD (see Table 6), we thus only include Bounded DD algorithms in
these two figures to simplify the presentation.

Perceptron-based algorithms (RBP and Forgetron), the SD updating strategy demonstrates
significant advantage in terms of accuracy over the DD strategy. This is due to the fact that SD
focuses on the best kernels and spends only a small fraction of budget on poor kernels. While
for the two aggressive algorithms (BOGD and BPAS), SD achieves comparable or even worse
performance compared with DD. We conjecture that this may be because too aggressive update
strategy results in sub-optimal budget allocation.
Second, it is clear that SPA not only achieves the best accuracy among all bounded OMKC

algorithms, but also the lowest time cost. There are twomajor reasons for explaining the promising
results: (i) Different from the budget DD that treats each kernel equally, SPA concentrates more
effort on updating the classifiers of good kernels and thus the poor kernels will yield fewer SVs,
which can greatly reduce the prediction time cost; (ii) Different from the budget SD where the
classifier weights θ are also updated in a stochastic manner, the weights in the proposed SPA
algorithm are updated always whenever a classification mistake appears, which leads to better SV
allocation and more precise prediction combination.
To further examine the trade-off between classification accuracy and computational efficiency,

Figure 3 shows the evaluation of different Bounded OMKC algorithms on two large-scale datasets,
where the curves of online mistake rates versus time costs were obtained by choosing varied bud-
get values (via proper parameter settings). As observed from the results, for the largest dataset
“SUSY” with one million instances, we found that when following the previous setting where all
the algorithms adopt the same number of SVs, the compared budget algorithms cannot finish pro-
cessing the dataset in the fixed amount of time. Thus, for a fair comparison, we plot the online
mistake rate of different algorithms on the same time axis according to different SV sparsity set-
ting (β = 2, . . . , 10). Obviously, the proposed SPA algorithm always achieves the lowest mistake
rate with the given same amount of time cost, which validates the effectiveness and robustness of
the proposed SPA algorithm.

7 CONCLUSIONS

To make large-scale kernel methods practical, we proposed a novel framework of SPA learning
for bounded online kernel methods. Unlike traditional budget online kernel learning methods that
rely on some budget maintenance strategies, the proposed algorithm adopts a simple yet effective
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stochastic sampling strategy to ensure the number of support vectors is bounded. In contrast to
traditional budget online kernel algorithms that only bound the number of support vectors at each
iteration, our new algorithm outputs a sparse final averaged classifier with bounded support vector
size, making it not only suitable for online learning tasks but also applicable to batch classification.
We also extended the proposed SPA algorithm for BOMKC tasks by learning with multiple kernels.
Our promising experimental results showed that our SPA algorithms outperform a variety of state-
of-the-art budget online learning algorithms in both single-kernel and multiple-kernel settings,
validating the efficacy, efficiency and scalability of the proposed SPA technique.
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