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Abstract. Oblivious transfer (OT) has been applied widely in privacy-
sensitive systems such as on-line transactions and electronic commerce
to protect users’ private information. Traceability is an interesting fea-
ture of such systems that the privacy of the dishonest users could be
traced by the service provider or a trusted third party (TTP). However,
previous research on OT mainly focused on designing protocols with
unconditional receiver’s privacy. Thus, traditional OT schemes cannot
fulfill the traceability requirements in the aforementioned applications.
In this paper, we address this problem by presenting a novel traceable
oblivious transfer (TOT) without involvement of any TTP. In the new
system, an honest receiver is able to make a fixed number of choices with
perfect receiver privacy. If the receiver misbehaves and tries to request
more than a pre-fixed number of choices, then all his previous choices
could be traced by the sender. We first give the formal definition and
security model of TOT, then propose an efficient TOT scheme, which is
proven secure under the proposed security model.

Keywords: Oblivious transfer - Secret sharing - Privacy - Traceability

1 Introduction

Oblivious Transfer is one of the fundamental cryptographic primitives that has
been used widely in various security applications such as exchange of secrets
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[22,25], contract signing [3,12], secure multiparty computation [24] and Internet
of Things (IoT) [2]. Roughly speaking, an oblivious transfer scheme is an interac-
tive protocol running between a sender with a set of messages {m1, ma, ..., my,}
and a receiver with a set of choices {o1,09,...,0}. After running the protocol,
the receiver learns the intended messages me,, Mgy, ..., My, but cannot learn
anything about m; for ¢ ¢ {01,02,...,0%}. Meanwhile, the receiver’s choices
{01,029, ...,0k} are completely hidden from the sender. The concept of oblivious
transfer was first introduced by Rabin in 1981 [22]. In their original construc-
tion, the sender sends a single bit 0 or 1 to the receiver in such a way that with
1/2 probability the receiver will receive the same bit and with 1/2 probability
that the receiver will receive nothing. At the same time, the sender has no idea
whether the receiver receives the message or not. Since then, oblivious transfer
has attracted a lot of attentions, and a number of work [5,8,10,12,20] have been
done to improve the original OT scheme in different aspects.

Even et al. [12] proposed a 1-out-of-2 OT (OT3}) scheme, in which the sender
obliviously sends a message m;, i € {0,1}, to the receiver. Shortly after that,
Brassard et al. [5] extended the OT [12] to a more general k-out-of-n (OTF)
setting, where the receiver is able to make multiple choices mgy,, Mo, , ..., Mg,
(0: €{1,2,...,n}, 1 <i < k) from a set of n messages {mqy,ma,...,m,} held
by the sender, meanwhile the receiver’s choices remain oblivious to the sender.
Since then, many subsequent work [10,19] aimed to design more efficient OTX
schemes. Different from normal OTE, another important research direction on
OT is adaptive OT% [20]. In adaptive OTE, the receiver can choose the messages
adaptively, namely, the ith value chosen by the receiver depends on the first 1 —1
values.

In the early OT schemes reviewed above, there is no condition on restricting
the receiver’s ability. Any user in the system can act as a receiver and run the
OT protocol to choose messages held by the sender obliviously. To address this
problem, Coull et al. [11] proposed an OT scheme supporting access control
using state graphs, where for every transaction, the state of the receiver shifts
from one to another. The receiver can access the protected services only if some
of his states are not used. Camenisch et al. [6] proposed another approach to
enforce access control. In their system, the receiver first authenticates himself to
a trusted third party to obtain some credentials. Later, the receiver proves to
the sender that he possesses a valid credential from the third party using zero-
knowledge proof. However, in this construction, the access policy is publicly
known.

To address this problem, Camenisch et al. [7] proposed another oblivi-
ous transfer with access control (AC-OT) in which only the receivers whose
attributes satisfy a predicate can access the services. In order to reduce the com-
putation and communication cost, Han et al. [14] proposed two efficient oblivious
transfer schemes without using zero-knowledge proof. In addition, different form
previous schemes, the receivers could obtain credentials from a trusted third
party but do not have to authenticate themselves. Thus, the communication
and computation cost is lower than previous schemes supporting access control.



Later on, Han et al. [13] proposed accountable oblivious transfer with access
control, such that authorized users are allowed to access sensitive records with
accountable times. They claim that it is the first AC-OT scheme where both the
timely revocation and the prevention of overusing records are addressed simul-
taneously. In particular, if a dishonest user misuse the given credential, then
his public identity will be revealed due to the k-time anonymous authentication
technique [23] is used.

There have been a lot of research works [8,15,21] on defining OT security,
which can be classified into honest-but-curious model, half-simulation model [21],
full-simulation model [6-8] and Universally Composable (UC) model [13,15],
according to whether the OT scheme can provide simulatable security for the
sender and/or receiver. In the honest-but-curious model, all participants in the
protocol are assumed to be honest, which makes this model too idealistic for
practical use. Naor and Pinkas [21] introduced the half-simulation model that
allows malicious senders and receivers. However, in this model, the security of
the sender and receiver are considered separately. Half-simulation model achieves
simulatable security for sender privacy and computationally indistinguishability
for receiver privacy.

In order to capture the selective-failure attacks that may be performed by
the cheating sender, the full simulatability is introduced. In the full-simulation
model [8,15], it achieves simulatable security for both the receiver and sender
together. As for the UC-related model, the security of sender and receiver is
defined by the indistinguishability between a real world and an ideal world as
described in the UC framework [9]. We then compare our proposed TOT with
typical works in Table 1 to highlight our distinction: it shows that our proposed
TOT enjoys traceability' to the receiver’s choice if the user misbehaves, and
secures in the half simulation model under dynamic assumptions. In Table1,
adaptive means that the receiver chooses the k records one after the other.
1 denotes the various security models, which includes the honest but curious
model, the half/full simulation model and the UC model. Dynamic means that
the assumptions are depending on the number of n, such as strong Diffie-Hellman
assumptions [4].

1.1 Our Motivation

All the previous research on OT aimed to design OT schemes with perfect
receiver and sender privacy. In real-world applications [1,16], it is desirable for
the sender to trace the choices of the receiver if they misbehave. Thus, the
previous OT schemes are not suitable in these scenarios. To the best of our
knowledge, there is only one work [18] aiming to construct OT schemes with
traceable receiver’s privacy. However, this OT scheme involves a trusted time

! Note that the traceability means that the previously choices of the cheating receiver
are revealed, which is the major distinction between our proposed TOT and the
construction in [13]. In the table, we use the symbol traceability” to distinguish our
work with that one in [13].



Table 1. A comparative summary for OT protocols.

Function/algorithm | NP [21] | CT [10] | CGS [8] | KN [15] | HSM* [13] | Ours
Adaptive v v v v v v
t-simulation Half Half Full ucC ucC Half
Standard model v X v v v X
Dynamic assumptions | X X v X v v
Access control X X X X v v
Traceability X X X X v X
Traceability™ X X X X X v

server that publishes trapdoors on a time basis. After releasing the trapdoor,
the privacy of all the receivers, including the honest ones, will be lost. The moti-
vation of this work is to propose a new OT with traceable receiver’s privacy
such that the privacy of an honest receiver is protected unconditionally while
all the previous choices of a misbehaving receiver can be revealed by the sender
if the receiver makes more than the pre-determined number of choices in the
OT protocol. It is worth noting that in some real-life applications, the service
provider (i.e., database provider) may not only need to detect the identity of
dishonest users, but also want to reveal their choices that was made previously
in the system. By doing so, the service provider may revoke the operations on
the corresponding sensitive data which was anonymously and obliviously made
by that cheating user.

Our Contribution. In this paper, we present a novel traceable oblivious trans-
fer that allows a sender to trace the dishonest receivers’ choices without the help
of any trusted third party. Our contributions can be summarized as follows:

~ We present the first traceable adaptive OT¥ scheme and analysed its security

under the half-simulation model [21];

The traceable OTE scheme allows the receiver to obtain a fixed number of

messages My, , Mgy, - - - , My, from the message set {my,ma, ..., my} held by

the sender where o; € {1,2,...,n} for 1 < i < k, while receiver’s choice is
hidden from the sender;

— The traceable OTE scheme allows the receiver cannot learn anything on
message m; such that i ¢ {o1,09,...,0,} for 1 < i < n. In particular,
if the receiver makes more than k requests, then all his previous choices
(Mgy, Mgy, - .., Mg, ) could be traced by the sender.

Paper Organization. The rest of the paper is organized as follows. We intro-
duce the formal definition and the security model of TOT in Sect. 2. Some prelim-
inaries are presented in Sect.3 and a concrete scheme TOT scheme is presented
in Sect. 4. We prove its security in Sect.5 and the paper is concluded in Sect. 6.



2 Formal Definition and Security Model

We present the formal definition and security model for TOT in this section.
There are two participants in a TOT system, namely, a sender S and a receiver
R. S possesses a set of messages {my,ma, ..., my,} and R makes a set of choices
{01,02,...,0%} such that o; € {1,2,...,n} for 1 <i < k.

2.1 Definitions of Traceable Oblivious Transfer

A TOT scheme is essentially an interactive protocol consisting of a tuple of PPT
algorithms (Setup, Commitment, Request, Response, Extract, Tracing).

1.

Setup: Taking as input of a security parameter «, the setup algorithm outputs
the system public parameters.

params «— Setup(1™)

KeyGen: Taking as input of the public parameter params, the key generation
algorithm outputs a retrievable key pair? (rpk, rsk) for the receiver and a one-
time key pair for the sender.

(rpk,rsk) — KeyGen(params)
(opk, osk) «— KeyGen(params)

Commitment: Taking as input of the system parameters params, the retriev-
able public key rpk of the receiver, the messages mi, ms, ..., m, and one-
time secret key osk of the sender, the commitment algorithm outputs a set
of ciphertext c¢1,ca,...,cCp.

C1,C2y ..., Cp — Commitment(rpk, my, ma, ..., my, osk, params)

Request: Taking as input of the intended indexes o, the retrievable private
key rsk and params, this algorithms outputs the commitment of the user’s
choice.

Ay — Request(o; rsk; params)

Response: Taking as input of the commitment A, from the receiver, the secret
of the sender, the output of the algorithm is response of the sender.

D, < Response(A,, osk, params)

Ezxtract: Taking as input of the response D, from the sender, the cipertext
co. and the system parameters params, output the message of the receiver’s
choice.

my — Extract(Dgy, ¢y, params)

2 We assume there exists a public key infrastructure (PKI) issuing certificates on the

users’ public keys in our system.



7. Tracing: The Tracing algorithm is performed by the sender, taking as input
of the k + 1 transcripts A, , Ag,, ..., Ay, ,, from a receiver, the retrievable
public key rpk and params, outputs the receiver’s choice o1, 09,...,0%.

01,02,...,0, < Tracing(As,, Aoy, . . ., Agy s TPE; params)

Correctness: We require that for any security parameter x € N, if params «—
ParamGen(1%), (rpk,rsk) — KeyGen(params), (opk,osk) — KeyGen(params),
C1,C2y ..., Cp — Commitment(rpk, my, ma, ..., my,o0sk, params), A, < Request
(o5 rsk,params), D, <+ Response(A,, osk; parmas), then

— The receiver can extract the correct message.
Pr(m, «— Extract(Dgy,rsk,params)) = 1.

— If the receiver makes less than k + 1 requests, then the sender cannot obtain
any information about the receiver’s choice.

Pr(‘L’ « Tracing(As,, Aoy, - - - s Aoy TDk; params|d < k)) = 1.

— If the receiver makes more than k requests, then the sender can trace the
previous choice of the receiver.

Pr(o1,09,...,05 <« Tracing(As,, Aoy, - . ., Aoy ; rpk; params|d > k)) = 1.

2.2 Security Model for Traceable Oblivious Transfer

In this paper, we review the half-simulation model proposed in [21] to evalu-
ate the security of TOT schemes. Besides the sender and receiver’s privacy, we
define a new property named traceability to capture the additional feature of
TOT. In the half-simulation model, the security of the sender and receiver is
considered separately. A secure TOT scheme should meet the following security
requirements:

1. Recewer’s Privacy:
— If R makes less than k+1 requests, then S cannot obtain any information
about R’s choice.
— For any two different choice sets C = {01, 09,...,01} and C' = {0}, 0%,
...,04}, the transcripts A = {A,,, Aqg,,..., Ay, } and A" = {A] A, |
..., Ay} received by S corresponding to M = {m,,,mg,,..., My, } and
M ={m ,m[_,...,m{, } are indistinguishable if the received messages
M = {mg,, Mgy, ...,Mg, } and M" = {m], ,m,,,...,mg, } are identi-
cally distributed.
2. Sender’s Privacy:
— R cannot obtain any information on m;, i ¢ {01,02,...,0%} for 1 <i <n.
— In the half-simulation model, the security of R is defined by the real-

world/ideal-world paradigm. In the real world, R and S execute the



protocol. In the ideal world, the protocol is implemented with the help
a trusted third party (TTP). S sends all the messages mq,ma,...,m,
to the TTP. While R sends his choices {o1,09,...,0} adaptively to
the TTP. If {o1,09,...,0k} € {1,2,...,n} the TTP sends messages
{Ms, Mgy ..., Mg, } to the receiver. A TOT scheme is said to provide
the privacy of the sender if for any receiver R in real world, there exists
an probabilistic polynomial-time (PPT) R’ in the ideal world such that
the output of R and R’ are indistinguishable.
3. Traceability:

Traceability is not a necessary requirement for traditional OT schemes, we

consider traceability as a special property of our TOT schemes. If a dishonest

receiver R makes k + 1 choices {o1,09,...,0k,0k11} from S, suppose A =

{As,,Agys . Agy, Agy . } is the transcript set of the k + 1 choices, then S

is able to trace R’s choices through an efficient PPT algorithm Tracing.

3 Preliminaries

In this section, we introduce some preliminaries that will be used throughout
this paper.

Definition 1. Decisional Diffie-Hellman (DDH) Assumption: Given
a cyclic group G4 of prime order q, the DDH problem states that, given
9,9% 9%, Z € G, for some random a,b € Z, and a random generator g, decide
Z = g®. Define the success probability of a polynomial algorithm A in solving
the DDH problem as:

SuccZ o (k) = [PrlA(Gg, 9,9% 9", 9°") = 1] = Pr[A(Gy, 9,9%, 9", Z) = 1]|

where k = log(q) is the security parameter. The DDH assumption states that for
DDH

any probabilistic polynomial algorithm time A, SuccAqu (k) is negligible in k.
Definition 2. One More Diffie-Hellman (OMDH) Assumption [21]:
Given a cyclic group G, of prime order q and g is a generator of G, let DH(-)
be the Diffie-Hellman oracle that takes X = g%, Y = g¥ € G, for some x,y € Z,
and returns the Diffie-Hellman value Z = g*¥. Let C(+) be a challenge oracle that
takes no input and returns a random element in Gq. Let Y1,Ya,...,Y; denote
the challenges returned by C(-), we say an OMDH adversary A wins if A can
output the sequence of Diffie-Hellman values Z1,Zs, . .., Z; of all DHP instances
with input X,Y;, 1 =1,2,...,t and the number of queries qzn, made by A to the
Diffie-Hellman oracle DH(-) is less than t. Define the success probability of a
polynomial algorithm A in solving the OMDH problem as:

SuccQ P (k) = Pr(Z1, Za, .., Zi — Apn () qan<t(Xs (Y1, Y2, .., Yy = C()))]

the OMDH assumption states that, for any polynomial algorithm A,

Succg%ff](m) is negligible in K.



4 One Construction of Efficient Traceable Oblivious

Transfer Schemes

The proposed scheme consists of a tuple of PPT algorithms as follows.

1.

Setup: Let G, denote a subgroup of Z,, with prime order g and g, hy, ha, ...,
hy,, be generators of G, where p = 2¢ + 1 is also prime. Choose two collision
resistant hash functions H, H; such that H : N — Z;I" and H; : Gy — G,.
The system parameters params = (Gq,p, ¢, g, h1, ho, ..., hn, H, H1).
KeyGen: The receiver R chooses a random number s € Z; and generates
a retrievable key pair (rpk,rsk) = (¢°,s). R chooses k random numbers
S1,82,...,5 €r ZLq and computes S1 = ¢°', S = g2, ..., Sk = g°*. S chooses
a random number z €r Z; and generates a one-time key pair (opk, osk) =
(¢%,2). R publishes rpk and S1,Ss,..., Sk and S publishes opk.
Commitment Phase: S computes the ciphertext of my,mo,...,m, as ¢; =
Hy((rpk - hf{(i))z) -m;, 1 <i<mn, Ssendscq,ca,...,c, to R.
Request: In the i-th round,

— R chooses r; €r Zy, and computes B; = g",Bj = hji and A; =

(g")%(h%i )H(@) | where a; € {1,2,...,n} is the receiver’s choice and
— R sends (B;, B, f(B;), A;) to S, and simultaneously does the following
proof of knowledge. PoK{(H (), s) : A= BsB/™ ) A rpk = g5}

Response: S first verifies B;, the secret share f(B;) and the PoK by check-
ing:

— S checks whether B; appears in previous session.

— gf(B) z rpk - SlBi . Sf? e Sff. If this equation holds,

— 8 verifies PoK{(H (), s) : A; = BB/ A ppk = g}
If either of the verification fails, S aborts; Otherwise, S stores (B;, By, f(B;),
A;) and S generates D; = A? and sends D; to R.

1
Extract: Upon receiving D; from S, R computes K., = D,* and extracts
the intended message mq, = cq, /H1(Ka,).
Tracing: Once R and S execute the OT for k+1 times, S obtains k+1 shares
of the secret. .S is able to recover s from secret sharing. Once s is calculated,
for the previous commitments A; = BfBl’-H((”‘), given B;,Bj for 1 <i<k. S
is able to retrieve o for 1 < i < k.

The proof of knowledge PoK {(H(a;),s) : A; = BB/ ) A rpk = g} can

be implemented as follows:

1.

2.

R randomly chooses two random numbers ¢i,t; € Z,, computes T =
BB Ty = g, ¢ = H(f(B;),Bi, B, T1,Ts), v; = t; — cs and vy =
to — cH(«;). R sends vy, v9,T1,T5 to S.

S accepts if both ASB{* B/ =T} and rpk¢g** = T hold.



5 Security Analysis

Theorem 1. The proposed TOT scheme is correct.
Proof. The correctness of the proposed scheme is shown as follows:

1. Correctness of PoK: If R is honest, then R has knowledge of H(«;) and s,
R computes v1 = t1 — ¢s and vg =ty — cH(«;). S can verify correctly that:

A°BY B = e ghi—es grameHed) _ ptiprts _
’I"pk'cgU1 :gscgt1 cs __ gt1 — T2.
2. Correctness of extracting the message:

Ca; M, H1 (rpk - hH(OéZ))Z) maiHl(gszhé{i(ai)z)
Ma, = — ") -

i Hl(KaL) Hl((griszhgziH(az)Z) 1) Hl(gszhg[i(ai)z)

Theorem 2. The proposed TOT scheme provides receiver’s privacy for honest
receivers.

Proof. We followed the methods described in [17] to analyse the security of
the proposed TOT scheme. Suppose a honest receiver runs the OT protocol
with the sender for k times. The sender could obtain k pairs of transcripts
{(A1,B1,BY), (A2, B, BY), ..., (Ay, By, B})} such that A; = (g™)*(hz)H (e,
Ay = (gm)*(hiz)Hle2) A, = (grk)s(hg‘;)H(o‘k), where aj,a9,...,a; €
{1 .,n} are the user’s choice and 71,72, ..., €r Z;. Given B; = g",rpk =
g° for some random r; € Zy, it is computation-infeasible to decide the masked
value equals ¢"7° or a random value Z in Gy, thus for any two transcripts A;
and A; such that 1 <4 # j < k from the user, they are computationally indis-
tinguishable to the service provider as long as the DDH problem is hard in Gj,.

Theorem 3. The proposed TOT scheme provides sender’s privacy.

Proof. Suppose a honest receiver runs the OT protocol with the sender k
times. For any probabilistic polynomial-time malicious receiver R in the real-
world model, we are able to construct a probabilistic polynomial-time malicious
receiver R* in the ideal model such that the outputs of R and R* are indistin-
guishable.

Briefly, the ideal-world cheating receiver R* can extract a from the proof
of knowledge. This enables him to obtain the message m, form the TT'P. R*
simulates the honest sender S in the real-world and interacts with R as follows:

1. S sends mi,ms, ..., my to the trusted third party TTP.

2. R* sends ¢}, ¢k, ..., ¢ to TTP such that ¢ ep Gqfori=1,2,.

3. R* monitors the outputs Aq,, Aay, . . ., Aa, of R, R* chooses Aal,A;2, ..
A:‘;k €R Gq.



4. After R runs Request protocol, if the verification of PoK fails, R* sends a
value o; ¢ {1,2,...,n} to TTP. R R

5. If the verification of PoK successes, R* extracts R’s choice a; from the PoK
and gets back D} , Dy ,...,D; such that D} = Ag: fori=1,2,...,k.

6. If R can compute K, = gszhi(ai)z, R* sends o to TTP, TTP returns 7%

7. R* outputs (A%, A* GAL DY DY o DE et el k).

g “ragy ap? o1 oo oL ' “n

We can see from Theorem 2 and Claim (see proof below) that {Aa,, Aay, - - -,

Ay} and {c1,¢2,. .., ¢y} are indistinguishable from random elements in G4. In
addition, the sets of {Dgy,, Doy, ..., Dy, } and {D} , D} ,..., D} } are identi-

cally distributed. Therefore, no distinguishers can distinguish the outputs of R
and R’ with a non-negligible probability.

Claim. The proposed encryption scheme is semantic secure.

Proof. The security proof is performed using random oracle. Suppose the sim-
ulator B maintains a table T7 for the hash queries. B obtains n + 1 values
Z,Y1,Y,, ..., Y, from the challenge oracle C(-). B sets the one-time public key of
the sender opk = Z and sends Z,Y7,Ys,...,Y, toa PPT adversary A. Assume A
queries on a message m; for 1 <1i < n—1. B first obtain the diffie-hellman value
of (Z,Y;) with help of DH(-) oracle. Then A checks if DH(Z,Y;) has existed in
Ty. If not, B chooses a new random Z; € G, and stores (DH(Z,Y;), Z;) to Ti.
Otherwise, assume Hy(DH(Z,Y;)) = Z;, B returns ¢; = Z; -m; as the ciphertext
on m;. After n — 1 queries, A sends two challenge messages mg, mj, B chooses
b € {0,1} and a random number Z, € G,. A sets the ciphertext ¢; on m; as
¢; = Zn - my. If A has a non-negligible probability ¢ in distinguishing ¢; than
random guess. Then with an overwhelming probability that DH(Z,Y;,) has been
submitted in the hash queries. Thus B breaks the OMDH assumption, we reach
a contradiction. Therefore the proposed encryption scheme is semantic secure.

Theorem 4. The proposed TOT scheme provides traceability to the receiver.

Proof. After running the protocol k + 1 times with the receiver, the sender
obtains k + 1 shares of the retrievable private key s with respect to the unknown
integers s1, So, ..., S such that

f(B)) =s+481B; +sB?...+s.BF 1 <i<k+1.

The corresponding linear equations in a matrix form are as follows:

1 By B} ... Bf s f(B1)
1 BQ B% s B§ « S1 f(Bg)
1 Byy1 B, -+ Bl Sk f(B1)

As we can see the coefficient matrix is a Vandermonde matrix or a non-singular
matrix. The determinant of such a matrix is not equal to zero. Thus the equations
have a unique solution to s, sy, Sa, ..., Sk.



Once the sender obtains the value of the retrievable private key rsk. For
previous commitments on receiver’s choice 4; = BfSkBgH((“) for 1 <4 < k.
Since S has store the values of B; and B in the i-th round. Thus, the sender
could trace the receiver choice «; = j in the i-th round by checking that A; =

kprH (o) _ kprH( .

Brs*B! (a)fos B @ for 1 < j <n.

6 Conclusion

In this paper, we proposed a novel oblivious transfer scheme that can achieve
retrievable receiver’s privacy without the help of a trusted third party. The mis-
behaving receivers’ choices could be traced while the honest receivers’ privacy is
well protected. We proved the security of the scheme under the proposed security
model. We leave the construction of an adaptive traceable OT scheme that is
proven secure under non-dynamic assumptions in the full-simulation model or
UC model as our future work.
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