
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

8-2018

Server-aided attribute-based signature with
revocation for resource-constrained Industrial-
Internet-of-Things devices
Hui CUI
Royal Melbourne Institute of Technology

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Joseph K. LIU
Monash University

Xun YI
Royal Melbourne Institute of Technology

Yingjiu LI
Singapore Management University, yjli@smu.edu.sg

DOI: https://doi.org/10.1109/TII.2018.2813304

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
CUI, Hui; DENG, Robert H.; LIU, Joseph K.; YI, Xun; and LI, Yingjiu. Server-aided attribute-based signature with revocation for
resource-constrained Industrial-Internet-of-Things devices. (2018). IEEE Transactions on Industrial Informatics. 14, (8), 3724-3732.
Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4146

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/200254131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TII.2018.2813304
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4146&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

3724 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2018

Server-Aided Attribute-Based Signature With
Revocation for Resource-Constrained
Industrial-Internet-of-Things Devices

Hui Cui , Robert H. Deng , Fellow, IEEE, Joseph K. Liu , Xun Yi , and Yingjiu Li, Member, IEEE

Abstract—The industrial Internet-of-things (IIoT) can be
seen as the usage of Internet-of-things technologies in in-
dustries, which provides a way to improve the operational
efficiency. An attribute-based signature (ABS) has been a
very useful technique for services requiring anonymous au-
thentication in practice, where a signer can sign a message
over a set of attributes without disclosing any information
about his/her identity, and a signature only attests to the
fact that it is created by a signer with several attributes
satisfying some claim predicate. However, an ABS scheme
requires exponentiation and/or pairing operations in the sig-
nature generation and verification algorithms, and hence, it
is quite expensive for resource-constrained devices like a
sensor in the IIoT network to run an ABS scheme. To reduce
the computational overheads for both signers and verifiers,
it has been suggested to introduce a server to help with
signature generation and verification, but existing results
on the ABS with “server-aided computation” either suffer
from the security issues or are not sufficiently efficient. In
this paper, we consider server-aided ABS one step further,
and propose a notion called server-aided ABS with revo-
cation (SA-ABSR), which not only securely mitigates the
workloads of users in generating and verifying signatures,
but also enables user revocation by having the server im-
mediately stop signature generations for revoked signers.
We formally define the security model for SA-ABSR, present
a concrete construction of SA-ABSR based on a standard
ABS scheme, and prove its security under the defined se-
curity model. Also, we implement the proposed SA-ABSR
scheme and the underlying standard ABS scheme to eval-
uate the performance, from which it is easy to see that the
proposed SA-ABSR scheme is more efficient than its under-
lying ABS scheme.

Manuscript received October 26, 2017; revised January 2, 2018 and
February 21, 2018; accepted March 2, 2018. Date of publication March
8, 2018; date of current version August 1, 2018. This work was supported
in part by the Singapore National Research Foundation under the NCR
Award NRF2014NCR-NCR001-012 and in part by the AXA Research
Fund. Paper no. TII-17-2476. (Corresponding author: Hui Cui.)

H. Cui and X. Yi are with the School of Science, Royal Melbourne In-
stitute of Technology (RMIT) University, Melbourne, VIC 3000, Australia
(e-mail: hui.cui@rmit.edu.au; xun.yi@rmit.edu.au).

R. H. Deng and Y. Li are with the School of Information Systems,
Singapore Management University, Singapore 188065 (e-mail: robert
deng@smu.edu.sg; yli@smu.edu.sg).

J. K. Liu is with the Faculty of Information Technology, Monash Univer-
sity, Melbourne, VIC 3800, Australia (e-mail: joseph.liu@monash.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2018.2813304

Index Terms—Attribute-based signature (ABS), server-
aided signing, server-aided verification, user revocation.

I. INTRODUCTION

THE concept of industrial Internet-of-things (IIoT) [1] arms
the internet with a capability to directly control the physi-

cal world including devices, factories, and infrastructures, but it
also raises challenges in the security and privacy protection in
the IIoT network.

The attribute-based signature (ABS) [2], [3] is a crypto-
graphic primitive that provides not only unforgeability as that
in the standard digital signature but also signer anonymity [4].
Therefore, the ABS has a wide range of applications such as
privacy-preserving access control, anonymous credentials, and
so on [4]. Unfortunately, due to the involvement of many ex-
ponentiation and/or pairing calculations, ABS schemes incur
heavy computations in the signature generation and verification
stages, which grow linearly to the complexity of the specified
claim predicate. This is challenging for resource-constrained de-
vices (with limited computational capabilities) such as tablets
in the IIoT scenarios. To address this issue, one approach is to
use the offline/online cryptographic approach (e.g., [5] and [6]),
which allows a signer to perform heavy calculations (e.g., ex-
ponentiation and pairing) during the offline phase and generates
a signature by performing light-weight computations in the on-
line phase. But this approach does not reduce the computational
overhead in the verification stage.

A promising solution to this problem is to delegate a third
party (i.e., a server) to perform heavy calculations and leave
the signer/verifier with a small amount of computations. This
is known as “server-aided computation” [7], which has been a
very popular method in ameliorating computational overheads
for cryptographic primitives including attribute-based encryp-
tion [8], ABS [9], [10], identity-based encryption [11], [12],
digital signature [13], public-key encryption [14], and authen-
tication [15]. In terms of an ABS, several server-aided ABS
schemes have been proposed, where a server is assigned to as-
sist with either signature generation or signature verification or
both. However, the server-aided ABS scheme (e.g., [10]), which
applies a server to help with the workloads in both signing and
verifying algorithms, is not secure [9], because the server and
the signer can collude together to make the verifier accept an
invalid signature. Though this security flaw has been fixed in

1551-3203 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Published in IEEE Transactions on Industrial Informatics, Aug. 2018, Volume: 14 , Issue: 8 , pp. 3724-3732.
https://doi-org.libproxy.smu.edu.sg/10.1109/TII.2018.2813304

https://orcid.org/0000-0002-5820-2233
https://orcid.org/0000-0003-3491-8146
https://orcid.org/0000-0001-6656-6240
https://orcid.org/0000-0001-7351-5724

CUI et al.: SERVER-AIDED ATTRIBUTE-BASED SIGNATURE WITH REVOCATION FOR RESOURCE-CONSTRAINED INDUSTRIAL-INTERNET-OF-THINGS 3725

[9], the resulting ABS scheme with server-aided verification is
not satisfactory in performance, which still requires the verifier
to conduct heavy calculations. Due to these observations, we
think about designing a secure server-aided ABS scheme with
improved efficiency, in which the server helps to significantly
reduce workloads in both signature generation and verification
phases. On the other hand, as in an attribute-based cryptographic
system, the status of users may change (e.g., users may leave the
system) or their signing keys may be leaked or compromised,
it is necessary to equip an ABS scheme with an efficient user
revocation mechanism [8]. Interestingly, we find that we can
subtly make use of the server in a server-aided ABS scheme to
achieve efficient user revocation.

In this paper, we propose a notion of a server-aided ABS
with revocation (SA-ABSR), which can be applied in scenarios
such as an IIoT network to achieve anonymous authentication
among mobile devices with limited computation power. In an
SA-ABSR scheme, most of the computational overheads in the
signature generation and verification algorithms are delegated to
a server to alleviate the workloads of signers/verifiers, and user
revocation can be easily accomplished by requiring the server to
directly stop the partial signature generation operation for any
revoked signer.

A. Our Contributions

Compared to a standard ABS scheme, an SA-ABSR scheme
introduces an additional server with three main functions. First,
the server helps a signer in the signature generation process such
that the signer’s workload in generating the signature is greatly
reduced. Second, it assists a verifier to check the validity of a
signature such that the verifier does not need to perform a large
amount of computations. Third, it facilitates user revocation by
terminating the signature generation operation for any revoked
signer.

The key challenges in building an SA-ABSR scheme are
twofold. On the one hand, regarding the server-aided signature
generation, since the server is not fully trusted and the revoca-
tion function is achieved by the server who will immediately
stop generating the partial signature for any revoked signer, it is
essential to guarantee that neither the server nor the signer can
independently create a valid signature. Our solution to address
this challenge is motivated by the key splitting technique in [10].
The attribute authority (AA) splits the master private key into
two parts, it embeds one part in the partial signing key, which is
given to the server and the other part in the signing key, which
is given to a signer. Thus, neither the server nor the signer can
create a signature by itself, and they must collaborate to output a
valid signature. On the other hand, concerning the server-aided
signature verification, it is crucial to confirm the validity of the
signature such that the verifier will not accept an invalid sig-
nature even if the server colludes with the signer. Though the
server will not help a revoked signer generate a signature, it is
possible that the server colludes with the signer such that a veri-
fier might accept an invalid signature. To prevent such collusion
attacks between the server and the signer, we improve the trans-
formation technique introduced in [7] to accomplish secure and
efficient server-aided verification. Note that it has been claimed

in [9] that the transformation technique in [7] does not work for
an ABS scheme and they introduce an ABS scheme following a
different server-aided approach. In this paper, we show that it is
possible to utilize the transformation technique in [7] to achieve
secure server-aided verification via some subtle modifications
and the resulting scheme can have better efficiency than the one
in [7].

We summarize the contributions in this paper as follows.
1) We introduce a notion of SA-ABSR, which delegates

most of the computational operations in the signature
generation and verification algorithms to a server, and
accomplishes user revocation by making the server stop
the partial signature generation for any revoked signer.

2) We present a concrete SA-ABSR scheme, formally prove
its security and assess its performance theoretically
and experimentally. Compared to the existing results
on server-aided ABS schemes, the proposed SA-ABSR
scheme overcomes their security vulnerability and attains
better efficiency.

B. Related Works

1) ABS: Li et al. [2] gave an ABS scheme that is secure in
the standard model, but the claim predicates can only be the
threshold ones. Maji et al. [3] first defined the formal definition
of the ABS, and presented an efficient construction on the ABS
supporting any claim-predicate expressed in any monotone span
programme, but the security of the scheme can only be proved
in the generic group model. Herranz et al. [16] built two ABS
schemes with signatures of constant sizes, but their schemes
are less efficient than the scheme in [2] and [3]. Okamoto and
Takashima [17] put forward the first fully secure ABS scheme
enabling nonmonotone claim predicates in the standard model
under the decentralized setting, but it also suffers the efficiency
issue.

There are ABS schemes presented to solve different issues
raised in ABS including revocation (e.g., [18]), accountability
(e.g., [19]), and key escrow (e.g., [4]), and ABS schemes pro-
posed to meet the requirements in different scenarios such as
an attribute-based group signature [20] and the forward secure
ABS [21].

Motivated by that most of the existing ABS schemes require
many exponentiation calculations in the signature generation
phase, Chen et al. [10] introduced the notion of outsourced ABS
(OABS) where the majority computational overhead from the
signature generation algorithm is delegated to a server. Chen
et al. [10] also extended their OABS scheme to accomplish
server-aided verification, but the resulting scheme was found
insecure [9], where the signer and the server may collude to-
gether such that an invalid signature will be accepted by the
verifier. To address this security flaw, Wang et al. [9] proposed
a notion of attribute-based server-aided verification (ABSAV),
which enables a server to securely assist the verifier with signa-
ture verification, but the scheme could not considerably mitigate
the workload of the verifier.

2) Server-Aided Technology: “Server-aided computation”
was first introduced by Matsumoto et al. [22] to speed up the
computation, where a powerful server is applied to help the

3726 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2018

low-power devices execute heavy cryptographic operations. As
a desirable solution to reduce computational overheads, server-
aided computation has been widely used in various schemes to
help with heavy calculations in the algorithms including key
computation, signature generation, signature verification, en-
cryption, decryption, and so on [11]. For example, server-aided
signature [7], [23] was proposed to reduce the exponentiation
and pairing calculations.

In addition to ameliorate the computational overheads, the
server-aided technique has also been utilized for efficient user
revocation (e.g., [24]), where a semitrusted server immediately
terminates partial decryption operations for revoked users. Com-
pared to the traditional revocation methodology, such an ap-
proach does not require the private key of users to be updated
regularly, and greatly simplifies the revocation operation, but it
does not allow the server to collude with the users.

C. Organization

The remainder of this paper is organized as follows. In
Section II, we briefly review the notions and definitions that are
relevant to this paper. In Section III, after depicting the frame-
work of SA-ABSR), we formally describe its security model.
In Section IV, we give a concrete construction on SA-ABSR
based on a standard ABS scheme, sketch its security under the
defined model, and analyze its performance complexity. Finally,
we conclude this paper in Section V.

II. PRELIMINARIES

In this section, we review some basic cryptographic notions
and definitions that are to be used in this paper.

A. Bilinear Pairings and Complexity Assumptions

Let G be a group of a prime order p with a generator g.
A function ê : G×G → G1 is a bilinear map if it satisfies
the following two properties [25]: 1) bilinear such that for
all g ∈ G, and a, b ∈ Zp , it holds ê(ga , gb) = ê(g, g)ab ; and
2) nondegenerate such that ê(g, g) �= 1.

A group G is a bilinear group if the group operation in G is
efficiently computable and there is a group G1 and an efficiently
computable bilinear map ê : G×G→ G1 as above.

Diffie–Hellman Exponent Problem [16]: The l-Diffie–
Hellman exponent (l-DHE) problem is that given a tuple (g,
ga , ..., gal

, gal + 2
, ..., ga2l

), where a ∈ Zp , it is hard to compute
gal + 1

.

B. Threshold ABS

Denote A by be the universe of possible attributes. Let M
be the message space. In a threshold ABS scheme [16], every
message m ∈M is signed over a claim predicate Γk,S , where S
is a subset over A and k is a threshold such that 1 ≤ k ≤ |S|. We
say that an attribute set A ∈ A satisfies Γk,S if |A ∩ S| ≥ k.

1) Setup(1λ)→ (pars, msk): On input the security param-
eter λ, this setup algorithm outputs the public parameter
pars and a master private key msk for the AA.

2) Extract(pars, msk, A)→ skA : On input the public pa-
rameter pars, the master private key msk and an attribute

set A ∈ A, this signing key extraction algorithm outputs
the attribute-based signing key skA (if the signer is eli-
gible to be issued with these attributes).

3) Sign(pars, skA , Γk,S , m) → σ: On input the public
parameter pars, the signing key skA , a claim-predicate
Γk,S , where S ⊂ A, 1 ≤ k ≤ |S| and a message m ∈
M, this signing algorithm outputs a signature σ on the
message m and the claim-predicate Γk,S .

4) Verify(pars, σ) → true/false: On input the public pa-
rameter pars and a signature σ on a message m and a
claim-predicate Γk,S , this verification algorithm outputs
true or false to denote whether the signature is valid or
invalid.

We require that a threshold ABS scheme is correct, meaning
that for any message m ∈M, any attribute set A ∈ A, any
claim-predicate Γk,S (1 ≤ k ≤ |S|) such that |A ∩ S| ≥ k, if
(pars, msk)← Setup(1λ), skA ← Extract(pars, msk, A), σ
← Sign(pars, skA , Γk,S , m), then Verify(pars, σ)→ true.

III. FRAMEWORK AND SECURITY DEFINITION

We describe the system framework of SA-ABSR, and define
its security definitions in this section.

A. Framework

An SA-ABSR scheme consists of the following algorithms:
system setup algorithm Setup, key generation algorithm Key-
Gen, partial signature generation algorithm SSign, signature
generation algorithm USign, signature transformation algorithm
Transform, server verification algorithm SVerify, user verifica-
tion algorithm UVerify, and revocation algorithm Revoke.

1) Setup(1λ)→ (par, msk): Taking a security parameter λ

as the input, this algorithm outputs the public parameter
par and the master private key msk. This algorithm is
run by the AA.

2) KeyGen(par, msk, A) → (tkid,A , skid,A): Taking the
public parameter par, the master private key msk and an
attribute set A of a user id as the input, this algorithm
outputs an attribute-based signing key skid,A for the user
id and a partial signing key tkid,A for the server. This
algorithm is run by the AA.

3) SSign(par, tkid,A , Γk,S , m) → σ′: Taking the pubic
parameter par, the partial signing key tkid,A of a user id,
a claim-predicate Γk,S and a message m as the input, this
algorithm outputs a partial signature σ′ on the message
m and the claim-predicate Γk,S . This algorithm is run by
the server.

4) USign(par, skid,A , σ′)→σ: Taking the public parameter
par, the attribute-based signing key skid,A and a partial
signature σ′ on a message m and a claim-predicate Γk,S

as the input, this algorithm outputs a signature σ. This
algorithm is run by the singer.

5) Transform(par, σ)→ (tk, σ̃): Taking the public param-
eter par and a signature σ on a message m and a claim-
predicate Γk,S as the input, this algorithm outputs a secret
transformation key tk and a transformed signature σ̃. This
algorithm is run by the verifier.

CUI et al.: SERVER-AIDED ATTRIBUTE-BASED SIGNATURE WITH REVOCATION FOR RESOURCE-CONSTRAINED INDUSTRIAL-INTERNET-OF-THINGS 3727

6) SVerify(par, σ̃)→ B: Taking the public parameter par
and a transformed signature σ̃ on a message m and a
claim-predicate Γk,S as the input, this algorithm outputs
an intermediate signature B. This algorithm is run by the
server.

7) UVerify(par, tk, B) → true/false: Taking the public
parameter par, the transformation key tk and an interme-
diate signature B as the input, this algorithm outputs true
for a valid signature and false otherwise. This algorithm
is run by the verifier.

8) Revoke(id, ul)→ {id} ∪ ul: On input an identity id and
an initially empty revocation list ul, this algorithm adds
id to the revocation list ul. For any user id in the list
ul, the server immediately terminates generating partial
signature for this user id. This algorithm is run by the
AA.

We say that an SA-ABSR scheme is correct, meaning that for
any message m, any (nonrevoked) user id with any attribute set
A, any claim-predicate Γk,S (1 ≤ k ≤ |S|) such that |A ∩ S| ≥
k, if (par, msk)←Setup(1λ), (tkid,A , skid,A)←KeyGen(par,
msk, A), σ′ ← SSign(par, tkid,A , Γk,S , m), σ← USign(par,
skid,A , σ′), (tk, σ̃)← Transform(par, σ), B ← SVerify(par,
σ̃), then UVerify(pars, tk, B)→ true.

B. Security Definitions

Similar to the security definitions for an ABS scheme, we re-
quire the SA-ABSR scheme to be unforgeable and anonymous.

1) Unforgeability: Unforgeability for an SA-ABSR scheme
is defined by the following security game between a challenger
Algorithm B and an adversary Algorithm F , which is similar to
that defined in [10].

1) Setup: Algorithm B generates the public parameter par
and the master private key msk. Algorithm B gives
Algorithm F the public parameter par, and keeps a list
L storing (id, A, tkid,A , skid,A).

2) Phase 1: AlgorithmF issues a sequence of queries to the
following oracles.
a) Partial-signing-key oracle: AlgorithmF issues a par-

tial signing key query on an identity id with an at-
tribute set A. If a tuple (id, A, tkid,A , skid,A) exists
in the list L, Algorithm B returns the corresponding
partial signing key tkid,A . Otherwise, Algorithm B
runs the KeyGen algorithm to generate (tkid,A ,
skid,A). Algorithm B returns the partial signing
key tkid,A to Algorithm F . Also, Algorithm B
adds (id, A, tkid,A , skid,A) to the list L.

b) Signing-key oracle: AlgorithmF issues a signing key
query on an identity id and an attribute set A. If a
tuple (id, A, tkid,A , skid,A) exists in the list L, Algo-
rithmB returns the corresponding signing key skid,A .
Otherwise, Algorithm B runs the KeyGen algorithm
to generate (tkid,A , skid,A), and returns the signing
key skid,A to Algorithm F . Also, Algorithm B adds
(id, A, tkid,A , skid,A) to the list L.

c) Sign oracle: AlgorithmF issues a signing query on a
message m and a claim-predicate Γk,S . Algorithm B
runs the SSign and USign algorithms to generate

a valid signature σ on the message m and the
claim-predicate Γk,S , and returns the signature σ to
Algorithm F .

d) UVerify oracle: Algorithm F issues a user verifi-
cation query on a signature σ for a message m
and a claim-predicate Γk,S . Algorithm B runs the
Transform algorithm and sends a transformed signa-
ture to Algorithm A. Algorithm F then forwards to
Algorithm B an intermediate signature B, and
Algorithm B sends the result of the UVerify algo-
rithm to Algorithm F .

3) Output: Algorithm F outputs a claim-predicate Γ∗k,S , a
message m∗ and a signature σ∗. Algorithm F wins the
game, if 1) (Γ∗k,S , m∗) has never been queried to the
Sign oracle; 2) any id whose attributes A satisfy Γ∗k,S

has never been queried to both the signing-key oracle and
the partial-signing-key oracle; and 3) when Algorithm B
returns a transformed signature σ̃∗ (by running the Trans-
form algorithm) to AlgorithmF and AlgorithmF returns
an intermediate signature B∗ to AlgorithmB, the UVerify
algorithm outputs true.

An SA-ABSR scheme ABS is unforgeable if the advantage
function referring to the aforementioned security game

AdvUNF
F ,ABS(λ) def= Pr[F wins]

is negligible in the security parameter λ for any probabilis-
tic polynomial-time (PPT) adversary Algorithm F . In addi-
tion, an SA-ABSR schemeABS is selectively unforgeable if an
Init phase is added before the setup phase where Algorithm F
chooses the claim-predicate Γ∗k ∗,S ∗ that it aims to attack.

2) Anonymity: Similar to that defined in [10], anonymity
for an SA-ABSR scheme is defined by the following security
game between a challenger Algorithm C and an adversary
Algorithm A.

1) Setup: The same as that in the Unforgeability game.
2) Phase 1: The same as that in the Unforgeability game.
3) Challenge: Algorithm A sends a message m∗ and two

identities id∗0 and id∗1 with attributes A∗0 and A∗1 sat-
isfying the same claim-predicate Γ∗k,S to Algorithm C.
Algorithm C randomly chooses a bit b ∈ {0, 1}, gener-
ates a signature σ∗ on the message m∗ under the claim-
predicate Γ∗k,S by running the SSign algorithm using the
partial signing key tkid∗b ,A∗b and the USign algorithm
using the signing key skid∗b ,A∗b , and then, sends σ∗ to
Algorithm A.

4) Phase 2: The same as that in Phase 1.
5) Output: Algorithm A outputs a guess b′. If b′ = b,

Algorithm A wins the game.
An SA-ABSR scheme ABS achieves anonymity if the ad-

vantage function referring to the aforementioned security game

AdvANON
A,ABS(λ) def= |Pr[b = b′]− 1/2|

is negligible in the security parameter λ for any PPT adversary
Algorithm A.

3728 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2018

Fig. 1. System architecture for SA-ABSR.

IV. SA-ABSR

In this section, we propose a SA-ABSR scheme based on a
standard ABS scheme, and analyze its security and performance.

A. System Overview

We describe the system architecture for an SA-ABSR scheme
in Fig. 1. Specifically, a trusted AA, who generates the public
parameter and keeps the master private key, issues a signing key
to each signer (i.e., a resourced-constrained IIoT device) asso-
ciated with his/her attributes; meanwhile, it generates a partial
signing key for each signer and gives it to the server who keeps
a list of all singer’s partial signing keys. When a signer intends
to generate a signature on a message under a claim predicate,
he/she sends a partial signature generation request to the server,
who then forwards to the signer a partial signature on the spec-
ified message and claim predicate. After receiving the partial
signature from the server, the signer computes the signature us-
ing his/her signing key. In terms of the signature verification, the
verifier first transforms a signature using a short-term transfor-
mation key (which is kept secret by the verifier), and then, sends
the resulting transformed signature to the server. The server runs
a verification algorithm on the transformed signature, and ob-
tains an intermediate signature. Finally, the verifier checks the
validity of the signature via the intermediate signature and the
transformation key. When a signer is revoked, the server will
not respond to any partial signature generation request from this
signer.

B. Construction

Define the Lagrange coefficient as ΔΩ
i (x) =

∏j �=i
j∈Υ

x−j
i−j ,

where i ∈ Zp , Ω is a set of elements in Zp . A polynomial q(x)
over Zp with an order d− 1 can be evaluated by using Lagrange
interpolation as q(x) =

∑
i∈Ω q(i)Δi,Ω(x) where |Ω| = d. On

the basis of the ABS scheme proposed in [16], we describe the
proposed SA-ABSR scheme as follows (notice that the tech-
niques applied here can be applied to other ABS schemes (e.g.,
the scheme given in [2]) to achieve the SA-ABSR schemes).

1) Setup: On input the security parameter λ, this algorithm
runs as follows. Let d be the upper bounded size of the
threshold claim predicate allowed in the scheme. Denote
A by the attribute space, and Ω for |Ω| = d by a default
attribute set. Assume that each attribute in A ∪ Ω is an
element from Zp .

a) It defines a bilinear pairing ê : G×G→ G1, where
G is a group of a prime order p with a generator
g. It randomly chooses α ∈ Zp , and computes Z =
ê(g, g)α .

b) It randomly chooses a vector �v = (v0, ..., vl) ∈
Zp

l+1 where l = 2d + 1, and computes hi = gvi

for i ∈ [0, l]. In addition, it randomly chooses w0,
..., wnm

∈ G, and defines a function F as F (m) =
w0

∏nm

i=1 wi
mi , where mi are the ith bit of m.

The master private key is msk = α, and the public pa-
rameter is par = (g, G, G1, ê, p, Z, h0, ..., hl , w0, ...,
wnm

).
2) KeyGen: On input the public parameter par, the master

private key msk and a user id with an attribute set A, this
algorithm randomly chooses βid , a1, ..., ad−1 ∈ Zp , and
defines a polynomial q(w) =

∑d−1
i=1 aiw

i + βid . Then,
for each attribute w ∈ A ∪ Ω, it randomly chooses rw ,
ru ∈ Zp , and computes

Pw = gq(w) · h0
rw , Pw,0 = grw

Pw,i = (h1
−wi · hi+1)rw ∀ i ∈ [i, l − 1]

Qw = gα−βi d · h0
ru , Qw,0 = gru

Qw,i = (h1
−wi · hi+1)ru ∀ i ∈ [i, l − 1].

It sends tkid,A = ({Pw , Pw,0, {Pw,i}i∈[1,l−1]}w∈A∪Ω)
as the partial signing key for the user id to the
server, and the signing key skid,A = ({Qw , Qw,0,
{Qw,i}i∈[1,l−1]}w∈A∪Ω) to the user id.

3) SSign: On input the public parameter par, the partial sign-
ing key tkid,A and a claim-predicate Γk,S and a message
m, this algorithm runs as follows.
a) It randomly chooses a subset S ′ ∈ A ∩ S and a de-

fault attribute subset Ω′ ∈ Ω such that |S ′| = k and
|Ω′| = d− k. Then, it defines a coefficient vector �b
= (b1, ..., bl) ∈ Zp

l from the polynomial

ϕ(y) =
∏

w∈S∪Ω ′
(y − w) =

l∑

i=1

biy
i−1

where bi is set to 0 for |S ∪ Ω′|+ 2 ≤ i ≤ l.
b) Denote Υ by S ′ ∪ Ω′. It computes

P ′w = Pw ·
l−1∏

i=1

Pw,i
bi + 1

= gq(w) ·
(

h0

l∏

i=1

hi
bi

)rw

∀ w ∈ Υ

P ′0 =
∏

w∈Υ

P ′w
ΔΥ

w (0) = gβi d ·
(

h0

l∏

i=1

hi
bi

)r

P ′1 =
∏

w∈Υ

P
ΔΥ

w (0)
w,0 = gr

where r =
∑

w∈Υ ΔΥ
w (0) · rw .

CUI et al.: SERVER-AIDED ATTRIBUTE-BASED SIGNATURE WITH REVOCATION FOR RESOURCE-CONSTRAINED INDUSTRIAL-INTERNET-OF-THINGS 3729

c) It randomly chooses s0, s1 ∈ Zp , and computes

σ′0 = P ′0 ·
(

h0

l∏

i=1

hi
bi

)s0

· F (m||Ω′||S ′||Γk,S)s1

σ′1 = P ′1 · gs0 , σ′2 = gs1 .

d) It outputs the partial signature σ′ = (Ω′, S ′, Γk,S , m,
σ′0, σ′1, σ′2).

4) USign: On input the public parameter par, the signing key
skid,A and a partial signature σ′ under a claim predicate
Γk,S on a message m, this algorithm runs as follows.
a) It defines a coefficient vector�b = (b1, ..., bl) ∈ Zp

l as
that in the SSign algorithm.

b) It randomly chooses s ∈ Zp , and computes

σ0 = σ′0 ·Qw ·
l−1∏

i=1

Qw,i
bi + 1 · F (m||Ω′||S ′||Γk,S)s

σ1 = σ′1 ·Qw,0, σ2 = σ′2 · gs.

c) It outputs the signature σ = (Ω′, S ′, Γk,S , m, σ0, σ1,
σ2).

5) Transform: On input the public parameter par and a sig-
nature σ on a claim-predicate Γk,S and a message m, this
algorithm randomly chooses t ∈ Zp , and computes

σ̃0 = σ0
t , σ̃1 = σ1

t , σ̃2 = σ2
t .

It outputs the transformed signature σ̃ = (Ω′, S ′, Γk,S ,
m, σ̃0, σ̃1, σ̃2), and the transformation key tk = t.

6) SVerify: On input the public parameter par and a trans-
formed signature σ̃ on a message m under a claim-
predicate Γ(k, S), this algorithm runs as follows. It uses
the default attribute subset Ω′ to obtain the vector�b = (b1,
..., bl) from the polynomial ϕ(y) as defined in the SSign
algorithm, and computes

ê(g, σ̃0)

ê(h0
∏l

i=1 hi
bi , σ̃1) · ê(F2(m||Ω′||S ′||Γk,S), σ̃2)

= B.

It outputs the intermediate signature B.
7) UVerify: On input the public parameter par, an inter-

mediate signature B and the transformation key tk, this
algorithm checks whether Zt = B. If so, it outputs true
indicating that the signature is valid. Otherwise, it outputs
false.

8) Revoke: On input an identity id, this algorithm adds id
to the revocation list ul. For any user id in the list ul, the
server immediately terminates generating partial signa-
ture for this user id.

Notes: In the proposed SA-ABSR scheme, the server is
semitrusted in the sense that it will not collude with any signer,
i.e., it immediately terminates helping a signer with signature
generation if this signer is revoked. It would be desirable to
build an SA-ABSR scheme with an untrusted server who does
not own any secret information and can collude with the sign-
ers. As a matter of fact, this can be achieved via the revocation
mechanism based on the binary tree data structure proposed in
[8], where the AA issues a long-term public signing key to the

TABLE I
COMPARISON OF PERFORMANCES AMONG THE PROPOSED SA-ABSR

SCHEME, OABS SCHEME, AND THEIR UNDERLYING ABS SCHEME

Size of Sign Verify Revoke SAV
Signature Secure

ABS [16] 3 (6d + 4)E (2d + 1)E NA NA
+3P

OABS [10] 3 (2d + 2)E 2E NA ×
SA-ABSR 3 (2d + 2)E 4E

√ √

server for each signer and publicly broadcasts key updates at the
beginning of each time period. The server keeps a list of public
signing keys for all signers, but the server can only generate
partial signing keys for nonrevoked signers from their corre-
sponding long-term public signing keys and the key updates.
Please refer to [8] for the details.

C. Security

Theorem 1: The proposed SA-ABSR scheme is secure under
the l-DHE assumption.

Proof: At a high level, to prove the security of the pro-
posed SA-ABSR scheme, we need to prove that it is selectively
unforgeable and anonymous. We sketch the proof in terms of
unforgeability and anonymity, respectively, as follows.

Unforgeability: Assume that there exists a forger Algorithm
F that breaks the selective unforgeability of the proposed SA-
ABSR scheme. Then, we can build a challenger Algorithm B
that solves the l-DHE problem.

1) Init: Algorithm F selects a claim-predicate Γ∗k ∗,S ∗ under
which it aims to output a signature.

2) Setup: The same as the “Setup” phase in [16].
3) Phase 1: Algorithm F adaptively issues the following

queries.
a) Partial-signing-key oracle: For a partial-signing-key

generation query on an identity id with an attribute set
A from Algorithm F , Algorithm B checks whether
there exists a tuple (id, A, tkid,A , skid,A) in the
list L. If so, it returns the partial-signing-key tkid,A .
Otherwise, it randomly chooses βid ∈ Zp , and gen-
erates the partial-signing-key tkid,A = ({Pw , Pw,0,
{Pw,i}i∈[1,l−1]}w∈A∪Ω) as required.

b) Signing-key oracle: For a signing-key generation
query on an identity id with an attribute set A from
Algorithm F , Algorithm B checks whether there
exists a tuple (id, A, tkid,A , skid,A) in the list
L. If so, it returns the signing key skid,A . Other-
wise, it randomly chooses βid ∈ Zp , and follows the
“private key queries” in [16] except that α will be
replaced by α− βid . Thus, Algorithm B generates
a well-formed signing key skid,A = ({Qw , Qw,0,
{Qw,i}i∈[1,l−1]}w∈A∪Ω).

c) Sign oracle: The same as the “signing queries” phase
in [16].

d) UVerify oracle: For each user verification query on a
signature σ for a message m under a claim-predicate

3730 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2018

TABLE II
COMPARISON OF PERFORMANCES BETWEEN THE ABSAV SCHEME AND ITS UNDERLYING ABS SCHEME

Size of Signature Sign Verify Revoke SAV Secure

ABS [2] n + d − k + 3 2(n − k + 2d)E (n + d − k + 2)P NA NA
ABSAV [9] n + d − k + 3 2(n − k + 2d)E 2(n + d − k + 1)E + 2P NA

√

Γk,S issued by Algorithm A, Algorithm B runs the
transform Algorithm to generate and send a trans-
formed signature σ̃ to Algorithm F . After receiv-
ing the intermediate signature B from Algorithm F ,
Algorithm B returns the result of the UVerify algo-
rithm to Algorithm F .

4) Output: The same as the “Forgery” phase in [16].
Similar to the analysis in [16], if Algorithm F has nonnegli-

gible probability in forging a valid signature, then Algorithm B
has nonnegligible probability in solving the l-DHE problem.

Anonymity: Assume that σ is produced by using a partial
signing key and a signing key corresponding to an attribute
set A satisfying A ∩ S ≥ k. It is obvious that σ1 and σ2 are
independent of the choice of A. In addition, according to the
definition of bi , 1 ≤ i ≤ l, these values also do not depend on
the choice of A, so σ0 reveals no information about A. That is,
(σ0, σ1, σ2) has a uniform distribution over G×G×G. Since
the proof of anonymity is similar to that in [16], we omit the
details here. �

D. Performance Evaluation and Implementation

Denote d as the predefined size of the default attribute set
and Γk,S as the claim predicate with n being the size of S. Let
“E” be exponentiation calculation, “P” be pairing calculation,
“NA” be nonapplicable and “SAV secure” be server-aided veri-
fication secure. Considering building upon the same underlying
ABS scheme, we compare the performance of the proposed
SA-ABSR scheme with the secure outsourced ABS (OABS)
scheme described in [10], and show their computational and
storage overheads in Table I. Also, we compare the ABSAV
scheme presented in [9] and its underlying ABS scheme [2] in
Table II. It is straightforward to see that the proposed SA-ABSR
scheme has an advantage over the existing solutions in that it
reduces the workloads of both signing and verification phases
yet supports the revocation function.

We implement the proposed SA-ABSR scheme and the un-
derlying ABS scheme in the Charm [26]1 framework, which is
developed to facilitate rapid implementation of cryptographic
schemes and protocols. Since all the Charm routines are de-
signed under the asymmetric groups, we transform the two con-
structions to the asymmetric setting before the implementation.
That is, three groups G, Ĝ, and G1 are used and the pairing ê is a
function from G× Ĝ to G1. Note that it has been stated in [27]
that the assumptions and the security proofs can be converted to
the asymmetric setting in a generic transformation.

We use the Charm-0.43 version and the Python 3.4 in the
implementation. Along with the Charm-0.43, the PBC library

1For the explicit information on the Charm framework, please refer to [26].

Fig. 2. Average computation time of the proposed SA-ABSR scheme
and its underlying ABS scheme. (a) Setup. (b) Key generation. (c) User
signing. (d) User verifying.

CUI et al.: SERVER-AIDED ATTRIBUTE-BASED SIGNATURE WITH REVOCATION FOR RESOURCE-CONSTRAINED INDUSTRIAL-INTERNET-OF-THINGS 3731

for the underlying cryptographic operations is installed. All ex-
periments are run on a laptop with Intel Core i5-4210U CPU
at 1.70 GHz and 8.00-GB RAM running 64-bit Ubuntu 16.04.
All these experiments are conducted over the elliptic curve:
MNT224, which is an asymmetric Type 3 pairings and provide
a security level of 112-bit.

In the experiments, the size of the default attribute set is set to
be d = 10. In this way, we first test the average computation time
of the setup algorithm in the two schemes see Fig. 2(a)]. In both
schemes, the setup time is immutable to the number of attributes,
which is about 0.21 s. Then, we test the average computation
time of running the key generation algorithms in terms of 10, 20,
30, 40, and 50 attributes in the two schemes see Fig. 2(b)]. As
the key generation algorithm in the proposed SA-ABSR scheme
is required to generate two keys: one for the signer and the other
for the server, the computation time for the KeyGen algorithm in
the SA-SBSR scheme almost doubles that in the original ABS
scheme. Thereafter, we test the average computation time for a
signer in generating a signature under a claim predicate for d =
10 and k = 2, 4, 6, 8, 10 in the two schemes see Fig. 2(c)]. It is
not difficult to see that different from that in the underlying ABS
scheme where the signer’s computational cost in generating a
signature raises linearly to the number of attributes, the signer’s
computational cost in generating a signature in the SA-ABSR
scheme is around 0.03 s, which does not depend on the complex-
ity of the claim-predicate involved. Finally, we test the average
computation time for a verifier in checking the validity of a sig-
nature associated with a claim predicate with d = 10 and k = 2,
4, 6, 8, 10 in the two schemes see Fig. 2(d)]. It is straightforward
to see that the computation time for a verifier in checking the va-
lidity of a signature does not change with the complexity of the
claim predicate associated with the signature in both schemes,
but the computation time for a verifier in checking the validity
of a signature in the proposed SA-ABSR scheme is much less
than that in the original ABS scheme. Nevertheless, the experi-
mental results clearly show that the proposed SA-ABSR scheme
is more efficient than the underlying ABS scheme in terms of
users’ workloads in both signing and verification algorithms.

V. CONCLUSION

An ABS [2], [3] is a promising solution to achieve anony-
mous authentication for many services, because an ABS only
tells that “a signer whose attributes satisfy the claim-predicate
endorses this message” [3] but nothing else. Unfortunately, be-
cause of the involvement of many exponentiation and/or pairing
calculations, an ABS scheme incurs expensive computational
costs in the signature generation and verification stages, which
is undesirable for resource-constrained devices, e.g., a “smart”
phone locates in an IIoT network. A desirable solution to this
problem is to delegate a third party (e.g., a server) to perform
the heavy calculations and leave the signer/verifier with a small
amount of computations, which is known as “server-aided com-
putation” [7]. However, existing solutions on the ABS with
server-aided computation either are not secure or still require the
verifier to perform a number of calculations. On the other hand,
since a user’s status in a system might change over time, user

revocation has been a very challenging problem in the attribute-
based cryptographic systems. With all these concerns in mind,
in this paper, we proposed a notion called SA-ABSR to mitigate
the workloads of signers/verifiers while achieving user revoca-
tion. After defining the security requirements for SA-ABSR, we
presented a concrete construction of SA-ABSR on the basis of a
standard ABS scheme, and proved the security of the proposed
SA-ABSR scheme under the defined security model. Finally,
we simulated the proposed SA-ABSR scheme and its underly-
ing ABS scheme to evaluate the performance, and showed that
the former considerably improves the efficiency of the latter.

REFERENCES

[1] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243, Nov. 2014.

[2] J. Li, M. H. Au, W. Susilo, D. Xie, and K. Ren, “Attribute-based signature
and its applications,” in Proc. 5th ACM Symp. Inf., Comput. Commun.
Security, Beijing, China, Apr. 13–16, 2010, 2010, pp. 60–69.

[3] H. K. Maji, M. Prabhakaran, and M. Rosulek, “Attribute-based signa-
tures,” in Topics in Cryptology—CT-RSA 2011—The Cryptographers’
Track at the RSA Conference 2011, San Francisco, CA, USA, Feb. 14–
18, 2011, Proceedings (Lecture Notes in Computer Science), vol. 6558.
New York, NY, USA: Springer, 2011, pp. 376–392.

[4] H. Cui, G. Wang, R. H. Deng, and B. Qin, “Escrow free attribute-
based signature with self-revealability,” Inf. Sci., vol. 367-268, no. 6,
pp. 660–672, 2016.

[5] S. Even, O. Goldreich, and S. Micali, “On-line/off-line digital schemes,”
in Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, Aug. 20–24, 1989,
Proceedings, (Lecture Notes in Computer Science), vol. 435. New York,
NY, USA: Springer, 1989, pp. 263–275.

[6] A. C. Yao and Y. Zhao, “Online/offline signatures for low-power de-
vices,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 2, pp. 283–294,
Feb. 2013.

[7] W. Wu, Y. Mu, W. Susilo, and X. Huang, “Provably secure server-aided
verification signatures,” Comput. Math. Appl., vol. 61, no. 7, pp. 1705–
1723, 2011.

[8] H. Cui, R. H. Deng, Y. Li, and B. Qin, “Server-aided revocable attribute-
based encryption,” in Computer Security—ESORICS 2016—21st Euro-
pean Symposium on Research in Computer Security, Heraklion, Greece,
Sep. 26–30, 2016, Proceedings, Part II (Lecture Notes in Computer Sci-
ence), vol. 9879. New York, NY, USA: Springer, 2016, pp. 570–587.

[9] Z. Wang, R. Xie, and S. Wang, “Attribute-based server-aided verification
signature,” Appl. Math. Inf. Sci., vol. 8, no. 6, pp. 3183–3190, 2014.

[10] X. Chen, J. Li, X. Huang, J. Li, Y. Xiang, and D. S. Wong, “Secure
outsourced attribute-based signatures,” IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 12, pp. 3285–3294, Dec. 2014.

[11] H. Cui, Y. Mu, and F. Guo, “Server-aided identity-based anonymous broad-
cast encryption,” IJSN, vol. 8, no. 1, pp. 29–39, 2013.

[12] B. Qin, R. H. Deng, Y. Li, and S. Liu, “Server-aided revocable identity-
based encryption,” in Computer Security—ESORICS 2015-20th European
Symposium on Research in Computer Security, Vienna, Austria, Sep. 21–
25, 2015, Proceedings, Part I (Lecture Notes in Computer Science),
vol. 9326. New York, NY, USA: Springer, 2015, pp. 286–304.

[13] S. S. M. Chow, M. H. Au, and W. Susilo, “Server-aided signatures veri-
fication secure against collusion attack,” Inf. Security Tech. Rep., vol. 17,
no. 3, pp. 46–57, 2013.

[14] R. Chen, Y. Mu, G. Yang, F. Guo, X. Huang, X. Wang, and Y. Wang,
“Server-aided public key encryption with keyword search,” IEEE Trans.
Inf. Forensics Security, vol. 11, no. 12, pp. 2833–2842, Dec. 2016.

[15] Z. Liu, H. Yan, and Z. Li, “Server-aided anonymous attribute-based au-
thentication in cloud computing,” Future Gener. Comput. Syst., vol. 52,
pp. 61–66, 2015.

[16] J. Herranz, F. Laguillaumie, B. Libert, and C. Ràfols, “Short attribute-
based signatures for threshold predicates,” in Topics in Cryptology—CT-
RSA 2012—The Cryptographers’ Track at the RSA Conference 2012, San
Francisco, CA, USA, Feb. 27–Mar. 2, 2012, Proceedings (Lecture Notes
in Computer Science), vol. 7178. New York, NY, USA: Springer, 2012,
pp. 51–67.

3732 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2018

[17] T. Okamoto and K. Takashima, “Efficient attribute-based signatures
for non-monotone predicates in the standard model,” in Public Key
Cryptography—PKC 2011—14th International Conference on Practice
and Theory in Public Key Cryptography, Taormina, Italy, Mar. 6–9, 2011,
Proceedings (Lecture Notes in Computer Science), vol. 6571. New York,
NY, USA: Springer, 2011, pp. 35–52.

[18] J. Wei, X. Huang, X. Hu, and W. Liu, “Revocable threshold attribute-
based signature against signing key exposure,” in Information Security
Practice and Experience—11th International Conference, ISPEC 2015,
Beijing, China, May 5–8, 2015, Proceedings (Lecture Notes in Computer
Science), vol. 9065. New York, NY, USA: Springer, 2015, pp. 316–330.

[19] Y. Ren, C. Tang, G. Wang, and D. S. Wong, “Attribute-based signature
schemes with accountability,” Int. J. Inf. Commun. Technol., vol. 7, no. 2/3,
pp. 141–158, 2015.

[20] S. T. Ali and B. B. Amberker, “Attribute-based group signature without
random oracles with attribute anonymity,” Int. J. Inf. Commun. Security,
vol. 6, no. 2, pp. 109–132, 2014.

[21] J. Wei, W. Liu, and X. Hu, “Forward-secure threshold attribute-based
signature scheme,” Comput. J., vol. 58, no. 10, pp. 2492–2506, 2015.

[22] T. Matsumoto, K. Kato, and H. Imai, “Speeding up secret computations
with insecure auxiliary devices,” in Advances in Cryptology—CRYPTO
’88, 8th Annual International Cryptology Conference, Santa Barbara,
California, USA, Aug. 21–25, 1988, Proceedings, (Lecture Notes in
Computer Science), vol. 403. New York, NY, USA: Springer, 1988,
pp. 497–506.

[23] F. Guo, Y. Mu, W. Susilo, and V. Varadharajan, “Server-aided signa-
ture verification for lightweight devices,” Comput. J., vol. 57, no. 4,
pp. 481–493, 2014.

[24] Y. Yang, J. K. Liu, K. Liang, K. R. Choo, and J. Zhou, “Extended proxy-
assisted approach: Achieving revocable fine-grained encryption of cloud
data,” in Computer Security—ESORICS 2015—20th European Sympo-
sium on Research in Computer Security, Vienna, Austria, Sep. 21–25,
2015, Proceedings, Part II (Lecture Notes in Computer Science),
vol. 9327. New York, NY, USA: Springer, 2015, pp. 146–166.

[25] D. Boneh and M. K. Franklin, “Identity-based encryption from the weil
pairing,” SIAM J. Comput., vol. 32, no. 3, pp. 586–615, 2003.

[26] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan, M.
Green, and A. D. Rubin, “Charm: a framework for rapidly prototyping
cryptosystems,” J. Cryptographic Eng., vol. 3, no. 2, pp. 111–128, 2013.

[27] Y. Rouselakis and B. Waters, “Practical constructions and new proof meth-
ods for large universe attribute-based encryption,” in Proc. 2013 ACM
SIGSAC Conf. Comput. Commun. Security, 2013, pp. 463–474.

Hui Cui received the Ph.D. degree from the
School of Computing and Information Tech-
nology, University of Wollongong, Wollongong,
NSW, Australia, in 2015.

She is currently a Research Fellow with
the Royal Melbourne Institute of Technology
University, Melbourne, Australia.

Robert H. Deng (SM’04-F’16) received the
Ph.D. degree in electrical and computer
engineering from the Illinois Institute
of Technology, Chicago, IL, USA, in
1985.

He has been a Professor with the School
of Information Systems, Singapore Manage-
ment University, Singapore, since 2004. His
research interests include data security and
privacy, multimedia security, and network and
system security.

Prof. Deng has served/is serving on the editorial boards of many
international journals in security, such as IEEE TRANSACTIONS ON
INFORMATION FORENSICS AND SECURITY, IEEE TRANSACTIONS ON
DEPENDABLE AND SECURE COMPUTING, the International Journal of
Information Security, and IEEE Security and Privacy Magazine. He is
the Chair of the Steering Committee of the ACM Asia Conference on
Computer and Communications Security.

Joseph K. Liu received the Ph.D. degree in
information engineering from the Chinese Uni-
versity of Hong Kong, Hong Kong, in July 2004,
specializing in cyber security, protocols for se-
curing wireless networks, privacy, authentica-
tion, and provable security.

He is a Senior Lecturer with the Faculty
of Information Technology, Monash University,
Melbourne, Australia. His current research in-
terests include cyber security in the cloud
computing paradigm, smart city, lightweight
security, and privacy enhanced technology.

Xun Yi received the Ph.D. degree in electronic
engineering from Xidian University, Xi’an, China,
in 1995.

He is currently a Professor with the School
of Science, Royal Melbourne Institute of Tech-
nology University, Melbourne, Australia. His re-
search interests include data privacy, cloud
security, cybersecurity, wireless and mobile
security, and applied cryptography. He has
published more than 150 research papers in
international journals, such as IEEE TRANSAC-

TIONS ON KNOWLEDGE AND DATA ENGINEERING, IEEE TRANSACTIONS ON
WIRELESS COMMUNICATION, IEEE TRANSACTIONS ON DEPENDABLE AND SE-
CURE COMPUTING, IEEE TRANSACTIONS ON CIRCUIT AND SYSTEMS, and
conference proceedings.

Prof. Yi has been an Associate Editor for the IEEE TRANSACTIONS ON
DEPENDABLE AND SECURE COMPUTING since 2014.

Yingjiu Li (M’03) received the Ph.D. degree in
information technology from the Center for Se-
cure Information Systems, Department of Infor-
mation and Software Engineering, George Ma-
son University, Fairfax, VA, USA, in 2003.

He is currently an Associate Professor
with the School of Information Systems, Sin-
gapore Management University, Singapore. His
research interests include RFID security and
privacy, mobile and system security, applied
cryptography and cloud security, and data

application security and privacy. He has published more than 130 tech-
nical papers in international conferences and journals, and served in
the program committees for more than 80 international conferences and
workshops.

Prof. Li is a Senior Member of the ACM and a Member of the IEEE
Computer Society.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	8-2018

	Server-aided attribute-based signature with revocation for resource-constrained Industrial-Internet-of-Things devices
	Hui CUI
	Robert H. DENG
	Joseph K. LIU
	Xun YI
	Yingjiu LI
	Citation

	Server-Aided Attribute-Based Signature With Revocation for Resource-Constrained Industrial-Internet-of-Things Devices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

