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Extremal Quantile Treatment Effects*

Yichong Zhang!
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Abstract

This paper establishes an asymptotic theory and inference method for quantile
treatment effect estimators when the quantile index is close or equal to zero. Such
quantile treatment effects are of interest in many economic applications, such as the
effect of maternal smoking on an infant’s adverse birth outcomes. When the quantile
index is close to zero, the sparsity of data jeopardizes conventional asymptotic theory
and bootstrap inference. When the quantile index is zero, there are no existing inference
methods directly applicable in the treatment effect context. This paper establishes
new estimation and inference theory for cases close or equal to zero. In addition, finite
sample properties of the new procedures are illustrated through both simulation studies

and empirical applications.
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1 Introduction

Economic theory usually predicts that the sign and magnitude of treatment effects vary
depending on one’s place in the overall distribution of outcomes, a heterogeneity captured
by quantile treatment effects (QTEs). In many economic applications, the populations of
interest are located at the tail of the outcome distribution, such as infants with low birth
weights or students with low scores. Thus researchers encounter not only the usual missing
counterfactual, but also data sparsity because there are not many observations at the tails.
While previous literature has considered the two problems separately, how to cope with both

at the same time while conducting proper statistical inferences remains unanswered.

This paper addresses both issues simultaneously. I establish a new asymptotic theory and
inference method for an estimator of the QTE for low-rank populations. To deal with the
usual missing counterfactual problem, I assume unconfoundedness and rely on the propensity
score to identify QTEs. To address the data sparsity, I model a small quantile index 7 as
a drifting object with sample size n; that is, 7 := 7, — 0 as n — oo. Then, I use the
device of extremal quantiles to derive a new asymptotic approximation for the finite sample

distribution of the QTE estimator when the quantile index 7 is close to zero.

My paper addresses the problem of missing counterfactual and data sparsity jointly. I build
on the previous literature that address only one issue at a time. For the treatment effect
literature addressing the missing counterfactual problem, I adapt the same unconfoundedness
assumption as Bitler, Gelbach, and Hoynes (2006), Chernozhukov, Fernandez-Val, and Melly
(2013), Firpo (2007), and Hirano, Imbens, and Ridder (2003). For further applications of
QTEs, see Card (1996) and DiNardo, Fortin, and Lemieux (1996), for example.

For the extremal quantile literature addressing the data sparsity problem, Chernozhukov
(2005), Chernozhukov and Fernandez-Val (2011), Feigin and Resnick (1994), Knight (2001),
Portnoy and Jureckova (1999), and Smith (1994) assume that the conditional quantile is
linear. In particular, the extremal QTE considered in this paper is closely related to the
linear extremal quantile regression (LEQR) investigated in Chernozhukov (2005) and Cher-
nozhukov and Fernandez-Val (2011), but substantially differs in two aspects. First, the QTE
considered in this paper has a causal interpretation by addressing the problem of missing
counterfactuals, while the causal interpretation for the coefficient in the LEQR relies on the
assumption that the treatment variable is exogenous at the tails. Second, I allow for het-
erogeneous quantile treatment response, while the linear model implies that two individuals,
who are observationally equivalent, will have the same quantile treatment effect. In fact,
since the QTE is an unconditional object, I do not assume the linearity of the conditional

quantiles of the outcome variable given covariates.



The literature on extremal percentiles also addresses the data sparsity problem. See, for
example, Bertail, Haefke, Politis, and White (2004), Bickel and Sakov (2008), and Dekkers
and De Haan (1989). The key difference between these papers and mine is that I include

additional covariates X and use propensity score P(X) to correct the selection bias.

Last, my paper is related to the concept of drifting sequence asymptotics. This concept goes
back to Pitman (1949) using Pitman drift to characterize power functions. Recently, the
concept has been used in the context of weak instruments by, for example, Stock J (2008),
Stock and Yogo (2005), and other various models by Andrews and Cheng (2012), Andrews
and Cheng (2013), Chen, Ponomareva, and Tamer (2014), and Khan and Nekipelov (2013).

I establish the asymptotic properties for extremal QTE estimators when 7,, — 0. I find that
there are two asymptotic distributions of the estimator of 7,-th QTE, depending on how
fast 7,, approaches zero. Following the terminology used in Chernozhukov (2005), I say 7,
is intermediate when 7,, — 0 and 7,,n — oo. In this case, I show that the asymptotic distri-
bution for the proposed estimator of QTE is still Gaussian. Again, following Chernozhukov
(2005), when 7, — 0, 7,n — k, for some k > 0, I say 7, is extreme. In this case, I show that
the asymptotic distribution is non-Gaussian. For completeness, a quantile index is called
regular if it is fixed strictly between zero and one. In this case, Firpo (2007) showed that the
QTE estimator is asymptotically normal. Figure 1 summarizes the evolution of asymptotic
behaviors of the estimator of QTE.

4
AY

I I

l l

I I

Extreme . Intermediate | Regular

. I . I .

Non-Gaussian | Gaussian ! Gaussian
| |

Figure 1: Asymptotic distribution over the quantile index

For inference, when the quantile index is intermediate, I show that the standard bootstrap
confidence interval (CI) for the QTE estimator is consistent. For the extreme-order quantile
case, I first prove that the conventional bootstrap CI does not control size. I then propose
a resampling method that is uniformly consistent over a range of quantile indices. Last, by
considering a linear combination of extreme QTE estimators with carefully chosen weights,
I construct a consistent CI for the 0-th QTE without imposing additional restrictions or

extrapolations.

To choose among different categories of quantile index, I propose a quantile-order-category-
selection procedure similar to the identification-category-selection procedure used in Andrews
and Cheng (2012). The difference here is that I have two thresholds while they only have

one. When the quantile index is smaller than the first threshold, the extreme-order quantile



asymptotic distribution is expected to approximate the finite sample distribution of the
QTE estimator better than the normal approximation. In this case, I suggest using the
new resampling CI developed in this paper to conduct inference. In simulation, I examine
the performance of this threshold in 16 simulation designs with small, moderate, and large
size samples. In all cases, I find that when the criterion is satisfied, the new resampling
CI controls size while the standard bootstrap CI undercovers (that is, over-rejects) by as
much as 18 absolute percentage points. When the quantile index is greater than the second
threshold, I prove that the standard bootstrap CI is consistent. Last, when the quantile index

is in between the first and second threshold, I construct a robust CI which is conservative.

My resampling inference method gives empirical researchers tools to estimate, infer, and
test QTEs for low-rank populations. This method can be used in a number of economics
applications. For instance, when focusing on the population of admitted university students,
the college preparation index of low-rank students reflects the tolerance of low academic
performance in the college’s admission policy. My methods allow researchers to estimate the
college preparation index gap between low-scoring minority and non-minority students while
controlling for family background. This gap measures the magnitude of racial preference in
college’s admission. In another example, the extremely low or lower boundary of babies’ birth
weights represents the severity of adverse birth outcomes, which have been found to result
in large economic costs. See, for example, Abrevaya (2001). My methods allow researchers
to make inferences about the effect of maternal smoking on the lower tail of the distribution

of infant birth weights.

The rest of the paper is organized as follows. Section 2 defines the parameters of interest,
introduces additional notation, and provides relevant background on extreme value theory.
Section 3 considers the asymptotic properties of the estimator for intermediate QTEs while
Section 4 considers the asymptotic properties of the estimator for extreme QTEs. Section 5
establishes the inference theory and provides a step-by-step description of implementation.
Sections 6 and 7 explore the finite sample properties of the new inferences methods through
a simulation study, and applications, respectively. A supplement collects preliminary condi-
tions for a high-level assumption in Section 4, numerical examples, all tables and figures in
the Simulation section, additional simulation results, more detail on the Application section,

and all theoretical proofs.

2 Definition, extreme value theory, and notation

First, I denote the outcomes for treated and control groups as Y; and Y{, respectively. The

treatment status is denoted as D, where D = 1 means treated and D = 0 means untreated.



The econometrician can only observe (Y, X, D) where Y = Y1 D + Yy(1 — D), and X is a
collection of confounders. The propensity score P(D = 1|X = x) is denoted as P(x). The
parameters of interest are the 7-th QTE defined as

q(7) = qu(7) — qo(7)

and the 7-th quantile treatment effect on treated (QTT) defined as

CI|D:1(T) = Q1|D:1(T) - QO|D:1(7'),

in which ¢;(7) and gjjp=1(7) denote the 7-th quantile of random variables Y; and Y;|D =1,

respectively.

Next, I introduce some extreme value theory, which will be used when I characterize the
asymptotic theories in Section 3 and 4. The cumulative distribution function (CDF) F
belongs to the domain of attraction of generalized extreme value distributions if there exist
sequences (i )nen, (Bn)nen and a CDF G indexed by a parameter &, such that, for any
independent draws (Ui, ..., U,) from F'| a,,(min(Uy, ..., U,) — (3,) converges in distribution to
G. Here, F belongs to the domain of attraction of generalized extreme value distributions
with a parameter ¢ called the extreme value (EV) index. Define a(z) := f; F(v)dv/F(z) for
some z > s, in which s; is the lower end point of the support of U. In addition, for two
generic functions fi(-) and fo(-), I write fi(z) ~ fa(2) if

f1(2)
fa(2)

Then based on the value of &, F' has three types of tail:

— 1, as z — s;.

type 1 tails (£ = 0): as z — 8 F(z +wva(z)) ~ F(z)e", Yu € R,
type 2 tails (£ > 0): as z — § = —00 F(vz) ~ v Y8R (2), Yo > 0,
type 3 tails (¢ < 0): as z — § > —00 F(vz) ~ v Y8R (2), Yo > 0.

For example, normal, T, and Beta distributions have type 1, 2, and 3 tails, respectively.

Last, I provide two weak convergence concepts this paper will rely on. U, ~» U indicates
weak convergence as defined by Van der Vaart and Wellner (1996). When U,, and U are k-
dimensional elements, the space of the sample path is R¥ equipped with the Euclidean metric.
When U,, and U are stochastic processes, the space of the sample path will be specified later
in each different context. For this paper, the space is either (*°({v € R : |v| < B}), for some
positive B equipped with the sup norm or the Skorohod space D(|—B, B]), for some positive
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B equipped with the Skorohod metric!.

3 Intermediate quantile treatment effects

Theorems 3.1 and 3.2 establish the asymptotic theory for 7,,-th QTE when 7, is intermediate.
These theorems give the first main theoretical result of the paper: that the asymptotic
distribution of the estimator of an intermediate QTE is still Gaussian. The asymptotic theory
established here can be used to construct a uniform confidence band for both intermediate
and extreme QTE, to estimate the EV index (which is analyzed in detail in Section 3.2), and
to deal with the sample selection problem as in D’Haultfoeuille, Maurel, and Zhang (2015).

3.1 The main result
Recall the setup in Section 2. I further assume:

Assumption 1.

(1) (random sample): {Y;, D;, X} is i.i.d.

(2) (unconfoundedness): (Y1,Yy) 1L D|X.

(3) (common support): Supp(X), the support of X, is compact. For some c >0, ¢ < P(z) <
1—e¢, Vo € Supp(X).

The unconfoundedness assumption states that the potential outcomes are independent of
the treatment status conditional on additional covariates X. Although strong, this assump-
tion has been widely used in both theoretical investigations and empirical studies. See, for
example, Bitler et al. (2006), Chernozhukov et al. (2013), Firpo (2007), Hirano et al. (2003),
Rosenbaum and Rubin (1983). For extremal QTEs, it is natural to first start with this un-
confoundedness condition. When the quantile index is regular, that is, bounded away from 0
and 1, papers such as Abadie, Angrist, and Imbens (2002), Chernozhukov and Hansen (2005),
Chernozhukov and Hansen (2008), and Frolich and Melly (2013) extend the assumption to
allow for endogenous treatment status and rely on an instrumental variable to correct the
selection bias. Similar strategies can be applied here to the extremal quantile case. While
important, I leave the problem of establishing the corresponding asymptotic theory to future

research.

Assumption 2. 7, is intermediate. This is,
(1) 7, = 0 as n — oo.

(2) T,n — 00 as n — 00.

!To differentiate, D is reserved for the binary treatment status and {D; ;}2,, j = 0,1 are the sets of
random variables defined in the limiting objective function in Section 4.



I define ¢(7,), the estimator of the 7,,-th QTE, as ¢(7,,) := ¢1(7) — Go(7») and §;p=1(7), the
estimator of 7,-th QTT, as ¢p=1(7y) := ¢1jp=1(7n) — dojp=1(7»). Under Assumption 1, Firpo
(2007) found that the four quantiles ¢1(7), qo(7), ¢1jp=1(7), and go;p=1(7) for any 7 € (0,1)

are identified based on the following four moment equalities:

B | oo (7 1 20| =0 B | (2555 ) (- 1y <wt) ] =0

and

E[D(r = {Y < qip=1(7)})] =0, E {(11—_0—;&@ (T —1{y < qOD:m)})] =0,

respectively.

Therefore, despite the extremal feature of the quantile index, the natural sample estimator
G1(7,) for the 7,-th quantile of Y; can be computed through an inverse propensity score

weighted quantile regression:

G1(1y) == arg minzl %(Yi —q)(1n — 1{Y; < ¢). (3.1)

qeR

Similarly, ¢o(7,,), an estimator of the 7,,-th quantile of Y, can be computed as

o) = wrgmin 3 1i‘Tﬁ()w — )(ra — 1{Y; < g}). (3.2)

For estimating the QTT, ¢ip=1(7,) and gop=1(7,) can be computed as

n D7,
G1|p=1(7,) := arg min T = Yi—q)(m — 1Y < q}),
p-a() = g min Y- st (V= 4)(r ~ 1Y < 0}

and .
. .~ 1-D; P(X))
Goip=1(7,,) := arg min — ~

€R T w

Following Firpo (2007) and Hirano et al. (2003), P(X), the propensity score, is estimated
by the sieve method of fitting a series logistic model. I denote the logistic CDF by L(a) :=

(Yz - Q)<Tn - ]l{Yz < Q})

exp(a)/(1 +exp(a)). Hp(x) := (rip(z), -+ ,ran(x)) is a h-vector of power series of x. Then
P(z) := L(Hy(x)'7;,) with

n

Ty 1= arg maxz (D;log L(Hy(X;)'7) + (1 — D;)log(1 — L(Hp(X;)'w)))

h
TR i=1



For brevity, the rest of the paper only considers the estimation of ¢;(7,), ¢o(7,), and ¢(7,).
The asymptotic results for ¢ijp=1(7n), dojp=1(7s), and §p=1(7,) can be derived in a similar

manner.

Furthermore, instead of only one quantile index 7,,, I focus on a range of them. That is, k7,
k € [k, ko] for some fixed and known constants k; and kg such that 0 < k1 < k3 < oo. This
is because I will derive a uniform asymptotic theory for the process {(¢1(k7,), Go(k7n)) : k €
[k1, K2]}. For each k,

G(ktn) :== q1(k) — Go(kTy)

where

11 (kT,) := argmin - Y —q)(kr, — 1{Y; <
G1(k7n) g EZl B Xi)< q)( {Yi<aq})

and

" 1-D;
Jo(kT,,) := arg min — (Y, —q)(kr,, — L{Y; < )
Go(kTn) g ;:1 1—P(Xi)( q)( {Yi <q})

The following sufficient regularity conditions are adapted from Assumptions A.1 and A.2 of

Firpo (2007):

Assumption 3.

(1) The density of X is bounded above and bounded away from 0 over its support.

(2) The propensity score P(x) is s-times continuously differentiable with all the derivatives
bounded.

(3) E(k, —1{Y; < q;(kT,)}|x) is t-times continuously differentiable in x with all derivatives
bounded by M, uniformly over (z,k) € Supp(X) X [K1, k2.

(4) The order of the series is h = CN° for some constants C and ¢ such that ¢ < %,

(1—

t
35 M ?) _ . . .
Tan =5 0, “t—— — 0, and nttelr, — 0, where r is the dimension of X.

Assumptions 3(1) and 3(2) are common in the sieve estimation literature. Assumptions 3(3)
and 3(4) are tailored to fit the special case in which the quantile index is intermediate and
the derivative of the quantile varies with the sample size. In fact, the magnitude of M,
depends on the tail behavior of Y; conditional on X. When the density of Y;|X vanishes
on its lower tail, M, decreases to zero. When the density of Y;|X diverges on its lower
tail (such as a beta distribution with the first shape parameter less than 1), M, diverges to
infinity. Last, Assumptions 3(3) and 3(4) can be further relaxed by using the doubly robust
estimation method as illustrated in Firpo and Rothe (2014).

Next, I impose regularity conditions on the tails of Y; and Yj.

Assumption 4. For j =0,1
(1) Y;, Y;|X are continuously distributed with density f;(-) and f;(-|X), respectively.
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(2) f;(-) is monotone at its lower tails.
(3) The CDF of Y; belongs to the domain of attraction of generalized EV distributions with
the BV index &;.

These restrictions are mild. Assumption 4(1) is common in quantile regression literature.
Assumption 4(2) refers to the tail of the distribution, which is satisfied by most well-known
continuous distributions. Assumption 4(3) is a standard condition in extreme value theory

and is satisfied by almost all continuous distributions.

Before stating the first main theoretical result of the paper, I introduce the normalizing
factor \;, (k) for ¢;(k7,):

Njn (k) ==y /%fj(qj(lm'n)) for 7 =0,1 and k € [k, Kal. (3.3)

Recall that for the regular quantile estimation, the convergence rate is /n and the asymptotic
7(1—7)
£3(a;(7))
convergence rate, we obtain a normalizing factor

. By moving the asymptotic standard deviation to the same side of the

variance is

n

P fi(g; (7).

Then letting 7 := 7, — 0, we heuristically obtain the normalizing factor for the intermediate-

order quantile estimators defined in (3.3) with k£ = 1.

Theorem 3.1. If Assumptions 1—} hold, then

(Al,n<k><ql<km = k), Ao () (o) — CIO(an)))

as a two-dimensional stochastic process indexed by k is asymptotically tight under the uni-
form metric. In addition, if there exist functions Hy(ki, k), Ho(k1,k2), and Hyo(ky, ko) on
(k1,k2) € [R1, ko] X [K1, k2] such that, as T, — 0,

%E :P<Y1 < Q1(I;i(n)<£1, kQ)TnMX) _ 1 —Pgéi() P(Y1 < Q1(k’17'n)|X)P(Y1 < Q1(k’27'n)|X):
— Hy(k1, k2),
1 _ [P(Yy < qo(min(ky, ko)1) | X) P(X) |
T_nE _ I P(Y) -1 P(X)P(Yb < qo(k17,)| X)P(Yp < QO<k2Tn)|X>_
— H()(kfl, k2)7

1
and —EP(Yy < qo(k17.)[X)P(Yo < qo(ka7,)|X) — Hio(k1, k2),

Tn



then for k € [ky, Ka),

(Al,n<k)<‘f1(k7n) — q1(k70)); Aon(k)(Go(kTs) — qo(an))> ~ B(k)

where B(k) is a Brownian bridge with covariance kernel

Hl(klakQ) HlO(klak2)

)

| ovER T vEE
H(k17k2> T H1’0<é172k2) HO kiuli?)

VE1ko VEiko

Theorem 3.1 shows that the asymptotic distribution of the intermediate QTE estimator is
still Gaussian, just as when the quantile index is regular. Intuitively, this is because for
Jj = 0,1, §;(7,) can be interpreted as a cutoff for which the number of {Y;;}*, below and
above the cutoff are of the same order of nr, and n(1 — 7,), respectively. When 7, is
intermediate, both orders diverge to infinity, which is the same as the case in which 7 is
regular. Thus the shapes of asymptotic distributions under regular and intermediate-order

quantile indices are the same.

The difference between the regular and intermediate-order quantile asymptotic properties
is that for the intermediate case, nonparametrically estimating the propensity score P(z)
provides no additional information. From the proof of Theorem 3.1, the influence function
for g; is

1 D; E(T;1.,]X:)

Vv poay e e P P

¢i,1,n =

where

Tigm:=1o — {Yi1 < qi(m) }-
In ¢; 15, the second term
E(T; 1. X5)
———— (D, — P(X;
Bl (D, ~ P(X)

represents the information gain and is asymptotically negligible compared to the first term

_Di
P(X;) E,l,n-

I next turn to the asymptotic theory of ¢(7,) := ¢1(7.) — Go(7,). From Theorem 3.1, I
can make two observations: (1) the normalizing factors proposed in Theorem 3.1 are not
feasible, and (2) the tail behaviors of Y7 and Yj, and thus the convergence rates for ¢;(7,,) and
Go(Tn), are not necessarily the same. To address the first point, I follow Chernozhukov (2005)
and build a feasible normalizing factor based on quantile difference with spacing parameter

m > 1. To address the second point, I use the following assumption.

10



Assumption 5.
Q(mt,) — qi(7)

() — () — p € [0, 4+00].

Assumption 5 aims to bridge the normalizing factors of ¢(7,) and Go(7,) by p. When
p = 0, the convergence rate for gy is slower so the estimation error of §;(7,,) is asymptotically
negligible. On the other hand, if p = oo, §o(7,,) is super-consistent compared to ¢;(7,) and
thus can be treated as known. Last, when p € (0,00), the convergence rates for ¢;(7,) and
Go(7,) are the same. For analytical inference, when 7,, is intermediate, p can be estimated

by

Under Assumption 5, I define the feasible normalizing factor for ¢(7,) as

- /i |
max{((jl(m%) — ¢1(7n)), (Go(mmy,) — QO(Tn))}

n T

The next theorem shows that the intermediate QTE estimator is asymptotically normal with

the feasible normalizing factor An.

Theorem 3.2. Let Ci(p,m) := (1_"5;& >_1max‘21,p)f Co(p,m) := (1_2;50)_1%;(%1)2, and

2y := Var(Cy(p, m)¢i,1,n — Col(p. m)qs(),n,i)/Tn‘
If Assumptions 1-5 hold, then

S (@) — q(1)) ~ N(0,1).

Based on Theorem 3.2, I can conduct inference by estimating >, and referring to the standard

normal critical value.

In addition, the next theorem shows that the standard bootstrap inference for the interme-
diate QTE is consistent. Let ¢*(7,,) be the estimator from the bootstrap sample and C™(r,,)
be the a-th quantile of ¢*(7,) — ¢(7,,) conditional on data. The two-sided 1 — a-th bootstrap

2Here 1 adapt the convention that < =0, § = sign(c)oo for any real number ¢, and % = log(m)

0
when & = 0.

11



CI for any a € (0,1) can be written as

(5 = (a(m) = O ) = Gt ).
Theorem 3.3. If Assumptions 1-5 hold, then

lim P(q(r,) € CI*(1,)) =1 — a.

n—oo

Falk (1991) has already proven the validity of bootstrap inference for the intermediate-order
percentiles. For the regression case, Chernozhukov (2000) points out that the bootstrap
inference is valid for linear intermediate-order quantile regressions. Recently, D’'Haultfoeuille
et al. (2015) proves that the bootstrap inference for intermediate-order quantile regression
is valid in sample selection models. Here, I show that the bootstrap inference is also valid

for the intermediate-order QTE estimator.

3.2 Estimation of the extreme value index

In this section, I focus on the estimation of EV indices §; for j = 0,1. A consistent es-
timator of the EV index will be used in Section 5.4 to construct a consistent CI for the
0-th QTE. The result is also of independent interest because it contributes to the statistics
literature on estimating the EV index when the data are missing randomly conditional on
covariates. Previous literature has focused on estimating the EV index for the observable
Y. See Chapter 4 of Resnick (2007) for a textbook treatment on this topic. By contrast,
here the potential outcomes (Y7, Yp) are not fully observed. Theorem 3.4 addresses this is-
sue, proposes estimators of the EV indices for Y; and Y}, and establishes their asymptotic

properties.

The proposed EV index estimator follows the Pickands type as described in Section 4.5 of
Resnick (2007). For some positive integer R, {w,}, is a set of weights which sum to one.
I estimate &;, the EV index of Y, for j = 0,1 by

5:i—wm(@wm%wm>)
’ —1 log(l) qu(mlr_lTn) - (jj(lr_l'rn) ’

in which [ is some positive constant and 7, is intermediate.

The intuition for the estimator is straightforward. If Y; has EV index ¢;, ¢;(7) behaves as
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7% as 7 — 0. Then

behaves as (i) 6 _ ¢
mil)—Si — [7Si

The next theorem establishes the consistency and asymptotic normality of the estimator.
For this purpose, I first extend the definition of the influence function in Theorem 3.1. In

particular, for any positive constant k, write

sl i= ey ()~ (D, — Py
and 1-D, E (T} o0 (k)| X5)
Giom(k) = T%le) ion(k) + 117_0’7;3()(2,) ~(D; = P(X3))
where
Tiin(k) == kr, — 1{Yi1 < q1(kT)}
and

Tion(k) == k7, — 1{Yio < qo(kT,)}, respectively.

Theorem 3.4. Under the assumptions in Theorem 5.1, for j = 0,1,
(1) & == §&.
(2) In addition, if

i (g s (G i) ~9)

(mlr=11,) — q;(I" 7,

_ (wr—we NS (1=m

asn — oo forallr=1,2,--- | R, then, for b, := log(1)E;
J

1 - B 7 T 7 r
o ; (; by <¢j,n,i(ml ) = @il ))) + 0p(1).

Denote 0]2-’” = Var(Zfl b, (g%j’m(ml’") — ng,n,i(lr)>)/7—n7 then

) and Wry1 = wo =0, [

have

V(& — &) = —

VTano; (& — &) ~ N(0,1).

This theorem proves that the Pickands type estimator of the EV index is consistent. Under

13



an additional assumption, its asymptotic normality also holds. The latter result can be used
to test the type of tails of both Y; and Yj.

4 Extreme quantile treatment effects

Section 4.1 establishes asymptotic theory for the 7,,-th QTE when 7, is extreme. It serves as
the foundation for the inference theory built in Sections 5.1 and 5.2. In addition, I will infer
the 0-th QTE by a linear combination of extreme QTEs. Hence the asymptotic theory also
contributes to the inference of 0-th QTE in Section 5.4. Appendix A verifies Assumption 8§,
a high-level assumption for the asymptotic theories of extreme QTE established in Section
4.1. Section 4.2 considers the asymptotic distribution of the extreme QTE estimator with a
feasible normalizing factor. This permits inference through a resampling method proposed

in Section 5.2.

4.1 The main result

First, assume the following,

Assumption 6. 7, is extreme; that is,
(1) 7, — 0 as n — oo,

(2) T,n — k for some positive constant k as n — oc.

Define the estimator ¢(7,,) of the 7,-th QTE ¢(7,,) as:
qA(Tn> = QI(Tn) - qAO(Tn> (41)

where ¢ (7,) and §o(7,) are computed from (3.1) and (3.2), respectively.

In fact, I use the same objective functions as those used to compute the regular and inter-
mediate QTE. On the practical side, this implies that researchers can compute them in a
unified manner without pre-specifying a category for the quantile index. On the theoretical
side, I will show that the asymptotic behavior of ¢;(7,) is no longer normal compared to the
ones with intermediate and regular quantile indices. This is because the number of obser-
vations below ¢;(7,) are of the same order of magnitude of 7,,n, which does not diverge to
infinity (Assumption 6). Furthermore, from this assumption, I only need consistency of the

propensity score estimator P(z).

~

Assumption 7. sup,cg,,,x) |[P(r) — P(x)| = 0,(1).
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This assumption does not require that the convergence rate for the nonparametric propensity

/4 as usually assumed. See, e.g. Newey and McFadden

score estimator is faster than n
(1994). The reason is similar to the non-normality of the limiting distribution: there are only
a finite number of observations below the estimator of ¢;(7,), which are thus counted in the

summation of (3.1) and (3.2). This prevents the accumulation of first order approximation
error ]-:’(Xl) — P(X;).

Next, I state a high-level assumption that determines the shape of the asymptotic distribution

of the extreme QTE estimator.

Assumption 8. For j =0,1,

(1) P(X € -|Y; =y), the conditional distribution of X given Y; =y, weakly converges to the
CDF of a random variable X; as y — q;(0). The CDF of X; is denoted as P} (X; € -|Y; =
5(0).

(2) Pj(X; € |Y; = q;(0)) has finite mass points.

(3) Let S be the discontinuity of P(x). Then P (X; € S|Y; = ¢;(0)) = 0.

Assumption 8(1) is high-level. Appendix A provides primitive sufficient conditions for As-
sumption 8(1) to hold. Appendix B contains more numerical illustrations. In general,
P (X; € -|; = ¢;(0)) depends on the structure of conditional boundary of ¥; on X. The
phenomenon that the asymptotic distribution depends on boundary conditions, is common
in nonregular estimations. See, for example, Hirano and Porter (2003), Chernozhukov and
Hong (2004), and Lee and Seo (2008). For Assumption 8(2), the number of mass points
depends on the number of discrete minimizers of the conditional boundary of Y given X
which is usually finite. Also, Assumption 8(2) holds when X; is continuous, in which there

is no mass point.

Theorem 4.1, the main theoretical result of this section, establishes the joint asymptotic
distribution of ¢;(7,,), j = 0,1 by showing that a normalized version of ¢;(7,),j = 0,1 weakly
converges to the minimizer of an asymptotic objective function. I first state the normalized

version of ¢;(7,),7 = 0,1 below.

For j = 0,1, the normalized versions of ¢;(7,) with or without centering are

Z5 (k) o= n(G5(70) — 45(70))

and
Zin(k) == ajn(q;(ma) — q;f — Bin);

respectively. Here, ¢} is an auxiliary constant so that U; = Y; — ¢; has lower endpoint 0

or —oo. In particular, if ¢;(0) > —oo, then ¢; = ¢;(0), otherwise, ¢j is arbitrary. The
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normalizing constants («;,, ;) for j = 0,1 are given by

for type 1 tails (§; = 0): Qjn = 1/(a(Fle(1/n))), Bjn = Fle(l/n),
for type 2 tails (§; > 0): Qjy = —1/(szjl(1/n)), Bin =0,
for type 3 tails (§; < 0): Qjp = 1/(quj1(1/n)), Bin =0,

in which F,; is the CDF of Uj;.

Now I turn to the second part, the asymptotic objective function. The asymptotic objective

function of the local parameter z takes the following form:

— k24 Y W;(Dij, P(X)s(T:5,2), (4.2)
i=1

[y

in which W;(d, P) = % and Wy(d, P) = 1;‘;. To see the meaning of each term in (4.2), I
denote, for j = 0,1,

for type 1 tails (§; = 0): h;(l) = exp(l), for | € R, n;(k) = log(k),
for type 2 tails (& > 0): hi(l) = (—1)"Y% for I < 0, n;(k) = (=k)~%,
for type 3 tails (§; < 0): h(l) = (1)""% for I > 0, n;i(k) =k=%.

Then {&; ;,D; ;, X ;} is ani.i.d. sequence such that {&; 1,D;1, X;1} AL {&i 0, Dio, Xio} and for
j =0,1, & is governed by the law P;"(X; € -|Y; = ¢;(0)). D;; is Bernoulli distributed with
success probability P(&; ;) conditional on X; ; and &; ; is standard exponentially distributed
independently of both (X;;,D; ;). In addition, J;; := hj_l(zli:1 &) and ls(u,v) == 1{u <
viv—u) —1{u < =6}(—9 — u) for an arbitrary § > 0. The same function of ls(u, v) is first
used in Chernozhukov (2005).

Assumption 9. For j = 0,1 and a generic fived constant k > 0,
—kz+ Y Wj(Dij, P(Xi;)ls(Tj, 2)
i=1

has a unique minimizer almost surely.

Assumption 9 indicates that the asymptotic objective function has a unique minimizer which
is necessary for applying the argmin theory. This type of assumption is common in non-
regular estimation literature. See, for example, Chernozhukov and Fernandez-Val (2011),
Chernozhukov and Hong (2004), and Lee and Seo (2008). Lemma E.6 provides a sufficient

condition for this assumption to hold. In general, the assumption holds when & is absolutely
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continuous. If A; has a mass point at o, the sufficient condition requires that kP(x¢) is not
an integer, where P(x) is the propensity score. Since integers are sparse on the real line, I

consider this sufficient condition mild.

Theorem 4.1. If Assumptions 1, 4, 6-8 hold, there exist k1 and ks such that 0 < k1 <
Ky < 00 and (ky, ko) satisfy Assumption 9, then (Zyn(k), Zon(k)) ~ (Z100(k), Zoso(k)) in
D?([k1, ko)), where

(Z1.00(k), Zooo(k)) := argmin Y | —kz; + > Wi(Dij, P(Xij)ls(Tij 2)
i=1

(21,20)€R2 j=0,1

In addition, (Z5 ,(k), Z§ (k) ~ (Z5 o (k), Z§ (k) == (Z1,00(k) — m1(K), Zoeo(k) — mo(k)) in
D?([k1, Ka)-

The immediate corollary of Theorem 4.1 is the finite dimensional convergence. Due to the
lack of continuity of the sample path of (21 o(+), Zoo(+)), the projection mapping is only

continuous when index k is not at the discontinuity.

Corollary 4.1. If the assumptions in Theorem 4.1 hold and Assumption 9 is satisfied for
ke {k},, then

(Zvn(k), Zo (KO ~(Z1,00 (K1), Zooo(Ri))

L 00
= argmin » ) {—klzﬂ + ZWj(Dz‘mP(Xz‘,j))la(%jazj,l)}7

(21,120,121 j=0,1 1=1 i=1

and

(Z5 (k) Zs (RO~ (25 o (k) Z5 oo (Rt = (Z1,00 (k) = M (k) Zooo(2) — 10(R0)) -

First, Theorem 4.1 and Theorem 3.1 (for the intermediate-order quantile), along with Theo-
rem 1 in Firpo (2007) (for the regular quantile), characterizes the evolution of the asymptotic
distribution of the QTE estimator when the quantile index ranges from 0 to 1. Starting
with the regular quantile, the asymptotic distribution is normal. Estimating the unknown
propensity score provides additional information. When the quantile index is intermediate,
the shape of the asymptotic distribution remains normal, but the additional information
from estimating the propensity score becomes asymptotically negligible. When the quantile
index moves even closer to the origin so that it is extreme, the shape of the asymptotic dis-

tribution becomes non-Gaussian, and the information from estimating the propensity score
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is asymptotically negligible. Figure 1 in Section 1 shows the evolution of the asymptotic

distribution over quantile index 7.

Second, I do not impose any parametric restriction on the conditional quantile of Y; given X,
in contrast to Chernozhukov (2005), which considered linear extreme-order quantile regres-
sions. The parameters considered in linear quantile regressions are conditional objects, while
QTEs in this paper are unconditional objects. In order to deal with conditional quantiles,
Chernozhukov (2005) proposed an innovative solution: use the asymptotic independence
between residuals and covariates X at tails in addition to linearity to regulate the condi-
tional tail behavior. On the other hand, in this paper, I only need Assumption 8, which is
weaker than the combination of linearity and asymptotic independence. Appendix A verifies

Assumption 8 under three different conditional boundary conditions.

Third, Theorem 4.1 has shown that ¢;(7,) and ¢o(7,,) are asymptotically independent be-
cause, by construction, {J; 1, Xi1, Di1}is1 L {TJio, Xio, Dio}i>1. Thus the joint asymptotic
distribution of (Go(7,),¢1(7,)) is fully characterized by the marginals. In Appendix B, I

compute the marginal distribution of ¢;(7) under various boundary conditions.

Fourth, directly computing the critical value of the asymptotic distribution of ¢(7,) is in-
feasible. Note that the ultimate parameter of interest is ¢(7,,) := ¢1(7,) — qo(7,). Although
the joint asymptotic distribution of (¢o(7,), ¢1(7,)) has been established by Theorem 4.1, the
convergences depend on the tails of Y} and Y, and are hard to be estimated consistently.
Furthermore, the asymptotic distributions of §o(7,) and ¢, (7,) are complicated and depend
on unknown boundary conditions. In Section 5, I propose to use a b out of n bootstrap with

or without replacement to construct a CI and to draw inferences.

Last, as pointed out in the first remark after Theorem 4.1, the shape of the asymptotic
distribution changes as the quantile index moves from the intermediate region to the extreme
region. So the extreme-order quantile asymptotics proposed in Theorem 4.1 are valid only

if kK = 7,n is not large, i.e., 7, < 7, 1. I will explain 7,,; in Section 5.3.

4.2 Feasible normalizing factor

This section considers the next missing piece needed for the resampling inference method:
the feasible normalizing factor. I propose a feasible normalizing factor that is not a consis-
tent estimator but has the same order of magnitude as the infeasible one and establish the

corresponding asymptotic theory.

The normalizing factor for the 7,,-th QTE estimator when 7, is extreme has not been ob-
vious. First, the estimator of 7,-th QTE is ¢(7,,) := G1(7n) — Go(7). Due to the different

tail behaviors, the normalizing factors for ¢;(7,) and {o(7,) are not necessarily the same.
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In addition, by Theorem 4.1, the normalizing factors for ¢;(7,) and ¢o(7,,) are first-order

statistics that are unknown and hard to estimate.

I propose the following feasible normalizing factor:

Tn1' M
j VAL (4.3)

Ay = )
maX{Ql(an,l/) — 1 (T ), Go(mTpp) — @o(Tn,l/)}

where m is a spacing parameter and 7, ; is a quantile index selected by the researcher. How
to choose 7, » will be discussed later. The feasible normalizing factor uses the smaller of the
two factors for ¢;(7,,) and ¢o(7,,). In addition, the proposed factor has the same order but is
not a consistent estimator of the infeasible order statistic. This is possible by the following

assumption:

Assumption 10.

(1) Toymn — ky.

(2) ky satisfies the condition in Lemma E.7 as well as Assumption 9.
(8) Both Y1 and Yy have type 2 or 3 tails.

Assumption 10(3) is valid in many economic applications. First, type 2 or 3 tails are also
called Pareto-type tails, which are prevalent in economic data such as wealth and incomes, as
argued in Section 2.2 of Chernozhukov and Fernandez-Val (2011). Second, the assumption
holds if and only if the EV index is non-zero, which is testable based on Theorem 3.4. In
practice, it implies that the CDF of the two potential outcomes decay polynomially as 7 — 0.
Last, 10(3) implies that the feasible and infeasible normalizing factors are of the same order

of magnitude. To see this, with n — oo, I have

1 F. ' (3) kS

(@i (mTr) — ¢i(Tar))  @i(mTap) — qi(Tay)  m~& — 1

Theoretically, the choice of 7, in &, does not impact the asymptotic validity of the nor-
malizing factor. However, in finite samples, this choice involves a trade-off between bias and
variance. If nr,; is small, there are fewer observations used for estimating §;(7,,), which
produces a large variance. On the other hand, if n7, ; is large, it can introduce bias in two
ways. First, as the increase of n7, y, the estimation error of the propensity score will accu-
mulate and contaminate the CI. In addition, since I use a b out of n bootstrap method with
subsample size b to construct the CI, if mn7, /b is large, then this quantile index cannot
be interpreted as extreme-order. Both imply that the EV asymptotic theory is not suitable.

To address all the issues aforementioned, the rule of thumb I use to choose the index 7, 1
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(Cl Cgb)

mn

is 7,y = min The simulation study in Appendix C.1 shows that this rule with

(Cy,Cy) = (10,0.1) performs well in finite samples.

Similar to Assumption 5, I have to bridge the two normalizing factors.

mhyy P
Assumption 11. % — p €10, 00].

m
q0(—.5)—q0 (=)
Since p can be 0 and oo, the assumption incorporates the case when one convergence rate

dominates another.

The next theorem characterizes the weak convergence of the extreme QTE estimator with

the feasible normalizing factor.

Theorem 4.2. The assumptions in Theorem 4.1 and Assumptions 10 and 11 hold. Denote

m~& —1

~::k£/o—§1—
PR me )

and  Z (k) = @ (q(mn) — q(70))
for any T,n — k. Then for ky fixed,
Z8(k) ~ 22, (k) in Dk, k2],

in which
VI (Z8 () — 576 (k)
max{zl,mmkl/) o)y B Zo s (1) — Zo,oowl,))}

Z5 (k) =

o0

An immediate corollary from the above theorem is the weak convergence of a linear combi-
nation of Zﬁ(k)’s In Section 5.4, I use the linear combination of extreme QTE estimators
to construct a point estimator and a CI for the 0-th QTE. Proposition 4.2 establishes the
theoretical foundation for this construction. The key here is to choose a proper set of weights
{7} ,. More details can be found in Section 5.4.

Assumption 12. Let {#;}L| be a set of weights that can be random, and

(1) Y7 =1
(2) 7 L foralll=1,---,L and {ri}E, a set of constant real numbers.
(3) Toan — ki where {k;}, satisfies Assumption 9.

Corollary 4.2. The assumptions in Theorem 4.2 and Assumption 12 hold. Then



5 Inference

This section establishes inference theory for extreme QTE estimators that I then apply in
Section 7. Section 5.1 shows that the conventional bootstrap CI does not control size. Section
5.2 establishes a new uniformly consistent CI over a range of quantile indices. Section 5.3
considers a robust confidence interval over different categories of quantile indices. Section
5.4 proposes to infer the 0-th QTE by combining a set of extreme QTE estimators with

carefully chosen weights. Last, Section 5.5 considers the two-sample inference.

5.1 Inconsistency of the standard bootstrap inference method

I first define the bootstrap estimator with proper normalizations:

(Z1 k), Zg () —argmln Z{ Z (Z]l{[l_z}) (D, P(X,)) 70z

(21,22)€R? o3 L =y

+ Z (Z {1, = 2}) §(Di, P(X)ls(0tjn(Uij — qj(())),zj)}

in which Z;n(k) 1= jn(q, () — q;(0)) for ,n — k. ¢}, () is the point estimator com-
puted from (3.1) and (3.2) using the bootstrap sample. Similarly, Z¢}, (k) 1= a;n(q;,,(7,) —
q;(7n)). Here, (1,152, , Iny) is a multinomial vector with parameter n and probabilities
(%,-- ,%) The data is denoted as @, and (1,1, [n2, - 5 Inn) LDy

n?

Theorem 5.1. The Assumptions in Theorem 4.1 hold. Then
(Z1a(R), Z5 0 (R)) ~ (27 oK), Z5 oo (R)),

i which

(Z oo (k), Z5 oo () i= argmin > |=kz; + > Ti;Wi(Dy 5, P(Xi))s( T 5, 25)

(21,20)€R? j—0 3 i=1

and
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Here, {J:j, Dij, Xij}iz1.,j=01 are the same as in Theorem 4.1 and {T; ;}i>1 is a sequence of

1.1.d. Poisson random wvariables with unit mean such that
{Lijtiz15=01{Tij, Dij, Xijjtiz1,j=01

and Fi,IJ-Fz',O .

The asymptotic distribution of the bootstrap estimator of extreme QTE is different from
the original estimator. Compared with the limiting process in Theorem 4.1, there is an
additional Poisson random variable term. Since the asymptotic objective function is not
quadratic, Z7 ., j = 0,1 are not linear in I'; ; which causes the invalidity of the bootstrap

inference. Furthermore, due to the lack of linear expansion of the estimator, Z (k) — Z;n(K)

does not share the same limiting distribution with Z;, (k).

The intuition behind the invalidity of standard bootstrap is similar to the case of order
statistics. When there are no missing counterfactuals or the data are fully missing at ran-
dom, the extreme-order quantile estimator considered in this paper degenerates to an order
statistic. However, Bickel and Freedman (1981) have already shown that the standard n out

of n bootstrap inference is not consistent for order statistics.

5.2 Consistency of the b out of n bootstrap inference

We have just seen that the conventional bootstrap CI is inconsistent. In this section, I
establish the uniform consistency of a b out of n bootstrap CI (BN-CI) both with and
without replacement in which b is the subsample size with b — oo, % — 0. This third
main theoretical result of the paper allows empirical researchers to do uniformly consistent
inferences over a range of extreme-order quantile indices. Section 6 confirms the consistency

of BN-CT as well as the inconsistency of NN-CI through an extensive numerical study.

Let the quantile index for the subsample be 7,. The key insight for the b out of n bootstrap
inference is to align 7,06 with 7,,n. Theorem 4.2 shows that the asymptotic distribution of
the 7,,-th QTE is indexed by k. Letting 7,b = 7,n = k ensures that the subsample estimator

can mimic the same asymptotic distribution of the full sample estimator.

I consider the b out of n bootstrap inference for extreme QTEs both with and without replace-
ment. Not allowing for replacement (subsampling), Bertail et al. (2004) studied the validity of
inference for extreme-order statistics without covariates. Chernozhukov and Fernandez-Val
(2011) considered a similar inference procedure in linear extreme-order quantile regressions.
Allowing for replacement, Bickel and Sakov (2008) considered the b out of n bootstrap in-

ference in extreme-order statistics without covariates. Theorem 5.2 proves the consistency
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of b out of n bootstrap inference both with and without replacement for the extreme QTE.?

Before stating the main theorem of this section, I introduce the resampling version of the

feasible normalizing factor for the subsample:

% AV Tb,l’b

Oéb =

maX{dI(me,l’) — 41 (o), @5 (mm) — @S(Tb,z’)}
where 7, yb = 7, yn, T, satisfies Assumption 10. Then, the normalized estimator is

Zy (k) = (q" (1) — 4(m)).

In the above two equations, ¢*(7) := ¢;(7) — go(7) where ¢;(7) is computed by (3.1) and
(3.2) with 7, replaced by 7 = 7, or 7,7 and using only the data from the subsample, which
is generated either with or without replacement. Without the star symbol, §(7,) := ¢1 () —
Jo(my) where §;(7) is computed by (3.1) and (3.2) with 7, replaced by 7, and using the full

sample.

Theorem 5.2. If the assumptions in Theorem 4.2 hold and as n — oo, % — 0, b — o0 at
a polynomial rate in n, then Z&(k) ~» Z< (k) in D([ky, Ka)).

Theorem 5.2 builds the theoretical foundation for constructing the uniform confidence band
for the extreme QTE over k € [k, ka], in which k1, ke are not at the discontinuity of the
limiting process with probability 1. To construct a uniformly consistent confidence band,
I next want to studentize the process ZAg*(k) When the limiting process is Gaussian, it is
common to studentize the process by the point-wise standard deviation first and then to
approximate the studentized limit. Here, I consider the same studentization in the non-

Gaussian case. Let S,(k) and o(k) be the feasible and infeasible studentizing factors.

Assumption 13. For a (random) scale function S, (k), there exists o(k) > 0, a deterministic

function of k, such that
Sn (k) _
o) 1‘ = 0,(1).

sup
k€[k1,Kk2]

In addition, with probability approaching one, o(k), S,(k) are both continuous in k and

uniformly bounded and bounded away from zero over k € [k, Ka).

S,(k) can be Sy(k) := 1 or S, (k) := k=% + k=% with corresponding o(k) := 1 or o(k) :=
k=% + k=% respectively. In the later case, &;, j = 0,1 are unknown. So I replace them by

their consistent estimators éj, 7 = 0,1. The choice of studentizing factors will not affect the

31 suggest using the b out of n bootstrap with replacement because it performs better in simulation.
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size of the uniform confidence band, but will rather affect its power. Unlike the Gaussian
limit in which using o (k) as the point-wise standard deviation is natural, the best choice for
the studentizing factor in this non-Gaussian case is still an open question and should be the

focus of future research.

Corollary 5.1. Let Cy_, denote the (1 — a)-th quantile of MAXje[iy k] | Ze* (k) /Sy (K)|. If the

assumptions in Theorem 5.2 and Lemma E.7 as well as Assumption 13 hold, then

P (q <§) S [q (g) — 5,(K)Ci—a/tn, (g) + Sn(k:)(f’l_a/ézn} k€ [k, @]> —1-a.

: k k
Let {k;}f, be a fine grid. 7,; = %, Tp = %, Toy = &, and 7,y = =£. The number of
subsamples is B,,, which is as large as computationally possible. Researchers can compute

the uniform confidence band (CB,) based on the following procedure.

1. Compute §(7,,;) and ¢(7m,;) as in (4.1). Compute &, S,(k), and the propensity score

using the full sample.

2. For the i-th subsample, compute ¢*(7,;) for [ =1,---, L as in (4.1). Denote

% \ Tb,l'b

Oéb =

maX{qu(meJ/) — QT(Tb,l’)a qg (me,l’) — (jé(T@y)}

where for j = 0,1, ¢j() is computed as in (3.1) and (3.2), respectively, using the

subsample data and the propensity score estimated in the first step. Denote

Vit = ma 61 1(6" (1) = 0(m0)) /Su(R)]

3. Repeat the above step for i =1,--- | B,,. Compute él_a as the (1 — a)-th quantile of
the {‘Z*b Py

4. CB, = { (5) = Su(0)C1 0/, (£) + Sa(k)Crafdin] < K € [, ]}
Next I consider the b out of n inference for a linear combination of extreme QTEs. By

carefully choosing the weights, in Section 5.4, [ show that the linear combination of extreme
QTE estimators can be utilized to infer the 0-th QTE.
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Let C, be the a—th quantile of Zl L w25, (ky) and C, be the a-th quantile of

L L
@Z <Z'AYIQA*<TI)Z ’?Cj Th,l ) .
=1

Given that Y27 7, Z¢ (k) is continuously distributed,* Proposition 5.1 shows that C, is a

consistent estimator of C,. Denote

L L
Z mq Tnl 00.5/6511 and [ZﬁCj(Tn,l) C'1 a/2/an7z ZQ(Tnl) a/Q/OACn

=1 =1 =1

the median-unbiased estimator and a (1 —a) x 100% CI for ¢(7), respectively.

Proposition 5.1. Under the assumptions in Theorem 5.2 and Assumption 12, I have
L L L
(35;; (Z ’3/1(?*(77,70 - Z’A)/ZQA(TM)> ~ Z'WZ;(]{;Z)7 (5.1)
=1 =1 =1

L L
lim P (Z 714(7n1) = Cos/ém < an(m,ﬂ) = 0.5, (5.2)

=1 =1
and
L L L
lim P (Z P1G(Tn1) = Croajo/n <Y 11q(tns) < A1(Tas) Ca/2/an> 1—a. (5.3)
=1 =1 =1

(5.1) shows the weak convergence of the linear combination of extreme QTE estimators, (5.2)
shows the median-unbiased estimator is asymptotically median-unbiased, and (5.3) implies

that the CI asymptotically controls size.

To implement, let B,, denote the number of subsamples. I use the following steps to compute

~

Cl.
1. Compute {7}, (1), ¢(Tny), and the propensity score estimator P(x) using the full

sample.

2. For the i-th subsample, compute §;,(7,) for [ =1,---, L as in (4.1). Denote

ok \/Torb

max{ﬁi‘(mT o) — @5 (Tor ), @G (mmyr) — G5 ( b,l’)}

4This is shown in Lemma E.7 in the appendix.
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where for j = 0,1, ¢j(7) is computed as in (4.1) for each subsample. Denote

L

Vi = a | DR () — d(m)

=1

3. Repeat the above step for i = 1,---, B,. Compute C\_. as the (1 — a)-th quantile of
{7+ Bn
the { ibJi=1"

When L = 1, I can use this procedure to construct the CI for ¢(7,,) := Gi(7n) — Go(7n), the
estimator of the 7,,-th QTE. The finite sample performance of the CI is examined in Section
6.

5.3 A robust confidence interval

The inference methods for intermediate and extreme QTE estimators are different. This
difference raises the practical issue of how to choose the inference method in a given dataset
with a small but given quantile index. Note that for a € (0, 1), any two-sided (1 — a)-th CI

can be written as

C1 = (@) = C1-g(m), @(r) = () (5.4)

where C,(7,) is some critical value. However, the choice of C,(7,) depends on the order of

Tn-
Ideally, for extreme-order quantile index,

Co(rn) = C" (1) := Ca(70) /Gin

where al (1) is the critical value computed by a b out of n bootstrap procedure for 7,,. For
the intermediate and regular order quantile indices, Cy(7,) = C™(7,) where C"(7,) is the
critical value computed by a standard bootstrap procedure. But in practice, it is impossible
to determine the order of any quantile index because the size of the dataset is finite. The

ideal procedure is not feasible.

Andrews and Cheng (2012) faced a similar problem because the model they considered can be
either weakly, semi-strongly, or strongly identified. What they propose is an identification-
category-selection (ICS) procedure based on the strength of identification. Similarly, I pro-
pose an order-category-selection (OCS) procedure based on the quantile index of interest

and construct a robust CI.
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40 0.2b b

n’ W)7 Tn,2 = n /log(n)

(a) = max(Cly (1), Cip (7)) and - CYF (1) = min(CY" o (72), C1, ja(7a)-

Let 7,1 := min( , and for any a € (0, 1),

cY

a/2

The robust CI is constructed based on a hybrid critical value 55 (1) defined as follows.

5371(7.”) lf Tn S Tn,l

Clr) = CY (1) if 7w € (Tt Tuo)

(1) if 7, > 70
Tn1, i general, takes the form of 7,1 = min(%, %), where C; and C, are two positive con-

stants. If k := 7n is large, the approximation error from estimating the propensity score will
contaminate the asymptotic approximation. This contamination inspires the requirement
that nt < 4. Chernozhukov (2005) and Chernozhukov and Ferndndez-Val (2011) suggest
to use C € [40,80]. To be cautious, I choose C; = 40.

Second, the EV-law asymptotic approximation is only valid in the subsample with subsample

size b if the quantile index used in the subsample, mm, := %k = "= is close to zero. This

inspires the second requirement that
mm, < Ch.

Based on the simulations, the quantile index mm, is small enough if it is less than Cy = 0.2.

Combining these two requirements, I obtain 7, ;.

For n large enough, 7,1 = %. If 7 < 7,1, n7 <40 < oco. For such 7, it is expected that the
extreme-order asymptotic distribution can approximate the finite distribution of the 7-th
QTE estimator better than the standard normal distribution. In this case, the robust CI
equals BN-CI.

On the other hand, if 7 > 7,9,
b

™ > ———— — 00

— /log(n)

because b — oo polynomially in n. For such 7, it is expected that the finite sample distri-
bution of the 7-th QTE estimator is well approximated by the intermediate or regular order
quantile asymptotic distribution. In both cases, the standard bootstrap CI is consistent. In

addition, 7 > 7, o implies that
nr 1

b7 Jostn)

Ty - —



It means that the quantile index 7, used in computing the b out of n CI is not small. Thus
to view 7, in the subsample as close to zero is inappropriate and BN-CI constructed using
7, may not be valid. For both reasons, when 7 > 7,4, I suggest using only the standard

bootstrap critical value.

When 7 € (7,1, Tn2), whether normal or EV approximation works better is not clear. In

this case, the robust CI uses the least favorable critical value which is conservative.

The OCR procedure is different from the ICS procedure used in Andrews and Cheng (2012)
because here I have two thresholds and when the quantile index is less than the first thresh-
old, the asymptotic size is exact, while in Andrews and Cheng (2012), they only have one
threshold and when the strength of identification is less than the threshold, their asymptotic
size is conservative.
Let

., = {{Tn}n>1 :Tp — 0,n7, = k € (0,00), k satisfies Assumption 9},

Lyt = {{Tn}nzl : T — 0,n7, — oo},

and

Tyeq i= {{Tn}nzl T =k € (0, 1)}

denote the collections of extreme, intermediate, and regular order sequences of quantile
indices. The next theorem shows that the robust Cl is indeed robust over I' := I'., UI';;,, UL,

Theorem 5.3. Assumptions 1, 3-5, and 7-8 hold. Subsample size b — oo polynomially in
n and % — 0. The standard bootstrap inference is consistent for reqular quantile indices.
Then, for any a € (0, 1),

inf _lim P (q(ra) € (a(r) = Clg (7a),d(m) = Ch(7)) ) = 1~ .

{Tn}n>1€T n—00

Unlike Andrews and Cheng (2012), in which the parameters and thus the DGPs are drifting,
in my case, the DGP is fixed and the quantile index is drifting. So the above result mainly
focuses on the robustness of CI's over different categories of quantile orders but does not

speak to the uniformity over different DGPs.

5.4 Inference theory for the 0-th QTE

This section constructs a consistent CI for the 0-th QTE when the lower boundaries of Y; and

Yy are bounded. The estimator for the 0-th QTE is a linear combination of extreme-order
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QTE estimators with a set of carefully chosen weights. For inference, the same procedure of

the inference method proposed for the extreme QTE in Section 5.2 can be directly applied.

I use a linear combination of extreme QTE estimators to infer the 0-th QTE so that the
estimation bias cancels out. To see the source of bias, first recall that, when the lower end
point is bounded and Assumption 10 holds, the tail is Type 3. This implies that ¢ = ¢;(0)
and 3, ; = 0. Hence I have

k=% + o(1) B k=% + o(1)
A1 Qo,n ‘

) )

4(70) = (02(0) = 90(0)) = §(7) = q(7a) + (5.5)
I can approximate the critical value of the asymptotic distribution for ¢(7,,) — q(7,) based on
the procedure after Proposition 5.1. The second term on the RHS of (5.5) is the bias caused
by the fact that the parameter of interest is ¢(0), instead of ¢(7,,).

To get rid of this bias, I propose a feasible estimator ¢(0) := S, #G(7,;) in which the

weights {#;}Z, solve the following system of equations:

L

L
y=1, Y Ak =0, ) Ak ® =0 (5.6)
=1

=1

3>

L
=1

Here, (éo, él), the consistent estimators of (£, &), can be computed by Theorem 3.4.

To implement, I compute ¢(0) using only three different values of 7,,, that is, L = 3. The
reason is twofold: (1) I do not have a selection rule for choosing among solutions of weights
that satisfies (5.6) if the solution is not unique, and (2) by fixing the upper and lower bound
Tnoa and 7, 1, the more quantile indices I use, the higher the weights, which will widen the
implied CI.

Proposition 5.2. Let fj be consistent estimates of &; for j = 0,1, L = 3, (71,72,73) be
computed as in (5.6), §(0) := ZZL:1 71G(Tny), and C, be computed as in the procedure after
Proposition 5.1. If the assumptions in Theorem 4.2 hold and ¢;(0) is bounded for j = 0,1,
then

lim P (4(0) = Ci_app/n < 4(0) < §(0) = Cupa/in) =1 - @

n—o0

There are two alternative methods by which to infer the 0-th QTE, each of which has its

own restriction. The first alternative is to analytically compute Zi

— @, the leading
QaQ,n
term of the bias in (5.5). This requires the estimation of the infeasible convergence rate
o . However, computing an estimator &, of a;, such that z]—" — 1 is harder than simply
J,n

estimating the EV index §;. Usually, in order to compute &;,, distributional assumptions,
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such as a;, = C;n% for some constant C;, are imposed. See, for example, the discussion
in Chernozhukov and Ferndandez-Val (2011) on the distributional assumption and Bertail,
Politis, and Romano (1999) on the point of conductin subsampling inference when the con-
vergence rate is unknown. These distributional assumptions are not needed in Proposition
5.2.

The second alternative is to rely on asymptotics to ensure that the bias is asymptotically
negligible and small in the finite sample. To be more specific, combining Theorems 4.1 and

4.2, it is clear that for 7,n — k,
b (G(70) — q(0))

converges weakly to a non-degenerate limiting distribution. I can then approximate the

critical value of the limiting distribution by computing
Zi(k) = &5(q" (1) — 4(7))

for 7,b = 7,n. Comparing Z*(k) with Z&*(k) in (5.2), the only difference is that the subsample
estimator ¢; () is now centered by ¢(7,) := ¢1(7) — ¢o(7n), the full sample QTE estimator
at 7,, instead of (7). The reason is that for the subsample, ¢(7,) and ¢(7,,) can be viewed
as proxies for q(m,) and ¢(0), respectively. Then, after I obtain an estimator of the critical
value of the limiting distribution of Z;(k:) by a similar b out of n bootstrap procedure, I
can construct a median-unbiased estimator and a consistent CI for ¢(0). For this method to
work, I rely on the fact that the bias of using ¢(7,,) as a proxy of ¢(0) vanishes asymptotically.
Since econometricians have no control of the magnitude of the bias in a finite sample, this
method is passive. The properties of the implied CI in finite samples can be sensitive to
both the choice of k& = 7,,n and the subsample size b. Therefore, the passive method is less

robust than the one proposed in Proposition 5.2.

5.5 Two-sample inference

Given two independent samples (1) and (2) with sample sizes n; and ng, the TT(LP—th and
ﬂg)—th QTEs for the two samples are denoted as q(l)(ﬂ(ﬁ)) and ¢® (T,S?), respectively. In
application, researchers are also interested in inferring the difference of the QTE at tails

between two samples. In particular, they are interested in testing q(l)(n(i)) = q@)(r}j )

for T,%)nl = T,Sﬁ)nQ = k. The following procedure constructs the median-unbiased point
i M (Ey 4@ (L

estimator and the CI for ¢'V(;5) — ¢'¥ (7).
1. For the first sample, compute the propensity score, (d(l)(nﬁl)a @(1)(5)) as in (4.1), and

&) as in (4.3).
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2. Let by := L%J For the second sample, compute the propensity score, ((j(z)(n—), G (L),

~(2) .
and 0422) in the same manner. Denote

&, = min(al), a2).

3. For the i-th step, generate subsample 1 with size b; from the first sample and subsample

2 with size by from the second sample. Compute cj(l)*(%) as in (4.1) and

N vk
Gy " =

b1 )
~(1)* ,mk;, ~(1)*  kyy ~(1)* s mk;, ~(D)* Kk
max{qP (k) — " (), g () — g <—b3>}

with some ky specified by researchers, using the data from the first subsample. On
the RHS of the above equation, (jj(.l)*(T) and (j](-l)*<7'), for j = 0,1 are computed as in
(3.1) and (3.2), respectively, with the propensity score computed using the full sample.

Similarly, from the second subsample, compute g}(z)*(%) and
541()2)* = il

Denote

A~k : A * oA * 7 ~ % ~(1)* ~ k ~(2)* k A k
& = mm(al(i) 7%%) ), Vi i=a [(q(l) (a) _ q(l)(b_l)) — (q(2) (E) — q(2)(b—2>>].

4. Repeat the above step for i = 1,--- | B,,. Compute él,a as the (1 — a)-th quantile of

the {Ai:kb ey
5. Construct the (1 — a)-CI as

k ~ k k ~
Cl, = |¢W (=) — P () = Oy _uio/bn, G (—) — GO (=) = C, o /b1 |-
@G = 070 ) = Crage/ 0, 70 ) = G0 ) = Capp

Theorem 5.4. {Y"), DV XMy and {v;?, D®, X2 are two independent samples
by
L — 0,

7”1

which satisfy all the assumptions in Theorem 4.2. Let by := L%J Asny — o0

by — oo at a polynomial rate inny, and there exists constants v € (0,00) and (po, p1, P2, P3, P, P5) €
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[0, 00]%, such that 22 — v,
1

1), mk;, 1)k 1), mk;, 1)/ k;/ 2) sy mkis 2) s ks
/() —a () G e G e —a G
2) , mky 2 k., 0> 1), mk;s 1) ks 1y 2)  mky, 2) ks 25
g5 (M) — gf (A g5 () — gt (A g5 () — g (A
1) ymk; 1),k 1 k; 1)/ ks 1 ks 1),k
DO G ) e G e () e G
2)  mk, 2) ki 39 2)  mk, 2)  k 4 2)  mk, 2) ki, 5
gt () — P (A g5 () — gf) (4 @ () — P (k)
Then
k k ~ k k
lim P(q(l)(—)—q(2)(—) < 0_5/&n) =0.5 and lim P(q(l)(—)—q@)(—) € C]a) =1l-a.
n1—00 n N9 n1—00 ny na

In Section 7, I will rely on the above procedure and the theorem to infer the difference of

racial gaps in college preparation index prior to and following a policy change.

6 Simulations

6.1 Limiting distributions

[ first verify the asymptotic distributions of ¢;(7,) established in Section 4. Figure 6 plots
the quantiles of the normalized sample distribution of ¢;(7,) against the quantiles of its
limiting distribution established in Theorem 4.1 with four different boundary structures:
single minimizer, finite minimizers, continuum minimizers, and mixture minimizers. Since
the plots are all close to the diagonal line, the new asymptotic distributions based established

in Theorem 4.1 approximate the finite sample distributions very well.

Figure 7, on the other hand, plots the exact same quantiles for the estimators against the
quantiles of the standard normal distribution. The plots are all non-linear, which indicates
that the shape of the finite sample distributions is not normal. Any inference method based

asymptotic normality will fail to produce a consistent CI.

6.2 Inference for the extreme QTE

Table 2 and 3 illustrate that the standard bootstrap CI undercovers as much as 18.2 absolute
percentage points while the BN-CI’s coverage is very close to the nominal 95% when 7 is less
than 2% or correspondingly, k := 7n < 40. In addition, the length of the BN-CI is larger but
still comparable to one with the standard bootstrap CI, which ensures the practical value of
BN-CIL.
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Figure 8 shows that when the quantile index is less than the threshold, the BN-CI has
an accurate coverage while the standard bootstrap CI (NN-CI) undercovers substantially.
As the quantile index increases, BN-CI usually overcovers, which means that the BN-CI is
conservative, while the NN-CI still undercovers, but the coverage gradually converges to the
nominal rate. In addition, Figure 9 shows that the BN-CI is insensitive to the choice of

subsample size b over a reasonable range.

6.3 The robust confidence interval

Figure 10 shows the finite sample performance of the robust CI proposed in Section 5.3.
When 7 < 7,1 or 7 > 7,9, the coverage is close to the 95% nominal rate while when
T € (Tn1, Tn2), the CI overcovers and thus is conservative. All sixteen models exhibit this

same pattern. For details, please see Appendix F.3.

6.4 Inference for the 0-th QTE

Table 4 shows that the coverages of BN-CI for the 0-th QTE estimator proposed in Section
5.4 are all close to the nominal rate and median length of the CI’s are reasonable. Figure 11
plots the coverage of BN-CI against the subsample size b for b € [500, 1,000]. It shows that

the coverages for the BN-CI are not sensitive to the choice of subsample size.

7 Empirical applications

7.1 Effect of maternal status on extremely low birth weights

The lower tail of the birth weight distribution reflects severely adverse birth outcomes, which
is the main research interest in health economics. Adverse birth outcomes, particularly low
birth weight, are the leading causes of infant mortality, a main concern of public health
research. In addition, adverse birth outcomes result in large economic costs in not only
direct newborn care costs, but also long-term developmental costs like delayed entry into
kindergarten, repeated grades, and the consequent labor market outcomes. For literature on
maternal smoking and birth weights, see, for example, Abrevaya (2001), Abrevaya (2006),
Abrevaya and Dahl (2008), Chernozhukov and Fernandez-Val (2011), Evans and Lien (2005),
Evans and Ringel (1999), Permutt and Hebel (1989), Rosenzweig and Wolpin (1991), and

the references therein.

Despite the large literature on the effect of maternal smoking on birth weights, there is no

consensus on its magnitude. Various research papers, using different estimation tools and
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data, find that the negative effect of maternal smoking is about 189-600 grams decrease in
birth weight®. See Abrevaya (2006) for a summary. But in order to draw these conclusions,
empirical researchers usually consider small but regular quantile estimates or subsamples
of low-weight infants and refer to the asymptotic normality to draw inferences. The only
exception is Chernozhukov and Ferndndez-Val (2011), who looked at extremely low birth
weight and referred to the EV distribution to draw inferences. Figure 8 of Chernozhukov
and Ferndndez-Val (2011) shows that the extremal quantile regression coefficient of maternal

smoking is close to zero and statistically insignificant.

I estimate the QTE of maternal smoking on extremely low birth weight infants. The QTE is
distinct from the linear regression coefficient of smoking status estimated in Chernozhukov
and Fernandez-Val (2011) in four aspects. First, the extreme QTE is an unconditional
parameter while the regression coefficient is a conditional one. The extreme QTE estimated
here differs empirically from the linear regression coefficient because the conditional quantile
is heterogeneous as shown in Figure 8 and 9 in Chernozhukov and Ferndndez-Val (2011).
To recover the unconditional QTE from a conditional coefficient is also hard because inverse
CDF is a nonlinear operator. Second, I control for covariates in a more flexible way than
the linear regression, which makes the QTE estimator robust to misspecifications. Third,
the paradigm of QTE, given a fixed quantile index 7, still allows for two observationally
equivalent babies to have different treatment responses to maternal smoking, while the QTE
estimated by linear regression relies on the implicit assumption that the treatment effect is
homogeneous. Last, I also estimate the exact 0-th unconditional QTE, which measures the
effect of maternal smoking on the lower boundary of babies birth weight and is new to the

literature.

I use the same dataset as in Chernozhukov and Fernandez-Val (2011). It was collected based
on June 1997 Detailed Natality Data published by the National Center for Health Statistics
and has been previously investigated by Abrevaya (2001) and Koenker and Hallock (2001).
I concentrate on African American mothers only, with 31,912 observations, because Figure 7
of Chernozhukov and Fernandez-Val (2011) shows that low birth weights for black mothers
have a heavy lower tail. Economically, it suggests a severe adverse birth outcome which
is the main target of this analysis. Theoretically, the heavy lower tail of the birth weights
distribution is consistent with Assumption 10(3), which is the key to conducting the b out

of n bootstrap inference for the extreme QTE.

Table 5 reports the median-unbiased point estimates and the CI for the extreme QTE of
maternal smoking. In all quantile indices, I cannot reject that maternal smoking has no

negative impact on either extremal quantile or the lower bound of infants’ birth weights

®The average birth weight for an infant is about 3,400 grams.
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under 90% confidence level. A potential explanation for this result is that the catastrophic
birth outcome may be due to more severe diseases rather than maternal smoking. On the
other hand, the BN-CI is more than two times wider than the standard bootstrap CI. This
indicates that the standard bootstrap CI potentially undercovers which is consistent with
the simulation study. Last, the median-unbiased estimator for the 0-th QTE implies that if
a pregnant mother smokes, with 50% probability, her child’s lowest possible birth weight is
137.32 grams lighter than it would be if she did not smoke.

Although estimating the extreme QTE is one step forward in the direction of causal inference,
the existence of unobserved confounders can jeopardize the selection on observables. For
example, mothers who smoke during pregnancy are more likely to adopt other behaviors
(drinking, poor nutritional intake, etc.) that could have a negative impact on birth weight.
Evans and Lien (2005) and Evans and Ringel (1999) address this problem by using large
cigarette taxation change as an instrumental variable (IV) for maternal smoking. Extending
the current theory to incorporate IV and conduct inference for the extremal QTE for the

compliers would be a useful research direction.

7.2 Effect of minority status on college preparation index

This section considers the effect of minority status on the college preparation index (CPI)
for low-scoring college students with equivalent family backgrounds. Minority status can im-
pact the distributions of CPI directly through universities’ admission policy, and indirectly
through the "backdoor” channel: minority students may live in a less favorable family envi-
ronment with low parental income and education level, which causes minority students to be
less prepared for college than their majority peers. After controlling for family backgrounds,
the CPI gap can be viewed as a measure of affirmative action in colleges’ admission selections
in the dimension of academic performances. See, for example, Arcidiacono, Aucejo, Coate,
and Hotz (2014). Throughout the application, I control for parental income and parental

education as confounders when computing the causal gap of minority status.

I focus on students with low CPI because they are the marginal population who will be
affected by the change of admission selection criteria. If a college’s admission is purely mer-
itocratic, then Proposition 1 of Bhattacharya, Kanaya, and Stevens (2016) shows that the
optimal admission protocol is a simple threshold-crossing form. Given the population of
enrolled students, the threshold can be identified as the lower boundary of the CPI distri-
bution, which is just the zero-th quantile. The gap of zero-th quantile of the distributions of
CPI for minority and majority students can then be viewed as a measure of the magnitude
of racial preference in college admission in the dimension of academic performance, or in

other words, a measure of the deviation of college admission rule from pure meritocracy. See
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Figure 2a for an illustration. Furthermore, Figure 2b shows that it is common to have zero

marginal gap at the tail, but non-zero gap on average.

Distribution of CPI Distribution of CPI

/\ Non-minority ‘
AA; l

T

Non-minority

,

] No A
Minority /\ Minority |
(a) Different lower boundaries (b) Same boundaries, but different averages

In reality, the admission criteria in U.S. is multidimensional. Therefore, no simple threshold
for CPI can be identified from the data. However, based on the intuition built by Bhat-
tacharya et al. (2016), students with low CPI are the marginal population who are more
likely to be affected by the policy change on racial preferences in colleges’ admission se-
lections, and thus is the population of research interest. In addition, Arcidiacono, Aucejo,
and Hotz (2016) pointed out that CPI is related to racial inequality in terms of schooling
achievement, and thus also later economic outcomes. Hence, even without the theoretical
justification above, the racial gap in the tail of the distribution of academic performance
of admitted students provides another measure of affirmative action other than the average

gap, and is of its own interest.

The analysis here focuses on marginal admits which is the same as Bhattacharya et al.
(2016), but is in contrast with many other studies which focus on average pre-admission
test-scores (e.g. Zimdars, Sullivan, and Heath (2009) ) or average post-admission test-scores
(e.g. Keith, Bell, Swanson, and Williams (1985), Kane (1998), and Sackett, Kuncel, Arneson,
Cooper, and Waters (2009)). See Hoxby (2009) for historical perspective on selectivity in

US college admission and Arcidiacono, Lovenheim, and Zhu (2015) for a recent survey.

7.2.1 Pre-Prop 209

The UC campuses were subject to a ban on the use racial preference in admissions enacted
under Proposition 209 (Prop 209) which took effect in 1998. I use the UCOP data for
minority and non-minority students who first enrolled at one of the UC campuses in periods

both pre- and post-Prop 209, to compute the racial CPI gap at tails.®
Table 6 shows that, prior-Prop 209, after controlling for family background, the gaps at

the lower tail are almost all negative and statistically significant, except for students with

6For more details on Prop 209, the data, and the implementation, please see Appendix D.
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science major in UC Santa Cruz and students with non-science major in UC San Diego. It
suggests that prior-Prop 209, almost all UC campuses implemented racial preferences in the
dimension of academic performances during admission. In addition, the gaps at the tail are
larger for higher ranked campuses such as Berkeley and Los Angeles than that for the rest of
the campuses. It suggests that minority students and their majority peers have more similar
levels of college preparation in lower ranked campuses from the start. This provides a partial
explanation for the empirical finding in Arcidiacono et al. (2016) that less-prepared minority

students may have higher graduation probabilities at less-selective schools.

7.2.2 Post-Prop 209

Table 7 shows that the average CPI gaps for all campuses remain significant post-Prop 209.
But this does not necessarily reflect that there still exist racial preference in college admission
post-Prop 209 as argued by Figure 2b. In fact, Table 7 also shows that the tail gaps of CPI
become insignificant for several campuses, which suggests that the racial preference in the
corresponding campuses is insignificant.

Comparing Table 6 and 7, I find heterogeneous responses of UC campuses to Prop 209. The
racial gaps in UC Berkeley and UCLA for students with science major and in UC Berkeley,
UC Santa Cruz, and UC Riverside for students with non-science major remained significant
after Prop 209. For UC Santa Cruz science major, the gap became significant post-Prop 209.
These two results suggest that racial preferences in admission did not decrease post-Prop
209 for several campuses (especially Berkeley and Los Angeles). One possible explanation
is that, post-Prop 209, colleges modified their admission rules to implicitly favor minority
students. This is consistent with the finding in Antonovics and Backes (2014) that some
campuses responded to the ban of the race-based affirmative action by lowering weights on
academic credentials such as SAT scores and increasing weights on family backgrounds in
determining admissions. Because minority students are more likely to have less favorable
family backgrounds, by putting more weights on family background, the admission rule

implicitly favor minority students.

7.2.3 Pre- and post-Prop 209 comparison

The median-unbiased point estimators pre- and post-Prop 209 differ most for admitted stu-
dents majoring science at UC Berkeley and UC San Diego. The difference can be summarized

in Figure 12.

I also test whether the differences of racial gaps pre- and post-Prop for UC Berkeley and UC
San Diego are significant by using the two-sample test established in Section 5.5. Table 8
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shows that, for UC Berkeley, we cannot reject that racial gaps remained the same level prior
and post-Prop 209. In addition, the median-unbiased point estimator for the difference of
racial gap among Berkeley students with science major pre- and post-Prop 209 is positive,
which implies that the racial gap in UC Berkeley may actually increase with more than half
of the probability. Again, these findings support the empirical results in Antonovics and
Backes (2014), which suggest that UC Berkeley might have modified its admission protocol
to maintain the same level of racial preference in the dimension of CPI. For students majoring
science at UC San Diego, by contrast, the CPI gap deceases significantly post-Prop 209. This
provides evidence that UC San Diego modified the college admission rule according to Prop
200.

8 Conclusion

This paper establishes asymptotic theory and inference procedures for an estimator of the
unconditional QTE when the quantile index is close or equal to zero. There are two main
difficulties: missing data and data sparsity. I address them simultaneously by relying on the
unconfoundedness assumption and extremal quantile asymptotics, respectively. When the
quantile index is close or equal to zero, I derive a new asymptotic approximation of the finite
sample estimator of the QTE and show that standard bootstrap inference is inconsistent.
Based on my new asymptotic theory, I propose a new way to construct a uniformly consistent
confidence band for extreme QTEs. Last, by using a linear combination of extreme QTE

estimators, I propose a median-unbiased estimator and consistent CI for the 0-th QTE.

I then apply the new inference method to estimate the effect of maternal smoking of African
American mothers for the lower tail of infants’ birth weights and the racial gap of CPI in
college admissions. For the first application, while I cannot reject that maternal smoking
has no effect on the lower tail of birth weights at the 90% confidence level, I find that the
standard bootstrap CI is two times narrower than the new resampling CI developed in this

paper. The difference suggests that the standard bootstrap CI potentially over-rejects.

For the second application, I find evidence that pre-Prop 209, most UC campuses imple-
mented racial preference in academic performances and post-Prop 209, UC campuses modi-

fied their admission selection criteria in a heterogeneous manner.
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A Asymptotic distribution under various boundary con-
ditions

This section verifies Assumption 8 under three different boundary conditions. I demonstrate that
the asymptotic distribution for the extreme QTE is nonregular and depends on complications in
boundary conditions. More numerical illustrations are in Appendix B. Since the boundary condition
is unknown and is usually hard to estimate, analytical inference is difficult. Instead, in Section 5,

I will focus on resampling based inference, which does not require knowledge of the boundary.

First, I give another representation of the asymptotic objective function established in Theorem
4.1. In fact,

—kz+ Y Wj(Dyj, P(Xi)5(Ji g, 2) = —kz + /E Wi(d, P(x))ls(u;, 2)dN;(uj, d, z),
=1 J

where Nj(u;,d, x) is a Poisson random measure on F; with mean measure p; (PRM(p;)) and

for type 1 tails (§; = 0): Ej = E' = [~00,+00) x {0,1} x Supp(X),
for type 2 tails (§; > 0): Ej = E® = [-00,0) x {0,1} x Supp(X),
for type 3 tails (§; < 0): E; = E* =[0,+00) x {0,1} x Supp(X).

Let F be a basis of relatively compact open sets of R” such that F is closed under finite unions

and intersections’ and for any F € F,
P (X5 € BA(F)|Y = ¢;(0)) =0,

in which Bd(F') is the boundary of the set . Then the mean measure £, which uniquely determines

the distribution of a Poisson random measure, is defined as
1 ((a,b) x {d} x F) := /F (dP(z) + (1 = d)(1 = P(2))) P} (dz|Y; = 4;(0))(h;(0) — hj(a)). (A.1)

Next, I establish the asymptotic distribution of §;(7,) by deriving the close-form expressions for
the mean measure p; under three different boundary conditions: the conditional boundary of Y;
given X having finite minimizers, continuum minimizers, and mixture minimizers. I will restrict my

attention to the marginal distribution of §;(7,,) because of the asymptotic independence between

G1(mn) and Go(7).

“r is the dimension of X.
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A.1 Finite minimizers

When the lower endpoint of Y7 is bounded, I denote w(z) as Y;’s conditional boundary given X = x.
If @ () is uniquely minimized at g, then as Y1 — ¢1(0), X — xg. So I expect P;"(X; € -|Y1 = ¢1(0))
to be 1{zo € -}. This implies that the mean measure y; in the asymptotic distribution of Z; o (k)
defined in (A.1) takes the following form:

11 ((a,b) x {d} x F) = (dP(xo) + (1 — d)(1 — P(x0)))(h1(b) — ha(a))U{ao € F},
for any F' € F in which
F := a basis generated by all open sets in R" containing x(y as an interior point.

Next, I will make the argument rigorous and generalize it to the scenario in which w(x) achieves
its minimum on finite points of the support of X. See Figure 3 for an illustration of this type of

boundary.

The Skorohod representation in Lemma 7.11 of Van der Vaart (2000) provides a measurable map g
on R"x [0, 1] and a random variable & which is uniformly distributed on [0, 1], such that Y7 = g(X,¢),
X 1l . On top of this, I assume:

Assumption 14. The measurable map g is lower semi-continuous.
The conditional boundary obtains a finite set of minimizers; that is,

Assumption 15. w(z) > —oo and is minimized at So = {x:}l_, for some positive integer T <
+00.

Lower boundary of Y; conditional on X

| |
| |
! !
€ T2 X

Figure 3: Finite minimizers

Now I characterize the weak limit Pj‘"(é’(j € -|Y; = ¢;(0)) in Assumption 8 under Assumption 14 and
15. For each y, let Sy be the support of random variable A(X,y) where A(z,y) := Pr(g(z,e) < y).
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For a fixed yo, define Sy, := Uy Sy, + where {Sy, ;} is a partition of Sy, such that for ¢’ # ¢, x4 € Sy,
E1{X€S,,} 20

and d(xy, Syyt) > 0. For y < yo, Syt := Syt NSy and py s := E]l{XeSy}w(a);’” )

Assumption 16. lim, ., )Py, exists and is equal to p;.

If Assumption 15 holds with 7" = 1, Assumption 16 holds with p; = 1 automatically. Given

Assumption 16, the asymptotic objective function becomes

kz+§: “flgzl 2),

271)

in which {&;1 frDi1f, Xin, f} is a sequence of i.i.d. random vectors, &; 1 y is standard exponentially
distributed, independent of (X 1,7, D;1,f), Jin,f := hy (lel &11,f), Dia,r is a Bernoulli distributed
random variable with success probability P(&; 1 ) conditional on Xj; ¢, P(-) is the propensity score,

and X; 1 ¢ is supported by Sy with corresponding point mass probabilities {p;}7_;.

Corollary A.1. If Assumptions 1, 4, 6, 7, and 9-16 hold, then

A Z7 7f
Zl,n k) ~~ ZLOO k) := argmin —kz + 71&5 «71’,1, ) 2)-
(k) =+ Z1.00(F) 1= axgm Z P o is?)

Examples 1 and 2 in Appendix B demonstrate the asymptotic distributions of this type.

A.2 Continuum minimizers

Next, I consider the conditional boundary in a case when it has continuum of minimizers; that is, a
case in which it is flat over X. See Figure 4 for an illustration of the boundary. Recall U; = Y7 —

Then, I have
fF fU1 (y - qﬂ.’B)dF)((x)
J fo(y = af|z)dFx (x)

in which fy, is the conditional density of Uy. If w(z) is flat, I can adapt the independence at infinity
condition assumed in both Chernozhukov (2005) and Chernozhukov and Ferndndez-Val (2011).

PXeFY1=y) =

Assumption 17. w(x) > —oco is flat, i.e. w(x) = ¢1(0) for © € Supp(X) and there exists a
random variable €1 such that

(1) for uw — 0, uniformly over X, Fy, (u|X) ~ Fsl(al?X)) and fu, (u|X) ~ ﬁx)fel(gl?x)
(2) inf, o1(x) > 0,

(8) &1, the EV index of both Uy and e1, is nonzero.
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Figure 4: Continuum of minimizers

I allow the lower endpoint to be —oco. Assumption 17(1) means U; behaves as 01(X )e; at its lower
tail and X 1L e;. Chernozhukov (2005) and Chernozhukov and Fernandez-Val (2011) propose
exactly this independence-at-tail condition. Resnick (1987) Proposition 0.7 shows that

Jon (ul X) ~ 01(1X)f81 (olzLX))

holds point-wise by taking derivatives on both sides of Fy, (u|X) ~ Fgl(ﬁ). Assumption 17(1)

goes one-step further than Resnick (1987) Proposition 0.7, requires that

fon (u[X) ~ 01(1)()'}081 (alzLX)>

holds uniformly. The uniformity is not strong, given that Supp(X) is compact. It can be relaxed to

hold point-wisely with an envelope condition as illustrated in D’Haultfoeuille et al. (2015). Based

on Assumption 17,

sy L y—a\ 1/6 o
oo =il ~ s o ()~ (08 (- )

uniformly over X.

Under the conditional independence at the tail, as y — ¢1(0), I have

Jpoi(@)/dFx ()

P(X e FlY; =vy) — .
M=) = e @ Py (@)

Then, the asymptotic objective function becomes

oo
Z:i l,c
’ + =1 P(le]-,c) 6(‘-77/717072)’
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in which {X; 1 ¢, Di1,¢,Ei1,c} is 1.1.d. sequence of random vectors, &X; ; . is generated from the density

g1 (x)l/deX (1‘)
Jsupp(xy 01(2) s/ dFx (z)’

Dia,c is Bernoulli distributed with success probability P(X;;,.) conditional on Xj1., &1 is a

standard exponentially distributed random variable that is independent of X;; . and D; 1., and

\71’,1,5 = h;1(2§:1 gl,l,c)-

Corollary A.2. If Assumptions 1, 4, 6, 7, 9 and 17 hold,

Zln(k) ~ Z oo(k) 1= arger]gin—kz + Z PlX Z’:’lcc 5(Tit,es 2)-

Example 3 in Appendix B illustrates this type of asymptotic distribution.

A.3 Mixture Minimizers

Last, I combine the above two types of boundary structures and consider the case in which the
minimizers of the conditional boundary is a mixture of discrete points and continuum intervals.
See Figure 5 for an illustration. For two positive integers 7' and R, let w(z) > —oo achieve its
minimum on

x € {1, -, o} U (U S04).

For each y, let S, be the support of random variable A\(X,y) where
Az, y) := Pr(g(z,e) <y).

For fixed g, let

{8 rn {85 13 =1}

be a partition of Sy, such that (1) for all integers r,7’ =1,2,--- ,Rand t,t' =1,2,--- T,

T, € SyO r S0t C Sy
(2) for r # 7/, (xr,Sgor) > 0; (3) for all ¢t and r, d(S§07t,SgO ;) > 0; and (4) for t # t/,
d(Syy 4 Sy, ) > 0. Finally, let

B1{X € 8¢ A%
E1{X € §,} 25

d d d
Sy7 = Syo NSy, Pyr = , S;,t = Séo,t NSy,
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and

. Bu{Xx es; 2y
Pos =
Yt E]I{X c Sy}aAgy(,y
Assumption 18.
(1) d(-,-) is the Fuclidean distance between sets or between points and sets. Then

gﬁl d(wr, Lyt ) VAN rg;élg/l d(S07t, S[)’t/) A rg%,itnST d(l‘r, SO,t) > g

for some positive dg.

(2) As y — q1(0), pgm — pd forr=1,2,--- R and pj,, — pf fort =1,2,---,T.

(8) Let SO denote the -enlargement set {x|d(xz,S) < 0}; there then exists a positive constant &
such that for eacht =1,2,---,T, on (So,t)‘s, there exist e, with EV index & < 0 and oy such that,
uniformly in x € (So,)°,

y—q1(0)
O't($)

fon(y = u(0)|X = z) ~ fal )~ oe(@) Vo fe (y — a1 0)).

1
O’t(lt)

(4) mins<7 inf, o¢(x) > 0.

Figure 5: Mixture of minimizers

Next I define the asymptotic objective function for the mixture boundary case:

kZ—l—Z z,l,m \.77,1m7 )7

1,1,m)

in which {&; 1,m,Di,1,m, Xi1m} is an ii.d. sequence of random vectors, & 1, is standard expo-
nentially distributed, independent of both X; 1 ,, and D; 1m, Ji1m = hfl(Z§:1 E.1m), Diim is
Bernoulli distributed with success probability P(X; 1) conditional on Xj 1, &j1m is supported
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on {x1,--+ ,xr} U (UL,S0+), with its distribution being that, for any Borel set B,

1/§tdFX(x)
P(Xjim € B) =Y 1{z, ¢ B}P* + p/ 72) '
( 1 Z { } ; ! So,:NB fSo,tUt(l‘)l/&dFX(CE)

Corollary A.3. If Assumptions 1, 4, 6, 7, 9, 14 and 18 hold, then

Zl,n(k) ~ Z1,00(k) 1= argmin —kz + Z P(x 2717m Us(Tia,ms 2)-
z€R 2,1 m

Example 4 in Appendix B describes this type of asymptotic distribution.

B Illustrative examples

In this section, I consider four different types of conditional boundaries of Y; given X: single
minimizer, multiple minimizers, continuum minimizers, and mixture minimizers. For each of the
boundary behavior, I compute the limiting objective function based on the theoretical results in
Appendix A. The results derived in this section are further used as the baseline models for the

simulation study.

Example 1 (Single minimizer):
Vi =05+ (X -02)?2+¢e, D=1{n< P(x)}, P(z)=0.25+2%/2,

in which X ~ Uniform[0, 1], ¢ ~ Beta(1,2), n ~ Uniform[0, 1], X, e,n are independent.

In this example, w(z), the conditional boundary of Y, is equal to 0.5 + (X — 0.2)? and has a

unique minimizer at = 0.2. In addition, the EV index for Y is —1/1.5.% Hence by Corollary

A1, sequence (D, &;) is i.i.d, D; is Bernoulli distributed with success probability P(0.2), & 1L D,
(Zz 1 &£)Y/1% in which & is standard exponentially distributed, and

Zy (k) ~ Z1 00(k) = arg min —kz + Z )
z€R

ls(Tis 2).-
Example 2: (Multiple minimizers)

Y1 =05+ (X 0.3 -01)>%*+¢, D=1{n< P(z)}, P(x) =0.25+ 22/2,

in which X ~ Uniform|0, 1], € ~ Beta(1,2), n ~ Uniform[0, 1], X, ¢, n are independent.

In this example, w(x), the conditional boundary of Y, is 0.5 + (|X — 0.3] — 0.1)? and has two
minimizers z; = 0.2 and 22 = 0.4. In addition, S, = [0.2 — y/y —0.5,0.2 + /y — 0.5], Sy =

8In general, the EV index is —1/(a + 0.5) where « is the first parameter of the Beta distribution.
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[0.4 —/y—05,0.4++/y — 0.5], and p; = ps = 1/2. Again, the EV index for Y is —1/1.5.° Hence
by Corollary A.1, sequence (D;, X;, &;) is i.i.d, D; is Bernoulli distributed with success probability
P(X;) conditional on X;, X; is equal to x; = 0.2 or zo = 0.4 with equal probability, & L (X;, D;),
Ji = (Zle E)Y1D where & is standard exponentially distributed, and

. ) D;
Zin(k) ~ Z1o0(k) := arg min —kz + Z B Xi)z(s(z, 2).

Example 3: (Continuum minimizers)
Y1 =05+ (X +0.5), D=1{n< P(z)}, P(z)=0.25+2%/2,

in which X ~ Uniform[0, 1], ¢ ~ Beta(1,2), n ~ Uniform[0, 1], X, e,n are independent.

In this example, w(x), the conditional boundary of YV is flat. It is easy to compute that the EV
index of Y is —1 (—1/a in general where « is the first parameter of the Beta distribution). Hence by
Corollary A.2, sequence (D;, X;, &;) is i.i.d, D; is Bernoulli distributed with success probability P(X;)
conditional on X, X; is continuously distributed over [0, 1] with density = + 0.5.19 & 1L (D, X5),
Ji = 25:1 &; where &; is standard exponentially distributed, and

) D;
Z1n(k) ~ 7y oo(k) = in—k (T 2),
all) = Zroe(8) 1= rgmin k< + 3 5O t(7)

Example 4: (Mixture minimizers)
Y1 =05+ (| X — 0.3 — 0.1)21{X €[0,0.6)} + (1{X > 0.5} — 1{X € [0.7,0.8]}) + (X + 0.5)e,

D =1{n < P(z)}, P(z) = 0.25+ 2?/2,

in which X takes value 0.2 with probability 0.1, 0.4 with probability 0.1 and is uniformly distributed
on [0.5,1]. € ~ Beta(1,2), n ~ Uniform[0, 1], X, e,n are independent.

In this example, w(x), the conditional boundary of Y, is
(X —0.3] —0.1)*1{X € [0,0.6)} + (1{X > 0.5} — 1{X € [0.7,0.8]}).

w(x) achieves its minimum at z7 = 0.2, x9 = 0.4 and = € [0.7,0.8]. It is easy to compute that
p} = 1/3.6, p§ = 1/3.6, p§ = 1.6/3.6. Further more, the EV index for Y is —1.!! Hence by

9In general, the EV index is —1/(a + 0.5) where « is the first parameter of the Beta distribution.
10Tn general, the density is

(L +1)(z+05)1
155+ —0.5a+1
where « is the first parameter of the Beta distribution.
1Tn general, the EV index is —1/a, where « is the first parameter of the Beta distribution.
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Corollary A.3, sequence (D;, &;,&;) is ii.d, D; is Bernoulli distributed with success probability
P(X;) conditional on &;. Aj is a mixture distribution which has mass 1/3.6 at point 0.2, mass 1/3.6
at point 0.4, and is continuously distributed on [0.7,0.8] with density %(x +0.5).12 & 1L (X, Dy),
Ji = Z§:1 &; where &; is standard exponentially distributed, and

. ) D;
Zin(k) ~ Z1o0(k) := arg min —kz + Z B Xi)z(s(z, 2).

C Simulation results

C.1 Details of simulation designs

For all DGPs, the error term ¢; is generated from a Beta distribution with parameter (1,2) and ¢g
is generated from a Beta distribution with parameter (1.5,2). They are independent of each other
as well as covariate X. The treatment status D = 1{U < P(z)} where U is a uniformly distributed
random variable independent of (e1,e9, X) and P(x) is the propensity score that takes the form
of 0.25 + 0.52%. The potential outcomes (Y7,Yy) are generated based on one of the following four
models. For j =0,1,
1. Model (4;):
Yj =a1;+ (X —az;)? +ej,

X is uniformly distributed on [0,1], (a11,a21) = (0.5,0.2), and (a1, a20) = (0.2,0.3),

2. Model (By):
Yy =by;+ (| X — baj| — bs;)* + e,

X is uniformly distributed on [0, 1], (b1,1,b21,b31) = (0.5,0.3,0.1), and (b1,,b20,b30) =
(0.3,0.2,0.15).

3. Model (Cj):
Yj =c15+ (X + c25)ej,

X is uniformly distributed on [0, 1], (¢1,1,¢2,1) = (0.5,0.5), and (c1,0,¢2,0) = (0.3,0.2).
4. Model (Dj):
Yy =dy;+ (X —daj| —ds;)?1{X < 0.6} + (1{X > 0.5} —=1{0.7 < X < 0.8}) + (X +0.5)e;,

X takes values 0.2 or 0.4 with 0.1 probability and is uniform over [0.5,1], (d11,d21,d31) =
(05, 03, 01), and (dLo, d270, d370) == (03, 03, 01)

12In general, the density is
4L +1)(z+0.5)1
9(1.3a+t —1.2a+1)

where « is the first parameter of the Beta distribution.

52



The 16 simulation designs considered in Section 6 can be summarized in the following table where

the first coordinate represents Y7 and the second coordinate represents Yj.

(A1, Ao) (A1, Bo)  (A1,Co) (A1, Do)
(B1,A40) (B1,By) (B1,Co) (B1,Dy)
(C1,Ag) (C1,By) (C1,Cy) (Cy,Dy)
(D1,Ao) (D1,Bo) (D1,Cy) (D1, Dy)

Table 1: Simulation designs used in Section 6.
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To compute the sample estimator, I generate random samples with size 1,000 and repeat both the
estimation and the minimization of the asymptotic objective function 400 times. k := 7,n is set
to 5. The propensity score is estimated in a sieve approach by fitting a series logistic model with

ordinary polynomial basis to the fourth order.
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Figure 7: QQplot against Normal law

C.3 Inference for the extreme QTE

In the simulation, n = 5,000, k is fixed at (5,10, 20,40), and the corresponding quantile indices
are 7, = (0.1%,0.2%,0.4%,0.8%). The subsample size used in Table 2 and Figure 8 is 1,000.

In Table 2, 3, Figure 8, and Figure 9, I consider four simulation designs corresponding to four
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different boundary conditions for both Y; and Yj: (1) single minimizer, (2) multiple minimizers,
(3) continuum minimizers, and (4) mixture minimizers. Table 2 and 3 report the coverages of
BN-CI and NN-CI, respectively. The number in the parentheses is the median length of the CI.
Figure 8 plots the coverages of BN-CI and NN-CI against 7 for 7 € [0.1%, 2%]. Figure 9 plots the
coverage of BN-CI against b for b € [500, 1, 500].

Ta = (1) (2) (3) 4) | 7 = (1) (2) (3) (4)

0.1%, k = 0.2%, k =

5 10

(1) 0941 0936 0041  0.940 || (1) 0.955 0948 095 0.949
(0.027) (0.023) (0.017) (0.022) (0.029) (0.025) (0.019) (0.024)

(2) 0948 0944 0943  0.941 | (2) 0953  0.942 0961  0.949
(0.026) (0.019) (0.012) (0.020) (0.028) (0.021) (0.014) (0.023)

(3) 0957 0948  0.947  0.939 | (3) 0.959  0.957 0966  0.956
(0.025) (0.018) (0.006) (0.012) (0.026) (0.020) (0.007) (0.014)

(4) 0954 0938 0940 0.935 || (4) 0959  0.949 0941  0.950
(0.024) (0.018) (0.014) (0.015) (0.028) (0.021) (0.017) (0.019)

Ta - (1) (2) (3) 4) | ™ = (1) (2) (3) (4)

0.4%, k = 0.8%, k =

20 40

@) 0.968 0962 0949  0.956 || (1) 0979 0974 0977  0.967
(0.030) (0.026) (0.020) (0.027) (0.037) (0.032) (0.026) (0.033)

(2) 0956  0.967 0968 0.953 || (2) 0.969 0968 0965 0.953
(0.029) (0.023) (0.015) (0.027) (0.034) (0.027) (0.020) (0.033)

(3) 0960 0.960 0951  0.947 || (3) 0.963 0966 0.968  0.970
(0.028) (0.022) (0.008) (0.016) (0.031) (0.025) (0.011) (0.021)

(4) 0962 0949 0939  0.945 | (4) 0983 0972 0972 0973
(0.030) (0.022) (0.018) (0.021) (0.041) (0.033) (0.027) (0.031)

Table 2: Coverage of 95% b out of n bootstrap CI, sample size = 5, 000

o4



Ta = (1) (2) (3) 4) || 7 = (1) (2) (3) (4)

0.1%, k = 0.2%, k =

5 10

1) 0835 0842 0829 0.825 || (1) 0.869 0855 0.853  0.86
(0.023) (0.019) (0.014) (0.017) (0.024) (0.020) (0.016) (0.019)

(2) 0830 0.835  0.850  0.790 || (2) 0.861  0.848 0875  0.841
(0.020) (0.016) (0.010) (0.015) (0.021) (0.017) (0.012) (0.017)

(3) 0.768  0.783  0.844  0.775 || (3) 0.828 0824 0873  0.830
(0.018) (0.013) (0.004) (0.009) (0.019) (0.015) (0.005) (0.011)

(4) 0793  0.835 0852 0.819 || (4) 0.846 0865 0.858  0.863
(0.018) (0.014) (0.011) (0.012) (0.020) (0.016) (0.013) (0.014)

Ta = (1) (2) (3) 4) || (1) (2) (3) (4)

0.4%, k = 0.8%, k

20 40

@) 0891 0891 0882 0.891 || (1) 0.903 0919 0890  0.892
(0.025) (0.022) (0.018) (0.021) (0.027) (0.024) (0.020) (0.025)

(2) 0878  0.898  0.906  0.864 || (2) 0.889 0909  0.903  0.877
(0.022) (0.019) (0.014) (0.020) (0.023) (0.020) (0.015) (0.023)

(3) 0871  0.860  0.882  0.865 || (3) 0.879 0881  0.903  0.885
(0.020) (0.016) (0.006) (0.012) (0.020) (0.017) (0.007) (0.015)

(4) 0880  0.879  0.8380  0.904 || (4) 0.899  0.881  0.894  0.912
(0.021) (0.018) (0.015) (0.017) (0.023) (0.021) (0.019) (0.021)

Table 3: Coverage of 95% n out of n bootstrap CI, sample size = 5,000
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Here I only report the results for sample size 5,000. The same simulation designs with sample size
300 and 1,000 can be found in the Appendix F.3. In Appendix F.3, T also show the mean bias
(bias), root mean square error (rMSE), median bias (mbias), and mean absolute error (MAE) of
the median-unbiased point estimator for small, moderate and large sample. The performance of

the median-unbiased point estimator is satisfying in all samples.

C.4 The robust confidence interval
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b=1,000, n = 5,000, and 7 € [0.1%,8%]. The horizontal dotted
dashed line is the 95% nominal coverage rate. 7, 1 = 0.8% and
Tn,2 = 6.85%.

Figure 10: Coverage across quantiles

To produce Figure 10, the full sample size and subsample size are n = 5,000 and b = 1,000,
respectively. Y7 has a single minimizer and Y; has continuum minimizers. The quantile index
T € [0.1%,8%]. For computing 5’3”(7'), when 7 < 2% or equivalently, k& := n < 100, I set the
spacing parameter m = 2 and k] = 10."*> When 7 > 2%, I set m = 1.2 and k; = 20. Here I only
report the simulation results for one model. In fact, all sixteen models exhibit this same pattern.

For details, please see Appendix F.3.

137 is used to compute the normalizing factor d,.
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C.5 Inference for the 0-th QTE

(1) (2) (3) (4)
(1) | 0960 0955 0951 0.948
(0.118) (0.086) (0.058) (0.077)
(2)| 0954 0947 0961  0.951
(0.105) (0.073) (0.042) (0.072)
(3)| 0957 0.952 0.955  0.948
(0.082) (0.056) (0.017) (0.036)
(4)| 0956 0919 0951  0.953
(0.086) (0.053) (0.039) (0.044)

Table 4: Coverage of 95% CI. Sample size is 5,000.

1 1 1 1

0.95F = = = = O.QSVE{: 0.95 prmen— 0.95==

9 9 0.9 0.9
500 1000 500 1000 500 1000 500 1000
1 1 1 1

9 9 0.9
500 1000 500 1000 500 1000
1 1 1

0
00 1000

- g0

095" =C = 005m o= (05m===" 095

0.9 0.9 0.9 0.9
500 1000 500 1000 500 1000 500 1000
1 1 1 1
095 =T (05| = = = = 0.95 = _smo=m= (.95 e
0.9 0.9 — 0.9 0.9
500 1000 500 1000 500 1000 500 1000

The solid line is the coverage for b out of n bootstrap CI at 7 =0 in
which b € [500, 1,000].

Figure 11: Coverage across subsample size

Here again I only focus on n = 5,000. The same simulation with n = 300, 1,000 can be found in
the appendix. All the findings in Section 6 still hold.

There are two issues worth-mentioning when implementing the BN-CI for 0-th QTE. The first issue
is that I use three extreme QTE estimators with & = (5,17.5,30) to compute the linear combination.
The choice of k invokes two concerns. First, the rule of thumb for k¥ = mn is £ < min(40, O'W%).
Second, the space among k’s must not be narrow, otherwise the weights will be large in absolute

value, which will widen the CI.
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The second issue is the estimatation of EV indices. I follow Theorem 3.4 with R = 2, m = 2,
I = 2, and equal weights. The set of quantile indices I use to compute the EV indices are 7,, =
(0.002,0.004,--- ,0.01). Then for j = 0,1, the two EV index estimators used to compute the
weights (91, 42,43) are the median of the estimators computed using each of the quantile indices

for j = 0 and 1, respectively.

The rest of the simulation details are the same as the ones in the previous subsection. The subsample
size for Table 4 is 1,000.

D Data, implementation, and application results

D.1 Effect of maternal status on extremely low birth weights

To fit the notation in the paper, let D be an indicator of maternal smoking. The observed outcome
variable Y is birth weight measured in grams, while Y = DY] + (1 — D)Y; where Y] is the infant’s
potential birth weight when the mother smokes and Yj is the infant’s potential birth weight when
the mother does not smoke. Covariates X are demographic variables which include mother’s age,
mother’s education level'®, an indicator of whether the mother had parental care visit in the first
and second trimester, mother’s marriage status, the infant’s sex, and mother’s weight gain during
pregnancy. The key unconfoundedness assumption in this context means that, maternal smoking

is independent from the potential birth weights conditional on all the demographic variables.

Following the experience collected from Section 6, I set the subsample size to 3,000 and repeat
the b out of n bootstrap with replacement 20,000 times. Also, I nonparametrically estimate the
propensity by fitting a series logistic model with a set of second-order polynomial basis, and the
spacing parameter m is set to 2. When computing the 0-th QTE, I use a linear combination
of extreme-order estimates with & = (5,20,40). A set of estimators of EV index are computed
following Theorem 3.4 with R = 2, [ = 2 and 7, = (0.0005,0.001,0.0015,0.002,0.0025). The final

EV index estimators used are the median of the five estimators for Yy and Y7, respectively.

D.2 Effect of minority status on college preparation index

In 1996, the voters of California approved Prop 209 which stipulates that: “The state shall not
discriminate against, or grant preferential treatment to, any individual or group on the basis of race,
sex, color, ethnicity, or national origin in the operation of public employment, public education,

or public contracting.” The proposition took effect in 1998. I use the same data as in Arcidiacono

14The education level equals 0 if the mother has less than a high school education, 1 if she completed high
school, 2 if she obtained some college education, and 3 if she graduated from college.

5Here I implicitly assume that the sufficient condition for the spacing parameter in Lemma E.7 holds.
In practice, neither the full sample nor any subsample estimation encounters the zero denominator error.
Hence m = 2 behaves well in this data analysis.
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MU point estimates |  90% BN-CI 90% NN-CI

k=0 -137.32 -605.77 193.71

k=5 -0.21 -198.08 87.09 -51.00  97.00
k=10 -5.57 -193.49 121.43 -82.00 84.00
k=15 30.64 -143.51 182.04 -63.00 108.00
k=20 16.12 -144.21 187.52 -72.00 107.00
k=25 -14.81 -179.51 163.69 -115.00 60.00
k=30 -19.11 -171.56 167.01 -139.00 45.00
k=35 10.87 -138.83 189.23 -68.00 114.00
k=40 -12.30 -169.21 153.74 -108.50  85.00

Table 5: Extreme order unconditional QTE of smoking status.

et al. (2016), the University of California Office of the President (UCOP) data for minority and
non-minority students who first enrolled at one of the UC campuses in periods both prior and
post-Prop 209, to compute the racial CPI gap at tails. The pre- and post-Prop 209 period data
consist of students admitted between 1995 and 1997 and between 1998 and 2000, respectively.

The data for each UC campuses consist of all their admitted students. The outcome variable Y is
normalized CPL.'® The treatment status D is the indicator of under-represented minority groups
in the dataset. X are two family background variables: family income percentage and two parents’
highest education degree. Minority students may live in a less favorable family environment with
low parental income and education level. This difference can cause minority students to be less

prepared for college than their majority peers.

16 As described in Arcidiacono et al. (2016), the raw preparation score (Y;*¥) for student i is a weighted
average of student’s high school GPA (GPA;) and their combined verbal and math SAT score (SAT;):
yrew = % -SAT; +400-GPA;. The CP1Y; is the standardized version of Y;"** such that it has mean 0 and
standard deviation 1 for the pool of applications to one or more of the UC campuses.
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D.2.1 Pre-Prop 209

Campus | Berkeley UCLA | San Diego Davis Irvine | Santa Santa Riverside
Barbara | Cruz
Science | | | | | | | |
ATE —0.893"* | —0.724™* | —0.510*** | —0.443*** | —0.312*** | —0.420** —0.351** —0.477***
k=5 —0.732* | —1.217** | —0.298* | —0.901** | —0.136* | —0.595™* | —0.276 —0.525™*
k=10 —0.857* | —0.961*** | —0.397** | —0.306* | —0.288* | —0.342™| —0.300 | —0.398***
k=15 —1.023* | —1.057*** | —0.421** | —0.304* | —0.338* | —0.463** —0.285 —0.431*
k=20 —0.886* | —0.907*** | —0.449™* | —0.146* | —0.401* | —0.414™| —0.590* | —0.478**
k=25 —0.927** | —0.943** | —0.466™* | —0.224* | —0.449* | —0.368"* | —0.505 | —0.563***
k=30 —0.952* | —0.825"** | —0.438** | —0.298** | —0.472* | —0.326™ | —0.573 —0.396**
k=35 —0.986** | —0.716** | —0.212"* | —0.373** | —0.508* | —0.350™ | —0.539 | —0.379***
k=40 —0.997* | —0.673** | —0.188*** | —0.379** | —0.433* | —0.365** | —0.529 | —0.399***
Non-
Science
ATE —0.987* | —0.761** | —0.502*** | —0.539*** | —0.466*** | —0.466*** —0.478** —0.424***
k=5 0.183 -0.284 -0.647 -0.096 | —0.347* | 0.169 -0.424 -0.459
k=10 —0.283 | —0.869*** -0.479 | —0.450* | —0.343* | —0.321** | —0.581** | —0.529**
k=15 —0.383* | —0.988*** -0.170 -0.227 |  —0.377" | —0.359** | —0.526™* —0.464**
k=20 —0.462** | —0.949*** -0.197 -0.299 |  —0.349* | —0.419** —0.527** —0.540**
k=25 —0.569* | —0.878*** -0.203 | —0.371* | —0.413** | —0.458*** —0.549* —0.570**
k=30 —0.647* | —0.861*** -0.231 | —0.360* | —0.475** | —0.459** —0.559"** —0.544***
k=35 —0.630"* | —0.886*** -0.193 | —0.392** | —0.481*** | —0.402*** —0.668** —0.578***
k=40 —0.722"* | —0.869*** -0.251 | —0.386"* | —0.547*** | —0.424** —0.671** —0.567***

The sample size (subsample size) for students with a science major and campus from Berkeley to Riverside
are 4126 (700), 4204 (700), 4122 (700), 4298 (700), 3877 (700), 2704 (600), 1345 (350), 1641 (375). For

students with non-science major, they are 4990 (750), 5837 (775), 3749 (650), 5105 (750), 4154 (650), 6674
(800), 3775 (650), 2784 (500). *, *x, and * * * indicate 90%, 95%, and 99% significance level, respectively. I
use standard bootstrap CI for the inference of ATE and BN-CI for extreme QTE.

Table 6: Index gap across campus and initial major
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D.2.2 Post-Prop 209

Campus | Berkeley UCLA | San Diego Davis Irvine | Santa Santa Riverside
Barbara | Cruz
Science ‘ ‘ ‘ ‘ ‘
ATE —0.681*** | —0.416™* | —0.133** | —0.273*** | —0.271** | —0.262** —0.321** —0.260***
k=5 —0.976** | —0.460** -0.113 0.207 0.108 | —0.710* | —0.673** -0.214
k=10 —1.357* | —0.583** -0.065 0.061 0.125 | —0.716* | —0.558** -0.159
k=15 —1.356** | —0.637** -0.076 0.002 -0.090 | -0.689 —0.450** -0.114
k=20 —1.441" | —0.680** -0.044 -0.078 -0.116 | -0.433 —0.440* -0.160
k=25 —1.512"* | —0.706™* -0.038 -0.063 -0.144 | -0.500 —0.469* -0.187
k=30 —1.232"* | —0.758** -0.057 -0.050 -0.196 | -0.476 —0.375* -0.142
k=35 —1.146" | —0.676** -0.111 -0.124 -0.156 | -0.484 —0.385** -0.118
k=40 —1.141" | —0.616™* -0.117 -0.143 -0.172 | -0.399 —0.367* -0.097
Non-
Science
ATE —0.671** | —0.607*** | —0.149"** | —0.264*** | —0.304** | —0.388** —0.263** —0.302***
k=5 —0.548*** -0.541 -0.141 0.076 -0.182 | —0.590* | -0.254 —0.478**
k=10 —0.628** -0.637 -0.176 0.045 -0.374 | -0.217 —0.525"* —0.385"**
k=15 —0.552%* -0.544 -0.044 -0.050 -0.403 | -0.307 —0.460** | —0.390***
k=20 —0.541** -0.344 -0.018 -0.165 -0.267 | -0.285 —0.426™* | —0.417*
k=25 —0.633*** -0.522 -0.066 -0.146 -0.362 | -0.285 —0.396* | —0.403***
k=30 —0.703*** -0.552 -0.064 -0.125 |  —0.427* | -0.303 —0.374**| —0.413***
k=35 —0.705*** -0.645 -0.064 -0.147 | —0.486** | -0.297 —0.377 | —0.428"**
k=40 —0.704** -0.665 -0.079 -0.205 | —0.509** | -0.320 —0.357| —0.441***

The sample size (subsample size) for students with a science major and campus from Berkeley to Riverside
are 3906 (700), 4159 (700), 3861 (700), 4319 (700), 4361 (700), 2594 (600), 1596 (350), 2180 (375). For
students with non-science major, they are 4695 (750), 6029 (775), 4024 (650), 5418 (750), 4432 (650), 6108
(800), 4537 (650), 4529 (500). *, *x, and * * * indicate 90%, 95%, and 99% significance level, respectively. I
use standard bootstrap CI for the inference of ATE and BN-CI for extreme QTE.

Table 7: Index gap across campus and initial major

D.3 Prior and post-Prop 209 comparison

k=5 k=10 k=15 k=20 k=25 k=30 k=35 k=40

” I

M Prior Prop 209
(b) San Diego Science
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-1.400 -

-1.600 <

(a) Berkeley Science

Figure 12: Minority gaps pre- and post-Prop 209
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Science | ATE| k=5| k=10 k=15| k=20| k=25|  k=30| k=35| k=40
Berkeley [ —0.213"" [ 0.292 0.535 0.356 0.574 0.611 0.291 [ 0.165 | 0.148
San Diego | —0.376™ | —0.170" | —0.322" [ —0.344" [ —0.408" | —0.433"* [ —0.381" | -0.106 | -0.077

Table 8: Difference of the racial gaps

E Theoretical proofs

E.1 Proof of Theorem 3.1

Before starting the proof, I first state a maximal inequality which is derived in Chernozhukov,
Chetverikov, and Kato (2014). See Corollary 5.1 in their paper. Let (X7, ---

of i.i.d random variables taking values in a measurable space (5,S) with common distribution P.

, Xn) be a sequence

F is a generic class of measurable function S — R with an envelope function F. Let ¢? > 0 be any

positive constant such that

sup Pf? < o® <||F||%, and M = max F(X;).
feFr ’ 1<i<n

Lemma E.1. If F € L?(P) and suppose that there exist constants a > e and v > 1 such that the

following uniform entropy condition holds:

a\?
swp NEllFlloa 7l lloa) < (Z) Ve ©0.1)

<GHF| P,2>
g .
g

— 03(r) (O5(ry)) if

then

oMl |

NG

F
El|VA(P — Pl S \/w? o (112 ) o

Throughout the appendix, for simplicity of notation, I call a term U, (k)

sup
k€[k1,k2]

for some fixed positive constants x; and ko.
Now I return to the proof of Theorem 3.1. Let Ay (k) = A1 (k) (g1 (k7n)—q1 (k7)) be the maximizer

of the rescaled objective function, that is,

A1,n(k‘) = arigéin _Wn(k)A(k) + Gn(Aa k) (El)

63



where

n

. 1 D;
Wi(k) = N ; X)) (bt — 1{Y; < q1(k7n)}),

Cn(AL ) = \/anm 2; Pg;-) /0A (]1 {Y < qi(km) + Alj(k)} _ 11{3@- < ql(krn)}>ds.

The proof of the first part of the theorem is divided into three steps. In the first step, by defining

N A2
R, (AKk) = Gp(A k) — X
I show that
sup |Rn (A, k)| = 0p(1). (E.2)

|A|§M,k€[l{1,f€2]

In the second step, I show that
Wi (k) = Wy (k) + 0;‘,(1)

where
Walk) = = > dutal®
" 1 [D E(T10(k)| X)
i i,ln i o ‘
¢i,1,n(k) = \/ﬁ [Wn,l,n(k) - W(Dz P(Xl)) .

In the third step, I show that {W,,(k) : k € [k1, ka]} is tight. This implies that {W,,(k) : k € [s1, ka]}
is tight too. Given the tightness of {W, (k) : k € [k1,#2]} and (E.2), I can apply a generalized
version of the Convexity lemma in Pollard (1991) proved in Lemma 2 of Chernozhukov (2000), I

can conclude that

Ap(k) = Wa(k) + 0} (1) = Wi (k) + 03(1)

and {A,1(k) : k € [k1, Ko]} is tight. Similarly, T can show that

30 (B) o (k) = (7)) = = 3 (k) +05(1)
=1

where

1 1-D; E(Ti0n (K)| Xi)
Vi, [ 1= P(X) - P(X,)
and that the stochastic process {¢oin(k) : k € [K1, k2]} is tight. This concludes the first half of the

results in Theorem 3.1.

®0,in(k) = Tio.n(k) + (D; — P(X3))

Step 1.
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Define

By Lemma 1 in Hirano et al. (2003), sup, |P(z) — P(z)|
away from zero. Therefore,

op(1). In addition, inf, P(z) is bounded

1 1
Sup ’% - %\ = op(1).

Then, uniformly over |A| < M,

Gn(A, k) = Gn (A )| <0p(1)

[\/%;(1{1@ < qi(kmy) + )\1]7\14(]{)} - ]1{1’i < (h(an)}

- ]I{Yi < Ch(an)} - ]I{Yi < q (k) — )qjg(k)})]
Sop(DIVAPufll 7, S 0p(W)([IV1(Pn = P)||7,,, + VnlPflF )

(E.3)
where

Fin = {\/%(]1{}/ < qu(km) + Af(k)} - n{n < ql(km}

+1L{Y; < ql(an)} — ]I{Yi < q(km) — %}),k = [Hbf@]}»

with an envelope function

Fln

= \/%(]1{}/; < q1 (ko) + ;\4} —1{Y; < qi(k170)}

2Aln

+1{Y; < qu(rom)} — 1 {Yi < o) - MMn}>

Note that f(qi(k7y)) is monotone in k for n large enough and k € [k1, r2]. Hence Ay (k) > Ay, i=
N

N fi(q1(kmy)) where k = k1 or ko depends on whether f; is monotone decreasing or increasing

at the tail. Then I have

2
||Finl|lpe < C <oo, M, = max F;, <

1<i<n = VT

Furthermore, ¢;(-7,) and A1 ,,(-) are monotone. So by repeatedly using Lemma 2.6.18 (iv), (v), and
(viii) of Van der Vaart and Wellner (1996), I have

a\ v
sup Nel|Fialloa Finsll-loa) < () Y€ 0.1)
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By Lemma E.1 with o = ||F} ,,||p2, I have

1
E n — P < ||Fin =0(1
VAP = Pl % 1 Finllpe + o = O)

and thus

V(P = P)ll7,,. = Op(1). (E4)

I next want to showy/n|Pf|r , = O(1). In fact, I have

f1 (ql(k:rn) + %) fi (%(k‘m) - ,ML(/@)
Pflr., < - -
VilPllran S s Ry T AaG)

where M is between zero and M. Since m,n — oo, for any constant [ > 1 independent of k, there

exists Ny > 0 independent of k such that for n > Ny,

M M(q(tk) — qi(km)
DRV (5.5)

Therefore, if fi is monotone increasing at its tail,

fi (q1(/-cfn) + 7)\1f(k)) . i (Ch(k:m) - 7A1ﬁk)) _ F1(q1(Ikamn))

o = +1=0(1
peboval - Filan(Er)) Pt = Al Y

sk fi (Q1(k7'n)+#~{(k>) i (m(km)—%) .
Similar argument Shows Supjc (., ] I + ACICS) = O(1) when f; is mono-

tone decreasing at its tail. So I obtain the desired result that

VilPflF , = Op(1). (E.6)
Combining (E.1), (E.4), and (E.6), I have

sup [Ga(A, k) — Ga(A,B)| = 0,(1). (E7)
Ak

Next, I want to show Gy, (A, k) — —2 uniformly in |A| < M and k € [k1, ko). It suffices to show

2
sup EG,(A k) — A =o(1) (E.8)
|A‘§M,k‘€[l€1,l€2} 2
and
sup |Gn(A k) —EGL(A k)| = op(1). (E.9)

|A|<M k€[r1,k2]
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For (E.8), I have

) 4 SA)
st = i [ (o (v ) - P o~ § 2 S

By (E.5), for any [ > 1, there exists Ny > 1 independent of & such that for n > Ny, if f; is monotone

increasing at its lower tail,

fi (ql(lm) Af“))e A (@) fula (k)
fi(q1 (k7)) fila(km)) " fila(km)) )7

and if f1 is monotone decreasing in its lower tail,

h {0+ 558) (A i)
Fila () Filas(br) Frlalim) )

By first Letting n — oo and then [ — 1, both the upper and lower bound converge to 1 uniformly

5(k,A)
f1 (q1(an)+ N n(k>) A2
over k € [k1, k2]. This implies RG] — 1 uniformly in k. Therefore, EG, (A, k) — 5~

uniformly in A and k.

For (E.9), I have
Gn(A k) —EGn(A k) = Vn(P, —P)f for f € Fop

where

Al < M,k € [m,ng]}

with an envelope function F3, = Fi 5. Inote that ||Fy,||p2 < C < oo,

P(X)

Mgn = Imax an <
’ 1<i<n 7’

.
= \/7_»77"

Since EG? (A, k) = O(ﬁ) =0(1), v/n(Pn, — P)f ~» 0 on any subset of F3, with finite number of
elements. In addition, the empirical process indexed by f € F», is stochastically equicontinuous.
To see this, consider ]-"37” ={f—g9.f,9€ Fon,||f —9gllp2 < I} with an envelope an = 2F,, and

Min = \/% By applying Lemma E.1 on ]-"gm with ¢ := §, the Markov inequality, and the fact
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that 7,n — oo, I obtain that for any € > 0,
hmlimsupP(H\/ﬁ(Pn —P)||gs > 6)
§\LO n 2,n

2al|F? 2a||F9
Slg\%lhmsupcgfl 052 10g ( H 2,77,"1372) X v 10g ( || 2,n||P72> —0

n 1) N 1)

This implies sup|a|<nreer wo) |G (A k) — EGo(A, k)| = Vitl|Pu = Pllz,,, = 0p(1).

Combining (E.8) and (E.9), I obtain that

Gn(A, k) = anfHA; (E.10)

uniformly in A and k. Then, combining (E.7) and (E.10), I obtain (E.2). This concludes step 1.

Step 2.
Next I consider W, in (E.1):

where
Jn,l(k) = \/m Z z,l,n(k)
_ (Xi) = P(Xi)) .,
Jn,?(k) = \/TTT” Z P(XZ)2 Tz,l,n(k)a
Jn,g(k) . ) - P(Xl))Q

fnm; ( 2y e

and Tj 1 (k) = kr, — 1{Y;1 < qi(k7,)}. Note that T; 1 (k) has an envelope
sup [Ty 1.0(k)| < Tinp i= kot + 1{Yi1 < qi(k27n)}
k

In the following, I will bound (J,, 1(k), Jn2(k), Jp3(k)) uniformly over k € [k1, k2).

For Jp 3(k), I have

J, = 1). E.11
Sl}ip| n3(B)| S NoE ;| i,1,n|0, f = op(1) ( )
This is based on two observations: (1) Esupy Y iy |Tiin| < nET; 1, = CnTy, s0 Yo Tiinl =

O, (n7y); (2) under Assumption 3, Lemma 1 of Hirano et al. (2003) shows that sup, |P(z)—P(z)| =
op(n~1%).
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For Jp2(k), I have J,, 2(k) = Jy4(k) + Jy 5(k) where

Toath) = 7= | o P P PE)ET k) @

kT,

and

Tuslh) = Z s (P = PO )2t

_ /S - P(lx) <P(x) - P(m)) (E(E,lm(k)\x)) dFX(g;)} ,

Next, I show Jy, 5(k) = 0j(1). Denote Py(z) = L(Hy(x)'7,) where

7, = arg min E(P(X) log(L(Hy(X)m)) + (1 — P(X)) log(1 — L(Hy,(X)'7))),

TERM

Hp(X) is the series bases used for approximation such as polynomials or B-splines, and h is the
number of terms of the series. I have J,, 5(k) = Jp (k) + Jp 7(k) where

T (k) 1= m Z (D T}”)(k) (P(X:) = Ph(X5))
) E(Tiin(b)le) o p
/ P (pw) - Pary >)
and
In7(k) == \/m Z(D e n)(k) (Pr(X;) — P(X5))

_ E(Tian(R)e) b oo pessm
/Supp(x) P(x) (P(x) — P(x))dFx( )>.

By Lemma 1 of Hirano et al. (2003), sup, |Py(z) — P(z)| < ¢(h)h~2 where ¢(h) = sup, ||Hp(z)|
and ||A|| = /tr(AT A). For polynomial bases, ((h) < Ch. All the rates restriction in Assumption

3 are stated under this circumstance.

Next, I first compute the order of magnitude of J, 7(k).

Jn,7(k) - \/E(PTL - P)fv f € ]:3,71

where
1 Dtrzln(k) N '
Fan = {\ﬁ( P(X;)2 (Pr(X3) — P(X3))
/supp(x) Py (@) = P@)ET (k) 2)dFx( )>,k€[ N 2]}
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with an envelope function F3,, = \%(Tl 1n+E(T;1,]X)). Since

2
(LX) — P<Xi>>) < c(ryni uan®) _ gy

Tn

EJ: (k) S 715

Tn

( P(Xz)

Jn,7(k) ~» 0 on any subsets of [k1, k2] with finite elements. I next show that \/n(P, —P)f, f € F3n

is stochastically equicontinuous.

I note that ||F3,||p2 < C < oo and M3, = maxi<ij<pn I3, < \/% Therefore,

F={f—9.1,9€ Fan, ||f —gllp2 < 6}

with an envelope 2F3,, and Mg = % In addition, {T; 1, (k) : k € [k1, k2]} satisfies the uniform
entropy condition because it is a VC-class, and the class of functions {E(T; 1, (k)| X) : k € [k1, k2]}
is generated by taking the conditional expectation which implies that it also satisfies the uniform

entropy condition. Therefore, ]-"g’n satisfies the uniform entropy condition, that is,
5 ay®”
wp Nel|Flloa Fill - loa) < () v ©0.1)
By applying Lemma E.1 on ]:gm with ¢ := § and the Markov inequality, I have
hmlimsupP(H\/ﬁ(Pn — Pz > 6)
5\L0 n 3,n

2a||F?¢ 2a||F?
<limlimsup O | | 052 log ( | 3,n||P,2> P ( I 3,n|\P,z> .
410 n 1) Nty 0

This verifies that /n(P, —P)f, f € F3,, is stochastically equicontinuous. Combining this with the

finite-dimensional convergence, I obtain that J,, 7(k) = 05(1).

For J, 6(k), by the Taylor expansion, I have Jy, 6(k) = (W 1(k) + Wa (k) — W3 p(k))(7y, — 73), in
which

Wi () = W:[ e ] (Xm0
- P ) E @) )|
Wil = e 3 P ) X () = )

and

W3 h \/;/SuPp Z > n() )‘m) LI/(Hg(x)ﬁh)me)Hg(x)(ﬁh - TFh).
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For an arbitrary deterministic sequence l,, — oo and f € Fyp,

Win(k) (P _
m—\f(?n P)f

where

_ L DiTian(k) | .
Fin = { St | s (tom) B (X)

_ / ﬂg()) L'(HE (x)m)H;f(x)dFX(x)] k€ [k, ,@2]}
Supp(X) (2)
with an envelope function

c
F4,n:m( z zln /Hh zln|X—x)dFX( ))

Since

Tn

2
Bl Wyn ()] < (M) (k) = O(C(h)),

{vVn(P, —P)f : f € Fan} ~ 0 in finite dimension. In addition,

My = maxi<i<p Fin(X;) < Therefore, for

\ﬁl

Fin=Af—09.1,9 € Famllf —gllp2 < 8}

with an envelope 2F} ,,, I have ||an|\p2 <C, M4n and

v

a\ v
sup Nel| Pl P llloz) < (Z) Ve € (0.1

By applying Lemma E.1 on ]-"in with ¢ := § and the Markov inequality, I have

limlimsupP<||\/ﬁ(73n — Pl > 5>
§J,0 n 4,n

2a||F? 2a||F?
<lim limsup Ce ™! v62 log 15712 T log 1Finllr =0.
510 1) N/ NTln, 0

Therefore, Wy (k) = 0 (¢(h)l,) for any sequence of [, such that I, — oo.

For W p,(k),

DTzln
P(X;)?

B W ()] < E' L) B (X0 2 = mnl 2 = O(C(R)2VR)

n
N
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So W, (k) = O3(¢(h)?v/h). Similarly,

E Tz n
Bsup [Wan(l 5 [2 [ Bl
k Tn JSupp(X) P(x)

So Ws (k) = O;(C(h)Q\/E). Combining all the results, J, 7(k) = O;(C(h)2\/ﬂ\/g) = op(1) and

thus J, 5(k) = o5(1).

|| Hp ()| [PdFx (2)||7n — mnl| = O(C(h)*Vh)

I next decompose Jy, 41 Jpa(k) = Jng(k) + Jno(k) where

— i w 5 xT) — €T X
k) \/;/Supp(X) P(x) (P(x) = Pu(x))dFx (x),
™ ETiniK)2) p ) — pa))dFy(a
k) \/;/Supp(X) P(x) (Pr(x) — P(x))dFx (x).

For J,, 9(k) I have,

‘ znz|x)
\/ K1Tn JSupp(X

For J, g, by the Taylor expansion,

\/;/Supp Tin (@) (h)lz) SR L (Hy (2) T 7)) Hyy (2) T dFx () (7, — ).

Since 7, solves the first order condition, #j — ), = 1 S (ZR) 7N (Di — Pu(X;))Hp(X:), in which

dFx (2)¢(h)h™ 2 = Op(VamaG(h)h™ 3 ) = oj(1).

ZL' Hy(Xi)" ) Hy (Xi) Hy (X0)"
Hence, I have

\f/s W‘“”U)L/(Hh( ) ) Ha(2)" dFx (x)(3h) 71 (Di — Po(X3)) H(X5)
=1 upp(X

\i/;f( )" Va

Vi (k)2 1Vh + (U (k) = OF (k)55 Vi + O (R) (2, = 2, Va

= UF (k)X ' Vi + Jno(k) + Jnan (k)
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where

(k) —?n /S R R H )R ),
zln‘x) / T
W (k) = /Supp(x) L, @) ) ()P o),

S := E(Hp(2)Hp(2)" L' (Hy(2) 7)),
Vj, = \Fzﬂh Y(D; — Po(X5)).
Since Amin(X1) > € > 07, Vi, = 0,(¢(h)), and

H(‘i/h(k) —‘I’h(k))H
2 1 n’:U)

\//ilTn Supp(X P(.f)
Lk \/Zx

Ihave o 10(k) = O3 (yAC(h)*/2) = 0j(1).
For Jp11(k), I first denote

L"(Hp () 7n) ||| Hp ()| [PdFx (2)||7h — |

ZL' Hy,(Xi) ) Ha(Xo) H (X))

By noticing that E||V}|[? = O(¢(h)?), T have

1(Sh — Z0)2;, Vi
SHEh = Z0)Z, Vil + 1Sk — Zh)Z, Vil

Z [ Hp(Xo)" (Fn — ma) L (Hp(Xa) " 70) Ho(Xs) Hi (X3) "S5 Vil
*H Z (L (Hp (X)) Hi(Xi) Ha(X3)T — BL (Hp(Xi) 70n) Ha(X0) Hu (X0) 7125, ' Val|
4 D / N\T , NT(12\1/2
SOu(¢(R) \[)Jrop((fEHL (Hn(Xi)" 7n) Ho(Xi) Hy (X)) 2 11C(R)])
\[ <

Furthermore, ||¥ (k)| S OP(%E(E(TZ‘JWM))) = Oy(y/TnC(h)). This implies

Inas(8) = Oty 2+ <UL

17X min (A) is the minimal eigenvalue of a positive definite matrix A.

)
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and

Tns (k) = W3 (k)2 Vi + O;(\/T?(C(h)"’\/Z)) = (k)55 Vi + 05(1).

Next, I compute the leading term of J,, g(k): \IJ:,f(k)Egth. Define

o, k) m i/ﬁp 7) /By Py,

5h($,k) = \I’Z hl\/Ph .T 1 — Ph(LI?))Hh(J})

Then
D; — Py (X;)

\/Ph (1= Pu(Xy))

VT (k)W = — Zéh ik

I want to compute the difference

1 & . D; — Ph(X') B . D; — P(X;) B
ﬁ ; 5h(sz \/Ph 1 _ Ph(X )) 50(Xz) \/P(XZ)(l — P(XZ)) = Jn712(k) + Jn,l?)(k)
where
D — P(X;)
Jn 12 . \/*Z (Sh Xz,k' 50( ))P(Xl)(l _ P(XZ))L
D; — Ph(X) (D P( )
et ‘fz R \/Ph 1- (X)) VPX (XZ)))]

For J,12(k), notice that /7,05 (x, k) is the projection of \/7,00(z, k) on /L'(Hp(x)"np)Hp(z)
By Assumption 3, E(T} 1 ,(k)|x) and P(z) are t times differentiable with their derivatives being
bounded by M,, on Supp(X) uniformly over the quantile index (and thus k). Hence,

sup 160 (. k) — 8n (2, k)| S Muh™ 2 /\/Tn
(z,k)eSupp(X) X [k1,K2]
and
nM, _+ .
Tnaz(k) = Op(\[=—"h™%) = 03(1)

For Jp 13(k), I have

|| Tn,13(k)[] < Vrsup||0n (@, k)||C(h)h™2r = O} (v/nmaCP(h)h™2r ) = 0j(1).

k,x
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Combining the bounds on (Jy,10(k), - - , Jn,13(k)), I obtain that

n

_i - DZ—Ph(Xz) oF
sl = 5 2 X s ey )

i=1
n

_ 1 E (73,1, (k)| X5)
- /nkr, ; P(X;)

(D; — P(X;)) + 0p(1).

Then by combining J, 1(k)-J,8(k), I have,

This concludes Step 2.

Step 3.
Note that

Wh(k) = V/n(P,—P)f
for f € F5p, in which F5,, = {¢i1n(k), k € [k1, K2]} and

1 D; E(T51,0(k)|X:)
\/ﬁ mn,l,n(k) - W

¢i,1,n(k) — (D,L — P(Xl)) .

Then,
C _
—(Tigpn+E(Ti10]| X))

F p—
5,n \/ﬁ
is an envelope for Fs . We have ||F5 ,||p2 < C < 00. Msp, := maxi<i<pn F5n(Yi, X;) < \/%
First notice that, for f € Fs,, Pf = 0, Pf? < %ETZan(k) = O(1). So the empirical process

Vn(P, — P)f indexed by f € Fs,, is bounded in probability in any subsets of F5, with finite

number of elements.

Next, I want to show the empirical process is stochastically equicontinuous. Let

Fo=1f—09,F,9€ Fsn|lf —gllp2 <8}

with envelope 2F5 ;. Then similar to f?’f’n, there exists v > 0 and a > e such that

5 5 aN®
sup Nel| Sl P llz) < (Z) '+ ¥ € (0.1
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By applying Lemma E.1 on ]:gm with ¢ := § and the Markov inequality, I have
lim lim sup P (H\/ﬁ(Pn —P)||ps > 5)
6\L0 n 5,n

2a||F9 2a||F?
< lim lim sup Ce~! v62 log I 5’n||P’2 + Y log 1F5nllp2 =0.
510 1) nT, 1)

Therefore, the empirical process /n(P, — P) indexed by f € Fs,, is stochastically equicontinuous
and the stochastic process {ﬁ Yoy bian(k) k€ [k, Iig]} is tight. It further implies that the
stochastic process {W, (k) : k € [k1, k2]} is tight. This concludes Step 3 as well as the proof of the
first part of Theorem 3.1.

I next turn to the proof of the second part of Theorem 3.1. By the additional assumption in the

theorem, the covariance kernel satisfies that

E(¢i1,0(k1), Gion(k2))(di1.0(k1), dion(ke)) — H(k1, k2).

This is sufficient for the finite-dimensional convergence of

(A1n (R)(G1(ETn) = q1(KT0)); Adon(K) (Go(kTn) — qo(KTn)))-

Combining the finite-dimensional convergence with the stochastic equicontinuity of

{()\l,n(k)(QAl(an) —q1(kTy)), AO,n(k)(QO(an) —qo(kTn))), k € [k1, “2]}7

I can conclude the proof for the second part of Theorem 3.1.

E.2 Proof of Theorem 3.3

Hereafter, all bootstrap counterparts are starred. Let {I, ;};>1 denote an i.i.d. sequence distributed
as multinomial with parameter 1 and probability (%, “ee ,%), so that the bootstrap weight for
individual i, wn,;, satisfies wy; = 370 1{l,,; = i}. Also, let A’fn = AM.n(qi (Tn) — q(7n)) where

Al,n is defined in (3.3). Similar to the proof of Theorem 3.1,

Aj, = argmin — —WXA + G5(A) (E.12)
A€R
where
A 1 " Wy ;D
Wy = Z - = 1{Y; < q1(m)}),




Since Fwy,; = 1, same as in the proof of Theorem 3.1,

A A2
G (A) = - T op(1). (E.13)
Next, let wy, i = Z;V:"1 1{1,; = i}, so that {wn, ;}i, are i.i.d. Poisson random variable with unit

mean. Let

1 -~ WN, le
— T — Y; < q1(m)}).
=2 B (M et

I aim to show that
Wy — Wy = o,(1).

Fix n > 0 and let Z; = {i : |wn,, i — wni| > j} and nj = #Z;. Then, for n large enough and with a
probability greater than 1 — n (see (Van der Vaart and Wellner, 1996), p.348),

2

1 n
Wy —-Wwy=— WN,, i — Wni) My, i(Tn) = sign(N,, — My, () (E.14)
3 DD

i€ZL;

with My, ;(1,) = %Pgé) — 1{Y; < q1(7a)}) and the convention that }_;c7 Mni(7) = 0 when
= 0. I now show that ZZEI n,i(Tn)/v/m = 0p(1). Note that

where
* = L D T, — : T
Mn,i(Tn) = \/7'71]3()(1)( w— 1{Y; < qi(mn)})
and
1 Dy(P(X;) — P(X;)) B ‘ .
i = T Bapxy o s et
I first show
> Rui/vn = op(1). (E.15)
1€Z;
Note that
Izez; Rni/vn| S F ; 170 — 1{Yi1 < q1(m0) }] messutég(x) |P(x) — P(z)]
Sm ; 170 = 1{Yi1 < q1(7a) Hop(1).
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In addition,

2

L e[S - 1 < @l | (T, N s(’”)Zs(N"‘”)onpu).

nr,
" =

Thus (E.15) holds. Next, since E(M; ;(7n)|(In,j)j>1, Nn) = 0 and

1 n; _ |Np—n]
EVar Z |(In,j)j>1, Nn | < ;] < nT = 0p(1),
1€ZL;
I have
Z N, Tn /\/ﬁ_ OP( ) (E16)

1€Z;

Combining (E.15) and (E.16), I have shown that ZZeI My, i(0)/v/n = 0p(1) and thus
Wi — W =o0,(1). (E.17)
In addition, by the same argument in the proof of Theorem 3.1, I have
- 1 &
W:; = — wNn,i¢i,1,n(1) + o0 (1) (E18)

Combining (E.12), (E.17), and (E.18), I obtain that

2

R . 1 « A
—-WrA (A)=—|—= i®iin(l) | A+ —.
WA+ GL(A) (\/ﬁ;wzvn,m,()) + 5
By the Convexity lemma in Pollard (1991), I have
ZwNn,z(bzln +0p( )

Recall that, from the proof of Theorem 3.1, I have
Bin= 23 6i1a(1) +0y(1)
1n = = i,1,n o .
vn i=1 !
Thus

Mt (@F () = 1 () = AT, = Ay = Z Wi = 1)@i1n(1) + 0p(1). (E.19)



Similarly,
M 0(@3 () = do(n)) = AG, — AOn—fZ WN,i = D)ion(1) 4 op(1). (E.20)

Also note that, with C1(p, m), Co(p, m), An, and ¥, defined in Theorem 3.2, I have

123 (s 1 ¢
P An(d(mn) — () = 3,17 = Z (C1(pm)i1.n(1) = Colp,m)i0n(1)) + 0p(1) ~ N(0,1).
(E.21)
Then combining (E.19), (E.20), and (E.21) with the continuous mapping theorem, I obtain that

S V2N (G () — (7))

n

_E 12— ! Z - Cl(ﬁ? )¢i,1,n(1) - C()(p, m)(bi,o,n(l)) + OP(U ~ N(Ov 1)'

Here the variance ¥, is the same in (E.21) because wy, ; is independent of data and has unit mean

and variance. This concludes the proof.

E.3 Proof of Theorem 3.4

Note that

Gi(ml"m,) — ¢;(I"m,) 1 g (ml"m,) — q; (I my) 1 ¢
~ 1 ~ 1 .
G mlr ) — gy r) O ) i) =g ey T T O R

This implies (1) by the continuous mapping theorem. (2) follows from the delta-method and a
triangular array CLT in such as Theorem 3.4.5 in Durrett (2010).

E.4 Proof of Theorem 4.1

Note that
Zan(l) =argmin | D (e aun(Uis — B n(Uss — rn) < 2)
n = arg min — = The — (2 —o1n (U1 — D1n a1 n(Uil — Pin) S 2
1, gmin 2 B(x,) 1,n(Ui1 = f, 1n(Uin — 1,
+ = Tnon (Uil — n)|-
;:1 Py (Uia = B, )]

Multiplying the LHS by o, and subtracting
n

Z pg;)(TnOél n(Uit — Bin) + (=0 — a1n(Uin — Bin)) Mo n(Uin — Brn) < —0}),
=1 i
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I obtain

Zl,n(k) = arg min — Z W1 (Di, P(Xz))Tnzl + Z W1 (Di, p(Xi))l(;(OéLn(Ui’l — 61,71), Zl).

#1 i=1 i=1

Similarly,

Zon(k) = argmin — >~ Wo(Ds, P(X3))Tnz0 + > Wo(Dy, P(Xi))ls (0. (Uso — Bon), 20)-

20

i=1 =1
So overall,
(Zin(k), Zon(k)) := argmin Y Q;n(2)),
LA =01
where
Qjn(zj,k) = = > W;(Di, P(X:)) Tz + Y Wi(Di, P(Xi)ls(tjn(Uij — Bjn), 2)-
i=1 i=1

In the following, I divide the proof into five steps. In the first step, I show the marginal convergence,
that is, for j = 0,1 and fixed z;,

Qj,n(zj7 k) ~> Qj,oo(zja k)a

in which

Qj ooz, k) = —kzj + > Wi(Dig, P(Xij)ls(Ti g 2)-
=1

In the second step, I show that for any (21, 20), Q1,n(21,k) and Qo (%0, k) are asymptotically inde-
pendent. Hence, the marginal convergence is sufficient for the joint convergence of (Q1 (21, k), Qo.n(20, k))

to (Q1,00(21, k), Qo,00(20, k)). Then by the continuous mapping theorem,
Ql,n(Zb k) + QO,n(ZOa k) ~ Ql,oo(zla k) + QO,OO(Z()’ k)

In the third step, I apply the convexity lemma to show the weak convergence of the sample mini-
mizers (21, (k), Zon(k)) to their population counterparts (Z1 o0 (k), Zo.0o(k)) when k satisfies As-

sumption 9.

In the fourth step, I enhance the result to the finite-dimensional convergence, that is, for (lcl)lL:1

satisfying Assumption 9,
(Zin(ke)s Zo(k))izy ~ (Z1,00 (K1), Zo,00 (K1) oy
L 00
:= argmin Z Z {—kleJ + Z Wj('Di,j, P(.)C'Lj))l(;(%,j, Zj’l)} .

(z1,20,0){21 j=0,1 1=1 i=1
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In the last step, T show (Z1.,(k), Zo.n(k)) as a two-dimensional stochastic process indexed by k in

D?([k1, ko)) weakly converges to a two-dimensional stochastic process (Z1, o0 (k), Zo.00(k))-

Before showing the five steps, I first present four technical statements. Their proofs can be found

at the end of this section.

Lemma E.2. Under the assumptions in Theorem 4.1, for j = 0,1,
(1) L3 Wi(Di, P(X;)) = 1 a.s.

(2) Let
for type 1 tails (£ =0): E; = E' = [—00, +00) x {0,1} x Supp(X),
for type 2 tails (& > 0): Ej = E* = [-00,0) x {0,1} x Supp(X),
for type 3 tails (§&1 < 0): Ej = E* = [0,400) x {0,1} x Supp(X).

Then Nj =y W{ajn(Uij— Bjn), Di, Xi} as a point process on state space E;j weakly converges
to Nj =322 1{Jij, Dij, Xij}-

(8) Let
1

1— P(x)

gl(U,CC) = l(s(U,JJ,Zl), gO(uax) = lg(u,a:,zg),

1
P(x)
and

\Iljvn = Z(JDl + (1 - ])(1 - Di))Qj(aj,n(Ui,j - Bj,n)in)'
=1

Then for a pair of constants (t1,1o), and i representing the imaginary number,

Eexp (%tl‘lﬁm + gtO\I’O,n) — Eexp <g/ tldgldN1> Eexp <;/ to(l — d)g(]dNo) y
E1 EO

in which Nj is defined in (2).
(4) The distances between two closest discontinuities of the sample paths of the two marginal stochas-

tic processes Z1 (k) and Zo (k) indexed by k are both greater than 1.

Step 1:

I focus on the case for j = 1 because the case for j = 0 can be proved in a similar manner. First
note that for fixed z1, by Lemma E.2, — > | %Tnzl = —kz1 + 0p(1). In order to compute the
second piece of the objective function, I first define

On1(21) := Z P(Xi)ld(al,n(Ui,l — Bin)s 21),




Then >7, P(X)lé(aln( i1 = Bin)y21) = On1(21) + On3(21) and [0,3(21)] S On2(2) sup, |P(x) —
P(z)|. Also notice that 6, 1(21) and 6, 2(21) can be rewritten as

en’l(ZI)_/JEJDEi.T)Z(S(u’Zl)le’

0,172(21):/Epzlx)ﬂ(;(u,zl)]d]vl,

in which N; is defined in Lemma E.2. Following part 2 of the proof of Theorem 4.1 in Cher-
nozhukov (2005), for type 1 and 3 tails, %lg(u, z1) € Cg(E) for any fixed z, and for type 2 tails,
%l(g(u, z1) € Cg(E) for z; < 0. Also, by Lemma E.2(2), Ny ~» Nj. Therefore, for any z for type
1 and 3 tails and negative z for type 2 tails,

On,1(2) ~ boo,1(21) = /E Pé)la(u, z1)dNy

B2 (2) ~ Os2(21) = /E lem)|l5(u,z1)|d]\71.

This implies that, for the aforementioned region of 21, fue 2(21) = Op(1), 0n.3(21) = Op(Op.2(z1) sup, |P(z)—
P(x)]) = op(1), and thus

> pg{)lé(al n(Uin = Bin), 21) = Os0,1(21).
i=1 i

The last thing to check is Y ;" P(X) (a1, (Uin — Bi,n)s 21) — +oo for type 2 tails when z; > 0.
Again, following Chernozhukov (2005), if 21 > 0, a1, = 0, B1, =0, l5(u, 21) > 1{—-6 <u < 0}z
if u> -4, and l5(u, 2) = 2+ 0 if u < —9. Because P(a,U;1 > —d) — 1, I have,

n

D; -
Z mla(anUi,l, 21)H{on Ui < =6} < Z HanUin < =0} = 0,(1),

i=1 E i=1

and
n

D, n
Z mla(anUm,zﬁﬂ{anUm > —0} 2 Z'Zl]l{anUi,l > 8} = +oo,
i=1 ‘ —

which lead to the desired result that

n

D;
; P(Xi)lé(al,n(Ui,l — Bin), 21) = +00.

Noting that Q1 oo(21,k) = —kz1 + fE %lg(ul, 21)dNy, I have shown that, for all types fo tails,

Ql,n(zly k) ~ QLOO(Zlv k)
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Similarly, by denoting Qo o (20, k) = —kzo + [5 %l(g(u(), 20)dNp, I can show that

Qo.n(20) ~ Qo,00(20)-

Step 2:

From the proof of step 1, it is sufficient to show the asymptotic independence of
n
Uy o= Wi(Di, P(Xi))ls(ern(Uin — Brn), 21)
i=1

and

Vo, =Y Wo(Di, P(Xi))ls(a0.n(Uio — Bom) 20)
i=1

for any (z1,20). Also I have already shown in step 1 that

Uy~ dg1(j,d, x)dN1(j,d, z)
Ey

and

\IIO,n ~ (1 - d)g()(]a d,._’E)dNo(j, da "L‘)
Eo

Therefore, I only have to show that, for any pair of constants (¢1,tg),

Eexp (Etl\I/Ln + %tQ\I/(),n) — Eexp <;/ tldgld]\ﬁ) Eexp <€/ to(l — d)gng0> .
FEn Ey

This is done by Lemma E.2(3).

Step 3:

From the results in step 1 and 2, I obtain the joint convergence:

(Qin(z1,k), Qon(z0,k)) ~ (Q1,00(21, k), Qooo(20,k)) and Qi oo(21,k) 1L Qo o(20, k).

By the continuous mapping theorem,
Qin(z1,k) + Qon(20,k) ~ Q1 0021, k) + Qo,00(20, k).

This result can be easily improved to hold over finite pairs of (z1,z29). For fixed k as the limiting

of 7,n who satisfies Assumption 9, recall that

Qjn(zi1, k) = — Z W;(Di, P(X;)) oz + Z W;(Di, P(Xi))ls(0tjn(Uij — Bjn), )
i=1 =1
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and -
Qjoo(zj0 k) = —kzju + > Wi(Dy 5, P(Xi)ls( T g 20)-
=1
Then

L L
> 1Qum(z10 k) + Qon(z0, )] ~ D [Q100(210, k) + Qo020 ).
=1 =1

This is the finite-dimensional convergence of the objective function. Also notice that Qoo (21) +
Q0,00 (20) is convex in (z1, zg). Therefore, in order to apply the convexity lemma as in Chernozhukov
(2005), I only have to further verify two statements: (1) Q; (z;) is finite over a non-empty open set
of (2;) and (2) Zjc0(k), j = 0,1 is a unique pair of random variables who minimizes » _,_ 1 Qj 0o(2;)-
In fact, (1) can be proved similar to the proof of Theorem 4.1 Part 2(II) in Chernozhukov (2005).
(2) holds by the fact that k satisfies Assumption 9. One sufficient condition for Assumption 9 is
k € [k1,k2]/(L£1U L2)'8, in which

1 1 1
= : —— =k P =k
L; {k: € [k1, ko] :P g PlA,) >0 or ; PlA,) + e >0

for some h and p € M(l),l < h — 1}.

Then, the convexity lemma implies that

(ZAl,n(k:), Zon(k)) s (Z1,00(k)s Zo,0o(K)) = (argr)mn Z [ kzj + ZW ijs P(Xi ) (Tijs 25)
21,20)€ER? §=0,1

Step 4:
Recall that

Qjn(z, k) = = > Wi(Di, P(X0))Tzj + Y Wi(Diy P(Xi)ls(0tjn(Uij = Bin)s %)
=1 i=1
and
Qjoo(2j, k) = (-kzj + > Wy(Dyj, P(Xi)s(Ti g Zj)) :
=1
Then I have

(Zin(k), Zon(k))fey = argmin >~ > Qj(z, ki)
(21,020,121 ER?E 121 =01

18Lemma E.5 and E.6 show that when k € [k1, ra]/(L£1ULs), uniqueness and tightness of Z; (k), j = 0,1
hold. This sufficient condition will be used later in the proof.
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When k; satisfies Assumption 9 for [ = 1,2,---, L, by repeating Step 1-3, I can establish that
L L
D Qinlzink) = DY Qjeolzins k)
1=1 j=0,1 I=1 j=0,1

By the same Convexity Lemma used in Step 3, I have
(Z1,n(ke)s Zon(ki)iey ~(Z100 (ke)s Zo,00 (Ki))iy

L n
= arg min Z Z —kizj + ZWj(Di,j,P(X@j))lg(ji,j,z%l) .
(21,0,20,0) {2, ERZEFD 5201 11 i—1
Step 5:
I aim to prove the result by applying Theorem 13.1 of Billingsley (1999) with T}, = [k1, k2]/(£L1ULy)
because as mentioned above, all the discontinuities of the Z; (k) occurs in £;. In fact, with
(k1,k2) ¢ L1 U Lo, T only need to show (Z1,(k), Zo.n(k)) indexed by k € [k1, 2] is tight. Then
based on Theorem 13.3 of Billingsley (1999), it suffices to show that (1) T},’s complement in [k1, K9]

is at most countable, (2) for j = 0,1 and every ¢,
lim | P (|Zj,00(k2) = Zjoo(r2 = 0)] 2 €) + P (|Zj0o(k1) = Zjoo(k1 +0)| 2 €)| =0, (E.22)

and (3) for j =0, 1, any positive €, and any 7, there exists constants ¢ and ng such that

P (W (8)] =€) <n (E.23)
in which
S0 = sup {|Zj,n<k2> — 2k A | Zy(ks) — Zm<k2>r}.
k1<k2<ks,kzs—k1<d

(E.22) holds by Assumption 9. For (E.23), I focus on the case for j = 1. The case for j = 0 can
be handled similarly. First, by convention, I define Z; (k) as the left limit of the sample path,
that is, Z1 oo (k) = limy | Z1 00 (k). Notice that Z; o (k) is piece-wise constant and the jumps only
occur when k — ﬁ = > ith %1{‘% < Jnyor k=73, %1{% < jh} for someAh such
that 7}, = 1. By Lemma E.2(4), for k; < ky < ks, such that ks — ki < 1, either Zj ,(k2) = Zj (k1)
ot Zju(ka) = Zjn(ks). This implies that (E.23) holds whenever § < 1. Last, for k € £y, k can
be written as ZZI;I Ni% where {xi}ih:l are the point mass of the CDF of &j i, {NZ-}Z-IIZ1 are
a sequence of nonnegative integers, and I; is the total number of point mass, which is finite by
Assumption 8. Since % > 1, 251:1 N; < kg which implies that the cardinality of £ is at most
finite. Similarly, the cardinality of L is also finite. This implies that T),’s complement in [k1, k2]
is finite. Hence by Theorem 13.3 of Billingsley (1999), the marginal processes Z; (k) and Zo,, (k)
indexed by k in D[ky, ko] are tight and (Z;,(k), Zon(k)) converges to (Z1 00(k), Zo.0o(k)) under
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Skorohod metric.

E.5 Proof of Theorem 4.2

First note that

kyr k. Ky ks _
arn (@ (FRE) — a1(GE)) qo(FRE) — qo(5F) T &1 ;
- kyr k1 kyr ks U &0 -
Wn agu(gRt) — ao(*E)) @i (") — ai (%) plm= —1)
Hence,
G N Vky
A1n maX(Zl,n(mk:l/) — Zl n(kl’)a g;:: (ZO n(mk:l/) — ZO n(kl/)))
k‘l/
max(Z1,c0(mkir) — Z1,00(kir), p(Zo,00(mkir) — Zo,o0(krr)))
o kb .
Similarly, aao,n ~ maX(Zl,oo(mkl/)*zl,oo(kl/)zlﬁ(ZO,oo(mkl/)*ZO,oo(kl/))). By combining the above results

with Theorem 4.1, I obtain that

Znk) =t (@) — () = 25 (k)

Note that the limiting distribution is non-degenerate even when p = 0 or oco.

E.6 Proof of Proposition 4.2

L
é‘n(z fl(j(Tn,l) - Z TZQ(Tn,l))

=1 =1
L L

:OA‘n(Z(fl —1)q(Tni)) + dn(z F1(q(Tn1) — a(Tn)))
lzl =1 5

=an (D (7 = 1) (a(70) = a(0))) + @n (Y #(@(Tag) = a(70))).
=1 =1

Since ;5 (g; (1) — ¢;(0)) — n;(k), 2o = O,(1) for j = 0,1, and 4; — ;, the first term is o,(1).

b .
Aj,n

The second term converges to ZZL: 1 ZS5(kr). This concludes the proof.

E.7 Proof of Theorem 5.1

The proof follows the five steps in the proof of Theorem 4.1 which I will not repeat. The key

ingredient, Lemma E.2, is replaced by the following Lemma.

Lemma E.3. Let P,; = > ', 1{I; = i}. Under the conditions of Theorem 5.1, for j = 0,1,
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(2) For N; = Z?:l Pn,i]l{aj,n(Ui,j - Bj,n)’DiaXi}y

]\A/‘]ik ~ N; = ZFZ-J]I{%J,D@‘,]‘,XM}-
i=1
(3) Let

1
gl(uax) = 7[5(’&,33,21), go(u,x) =

P(x)

1
1_7]3(@16(“7177 20),

and .
Uin = (iDi+ (1= §)1 = D)) Prig;(ajn(Uij — Bjm), Xs).
=1

Then for a pair of constants (t1,to),

Eexp(ztl\lﬁjn + gtO\I/()’n) — Eexp(?/

tdgndNDE exp(i [ to(1 — digod i),
Ey

Ep
in which Nj is defined in (2).
(4) The distances between the two closest discontinuities of the marginal sample paths of the two-

dimensional stochastic process (an(k), Za‘n(k)) indexed by k are both greater than 1.

E.8 Proof of Theorem 5.2

The proof is divided into three steps. For j = 0,1, denote Z7, (k) = a;(q; (™) — j(0))'? where
o p is the infeasible convergence rate defined after Assumption 7. In the first step, I want to show
that (77 ,,(k), Z; ,(k)) as a two-dimensional stochastic process indexed by k in D([r1, r2]) converges
weakly to (Z1,00(k), Z0,00(k)) defined in Theorem 4.1 under Skorohod metric. In the second step, I
want to show that &;(¢*(m) — ¢(7)) as a stochastic process indexed by k in D([k1, k2]) converges
weakly to Z$ (k) defined in Theorem 4.2 under the Skorohod metric. Last, I want to show that
a;(4(m) —q(m,)) as a stochastic process indexed by k in D([r1, k2]) converges weakly to 0 under the
uniform metric. Combining the results from the last two steps, I can establish the desired result

that
&y, (G (1) — 4(m)) = G5 (4" (1) — a(m)) — &5 (4(m) — a(1)) ~ Z (k).

Step 1.
n
(27 (k), Z5 (k) =argmin ) {— > " P WDy, P(X) 72
(:122) j—o1 % i1
n
3 PLViDs PO is(aga(U = 050),)
i=1
If the replacement is allowed, P, ; = Z?:l {1 =i}, (Ina,In2, -, Inyp) is a multinomial vector

97t is different from Z (k) = & (¢*(m) — 4(1))- q; (7p) is defined before Theorem 5.2.
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with parameter b and probabilities (2, , 1), If replacement is not allowed, {P,;}?_; has b 1’s

and n — b 0’s and each combination of {P, ;}I" ; has equal probability % The proof of this step
follows the five steps in the proof of Theorem 4.1 which I will not repeat. The key ingredient,

Lemma E.2, is replaced by the following Lemma.

Lemma E.4.
(1) %Z?:l P, W;(D;, P(X;)) = 1 a.s.
(2) For N]* = Z?:l Pn,i]l{aj,b(Ui,j — Bj,b)aDiaXi};

o
Nj ~ Nj =Y 1{Ji 5, Dij, X5}
=1

(3) Let

: (x)lﬁ(uvl'az())a

(1)l6(%l‘,21)’ g0(u: ) = T —poy

g1(u, ) = Pla

and .
Ujn=> (iDi+ (1= §)(1 = D)) Puig;(a;p(Uij — Bjp), Xi).
=1

Then for a pair of constants (t1,to),

Eexp(%thfl’n + gt()\I/()Vn) — Eexp(E/

t1dg1dN1)E GXP(E/ to(1 — d)godNo),
Ey

Eo
in which Nj is defined in (2).
(4) The distances between the two closest discontinuities of the marginal sample paths of the two-

dimensional stochastic process (an(k), Za‘n(k:)) indexed by k are both greater than 1.

Step 2.
First, I note that

*

a3(d" (1) — q(0)) = —b-Z5 4 (k) —

a1y Qb

*
Q

Zg,b(k)7

o pmax(qy (myr) — 41 (1o00), 4o (mTorr) — G5 (T6,00))
— max(Z1,00(mk) — Z1,00 (k) p(Zo,0c(mky) — Zo,00(kir))),
and similarly,
o p max(qy (mor) — G (o), do(mTorr) — Go(To,00))

1
—>max(;(ZLoo(mkl/) — Zl,oo(kl’))7 Z07oo(mk'l/) — Z()po(kl/)).

By step 1, I have

(Z7 p(K), Zg,b(k)) ~ (21,00 (k)5 Z0,00 (K)).
Therefore

M(Zl,m(k) — ﬁZO,OO(k))
max(Z1,c0(mky) — Z1 00 (krr), p(Zo,00 (mky) — Zo,00 (k)

&, (G (1) — (7)) ~
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Last, I have that a;(q;(m) — ¢;(0)) — n;(k) uniformly in k& € [k1, ko). Combining this with the

above result, I obtain that

VEi(Z5 (k) = pZ§ o (k)
max(Z1,c0(mky) — Z1,00(kir), p(Zo,00 (mky) — Zo,00 (k1))

a5 (q* (1) — q(m)) ~ 25, (k) :=

This concludes step 2.

Step 3.

By construction, 7yn = 7,n% — oo. By Theorem 3.1, ; ,(k)(q;(m) —q;(7)) as a stochastic process

indexed by k is tight. I only need to show )\L”(k) — 0. To see this, I note that, by step 1,
7,

ap = Op(min(ay p, agp)). Furthermore, since k € [k1, ko], I have

I e
X (B) " X B) =\ ey

=o(1).

This concludes the proof.

E.9 Proof of Corollary 5.1

By Assumption 13 and Theorem 5.2, I have
27 (k) Su(k) ~ Z5 (k) /o (k) in Dlk1, ko).

Let p be the Skorohod metric on D([k1, k2]). Since 0 is a constant function, the map p(s,0) =

SUDkelx, i) 8] 18 continuous in s € D([k1, ke]). Therefore,

sup |27 (k)/Su (k)| ~  sup |Z5,(K)/o (k).

ke[ﬂl,HQ] kE[Hl,KQ]

Next, I note that supyc(y, x,) |25 (k)/o (k)| is continuously distributed by Lemma E.8. Thus,
al—a L> Cl—a
in which C;_, and Cy_, are the (1 — a)-th quantiles of

sup | Z¢*(k)/Sn(k)| and sup |Z5 (k)/o(k)|, respectively.

kE[Hl,fiQ] kE[Hl,Hg]

This implies that the (1 — a)-th uniform confidence band is consistent, that is,

lim P (q(i) c {Cy(?’z) = S (k)Cra s d() + sn(k)éla/@n} ke [m,@o -

n—oo n
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E.10 Proof of Theorem 5.3

If {7 }n>1 € T'ep and 7, < 7,1 for n large enough,
ég(Tn) = 62”(7-”)

By Theorem 5.1,

P (Q(Tn) € <qA(Tn) - C{L_%(Tn)7(j(7—n) - 6% (Tn)>> =1l-a.
If {7, }n>1 € T'e and for n large enough, 7, > 7, 1,
53(7'71) = ézlzf(Tn)

and thus

P (q(ra) € (4(m) = Cl_g (), 4(7a) = Ch()))
>P (q(Tn) c <(j(7’n) — 5{72%(%),(}(7’”) — 5%"(7'”))) =1—a.
These two situations exhaust all sequences in I',.

If {7, }n>1 € Lint, for n large enough, I have 7, > 7, 1. This implies that

P (a(r) € (a(m) = s (7 d(m) — Ch (7))
>P (a(r) € () =GPy (7). () = C¥"(r) ) ) =1

where the last equality is by Theorem 3.3.

If {7n}n>1 € I'yeg, for n large enough, I have 7, > 7, 2. This implies that
Ci () = Ci™ (1),

and thus by the assumption in the theorem,

P (a(ma) € () = Ol g (7). () = Ch() ) ) = 1 — .

E.11 Proof of Proposition 5.2

It suffices to show that &, (g(0) — ¢(0)) ~» Zlel 7 Z5 (k;). Then Proposition 5.1 shows that Cj, is
consistent for the a-th quantile of ZZL: 128 (k).
First, by Theorem 3.4, fj LN & for j = 0,1. This implies that (41,42, %3) LN (71,72,73) where
(71,72,73) is the unique solution to the follow system of equations:
3 3 3
Yom=1, > mk =0, Y ik ®=0. (E.24)
=1

=1 =1
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In addition,

3 3

nd(0) — 4(0)) = dn{zmm,l) - TZQ(Tn,z)]} n an{zm [9(nt) - q<0>]}.

=1 =1

Since (41,92,43) == (71,72,73), by Proposition 4.2, the first term converges weakly to Zle MZS (kp).

For the second term, since a;n(qj(7a1) — ¢;(0)) — n;(ki) = k;fj and aé;ﬂﬁ = 0p(1), by (E.24), I
have

3

and S nlatrn) — a1 = (2 + 2 Y o)) = 0,00,

« [0
=1 1n 0,n

This concludes the proof.

E.12 Proof of Theorem 5.4

Let f(l) 5(()1), f%z), and §82) be the EV index for Yl(l), Yo(l), Yl(Q), and YE)(Q), respectively. Denote
c(s,t) = kj~ tm,i L Then following the proof of Theorem 4.2, T have
-1

1) o) al?
Y s o o)
B R e I R GRS
1n1 1n 1n
a(()z) @ ) ) a§2) e . a(()z) _e®)
(17)12 — v~ c(e), )pa, (17)12 v 8 e, &P)ps, and (17;2 BRIt
1n1 0n1 0n1

(E.25)
In addition,

G, <q(1)(k) — q(%(k))

ny n2

@) = a0 — a5 — o) — @ () — i (o) + @l () — o ()

(
n 0 0
ni ni ni n2 n2 na

Following (E.25),

oo ks k
adm(m) %(m»
(1) ag) (1) af’) 2) 5) @)\ o)
:Hlil’l{vl , <a(i)l>‘/0 ’ <a(i)2>‘/1 < a >V }Zl,’oo (k) +0p(1)
1

)
1,n1 1,n1 n1
)p3

—nin{ V", (c(e”. &)1 ) Vi ,(%)v@ (W)v 212200 + 0,00

V>1

in which

(s) _ \/kT’

j=0,1, s=1,2.
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Similarly,

AR k
(@ () = 45 ()
(2) (1) £(2)
1 c
Zmin{ <(1)(1)>V1() vy ,<(§°’£>>V1(2), <W>%(2)}Zo,£o)(’f) +0p(1),
c( 1 afo )P1 Ufl v&o
N7 CILAN L
an(q (n2) 4 (n2))

£(2) 5(2)
:mm{ <U)>V1(1) (“(2)>v0<1>, v, <c<a§2>,£é2>>p2)%<”}25 S k) +0y(1),
C( 1 afl )Ps3 (fo &7)p

and

. a2k 0, k
(G )<772) — g5 )<;2

5(2) 5(()2) 1
=min B S 7 T — V(l) (U>V(1)7< )V(2)7V(2)}cho)(k) +o (1)
{< GRETI ) P e, e €, ey ) 0 ST g

Since the four min{-} terms are all O,(1) and at least one of them is non-degenerate, there exists

a non-degenerate random variable Z Ts(k) such that

o (q(”(’“) - q<2><k>) - 7Tk,

ni na

In addition, since the min{-} terms are independent of k¥ and by Lemma E.7, Z S)(kz) are all
continuously distributed for j = 0,1, s = 1,2, ng(k) is also continuous. Followmg the similar

argument in the proof of Theorem 5.2, I can also show that
x| [ A, F k (s, K k
G| (a0 = dV ) ) = (@@ —dP (D) ) |~ 285 (k).
bl bl b2 b2
The detail is omitted for brevity. This concludes the proof.

E.13 Proof of Corollary A.1

I only have to show the weak convergence of P(X € .|Y] = y) to ), P(a)p1{z; € .}, that is, for any
F € Supp(X) with OF N {x1, 29, ,o7} = 0, limy_, ) P(X € FIY1 =y) = S pel{x; € F}.
I first claim that for an arbitrarily small constant =y, there exist a small constant 7, such that for

a‘nyt:17"' 7T7 lf |y_q1(0)| <777 Sy,tc{x:’x_mt‘ Sf}/}

Suppose not, since T is finite, as y | ¢1(0), there exists a ¢t and a sequence x,; € Sy, such that
|y — ¢| > 0. Also because z,; € Sy, there exists a corresponding e, ; such that g(zy¢,ey:) < y.
Since Supp(X) x [0, 1] is compact, there is a convergent subsequence {x,/ ¢, ;} of {xy ¢, ey} With

limiting point (zy,ey). Since g(xy +,6y+) < y' and g is lower semi-continuous, as y' — ¢1(0),
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g(wy,ep,) < liminfy 0 0y 9(Ty t,64¢) < q1(0). So g(wy,e),) = qi(0). This means 2y € Sp. But
|zy — x| > 9. In addition, Sy ; is monotone decreasing in y by construction so {x, ;} C Sy, .

This implies d(zy, Sy,,.) = 0 for some t' # ¢, which contradicts with the construction of Sy, ;.

Let 8o = ming, +,)eSoxS, |[7t — v|| and B(z,d) be a ball with radius d and center z. Then when
y is small enough, S, = S, N B(x¢,d0/2), which is defined independent of the initial partition
{Syo.t}E_1. This implies p; is well defined independent of Sy, ;. Furthermore, for any F such that
OF N{z1,x9, - , o7} = 0, either d(xy, F') > 0 or d(xy, F¢) > 0 for all t = 1,2,--- ,T. Whenever y
is small enough, either s,;, C F if d(z, F¢) > 0 or S, N F = 0 if d(z, F) > 0. Therefore, for some

arbitrarily small -, there always exists a y small enough such that
|[P(X € FlY1 =y) — Zpt]l{fﬂt € F}
¢

T |E1{X € §,, N F}22X)

> >
9 )
= | El{xes,) 200

— pt]l{l’t S F}

T

< lpye — pill{z, € F}
=1

<Mr

This implies that P(X € .|Y; = y) weakly converges to ), p;1{z; € .}.

E.14 Proof of Corollary A.3

In the proof of corollary A.1, I have shown that for any v > 0, ng C B(zy,7y). I next show that it
is also true for S§ ;, that is, Sy, C (So,t)”-

Suppose not, there exists 79 > 0 and a sequence z,,; € Sy, such that d(zy.t,S0t) > V0. Tyt € Syt
implies that there exists a corresponding sequence {e, } such that g(z,, e,+) < y. Then there ex-
ists a convergent subsequence (¢, e, ¢) with limit (2, €') such that g(z',¢’) < liminf,_, o) g(@y¢, ey4) <
¢1(0). This implies 2’ € Sp. But d(2/,S0¢) > 70, so 2/ € Spyp for t’ # t or 2’ = z,, for some
r=1,2,---,R% But Sy 1 is decreasing so I have d(z’, Sy,

construct {S¢ ;17 and {ngt}fil.

) = 0, which contradicts with the way I

0,t

The above claim implies that whenever y is small enough, Sz(j,r = B(zr,00/2) N Sy and Sy, =
(S0,)%/2 N S,. Then {S¢, 1) and {S¢,}7_, are defined independent of {S¢ ,}7; and {S% ¥,
and they are disjoint. This implies that p?‘ir and py , are well defined independent of {S;OJ}tT:l and
{Sgo’r}fil. Furthermore, Sy is compact because for a convergent sequence {x,}°°; with limit z,
there exists a corresponding sequence {e,}°2; C [0, 1] such that it has a convergent subsequence
{e},} with limit . Then g(z,¢) < liminf, g(x,/,en) < ¢1(0), which implies z € Sp. Since all Sy,
t'=1,2,---,T are separate, it implies = € Sp ;. Therefore, F' N Syt — FNSo.

The potential discontinuity S of the limiting distribution is {z, }2%, U <S x N (Ufzcl(@So,T))) where
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Sx is the discontinuity of X. Let F be a collection of all open and relatively compact set such that

OF NS = (). Then, in order to show the weak convergence, it suffices to show that

oi(z) 4 dFx (z)
lim P(XeFlY1=y) = ]lXGFpT-i- p/ )
y—q1(0) ( i Z t J ; ! SoNF fSO,z o(x) /e dFx (x)

for all F with 0F NS = 0.

1X)

Notice that % — 04(X) Y& locally uniformly and F 1SS, — F N So,. Then, by the

dominated convergence theorem, as y — ¢1(0), I have

(X, fuly—q71X)
El{X eFnS Ct}M _EH{X € FNSy,} ?st =)

E1{X € 5¢ }200)  E1{X e 5¢ }f;yyqlq'lx)
et (

E]}.{X € FDS(),t}O't( ) 1/&
EL1{X € So}oe(X) /&

Therefore, for any fixed F such that 0F NS =0, as y — ¢1(0),

P(X € F|Y =)
E1{X ¢ F}254)
IE]l{X € 5,325
Z TENX e Fnsd, } 200 T EI{X € FnSg, A

>

OA(X, OA(X,
— E]l{X € Sy}Tyy) t=1 E]l{X € S?J]'Tyy)
FEI{X e Fnsi 2% ZT: . E1{X e Fns;,} 20
= py,r Xy 2Pyt ANX,
S EL{X eS¢, 200 T ST gy e g 1A

T

JLEL{X € FnSpstoy(X)~ 1%
d
—>Zpr]1{37r € F}+ Z E1{X € Sp}oe(X)~1/e

This concludes the proof.

E.15 Proof of Lemma E.2
(1) is trivial.

For (2), it is known that a Poisson random measure (PRM) with the Lebesgue mean measure can
be written as > o, ]I{ZLI & € .} where &; is independent and identically standard exponentially
distributed. Then by Proposition 3.7 and 3.8 in Resnick (1987), I can transform and augment the
baseline point process and show that PRM(p;) = N;(.) :== Y2, 1{(F ;. Di;, Xi ;) € .} for j = 0,1,
in which for j = 0,1,

pi(a,0) x {d} x F) = /F (dP(x) + (1 = d)(1 = P(x))) P} (dz|Y; = ;(0))(h;(b) — hj(a)).
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I focus on j = 1. Since P;" (X € .[Y1 = ¢1(0)) is a bounded measure, its discontinuities are at most
countable. So there exists F, a basis of relatively compact open sets of R? such that Fj is closed
under finite unions and intersections and for any F € Fi, P (X € OF|Y; = ¢1(0)) = 0. Then by
Lemma 9.3 and 9.4 in Chernozhukov (2005), I only have to verify that, for any F' € F; and any
interval (a,b), ENy((a,b) x {d} x F) — u1((a,b) x {d} x F). Notice that [ /a1, + 1. | F,1(0)=0
or —oo for any | € (—o0, +00) for type 1 tails, any [ € (—o0,0) for type 2 tails, and any [ € [0, +00)
for type 3 tails. Let S, = (¢1(0) + B1,n + a/a1,n,q1(0) + B1n + b/c1 ) and fi(y) be the density of
Y1. By the continuous mapping theorem, I obtain that

ENi((a,b) x {d} x F)
:P(D = d, X e F|a1,n(U1 — Bl,n) S (CL, b))nP(oan(Ul — ,31771) S (a, b))

B Js, P(D=d,X € FIY1 =y) fi(y)dy B
=(1+o0(1)) To )y (h1(b) — hi(a))

S, p(dP(@) + (1 = d)(1 — P(x)))P(dz|Y = y) fi(y)dy )
Js, fr(y)dy (ha(b) — ha(a))

=(1+0(1))
- /F (dP(x) + (1= d)(1 = P(2))) Py (dz[Y1 = q1(0)) (h1(b) — ha(a)).

This is the desired result for the marginal convergence.

For (3), let (Uj;,X];)j=01 be an iid. sequence such that (U, X];) 1L (Ujy, Xj,) and that
(U}

LX) is dlstrlbuted as (Ui, X;)|D; = j. Let p= P(D; = 1). Then
Eexp(it1 ¥y, + itgWo,)1{D; =1,--- ,Dy=1,Dg1 1 =0,--- , D,, = 0}

=E exp <Et1(z g1(a1n(Ui1 = Bin), Xi)) + ito( Z go(aon (Ui — ﬂo,n),Xi))>

i=1 i=s+1
X LHD; = 1}, {Di = 0111}

=p°(1 —p)" *Eexp <5t1(z g1(a1n (U1 = Bin), Xf,l)))

=1

x Eexp (%tg( Z go(aon (Ul g — Bon)s ))) .

i=s+1

Therefore, by symmetry,

Eexp(gtl\lll n+ zt[)‘l’() n)

_Z{ C* )" *Eexp (zt1 291 a1 (Uf i1 Bi,n), 2{,1))>

=1

X Eexp <%t0( Z 90(a0 n( 60 n) ))) }

i=s+1
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Define E} for j = 0,1 as follows:

for type 1 tails (§; = 0): E; = [~00, +00) x Supp(&X),
for type 2 tails (§; > 0): E} = [-00,0) x Supp(&X),
for type 3 tails (§; < 0): E; = [0, +00) x Supp(X).

/ / 12 .
Let Nj be PRM(u) on E with

pi(la, b] x F) = /F(J'P(w) + (L= j)(1 = P(x))) P (dz|Y; = ¢;(0)) (h;(b) — hj(a))

and
js+(n—s)(1-j)

NJI() = Z ]1{(0‘]n( = Bjn) X )6}

i=1

Let r, = v/2nlog(log(n)), S, = {s € Z,|s —np| < ry}. Then,

EeXp(%tl\PLn —i—gto\lfo,n) — Eexp(%/ tlgldN{)Eexp(%/ togodN(l))
E1 EO

< Z Crp®(1 “*|Eexp (%h /E’ gulﬁ{) Eexp <it0 /E’ godﬁé>
1 0

SESH

— Eexp (5/ tlgldN{> Eexp (5/ togodN6> ‘
E1 EO

+ 3 Cipt(1— p) | Bexp (m /E , gldN{> Eexp (5750 /E 90dN6> (E.26)
1 0

seS¢

—Eexp (5/ tlgldN{> Eexp (i/ togodNé) ‘
El EO
< Z “*|Eexp (%tl /E’ gld]/\\7{> E exp <ft0 /E’ god]%)
1 0

SESH

— Eexp (%/ tlgldN{> E exp <2/ togodN(’)> ‘ + const x Z Cop®(l—p)"°
Eq Ey

s€SE

By the law of iterated logarithm, » __g. Cpp®(1 —p)"~* = o(1) as n — oo. Therefore, the second
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term is asymptotically negligible. For the first term, if s > [np],

U

Eexp(ftl/ gldﬁ{)—Eexp(ftl/ g1dN7)
1

[np]
g‘EeXp (itl/ gldN{) Eexp ztlzgl a1, (Uj 1 = Bin), ) ’
£y

=1
[p]
+|Eexp | ity Zgl a1, (U1 — Bin), X ) —Eexp <ft1 /E’ gldN{>
1
[np] s
<[Eexp | it1 Y gi(arn(Uiy = Bun) Xi0) | |exp it Y gilarn(Ufy — Bin), Xi1) | —1
i=1 i=[np]
[np]
+|Eexp [ ity Zgl(al,n(Uz‘/,l — Bin), 1(71) — Eexp (%tl /E’ gldN{>
=1 1

. 1/2
<E|2—2cos(t; Y, gi(an(Uf; —Bin) X[1))
i=[npl+1
[np] _
+ |Eexp | ity 291 a1, (Ui — Pin), Xi1) | —Eexp <it1 /E/ gldN{> ,
=1 1

(E.27)
in which the last inequality is by the fact that |exp(it) — 1|* < 2 — 2 cos(t).

Similar to the proof in step 1,

[np] P(a1,n(Ui 1 — Bim) € [a,b], X}, € F)
[”p]P(a WU = Bip) € a,b], X, € F,D; = 1)
o] / / P(dx|oin(Uin — Bin) = w)dP(oq n(Uin — Bin) < u)

—>/FP(9U)P1+(d$|Y1 = q1(0))(71(b) — 1 (a))
=4 ([a,b] x F).
Then by the continuous mapping theorem and the fact that g;(u,z) € Ci(E]), I have
[np]

291 10 (Ui = Bin), Xi1) ~ g1dNy.
Eq
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Similarly, because "= — 0, I have that

S [anrTn}Jr
Y lo(aaUiy = Bra). Xil < Y lgr(arn(Uiy — Bia), Xi)| = 0p(1).
i=[np]+1 i=[np]+1

Therefore, for the first term on the RHS of (E.27), I have

s

sup 2 —2cos(ty Z g1(e1n(Uj 1 = Brn), Xi1))
SESn,s>[np] i=[np]+1
[np+rn]+1 [ptral+l T
<2 | 1 — cos(]|t1] Z lg1(a1n (U] = B1n), Xi1)) | 1 Z 191(c1.n Uiy — Brn), Xin)| < |
i=[np]+1 i=[np]+1 '
[np+rn]+1 .
+219 > gilara(U], = Bin), Xi1)| > Tl
1=[np]+1
=0,(1).

Therefore, by the dominated convergence theorem, I have

S
sup E | 2—2cos(ts Z g1(Oé1 n( - b1 n) )) — 0.
SESn,SZ[nP] i:[np}Jrl
For the second term of (E.27), I have, by the dominated convergence theorem, that
[np] .
Eexp | it Zgl a1n(Uj 1 — Bin), ’Lll) — Eexp (itl/ gldN{) — 0.
2

=1

Combining the two terms, I obtain that

sup E exp Etl/ gldN{ — Eexp Etl/ g1dNj || — 0.
S$ESn,s>[np] Ef EY

If s < [np|, then Z[np] ! g1(a1,(U!y = Bin), ‘ < > [np . ‘91 a1 (Uj = Bin), X ) =

0p(1). By the same argument, I have

sup E exp gtl/ g1dN{ — Eexp Etl/ gldN{ — 0.
SESp,s<[np] 1 1

To sum up, I have sup,cg, ’Eexp (Etl fE, gldﬁo — Eexp (gtl fE, gldN{>
1 1

show that
E exp Eto/ godﬁé — Eexp gto/ godNy || — 0.
B} B
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This implies

Z Cflps(l _ p)n—s

E exp (gtl/ gulﬁ{) E exp <%t0/ ggdﬁé)
$ESn B E}
—Eexp (E / tldgldN1> E exp <2 / to(1 — d)godN0>
Eq Ey

< sup |Eexp gtl/ gld]v{ — Eexp ftlf g1dN] (E.28)
SESH Ei Ei
+ sup |Eexp gto/ godﬁé — Eexp ft()/ gngé
SESH E(’) E(S
—0

Combining (E.26) and (E.28),

‘IE exp (5251\1117” + %tollloyn) — Eexp <5/ tlQldN{) Eexp <;/ togodNé) ‘ — 0.
FEq Eo

Last, notice that the random variable [ 5 95AN. j’ is uniquely determined by its characteristic function
J

E (exp(gt /E/ gde]/-)> = exp <— /E/(l — exp(—%tgj))du;) 20

Similarly, the random variable | E; (dj + (1 —d)(1 - j))gjdN; is uniquely determined by its charac-

teristic function

Eexp (zt [ @+ a-aa- j))gjcuvj> = exp (— [ (1= esp(it(a-+ (1= 1~ d))g) duj) .

J

In addition, I have

[ (= exa(=ittid+ (1= )1 = d)gy))

J

= [ G+ (== ) = exp(=itg; )y

J

:/ §P(z)(1 — exp(—itg;))dp;(u,1,x) + / (1 —5)(1 — P(2))(1 — exp(—itg;))dp;(u,0, x)

:/ (1-— exp(—gtgj))d,“;‘(u’ z),
E

20See the definition of Laplace functional of PRM(u) in section 3.2 of Resnick (1987).
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that is, the two characteristic functions are the same. This implies
| sy = [ @i+ (-1 ggan;
j J

Therefore

E exp (E / tlgldN{> E exp <% / togodN5> = Eexp (E / tldgldN1> E exp (E / to(1 — d)godN0>
El EO E1 EO

and
’Eexp (it1 91, + ito¥o,n) — Eexp (2/ tldglle) E exp (z/ to(1 — d)godN0> ‘ — 0.
E1 EO

For part (4), it is easy to see that (7). n(k) Zon(k)) are piece-wise constant because for instance,

when j = 1 and k — Zl#h P(X ﬂ{an i1 < anUp1} < k for some h such that T}, =

1 p—
P(Xp)

Z#h B ]l{an i1 < apUp i} or k = Z#h Blx ]l{an i1 < apUp1} = k. Wlo.g., I assume
0 < P(X; ) < 1 for all . This implies that the dlstances between the two closest discontinuities for

(X )
1, then 21 n(k) = a,Up1. The discontinuity for the sample path only occurs at k —

the sample paths are minj<;<j, ﬁ > 1.

E.16 Proof of Lemma E.3

For (1), I compute its characteristic function conditioning on data ®,. Let i be the imaginary

{exp[ < ZZ]I{Il_z}W (D;, P(X )))]@}

=1 1=1 .
a8 }
— {1 — % LZZ; 1 —exp (%t (in(Dl,P(XZ))>>] }n

By the Taylor expansion, » ;" ; 1 —exp <it (%I/Vj(Dl, P(Xl)))> itk =Y e Wi(Dy, P(X7)) — 0 aus.
By SLLN,

number. I have

exp <5t(i > 1{L = iyWi(Ds, P(Xi)))> |®,,

i=1

—ZW Dy, P(X))) — EW;(Dy, P(X))) = 1 a.s.

So E{exp [ﬁ(}l S S W = iyW(D;, P(X. ))>} | D, } — exp(it) a.s, which implies the de-

sired result.

For (2), I first note that Z?:l ]l{ajm(UM - ﬁj,n)aD’iaX’L'} ~ Z?:l ﬂ{m,jaDi,j,Xi,j} by Lemma
E.2(2). Then (2) follows by Proposition 6.3 of Resnick (2007).
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For (3),

Eexp (i(t1¥1,n + to¥o,n))

n o n
=Eexp (Z Z ]l{]l = Z}E (tlglm(al,nUl,n, X, 21) + togg}n(ao,nUo‘n, X, Zo))>
=1 i=1

n
1 — .
=E !n Z exp (l(tlDigl,n(Oél,nUl.m X, z1) + to(1 — Dj)gon(0,nUomn, Xi, Zo)))]
i1

1 . "
=E [1 - > <1 — exp(i(t1 Dig1n(a1,nUt.n, Xi, 21) + to(1 — Di)gon(0.nUo.n, Xi, Zo))))] :
i=1
Conditioning on Dy =---= Dgy=1and Dgy1 =---= D, =0, I have

(1 — exp(i(t1 Dig1.n(01,nUrn, Xi, 21) + to(1 — Di)go.n(a0.nUon, Xis 20))))

n

n
i=1
s
=1

) . B.29

=31~ explitigia(arall X 2) + 3 (1 explitogon(aonli X)) 2

1=s+1

:Jl,s,n + JO,s,na
in which (U{J,X{J) is defined in the proof of Lemma E.2 and p = P(D =1). Then Ji s, 1L Josn
and

~ n 1 n
Eexp (i(t1 @15 +toWon)) = > Cop*(1—p)"°E [1 = ~(Jiom+ Josn)
s=0

Similar to the proof of Lemma E.2, it can be shown that J;s, — [(1 — exp(%tjgj))d]\fj{ = 0p(1)

uniformly over |s — np| < r,. Therefore,

n

_8 1 "
Z Cfbps(l — p)n E |:1 - g(Jl,s,n + JO,s,n):|
s=0
1 n
= Z Cop*(1—p)"°E [1 — g(Jl,Svn + J(),s,n):| +o(1)
|s—np|<ry

SEexp (— /(1 — exp(it191))dN] — /(1 — eXp(gtogo))dN(G)
“gexp (- [0 - oxplitign)ant ) e (- [0 xafitagn)ang)
=Eexp <— /(1 — exp(itldgl))djvl> E exp <— /(1 — exp(itg(1 — d)go))dN0>

=E exp (1/ tldglde) E exp (z/ to(1 — d)gong> :
E1 EO

In the above derivation, the first line is by the law of iterated logarithm. The second line is by

the fact that Jj, — [(1 — exp(ftjgj))dN]( = 0p(1) uniformly over |s — np| < r, and then the
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dominated convergence theorem because |[1 — L(J 55 + Josn)]"| < 1. The third line is because
Ji,sn 1L Josn and thus so are their limits. The fourth line is because, for any f € CK(E;-),
fE; fdN; = ij(dj + (1 —d)(1 —j))fdN;. The last line is because, for example, for j =1 and any
f € Ck(Ey),

E exp </ def) =E exp <Z Pi,lf(s7i717Di,1,Xi71)>
Eq

i1
=EIT2  Eexp(Ti1 f(Ji1, Dijt, Xi1)|[{Ti1s Dity Xig Fiso) (E.30)
=EI2; exp(—(1 — exp(f(Ji1, Di1, Xi1))))

—Eexp (- /Elu - exp(f))dN1> .

For (4), T note that Zi‘n(k‘) and Zon(k)) are also piece-wise constant as (Z7 o (k), Zo,00(k)), that

is, when k — #XF;) < Z#h B X* Ha,Ury < anUp,} < k for some h such that D} = 1, then

Zi“n(k) = anU;;l. And the discontinuity for the sample path occurs at

_Z Di ]l{an z1<anUh1}
X z;éh

or

D*
k= — ﬂ{anU,:l < OénU;;l} = k.
#Zh P(X7)

W.lo.g., I assume P(X ;) < 1 for all 4. This implies the distances between the two closest disconti-

nuities for the sample paths are min<;<y, P& ) > 1.

E.17 Proof of Lemma E.4

For (1), Let i be the imaginary number. When replacement is allowed,

<exp< ( ;;1{11_2}14/ (D, P(X ))>>|q>n>

(sF-omimr)) )]

211{11 = i}W;(D;, P(X )‘%)]
o)

: i

[ 1b 1
= l—bn<21—exp<z(b (D, P

Because % {3 [1—exp (%t(%Wj (D, P(X)))]} — it as b,n — oo a.s., the characteristic func-
tion converges to exp(it). This implies that + S°7 | 7" 1{I; = i}W;(D;, P(X;)) — 1 a.s.
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When replacement is not allowed,

1 — 1 —
=N "P,,W:(D;, P(X;)) = = P,;— D;, P(X it H(Dy, P(X E.31
b; Wi ( (Xi)) b;( , n)W( n; i) (E.31)

The second term of (E.31) converges to 1 almost surely by SLLN For the first term of (E.31), W;
is bounded and E($ >0 | (P, — %)I/Vj(Di,P(Xi)))2 < 3+ 2 — 0. This concludes part (1).

For part (2), EP,; = ~ b and Nj =y Hejn(Uij — Bjn), Xi, Di} ~ N;j. By Proposition 6.2 of

n

Resnick (2007), for N ;‘ and NN; as random element in the space of point measure,
P(N} € {ajn(Usj — Bjn), Xis DiYiy) == P(Nj € .).

Taking expectation on both sides, I obtain N 5~ Nj.

For part (3), I first denote (U

{1+ X[ ;) as is defined in the proof of Lemma E.2 and p = P(D = 1).

When replacement is allowed,
Eexp( (thfl n + tO\I/() n))

=E exp ( (ZZHI[ = i}(t1Digi(a1p(Uin — Bip), Xi) + to(1 — Di)go(co,s(Uio — Bop), X ))))

=1 =1

S|

n b
=K [1 - % ( Z (1 — exp(i(t1Digi (a1 4(Uin — Bip), Xi) + to(1 — D;)go(co s (Ui — Bop), X,J))))]
i1

n
i=1

= Z C?p ) SE{l — % [b Z (1 - eXp(Zt191(Oé1 b( - B b) )))

n b
+% > (1 —exp(itogo(aos(Ufy — Bos), X )))}} :

1=s+1
(E.32)

For s = [npl, BA S 1{(0ns(Ufy — Brp). X)) € -} = p4() and BES 5 1{(00s(Ufg -
Bop), X!) € .} — pg(.), where ,uj is defined as the mean measure of N} and Nj is defined in
Lemma E.2. Then by Theorem 5.3 of Resnick (2007), 2 Z[np] {(a1p(Ufy = B1p), X])} ~ N as
H — 0. By the same argument in the proof of (3) of Lemma E.2, T can show that this convergence

is uniform over |s — np| < r,. Therefore, uniformly over |s — np| < ry,,

= Z (1 — exp(i(trg1 (a1 p (U, — 1), X7)))) —= [1 — exp(i(tig1(u, 2)))] duf,

=1 By
and
w2 (1 explltomtana Uy ~ 5oa)s X)) 2 [ [1 = explltogo )] o
i=s+1
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Since the term inside the expectation of the RHS of (E.32) is bounded by 1, by the dominated

convergence theorem, the RHS of (E.32) converges to

/

exp{/, [1 — exp(i(t1g1(u, 2)))] dpy +/

—exp { /E [t~ exp(i(hdg (o,))] dp + /E [ - exp(ilto(1 — dygo(w )] duo}

=E exp <Et1 / dgldN1> E exp <Et0 / dgodN(]) ,
E1 EO

in which the first equality is by the relation between p; and ,u;- and the second equality is by the

[1 — exp(i(togo(u, )))] duo}

definition of Laplace functional of Poisson random measure with mean measure ;.

If replacement is not allowed, then by the exchangeablity of the weights P, ;,
Eexp(i(ti V1,0 + toPo,n))

ZEeXP< 7512ng1 a1(Uin — Brp), +toz (1 = Di)go(aop(Uio —50,17),)(1)))
=1

=E exp <Zt1/ dgld]\ﬁ) Eexp <€t0/ dgodN()) ,
El EO

in which the second equality is by the same argument in the proof of (3) in Lemma E.2 with n is

replaced by b.

(4) holds for the same reason as in the proof of (4) in Lemma E.3.

E.18 Tightness, uniqueness and continuity

Lemma E.5. Z; (k), j =0,1 are tight.

Proof. Here I focus on the case for j = 1. The proof follows the proof of Lemma 9.7 in Chernozhukov

(2005). The difference is that l5(u,v) is reweighted by the inverse propensity score %.

First, note that the limiting objective function is Q1 oo (21,k) = —kz1 + 5 %(zl —j)TdN1(4,d, z)
when j > —§. I can choose 2/ such that —kz/ + [; %(zf — j)TdN1(j,d,x) = Op(1). Let
2* = 27 + Mwv, where v = £1. Then by the convexity of objective function in z and the argument
between Equation (9.74) and (9.75) of Chernozhukov (2005), I only need to show that, for any K
and € > 0, there is an M large enough such that

P(min Q1 oo(2") > K)>1—=¢. (E.33)

v==%1

The claim holds trivially when v = —1. For v = 1, first note that P(z) <1 —c. When Y; has the
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type 1 or 3 tail,
d

P(z)

(zf + M — j)TdNi(j,d, z)

T

> 2+ M — AN, d, z
/[()K}X{l}XSupp(X) P(‘T)( ) ( )

(zf + M — k)t

1—c '
Because N([0, ] x {1} x Supp(X)) is a Poisson random variable with mean [ P(z)P;(dz|Y =
q1(0))h(k) — o0 as Kk — oo. For Kk — oo, N(]0,k] x {1} x Supp(X)) > (kK + 1)(1 — ¢) with

probability greater of equal to 1 — .

>N ([0,5] x {1} x Supp(X))

When Y7 has type 2 tail, I have, for any x < 0,

/E P?m) (z/ + M — j)TdN1(j,d, z)

>

(2 + M — §)TdN1 (5, d, z)

/[—oo7n]><{1}><Supp(X) P(x)
(zf + M — k)t

> N[00, k] x {1} x Supp(X))=——

Then similarly, N ([—oo, x] x {1} xSupp(X)) is a Poisson random variable with mean [ P(z)P;" (dz|Y =
q1(0))h(k) = coas k — 0. For kK — 0, N([—o0, k] x {1} x Supp(X)) > (k+1)(1—c) with probability

greater of equal to 1 — ¢

So by letting M be large enough, with probability greater or equal to 1 — ¢, I have

d
P(x)
> k2l kM + (27 + M - k)T (k+1) > K.

(z/ + M - j)tdNi(j.d, z)

Q1002 k) = —k2! — kM +/
E

This verifies (E.33). O

Lemma E.6. Let M(l) be the set of l-element subsets of N = {1,2,---}. Forj = 0,1, the sequence

(Dy, X j) are i.i.d such that D; is Bernoulli distributed with success probability P(X; ;) and X;; has

law PH(X € |Y; = ¢;(0). If P(Cicupyy = %) =0 Plicupey + gy = %) = 0
1 1 1

P(Zieu T-P(Xi0) — k) =0, and P(Zieﬂ 1-P(Xi0) + T=P(Xno) k) =0, for any h and p € M(D),

I < h—1, then both Z (k) and Zy (k) are unique minimizers a.s.

Proof. Here I focus on the case for j = 1. Following the notation in Theorem 4.1, J; = hfl(zgzl E).
By Proposition 6.1 of Koenker (2005) and Lemma E.5, Z; (k) = Jj, for some h such that 7}, = 1.

Then by taking directional derivative of the objective function,

k— P(;h) < Z P(D);)]I{Z- <} <k (E.34)
i#h
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Since J; is monotone increasing,

Py Pg’(i)n{z <h}y=k

i#h
1 (E.35)
< P =k
> 2 7%
1<h—1,ueM(l),h icp

=0.

Similarly, P(3 ;. 7 X)]l{J < Jp} + P(X) = k) = 0. Therefore, the inequality (E.34) holds

strictly. This implies Z; o (k) is the unique minimizer. O
Lemma E.7. Z; (k) is continuous for any k and j = 0,1. If K'(m — 1) > m and
E(m-—1)> infzesupp(alg(lfP(x))’ then

N Zjoo(k)+c

max(Z1,00(mk’) — Z1,00(K'), p(Z0,00(mk') = Zo,00 (K')))
is also continuous for j =0, 1.

Proof. Zi00(k) = Jp for some h with Tj, = 1. Because Jj, is continuous, P(Z] (k) = z) =
>nP(Jn = z) = 0. Therefore, Z; (k) is continuous. Similarly, Zy (k) is also continuous.

Assume hy and hs solve the following two first order conditions:

k' — Xhl Z P 1{\71 < jh1} = )

mk' — Xh Z P {z < Tny} < mk.
2 7,

Then hy = hy = h implies (m — 1)k’ < ( - for some X} € Supp(X). However, the imposed
condition rules out this situation. Thus hy # he and Z7 (mk') # Z7 (k). In fact, following the
same argument in step 3 of proof of Lemma E.1 in Chernozhukov and Fernédndez-Val (2011), I can
prove that Z; o (mk') — Zj 5 (k') > 0, j = 0, 1. Last, noting that function 1/ max(u, v) is continuous
on (u,v) € RT™ x RT, I have proved the stated result. O

Next, I aim to show supje(x, «,) |25 (k) /0 (k)| is continuous. Recall the definition of J;; and Jo; in
Theorem 4.1. I rely on the next technical assumption to derive the result.

Assumption 19. If p € (0,00), for any pair of positive integers (ho, h1), ’jhl’lfﬁjho’(;f(gl(k)iﬁno(k))

has at most L local extremum which are denoted as {kj(JTh,1 — pTne0) } =, for some finite integer

L. Furthermore, the following two conditions holds:

1. kf (T — pTne0) is continuously distributed forl=1,--- L.
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2. For any positive integers (ho, h1), any z, and anyl =1,--- | L,

(

for almost all k € [k1, ko).

Thy 1 = PTng0 — (m(k) — pno(k))
o(k)

= 2|kf (Tnnt — BTne0) = k) —0

If p =0, for any pair of positive integers (ho, h1), ]%;(;lgl(k)\ has at most L local extremum which

are denoted as {kl*(jhl,l)}lL:l for some finite integer L. Furthermore, the following two conditions
holds:

1. kf (T, 1) is continuously distributed for l=1,--- L.

2. For any positive integers (ho, h1), any z, and anyl =1,--- | L,

jh 1~ 771(k:) N ~
P ( 10T = 2|k} (Tny 1 = PTno0) =k ) =0
for almost all k € [K1, ko).
If p = oo, for any pair of positive integers (ho, h), |%§(;,£O(k)] has at most L local extremum which

are denoted as {kj(Tny0) -, for some finite integer L. Furthermore, the following two conditions
holds:

1. kf (JTny0) is continuously distributed for 1 =1,--- L.

2. For any positive integers (ho, h1), any z, and anyl =1,--- | L,

Tho0 — M0(k) x -
P < OJT = 2|k (Tni1 — PTne0) =k ) =0
for almost all k € [k1, ko).
This assumption is mild. For example, if o(k) := 1, the assumption holds automatically. To see

this, note that Jy, 1 — pJhe,0 is continuously distributed and k' (Jh, 1 — pJhe,0) does not depends

on Jp, 1 — pJny,0, that is, it is deterministic.

Lemma E.8. r1 and k2 are not in the discontinuity of either Zy o (k) and Zy o (k), and Assumption
19 holds. If p € (0,00), then

sup (27 oo (k) = P25 00 (K)) /o (k)|

ke [Iil ,Iﬁz}

18 continuous.
If p =10, then
sup |27 (k) /o (k)|

ke[k1,k2]
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18 continuous.
If p € (0,00), then
sup  |Z( (k) /o (k)|

ke [Hl 752]

1S continuous.

/ 1 / 1
Ifk (m — 1) > W and k (m — 1) > inszSupp(X)(lfp(x))7 then
c K’ Zcoo(k>_ﬁzcoo(k)
sup |Z5(K)/o (k)| = sup |~ N A i
kel k2] kel o] |0 (F) max(Z1 o0 (mk') — 21,00 (K'), p(Z0,00(mk') — Z o (K')))

18 also continuous.

Proof. 1 only consider the case for p € (0,00). The other two cases can be proved similarly.
Let Ly = {k : Dp = Lk = >,y Wi(Di1, Xip) or k = >, Wi(Di1, Xi1)} and Lyo = {k :
1—Dp=1k=3,_, Wo(Dio, Xip) or k =3, Wo(Dip, Xi,g)_}. Then the discontinuities for the
sample path of Z; .o (k) is Up>1L; . Since the cIosest distance between two distinct discontinuities
of Zj (k) is at least 1, there are at most finite number of discontinuities of either Z; o (k) or
Zp,00(k). This implies the closest distance between two distinct discontinuities of ZS (k) is strictly
positive. For a fixed event w, if Supje(., . [Z5(k)(w)| = z, then there exists a convergent sequence
fern (w)2! with limit k(w) such that |ZS (ky(w))(w)] — 2. Since Zj.0(k) is piece-wise constant, 1

and ko are not in Uj—g1 Up>1 Lj , there exist M (w) large enough such that for m > M(w),

z= sup [ZL(k)(w)/o(k)]

k€lk1,k2]
=(Z1,00(km) = pZ0,00(km) = (1 (k) = pno(k))) /o (k)|
=|(Tp, 1 = PTig0 — (m (k) = pmo())) /o ()],

in which I%m — 713()% D) < Zi<ﬁ1 Wl(Di,h Xi,l) < I%m, I%m — 71—P(£(;L o) < Zi<i7,0 WO(Di,O, Xi,o) < ]%m,
~ A A 0

and k € L(h1,ho) = Lj ;UL o UK (T}, — ﬁjfzo,o)}lel U {k1} U {ka}. Furthermore, let

Ap ={>2i<n Din > k2,3 ;< (1 = Dig) > k2}. Then on Ap, h; < h for j = 0,1. Therefore,

P( sw 1250 o) = <)

ke [Hl ,Hg}

< 3 (G0 = 30— (0l = o))/ ()] = 2. € Ll o) 4
h>kao (E36)

<> > P<|(jh1,1 — pThoo — (m(E) = pno(k))) /o (k)| = 2,k € L(hy, ho))

h>ko h1<h,ho<h

22 (w) depends on the sample path and thus is random.
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In order to bound the last equation, I note that Jn, 1 — pJny0 — (m(k) — pno(k)) is continu-
ously distributed, J;; is independent of (D; ;, &; ;) for any realization (hq,ho) of (Bl,ﬁo), and
(Ihi1> Tho0) L L(h1, ho). Hence, if ke Ly, 1 and for instance, k= > ich, Wi(Di, Xin), I have

P(1(Th01 = 00 = On(h) = a8 /o ()] = 2 = 3 Wi(Pir, )

i<hi
< [ P(1F00 = 3h00 — (00) = (i) fo()] = 21 3 Wi(Dr, 0) = )
i<hi
X dP<Z Wi(Di1, Xi1) < k)

i<hi

— [ (1901 = 300~ (0 (8) = ()| = = )ap (Zhj WDy i) < )

=0.

Similarly, if ];3 S £h0,0 and ]% = Zighl Wi ('Dl‘J, Xi,l))

P(!(Jhl,l = 0 — (k) — (o)) o B) = 2 k= 3 Wowz»,o,xz-,o)) 0.
i<hy

I € [k (T — 5Tho0)}ors
P<|<Jh1,1 — 50 — () — o) (k)| = 2,k € (ki (Tt — mmo)}%:l)
=S / - P(Whhl — 5Tho0 — (m (k) — pmo(k))) [ (k)| = 2|k (Tny.1 = 5Tna0) = k)
=17k
x dP (kl*(jhl,l — ﬁjho,o) < k) =0.

Last, if k = Ky or Ko,

P(|<jh1,1 = 50 — (m (k) — o)) for ()] = 2, = 1y or @) —o.
To sum up, I have

P(1(Th03 = 800 = O (8) = o)/ ()] = 2. € £, o)) =0,
Then by (E.36), I have, for any z € R,

P( sw 128 ®@)/o®)] =) =0

ke [Hl ,H,Q]
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This means Supyefx, x,) |25 (k)(w)/o(k)| is continuously distributed. The second result can be

proved in a same manner as in Lemma E.7. O
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F Additional simulation results

F.1 Simulation results with n = 300

Tables 9 and 10 report the coverage of BN-CI and NN-CI as well as their corresponding me-
dian lengths. I am interested in the QTE at quantile order k = (5, 10,20,40). In this case, the
corresponding quantile indices are 7, = (0.017,0.033,0.067,0.133). Y7 and Yy have four differ-

ent conditional boundary structures: (1) single minimizer, (2) multiple minimizers, (3) continuum

minimizers, and (4) mixture minimizers. When reading the table, the row indicates the potential

outcome Y7 while the column indicates the potential outcome Yy. The detail of each model can be

found in Appendix B. The subsample size used to compute Table 9 and Figure 13 is 120. Figure

13 shows the evolution of the BN-CI coverage over k € [5,40]. In all cases, the coverage before the

cutoff line k& = min(40, %) is close to the nominal rate. Figure 14 shows that the evolution of

BN-CI’s coverage against subsample size b is stable.

Ta = (1) (2) (3) 4) || = (1) (2) (3) (4)

0.001, k = 0.002, k =

5 10

@) 0949 0942 0048 0.939 || (1) 0971 0964 0972 0.952
(0.176)  (0.167) (0.152) (0.169) (0.186) (0.174) (0.160) (0.187)

(2) 0.940 0947 0947  0.948 || (2) 0.967  0.961  0.969  0.972
(0.155) (0.140) (0.116) (0.166) (0.162) (0.147) (0.126) (0.184)

(3) 0946 0950 0955 0.952 | (3) 0.967 0964 0970  0.964
(0.135) (0.122) (0.061) (0.106) (0.138) (0.127) (0.069) (0.118)

(4) 0950  0.954 0947  0.937 || (4) 0970  0.966 0962  0.961
(0.185) (0.177) (0.171) (0.165) (0.205) (0.200) (0.191) (0.186)

Ta = (1) (2) (3) 4) | 7 = (1) (2) (3) (4)

0.004, k = 0.008, k =

20 40

1) 0978 0971 0976  0.981 || (1) 0983 0978 0965 0.891
(0.229) (0.223) (0.208) (0.281) (0.193) (0.185) (0.166) (0.328)

(2) 0980 0974 0964 0.976 || (2) 0.968 0968 0.963  0.912
(0.202) (0.185) (0.165) (0.282) (0.164) (0.163) (0.137) (0.327)

(3) 0982 0975 0967 0.982 | (3) 0.983 0978 0966  0.903
(0.173) (0.166) (0.098) (0.198) (0.156)  (0.145) (0.089) (0.249)

(4) 0992  0.987 0984  0.989 || (4) 0.955 0938  0.948  0.949
(0.362) (0.354) (0.347) (0.348) (0.401) (0.399) (0.389) (0.274)

Table 9: Coverage of 95% b out of n bootstrap CI, sample size = 300
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Ta = (1) (2) (3) 4) | ™ = (1) (2) (3) (4)

0.001, k = 0.002, k =

5 10

1) 0858 0.841 0847 0833 (1) 0872 0.884 0842 0.864
(0.119) (0.112) (0.096) (0.118) (0.137) (0.129) (0.117) (0.140)

(2) 0868  0.868 0.837  0.820 || (2) 0.874  0.877 0.878  0.840
(0.104)  (0.096) (0.076) (0.107) (0.115) (0.110) (0.092) (0.130)

(3) 0846  0.814 0871 0.842 | (3) 0.844  0.855 0.879  0.866
(0.085) (0.077) (0.041) (0.072) (0.097) (0.088) (0.051) (0.089)

(4) 0864 0.861 0.841  0.863 | (4) 0884 0.872 0871  0.886
(0.118) (0.109) (0.108) (0.117) (0.142) (0.137) (0.136) (0.147)

Ta = (1) (2) (3) (4) | 7 = (1) (2) (3) (4)

0.004, k = 0.008, k =

20 40

1) 0.908 0.885 0.867 0.901 || (1) 0929 0919 0915 0.927
(0.159) (0.152) (0.139) (0.169) (0.187) (0.180) (0.168) (0.218)

(2) 0901 0908 0894 0.831 || (2) 0928 0924 0916  0.907
(0.131) (0.128) (0.112) (0.162) (0.156) (0.155) (0.140) (0.214)

(3) 0901 0.881 0.893 0.892 | (3) 0.927 0921  0.909  0.927
(0.110) (0.101) (0.066) (0.113) (0.129) (0.124) (0.088) (0.159)

(4) 0892 0.901 0892  0.928 || (4) 0917 0905 0919  0.938
(0.186) (0.185) (0.185) (0.200) (0.274) (0.277) (0.280) (0.305)

Table 10: Coverage of 95% n out of n bootstrap CI, sample size = 300
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Each (4, j)-th subplot represents the (7, j)-th model. The dashed line
is the coverage of BN-CI with b = 120 and n = 300 for quantile index
7 € [1.67%,16.67%]. The dotted line is the coverage of NN-CI. The
horizontal dotted dashed line is the 95% nominal coverage rate, and

the vertical dotted dashed line is 7 = min(

n’mn

40 0.2b

).

Figure 13: Coverage across quantiles
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Each (i, j)-th subplot represents the (4, 7)-th model. The solid line is
the coverage for b out of n bootstrap CI at £ = 10 in which
b € [100, 200].

Figure 14: Coverage across subsample size

Ta = O @ B @ = m 2 6 @
0.017, k = 0.033, k =

5 10

(1) 0372 0.132 0.376 -0.138 || (1) 0.195 0.113  0.288 -0.199
(2) 0.315 0.154 0.049 -0.058 || (2) 0.149 0120 0.122 -0.091
(3) -0.109  0.139  0.011 -0.127 || (3) -0.129 -0.017  0.033 -0.177
(4) 0.198 0.011 0.100 0.086 || (4) 0.028 0.177 0.060 -0.006
Ta = M @ B @|m = O @ 6
0.067, k = 0.133, k =

20 40

(1) -0.024  0.024 0.139 -0.075 || (1) -0.168 -0.096 0.136 -0.102
(2) 0.079 0.182 0.113 -0.089 || (2) -0.125  0.081  0.136 -0.127
(3) -0.154 -0.087 0.038 -0.149 || (3) -0.021 -0.150 -0.013 -0.098
(4) -0.163  0.030 0.055 -0.033 || (4) -0.460 -0.154 -0.005 1.487

Table 11: Bias of the median-unbiased estimator, sample size = 300. All values are inflated
by 100.
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Tn = O @ 6B @™ = O @ 6 @
0.017, k = 0.033, k =

5 10

1) 2.996 2.992 2588 3.047 | (1) 3.194 3218 2.868 3.462
(2) 2.608 2421 1911 2.964 | (2) 2748 2.770 2.351 3.226
(3) 2.260 1.998 0.995 1.899 | (3) 2397 2.141 1.222 2212
(4) 2754 2,672 2.695 2.890 | (4) 3.253 3.201 3.301 3.598
Ta = O 2 6 @ = O @ 6 @
0.067, k = 0.133, k =

20 40

1) 3678 3.691 3.426 4.163 | (1) 1057 4.037 4.035 5.375
(2) 3.120 3.062 2.725 3.974 | (2) 3.494 3.450 3.238 5.299
(3) 2714 2433 1527 2682 | (3) 3.002 2.795 2.010 3.935
(4) 4053 4.208 4.156 4.511 | (4) 5819 5.951 6.107 8.230

Table 12: root-MSE of the median-unbiased estimator, sample size = 300. All values are
inflated by 100.

Tn = (1) (2) (3) 4) [ 7 = (1) (2) (3) (4)
0.017, k = 0.033, k =

(1) 0.262 -0.005 0.217 -0.044 || (1) 0.138 -0.060 0.155 0.009
(2) 0.322  0.235 -0.040 0.156 || (2) 0.155 0.021 0.055 0.103
(3) -0.012  0.248 -0.010 -0.079 || (3) -0.079 0.045 0.016 -0.124
(4) 0.082 -0.013 0.010 0.028 || (4) -0.136 -0.036 -0.224 -0.160

T = O @ 6 @|mn = O @ 6 @

(1) -0.192 -0.072 -0.096 0.239 || (1) -0.164 -0.271 0.098  0.228
(2) -0.061  0.144 -0.057 -0.037 || (2) -0.092 -0.076 0.066 0.271
(3) -0.144 -0.089 -0.007 -0.082 || (3) -0.041 -0.044 -0.010 0.010
(4) -0.397 -0.229 -0.122 -0.231 || (4) -0.553 -0.510 -0.196 1.542

Table 13: median-bias of the median-unbiased estimator, sample size = 300. All values are
inflated by 100.
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Ta = @O @ 6 @|mn = O @ 6 @
0.017, k = 0.033, k =

5 10

1) 1.763 1.883 1.512 2.030 || (1) 2.021 2218 1817 2.368
(2) 1.687 1.633 1.213 1.980 || (2) 1.766 1.838 1.520 2.097
(3) 1502 1.395 0.617 1.318 || (3) 1594 1.430 0.784 1.487
(4) 1.765 1.701 1.588 1.861 || (4) 2.128 2.167 2.040 2.192
Ta = O @ 6 @]|mn = O @ 6 @
0.067, k = 0.133, k =

20 40

1) 2354 2510 2.320 2.766 | (1) 2.836 2.754 2.662 3.488
(2) 2.057 2116 1817 2537 | (2) 2430 2511 2.195 3.598
(3) 1.841 1.576 0.994 1.880 || (3) 1.868 1.887 1.363 2.549
(4) 2776 2.805 2.871 3.117 | (4) 3.999 3.936 4.106 5.272

Table 14: MAE of the median-unbiased estimator, sample size = 300. All values are inflated
by 100.

40 0.2

To compute the robust CI, 71 := min(7, 7=

) where the spacing parameter m here is 2. To compute
the feasible normalizing factor &, for 7, when k := 7n < 25, the spacing parameter is 2 and k] = 10

while m = 1.2 and kj = 20 when k > 25.
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The dashed line is the coverage for BN-CI. The dotted line is the
coverage for NN-CI. The solid line is the coverage for the robust CI.
When b = 120, n = 300, and 7 € [6.67%, 20%]. The horizontal dotted
dashed line is the 95% nominal coverage rate. 71 = 4% and

To = 16.75%.

Figure 15: Coverage across quantiles

For the lower boundary, I use 7, = (0.02,.0.04,0.06) for n = 300 to compute the EV index. The
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subsample size used is the same as in Table 9.

(1) (2) (3) (4)
(1) | 0946 0956 0967 0.972
(0.605) (0.551) (0.431) (0.497)
(2)| 0958 0.960 0.964 0.973
(0.481) (0.456) (0.329) (0.428)
3)| 0935 0940 0959  0.966
(0.392) (0.352) (0.153) (0.226)
(4)| 0950 0964 0958  0.953
(0.570) (0.514) (0.438) (0.303)

Table 15: Coverage of 95% CI, sample size = 300.
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The solid line is the coverage for b out of n bootstrap CI at £k = 0 in
which b € [100, 200].

Figure 16: Coverage across subsample size

H 2 6 ¢
(1) [-1.639 -3.178 0.201 -0.408
(2) | -1.635 -0.927 -0.834 -0.145
(3) | -1.097 -0.436 -0.559 -1.122
(4) | -3.313 -2.065 -1.116 -1.909

Table 16: Bias of the median-unbiased 0-QTE estimator,

inflated by 100.
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sample size = 300. All values are



n @ 6 @
) | 10.809 47.957 27.608 10.520
) | 16.819 19.857 19.508  9.221
)
)

10.612 11.724  4.066  4.378
16.769 11.378  8.510 6.018

Table 17: root-MSE of the median-unbiased 0-QTE estimator, sample size = 300. All values
are inflated by 100.

H @ B ¢
1) [-1.623 -0.504 0.966 -1.335
2) | -1.881 -1.243 -0.233 -1.130
)
)

3) | -1.920 -1.365 -0.461 -1.431
4) | -2.591 -2.069 -0.925 -1.965

N SN N

Table 18: median-bias of the median-unbiased 0-QTE estimator, sample size = 300. All
values are inflated by 100.

1 @ 6B @
(1) [7.336 7.378 5.705 6.080
(2) | 7.048 7.063 4.015 4.738
(3) | 5.900 4.937 1.997 2.933
(4) | 6.387 5.198 4.241 3.679

Table 19: MAE of the median-unbiased 0-QTE estimator, sample size = 300. All values are
inflated by 100.

F.2 Simulation results with n = 1,000

Next I consider the QTE estimator with a moderate size sample: 1,000. I am still interested in
k = (5,10,20,40) and the corresponding quantile indices become 7,, = (0.005,0.01,0.015,0.02).

The subsample size used in Table 20 and Figure 17 is 300. For Figure 18, the subsample size ranges
from 150 to 500.
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Tn = (1) (2) (3) (4) || 7 = 1%, (1) (2) (3) (4)
0.5%, k = k=10
)
(1) 0.915 0.918 0.927 0.924 || (1) 0.939 0.946 0.957 0.934
(0.065) (0.063) (0.051) (0.060) (0.073)  (0.070) (0.059) (0.068)
(2) 0.918 0.930 0.942 0.931 || (2) 0.950 0.945 0.955 0.953
(0.061) (0.054) (0.038) (0.058) (0.066) (0.061) (0.045) (0.068)
(3) 0.926 0.933 0.949 0.921 || (3) 0.950 0.949 0.954 0.948
(0.055) (0.048) (0.019) (0.036) (0.060) (0.053) (0.023) (0.044)
(4) 0.917 0.902 0.935 0.931 || (4) 0.958 0.949 0.957 0.955
(0.059) (0.052) (0.047) (0.052) (0.072) (0.065) (0.060) (0.066)
T = 2%, (1) (2) (3) (4) || 7 = 4%, (1) (2) (3) (4)
k =20 k =40
(1) 0.966 0.958 0.959 0.957 || (1) 0.969 0.968 0.964 0.981
(0.077)  (0.073) (0.063) (0.079) (0.097) (0.097) (0.082) (0.111)
(2) 0.961 0.952 0.965 0.958 || (2) 0.966 0.966 0.967 0.981
(0.070) (0.064) (0.049) (0.083) (0.090) (0.081) (0.066) (0.116)
(3) 0.966 0.954 0.953 0.954 || (3) 0.978 0.971 0.972 0.977
(0.064) (0.058) (0.025) (0.051) (0.081) (0.073) (0.039) (0.078)
(4) 0.957 0.963 0.957 0.966 || (4) 0.990 0.993 0.990 0.989
(0.080) (0.070) (0.066) (0.073) (0.142) (0.127) (0.122) (0.132)
Table 20: Coverage of 95% b out of n bootstrap CI, sample size = 1,000
Tn = (1) (2) (3) 4) || 7 = 1%, (1) (2) (3) (4)
0.5%, k = k=10
)
(1) 0.822 0.832 0.857 0.836 || (1) 0.868 0.861 0.859 0.861
(0.057) (0.051) (0.041) (0.050) (0.061) (0.056) (0.047) (0.058)
(2) 0.850 0.841 0.844 0.812 || (2) 0.873 0.868 0.867 0.841
(0.049) (0.044) (0.031) (0.045) (0.053) (0.049) (0.037) (0.054)
(3) 0.797 0.814 0.846 0.804 || (3) 0.839 0.852 0.876 0.852
(0.042) (0.034) (0.015) (0.028) (0.045) (0.039) (0.018) (0.035)
(4) 0.827 0.835 0.849 0.858 || (4) 0.866 0.866 0.873 0.884
(0.049) (0.043) (0.038) (0.042) (0.055) (0.050) (0.046) (0.052)
= 2%, (1) (2) (3) (4) || 7 = 4%, (1) (2) (3) (4)
k =20 k =40
(1) 0.899 0.883 0.879 0.883 || (1) 0.914 0.893 0.871 0.896
(0.066) (0.063) (0.055) (0.066) (0.074) (0.072) (0.065) (0.077)
(2) 0.895 0.892 0.885 0.885 || (2) 0.910 0.911 0.901 0.894
(0.057) (0.054) (0.043) (0.062) (0.063) (0.062) (0.051) (0.072)
(3) 0.872 0.864 0.896 0.875 || (3) 0.912 0.893 0.917 0.903
(0.047) (0.044) (0.022) (0.040) (0.052) (0.049) (0.029) (0.051)
(4) 0.894  0.887  0.8%86  0.902 || (4) 0922 0922 0921 0914
(0.064) (0.061) (0.058) (0.064) (0.079) (0.076) (0.075) (0.084)

Table 21: Coverage of 95% n out of n bootstrap CI, sample size = 1, 000
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Figure 17: Coverage across quantiles

1 1 1 1
095/ =z === 095mm—=—= = 0.95F == = 0.95F= = = = =
0.9

0.9 0.9 0.9
300400 500 300400 500 300400 500 300400 500
1 1 1

0.95 =" (0.95muz = = = O.QSN 0.95 F=
0.9

0.9 0.9 0.9
300400 500 300400 500 300400 500 300400 500
1 1 1

0.95m === (95hmsa= ()95 —— 0.95p~m =2

0.9 0.9 0.9 0.9
300400 500 300400 500 300400 500 300400 500
1 1 1 1

0.95F === (.95m———= = 0.95F ™=—~g 095F ==

300400500 0 300400500 U0 300400500 300400500
Each (i, j)-th subplot represents the (¢, j)-th model. The solid line is
the coverage for b out of n bootstrap CI at k = 10 in which
b € [150, 500].

Figure 18: Coverage across subsample size
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Tn = (1) (2) (3) 4) [ 7 = (1) (2) (3) (4)
0.005, k = 0.010, k =

(1) -0.323  0.077 1.079 -0.441 || (1) -0.349  0.021 0.940 -0.107
(2) -0.963 0.386  0.206 -1.186 | (2) -0.964 -0.450 0.432 -1.487
(3) -0.561 -0.070 -0.154 -0.647 || (3) -0.459 -0.272  0.067 -0.767
(4) -0.044 -0.368 0.229 -0.527 || (4) 0.230 -0.455 1.002 -0.665

T = O @ 6 @|mn = O @ 6 @

1) 0297 0.674 1.324 -0213 | (1) 0.956 0.123 0.981 -0.933
(2) -0.715 -0.185  0.006 -0.652 || (2) 0.273 0450 0.229 -1.097
(3) 20482 -0.261  0.066 -0.328 || (3) -0.523  0.437 -0.010 -0.322
(4) 0.270 -0.360 0.977 -0.178 || (4) 0.328 0.391 1.286 -0.636

Table 22: Bias of the median-unbiased estimator, sample size = 1, 000. All values are inflated
by 1,000.

Ta = O @ 6 @™ = O @ 6 @
0.005, k = 0.010, k =

5 10

D) 1.348 1.251 1.121 1.273 || (1) 1409 1.338 1.168 1.402
(2) 1.242 1.083 0.790 1.252 | (2) 1.322 1.211 0.924 1.403
(3) 1111 0.958 0.384 0.748 || (3) 1.130  0.993 0.456 0.889
(4) 1.194 1.030 0.933 1.072 || (4) 1.319 1209 1.156 1.199
Ta = @O @ 6 @|mn = O @ 6 @
0.020, k = 0.040, k =

20 40

1) 1583 1.547 1.363 1.640 || (1) 1.803 1.736 1.594 1.941
(2) 1.389 1.377 1.079 1.611 || (2) 1538 1.483 1.262 1.827
(3) 1177 1.103 0.555 1.010 || (3) 1.307 1.239 0.666 1.202
(4) 1.492 1.441 1.438 1.480 | (4) 1.866 1.832 1.830 1.935

Table 23: root-MSE of the median-unbiased estimator, sample size = 1,000. All values are
inflated by 100.
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Tn = (1) (2) (3) 4) [ 7 = (1) (2) (3) (4)
0.005, k = 0.010, k =

(1) -0.237 -0.347 -0.205 0.759 || (1) -0.483 -0.414 0.430 0.080
(2) -0.892  0.703  0.359 -0.511 || (2) -1.326  -0.187  0.559 -0.854
(3) -0.101  0.459 -0.077 -0.041 || (3) -0.380 0.156  0.220 -0.447
(4) -0.368 -0.188  0.302 -0.309 || (4) 0.364 -0.403 0.919 -0.926

T = O @ 6 @|mn = O @ 6 @

(1) -0.089  0.041 0.639 1.274 || (1) 0.158 -0.312 0.725 0.338
(2) -1.243 -0.342 -0.315 0.261 || (2) 0.617 0.511 -0.131  0.157
(3) -0.181  0.585 0.011 0.129 || (3) -0.229  0.316  0.037 -0.391
(4) 0.119 -0.297 0.592 -0.285 || (4) -0.029 -0.542 0.178 -0.868

Table 24: median-bias of the median-unbiased estimator, sample size = 1,000. All values
are inflated by 1,000.

Tn = O @ G @|m = 1O 2 6 @
0.005, k = 0.010, k =
5 10

(1) 0.867 0.798 0.724 0.895 || (1) 0.902 0.901 0.765 0.916
(2) 0.842 0.733 0.525 0.807 || (2) 0.887 0.814 0.602 0.893
(3) 0.729 0.660 0.232 0.509 || (3) 0.786 0.688 0.289 0.626
(4) 0.832 0.686 0.588 0.697 || (4) 0.894 0.819 0.789 0.802

Ta = O @ 6 @|m = O @ 6

0.020, k = 0.040, k =

20 40

®) 1.050 1.017 0.907 1.140 || (1) 1.226 1.180 1.080 1.316
(2) 0.942 0.966 0.726 1.084 || (2) 1.006 0.982 0.794 1.216
(3) 0.780 0.741 0.373 0.688 | (3) 0.895 0.811 0.448 0.840
(4) 1.020 0.988 0.928 0.968 | (4) 1.255 1.241 1.225 1.252

Table 25: MAE of the median-unbiased estimator, sample size = 1,000. All values are
inflated by 100.

To compute the robust CI, 7 := min(%, %) where the spacing parameter m here is 2 and
b

_ : . ~ — <
T9 et To compute the feasible normalizing factor &, for 7, when k ™ < 50, the

spacing parameter is 2 and kj = 10 while m = 1.2 and k] = 20 when k > 50.

121



1 o= 1 - 1) 2 o 1 m
é:—.: - Aagg Y =", | £ ‘
0.9 =09 T 09| . A 0.9]
< 1 1 1 =T 1 =1 1
08[ 1 08] 1 08] 1 0B8] 1
0 0.050.1 0 0.050.1 0 0.05 0.1 0 0.050.1
e PV-5 woiy e e
09. 1 1 09.'...;’ 1 09."7 1 09'I 1
0.8] 1 08| 1 0.8] 1 08 1
0 0.05 0.1 0 0.05 0.1 0 0.05 0.1 0 0.05 0.1
1 - 1 -~ 1 - o -
09,’T 1 09-1 1 09."? 1 09:':" 1
08¢ . 08F . 08| . 08P .
0 0.050.1 0 0.05 0.1 0 0.05 0.1 0 0.050.1
1 . 11 4 . 1 1
0.9 WO.Q @? 0.9 ',4-:;’3':’ 0.9 W
L] 1 i} 1 e 1 | 1
0.8 1 08| 1 0.8] 1 08| 1
0 0.05 0.1 0 0.05 0.1 0 0.05 0.1 0 0.05 0.1

The dashed line is the coverage for BN-CI. The dotted line is the
coverage for NN-CI. The solid line is the coverage for the robust CI.
When b = 300, n = 1,000, and 7 € [0.5%, 15%)]. The horizontal
dotted dashed line is the 95% nominal coverage rate. 7, = 4% and
o = 11.41%.

Figure 19: Coverage across quantiles

For the lower boundary: I use 7, = (0.02,0.04,---,0.1) for n = 1,000 to compute the EV index.

The subsample size used is the same as in Table 20.

(1) (2) (3) (4)
(1) [ 0963 0969 0963 0.963
(0.200) (0.172) (0.119) (0.145)
(2)| 0956 0969 0973  0.966
(0.168) (0.155) (0.093) (0.129)
(3)| 0941 0963 0955  0.926
(0.140)  (0.112) (0.037) (0.063)
(4)| 0920 0918 0950 0.938
(0.139) (0.116) (0.099) (0.085)

Table 26: Coverage of 95% CI, sample size = 1, 000.
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The solid line is the coverage for b out of n bootstrap CI at k£ =0 in
which b € [150, 500].

Figure 20: Coverage across subsample size

H @ B (¢
1) -0.475 -0.693 0.092 -0.023
2) | -0.586 -0.301 -0.046 -0.287
3) | -0.813 -0.754 -0.294 -0.675
4) | -0.831 -0.924 -0.637 -0.870

NN S

Table 27: Bias of the median-unbiased 0-QTE estimator, sample size = 1,000. All values
are inflated by 100.

H 2 B
(1) [ 6.162 5.751 3.711 4.096
(2) | 5.502 4.651 2.809 3.450
(3) | 4.042 3.140 1.152 1.859
(4) | 4.473 3.836 3.049 2.862

Table 28: root-MSE of the median-unbiased 0-QTE estimator, sample size = 1,000. All
values are inflated by 100.

H @ B ¢
(1) [-0.634 -0.861 0.348 -0.322
(2) | -0.623 -0.304 -0.094 -0.670
(3) | -1.258 -0.946 -0.305 -0.705
(4) | -1.135 -0.931 -0.728 -0.937

Table 29: median-bias of the median-unbiased 0-QTE estimator, sample size = 1,000. All
values are inflated by 100.
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H @ 6
) [4.046 3.736 2.413 2.616
) | 3.546 3.029 1.785 2.277
)
)

2.889 2189 0.711 1.257
3.048 2429 1910 1.918

Table 30: MAE of the median-unbiased 0-QTE estimator, sample size = 1,000. All values
are inflated by 100.

F.3 Simulation results with n = 5,000

T = M @ B @|mn = o @ B @

0.001, k = 0.002, k =

5 10

1) -0.043 0.179  0.021 -0.483 | (1) 0.447 0.317 -0.030 -0.843
(2) -0.247 -0.833  0.129 -0.589 | (2) -0.407 -0.798  0.077 -0.916
(3) -0.194 -0.123 -0.087 -0.421 | (3) -0.398 -0.322 -0.056 -0.235
(4) -0.662 -0.962 -0.106 -0.386 | (4) -0.691 -0.608 -0.034 -0.411
T = m @ B @|mn = m 2 B @

o
o
S
=
-
I
o
o
S
&0
-
I

0.392 0.358 -0.265 -0.245

0.156  0.498 0.098 -0.586 || (1)
) -0.209 -0.629 -0.009 -0.090
)
)

(1)

(2) 0172 -0.727 0.123 -0.757 || (2
(3) -0.390 -0.026 -0.063 -0.417 || (3
(4) -0.877 -0.180 0.326 -0.501 || (4

-0.278 -0.056 -0.144 -0.257
-0.280 -0.361 0.150 -0.192

Table 31: Bias of the median-unbiased estimator, sample size = 5, 000. All values are inflated
by 1,000.
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. ] D ©® ® O] -] 0 O ® o
0.001, k = 0.002, k =

5 10

(1) 5.806 4.715 3.553 4.202 || (1) 5.924 5.190 3.816 4.733
(2) 5.259 4.284 2.571 4.057 (2) 5.447 4.410 2.858 4.608
(3) 5.112 3.530 1.151 2.489 (3) 5.211 3.897 1.291 2.869
(4) 4.574 3.676 2.830 3.113 || (4) 4.908 3.828 3.296 3.707
.. =] 0D ©® ® @] -] 0 ® ©® o
0.004, k = 0.008, k =

20 40

(1) 6.310 5.429 4.406 5.364 (1) 6.820 5.904 4.971 6.109
(2) 5.659 4.675 3.310 5.033 || (2) 5.804 5.231 3.802 5.674
(3) 5.052 3.962 1.565 3.130 || (3) 5.070 4.110 1.848 3.638
(4) 5.344 4.289 3.890 4.381 (4) 5.399 5.050 4.567 5.029

Table 32: root-MSE of the median-unbiased estimator, sample size = 5,000. All values are
inflated by 1,000.

T = O @ 6 @|mn = O @ 6 @

0.001, k = 0.002, k =

5 10

(1) -0.247 -0.013 -0.337 -0.190 || (1) 0.247  0.243 -0.332 -0.745
(2) -0.039 -0.684 0.023 -0.261 || (2) -0.354 -0.724 -0.030 -0.745
(3) 0.110  0.010 -0.017 -0.246 || (3) -0.192 -0.203 -0.019 -0.138
(4) -0.622 -0.758 0.066 -0.174 || (4) -0.575 -0.303 0.158 -0.111
Tn = (1) (2) (3) (4) || ™ = (1) (2) (3) (4)
0.004, k = 0.008, k =

20 40

(1) 0.186 0.244 -0.175 -0.352 || (1) 0.342  0.375 -0.503 -0.291
(2) 0.132 -0.610 0.039 -0.411 || (2) -0.228 -0.661 0.152  0.105
(3) 0.073 -0.031 -0.008 -0.404 || (3) -0.315 -0.069 -0.154 -0.208
(4) -1.020 -0.002 0.315 -0.296 || (4) -0.179 -0.391  0.085 -0.080

Table 33: median-bias of the median-unbiased estimator, sample size = 5,000. All values
are inflated by 1,000.

125



n =] 0 ©® 06 & -] 0 ©® 6 0
0.001, k = 0.002, k =

5 10

(1) 3.916 3.073 2.209 2.783 | (1) 4.091 3.678 2.453 2.979
(2) 3.658 2.881 1.644 2.715 (2) 3.542 2976 1.994 3.099
(3) 3.440 2.349 0.743 1.649 (3) 3.507 2.654 0.863 1.875
(4) 3.098 2.380 1.889 2.169 | (4) 3.397 2.492 2.131 2.506
n =] 0 ©® 06 O~ =] 0 © 6 0
0.004, k = 0.008, k =

20 40

(1) 4.407 3.901 2.925 3.599 (1) 4.634 4.084 3.393 4.172
(2) 3.679 3.158 2.242 3.247 || (2) 3806 3.814 2.534 3.813
(3) 3.635 2.673 1.027 2.169 | (3) 3.636 2.798 1.219 2.425
(4) 3.837 2.860 2.608 3.035 (4) 3.724 3.478 3.119 3.437

Table 34: MAE of the median-unbiased estimator, sample size = 5,000. All values are
inflated by 1,000.

To compute the robust CI, 7 = min(%, %

b : . R
T = - eat” To compute the feasible normalizing factor &, for 7, when k£ := 7n < 100, the

) where the spacing parameter m here is 2 and

spacing parameter is 2 and k; = 10 while m = 1.2 and k] = 20 when k& > 100.
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The dashed line is the coverage for BN-CI. The dotted line is the
coverage for NN-CI. The solid line is the coverage for the robust CI.
When b = 1,000, n = 5,000, and 7 € [0.1%,8%]. The horizontal
dotted dashed line is the 95% nominal coverage rate. 71 = 0.8% and

To — 685%

Figure 21: Coverage across quantiles

Next are the finite sample performance of the median-unbiased point estimator.
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O @ B ¢
-0.148 -0.282 0.015 0.105
0.006 -0.120 -0.021  0.063
0.188 -0.082 -0.056 0.027
-0.100 -0.284 -0.058 -0.086

—_

A~~~
=~ [\S)
— — — —

Table 35: Bias of the median-unbiased 0-QTE estimator, sample size = 5,000. All values
are inflated by 100.

H @2 B
(1) [ 4388 2.944 1.861 2.549
(2) | 3.416 2.453 1.360 2.149
(3) | 2457 1.646 0.470 0.959
(4) | 2.512 1.687 1.205 1.282

Table 36: root-MSE of the median-unbiased 0-QTE estimator, sample size = 5,000. All
values are inflated by 100.

o @2 B @
1) [-0.246 -0.251 0.093 0.041
2) [ -0.134 -0.136 -0.005 -0.099
3) | -0.189 -0.291 -0.082 -0.059
4) | -0.382 -0.374 -0.109 -0.177

N N N N

Table 37: median-bias of the median-unbiased 0-QTE estimator, sample size = 5,000. All
values are inflated by 100.

1y @ 6 @
) [2.287 1.687 1.076 1.498
) | 1.998 1478 0.849 1.404
) | 1.548 1.062 0.300 0.604
) | 1.637 1.024 0.750 0.830

1
2
3

(
(
(
(4

Table 38: MAE of the median-unbiased 0-QTE estimator, sample size = 5,000. All values
are inflated by 100.
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