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Extremal Quantile Treatment Effects∗

Yichong Zhang†

June 7, 2016

Abstract

This paper establishes an asymptotic theory and inference method for quantile

treatment effect estimators when the quantile index is close or equal to zero. Such

quantile treatment effects are of interest in many economic applications, such as the

effect of maternal smoking on an infant’s adverse birth outcomes. When the quantile

index is close to zero, the sparsity of data jeopardizes conventional asymptotic theory

and bootstrap inference. When the quantile index is zero, there are no existing inference

methods directly applicable in the treatment effect context. This paper establishes

new estimation and inference theory for cases close or equal to zero. In addition, finite

sample properties of the new procedures are illustrated through both simulation studies

and empirical applications.
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1 Introduction

Economic theory usually predicts that the sign and magnitude of treatment effects vary

depending on one’s place in the overall distribution of outcomes, a heterogeneity captured

by quantile treatment effects (QTEs). In many economic applications, the populations of

interest are located at the tail of the outcome distribution, such as infants with low birth

weights or students with low scores. Thus researchers encounter not only the usual missing

counterfactual, but also data sparsity because there are not many observations at the tails.

While previous literature has considered the two problems separately, how to cope with both

at the same time while conducting proper statistical inferences remains unanswered.

This paper addresses both issues simultaneously. I establish a new asymptotic theory and

inference method for an estimator of the QTE for low-rank populations. To deal with the

usual missing counterfactual problem, I assume unconfoundedness and rely on the propensity

score to identify QTEs. To address the data sparsity, I model a small quantile index τ as

a drifting object with sample size n; that is, τ := τn → 0 as n → ∞. Then, I use the

device of extremal quantiles to derive a new asymptotic approximation for the finite sample

distribution of the QTE estimator when the quantile index τ is close to zero.

My paper addresses the problem of missing counterfactual and data sparsity jointly. I build

on the previous literature that address only one issue at a time. For the treatment effect

literature addressing the missing counterfactual problem, I adapt the same unconfoundedness

assumption as Bitler, Gelbach, and Hoynes (2006), Chernozhukov, Fernández-Val, and Melly

(2013), Firpo (2007), and Hirano, Imbens, and Ridder (2003). For further applications of

QTEs, see Card (1996) and DiNardo, Fortin, and Lemieux (1996), for example.

For the extremal quantile literature addressing the data sparsity problem, Chernozhukov

(2005), Chernozhukov and Fernández-Val (2011), Feigin and Resnick (1994), Knight (2001),

Portnoy and Jurečková (1999), and Smith (1994) assume that the conditional quantile is

linear. In particular, the extremal QTE considered in this paper is closely related to the

linear extremal quantile regression (LEQR) investigated in Chernozhukov (2005) and Cher-

nozhukov and Fernández-Val (2011), but substantially differs in two aspects. First, the QTE

considered in this paper has a causal interpretation by addressing the problem of missing

counterfactuals, while the causal interpretation for the coefficient in the LEQR relies on the

assumption that the treatment variable is exogenous at the tails. Second, I allow for het-

erogeneous quantile treatment response, while the linear model implies that two individuals,

who are observationally equivalent, will have the same quantile treatment effect. In fact,

since the QTE is an unconditional object, I do not assume the linearity of the conditional

quantiles of the outcome variable given covariates.
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The literature on extremal percentiles also addresses the data sparsity problem. See, for

example, Bertail, Haefke, Politis, and White (2004), Bickel and Sakov (2008), and Dekkers

and De Haan (1989). The key difference between these papers and mine is that I include

additional covariates X and use propensity score P (X) to correct the selection bias.

Last, my paper is related to the concept of drifting sequence asymptotics. This concept goes

back to Pitman (1949) using Pitman drift to characterize power functions. Recently, the

concept has been used in the context of weak instruments by, for example, Stock J (2008),

Stock and Yogo (2005), and other various models by Andrews and Cheng (2012), Andrews

and Cheng (2013), Chen, Ponomareva, and Tamer (2014), and Khan and Nekipelov (2013).

I establish the asymptotic properties for extremal QTE estimators when τn → 0. I find that

there are two asymptotic distributions of the estimator of τn-th QTE, depending on how

fast τn approaches zero. Following the terminology used in Chernozhukov (2005), I say τn

is intermediate when τn → 0 and τnn→∞. In this case, I show that the asymptotic distri-

bution for the proposed estimator of QTE is still Gaussian. Again, following Chernozhukov

(2005), when τn → 0, τnn→ k, for some k > 0, I say τn is extreme. In this case, I show that

the asymptotic distribution is non-Gaussian. For completeness, a quantile index is called

regular if it is fixed strictly between zero and one. In this case, Firpo (2007) showed that the

QTE estimator is asymptotically normal. Figure 1 summarizes the evolution of asymptotic

behaviors of the estimator of QTE.

τ
0

Extreme
Non-Gaussian

Intermediate
Gaussian

Regular
Gaussian

Figure 1: Asymptotic distribution over the quantile index

For inference, when the quantile index is intermediate, I show that the standard bootstrap

confidence interval (CI) for the QTE estimator is consistent. For the extreme-order quantile

case, I first prove that the conventional bootstrap CI does not control size. I then propose

a resampling method that is uniformly consistent over a range of quantile indices. Last, by

considering a linear combination of extreme QTE estimators with carefully chosen weights,

I construct a consistent CI for the 0-th QTE without imposing additional restrictions or

extrapolations.

To choose among different categories of quantile index, I propose a quantile-order-category-

selection procedure similar to the identification-category-selection procedure used in Andrews

and Cheng (2012). The difference here is that I have two thresholds while they only have

one. When the quantile index is smaller than the first threshold, the extreme-order quantile
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asymptotic distribution is expected to approximate the finite sample distribution of the

QTE estimator better than the normal approximation. In this case, I suggest using the

new resampling CI developed in this paper to conduct inference. In simulation, I examine

the performance of this threshold in 16 simulation designs with small, moderate, and large

size samples. In all cases, I find that when the criterion is satisfied, the new resampling

CI controls size while the standard bootstrap CI undercovers (that is, over-rejects) by as

much as 18 absolute percentage points. When the quantile index is greater than the second

threshold, I prove that the standard bootstrap CI is consistent. Last, when the quantile index

is in between the first and second threshold, I construct a robust CI which is conservative.

My resampling inference method gives empirical researchers tools to estimate, infer, and

test QTEs for low-rank populations. This method can be used in a number of economics

applications. For instance, when focusing on the population of admitted university students,

the college preparation index of low-rank students reflects the tolerance of low academic

performance in the college’s admission policy. My methods allow researchers to estimate the

college preparation index gap between low-scoring minority and non-minority students while

controlling for family background. This gap measures the magnitude of racial preference in

college’s admission. In another example, the extremely low or lower boundary of babies’ birth

weights represents the severity of adverse birth outcomes, which have been found to result

in large economic costs. See, for example, Abrevaya (2001). My methods allow researchers

to make inferences about the effect of maternal smoking on the lower tail of the distribution

of infant birth weights.

The rest of the paper is organized as follows. Section 2 defines the parameters of interest,

introduces additional notation, and provides relevant background on extreme value theory.

Section 3 considers the asymptotic properties of the estimator for intermediate QTEs while

Section 4 considers the asymptotic properties of the estimator for extreme QTEs. Section 5

establishes the inference theory and provides a step-by-step description of implementation.

Sections 6 and 7 explore the finite sample properties of the new inferences methods through

a simulation study, and applications, respectively. A supplement collects preliminary condi-

tions for a high-level assumption in Section 4, numerical examples, all tables and figures in

the Simulation section, additional simulation results, more detail on the Application section,

and all theoretical proofs.

2 Definition, extreme value theory, and notation

First, I denote the outcomes for treated and control groups as Y1 and Y0, respectively. The

treatment status is denoted as D, where D = 1 means treated and D = 0 means untreated.
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The econometrician can only observe (Y,X,D) where Y = Y1D + Y0(1 − D), and X is a

collection of confounders. The propensity score P (D = 1|X = x) is denoted as P (x). The

parameters of interest are the τ -th QTE defined as

q(τ) := q1(τ)− q0(τ)

and the τ -th quantile treatment effect on treated (QTT) defined as

q|D=1(τ) := q1|D=1(τ)− q0|D=1(τ),

in which qj(τ) and qj|D=1(τ) denote the τ -th quantile of random variables Yj and Yj|D = 1,

respectively.

Next, I introduce some extreme value theory, which will be used when I characterize the

asymptotic theories in Section 3 and 4. The cumulative distribution function (CDF) F

belongs to the domain of attraction of generalized extreme value distributions if there exist

sequences (αn)n∈N, (βn)n∈N and a CDF G indexed by a parameter ξ, such that, for any

independent draws (U1, ..., Un) from F , αn(min(U1, ..., Un)− βn) converges in distribution to

G. Here, F belongs to the domain of attraction of generalized extreme value distributions

with a parameter ξ called the extreme value (EV) index. Define a(z) :=
∫ z
sl
F (v)dv/F (z) for

some z > sl, in which sl is the lower end point of the support of U . In addition, for two

generic functions f1(·) and f2(·), I write f1(z) ∼ f2(z) if

f1(z)

f2(z)
→ 1, as z → sl.

Then based on the value of ξ, F has three types of tail:

type 1 tails (ξ = 0): as z → sl F (z + va(z)) ∼ F (z)ev, ∀v ∈ R,

type 2 tails (ξ > 0): as z → sl = −∞ F (vz) ∼ v−1/ξF (z), ∀v > 0,

type 3 tails (ξ < 0): as z → sl > −∞ F (vz) ∼ v−1/ξF (z), ∀v > 0.

For example, normal, T, and Beta distributions have type 1, 2, and 3 tails, respectively.

Last, I provide two weak convergence concepts this paper will rely on. Un  U indicates

weak convergence as defined by Van der Vaart and Wellner (1996). When Un and U are k-

dimensional elements, the space of the sample path is Rk equipped with the Euclidean metric.

When Un and U are stochastic processes, the space of the sample path will be specified later

in each different context. For this paper, the space is either l∞({v ∈ R : |v| < B}), for some

positive B equipped with the sup norm or the Skorohod space D([−B,B]), for some positive
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B equipped with the Skorohod metric1.

3 Intermediate quantile treatment effects

Theorems 3.1 and 3.2 establish the asymptotic theory for τn-th QTE when τn is intermediate.

These theorems give the first main theoretical result of the paper: that the asymptotic

distribution of the estimator of an intermediate QTE is still Gaussian. The asymptotic theory

established here can be used to construct a uniform confidence band for both intermediate

and extreme QTE, to estimate the EV index (which is analyzed in detail in Section 3.2), and

to deal with the sample selection problem as in D’Haultfoeuille, Maurel, and Zhang (2015).

3.1 The main result

Recall the setup in Section 2. I further assume:

Assumption 1.

(1) (random sample): {Yi, Di, Xi}ni=1 is i.i.d.

(2) (unconfoundedness): (Y1, Y0) ⊥⊥ D|X.

(3) (common support): Supp(X), the support of X, is compact. For some c > 0, c < P (x) <

1− c, ∀x ∈ Supp(X).

The unconfoundedness assumption states that the potential outcomes are independent of

the treatment status conditional on additional covariates X. Although strong, this assump-

tion has been widely used in both theoretical investigations and empirical studies. See, for

example, Bitler et al. (2006), Chernozhukov et al. (2013), Firpo (2007), Hirano et al. (2003),

Rosenbaum and Rubin (1983). For extremal QTEs, it is natural to first start with this un-

confoundedness condition. When the quantile index is regular, that is, bounded away from 0

and 1, papers such as Abadie, Angrist, and Imbens (2002), Chernozhukov and Hansen (2005),

Chernozhukov and Hansen (2008), and Frölich and Melly (2013) extend the assumption to

allow for endogenous treatment status and rely on an instrumental variable to correct the

selection bias. Similar strategies can be applied here to the extremal quantile case. While

important, I leave the problem of establishing the corresponding asymptotic theory to future

research.

Assumption 2. τn is intermediate. This is,

(1) τn → 0 as n→∞.

(2) τnn→∞ as n→∞.

1To differentiate, D is reserved for the binary treatment status and {Di,j}∞i=1, j = 0, 1 are the sets of
random variables defined in the limiting objective function in Section 4.
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I define q̂(τn), the estimator of the τn-th QTE, as q̂(τn) := q̂1(τn)− q̂0(τn) and q̂|D=1(τn), the

estimator of τn-th QTT, as q̂|D=1(τn) := q̂1|D=1(τn)− q̂0|D=1(τn). Under Assumption 1, Firpo

(2007) found that the four quantiles q1(τ), q0(τ), q1|D=1(τ), and q0|D=1(τ) for any τ ∈ (0, 1)

are identified based on the following four moment equalities:

E
[

D

P (X)

(
τ − 1{Y ≤ q1(τ)}

)]
= 0, E

[(
1−D

1− P (X)

)(
τ − 1{Y ≤ q0(τ)}

)]
= 0,

and

E
[
D(τ − 1{Y ≤ q1|D=1(τ)})

]
= 0, E

[
(1−D)P (X)

1− P (X)

(
τ − 1{Y ≤ q0|D=1(τ)}

)]
= 0,

respectively.

Therefore, despite the extremal feature of the quantile index, the natural sample estimator

q̂1(τn) for the τn-th quantile of Y1 can be computed through an inverse propensity score

weighted quantile regression:

q̂1(τn) := arg min
q∈R

n∑
i=1

Di

P̂ (Xi)
(Yi − q)(τn − 1{Yi ≤ q}). (3.1)

Similarly, q̂0(τn), an estimator of the τn-th quantile of Y0, can be computed as

q̂0(τn) := arg min
q∈R

n∑
i=1

1−Di

1− P̂ (Xi)
(Yi − q)(τn − 1{Yi ≤ q}). (3.2)

For estimating the QTT, q̂1|D=1(τn) and q̂0|D=1(τn) can be computed as

q̂1|D=1(τn) := arg min
q∈R

n∑
i=1

Di

1
n

∑n
i=1Di

(Yi − q)(τn − 1{Yi ≤ q}),

and

q̂0|D=1(τn) := arg min
q∈R

n∑
i=1

1−Di

1
n

∑n
i=1Di

P̂ (Xi)

1− P̂ (Xi)
(Yi − q)(τn − 1{Yi ≤ q}).

Following Firpo (2007) and Hirano et al. (2003), P̂ (X), the propensity score, is estimated

by the sieve method of fitting a series logistic model. I denote the logistic CDF by L(a) :=

exp(a)/(1 + exp(a)). Hh(x) := (r1h(x), · · · , rhh(x))′ is a h-vector of power series of x. Then

P̂ (x) := L(Hh(x)′π̂h) with

π̂h := arg max
π∈Rh

n∑
i=1

(Di logL(Hh(Xi)
′π) + (1−Di) log(1− L(Hh(Xi)

′π))) .
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For brevity, the rest of the paper only considers the estimation of q̂1(τn), q̂0(τn), and q̂(τn).

The asymptotic results for q̂1|D=1(τn), q̂0|D=1(τn), and q̂|D=1(τn) can be derived in a similar

manner.

Furthermore, instead of only one quantile index τn, I focus on a range of them. That is, kτn,

k ∈ [κ1, κ2] for some fixed and known constants κ1 and κ2 such that 0 < κ1 < κ2 <∞. This

is because I will derive a uniform asymptotic theory for the process {(q̂1(kτn), q̂0(kτn)) : k ∈
[κ1, κ2]}. For each k,

q̂(kτn) := q̂1(kτn)− q̂0(kτn)

where

q̂1(kτn) := arg min
q∈R

n∑
i=1

Di

P̂ (Xi)
(Yi − q)(kτn − 1{Yi ≤ q})

and

q̂0(kτn) := arg min
q∈R

n∑
i=1

1−Di

1− P̂ (Xi)
(Yi − q)(kτn − 1{Yi ≤ q}).

The following sufficient regularity conditions are adapted from Assumptions A.1 and A.2 of

Firpo (2007):

Assumption 3.

(1) The density of X is bounded above and bounded away from 0 over its support.

(2) The propensity score P (x) is s-times continuously differentiable with all the derivatives

bounded.

(3) E(kτn−1{Yj ≤ qj(kτn)}|x) is t-times continuously differentiable in x with all derivatives

bounded by Mn uniformly over (x, k) ∈ Supp(X)× [κ1, κ2].

(4) The order of the series is h = CN c for some constants C and c such that c < 1
6
,

τnn
1+c(6− s

r
) → 0, Mnn

(1− tr )

τn
→ 0, and n11c−1τn → 0, where r is the dimension of X.

Assumptions 3(1) and 3(2) are common in the sieve estimation literature. Assumptions 3(3)

and 3(4) are tailored to fit the special case in which the quantile index is intermediate and

the derivative of the quantile varies with the sample size. In fact, the magnitude of Mn

depends on the tail behavior of Yj conditional on X. When the density of Yj|X vanishes

on its lower tail, Mn decreases to zero. When the density of Yj|X diverges on its lower

tail (such as a beta distribution with the first shape parameter less than 1), Mn diverges to

infinity. Last, Assumptions 3(3) and 3(4) can be further relaxed by using the doubly robust

estimation method as illustrated in Firpo and Rothe (2014).

Next, I impose regularity conditions on the tails of Y1 and Y0.

Assumption 4. For j = 0, 1

(1) Yj, Yj|X are continuously distributed with density fj(·) and fj(·|X), respectively.
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(2) fj(·) is monotone at its lower tails.

(3) The CDF of Yj belongs to the domain of attraction of generalized EV distributions with

the EV index ξj.

These restrictions are mild. Assumption 4(1) is common in quantile regression literature.

Assumption 4(2) refers to the tail of the distribution, which is satisfied by most well-known

continuous distributions. Assumption 4(3) is a standard condition in extreme value theory

and is satisfied by almost all continuous distributions.

Before stating the first main theoretical result of the paper, I introduce the normalizing

factor λj,n(k) for q̂j(kτn):

λj,n(k) :=

√
n

kτn
fj(qj(kτn)) for j = 0, 1 and k ∈ [κ1, κ2]. (3.3)

Recall that for the regular quantile estimation, the convergence rate is
√
n and the asymptotic

variance is τ(1−τ)

f2
j (qj(τ))

. By moving the asymptotic standard deviation to the same side of the

convergence rate, we obtain a normalizing factor√
n

τ(1− τ)
fj(qj(τ)).

Then letting τ := τn → 0, we heuristically obtain the normalizing factor for the intermediate-

order quantile estimators defined in (3.3) with k = 1.

Theorem 3.1. If Assumptions 1–4 hold, then(
λ1,n(k)(q̂1(kτn)− q1(kτn)), λ0,n(k)(q̂0(kτn)− q0(kτn))

)
as a two-dimensional stochastic process indexed by k is asymptotically tight under the uni-

form metric. In addition, if there exist functions H1(k1, k2), H0(k1, k2), and H10(k1, k2) on

(k1, k2) ∈ [κ1, κ2]× [κ1, κ2] such that, as τn → 0,

1

τn
E
[
P (Y1 ≤ q1(min(k1, k2)τn)|X)

P (X)
− 1− P (X)

P (X)
P (Y1 ≤ q1(k1τn)|X)P (Y1 ≤ q1(k2τn)|X)

]
→ H1(k1, k2),

1

τn
E
[
P (Y0 ≤ q0(min(k1, k2)τn)|X)

1− P (X)
− P (X)

1− P (X)
P (Y0 ≤ q0(k1τn)|X)P (Y0 ≤ q0(k2τn)|X)

]
→ H0(k1, k2),

and
1

τn
EP (Y0 ≤ q0(k1τn)|X)P (Y0 ≤ q0(k2τn)|X)→ H10(k1, k2),

9



then for k ∈ [κ1, κ2],(
λ1,n(k)(q̂1(kτn)− q1(kτn)), λ0,n(k)(q̂0(kτn)− q0(kτn))

)
 B(k)

where B(k) is a Brownian bridge with covariance kernel

H(k1, k2) :=


H1(k1, k2)√

k1k2

H1,0(k1, k2)√
k1k2

H1,0(k1, k2)√
k1k2

H0(k1, k2)√
k1k2

 .

Theorem 3.1 shows that the asymptotic distribution of the intermediate QTE estimator is

still Gaussian, just as when the quantile index is regular. Intuitively, this is because for

j = 0, 1, q̂j(τn) can be interpreted as a cutoff for which the number of {Yi,j}ni=1 below and

above the cutoff are of the same order of nτn and n(1 − τn), respectively. When τn is

intermediate, both orders diverge to infinity, which is the same as the case in which τ is

regular. Thus the shapes of asymptotic distributions under regular and intermediate-order

quantile indices are the same.

The difference between the regular and intermediate-order quantile asymptotic properties

is that for the intermediate case, nonparametrically estimating the propensity score P (x)

provides no additional information. From the proof of Theorem 3.1, the influence function

for q̂j is

φi,1,n :=
1
√
τn

[
Di

P (Xi)
Ti,1,n −

E(Ti,1,n|Xi)

P (Xi)
(Di − P (Xi))

]
where

Ti,1,n := τn − 1{Yi,1 ≤ q1(τn)}.

In φi,1,n, the second term
E(Ti,1,n|Xi)

P (Xi)
(Di − P (Xi))

represents the information gain and is asymptotically negligible compared to the first term
Di

P (Xi)
Ti,1,n.

I next turn to the asymptotic theory of q̂(τn) := q̂1(τn) − q̂0(τn). From Theorem 3.1, I

can make two observations: (1) the normalizing factors proposed in Theorem 3.1 are not

feasible, and (2) the tail behaviors of Y1 and Y0, and thus the convergence rates for q̂1(τn) and

q̂0(τn), are not necessarily the same. To address the first point, I follow Chernozhukov (2005)

and build a feasible normalizing factor based on quantile difference with spacing parameter

m > 1. To address the second point, I use the following assumption.
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Assumption 5.
q1(mτn)− q1(τn)

q0(mτn)− q0(τn)
→ ρ ∈ [0,+∞].

Assumption 5 aims to bridge the normalizing factors of q̂1(τn) and q̂0(τn) by ρ. When

ρ = 0, the convergence rate for q̂0 is slower so the estimation error of q̂1(τn) is asymptotically

negligible. On the other hand, if ρ = ∞, q̂0(τn) is super-consistent compared to q̂1(τn) and

thus can be treated as known. Last, when ρ ∈ (0,∞), the convergence rates for q̂1(τn) and

q̂0(τn) are the same. For analytical inference, when τn is intermediate, ρ can be estimated

by

ρ̂ =
q̂1(mτn)− q̂1(τn)

q̂0(mτn)− q̂0(τn)
.

Under Assumption 5, I define the feasible normalizing factor for q̂(τn) as

λ̂n :=

√
nτn

max

{
(q̂1(mτn)− q̂1(τn)), (q̂0(mτn)− q̂0(τn))

} .
The next theorem shows that the intermediate QTE estimator is asymptotically normal with

the feasible normalizing factor λ̂n.

Theorem 3.2. Let C1(ρ,m) := (1−m−ξ1
ξ1

)−1 ρ
max(1,ρ)

, C0(ρ,m) := (1−m−ξ0
ξ0

)−1 1
max(ρ,1)

2, and

Σn := Var(C1(ρ,m)φi,1,n − C0(ρ,m)φ0,n,i)/τn.

If Assumptions 1–5 hold, then

Σ−1/2
n λ̂n(q̂(τn)− q(τn)) N (0, 1).

Based on Theorem 3.2, I can conduct inference by estimating Σn and referring to the standard

normal critical value.

In addition, the next theorem shows that the standard bootstrap inference for the interme-

diate QTE is consistent. Let q̂∗(τn) be the estimator from the bootstrap sample and C̃nn
a (τn)

be the a-th quantile of q̂∗(τn)− q̂(τn) conditional on data. The two-sided 1− a-th bootstrap

2Here I adapt the convention that c
∞ = 0, c

0 = sign(c)∞ for any real number c, and 1−m−ξ

ξ = log(m)
when ξ = 0.
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CI for any a ∈ (0, 1) can be written as

CIboot(τn) =

(
q̂(τn)− C̃nn

1−a/2(τn), q̂(τn)− C̃nn
a/2(τn)

)
.

Theorem 3.3. If Assumptions 1–5 hold, then

lim
n→∞

P (q(τn) ∈ CIboot(τn)) = 1− a.

Falk (1991) has already proven the validity of bootstrap inference for the intermediate-order

percentiles. For the regression case, Chernozhukov (2000) points out that the bootstrap

inference is valid for linear intermediate-order quantile regressions. Recently, D’Haultfoeuille

et al. (2015) proves that the bootstrap inference for intermediate-order quantile regression

is valid in sample selection models. Here, I show that the bootstrap inference is also valid

for the intermediate-order QTE estimator.

3.2 Estimation of the extreme value index

In this section, I focus on the estimation of EV indices ξj for j = 0, 1. A consistent es-

timator of the EV index will be used in Section 5.4 to construct a consistent CI for the

0-th QTE. The result is also of independent interest because it contributes to the statistics

literature on estimating the EV index when the data are missing randomly conditional on

covariates. Previous literature has focused on estimating the EV index for the observable

Y . See Chapter 4 of Resnick (2007) for a textbook treatment on this topic. By contrast,

here the potential outcomes (Y1, Y0) are not fully observed. Theorem 3.4 addresses this is-

sue, proposes estimators of the EV indices for Y1 and Y0, and establishes their asymptotic

properties.

The proposed EV index estimator follows the Pickands type as described in Section 4.5 of

Resnick (2007). For some positive integer R, {wr}Rr=1 is a set of weights which sum to one.

I estimate ξj, the EV index of Yj, for j = 0, 1 by

ξ̂j :=
R∑
r=1

−wr
log(l)

log

(
q̂j(ml

rτn)− q̂j(lrτn)

q̂j(mlr−1τn)− q̂j(lr−1τn)

)
,

in which l is some positive constant and τn is intermediate.

The intuition for the estimator is straightforward. If Yj has EV index ξj, qj(τ) behaves as
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τ−ξj as τ → 0. Then

log

(
qj(ml

rτn)− qj(lrτn)

qj(mlr−1τn)− qj(lr−1τn)

)
behaves as

log

(
(ml)−ξj − l−ξj

(m)−ξj − 1

)
= −ξj log(l).

The next theorem establishes the consistency and asymptotic normality of the estimator.

For this purpose, I first extend the definition of the influence function in Theorem 3.1. In

particular, for any positive constant k, write

φ̃i,1,n(k) :=
Di

P (Xi)
Ti,1,n(k)− E(Ti,1,n(k)|Xi)

P (Xi)
(Di − P (Xi))

and

φ̃i,0,n(k) :=
1−Di

1− P (Xi)
Ti,0,n(k) +

E(Ti,0,n(k)|Xi)

1− P (Xi)
(Di − P (Xi))

where

Ti,1,n(k) := kτn − 1{Yi,1 ≤ q1(kτn)}

and

Ti,0,n(k) := kτn − 1{Yi,0 ≤ q0(kτn)}, respectively.

Theorem 3.4. Under the assumptions in Theorem 3.1, for j = 0, 1,

(1) ξ̂j
p−→ ξj.

(2) In addition, if

√
τnn

(
−1

log(l)
log

(
qj(ml

rτn)− qj(lrτn)

qj(mlr−1τn)− qj(lr−1τn)

)
− ξj

)
→ 0

as n→∞ for all r = 1, 2, · · · , R, then, for br := (wr−wr+1)lrξj (1−m−ξj )
log(l)ξj

and wR+1 = w0 := 0, I

have
√
τnn(ξ̂j − ξj) = − 1

√
τnn

n∑
i=1

( R∑
r=0

br

(
φ̃j,n,i(ml

r)− φ̃j,n,i(lr)
))

+ op(1).

Denote σ2
j,n := Var

(∑R
r=1 br

(
φ̃j,n,i(ml

r)− φ̃j,n,i(lr)
))

/τn, then

√
τnnσ

−1
j (ξ̂j − ξj) N (0, 1).

This theorem proves that the Pickands type estimator of the EV index is consistent. Under
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an additional assumption, its asymptotic normality also holds. The latter result can be used

to test the type of tails of both Y1 and Y0.

4 Extreme quantile treatment effects

Section 4.1 establishes asymptotic theory for the τn-th QTE when τn is extreme. It serves as

the foundation for the inference theory built in Sections 5.1 and 5.2. In addition, I will infer

the 0-th QTE by a linear combination of extreme QTEs. Hence the asymptotic theory also

contributes to the inference of 0-th QTE in Section 5.4. Appendix A verifies Assumption 8,

a high-level assumption for the asymptotic theories of extreme QTE established in Section

4.1. Section 4.2 considers the asymptotic distribution of the extreme QTE estimator with a

feasible normalizing factor. This permits inference through a resampling method proposed

in Section 5.2.

4.1 The main result

First, assume the following,

Assumption 6. τn is extreme; that is,

(1) τn → 0 as n→∞,

(2) τnn→ k for some positive constant k as n→∞.

Define the estimator q̂(τn) of the τn-th QTE q(τn) as:

q̂(τn) := q̂1(τn)− q̂0(τn) (4.1)

where q̂1(τn) and q̂0(τn) are computed from (3.1) and (3.2), respectively.

In fact, I use the same objective functions as those used to compute the regular and inter-

mediate QTE. On the practical side, this implies that researchers can compute them in a

unified manner without pre-specifying a category for the quantile index. On the theoretical

side, I will show that the asymptotic behavior of q̂j(τn) is no longer normal compared to the

ones with intermediate and regular quantile indices. This is because the number of obser-

vations below qj(τn) are of the same order of magnitude of τnn, which does not diverge to

infinity (Assumption 6). Furthermore, from this assumption, I only need consistency of the

propensity score estimator P̂ (x).

Assumption 7. supx∈Supp(X) |P̂ (x)− P (x)| = op(1).
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This assumption does not require that the convergence rate for the nonparametric propensity

score estimator is faster than n1/4, as usually assumed. See, e.g. Newey and McFadden

(1994). The reason is similar to the non-normality of the limiting distribution: there are only

a finite number of observations below the estimator of q̂j(τn), which are thus counted in the

summation of (3.1) and (3.2). This prevents the accumulation of first order approximation

error P̂ (Xi)− P (Xi).

Next, I state a high-level assumption that determines the shape of the asymptotic distribution

of the extreme QTE estimator.

Assumption 8. For j = 0, 1,

(1) P (X ∈ ·|Yj = y), the conditional distribution of X given Yj = y, weakly converges to the

CDF of a random variable Xj as y → qj(0). The CDF of Xj is denoted as P+
j (Xj ∈ ·|Yj =

qj(0)).

(2) P+
j (Xj ∈ ·|Yj = qj(0)) has finite mass points.

(3) Let S be the discontinuity of P (x). Then P+
j (Xj ∈ S|Yj = qj(0)) = 0.

Assumption 8(1) is high-level. Appendix A provides primitive sufficient conditions for As-

sumption 8(1) to hold. Appendix B contains more numerical illustrations. In general,

P+
j (Xj ∈ ·|j = qj(0)) depends on the structure of conditional boundary of Yj on X. The

phenomenon that the asymptotic distribution depends on boundary conditions, is common

in nonregular estimations. See, for example, Hirano and Porter (2003), Chernozhukov and

Hong (2004), and Lee and Seo (2008). For Assumption 8(2), the number of mass points

depends on the number of discrete minimizers of the conditional boundary of Yj given X

which is usually finite. Also, Assumption 8(2) holds when Xj is continuous, in which there

is no mass point.

Theorem 4.1, the main theoretical result of this section, establishes the joint asymptotic

distribution of q̂j(τn), j = 0, 1 by showing that a normalized version of q̂j(τn), j = 0, 1 weakly

converges to the minimizer of an asymptotic objective function. I first state the normalized

version of q̂j(τn), j = 0, 1 below.

For j = 0, 1, the normalized versions of q̂j(τn) with or without centering are

Ẑc
j,n(k) := αj,n(q̂j(τn)− qj(τn))

and

Ẑj,n(k) := αj,n(q̂j(τn)− q∗j − βj,n),

respectively. Here, q∗j is an auxiliary constant so that Uj = Yj − q∗j has lower endpoint 0

or −∞. In particular, if qj(0) > −∞, then q∗j = qj(0), otherwise, q∗j is arbitrary. The
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normalizing constants (αj,n, βj,n) for j = 0, 1 are given by

for type 1 tails (ξj = 0): αj,n = 1/(a(F−1
uj

(1/n))), βj,n = F−1
uj

(1/n),

for type 2 tails (ξj > 0): αj,n = −1/(F−1
uj

(1/n)), βj,n = 0,

for type 3 tails (ξj < 0): αj,n = 1/(F−1
uj

(1/n)), βj,n = 0,

in which Fuj is the CDF of Uj.

Now I turn to the second part, the asymptotic objective function. The asymptotic objective

function of the local parameter z takes the following form:

− kz +
∞∑
i=1

Wj(Di,j, P (Xi,j))lδ(Ji,j, z), (4.2)

in which W1(d, P ) = d
p

and W0(d, P ) = 1−d
1−p . To see the meaning of each term in (4.2), I

denote, for j = 0, 1,

for type 1 tails (ξj = 0): hj(l) = exp(l), for l ∈ R, ηj(k) = log(k),

for type 2 tails (ξj > 0): hj(l) = (−l)−1/ξj , for l < 0, ηj(k) = (−k)−ξj ,

for type 3 tails (ξj < 0): hj(l) = (l)−1/ξj , for l > 0, ηj(k) = k−ξj .

Then {Ei,j,Di,j,Xi,j} is an i.i.d. sequence such that {Ei,1,Di,1,Xi,1} ⊥⊥ {Ei,0,Di,0,Xi,0} and for

j = 0, 1, Xi,j is governed by the law P+
j (Xj ∈ ·|Yj = qj(0)). Di,j is Bernoulli distributed with

success probability P (Xi,j) conditional on Xi,j and Ei,j is standard exponentially distributed

independently of both (Xi,j,Di,j). In addition, Ji,j := h−1
j (
∑i

l=1 El,j) and lδ(u, v) := 1{u <
v}(v− u)− 1{u ≤ −δ}(−δ− u) for an arbitrary δ > 0. The same function of lδ(u, v) is first

used in Chernozhukov (2005).

Assumption 9. For j = 0, 1 and a generic fixed constant k > 0,

−kz +
∞∑
i=1

Wj(Di,j, P (Xi,j))lδ(Ji,j, z)

has a unique minimizer almost surely.

Assumption 9 indicates that the asymptotic objective function has a unique minimizer which

is necessary for applying the argmin theory. This type of assumption is common in non-

regular estimation literature. See, for example, Chernozhukov and Fernández-Val (2011),

Chernozhukov and Hong (2004), and Lee and Seo (2008). Lemma E.6 provides a sufficient

condition for this assumption to hold. In general, the assumption holds when Xj is absolutely
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continuous. If Xj has a mass point at x0, the sufficient condition requires that kP (x0) is not

an integer, where P (x) is the propensity score. Since integers are sparse on the real line, I

consider this sufficient condition mild.

Theorem 4.1. If Assumptions 1, 4, 6–8 hold, there exist κ1 and κ2 such that 0 < κ1 <

κ2 < ∞ and (κ1, κ2) satisfy Assumption 9, then (Ẑ1,n(k), Ẑ0,n(k))  (Z1,∞(k), Z0,∞(k)) in

D2([κ1, κ2]), where

(Z1,∞(k), Z0,∞(k)) := arg min
(z1,z0)∈R2

∑
j=0,1

[
−kzj +

∞∑
i=1

Wj(Di,j, P (Xi,j))lδ(Ji,j, zj)

]
.

In addition, (Ẑc
1,n(k), Ẑc

1,n(k)) (Zc
1,∞(k), Zc

0,∞(k)) := (Z1,∞(k)− η1(k), Z0,∞(k)− η0(k)) in

D2([κ1, κ2]).

The immediate corollary of Theorem 4.1 is the finite dimensional convergence. Due to the

lack of continuity of the sample path of (Z1,∞(·), Z0,∞(·)), the projection mapping is only

continuous when index k is not at the discontinuity.

Corollary 4.1. If the assumptions in Theorem 4.1 hold and Assumption 9 is satisfied for

k ∈ {kl}Ll=1, then

(Ẑ1,n(kl), Ẑ0,n(kl))
L
l=1  (Z1,∞(kl), Z0,∞(kl))

L
l=1

:= arg min
(z1,l,z0,l)

L
l=1

∑
j=0,1

L∑
l=1

{
−klzj,l +

∞∑
i=1

Wj(Di,j, P (Xi,j))lδ(Ji,j, zj,l)

}
,

and

(Ẑc
1,n(kl), Ẑ

c
0,n(kl))

L
l=1  (Zc

1,∞(kl), Z
c
0,∞(kl))

L
l=1 := (Z1,∞(kl)− η1(kl), Z0,∞(kl)− η0(kl))

L
l=1.

First, Theorem 4.1 and Theorem 3.1 (for the intermediate-order quantile), along with Theo-

rem 1 in Firpo (2007) (for the regular quantile), characterizes the evolution of the asymptotic

distribution of the QTE estimator when the quantile index ranges from 0 to 1. Starting

with the regular quantile, the asymptotic distribution is normal. Estimating the unknown

propensity score provides additional information. When the quantile index is intermediate,

the shape of the asymptotic distribution remains normal, but the additional information

from estimating the propensity score becomes asymptotically negligible. When the quantile

index moves even closer to the origin so that it is extreme, the shape of the asymptotic dis-

tribution becomes non-Gaussian, and the information from estimating the propensity score
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is asymptotically negligible. Figure 1 in Section 1 shows the evolution of the asymptotic

distribution over quantile index τ .

Second, I do not impose any parametric restriction on the conditional quantile of Yj given X,

in contrast to Chernozhukov (2005), which considered linear extreme-order quantile regres-

sions. The parameters considered in linear quantile regressions are conditional objects, while

QTEs in this paper are unconditional objects. In order to deal with conditional quantiles,

Chernozhukov (2005) proposed an innovative solution: use the asymptotic independence

between residuals and covariates X at tails in addition to linearity to regulate the condi-

tional tail behavior. On the other hand, in this paper, I only need Assumption 8, which is

weaker than the combination of linearity and asymptotic independence. Appendix A verifies

Assumption 8 under three different conditional boundary conditions.

Third, Theorem 4.1 has shown that q̂1(τn) and q̂0(τn) are asymptotically independent be-

cause, by construction, {Ji,1,Xi,1,Di,1}i≥1 ⊥⊥ {Ji,0,Xi,0,Di,0}i≥1. Thus the joint asymptotic

distribution of (q̂0(τn), q̂1(τn)) is fully characterized by the marginals. In Appendix B, I

compute the marginal distribution of q̂1(τ) under various boundary conditions.

Fourth, directly computing the critical value of the asymptotic distribution of q̂(τn) is in-

feasible. Note that the ultimate parameter of interest is q(τn) := q1(τn)− q0(τn). Although

the joint asymptotic distribution of (q̂0(τn), q̂1(τn)) has been established by Theorem 4.1, the

convergences depend on the tails of Y1 and Y0 and are hard to be estimated consistently.

Furthermore, the asymptotic distributions of q̂0(τn) and q̂1(τn) are complicated and depend

on unknown boundary conditions. In Section 5, I propose to use a b out of n bootstrap with

or without replacement to construct a CI and to draw inferences.

Last, as pointed out in the first remark after Theorem 4.1, the shape of the asymptotic

distribution changes as the quantile index moves from the intermediate region to the extreme

region. So the extreme-order quantile asymptotics proposed in Theorem 4.1 are valid only

if k = τnn is not large, i.e., τn ≤ τn,1. I will explain τn,1 in Section 5.3.

4.2 Feasible normalizing factor

This section considers the next missing piece needed for the resampling inference method:

the feasible normalizing factor. I propose a feasible normalizing factor that is not a consis-

tent estimator but has the same order of magnitude as the infeasible one and establish the

corresponding asymptotic theory.

The normalizing factor for the τn-th QTE estimator when τn is extreme has not been ob-

vious. First, the estimator of τn-th QTE is q̂(τn) := q̂1(τn) − q̂0(τn). Due to the different

tail behaviors, the normalizing factors for q̂1(τn) and q̂0(τn) are not necessarily the same.
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In addition, by Theorem 4.1, the normalizing factors for q̂1(τn) and q̂0(τn) are first-order

statistics that are unknown and hard to estimate.

I propose the following feasible normalizing factor:

α̂n :=

√
τn,l′n

max

{
q̂1(mτn,l′)− q̂1(τn,l′), q̂0(mτn,l′)− q̂0(τn,l′)

} , (4.3)

where m is a spacing parameter and τn,l′ is a quantile index selected by the researcher. How

to choose τn,l′ will be discussed later. The feasible normalizing factor uses the smaller of the

two factors for q̂1(τn) and q̂0(τn). In addition, the proposed factor has the same order but is

not a consistent estimator of the infeasible order statistic. This is possible by the following

assumption:

Assumption 10.

(1) τn,l′n→ kl′.

(2) kl′ satisfies the condition in Lemma E.7 as well as Assumption 9.

(3) Both Y1 and Y0 have type 2 or 3 tails.

Assumption 10(3) is valid in many economic applications. First, type 2 or 3 tails are also

called Pareto-type tails, which are prevalent in economic data such as wealth and incomes, as

argued in Section 2.2 of Chernozhukov and Fernández-Val (2011). Second, the assumption

holds if and only if the EV index is non-zero, which is testable based on Theorem 3.4. In

practice, it implies that the CDF of the two potential outcomes decay polynomially as τ → 0.

Last, 10(3) implies that the feasible and infeasible normalizing factors are of the same order

of magnitude. To see this, with n→∞, I have

1

αj,n(qj(mτn,l′)− qj(τn,l′))
=

F−1
uj

( 1
n
)

qj(mτn,l′)− qj(τn,l′)
∼ k

ξj
l′

m−ξj − 1
.

Theoretically, the choice of τn,l′ in α̂n does not impact the asymptotic validity of the nor-

malizing factor. However, in finite samples, this choice involves a trade-off between bias and

variance. If nτn,l′ is small, there are fewer observations used for estimating q̂j(τn,l′), which

produces a large variance. On the other hand, if nτn,l′ is large, it can introduce bias in two

ways. First, as the increase of nτn,l′ , the estimation error of the propensity score will accu-

mulate and contaminate the CI. In addition, since I use a b out of n bootstrap method with

subsample size b to construct the CI, if mnτn,l′/b is large, then this quantile index cannot

be interpreted as extreme-order. Both imply that the EV asymptotic theory is not suitable.

To address all the issues aforementioned, the rule of thumb I use to choose the index τn,l′
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is τn,l′ = min(C1

n
, C2b
mn

). The simulation study in Appendix C.1 shows that this rule with

(C1, C2) = (10, 0.1) performs well in finite samples.

Similar to Assumption 5, I have to bridge the two normalizing factors.

Assumption 11.
q1(

mkl′
n

)−q1(
kl′
n

)

q0(
mkl′
n

)−q0(
kl′
n

)
→ ρ ∈ [0,∞].

Since ρ can be 0 and ∞, the assumption incorporates the case when one convergence rate

dominates another.

The next theorem characterizes the weak convergence of the extreme QTE estimator with

the feasible normalizing factor.

Theorem 4.2. The assumptions in Theorem 4.1 and Assumptions 10 and 11 hold. Denote

ρ̃ := kξ0−ξ1l′
m−ξ1 − 1

ρ(m−ξ0 − 1)
and Ẑc

n(k) := α̂n(q̂(τn)− q(τn))

for any τnn→ k. Then for kl′ fixed,

Ẑc
n(k) Zc

∞(k) in D[κ1, κ2],

in which

Zc
∞(k) :=

√
kl′(Z

c
1,∞(k)− ρ̃Zc

0,∞(k))

max

{
Z1,∞(mkl′)− Z1,∞(kl′), ρ̃(Z0,∞(mkl′)− Z0,∞(kl′))

} .

An immediate corollary from the above theorem is the weak convergence of a linear combi-

nation of Ẑc
n(k)’s. In Section 5.4, I use the linear combination of extreme QTE estimators

to construct a point estimator and a CI for the 0-th QTE. Proposition 4.2 establishes the

theoretical foundation for this construction. The key here is to choose a proper set of weights

{r̂l}Ll=1. More details can be found in Section 5.4.

Assumption 12. Let {r̂l}Ll=1 be a set of weights that can be random, and

(1)
∑L

l=1 r̂l = 1,

(2) r̂l
p−→ rl for all l = 1, · · · , L and {rl}Ll=1 a set of constant real numbers.

(3) τn,ln→ kl where {kl}Ll=1 satisfies Assumption 9.

Corollary 4.2. The assumptions in Theorem 4.2 and Assumption 12 hold. Then

α̂n

(
L∑
l=1

r̂lq̂(τn,l)−
L∑
l=1

rlq(τn,l)

)
 

L∑
l=1

rlZ
c
∞(kl).
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5 Inference

This section establishes inference theory for extreme QTE estimators that I then apply in

Section 7. Section 5.1 shows that the conventional bootstrap CI does not control size. Section

5.2 establishes a new uniformly consistent CI over a range of quantile indices. Section 5.3

considers a robust confidence interval over different categories of quantile indices. Section

5.4 proposes to infer the 0-th QTE by combining a set of extreme QTE estimators with

carefully chosen weights. Last, Section 5.5 considers the two-sample inference.

5.1 Inconsistency of the standard bootstrap inference method

I first define the bootstrap estimator with proper normalizations:

(Ẑ∗1,n(k), Ẑ∗0,n(k)) := arg min
(z1,z2)∈R2

∑
j=0,1

{
−

n∑
i=1

(
n∑
l=1

1{Il = i}

)
Wj(Di, P̂ (Xi))τnzj

+
n∑
i=1

(
n∑
l=1

1{Il = i}

)
Wj(Di, P̂ (Xi))lδ(αj,n(Ui,j − qj(0)), zj)

}

in which Ẑ∗j,n(k) := αj,n(q̂∗j,n(τn) − qj(0)) for τnn → k. q̂∗j,n(τn) is the point estimator com-

puted from (3.1) and (3.2) using the bootstrap sample. Similarly, Ẑc∗
j,n(k) := αj,n(q̂∗j,n(τn)−

qj(τn)). Here, (In,1, In,2, · · · , In,n) is a multinomial vector with parameter n and probabilities

( 1
n
, · · · , 1

n
). The data is denoted as Φn and (In,1, In,2, · · · , In,n)⊥Φn.

Theorem 5.1. The Assumptions in Theorem 4.1 hold. Then

(Ẑ∗1,n(k), Ẑ∗0,n(k)) (Z∗1,∞(k), Z∗0,∞(k)),

in which

(Z∗1,∞(k), Z∗0,∞(k)) := arg min
(z1,z0)∈R2

∑
j=0,1

[
−kzj +

∞∑
i=1

Γi,jWj(Di,j, P (Xi,j))lδ(Ji,j, zj)

]

and

(Ẑc∗
1,n(k), Ẑc∗

1,n(k)) (Zc∗
1,∞(k), Zc∗

0,∞(k)) := (Z∗1,∞(k)− η1(k), Z∗0,∞(k)− η0(k)).
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Here, {Ji,j,Di,j,Xi,j}i≥1,j=0,1 are the same as in Theorem 4.1 and {Γi,j}i≥1 is a sequence of

i.i.d. Poisson random variables with unit mean such that

{Γi,j}i≥1,j=0,1⊥{Ji,j,Di,j,Xi,j}i≥1,j=0,1

and Γi,1⊥Γi,0.

The asymptotic distribution of the bootstrap estimator of extreme QTE is different from

the original estimator. Compared with the limiting process in Theorem 4.1, there is an

additional Poisson random variable term. Since the asymptotic objective function is not

quadratic, Z∗j,∞, j = 0, 1 are not linear in Γi,j which causes the invalidity of the bootstrap

inference. Furthermore, due to the lack of linear expansion of the estimator, Ẑ∗j,n(k)−Ẑj,n(k)

does not share the same limiting distribution with Ẑj,n(k).

The intuition behind the invalidity of standard bootstrap is similar to the case of order

statistics. When there are no missing counterfactuals or the data are fully missing at ran-

dom, the extreme-order quantile estimator considered in this paper degenerates to an order

statistic. However, Bickel and Freedman (1981) have already shown that the standard n out

of n bootstrap inference is not consistent for order statistics.

5.2 Consistency of the b out of n bootstrap inference

We have just seen that the conventional bootstrap CI is inconsistent. In this section, I

establish the uniform consistency of a b out of n bootstrap CI (BN-CI) both with and

without replacement in which b is the subsample size with b → ∞, b
n
→ 0. This third

main theoretical result of the paper allows empirical researchers to do uniformly consistent

inferences over a range of extreme-order quantile indices. Section 6 confirms the consistency

of BN-CI as well as the inconsistency of NN-CI through an extensive numerical study.

Let the quantile index for the subsample be τb. The key insight for the b out of n bootstrap

inference is to align τbb with τnn. Theorem 4.2 shows that the asymptotic distribution of

the τn-th QTE is indexed by k. Letting τbb = τnn = k ensures that the subsample estimator

can mimic the same asymptotic distribution of the full sample estimator.

I consider the b out of n bootstrap inference for extreme QTEs both with and without replace-

ment. Not allowing for replacement (subsampling), Bertail et al. (2004) studied the validity of

inference for extreme-order statistics without covariates. Chernozhukov and Fernández-Val

(2011) considered a similar inference procedure in linear extreme-order quantile regressions.

Allowing for replacement, Bickel and Sakov (2008) considered the b out of n bootstrap in-

ference in extreme-order statistics without covariates. Theorem 5.2 proves the consistency
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of b out of n bootstrap inference both with and without replacement for the extreme QTE.3

Before stating the main theorem of this section, I introduce the resampling version of the

feasible normalizing factor for the subsample:

α̂∗b :=

√
τb,l′b

max

{
q̂∗1(mτb,l′)− q̂∗1(τb,l′), q̂∗0(mτb,l′)− q̂∗0(τb,l′)

}
where τb,l′b = τn,l′n, τn,l′ satisfies Assumption 10. Then, the normalized estimator is

Ẑc∗
n (k) := α̂∗b(q̂

∗(τb)− q̂(τb)).

In the above two equations, q̂∗(τ) := q̂∗1(τ) − q̂∗0(τ) where q̂∗j (τ) is computed by (3.1) and

(3.2) with τn replaced by τ = τb or τb,l′ and using only the data from the subsample, which

is generated either with or without replacement. Without the star symbol, q̂(τb) := q̂1(τb)−
q̂0(τb) where q̂j(τb) is computed by (3.1) and (3.2) with τn replaced by τb and using the full

sample.

Theorem 5.2. If the assumptions in Theorem 4.2 hold and as n → ∞, b
n
→ 0, b → ∞ at

a polynomial rate in n, then Ẑc∗
n (k) Zc

∞(k) in D([κ1, κ2]).

Theorem 5.2 builds the theoretical foundation for constructing the uniform confidence band

for the extreme QTE over k ∈ [κ1, κ2], in which κ1, κ2 are not at the discontinuity of the

limiting process with probability 1. To construct a uniformly consistent confidence band,

I next want to studentize the process Ẑc∗
n (k). When the limiting process is Gaussian, it is

common to studentize the process by the point-wise standard deviation first and then to

approximate the studentized limit. Here, I consider the same studentization in the non-

Gaussian case. Let Sn(k) and σ(k) be the feasible and infeasible studentizing factors.

Assumption 13. For a (random) scale function Sn(k), there exists σ(k) > 0, a deterministic

function of k, such that

sup
k∈[κ1,κ2]

∣∣∣∣Sn(k)

σ(k)
− 1

∣∣∣∣ = op(1).

In addition, with probability approaching one, σ(k), Sn(k) are both continuous in k and

uniformly bounded and bounded away from zero over k ∈ [κ1, κ2].

Sn(k) can be Sn(k) := 1 or Sn(k) := k−ξ̂1 + k−ξ̂0 with corresponding σ(k) := 1 or σ(k) :=

k−ξ1 + k−ξ0 , respectively. In the later case, ξj, j = 0, 1 are unknown. So I replace them by

their consistent estimators ξ̂j, j = 0, 1. The choice of studentizing factors will not affect the

3I suggest using the b out of n bootstrap with replacement because it performs better in simulation.
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size of the uniform confidence band, but will rather affect its power. Unlike the Gaussian

limit in which using σ(k) as the point-wise standard deviation is natural, the best choice for

the studentizing factor in this non-Gaussian case is still an open question and should be the

focus of future research.

Corollary 5.1. Let Ĉ1−a denote the (1− a)-th quantile of maxk∈[κ1,κ2] |Ẑc∗
n (k)/Sn(k)|. If the

assumptions in Theorem 5.2 and Lemma E.7 as well as Assumption 13 hold, then

P

(
q

(
k

n

)
∈
[
q̂

(
k

n

)
− Sn(k)Ĉ1−a/α̂n, q̂

(
k

n

)
+ Sn(k)Ĉ1−a/α̂n

]
: k ∈ [κ1, κ2]

)
→ 1− a.

Let {kl}Ll=1 be a fine grid. τn,l = kl
n

, τb,l = kl
b

, τn,l′ =
kl′
n

, and τb,l′ =
kl′
b

. The number of

subsamples is Bn, which is as large as computationally possible. Researchers can compute

the uniform confidence band (CBα) based on the following procedure.

1. Compute q̂(τn,l) and q̂(τb,l) as in (4.1). Compute α̂n, Sn(k), and the propensity score

using the full sample.

2. For the i-th subsample, compute q̂∗(τb,l) for l = 1, · · · , L as in (4.1). Denote

α̂∗b :=

√
τb,l′b

max

{
q̂∗1(mτb,l′)− q̂∗1(τb,l′), q̂∗0(mτb,l′)− q̂∗0(τb,l′)

}
where for j = 0, 1, q̂∗j (τ) is computed as in (3.1) and (3.2), respectively, using the

subsample data and the propensity score estimated in the first step. Denote

V̂ ∗i,b := max
l=1,··· ,L

α̂∗b |(q̂∗(τb,l)− q̂(τb,l)) /Sn(k)| .

3. Repeat the above step for i = 1, · · · , Bn. Compute Ĉ1−a as the (1− a)-th quantile of

the {V̂ ∗i,b}
Bn
i=1.

4. CBα =

{[
q̂
(
k
n

)
− Sn(k)Ĉ1−a/α̂n, q̂

(
k
n

)
+ Sn(k)Ĉ1−a/α̂n

]
: k ∈ [κ1, κ2]

}
.

Next I consider the b out of n inference for a linear combination of extreme QTEs. By

carefully choosing the weights, in Section 5.4, I show that the linear combination of extreme

QTE estimators can be utilized to infer the 0-th QTE.
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Let Ca be the a−th quantile of
∑L

l=1 γrZ
c
∞(kl) and Ĉa be the a-th quantile of

α̂∗b

(
L∑
l=1

γ̂lq̂
∗(τb,l)−

L∑
l=1

γ̂lq̂(τb,l)

)
.

Given that
∑L

l=1 γrZ
c
∞(kl) is continuously distributed,4 Proposition 5.1 shows that Ĉa is a

consistent estimator of Ca. Denote

L∑
l=1

r̂lq̂(τn,l)− Ĉ0.5/α̂n and

[
L∑
l=1

r̂lq̂(τn,l)− Ĉ1−a/2/α̂n,

L∑
l=1

r̂lq̂(τn,l)− Ĉa/2/α̂n

]

the median-unbiased estimator and a (1− a)× 100% CI for q̂(τ), respectively.

Proposition 5.1. Under the assumptions in Theorem 5.2 and Assumption 12, I have

α̂∗b

(
L∑
l=1

γ̂lq̂
∗(τb,l)−

L∑
l=1

γ̂lq̂(τb,l)

)
 

L∑
l=1

γrZ
c
∞(kl), (5.1)

lim
n→∞

P

(
L∑
l=1

r̂lq̂(τn,l)− Ĉ0.5/α̂n ≤
L∑
l=1

rlq(τn,l)

)
= 0.5, (5.2)

and

lim
n→∞

P

(
L∑
l=1

r̂lq̂(τn,l)− Ĉ1−a/2/α̂n ≤
L∑
l=1

rlq(τn,l) ≤
L∑
l=1

r̂lq̂(τn,l)− Ĉa/2/α̂n

)
= 1− a. (5.3)

(5.1) shows the weak convergence of the linear combination of extreme QTE estimators, (5.2)

shows the median-unbiased estimator is asymptotically median-unbiased, and (5.3) implies

that the CI asymptotically controls size.

To implement, let Bn denote the number of subsamples. I use the following steps to compute

Ĉa.

1. Compute {r̂l}Ll=1, q̂(τb,l), q̂(τn,l), and the propensity score estimator P̂ (x) using the full

sample.

2. For the i-th subsample, compute q̂∗i,b(τb,l) for l = 1, · · · , L as in (4.1). Denote

α̂∗b :=

√
τb,l′b

max

{
q̂∗1(mτb,l′)− q̂∗1(τb,l′), q̂∗0(mτb,l′)− q̂∗0(τb,l′)

}
4This is shown in Lemma E.7 in the appendix.
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where for j = 0, 1, q̂∗j (τb) is computed as in (4.1) for each subsample. Denote

V̂ ∗i,b := α̂∗b

[
L∑
l=1

r̂l (q̂
∗(τb,l)− q̂(τb,l))

]
.

3. Repeat the above step for i = 1, · · · , Bn. Compute Ĉ1−a as the (1− a)-th quantile of

the {V̂ ∗i,b}
Bn
i=1.

When L = 1, I can use this procedure to construct the CI for q̂(τn) := q̂1(τn) − q̂0(τn), the

estimator of the τn-th QTE. The finite sample performance of the CI is examined in Section

6.

5.3 A robust confidence interval

The inference methods for intermediate and extreme QTE estimators are different. This

difference raises the practical issue of how to choose the inference method in a given dataset

with a small but given quantile index. Note that for a ∈ (0, 1), any two-sided (1− a)-th CI

can be written as

CI =
(
q̂(τn)− C̃1−a

2
(τn), q̂(τn)− C̃a

2
(τn)

)
(5.4)

where C̃a(τn) is some critical value. However, the choice of C̃a(τn) depends on the order of

τn.

Ideally, for extreme-order quantile index,

C̃a(τn) = C̃bn
a (τn) := Ĉa(τn)/α̂n

where Ĉa(τn) is the critical value computed by a b out of n bootstrap procedure for τn. For

the intermediate and regular order quantile indices, C̃a(τn) = C̃nn
a (τn) where C̃nn

a (τn) is the

critical value computed by a standard bootstrap procedure. But in practice, it is impossible

to determine the order of any quantile index because the size of the dataset is finite. The

ideal procedure is not feasible.

Andrews and Cheng (2012) faced a similar problem because the model they considered can be

either weakly, semi-strongly, or strongly identified. What they propose is an identification-

category-selection (ICS) procedure based on the strength of identification. Similarly, I pro-

pose an order-category-selection (OCS) procedure based on the quantile index of interest

and construct a robust CI.
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Let τn,1 := min(40
n
, 0.2b
mn

), τn,2 = b

n
√

log(n)
, and for any a ∈ (0, 1),

C̃ lf
a/2(τn) = max(C̃bn

a/2(τn), C̃nn
a/2(τn)) and C̃ lf

1−a/2(τn) = min(C̃bn
1−a/2(τn), C̃nn

1−a/2(τn)).

The robust CI is constructed based on a hybrid critical value C̃h
a (τn) defined as follows.

C̃h
a (τn) =


C̃bn
a (τn) if τn ≤ τn,1

C̃ lf
a (τn) if τn ∈ (τn,1, τn,2)

C̃nn
a (τn) if τn ≥ τn,2.

τn,1, in general, takes the form of τn,1 = min(C1

n
, C2b
mn

), where C1 and C2 are two positive con-

stants. If k := τn is large, the approximation error from estimating the propensity score will

contaminate the asymptotic approximation. This contamination inspires the requirement

that nτ ≤ C1. Chernozhukov (2005) and Chernozhukov and Fernández-Val (2011) suggest

to use C1 ∈ [40, 80]. To be cautious, I choose C1 = 40.

Second, the EV-law asymptotic approximation is only valid in the subsample with subsample

size b if the quantile index used in the subsample, mτb := mk
b

= mτn
b

, is close to zero. This

inspires the second requirement that

mτb ≤ C2.

Based on the simulations, the quantile index mτb is small enough if it is less than C2 = 0.2.

Combining these two requirements, I obtain τn,1.

For n large enough, τn,1 = 40
n

. If τ ≤ τn,1, nτ ≤ 40 <∞. For such τ , it is expected that the

extreme-order asymptotic distribution can approximate the finite distribution of the τ -th

QTE estimator better than the standard normal distribution. In this case, the robust CI

equals BN-CI.

On the other hand, if τ ≥ τn,2,

τn ≥ b√
log(n)

→∞

because b → ∞ polynomially in n. For such τ , it is expected that the finite sample distri-

bution of the τ -th QTE estimator is well approximated by the intermediate or regular order

quantile asymptotic distribution. In both cases, the standard bootstrap CI is consistent. In

addition, τ ≥ τn,2 implies that

τb :=
nτ

b
≥ 1√

log(n)
.
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It means that the quantile index τb used in computing the b out of n CI is not small. Thus

to view τb in the subsample as close to zero is inappropriate and BN-CI constructed using

τb may not be valid. For both reasons, when τ ≥ τn,2, I suggest using only the standard

bootstrap critical value.

When τ ∈ (τn,1, τn,2), whether normal or EV approximation works better is not clear. In

this case, the robust CI uses the least favorable critical value which is conservative.

The OCR procedure is different from the ICS procedure used in Andrews and Cheng (2012)

because here I have two thresholds and when the quantile index is less than the first thresh-

old, the asymptotic size is exact, while in Andrews and Cheng (2012), they only have one

threshold and when the strength of identification is less than the threshold, their asymptotic

size is conservative.

Let

Γex :=

{
{τn}n≥1 : τn → 0, nτn → k ∈ (0,∞), k satisfies Assumption 9

}
,

Γint :=

{
{τn}n≥1 : τn → 0, nτn →∞

}
,

and

Γreg :=

{
{τn}n≥1 : τn = k ∈ (0, 1)

}
denote the collections of extreme, intermediate, and regular order sequences of quantile

indices. The next theorem shows that the robust CI is indeed robust over Γ := Γex∪Γint∪Γreg.

Theorem 5.3. Assumptions 1, 3–5, and 7–8 hold. Subsample size b → ∞ polynomially in

n and b
n
→ 0. The standard bootstrap inference is consistent for regular quantile indices.

Then, for any a ∈ (0, 1),

inf
{τn}n≥1∈Γ

lim
n→∞

P
(
q(τn) ∈

(
q̂(τn)− C̃h

1−a
2
(τn), q̂(τn)− C̃h

a
2
(τn)

))
= 1− a.

Unlike Andrews and Cheng (2012), in which the parameters and thus the DGPs are drifting,

in my case, the DGP is fixed and the quantile index is drifting. So the above result mainly

focuses on the robustness of CI’s over different categories of quantile orders but does not

speak to the uniformity over different DGPs.

5.4 Inference theory for the 0-th QTE

This section constructs a consistent CI for the 0-th QTE when the lower boundaries of Y1 and

Y0 are bounded. The estimator for the 0-th QTE is a linear combination of extreme-order
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QTE estimators with a set of carefully chosen weights. For inference, the same procedure of

the inference method proposed for the extreme QTE in Section 5.2 can be directly applied.

I use a linear combination of extreme QTE estimators to infer the 0-th QTE so that the

estimation bias cancels out. To see the source of bias, first recall that, when the lower end

point is bounded and Assumption 10 holds, the tail is Type 3. This implies that q∗j = qj(0)

and βn,j = 0. Hence I have

q̂(τn)− (q1(0)− q0(0)) = q̂(τn)− q(τn) +
k−ξ1 + o(1)

α1,n

− k−ξ0 + o(1)

α0,n

. (5.5)

I can approximate the critical value of the asymptotic distribution for q̂(τn)− q(τn) based on

the procedure after Proposition 5.1. The second term on the RHS of (5.5) is the bias caused

by the fact that the parameter of interest is q(0), instead of q(τn).

To get rid of this bias, I propose a feasible estimator q̂(0) :=
∑L

l=1 r̂lq̂(τn,l) in which the

weights {r̂l}Ll=1 solve the following system of equations:

L∑
l=1

r̂l = 1,
L∑
l=1

r̂lk
−ξ̂1
l = 0,

L∑
l=1

r̂lk
−ξ̂0
l = 0. (5.6)

Here, (ξ̂0, ξ̂1), the consistent estimators of (ξ0, ξ1), can be computed by Theorem 3.4.

To implement, I compute q̂(0) using only three different values of τn,l, that is, L = 3. The

reason is twofold: (1) I do not have a selection rule for choosing among solutions of weights

that satisfies (5.6) if the solution is not unique, and (2) by fixing the upper and lower bound

τn,1 and τn,L, the more quantile indices I use, the higher the weights, which will widen the

implied CI.

Proposition 5.2. Let ξ̂j be consistent estimates of ξj for j = 0, 1, L = 3, (r̂1, r̂2, r̂3) be

computed as in (5.6), q̂(0) :=
∑L

l=1 r̂lq̂(τn,l), and Ĉa be computed as in the procedure after

Proposition 5.1. If the assumptions in Theorem 4.2 hold and qj(0) is bounded for j = 0, 1,

then

lim
n→∞

P
(
q̂(0)− Ĉ1−a/2/α̂n ≤ q(0) ≤ q̂(0)− Ĉa/2/α̂n

)
= 1− a.

There are two alternative methods by which to infer the 0-th QTE, each of which has its

own restriction. The first alternative is to analytically compute k−ξ1
α1,n
− k−ξ0

α0,n
, the leading

term of the bias in (5.5). This requires the estimation of the infeasible convergence rate

αj,n. However, computing an estimator α̃j,n of αj,n such that
α̃j,n
αj,n
→ 1 is harder than simply

estimating the EV index ξj. Usually, in order to compute α̃j,n, distributional assumptions,

29



such as αj,n = Cjn
ξj for some constant Cj, are imposed. See, for example, the discussion

in Chernozhukov and Fernández-Val (2011) on the distributional assumption and Bertail,

Politis, and Romano (1999) on the point of conductin subsampling inference when the con-

vergence rate is unknown. These distributional assumptions are not needed in Proposition

5.2.

The second alternative is to rely on asymptotics to ensure that the bias is asymptotically

negligible and small in the finite sample. To be more specific, combining Theorems 4.1 and

4.2, it is clear that for τnn→ k,

α̂n(q̂(τn)− q(0))

converges weakly to a non-degenerate limiting distribution. I can then approximate the

critical value of the limiting distribution by computing

Ẑ∗n(k) := α̂∗b(q̂
∗(τb)− q̂(τn))

for τbb = τnn. Comparing Ẑ∗n(k) with Ẑc∗
n (k) in (5.2), the only difference is that the subsample

estimator q̂∗b (τb) is now centered by q̂(τn) := q̂1(τn)− q̂0(τn), the full sample QTE estimator

at τn, instead of q̂(τb). The reason is that for the subsample, q̂(τb) and q̂(τn) can be viewed

as proxies for q(τb) and q(0), respectively. Then, after I obtain an estimator of the critical

value of the limiting distribution of Ẑ∗n(k) by a similar b out of n bootstrap procedure, I

can construct a median-unbiased estimator and a consistent CI for q(0). For this method to

work, I rely on the fact that the bias of using q̂(τn) as a proxy of q(0) vanishes asymptotically.

Since econometricians have no control of the magnitude of the bias in a finite sample, this

method is passive. The properties of the implied CI in finite samples can be sensitive to

both the choice of k = τnn and the subsample size b. Therefore, the passive method is less

robust than the one proposed in Proposition 5.2.

5.5 Two-sample inference

Given two independent samples (1) and (2) with sample sizes n1 and n2, the τ
(1)
n1 -th and

τ
(2)
n2 -th QTEs for the two samples are denoted as q(1)(τ

(1)
n1 ) and q(2)(τ

(2)
n2 ), respectively. In

application, researchers are also interested in inferring the difference of the QTE at tails

between two samples. In particular, they are interested in testing q(1)(τ
(1)
n1 ) = q(2)(τ

(2)
n2 )

for τ
(1)
n1 n1 = τ

(2)
n2 n2 = k. The following procedure constructs the median-unbiased point

estimator and the CI for q(1)( k
n1

)− q(2)( k
n2

).

1. For the first sample, compute the propensity score, (q̂(1)( k
n1

), q̂(1)( k
b1

)) as in (4.1), and

α̂
(1)
n1 as in (4.3).
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2. Let b2 := b b1n2

n1
c. For the second sample, compute the propensity score, (q̂(2)( k

n2
), q̂(2)( k

b2
)),

and α̂
(2)
n2 in the same manner. Denote

α̂n = min(α̂(1)
n1
, α̂(2)

n2
).

3. For the i-th step, generate subsample 1 with size b1 from the first sample and subsample

2 with size b2 from the second sample. Compute q̂(1)∗( k
b1

) as in (4.1) and

α̂
(1)∗
b1

:=

√
kl′

max

{
q̂

(1)∗

1 (
mkl′
b1

)− q̂(1)∗

1 (
kl′
b1

), q̂
(1)∗

0 (
mkl′
b1

)− q̂(1)∗

0 (
kl′
b1

)

} ,
with some kl′ specified by researchers, using the data from the first subsample. On

the RHS of the above equation, q̂
(1)∗
j (τ) and q̂

(1)∗
j (τ), for j = 0, 1 are computed as in

(3.1) and (3.2), respectively, with the propensity score computed using the full sample.

Similarly, from the second subsample, compute q̂(2)∗( k
b2

) and

α̂
(2)∗
b2

:=

√
kl′

max

{
q̂

(2)∗

1 (
mkl′
b2

)− q̂(2)∗

1 (
kl′
b2

), q̂
(2)∗

0 (
mkl′
b2

)− q̂(2)∗

0 (
kl′
b2

)

}
Denote

α̂∗b = min(α̂
(1)∗
b1

, α̂
(2)∗
b2

), V̂ ∗i,b := α̂∗b

[(
q̂(1)∗(

k

b1

)− q̂(1)(
k

b1

)

)
−
(
q̂(2)∗(

k

b2

)− q̂(2)(
k

b2

)

)]
.

4. Repeat the above step for i = 1, · · · , Bn. Compute Ĉ1−a as the (1− a)-th quantile of

the {V̂ ∗i,b}
Bn
i=1.

5. Construct the (1− a)-CI as

CIa =

[
q̂(1)(

k

n1

)− q̂(2)(
k

n2

)− Ĉ1−a/2/α̂n, q̂
(1)(

k

n1

)− q̂(2)(
k

n2

)− Ĉa/2/α̂n
]
.

Theorem 5.4. {Y (1)
i , D

(1)
i , X

(1)
i }

n1
i=1 and {Y (2)

i , D
(2)
i , X

(2)
i }

n2
i=1 are two independent samples

which satisfy all the assumptions in Theorem 4.2. Let b2 := b b1n2

n1
c. As n1 → ∞, b1

n1
→ 0,

b1 →∞ at a polynomial rate in n1, and there exists constants υ ∈ (0,∞) and (ρ0, ρ1, ρ2, ρ3, ρ4, ρ5) ∈

31



[0,∞]6, such that n2

n1
→ υ,

q
(1)
0 (

mkl′
n1

)− q(1)
0 (

kl′
n1

)

q
(2)
0 (

mkl′
n1

)− q(2)
0 (

kl′
n1

)
→ ρ0,

q
(1)
1 (

mkl′
n1

)− q(1)
1 (

kl′
n1

)

q
(1)
0 (

mkl′
n1

)− q(1)
0 (

kl′
n1

)
→ ρ1,

q
(2)
1 (

mkl′
n1

)− q(2)
1 (

kl′
n1

)

q
(2)
0 (

mkl′
n1

)− q(2)
0 (

kl′
n1

)
→ ρ2,

q
(1)
1 (

mkl′
n1

)− q(1)
1 (

kl′
n1

)

q
(2)
1 (

mkl′
n1

)− q(2)
1 (

kl′
n1

)
→ ρ3,

q
(1)
1 (

mkl′
n1

)− q(1)
1 (

kl′
n1

)

q
(2)
0 (

mkl′
n1

)− q(2)
0 (

kl′
n1

)
→ ρ4, and

q
(1)
0 (

mkl′
n1

)− q(1)
0 (

kl′
n1

)

q
(2)
1 (

mkl′
n1

)− q(2)
1 (

kl′
n1

)
→ ρ5.

Then

lim
n1→∞

P

(
q(1)(

k

n1

)−q(2)(
k

n2

) ≤ Ĉ0.5/α̂n

)
= 0.5 and lim

n1→∞
P

(
q(1)(

k

n1

)−q(2)(
k

n2

) ∈ CIa

)
= 1−a.

In Section 7, I will rely on the above procedure and the theorem to infer the difference of

racial gaps in college preparation index prior to and following a policy change.

6 Simulations

6.1 Limiting distributions

I first verify the asymptotic distributions of q̂1(τn) established in Section 4. Figure 6 plots

the quantiles of the normalized sample distribution of q̂1(τn) against the quantiles of its

limiting distribution established in Theorem 4.1 with four different boundary structures:

single minimizer, finite minimizers, continuum minimizers, and mixture minimizers. Since

the plots are all close to the diagonal line, the new asymptotic distributions based established

in Theorem 4.1 approximate the finite sample distributions very well.

Figure 7, on the other hand, plots the exact same quantiles for the estimators against the

quantiles of the standard normal distribution. The plots are all non-linear, which indicates

that the shape of the finite sample distributions is not normal. Any inference method based

asymptotic normality will fail to produce a consistent CI.

6.2 Inference for the extreme QTE

Table 2 and 3 illustrate that the standard bootstrap CI undercovers as much as 18.2 absolute

percentage points while the BN-CI’s coverage is very close to the nominal 95% when τ is less

than 2% or correspondingly, k := τn ≤ 40. In addition, the length of the BN-CI is larger but

still comparable to one with the standard bootstrap CI, which ensures the practical value of

BN-CI.
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Figure 8 shows that when the quantile index is less than the threshold, the BN-CI has

an accurate coverage while the standard bootstrap CI (NN-CI) undercovers substantially.

As the quantile index increases, BN-CI usually overcovers, which means that the BN-CI is

conservative, while the NN-CI still undercovers, but the coverage gradually converges to the

nominal rate. In addition, Figure 9 shows that the BN-CI is insensitive to the choice of

subsample size b over a reasonable range.

6.3 The robust confidence interval

Figure 10 shows the finite sample performance of the robust CI proposed in Section 5.3.

When τ ≤ τn,1 or τ ≥ τn,2, the coverage is close to the 95% nominal rate while when

τ ∈ (τn,1, τn,2), the CI overcovers and thus is conservative. All sixteen models exhibit this

same pattern. For details, please see Appendix F.3.

6.4 Inference for the 0-th QTE

Table 4 shows that the coverages of BN-CI for the 0-th QTE estimator proposed in Section

5.4 are all close to the nominal rate and median length of the CI’s are reasonable. Figure 11

plots the coverage of BN-CI against the subsample size b for b ∈ [500, 1, 000]. It shows that

the coverages for the BN-CI are not sensitive to the choice of subsample size.

7 Empirical applications

7.1 Effect of maternal status on extremely low birth weights

The lower tail of the birth weight distribution reflects severely adverse birth outcomes, which

is the main research interest in health economics. Adverse birth outcomes, particularly low

birth weight, are the leading causes of infant mortality, a main concern of public health

research. In addition, adverse birth outcomes result in large economic costs in not only

direct newborn care costs, but also long-term developmental costs like delayed entry into

kindergarten, repeated grades, and the consequent labor market outcomes. For literature on

maternal smoking and birth weights, see, for example, Abrevaya (2001), Abrevaya (2006),

Abrevaya and Dahl (2008), Chernozhukov and Fernández-Val (2011), Evans and Lien (2005),

Evans and Ringel (1999), Permutt and Hebel (1989), Rosenzweig and Wolpin (1991), and

the references therein.

Despite the large literature on the effect of maternal smoking on birth weights, there is no

consensus on its magnitude. Various research papers, using different estimation tools and
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data, find that the negative effect of maternal smoking is about 189-600 grams decrease in

birth weight5. See Abrevaya (2006) for a summary. But in order to draw these conclusions,

empirical researchers usually consider small but regular quantile estimates or subsamples

of low-weight infants and refer to the asymptotic normality to draw inferences. The only

exception is Chernozhukov and Fernández-Val (2011), who looked at extremely low birth

weight and referred to the EV distribution to draw inferences. Figure 8 of Chernozhukov

and Fernández-Val (2011) shows that the extremal quantile regression coefficient of maternal

smoking is close to zero and statistically insignificant.

I estimate the QTE of maternal smoking on extremely low birth weight infants. The QTE is

distinct from the linear regression coefficient of smoking status estimated in Chernozhukov

and Fernández-Val (2011) in four aspects. First, the extreme QTE is an unconditional

parameter while the regression coefficient is a conditional one. The extreme QTE estimated

here differs empirically from the linear regression coefficient because the conditional quantile

is heterogeneous as shown in Figure 8 and 9 in Chernozhukov and Fernández-Val (2011).

To recover the unconditional QTE from a conditional coefficient is also hard because inverse

CDF is a nonlinear operator. Second, I control for covariates in a more flexible way than

the linear regression, which makes the QTE estimator robust to misspecifications. Third,

the paradigm of QTE, given a fixed quantile index τ , still allows for two observationally

equivalent babies to have different treatment responses to maternal smoking, while the QTE

estimated by linear regression relies on the implicit assumption that the treatment effect is

homogeneous. Last, I also estimate the exact 0-th unconditional QTE, which measures the

effect of maternal smoking on the lower boundary of babies birth weight and is new to the

literature.

I use the same dataset as in Chernozhukov and Fernández-Val (2011). It was collected based

on June 1997 Detailed Natality Data published by the National Center for Health Statistics

and has been previously investigated by Abrevaya (2001) and Koenker and Hallock (2001).

I concentrate on African American mothers only, with 31,912 observations, because Figure 7

of Chernozhukov and Fernández-Val (2011) shows that low birth weights for black mothers

have a heavy lower tail. Economically, it suggests a severe adverse birth outcome which

is the main target of this analysis. Theoretically, the heavy lower tail of the birth weights

distribution is consistent with Assumption 10(3), which is the key to conducting the b out

of n bootstrap inference for the extreme QTE.

Table 5 reports the median-unbiased point estimates and the CI for the extreme QTE of

maternal smoking. In all quantile indices, I cannot reject that maternal smoking has no

negative impact on either extremal quantile or the lower bound of infants’ birth weights

5The average birth weight for an infant is about 3,400 grams.
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under 90% confidence level. A potential explanation for this result is that the catastrophic

birth outcome may be due to more severe diseases rather than maternal smoking. On the

other hand, the BN-CI is more than two times wider than the standard bootstrap CI. This

indicates that the standard bootstrap CI potentially undercovers which is consistent with

the simulation study. Last, the median-unbiased estimator for the 0-th QTE implies that if

a pregnant mother smokes, with 50% probability, her child’s lowest possible birth weight is

137.32 grams lighter than it would be if she did not smoke.

Although estimating the extreme QTE is one step forward in the direction of causal inference,

the existence of unobserved confounders can jeopardize the selection on observables. For

example, mothers who smoke during pregnancy are more likely to adopt other behaviors

(drinking, poor nutritional intake, etc.) that could have a negative impact on birth weight.

Evans and Lien (2005) and Evans and Ringel (1999) address this problem by using large

cigarette taxation change as an instrumental variable (IV) for maternal smoking. Extending

the current theory to incorporate IV and conduct inference for the extremal QTE for the

compliers would be a useful research direction.

7.2 Effect of minority status on college preparation index

This section considers the effect of minority status on the college preparation index (CPI)

for low-scoring college students with equivalent family backgrounds. Minority status can im-

pact the distributions of CPI directly through universities’ admission policy, and indirectly

through the ”backdoor” channel: minority students may live in a less favorable family envi-

ronment with low parental income and education level, which causes minority students to be

less prepared for college than their majority peers. After controlling for family backgrounds,

the CPI gap can be viewed as a measure of affirmative action in colleges’ admission selections

in the dimension of academic performances. See, for example, Arcidiacono, Aucejo, Coate,

and Hotz (2014). Throughout the application, I control for parental income and parental

education as confounders when computing the causal gap of minority status.

I focus on students with low CPI because they are the marginal population who will be

affected by the change of admission selection criteria. If a college’s admission is purely mer-

itocratic, then Proposition 1 of Bhattacharya, Kanaya, and Stevens (2016) shows that the

optimal admission protocol is a simple threshold-crossing form. Given the population of

enrolled students, the threshold can be identified as the lower boundary of the CPI distri-

bution, which is just the zero-th quantile. The gap of zero-th quantile of the distributions of

CPI for minority and majority students can then be viewed as a measure of the magnitude

of racial preference in college admission in the dimension of academic performance, or in

other words, a measure of the deviation of college admission rule from pure meritocracy. See
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Figure 2a for an illustration. Furthermore, Figure 2b shows that it is common to have zero

marginal gap at the tail, but non-zero gap on average.

Distribution of CPI

Non-minority

Minority

AA

(a) Different lower boundaries

Distribution of CPI

Non-minority

Minority
No AA

(b) Same boundaries, but different averages

In reality, the admission criteria in U.S. is multidimensional. Therefore, no simple threshold

for CPI can be identified from the data. However, based on the intuition built by Bhat-

tacharya et al. (2016), students with low CPI are the marginal population who are more

likely to be affected by the policy change on racial preferences in colleges’ admission se-

lections, and thus is the population of research interest. In addition, Arcidiacono, Aucejo,

and Hotz (2016) pointed out that CPI is related to racial inequality in terms of schooling

achievement, and thus also later economic outcomes. Hence, even without the theoretical

justification above, the racial gap in the tail of the distribution of academic performance

of admitted students provides another measure of affirmative action other than the average

gap, and is of its own interest.

The analysis here focuses on marginal admits which is the same as Bhattacharya et al.

(2016), but is in contrast with many other studies which focus on average pre-admission

test-scores (e.g. Zimdars, Sullivan, and Heath (2009) ) or average post-admission test-scores

(e.g. Keith, Bell, Swanson, and Williams (1985), Kane (1998), and Sackett, Kuncel, Arneson,

Cooper, and Waters (2009)). See Hoxby (2009) for historical perspective on selectivity in

US college admission and Arcidiacono, Lovenheim, and Zhu (2015) for a recent survey.

7.2.1 Pre-Prop 209

The UC campuses were subject to a ban on the use racial preference in admissions enacted

under Proposition 209 (Prop 209) which took effect in 1998. I use the UCOP data for

minority and non-minority students who first enrolled at one of the UC campuses in periods

both pre- and post-Prop 209, to compute the racial CPI gap at tails.6

Table 6 shows that, prior-Prop 209, after controlling for family background, the gaps at

the lower tail are almost all negative and statistically significant, except for students with

6For more details on Prop 209, the data, and the implementation, please see Appendix D.
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science major in UC Santa Cruz and students with non-science major in UC San Diego. It

suggests that prior-Prop 209, almost all UC campuses implemented racial preferences in the

dimension of academic performances during admission. In addition, the gaps at the tail are

larger for higher ranked campuses such as Berkeley and Los Angeles than that for the rest of

the campuses. It suggests that minority students and their majority peers have more similar

levels of college preparation in lower ranked campuses from the start. This provides a partial

explanation for the empirical finding in Arcidiacono et al. (2016) that less-prepared minority

students may have higher graduation probabilities at less-selective schools.

7.2.2 Post-Prop 209

Table 7 shows that the average CPI gaps for all campuses remain significant post-Prop 209.

But this does not necessarily reflect that there still exist racial preference in college admission

post-Prop 209 as argued by Figure 2b. In fact, Table 7 also shows that the tail gaps of CPI

become insignificant for several campuses, which suggests that the racial preference in the

corresponding campuses is insignificant.

Comparing Table 6 and 7, I find heterogeneous responses of UC campuses to Prop 209. The

racial gaps in UC Berkeley and UCLA for students with science major and in UC Berkeley,

UC Santa Cruz, and UC Riverside for students with non-science major remained significant

after Prop 209. For UC Santa Cruz science major, the gap became significant post-Prop 209.

These two results suggest that racial preferences in admission did not decrease post-Prop

209 for several campuses (especially Berkeley and Los Angeles). One possible explanation

is that, post-Prop 209, colleges modified their admission rules to implicitly favor minority

students. This is consistent with the finding in Antonovics and Backes (2014) that some

campuses responded to the ban of the race-based affirmative action by lowering weights on

academic credentials such as SAT scores and increasing weights on family backgrounds in

determining admissions. Because minority students are more likely to have less favorable

family backgrounds, by putting more weights on family background, the admission rule

implicitly favor minority students.

7.2.3 Pre- and post-Prop 209 comparison

The median-unbiased point estimators pre- and post-Prop 209 differ most for admitted stu-

dents majoring science at UC Berkeley and UC San Diego. The difference can be summarized

in Figure 12.

I also test whether the differences of racial gaps pre- and post-Prop for UC Berkeley and UC

San Diego are significant by using the two-sample test established in Section 5.5. Table 8
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shows that, for UC Berkeley, we cannot reject that racial gaps remained the same level prior

and post-Prop 209. In addition, the median-unbiased point estimator for the difference of

racial gap among Berkeley students with science major pre- and post-Prop 209 is positive,

which implies that the racial gap in UC Berkeley may actually increase with more than half

of the probability. Again, these findings support the empirical results in Antonovics and

Backes (2014), which suggest that UC Berkeley might have modified its admission protocol

to maintain the same level of racial preference in the dimension of CPI. For students majoring

science at UC San Diego, by contrast, the CPI gap deceases significantly post-Prop 209. This

provides evidence that UC San Diego modified the college admission rule according to Prop

209.

8 Conclusion

This paper establishes asymptotic theory and inference procedures for an estimator of the

unconditional QTE when the quantile index is close or equal to zero. There are two main

difficulties: missing data and data sparsity. I address them simultaneously by relying on the

unconfoundedness assumption and extremal quantile asymptotics, respectively. When the

quantile index is close or equal to zero, I derive a new asymptotic approximation of the finite

sample estimator of the QTE and show that standard bootstrap inference is inconsistent.

Based on my new asymptotic theory, I propose a new way to construct a uniformly consistent

confidence band for extreme QTEs. Last, by using a linear combination of extreme QTE

estimators, I propose a median-unbiased estimator and consistent CI for the 0-th QTE.

I then apply the new inference method to estimate the effect of maternal smoking of African

American mothers for the lower tail of infants’ birth weights and the racial gap of CPI in

college admissions. For the first application, while I cannot reject that maternal smoking

has no effect on the lower tail of birth weights at the 90% confidence level, I find that the

standard bootstrap CI is two times narrower than the new resampling CI developed in this

paper. The difference suggests that the standard bootstrap CI potentially over-rejects.

For the second application, I find evidence that pre-Prop 209, most UC campuses imple-

mented racial preference in academic performances and post-Prop 209, UC campuses modi-

fied their admission selection criteria in a heterogeneous manner.
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A Asymptotic distribution under various boundary con-

ditions

This section verifies Assumption 8 under three different boundary conditions. I demonstrate that

the asymptotic distribution for the extreme QTE is nonregular and depends on complications in

boundary conditions. More numerical illustrations are in Appendix B. Since the boundary condition

is unknown and is usually hard to estimate, analytical inference is difficult. Instead, in Section 5,

I will focus on resampling based inference, which does not require knowledge of the boundary.

First, I give another representation of the asymptotic objective function established in Theorem

4.1. In fact,

−kz +

∞∑
i=1

Wj(Di,j , P (Xi,j))lδ(Ji,j , z) = −kz +

∫
Ej

Wj(d, P (x))lδ(uj , z)dNj(uj , d, x),

where Nj(uj , d, x) is a Poisson random measure on Ej with mean measure µj (PRM(µj)) and

for type 1 tails (ξj = 0): Ej = E1 = [−∞,+∞)× {0, 1} × Supp(X ),

for type 2 tails (ξj > 0): Ej = E2 = [−∞, 0)× {0, 1} × Supp(X ),

for type 3 tails (ξj < 0): Ej = E3 = [0,+∞)× {0, 1} × Supp(X ).

Let F be a basis of relatively compact open sets of Rr such that F is closed under finite unions

and intersections7 and for any F ∈ F ,

P+
j (Xj ∈ Bd(F )|Y = qj(0)) = 0,

in which Bd(F ) is the boundary of the set F . Then the mean measure µj , which uniquely determines

the distribution of a Poisson random measure, is defined as

µj((a, b)× {d} × F ) :=

∫
F

(dP (x) + (1− d)(1− P (x)))P+
j (dx|Yj = qj(0))(hj(b)− hj(a)). (A.1)

Next, I establish the asymptotic distribution of q̂j(τn) by deriving the close-form expressions for

the mean measure µj under three different boundary conditions: the conditional boundary of Yj

given X having finite minimizers, continuum minimizers, and mixture minimizers. I will restrict my

attention to the marginal distribution of q̂1(τn) because of the asymptotic independence between

q̂1(τn) and q̂0(τn).

7r is the dimension of X.
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A.1 Finite minimizers

When the lower endpoint of Y1 is bounded, I denote $(x) as Y1’s conditional boundary given X = x.

If $(x) is uniquely minimized at x0, then as Y1 → q1(0), X → x0. So I expect P+
1 (X1 ∈ ·|Y1 = q1(0))

to be 1{x0 ∈ ·}. This implies that the mean measure µ1 in the asymptotic distribution of Z1,∞(k)

defined in (A.1) takes the following form:

µ1((a, b)× {d} × F ) = (dP (x0) + (1− d)(1− P (x0)))(h1(b)− h1(a))1{x0 ∈ F},

for any F ∈ F in which

F := a basis generated by all open sets in Rr containing x0 as an interior point.

Next, I will make the argument rigorous and generalize it to the scenario in which $(x) achieves

its minimum on finite points of the support of X. See Figure 3 for an illustration of this type of

boundary.

The Skorohod representation in Lemma 7.11 of Van der Vaart (2000) provides a measurable map g

on Rr×[0, 1] and a random variable ε which is uniformly distributed on [0, 1], such that Y1 = g(X, ε),

X ⊥⊥ ε. On top of this, I assume:

Assumption 14. The measurable map g is lower semi-continuous.

The conditional boundary obtains a finite set of minimizers; that is,

Assumption 15. $(x) > −∞ and is minimized at S0 = {xt}Tt=1 for some positive integer T <

+∞.

Yj

X

Lower boundary of Yj conditional on Xj

x1 x2

QYj(0)

Figure 3: Finite minimizers

Now I characterize the weak limit P+
j (Xj ∈ ·|Yj = qj(0)) in Assumption 8 under Assumption 14 and

15. For each y, let Sy be the support of random variable λ(X, y) where λ(x, y) := Pr(g(x, ε) ≤ y).
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For a fixed y0, define Sy0 := ∪tSy0,t where {Sy0,t} is a partition of Sy0 such that for t′ 6= t, xt ∈ Sy0,t

and d(xt′ , Sy0,t) > 0. For y ≤ y0, Sy,t := Sy0,t ∩ Sy and py,t :=
E1{X∈Sy,t} ∂λ(X,y)

∂y

E1{X∈Sy} ∂λ(X,y)
∂y

.

Assumption 16. limy→q1(0) py,t exists and is equal to pt.

If Assumption 15 holds with T = 1, Assumption 16 holds with p1 = 1 automatically. Given

Assumption 16, the asymptotic objective function becomes

−kz +
∞∑
i=1

Di,1,f
P (Xi,1,f )

lδ(Ji,1,f , z),

in which {Ei,1,f ,Di,1,f ,Xi,1,f} is a sequence of i.i.d. random vectors, Ei,1,f is standard exponentially

distributed, independent of (Xi,1,f ,Di,1,f ), Ji,1,f := h−1
1 (
∑i

l=1 El,1,f ), Di,1,f is a Bernoulli distributed

random variable with success probability P (Xi,1,f ) conditional on Xi,1,f , P (·) is the propensity score,

and Xi,1,f is supported by S0 with corresponding point mass probabilities {pt}Tt=1.

Corollary A.1. If Assumptions 1, 4, 6, 7, and 9-16 hold, then

Ẑ1,n(k) Z1,∞(k) := arg min
z∈R

−kz +
∞∑
i=1

Di,1,f
P (Xi,1,f )

lδ(Ji,1,f , z).

Examples 1 and 2 in Appendix B demonstrate the asymptotic distributions of this type.

A.2 Continuum minimizers

Next, I consider the conditional boundary in a case when it has continuum of minimizers; that is, a

case in which it is flat over X. See Figure 4 for an illustration of the boundary. Recall U1 = Y1−q∗1.

Then, I have

P (X ∈ F |Y1 = y) =

∫
F fU1(y − q∗1|x)dFX(x)∫
fU1(y − q∗1|x)dFX(x)

,

in which fU1 is the conditional density of U1. If $(x) is flat, I can adapt the independence at infinity

condition assumed in both Chernozhukov (2005) and Chernozhukov and Fernández-Val (2011).

Assumption 17. $(x) ≥ −∞ is flat, i.e. $(x) = q1(0) for x ∈ Supp(X) and there exists a

random variable ε1 such that

(1) for u→ 0, uniformly over X, FU1(u|X) ∼ Fε1( u
σ1(X)) and fU1(u|X) ∼ 1

σ1(X)fε1( u
σ1(X)),

(2) infx σ1(x) > 0,

(3) ξ1, the EV index of both U1 and ε1, is nonzero.
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Yj

Xx1 x2

QYj(0)

Figure 4: Continuum of minimizers

I allow the lower endpoint to be −∞. Assumption 17(1) means U1 behaves as σ1(X)ε1 at its lower

tail and X ⊥⊥ ε1. Chernozhukov (2005) and Chernozhukov and Fernández-Val (2011) propose

exactly this independence-at-tail condition. Resnick (1987) Proposition 0.7 shows that

fU1(u|X) ∼ 1

σ1(X)
fε1

(
u

σ1(X)

)
holds point-wise by taking derivatives on both sides of FU1(u|X) ∼ Fε1( u

σ1(X)). Assumption 17(1)

goes one-step further than Resnick (1987) Proposition 0.7, requires that

fU1(u|X) ∼ 1

σ1(X)
fε1

(
u

σ1(X)

)
holds uniformly. The uniformity is not strong, given that Supp(X) is compact. It can be relaxed to

hold point-wisely with an envelope condition as illustrated in D’Haultfoeuille et al. (2015). Based

on Assumption 17,

fU1(y − q∗1|X) ∼ 1

σ1(X)
fε1

(
y − q∗1
σ1(X)

)
∼ σ1(X)1/ξ1fε1(y − q∗1)

uniformly over X.

Under the conditional independence at the tail, as y → q1(0), I have

P (X ∈ F |Y1 = y)→
∫
F σ1(x)1/ξ1dFX(x)∫

Supp(X) σ1(x)1/ξ1dFX(x)
.

Then, the asymptotic objective function becomes

−kz +
∞∑
i=1

Di,1,c
P (Xi,1,c)

lδ(Ji,1,c, z),
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in which {Xi,1,c,Di,1,c, Ei,1,c} is i.i.d. sequence of random vectors, Xi,1,c is generated from the density

σ1(x)1/ξdFX(x)∫
Supp(X) σ1(x)s1/ξdFX(x)

,

Di,1,c is Bernoulli distributed with success probability P (Xi,1,c) conditional on Xi,1,c, Ei,1,c is a

standard exponentially distributed random variable that is independent of Xi,1,c and Di,1,c, and

Ji,1,c := h−1
1 (
∑i

l=1 El,1,c).

Corollary A.2. If Assumptions 1, 4, 6, 7, 9 and 17 hold,

Ẑ1,n(k) Z1,∞(k) := arg min
z∈R

−kz +
∞∑
i=1

Di,1,c
P (Xi,1,c)

lδ(Ji,1,c, z).

Example 3 in Appendix B illustrates this type of asymptotic distribution.

A.3 Mixture Minimizers

Last, I combine the above two types of boundary structures and consider the case in which the

minimizers of the conditional boundary is a mixture of discrete points and continuum intervals.

See Figure 5 for an illustration. For two positive integers T and R, let $(x) > −∞ achieve its

minimum on

x ∈ {x1, · · · , xR} ∪ (∪Tt=1S0,t).

For each y, let Sy be the support of random variable λ(X, y) where

λ(x, y) := Pr(g(x, ε) ≤ y).

For fixed y0, let

{{Sdy0,r}
R
r=1, {Scy0,t}

T
t=1}

be a partition of Sy0 such that (1) for all integers r, r′ = 1, 2, · · · , R and t, t′ = 1, 2, · · · , T ,

xr ∈ Sdy0,r, S0,t ⊂ Scy,t;

(2) for r 6= r′, d(xr, S
d
y0,r′

) > 0; (3) for all t and r, d(Scy0,t, S
d
y0,r) > 0; and (4) for t 6= t′,

d(Scy0,t, S
c
y0,t′

) > 0. Finally, let

Sdy,r := Sdy0,r ∩ Sy, pdy,r :=
E1{X ∈ Sdy,r}

∂λ(X,y)
∂y

E1{X ∈ Sy}∂λ(X,y)
∂y

, Scy,t := Scy0,t ∩ Sy,
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and

pcy,t :=
E1{X ∈ Scy,t}

∂λ(X,y)
∂y

E1{X ∈ Sy}∂λ(X,y)
∂y

.

Assumption 18.

(1) d(·, ·) is the Euclidean distance between sets or between points and sets. Then

min
r 6=r′

d(xr, xr′) ∧min
t6=t′

d(S0,t, S0,t′) ∧ min
r≤R,t≤T

d(xr, S0,t) > δ0

for some positive δ0.

(2) As y → q1(0), pdy,r → pdr for r = 1, 2, · · · , R and pcy,t → pct for t = 1, 2, · · · , T .

(3) Let Sδ denote the δ-enlargement set {x|d(x, S) ≤ δ}; there then exists a positive constant δ

such that for each t = 1, 2, · · · , T , on (S0,t)
δ, there exist εt with EV index ξt < 0 and σt such that,

uniformly in x ∈ (S0,t)
δ,

fU1(y − q1(0)|X = x) ∼ 1

σt(x)
fεt(

y − q1(0)

σt(x)
) ∼ σt(x)−1/ξtfεt(y − q1(0)).

(4) mint≤T infx σt(x) > 0.

Yj

Xx1 x2 x3

QYj(0)

Figure 5: Mixture of minimizers

Next I define the asymptotic objective function for the mixture boundary case:

−kz +

∞∑
i=1

Di,1,m
P (Xi,1,m)

lδ(Ji,1,m, z),

in which {Ei,1,m,Di,1,m,Xi,1,m} is an i.i.d. sequence of random vectors, Ei,1,m is standard expo-

nentially distributed, independent of both Xi,1,m and Di,1,m, Ji,1,m := h−1
1 (
∑i

l=1 El,1,m), Di,1,m is

Bernoulli distributed with success probability P (Xi,1,m) conditional on Xi,1,m, Xi,1,m is supported
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on {x1, · · · , xR} ∪ (∪Tt=1S0,t), with its distribution being that, for any Borel set B,

P (Xi,1,m ∈ B) =
R∑
r=1

1{xr ∈ B}P dr +
T∑
t=1

pct

∫
S0,t∩B

σt(x)1/ξtdFX(x)∫
S0,t

σt(x)1/ξtdFX(x)
.

Corollary A.3. If Assumptions 1, 4, 6, 7, 9, 14 and 18 hold, then

Ẑ1,n(k) Z1,∞(k) := arg min
z∈R

−kz +

∞∑
i=1

Di,1,m
P (Xi,1,m)

lδ(Ji,1,m, z).

Example 4 in Appendix B describes this type of asymptotic distribution.

B Illustrative examples

In this section, I consider four different types of conditional boundaries of Y1 given X: single

minimizer, multiple minimizers, continuum minimizers, and mixture minimizers. For each of the

boundary behavior, I compute the limiting objective function based on the theoretical results in

Appendix A. The results derived in this section are further used as the baseline models for the

simulation study.

Example 1 (Single minimizer):

Y1 = 0.5 + (X − 0.2)2 + ε, D = 1{η ≤ P (x)}, P (x) = 0.25 + x2/2,

in which X ∼ Uniform[0, 1], ε ∼ Beta(1, 2), η ∼ Uniform[0, 1], X, ε, η are independent.

In this example, $(x), the conditional boundary of Y , is equal to 0.5 + (X − 0.2)2 and has a

unique minimizer at x = 0.2. In addition, the EV index for Y is −1/1.5.8 Hence by Corollary

A.1, sequence (Di, Ei) is i.i.d, Di is Bernoulli distributed with success probability P (0.2), Ei ⊥⊥ Di,
Ji = (

∑i
l=1 Ei)1/1.5 in which Ei is standard exponentially distributed, and

Ẑ1,n(k) Z1,∞(k) := arg min
z∈R

−kz +
∑
i

Di
P (0.2)

lδ(Ji, z).

Example 2: (Multiple minimizers)

Y1 = 0.5 + (|X − 0.3| − 0.1)2 + ε, D = 1{η ≤ P (x)}, P (x) = 0.25 + x2/2,

in which X ∼ Uniform[0, 1], ε ∼ Beta(1, 2), η ∼ Uniform[0, 1], X, ε, η are independent.

In this example, $(x), the conditional boundary of Y , is 0.5 + (|X − 0.3| − 0.1)2 and has two

minimizers x1 = 0.2 and x2 = 0.4. In addition, Sy,1 = [0.2 −
√
y − 0.5, 0.2 +

√
y − 0.5], Sy,2 =

8In general, the EV index is −1/(α+ 0.5) where α is the first parameter of the Beta distribution.
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[0.4−
√
y − 0.5, 0.4 +

√
y − 0.5], and p1 = p2 = 1/2. Again, the EV index for Y is −1/1.5.9 Hence

by Corollary A.1, sequence (Di,Xi, Ei) is i.i.d, Di is Bernoulli distributed with success probability

P (Xi) conditional on Xi, Xi is equal to x1 = 0.2 or x2 = 0.4 with equal probability, Ei ⊥⊥ (Xi,Di),
Ji = (

∑i
l=1 Ei)1/1.5 where Ei is standard exponentially distributed, and

Ẑ1,n(k) Z1,∞(k) := arg min
z∈R

−kz +
∑
i

Di
P (Xi)

lδ(Ji, z).

Example 3: (Continuum minimizers)

Y1 = 0.5 + (X + 0.5)ε, D = 1{η ≤ P (x)}, P (x) = 0.25 + x2/2,

in which X ∼ Uniform[0, 1], ε ∼ Beta(1, 2), η ∼ Uniform[0, 1], X, ε, η are independent.

In this example, $(x), the conditional boundary of Y is flat. It is easy to compute that the EV

index of Y is −1 (−1/α in general where α is the first parameter of the Beta distribution). Hence by

Corollary A.2, sequence (Di,Xi, Ei) is i.i.d, Di is Bernoulli distributed with success probability P (Xi)
conditional on Xi, Xi is continuously distributed over [0, 1] with density x + 0.5.10 Ei ⊥⊥ (Di,Xi),
Ji =

∑i
l=1 Ei where Ei is standard exponentially distributed, and

Ẑ1,n(k) Z1,∞(k) := arg min
z∈R

−kz +
∑
i

Di
P (Xi)

lδ(Ji, z).

Example 4: (Mixture minimizers)

Y1 = 0.5 + (|X − 0.3| − 0.1)21{X ∈ [0, 0.6)}+ (1{X > 0.5} − 1{X ∈ [0.7, 0.8]}) + (X + 0.5)ε,

D = 1{η ≤ P (x)}, P (x) = 0.25 + x2/2,

in which X takes value 0.2 with probability 0.1, 0.4 with probability 0.1 and is uniformly distributed

on [0.5, 1]. ε ∼ Beta(1, 2), η ∼ Uniform[0, 1], X, ε, η are independent.

In this example, $(x), the conditional boundary of Y , is

(|X − 0.3| − 0.1)21{X ∈ [0, 0.6)}+ (1{X > 0.5} − 1{X ∈ [0.7, 0.8]}).

$(x) achieves its minimum at x1 = 0.2, x2 = 0.4 and x ∈ [0.7, 0.8]. It is easy to compute that

pd1 = 1/3.6, pd2 = 1/3.6, pc1 = 1.6/3.6. Further more, the EV index for Y is −1.11 Hence by

9In general, the EV index is −1/(α+ 0.5) where α is the first parameter of the Beta distribution.
10In general, the density is

( 1
α + 1)(x+ 0.5)1/α

1.5
1
α+1 − 0.5

1
α+1

where α is the first parameter of the Beta distribution.
11In general, the EV index is −1/α, where α is the first parameter of the Beta distribution.
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Corollary A.3, sequence (Di,Xi, Ei) is i.i.d, Di is Bernoulli distributed with success probability

P (Xi) conditional on Xi. Xi is a mixture distribution which has mass 1/3.6 at point 0.2, mass 1/3.6

at point 0.4, and is continuously distributed on [0.7, 0.8] with density 32
9 (x+ 0.5).12 Ei ⊥⊥ (Xi,Di),

Ji =
∑i

l=1 Ei where Ei is standard exponentially distributed, and

Ẑ1,n(k) Z1,∞(k) := arg min
z∈R

−kz +
∑
i

Di
P (Xi)

lδ(Ji, z).

C Simulation results

C.1 Details of simulation designs

For all DGPs, the error term ε1 is generated from a Beta distribution with parameter (1, 2) and ε0

is generated from a Beta distribution with parameter (1.5, 2). They are independent of each other

as well as covariate X. The treatment status D = 1{U ≤ P (x)} where U is a uniformly distributed

random variable independent of (ε1, ε0, X) and P (x) is the propensity score that takes the form

of 0.25 + 0.5x2. The potential outcomes (Y1, Y0) are generated based on one of the following four

models. For j = 0, 1,

1. Model (Aj):

Yj = a1,j + (X − a2,j)
2 + εj ,

X is uniformly distributed on [0, 1], (a1,1, a2,1) = (0.5, 0.2), and (a1,0, a2,0) = (0.2, 0.3),

2. Model (Bj):

Yj = b1,j + (|X − b2,j | − b3,j)2 + εj ,

X is uniformly distributed on [0, 1], (b1,1, b2,1, b3,1) = (0.5, 0.3, 0.1), and (b1,0, b2,0, b3,0) =

(0.3, 0.2, 0.15).

3. Model (Cj):

Yj = c1,j + (X + c2,j)εj ,

X is uniformly distributed on [0, 1], (c1,1, c2,1) = (0.5, 0.5), and (c1,0, c2,0) = (0.3, 0.2).

4. Model (Dj):

Yj = d1,j + (|X − d2,j | − d3,j)
21{X < 0.6}+ (1{X > 0.5}−1{0.7 < X < 0.8}) + (X + 0.5)εj ,

X takes values 0.2 or 0.4 with 0.1 probability and is uniform over [0.5, 1], (d1,1, d2,1, d3,1) =

(0.5, 0.3, 0.1), and (d1,0, d2,0, d3,0) = (0.3, 0.3, 0.1).

12In general, the density is
4( 1
α + 1)(x+ 0.5)1/α

9(1.3
1
α+1 − 1.2

1
α+1)

where α is the first parameter of the Beta distribution.
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The 16 simulation designs considered in Section 6 can be summarized in the following table where

the first coordinate represents Y1 and the second coordinate represents Y0.

(A1, A0) (A1, B0) (A1, C0) (A1, D0)
(B1, A0) (B1, B0) (B1, C0) (B1, D0)
(C1, A0) (C1, B0) (C1, C0) (C1, D0)
(D1, A0) (D1, B0) (D1, C0) (D1, D0)

Table 1: Simulation designs used in Section 6.

C.2 Limiting distributions

Figure 6: QQplot against EV law

To compute the sample estimator, I generate random samples with size 1,000 and repeat both the

estimation and the minimization of the asymptotic objective function 400 times. k := τnn is set

to 5. The propensity score is estimated in a sieve approach by fitting a series logistic model with

ordinary polynomial basis to the fourth order.

Figure 7: QQplot against Normal law

C.3 Inference for the extreme QTE

In the simulation, n = 5, 000, k is fixed at (5, 10, 20, 40), and the corresponding quantile indices

are τn = (0.1%, 0.2%, 0.4%, 0.8%). The subsample size used in Table 2 and Figure 8 is 1,000.

In Table 2, 3, Figure 8, and Figure 9, I consider four simulation designs corresponding to four
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different boundary conditions for both Y1 and Y0: (1) single minimizer, (2) multiple minimizers,

(3) continuum minimizers, and (4) mixture minimizers. Table 2 and 3 report the coverages of

BN-CI and NN-CI, respectively. The number in the parentheses is the median length of the CI.

Figure 8 plots the coverages of BN-CI and NN-CI against τ for τ ∈ [0.1%, 2%]. Figure 9 plots the

coverage of BN-CI against b for b ∈ [500, 1, 500].

τn =
0.1%, k =
5

(1) (2) (3) (4) τn =
0.2%, k =
10

(1) (2) (3) (4)

(1) 0.941 0.936 0.941 0.940 (1) 0.955 0.948 0.95 0.949
(0.027) (0.023) (0.017) (0.022) (0.029) (0.025) (0.019) (0.024)

(2) 0.948 0.944 0.943 0.941 (2) 0.953 0.942 0.961 0.949
(0.026) (0.019) (0.012) (0.020) (0.028) (0.021) (0.014) (0.023)

(3) 0.957 0.948 0.947 0.939 (3) 0.959 0.957 0.966 0.956
(0.025) (0.018) (0.006) (0.012) (0.026) (0.020) (0.007) (0.014)

(4) 0.954 0.938 0.940 0.935 (4) 0.959 0.949 0.941 0.950
(0.024) (0.018) (0.014) (0.015) (0.028) (0.021) (0.017) (0.019)

τn =
0.4%, k =
20

(1) (2) (3) (4) τn =
0.8%, k =
40

(1) (2) (3) (4)

(1) 0.968 0.962 0.949 0.956 (1) 0.979 0.974 0.977 0.967
(0.030) (0.026) (0.020) (0.027) (0.037) (0.032) (0.026) (0.033)

(2) 0.956 0.967 0.968 0.953 (2) 0.969 0.968 0.965 0.953
(0.029) (0.023) (0.015) (0.027) (0.034) (0.027) (0.020) (0.033)

(3) 0.960 0.960 0.951 0.947 (3) 0.963 0.966 0.968 0.970
(0.028) (0.022) (0.008) (0.016) (0.031) (0.025) (0.011) (0.021)

(4) 0.962 0.949 0.939 0.945 (4) 0.983 0.972 0.972 0.973
(0.030) (0.022) (0.018) (0.021) (0.041) (0.033) (0.027) (0.031)

Table 2: Coverage of 95% b out of n bootstrap CI, sample size = 5, 000
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τn =
0.1%, k =
5

(1) (2) (3) (4) τn =
0.2%, k =
10

(1) (2) (3) (4)

(1) 0.835 0.842 0.829 0.825 (1) 0.869 0.855 0.853 0.86
(0.023) (0.019) (0.014) (0.017) (0.024) (0.020) (0.016) (0.019)

(2) 0.830 0.835 0.850 0.790 (2) 0.861 0.848 0.875 0.841
(0.020) (0.016) (0.010) (0.015) (0.021) (0.017) (0.012) (0.017)

(3) 0.768 0.783 0.844 0.775 (3) 0.828 0.824 0.873 0.830
(0.018) (0.013) (0.004) (0.009) (0.019) (0.015) (0.005) (0.011)

(4) 0.793 0.835 0.852 0.819 (4) 0.846 0.865 0.858 0.863
(0.018) (0.014) (0.011) (0.012) (0.020) (0.016) (0.013) (0.014)

τn =
0.4%, k =
20

(1) (2) (3) (4) τn =
0.8%, k =
40

(1) (2) (3) (4)

(1) 0.891 0.891 0.882 0.891 (1) 0.903 0.919 0.890 0.892
(0.025) (0.022) (0.018) (0.021) (0.027) (0.024) (0.020) (0.025)

(2) 0.878 0.898 0.906 0.864 (2) 0.889 0.909 0.903 0.877
(0.022) (0.019) (0.014) (0.020) (0.023) (0.020) (0.015) (0.023)

(3) 0.871 0.860 0.882 0.865 (3) 0.879 0.881 0.903 0.885
(0.020) (0.016) (0.006) (0.012) (0.020) (0.017) (0.007) (0.015)

(4) 0.880 0.879 0.880 0.904 (4) 0.899 0.881 0.894 0.912
(0.021) (0.018) (0.015) (0.017) (0.023) (0.021) (0.019) (0.021)

Table 3: Coverage of 95% n out of n bootstrap CI, sample size = 5, 000
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Each (i, j)-th subplot represents the (i, j)-th model. The dashed line
is the coverage of BN-CI with b = 1, 000 and n = 5, 000 for quantile
index τ ∈ [0.1%, 2%]. The dotted line is the coverage of NN-CI. The
horizontal dotted dashed line is the 95% nominal coverage rate, and
the vertical dotted dashed line is τ = min( 40

n ,
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mn ).

Figure 8: Coverage across quantiles
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Each (i, j)-th subplot represents the (i, j)-th model. The solid line is
the coverage for b out of n bootstrap CI at τ = 0.2% in which
b ∈ [500, 1, 500].

Figure 9: Coverage across subsample size
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Here I only report the results for sample size 5,000. The same simulation designs with sample size

300 and 1,000 can be found in the Appendix F.3. In Appendix F.3, I also show the mean bias

(bias), root mean square error (rMSE), median bias (mbias), and mean absolute error (MAE) of

the median-unbiased point estimator for small, moderate and large sample. The performance of

the median-unbiased point estimator is satisfying in all samples.

C.4 The robust confidence interval
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b = 1, 000, n = 5, 000, and τ ∈ [0.1%, 8%]. The horizontal dotted
dashed line is the 95% nominal coverage rate. τn,1 = 0.8% and
τn,2 = 6.85%.

Figure 10: Coverage across quantiles

To produce Figure 10, the full sample size and subsample size are n = 5, 000 and b = 1, 000,

respectively. Y1 has a single minimizer and Y0 has continuum minimizers. The quantile index

τ ∈ [0.1%, 8%]. For computing C̃bna (τ), when τ ≤ 2% or equivalently, k := τn ≤ 100, I set the

spacing parameter m = 2 and k′l = 10.13 When τ > 2%, I set m = 1.2 and k′l = 20. Here I only

report the simulation results for one model. In fact, all sixteen models exhibit this same pattern.

For details, please see Appendix F.3.

13k′l is used to compute the normalizing factor α̂n.
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C.5 Inference for the 0-th QTE

(1) (2) (3) (4)
(1) 0.960 0.955 0.951 0.948

(0.118) (0.086) (0.058) (0.077)
(2) 0.954 0.947 0.961 0.951

(0.105) (0.073) (0.042) (0.072)
(3) 0.957 0.952 0.955 0.948

(0.082) (0.056) (0.017) (0.036)
(4) 0.956 0.919 0.951 0.953

(0.086) (0.053) (0.039) (0.044)

Table 4: Coverage of 95% CI. Sample size is 5,000.
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The solid line is the coverage for b out of n bootstrap CI at τ = 0 in
which b ∈ [500, 1, 000].

Figure 11: Coverage across subsample size

Here again I only focus on n = 5, 000. The same simulation with n = 300, 1, 000 can be found in

the appendix. All the findings in Section 6 still hold.

There are two issues worth-mentioning when implementing the BN-CI for 0-th QTE. The first issue

is that I use three extreme QTE estimators with k = (5, 17.5, 30) to compute the linear combination.

The choice of k invokes two concerns. First, the rule of thumb for k = τn is k ≤ min(40, 0.2b
m ).

Second, the space among k’s must not be narrow, otherwise the weights will be large in absolute

value, which will widen the CI.
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The second issue is the estimatation of EV indices. I follow Theorem 3.4 with R = 2, m = 2,

l = 2, and equal weights. The set of quantile indices I use to compute the EV indices are τn =

(0.002, 0.004, · · · , 0.01). Then for j = 0, 1, the two EV index estimators used to compute the

weights (γ̂1, γ̂2, γ̂3) are the median of the estimators computed using each of the quantile indices

for j = 0 and 1, respectively.

The rest of the simulation details are the same as the ones in the previous subsection. The subsample

size for Table 4 is 1,000.

D Data, implementation, and application results

D.1 Effect of maternal status on extremely low birth weights

To fit the notation in the paper, let D be an indicator of maternal smoking. The observed outcome

variable Y is birth weight measured in grams, while Y = DY1 + (1−D)Y0 where Y1 is the infant’s

potential birth weight when the mother smokes and Y0 is the infant’s potential birth weight when

the mother does not smoke. Covariates X are demographic variables which include mother’s age,

mother’s education level14, an indicator of whether the mother had parental care visit in the first

and second trimester, mother’s marriage status, the infant’s sex, and mother’s weight gain during

pregnancy. The key unconfoundedness assumption in this context means that, maternal smoking

is independent from the potential birth weights conditional on all the demographic variables.

Following the experience collected from Section 6, I set the subsample size to 3,000 and repeat

the b out of n bootstrap with replacement 20,000 times. Also, I nonparametrically estimate the

propensity by fitting a series logistic model with a set of second-order polynomial basis, and the

spacing parameter m is set to 2.15 When computing the 0-th QTE, I use a linear combination

of extreme-order estimates with k = (5, 20, 40). A set of estimators of EV index are computed

following Theorem 3.4 with R = 2, l = 2 and τn = (0.0005, 0.001, 0.0015, 0.002, 0.0025). The final

EV index estimators used are the median of the five estimators for Y0 and Y1, respectively.

D.2 Effect of minority status on college preparation index

In 1996, the voters of California approved Prop 209 which stipulates that: “The state shall not

discriminate against, or grant preferential treatment to, any individual or group on the basis of race,

sex, color, ethnicity, or national origin in the operation of public employment, public education,

or public contracting.” The proposition took effect in 1998. I use the same data as in Arcidiacono

14The education level equals 0 if the mother has less than a high school education, 1 if she completed high
school, 2 if she obtained some college education, and 3 if she graduated from college.

15Here I implicitly assume that the sufficient condition for the spacing parameter in Lemma E.7 holds.
In practice, neither the full sample nor any subsample estimation encounters the zero denominator error.
Hence m = 2 behaves well in this data analysis.
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MU point estimates 90% BN-CI 90% NN-CI

k=0 -137.32 -605.77 193.71
k=5 -0.21 -198.08 87.09 -51.00 97.00

k=10 -5.57 -193.49 121.43 -82.00 84.00
k=15 30.64 -143.51 182.04 -63.00 108.00
k=20 16.12 -144.21 187.52 -72.00 107.00
k=25 -14.81 -179.51 163.69 -115.00 60.00
k=30 -19.11 -171.56 167.01 -139.00 45.00
k=35 10.87 -138.83 189.23 -68.00 114.00
k=40 -12.30 -169.21 153.74 -108.50 85.00

Table 5: Extreme order unconditional QTE of smoking status.

et al. (2016), the University of California Office of the President (UCOP) data for minority and

non-minority students who first enrolled at one of the UC campuses in periods both prior and

post-Prop 209, to compute the racial CPI gap at tails. The pre- and post-Prop 209 period data

consist of students admitted between 1995 and 1997 and between 1998 and 2000, respectively.

The data for each UC campuses consist of all their admitted students. The outcome variable Y is

normalized CPI.16 The treatment status D is the indicator of under-represented minority groups

in the dataset. X are two family background variables: family income percentage and two parents’

highest education degree. Minority students may live in a less favorable family environment with

low parental income and education level. This difference can cause minority students to be less

prepared for college than their majority peers.

16As described in Arcidiacono et al. (2016), the raw preparation score (Y rawi ) for student i is a weighted
average of student’s high school GPA (GPAi) and their combined verbal and math SAT score (SATi):
Y rawi = 3

8 ·SATi + 400 ·GPAi. The CPI Yi is the standardized version of Y rawi such that it has mean 0 and
standard deviation 1 for the pool of applications to one or more of the UC campuses.
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D.2.1 Pre-Prop 209

Campus Berkeley UCLA San Diego Davis Irvine Santa
Barbara

Santa
Cruz

Riverside

Science

ATE −0.893∗∗∗ −0.724∗∗∗ −0.510∗∗∗ −0.443∗∗∗ −0.312∗∗∗ −0.420∗∗∗ −0.351∗∗∗ −0.477∗∗∗

k=5 −0.732∗ −1.217∗∗∗ −0.298∗∗ −0.901∗∗ −0.136∗ −0.595∗∗ −0.276 −0.525∗∗

k=10 −0.857∗ −0.961∗∗∗ −0.397∗∗∗ −0.306∗ −0.288∗ −0.342∗∗ −0.300 −0.398∗∗∗

k=15 −1.023∗∗ −1.057∗∗∗ −0.421∗∗∗ −0.304∗ −0.338∗ −0.463∗∗∗ −0.285 −0.431∗∗

k=20 −0.886∗ −0.907∗∗∗ −0.449∗∗∗ −0.146∗ −0.401∗ −0.414∗∗ −0.590∗ −0.478∗∗

k=25 −0.927∗∗ −0.943∗∗∗ −0.466∗∗∗ −0.224∗ −0.449∗ −0.368∗∗ −0.505 −0.563∗∗∗

k=30 −0.952∗∗ −0.825∗∗∗ −0.438∗∗∗ −0.298∗∗ −0.472∗ −0.326∗∗ −0.573 −0.396∗∗

k=35 −0.986∗∗ −0.716∗∗∗ −0.212∗∗∗ −0.373∗∗ −0.508∗ −0.350∗∗ −0.539 −0.379∗∗∗

k=40 −0.997∗∗∗ −0.673∗∗∗ −0.188∗∗∗ −0.379∗∗ −0.433∗ −0.365∗∗ −0.529 −0.399∗∗∗

Non-
Science

ATE −0.987∗∗∗ −0.761∗∗∗ −0.502∗∗∗ −0.539∗∗∗ −0.466∗∗∗ −0.466∗∗∗ −0.478∗∗∗ −0.424∗∗∗

k=5 0.183 -0.284 -0.647 -0.096 −0.347∗ 0.169 -0.424 -0.459
k=10 −0.283 −0.869∗∗∗ -0.479 −0.450∗ −0.343∗ −0.321∗∗ −0.581∗∗ −0.529∗∗

k=15 −0.383∗ −0.988∗∗∗ -0.170 -0.227 −0.377∗ −0.359∗∗ −0.526∗∗∗ −0.464∗∗

k=20 −0.462∗∗ −0.949∗∗∗ -0.197 -0.299 −0.349∗ −0.419∗∗∗ −0.527∗∗∗ −0.540∗∗

k=25 −0.569∗∗ −0.878∗∗∗ -0.203 −0.371∗ −0.413∗∗ −0.458∗∗∗ −0.549∗∗∗ −0.570∗∗

k=30 −0.647∗∗∗ −0.861∗∗∗ -0.231 −0.360∗ −0.475∗∗ −0.459∗∗∗ −0.559∗∗∗ −0.544∗∗∗

k=35 −0.630∗∗∗ −0.886∗∗∗ -0.193 −0.392∗∗ −0.481∗∗∗ −0.402∗∗∗ −0.668∗∗∗ −0.578∗∗∗

k=40 −0.722∗∗∗ −0.869∗∗∗ -0.251 −0.386∗∗ −0.547∗∗∗ −0.424∗∗∗ −0.671∗∗∗ −0.567∗∗∗

The sample size (subsample size) for students with a science major and campus from Berkeley to Riverside
are 4126 (700), 4204 (700), 4122 (700), 4298 (700), 3877 (700), 2704 (600), 1345 (350), 1641 (375). For
students with non-science major, they are 4990 (750), 5837 (775), 3749 (650), 5105 (750), 4154 (650), 6674
(800), 3775 (650), 2784 (500). ∗, ∗∗, and ∗ ∗ ∗ indicate 90%, 95%, and 99% significance level, respectively. I
use standard bootstrap CI for the inference of ATE and BN-CI for extreme QTE.

Table 6: Index gap across campus and initial major
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D.2.2 Post-Prop 209

Campus Berkeley UCLA San Diego Davis Irvine Santa
Barbara

Santa
Cruz

Riverside

Science

ATE −0.681∗∗∗ −0.416∗∗∗ −0.133∗∗ −0.273∗∗∗ −0.271∗∗∗ −0.262∗∗∗ −0.321∗∗∗ −0.260∗∗∗

k=5 −0.976∗∗ −0.460∗∗ -0.113 0.207 0.108 −0.710∗ −0.673∗∗ -0.214
k=10 −1.357∗∗ −0.583∗∗ -0.065 0.061 0.125 −0.716∗ −0.558∗∗ -0.159
k=15 −1.356∗∗ −0.637∗∗ -0.076 0.002 -0.090 -0.689 −0.450∗∗ -0.114
k=20 −1.441∗∗ −0.680∗∗ -0.044 -0.078 -0.116 -0.433 −0.440∗∗ -0.160
k=25 −1.512∗∗ −0.706∗∗ -0.038 -0.063 -0.144 -0.500 −0.469∗∗ -0.187
k=30 −1.232∗∗ −0.758∗∗ -0.057 -0.050 -0.196 -0.476 −0.375∗∗ -0.142
k=35 −1.146∗∗ −0.676∗∗ -0.111 -0.124 -0.156 -0.484 −0.385∗∗ -0.118
k=40 −1.141∗∗ −0.616∗∗ -0.117 -0.143 -0.172 -0.399 −0.367∗∗ -0.097

Non-
Science

ATE −0.671∗∗∗ −0.607∗∗∗ −0.149∗∗∗ −0.264∗∗∗ −0.304∗∗∗ −0.388∗∗∗ −0.263∗∗∗ −0.302∗∗∗

k=5 −0.548∗∗∗ -0.541 -0.141 0.076 -0.182 −0.590∗ -0.254 −0.478∗∗∗

k=10 −0.628∗∗∗ -0.637 -0.176 0.045 -0.374 -0.217 −0.525∗∗∗ −0.385∗∗∗

k=15 −0.552∗∗∗ -0.544 -0.044 -0.050 -0.403 -0.307 −0.460∗∗ −0.390∗∗∗

k=20 −0.541∗∗∗ -0.344 -0.018 -0.165 -0.267 -0.285 −0.426∗∗ −0.417∗∗∗

k=25 −0.633∗∗∗ -0.522 -0.066 -0.146 -0.362 -0.285 −0.396∗ −0.403∗∗∗

k=30 −0.703∗∗∗ -0.552 -0.064 -0.125 −0.427∗ -0.303 −0.374∗∗ −0.413∗∗∗

k=35 −0.705∗∗∗ -0.645 -0.064 -0.147 −0.486∗∗ -0.297 −0.377∗∗ −0.428∗∗∗

k=40 −0.704∗∗∗ -0.665 -0.079 -0.205 −0.509∗∗ -0.320 −0.357∗∗ −0.441∗∗∗

The sample size (subsample size) for students with a science major and campus from Berkeley to Riverside
are 3906 (700), 4159 (700), 3861 (700), 4319 (700), 4361 (700), 2594 (600), 1596 (350), 2180 (375). For
students with non-science major, they are 4695 (750), 6029 (775), 4024 (650), 5418 (750), 4432 (650), 6108
(800), 4537 (650), 4529 (500). ∗, ∗∗, and ∗ ∗ ∗ indicate 90%, 95%, and 99% significance level, respectively. I
use standard bootstrap CI for the inference of ATE and BN-CI for extreme QTE.

Table 7: Index gap across campus and initial major

D.3 Prior and post-Prop 209 comparison
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Figure 12: Minority gaps pre- and post-Prop 209
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Science ATE k=5 k=10 k=15 k=20 k=25 k=30 k=35 k=40

Berkeley −0.213∗∗∗ 0.292 0.535 0.356 0.574 0.611 0.291 0.165 0.148
San Diego −0.376∗∗∗ −0.170∗ −0.322∗∗∗ −0.344∗∗∗ −0.408∗∗∗ −0.433∗∗∗ −0.381∗∗∗ -0.106 -0.077

Table 8: Difference of the racial gaps

E Theoretical proofs

E.1 Proof of Theorem 3.1

Before starting the proof, I first state a maximal inequality which is derived in Chernozhukov,

Chetverikov, and Kato (2014). See Corollary 5.1 in their paper. Let (X1, · · · , Xn) be a sequence

of i.i.d random variables taking values in a measurable space (S,S) with common distribution P .

F is a generic class of measurable function S → R with an envelope function F . Let σ2 > 0 be any

positive constant such that

sup
f∈F

Pf2 ≤ σ2 ≤ ||F ||2P,2 and M = max
1≤i≤n

F (Xi).

Lemma E.1. If F ∈ L2(P ) and suppose that there exist constants a ≥ e and v ≥ 1 such that the

following uniform entropy condition holds:

sup
Q
N(ε||F ||Q,2,F , || · ||Q,2) ≤

(a
ε

)v
, ∀ε ∈ (0, 1],

then

E||
√
n(Pn − P )||F .

√
vσ2 log

(
a||F ||P,2

σ

)
+
v||M ||2√

n
log

(
a||F ||P,2

σ

)
.

Throughout the appendix, for simplicity of notation, I call a term Un(k) = o∗p(rn) (O∗p(rn)) if

sup
k∈[κ1,κ2]

∣∣∣∣Un(k)

rn

∣∣∣∣ = op(1)(Op(1))

for some fixed positive constants κ1 and κ2.

Now I return to the proof of Theorem 3.1. Let ∆̂1,n(k) = λ1,n(k)(q̂1(kτn)−q1(kτn)) be the maximizer

of the rescaled objective function, that is,

∆̂1,n(k) = arg min
∆∈R

−Ŵn(k)∆(k) + Ĝn(∆, k) (E.1)
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where

Ŵn(k) =
1√
nkτn

n∑
i=1

Di

P̂ (Xi)
(kτn − 1{Yi ≤ q1(kτn)}),

Ĝn(∆, k) =
1√
nkτn

n∑
i=1

Di

P̂ (Xi)

∫ ∆

0

(
1

{
Yi ≤ q1(kτn) +

s

λ1,n(k)

}
− 1

{
Yi ≤ q1(kτn)

})
ds.

The proof of the first part of the theorem is divided into three steps. In the first step, by defining

Rn(∆, k) = Ĝn(∆, k)− ∆2

2
,

I show that

sup
|∆|≤M,k∈[κ1,κ2]

|Rn(∆, k)| = op(1). (E.2)

In the second step, I show that

Ŵn(k) = Wn(k) + o∗p(1)

where

Wn(k) =
1√
n

n∑
i=1

φi,1,n(k)

and

φi,1,n(k) =
1√
kτn

[
Di

P (Xi)
Ti,1,n(k)− E(Ti,1,n(k)|Xi)

P (Xi)
(Di − P (Xi))

]
.

In the third step, I show that {Wn(k) : k ∈ [κ1, κ2]} is tight. This implies that {Ŵn(k) : k ∈ [κ1, κ2]}
is tight too. Given the tightness of {Ŵn(k) : k ∈ [κ1, κ2]} and (E.2), I can apply a generalized

version of the Convexity lemma in Pollard (1991) proved in Lemma 2 of Chernozhukov (2000), I

can conclude that

∆̂n,1(k) = Ŵn(k) + o∗p(1) = Wn(k) + o∗p(1)

and {∆̂n,1(k) : k ∈ [κ1, κ2]} is tight. Similarly, I can show that

λ0,n(k)(q̂0(kτn)− q0(kτn)) =
1√
n

n∑
i=1

φ0,i,n(k) + o∗p(1)

where

φ0,i,n(k) =
1√
kτn

[
1−Di

1− P (Xi)
Ti,0,n(k) +

E(Ti,0,n(k)|Xi)

1− P (Xi)
(Di − P (Xi))

]
and that the stochastic process {φ0,i,n(k) : k ∈ [κ1, κ2]} is tight. This concludes the first half of the

results in Theorem 3.1.

Step 1.
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Define

Gn(∆, k) =
1√
nkτn

n∑
i=1

Di

P (Xi)

∫ ∆

0

(
1

{
Yi ≤ q1(kτn) +

s

λ1,n(k)

}
− 1

{
Yi ≤ q1(kτn)

})
ds.

By Lemma 1 in Hirano et al. (2003), supx |P̂ (x)−P (x)| = op(1). In addition, infx P (x) is bounded

away from zero. Therefore,

sup
x
| 1

P̂ (x)
− 1

P (x)
| = op(1).

Then, uniformly over |∆| ≤M ,

|Ĝn(∆, k)−Gn(∆, k)| ≤op(1)

[
M√
nkτn

n∑
i=1

(
1

{
Yi ≤ q1(kτn) +

M

λ1,n(k)

}
− 1

{
Yi ≤ q1(kτn)

}
+ 1

{
Yi ≤ q1(kτn)

}
− 1

{
Yi ≤ q1(kτn)− M

λ1,n(k)

})]
.op(1)|

√
nPnf ||F1,n . op(1)(||

√
n(Pn − P )||F1,n +

√
n|Pf |F1,n)

(E.3)

where

F1,n =

{
1
√
τn

(
1

{
Yi ≤ q1(kτn) +

M

λ1,n(k)

}
− 1

{
Yi ≤ q1(kτn)

}
+ 1

{
Yi ≤ q1(kτn)

}
− 1

{
Yi ≤ q1(kτn)− M

λ1,n(k)

})
, k ∈ [κ1, κ2]

}
,

with an envelope function

F1,n =
1
√
τn

(
1

{
Yi ≤ q1(κ2τn) +

M

λ1,n

}
− 1 {Yi ≤ q1(κ1τn)}

+ 1 {Yi ≤ q1(κ2τn)} − 1
{
Yi ≤ q1(κ1τn)− M

λ1,n

})
.

Note that f(q1(kτn)) is monotone in k for n large enough and k ∈ [κ1, κ2]. Hence λ1,n(k) ≥ λ1,n :=
√
n√

κ2τn
f1(q1(kτn)) where k = κ1 or κ2 depends on whether f1 is monotone decreasing or increasing

at the tail. Then I have

||F1,n||P,2 ≤ C <∞, M1,n = max
1≤i≤n

F1,n ≤
2
√
τn
.

Furthermore, q1(·τn) and λ1,n(·) are monotone. So by repeatedly using Lemma 2.6.18 (iv), (v), and

(viii) of Van der Vaart and Wellner (1996), I have

sup
Q
N(ε||F1,n||Q,2,F1,n, || · ||Q,2) ≤

(a
ε

)v
, ∀ε ∈ (0, 1].
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By Lemma E.1 with σ = ||F1,n||P,2, I have

E||
√
n(Pn − P )||F1,n . ||F1,n||P,2 +

1
√
τnn

= O(1)

and thus

||
√
n(Pn − P )||F1,n = Op(1). (E.4)

I next want to show
√
n|Pf |F1,n = O(1). In fact, I have

√
n|Pf |F1,n . sup

k∈[κ1,κ2]

f1

(
q1(kτn) + M̃

λ1,n(k)

)
f1(q1(kτn))

+
f1

(
q1(kτn)− M̃

λ1,n(k)

)
f1(q1(kτn))


where M̃ is between zero and M . Since τnn → ∞, for any constant l > 1 independent of k, there

exists N0 > 0 independent of k such that for n > N0,

M̃

λ1,n(k)
=
M̃(q1(lkτn)− q1(kτn))
√
nτn

∫ lk
k

f(q1(kτn))
f(q1(tτn)) dt

≤ (q1(lkτn)− q1(kτn)). (E.5)

Therefore, if f1 is monotone increasing at its tail,

sup
k∈[κ1,κ2]

f1

(
q1(kτn) + M̃

λ1,n(k)

)
f1(q1(kτn))

+
f1

(
q1(kτn)− M̃

λ1,n(k)

)
f1(q1(kτn))

≤ f1(q1(lκ2τn))

f1(q1(κ1τn))
+ 1 = O(1).

Similar argument shows supk∈[κ1,κ2]

f1

(
q1(kτn)+ M̃

λ1,n(k)

)
f1(q1(kτn)) +

f1

(
q1(kτn)− M̃

λ1,n(k)

)
f1(q1(kτn)) = O(1) when f1 is mono-

tone decreasing at its tail. So I obtain the desired result that

√
n|Pf |F1,n = Op(1). (E.6)

Combining (E.1), (E.4), and (E.6), I have

sup
∆,k
|Ĝn(∆, k)−Gn(∆, k)| = op(1). (E.7)

Next, I want to show Gn(∆, k)→ ∆2

2 uniformly in |∆| ≤M and k ∈ [κ1, κ2]. It suffices to show

sup
|∆|≤M,k∈[κ1,κ2]

∣∣∣∣EGn(∆, k)− ∆2

2

∣∣∣∣ = o(1) (E.8)

and

sup
|∆|≤M,k∈[κ1,κ2]

|Gn(∆, k)− EGn(∆, k)| = op(1). (E.9)
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For (E.8), I have

EGn(∆, k) =
n√
nkτn

∫ ∆

0

(
F1

(
q1(kτn) +

s

λ1,n(k)

)
− F1(q1(kτn))

)
ds =

∆2

2

f1

(
q1(kτn) + s̃(k,∆)

λ1,n(k)

)
f1(q1(kτn))

.

By (E.5), for any l > 1, there exists N0 > 1 independent of k such that for n > N0, if f1 is monotone

increasing at its lower tail,

f1

(
q1(kτn) + s̃(k,∆)

λ1,n(k)

)
f1(q1(kτn))

∈

(
f1

(
q1(kl τn)

)
f1(q1(kτn))

,
f1(q1(lkτn))

f1(q1(kτn))

)
,

and if f1 is monotone decreasing in its lower tail,

f1

(
q1(kτn) + s̃(k,∆)

λ1,n(k)

)
f1(q1(kτn))

∈

(
f1(q1(lkτn))

f1(q1(kτn))
,
f1

(
q1(kl τn)

)
f1(q1(kτn))

)
.

By first Letting n→∞ and then l → 1, both the upper and lower bound converge to 1 uniformly

over k ∈ [κ1, κ2]. This implies
f1

(
q1(kτn)+

s̃(k,∆)
λ1,n(k)

)
f1(q1(kτn)) → 1 uniformly in k. Therefore, EGn(∆, k)→ ∆2

2

uniformly in ∆ and k.

For (E.9), I have

Gn(∆, k)− EGn(∆, k) =
√
n(Pn − P)f for f ∈ F2,n

where

F2,n =

{
1
√
τn

Di

P (Xi)

∫ ∆

0

(
1

{
Yi ≤ q1(kτn) +

s

λ1,n(k)

}
− 1

{
Yi ≤ q1(kτn)

})
ds,

|∆| < M, k ∈ [κ1, κ2]

}
with an envelope function F2,n = Di

P (Xi)
F1,n. I note that ||F2,n||P,2 ≤ C <∞,

M2,n = max
1≤i≤n

F2,n ≤
C
√
τn
.

Since EG2
n(∆, k) = O( 1√

nτn
) = o(1),

√
n(Pn−P )f  0 on any subset of F2,n with finite number of

elements. In addition, the empirical process indexed by f ∈ F2,n is stochastically equicontinuous.

To see this, consider Fδ2,n = {f − g, f, g ∈ F2,n, ||f − g||P,2 ≤ δ} with an envelope F δ2,n = 2F2,n and

M δ
2,n = C√

τn
. By applying Lemma E.1 on Fδ2,n with σ := δ, the Markov inequality, and the fact
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that τnn→∞, I obtain that for any ε > 0,

lim
δ↓0

lim sup
n

P

(
||
√
n(Pn − P )||Fδ2,n ≥ ε

)

≤ lim
δ↓0

lim sup
n

Cε−1


√√√√vδ2 log

(
2a||F δ2,n||P,2

δ

)
+

v
√
nτn

log

(
2a||F δ2,n||P,2

δ

) = 0.

This implies sup|∆|≤M,k∈[κ1,κ2] |Gn(∆, k)− EGn(∆, k)| =
√
n||Pn − P ||F2,n = op(1).

Combining (E.8) and (E.9), I obtain that

Gn(∆, k) :=
√
nPnf

p−→ ∆2

2
(E.10)

uniformly in ∆ and k. Then, combining (E.7) and (E.10), I obtain (E.2). This concludes step 1.

Step 2.

Next I consider Ŵn in (E.1):

Ŵn(k) = Jn,1(k)− Jn,2(k) + Jn,3(k)

where

Jn,1(k) :=
1√
nkτn

n∑
i=1

Di

P (Xi)
Ti,1,n(k),

Jn,2(k) :=
1√
nkτn

n∑
i=1

Di(P̂ (Xi)− P (Xi))

P (Xi)2
Ti,1,n(k),

Jn,3(k) :=
1√
nkτn

n∑
i=1

Di(P̂ (Xi)− P (Xi))
2

P (Xi)2P̂ (Xi)
Ti,1,n(k),

and Ti,1,n(k) = kτn − 1{Yi,1 ≤ q1(kτn)}. Note that Ti,1,n(k) has an envelope

sup
k
|Ti,1,n(k)| ≤ T i,1,n := κ2τn + 1{Yi,1 ≤ q1(κ2τn)}.

In the following, I will bound (Jn,1(k), Jn,2(k), Jn,3(k)) uniformly over k ∈ [κ1, κ2].

For Jn,3(k), I have

sup
k
|Jn,3(k)| . 1

√
nκ1τn

n∑
i=1

|T i,1,n|op(
1√
n

) = op(1). (E.11)

This is based on two observations: (1) E supk
∑n

i=1 |Ti,1,n| ≤ nET i,1,n = Cnτn, so
∑n

i=1 |Ti,1,n| =

O∗p(nτn); (2) under Assumption 3, Lemma 1 of Hirano et al. (2003) shows that supx |P̂ (x)−P (x)| =
op(n

−1/4).
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For Jn,2(k), I have Jn,2(k) = Jn,4(k) + Jn,5(k) where

Jn,4(k) :=

√
n

kτn

∫
Supp(X)

1

P (x)
(P̂ (x)− P (x))(E(Ti,1,n(k)|x))dFX(x)

and

Jn,5(k) :=
1√
nkτn

n∑
i=1

[
Di

P (Xi)2

(
P̂ (Xi)− P (Xi)

)
Ti,1,n(k)

−
∫

Supp(X)

1

P (x)

(
P̂ (x)− P (x)

)(
E(Ti,1,n(k)|x)

)
dFX(x)

]
.

Next, I show Jn,5(k) = o∗p(1). Denote Ph(x) = L(Hh(x)′πh) where

πh = arg min
π∈Rh

E(P (X) log(L(Hh(X)π)) + (1− P (X)) log(1− L(Hh(X)′π))),

Hh(X) is the series bases used for approximation such as polynomials or B-splines, and h is the

number of terms of the series. I have Jn,5(k) = Jn,6(k) + Jn,7(k) where

Jn,6(k) :=
1√
nkτn

n∑
i=1

(
DiTi,1,n(k)

P (Xi)2
(P̂ (Xi)− Ph(Xi))

−
∫

Supp(X)

E(Ti,1,n(k)|x)

P (x)
(P̂ (x)− Ph(x))dFX(x)

)
and

Jn,7(k) :=
1√
nkτn

n∑
i=1

(
DiTi,1,n(k)

P (Xi)2
(Ph(Xi)− P (Xi))

−
∫

Supp(X)

E(Ti,1,n(k)|x)

P (x)
(Ph(x)− P (x))dFX(x)

)
.

By Lemma 1 of Hirano et al. (2003), supx |Ph(x) − P (x)| . ζ(h)h−
s
2r where ζ(h) = supx ||Hh(x)||

and ||A|| =
√
tr(ATA). For polynomial bases, ζ(h) ≤ Ch. All the rates restriction in Assumption

3 are stated under this circumstance.

Next, I first compute the order of magnitude of Jn,7(k).

Jn,7(k) =
√
n(Pn − P)f, f ∈ F3,n

where

F3,n =

{
1
√
τn

(
DiTi,1,n(k)

P (Xi)2
(Ph(Xi)− P (Xi))

−
∫

Supp(X)

E(Ti,1,n(k)|x)

P (x)
(Ph(x)− P (x))E(Ti,1,n(k)|x)dFX(x)

)
, k ∈ [κ1, κ2]

}
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with an envelope function F3,n = C√
τn

(T i,1,n + E(T i,1,n|X)). Since

EJ2
n,7(k) .

1

τn
E
(
DiTi,1,n(k)

P (Xi)2
(Ph(Xi)− P (Xi))

)2

. ζ(h)2h−
s
r

ET 2
i,1,n(k)

τn
= o(1),

Jn,7(k) 0 on any subsets of [κ1, κ2] with finite elements. I next show that
√
n(Pn−P)f, f ∈ F3,n

is stochastically equicontinuous.

I note that ||F3,n||P,2 ≤ C <∞ and M3,n = max1≤i≤n F3,n ≤ C√
τn

. Therefore,

Fδ3,n = {f − g, f, g ∈ F3,n, ||f − g||P,2 ≤ δ}

with an envelope 2F3,n and M δ
3,n = C√

τn
. In addition, {Ti,1,n(k) : k ∈ [κ1, κ2]} satisfies the uniform

entropy condition because it is a VC-class, and the class of functions {E(Ti,1,n(k)|X) : k ∈ [κ1, κ2]}
is generated by taking the conditional expectation which implies that it also satisfies the uniform

entropy condition. Therefore, Fδ3,n satisfies the uniform entropy condition, that is,

sup
Q
N(ε||F δ3,n||Q,2,Fδ3,n, || · ||Q,2) ≤

(a
ε

)v
, ∀ε ∈ (0, 1].

By applying Lemma E.1 on Fδ3,n with σ := δ and the Markov inequality, I have

lim
δ↓0

lim sup
n

P

(
||
√
n(Pn − P )||Fδ3,n ≥ ε

)

≤ lim
δ↓0

lim sup
n

Cε−1


√√√√vδ2 log

(
2a||F δ3,n||P,2

δ

)
+

v
√
nτn

log

(
2a||F δ3,n||P,2

δ

) = 0.

This verifies that
√
n(Pn−P)f, f ∈ F3,n is stochastically equicontinuous. Combining this with the

finite-dimensional convergence, I obtain that Jn,7(k) = o∗p(1).

For Jn,6(k), by the Taylor expansion, I have Jn,6(k) = (Wh,1(k) +W2,h(k)−W3,h(k))(π̂h − πh), in

which

W1,h(k) :=
1√
nkτn

n∑
i=1

[
DiTi,1,n(k)

P (Xi)2
L′(HT

h (Xi)πh)HT
h (Xi)

−
∫

Supp(X)

E(Ti,1,n(k)|x)

P (x)
L′(HT

h (x)πh)HT
h (x)dFX(x)

]
,

W2,h(k) :=
1√
nkτn

n∑
i=1

DiTi,1,n(k)

P (Xi)2
L′′(HT

h (Xi)πh)Hh(Xi)H
T
h (Xi)(π̃h − πh),

and

W3,h(k) :=

√
n

kτn

∫
Supp(X)

E(Ti,1,n(k)|x)

P (x)
L′′(HT

h (x)πh)Hh(x)HT
h (x)(π̃h − πh).
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For an arbitrary deterministic sequence ln →∞ and f ∈ F4,n,

W1,h(k)

ζ(h)ln
=
√
n(Pn − P)f

where

F4,n =

{
1√

kτnζ(h)ln

[
DiTi,1,n(k)

P (Xi)2
L′(HT

h (Xi)πh)HT
h (Xi)

−
∫

Supp(X)

E(Ti,1,n(k)|x)

P (x)
L′(HT

h (x)πh)HT
h (x)dFX(x)

]
, k ∈ [κ1, κ2]

}
with an envelope function

F4,n =
C

√
τnζ(h)ln

(HT
h (Xi)T i,1,n +

∫
HT
h (x)E(T i,1,n|X = x)dFX(x)).

Since

E||W1,h(k)||2 .

(
ET 2

i,1,n(k)

τn

)
ζ2(h) = O(ζ2(h)),

{
√
n(Pn − P)f : f ∈ F4,n}  0 in finite dimension. In addition, ||F4,n||P,2 ≤ C < ∞ and

M4,n = max1≤i≤n F4,n(Xi) ≤ C√
τnln

. Therefore, for

Fδ4,n = {f − g, f, g ∈ F4,n, ||f − g||P,2 ≤ δ}

with an envelope 2F4,n, I have ||F δ4,n||P,2 ≤ C, M δ
4,n = C√

τnln
, and

sup
Q
N(ε||F δ4,n||Q,2,Fδ4,n, ||||Q,2) ≤

(a
ε

)v
, ∀ε ∈ (0, 1].

By applying Lemma E.1 on Fδ4,n with σ := δ and the Markov inequality, I have

lim
δ↓0

lim sup
n

P

(
||
√
n(Pn − P )||Fδ4,n ≥ ε

)

≤ lim
δ↓0

lim sup
n

Cε−1


√√√√vδ2 log

(
2a||F δ4,n||P,2

δ

)
+

v
√
nτnln

log

(
2a||F δ4,n||P,2

δ

) = 0.

Therefore, W1,h(k) = o∗p(ζ(h)ln) for any sequence of ln such that ln →∞.

For W2,h(k),

E sup
k
||W2,h(k)|| . E

∣∣∣∣DiT i,1,n
P (Xi)2

L′′
∣∣∣∣||Hh(Xi)||2||π̃h − πh||

n
√
nτn

= O(ζ(h)2
√
h)
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So W2,h(k) = O∗p(ζ(h)2
√
h). Similarly,

E sup
k
||W3,h(k)|| .

√
n

τn

∫
Supp(X)

∣∣∣∣E(T i,1,n|x)

P (x)
L′′
∣∣∣∣||Hh(x)||2dFX(x)||π̃h − πh|| = O(ζ(h)2

√
h)

So W3,h(k) = O∗p(ζ(h)2
√
h). Combining all the results, Jn,7(k) = O∗p(ζ(h)2

√
h
√

h
n) = o∗p(1) and

thus Jn,5(k) = o∗p(1).

I next decompose Jn,4: Jn,4(k) = Jn,8(k) + Jn,9(k) where

Jn,8(k) :=

√
n

kτn

∫
Supp(X)

E(Ti,n,i(k)|x)

P (x)
(P̂ (x)− Ph(x))dFX(x),

Jn,9(k) :=

√
n

kτn

∫
Supp(X)

E(Ti,n,i(k)|x)

P (x)
(Ph(x)− P (x))dFX(x).

For Jn,9(k) I have,

Jn,9(k) ≤
√

n

κ1τn

∫
Supp(X)

∣∣∣∣E(T i,n,i|x)

P (x)

∣∣∣∣dFX(x)ζ(h)h−
s
2r = O∗p(

√
nτnζ(h)h−

s
2r ) = o∗p(1).

For Jn,8, by the Taylor expansion,

Jn,8(k) =

√
n

kτn

∫
Supp(X)

E(Ti,n,i(k)|x)

P (x)
L′(Hh(x)T π̃h)Hh(x)TdFX(x)(π̂h − πh).

Since π̂h solves the first order condition, π̂h − πh = 1
n

∑n
i=1(Σ̃h)−1(Di − Ph(Xi))Hh(Xi), in which

Σ̃h =
1

n

n∑
i=1

L′(Hh(Xi)
T π̃h)Hh(Xi)Hh(Xi)

T .

Hence, I have

Jn,8(k) =
1

n

n∑
i=1

√
n

τn

∫
Supp(X)

E(Ti,n,i|x)

P (x)
L′(Hh(x)T π̃h)Hh(x)TdFX(x)(Σ̃h)−1(Di − Ph(Xi))Hh(Xi)

= Ψ̃T
h (k)(Σ̃h)−1Vh

= ΨT
h (k)Σ−1

h Vh + (Ψ̃T
h (k)−ΨT

h (k))Σ̃−1
h Vh + ΨT

h (k)(Σ̃−1
h − Σ−1

h )Vh

:= ΨT
h (k)Σ−1

h Vh + Jn,10(k) + Jn,11(k)
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where

Ψ̃h(k) :=
1
√
τn

∫
Supp(X)

E(Ti,1,n|x)

P (x)
L′(Hh(x)T π̃h)Hh(x)dFX(x),

Ψh(k) :=
1
√
τn

∫
Supp(X)

E(Ti,1,n|x)

P (x)
L′(Hh(x)Tπh)Hh(x)dFX(x),

Σh := E(Hh(x)Hh(x)TL′(Hh(x)Tπh)),

Vh :=
1√
n

n∑
i=1

Hh(Xi)(Di − Ph(Xi)).

Since λmin(Σ̃h) ≥ ε > 017, Vh = Op(ζ(h)), and

||(Ψ̃h(k)−Ψh(k))||

.
1

√
κ1τn

∫
Supp(X)

|E(T i,1,n|x)

P (x)
L′′(Hh(x)Tπh)|||Hh(x)||2dFX(x)||π̃h − πh||

=O∗p(
√
τnζ(h)2

√
h

n
),

I have Jn,10(k) = O∗p(
√
τnζ(h)3

√
h
n) = o∗p(1).

For Jn,11(k), I first denote

Σ̂h =
1

n

n∑
i=1

L′(Hh(Xi)
Tπh)Hh(Xi)Hh(Xi)

T .

By noticing that E||Vh||2 = O(ζ(h)2), I have

||(Σ̃h − Σh)Σ−1
h Vh||

.||(Σ̃h − Σ̂k)Σ
−1
h Vh||+ ||(Σ̂k − Σh)Σ−1

h Vh||

.
1

n

n∑
i=1

||Hh(Xi)
T (π̃h − πh)L′′(Hh(Xi)

Tπh)Hh(Xi)Hh(Xi)
TΣ−1

h Vh||

+
1

n
||

n∑
i

[L′(Hh(Xi)
Tπh)Hh(Xi)Hh(Xi)

T − EL′(Hh(Xi)
Tπh)Hh(Xi)Hh(Xi)

T ]Σ−1
h Vh||

.Op(ζ(h)4

√
h

n
) +Op((

1√
n
E||L′(Hh(Xi)

Tπh)Hh(Xi)Hh(Xi)
T ||2)1/2||ζ(h)||)

=Op(ζ(h)4

√
h

n
+
ζ(h)3

√
n

).

Furthermore, ||Ψh(k)|| . Op( ζ(h)√
τn
E(E(T i,1,n|x))) = O∗p(

√
τnζ(h)). This implies

Jn,11(k) = O∗p(
√
τn(ζ(h)5

√
h

n
+
ζ(h)4

√
n

))

17λmin(A) is the minimal eigenvalue of a positive definite matrix A.
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and

Jn,8(k) = ΨT
h (k)Σ−1

h Vh +O∗p(
√
τn(ζ(h)5

√
h

n
)) = Ψh(k)TΣ−1

h Vh + o∗p(1).

Next, I compute the leading term of Jn,8(k): ΨT
h (k)Σ−1

h Vh. Define

δ0(x, k) :=
E(Ti,1,n(k)|x)√

kτnP (x)

√
P (x)(1− P (x)),

δh(x, k) := ΨT
h (k)Σ−1

h

√
Ph(x)(1− Ph(x))Hh(x).

Then

ΨT
h (k)Σ−1

h Vh =
1√
n

n∑
i=1

δh(Xi, k)
Di − Ph(Xi)√

Ph(Xi)(1− Ph(Xi))
.

I want to compute the difference

1√
n

n∑
i=1

[
δh(Xi, k)

Di − Ph(Xi)√
Ph(Xi)(1− Ph(Xi))

− δ0(Xi)
Di − P (Xi)√

P (Xi)(1− P (Xi))

]
:= Jn,12(k) + Jn,13(k)

where

Jn,12(k) :=
1√
n

n∑
i=1

[(δh(Xi, k)− δ0(X))
D − P (Xi)

P (Xi)(1− P (Xi))
],

Jn,13(k) :=
1√
n

n∑
i=1

[δh(Xi, k)(
Di − Ph(Xi)√

Ph(Xi)(1− Ph(Xi))
− (Di − P (Xi))√

P (Xi)(1− P (Xi))
)].

For Jn,12(k), notice that
√
τnδh(x, k) is the projection of

√
τnδ0(x, k) on

√
L′(Hh(x)Tπh)Hh(x).

By Assumption 3, E(Ti,1,n(k)|x) and P (x) are t times differentiable with their derivatives being

bounded by Mn on Supp(X) uniformly over the quantile index (and thus k). Hence,

sup
(x,k)∈Supp(X)×[κ1,κ2]

||δ0(x, k)− δh(x, k)|| .Mnh
− t

2r /
√
τn

and

Jn,12(k) = O∗p(

√
nMn

τn
h−

t
2r ) = o∗p(1).

For Jn,13(k), I have

||Jn,13(k)|| ≤
√
n sup
k,x
||δh(x, k)||ζ(h)h−

s
2r = O∗p(

√
nτnζ

3(h)h−
s
2r ) = o∗p(1).
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Combining the bounds on (Jn,10(k), · · · , Jn,13(k)), I obtain that

Jn,8(k) =
1√
n

n∑
i=1

δh(Xi, k)
Di − Ph(Xi)√

Ph(Xi)(1− Ph(Xi))
+ o∗p(1)

=
1√
nkτn

n∑
i=1

E(Ti,1,n(k)|Xi)

P (Xi)
(Di − P (Xi)) + o∗p(1).

Then by combining Jn,1(k)-Jn,8(k), I have,

Ŵn(k) = Wn(k) + o∗p(1).

This concludes Step 2.

Step 3.

Note that

Wn(k) =
√
n(Pn − P)f

for f ∈ F5,n, in which F5,n = {φi,1,n(k), k ∈ [κ1, κ2]} and

φi,1,n(k) =
1√
kτn

[
Di

P (Xi)
Ti,1,n(k)− E(Ti,1,n(k)|Xi)

P (Xi)
(Di − P (Xi))

]
.

Then,

F5,n =
C
√
τn

(T i,1,n + E(T i,1,n|Xi))

is an envelope for F5,n. We have ||F5,n||P,2 ≤ C <∞. M5,n := max1≤i≤n F5,n(Yi, Xi) ≤ C√
τn

.

First notice that, for f ∈ F5,n, Pf = 0, Pf2 . 1
τn
ET 2

i,1,n(k) = O(1). So the empirical process
√
n(Pn − P)f indexed by f ∈ F5,n is bounded in probability in any subsets of F5.n with finite

number of elements.

Next, I want to show the empirical process is stochastically equicontinuous. Let

Fδ5,n = {f − g, f, g ∈ F5,n, ||f − g||P,2 ≤ δ}

with envelope 2F5,n. Then similar to Fδ3,n, there exists v > 0 and a > e such that

sup
Q
N(ε||F δ5,n||Q,2,Fδ5,n, ||||Q,2) ≤

(a
ε

)v
, ∀ε ∈ (0, 1].
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By applying Lemma E.1 on Fδ5,n with σ := δ and the Markov inequality, I have

lim
δ↓0

lim sup
n

P
(
||
√
n(Pn − P )||Fδ5,n ≥ ε

)
≤ lim

δ↓0
lim sup

n
Cε−1


√√√√vδ2 log

(
2a||F δ5,n||P,2

δ

)
+

v
√
nτn

log

(
2a||F δ5,n||P,2

δ

) = 0.

Therefore, the empirical process
√
n(Pn − P ) indexed by f ∈ F5,n is stochastically equicontinuous

and the stochastic process
{

1√
n

∑n
i=1 φi,1,n(k) : k ∈ [κ1, κ2]

}
is tight. It further implies that the

stochastic process {Ŵn(k) : k ∈ [κ1, κ2]} is tight. This concludes Step 3 as well as the proof of the

first part of Theorem 3.1.

I next turn to the proof of the second part of Theorem 3.1. By the additional assumption in the

theorem, the covariance kernel satisfies that

E(φi,1,n(k1), φi,0,n(k2))(φi,1,n(k1), φi,0,n(k2))′ → H(k1, k2).

This is sufficient for the finite-dimensional convergence of

(λ1,n(k)(q̂1(kτn)− q1(kτn)), λ0,n(k)(q̂0(kτn)− q0(kτn))).

Combining the finite-dimensional convergence with the stochastic equicontinuity of{
(λ1,n(k)(q̂1(kτn)− q1(kτn)), λ0,n(k)(q̂0(kτn)− q0(kτn))), k ∈ [κ1, κ2]

}
,

I can conclude the proof for the second part of Theorem 3.1.

E.2 Proof of Theorem 3.3

Hereafter, all bootstrap counterparts are starred. Let {In,j}j≥1 denote an i.i.d. sequence distributed

as multinomial with parameter 1 and probability ( 1
n , · · · ,

1
n), so that the bootstrap weight for

individual i, wn,i, satisfies wn,i =
∑n

j=1 1{In,j = i}. Also, let ∆̂∗1,n = λ1,n(q̂∗1(τn) − q(τn)) where

λ1,n is defined in (3.3). Similar to the proof of Theorem 3.1,

∆̂∗1,n = arg min
∆∈R

−Ŵ ∗n∆ + Ĝ∗n(∆) (E.12)

where

Ŵ ∗n =
1
√
nτn

n∑
i=1

wn,iDi

P̂ (Xi)
(τn − 1{Yi ≤ q1(τn)}),

Ĝ∗n(∆) =
1
√
nτn

n∑
i=1

wn,iDi

P̂ (Xi)

∫ ∆

0

(
1

{
Yi ≤ q1(τn) +

s

λ1,n

}
− 1

{
Yi ≤ q1(τn)

})
ds.
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Since Ewn,i = 1, same as in the proof of Theorem 3.1,

Ĝ∗n(∆) =
∆2

2
+ op(1). (E.13)

Next, let wNn,i =
∑Nn

j=1 1{In,j = i}, so that {wNn,i}ni=1 are i.i.d. Poisson random variable with unit

mean. Let

W̃ ∗n =
1
√
nτn

n∑
i=1

wNn,iDi

P̂ (Xi)
(τn − 1{Yi ≤ q1(τn)}).

I aim to show that

Ŵ ∗n − W̃ ∗n = op(1).

Fix η > 0 and let Ij = {i : |wNn,i −wn,i| ≥ j} and nj = #Ij . Then, for n large enough and with a

probability greater than 1− η (see (Van der Vaart and Wellner, 1996), p.348),

Ŵ ∗n − W̃ ∗n =
1√
n

n∑
i=1

(wNn,i − wn,i)Mn,i(τn) = sign(Nn − n)
2∑
j=1

1√
n

∑
i∈Ij

Mn,i(τn) (E.14)

with Mn,i(τn) = 1√
τn

Di
P̂ (Xi)

(τn − 1{Yi ≤ q1(τn)}) and the convention that
∑

i∈Ij Mn,i(τn) = 0 when

nj = 0. I now show that
∑

i∈Ij Mn,i(τn)/
√
n = op(1). Note that

Mn,i(τn) = M∗n,i(τn) +Rn,i

where

M∗n,i(τn) =
1
√
τn

Di

P̂ (Xi)
(τn − 1{Yi ≤ q1(τn)})

and

Rn,i =
1
√
τn

Di(P (Xi)− P̂ (Xi))

P̂ (Xi)P (Xi)
(τn − 1{Yi ≤ q1(τn)}).

I first show ∑
i∈Ij

Rn,i/
√
n = op(1). (E.15)

Note that

|
∑
i∈Ij

Rn,i/
√
n| . 1

√
nτn

∑
i∈Ij

|τn − 1{Yi,1 ≤ q1(τn)}| sup
x∈Supp(X)

|P̂ (x)− P (x)|

.
1
√
nτn

∑
i∈Ij

|τn − 1{Yi,1 ≤ q1(τn)}|op(1).
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In addition,

1

nτn
E

∑
i∈Ij

|τn − 1{Yi,1 ≤ q1(τn)}|

2

|(In,j)j≥1, Nn

 . ( nj√
n

)2

.

(
Nn − n√

n

)2

= Op(1).

Thus (E.15) holds. Next, since E(M∗n,i(τn)|(In,j)j≥1, Nn) = 0 and

1

n
Var

∑
i∈Ij

M∗n,i(τn)

 |(In,j)j≥1, Nn

 ≤ nj
n
≤ |Nn − n|

n
= op(1),

I have ∑
i∈Ij

M∗n,i(τn)/
√
n = op(1). (E.16)

Combining (E.15) and (E.16), I have shown that
∑

i∈Ij Mn,i(τn)/
√
n = op(1) and thus

Ŵ ∗n − W̃ ∗n = op(1). (E.17)

In addition, by the same argument in the proof of Theorem 3.1, I have

W̃ ∗n =
1√
n

n∑
i=1

wNn,iφi,1,n(1) + op(1). (E.18)

Combining (E.12), (E.17), and (E.18), I obtain that

−Ŵ ∗n∆ + Ĝ∗n(∆) = −

(
1√
n

n∑
i=1

wNn,iφi,1,n(1)

)
∆ +

∆2

2
.

By the Convexity lemma in Pollard (1991), I have

∆̂∗1,n =
1√
n

n∑
i=1

wNn,iφi,1,n(1) + op(1).

Recall that, from the proof of Theorem 3.1, I have

∆̂1,n =
1√
n

n∑
i=1

φi,1,n(1) + op(1).

Thus

λn,1(q̂∗1(τn)− q̂1(τn)) = ∆̂∗1,n − ∆̂1,n =
1√
n

n∑
i=1

(wNn,i − 1)φi,1,n(1) + op(1). (E.19)
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Similarly,

λn,0(q̂∗0(τn)− q̂0(τn)) = ∆̂∗0,n − ∆̂0,n =
1√
n

n∑
i=1

(wNn,i − 1)φi,0,n(1) + op(1). (E.20)

Also note that, with C1(ρ,m), C0(ρ,m), λ̂n, and Σn defined in Theorem 3.2, I have

Σ−1/2
n λ̂n(q̂(τn)− q(τn)) = Σ−1/2

n

1√
n

n∑
i=1

(C1(ρ,m)φi,1,n(1)− C0(ρ,m)φi,0,n(1)) + op(1) N (0, 1).

(E.21)

Then combining (E.19), (E.20), and (E.21) with the continuous mapping theorem, I obtain that

Σ−1/2
n λ̂n(q̂∗(τn)− q̂(τn))

=Σ−1/2
n

1√
n

n∑
i=1

(wNn,i − 1) (C1(ρ,m)φi,1,n(1)− C0(ρ,m)φi,0,n(1)) + op(1) N (0, 1).

Here the variance Σn is the same in (E.21) because wNn,i is independent of data and has unit mean

and variance. This concludes the proof.

E.3 Proof of Theorem 3.4

Note that

q̂j(ml
rτn)− q̂j(lrτn)

q̂j(mlr−1τn)− q̂j(lr−1τn)
∼ (1 +Op(

1
√
τnn

))
qj(ml

rτn)− qj(lrτn)

qj(mlr−1τn)− qj(lr−1τn)
∼ (1 +Op(

1
√
τnn

))l−ξj .

This implies (1) by the continuous mapping theorem. (2) follows from the delta-method and a

triangular array CLT in such as Theorem 3.4.5 in Durrett (2010).

E.4 Proof of Theorem 4.1

Note that

Ẑ1,n(k) = arg min
z

1

α1,n

[
−

n∑
i=1

Di

P̂ (Xi)
(τnz − (z − α1,n(Ui,1 − β1,n))1{α1,n(Ui,1 − β1,n) ≤ z})

+
n∑
i=1

Di

P̂ (Xi)
τnα1,n(Ui,1 − β1,n)

]
.

Multiplying the LHS by α1,n and subtracting

n∑
i=1

Di

P̂ (Xi)
(τnα1,n(Ui,1 − β1,n) + (−δ − α1,n(Ui,1 − β1,n))1{α1,n(Ui,1 − β1,n) ≤ −δ}),
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I obtain

Ẑ1,n(k) = arg min
z1

−
n∑
i=1

W1(Di, P̂ (Xi))τnz1 +
n∑
i=1

W1(Di, P̂ (Xi))lδ(α1,n(Ui,1 − β1,n), z1).

Similarly,

Ẑ0,n(k) = arg min
z0

−
n∑
i=1

W0(Di, P̂ (Xi))τnz0 +

n∑
i=1

W0(Di, P̂ (Xi))lδ(α0,n(Ui,0 − β0,n), z0).

So overall,

(Ẑ1,n(k), Ẑ0,n(k)) := arg min
z1,z0

∑
j=0,1

Qj,n(zj),

where

Qj,n(zj , k) = −
n∑
i=1

Wj(Di, P̂ (Xi))τnzj +

n∑
i=1

Wj(Di, P̂ (Xi))lδ(αj,n(Ui,j − βj,n), zj).

In the following, I divide the proof into five steps. In the first step, I show the marginal convergence,

that is, for j = 0, 1 and fixed zj ,

Qj,n(zj , k) Qj,∞(zj , k),

in which

Qj,∞(zj , k) = −kzj +
∞∑
i=1

Wj(Di,j , P (Xi,j))lδ(Ji,j , zj).

In the second step, I show that for any (z1, z0), Q1,n(z1, k) and Q0,n(z0, k) are asymptotically inde-

pendent. Hence, the marginal convergence is sufficient for the joint convergence of (Q1,n(z1, k),Q0,n(z0, k))

to (Q1,∞(z1, k),Q0,∞(z0, k)). Then by the continuous mapping theorem,

Q1,n(z1, k) +Q0,n(z0, k) Q1,∞(z1, k) +Q0,∞(z0, k).

In the third step, I apply the convexity lemma to show the weak convergence of the sample mini-

mizers (Ẑ1,n(k), Ẑ0,n(k)) to their population counterparts (Z1,∞(k), Z0,∞(k)) when k satisfies As-

sumption 9.

In the fourth step, I enhance the result to the finite-dimensional convergence, that is, for (kl)
L
l=1

satisfying Assumption 9,

(Ẑ1,n(kl), Ẑ0,n(kl))
L
l=1  (Z1,∞(kl), Z0,∞(kl))

L
l=1

:= arg min
(z1,l,z0,l)

L
l=1

∑
j=0,1

L∑
l=1

{
−klzj,l +

∞∑
i=1

Wj(Di,j , P (Xi,j))lδ(Ji,j , zj,l)

}
.
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In the last step, I show (Ẑ1,n(k), Ẑ0,n(k)) as a two-dimensional stochastic process indexed by k in

D2([κ1, κ2]) weakly converges to a two-dimensional stochastic process (Z1,∞(k), Z0,∞(k)).

Before showing the five steps, I first present four technical statements. Their proofs can be found

at the end of this section.

Lemma E.2. Under the assumptions in Theorem 4.1, for j = 0, 1,

(1) 1
n

∑n
i=1Wj(Di, P (Xi))→ 1 a.s.

(2) Let

for type 1 tails (ξ1 = 0): Ej = E1 = [−∞,+∞)× {0, 1} × Supp(X ),

for type 2 tails (ξ1 > 0): Ej = E2 = [−∞, 0)× {0, 1} × Supp(X ),

for type 3 tails (ξ1 < 0): Ej = E3 = [0,+∞)× {0, 1} × Supp(X ).

Then N̂j :=
∑n

i=1 1{αj,n(Ui,j − βj,n), Di, Xi} as a point process on state space Ej weakly converges

to Nj =
∑∞

i=1 1{Ji,j ,Di,j ,Xi,j}.
(3) Let

g1(u, x) =
1

P (x)
lδ(u, x, z1), g0(u, x) =

1

1− P (x)
lδ(u, x, z0),

and

Ψj,n =

n∑
i=1

(jDi + (1− j)(1−Di))gj(αj,n(Ui,j − βj,n), Xi).

Then for a pair of constants (t1, t0), and ĩ representing the imaginary number,

E exp
(̃
it1Ψ1,n + ĩt0Ψ0,n

)
→ E exp

(
ĩ

∫
E1

t1dg1dN1

)
E exp

(
ĩ

∫
E0

t0(1− d)g0dN0

)
,

in which Nj is defined in (2).

(4) The distances between two closest discontinuities of the sample paths of the two marginal stochas-

tic processes Ẑ1,n(k) and Ẑ0,n(k)) indexed by k are both greater than 1.

Step 1:

I focus on the case for j = 1 because the case for j = 0 can be proved in a similar manner. First

note that for fixed z1, by Lemma E.2,−
∑n

i=1
Di

P̂ (Xi)
τnz1 = −kz1 + op(1). In order to compute the

second piece of the objective function, I first define

θn,1(z1) :=
n∑
i=1

Di

P (Xi)
lδ(α1,n(Ui,1 − β1,n), z1),

θn,2(z1) :=

n∑
i=1

Di

P (Xi)

∣∣∣∣lδ(α1,n(Ui,1 − β1,n), z1)

∣∣∣∣,
θn,3(z1) :=

n∑
i=1

Di(P̂ (Xi)− P (Xi))

P̂ (Xi)P (Xi)
lδ(α1,n(Ui,1 − β1,n), z1).
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Then
∑n

i=1
Di

P̂ (Xi)
lδ(α1,n(Ui,1 − β1,n), z1) = θn,1(z1) + θn,3(z1) and |θn,3(z1)| . θn,2(z) supx |P̂ (x) −

P (x)|. Also notice that θn,1(z1) and θn,2(z1) can be rewritten as

θn,1(z1) =

∫
E

d

P (x)
lδ(u, z1)dN̂1,

θn,2(z1) =

∫
E

d

P (x)
|lδ(u, z1)|dN̂1,

in which N̂1 is defined in Lemma E.2. Following part 2 of the proof of Theorem 4.1 in Cher-

nozhukov (2005), for type 1 and 3 tails, d
P (x) lδ(u, z1) ∈ CK(E) for any fixed z, and for type 2 tails,

d
P (x) lδ(u, z1) ∈ CK(E) for z1 < 0. Also, by Lemma E.2(2), N̂1  N1. Therefore, for any z for type

1 and 3 tails and negative z for type 2 tails,

θn,1(z) θ∞,1(z1) =

∫
E

d

P (x)
lδ(u, z1)dN1

θn,2(z) θ∞,2(z1) =

∫
E

d

P (x)
|lδ(u, z1)|dN1.

This implies that, for the aforementioned region of z1, θ∞,2(z1) = Op(1), θn,3(z1) = Op(θn,2(z1) supx |P̂ (x)−
P (x)|) = op(1), and thus

n∑
i=1

Di

P̂ (Xi)
lδ(α1,n(Ui,1 − β1,n), z1)→ θ∞,1(z1).

The last thing to check is
∑n

i=1
Di

P̂ (Xi)
lδ(α1,n(Ui,1 − β1,n), z1) → +∞ for type 2 tails when z1 > 0.

Again, following Chernozhukov (2005), if z1 > 0, α1,n → 0, β1,n = 0, lδ(u, z1) ≥ 1{−δ ≤ u ≤ 0}z1

if u > −δ, and lδ(u, z) = z + δ if u ≤ −δ. Because P (αnUi,1 > −δ)→ 1, I have,

n∑
i=1

Di

P (Xi)
lδ(αnUi,1, z1)1{αnUi,1 ≤ −δ} .

n∑
i=1

1{αnUi,1 ≤ −δ} = Op(1),

and
n∑
i=1

Di

P (Xi)
lδ(αnUi,1, z1)1{αnUi,1 > −δ} &

n∑
i=1

z11{αnUi,1 > −δ} = +∞,

which lead to the desired result that

n∑
i=1

Di

P̂ (Xi)
lδ(α1,n(Ui,1 − β1,n), z1)→ +∞.

Noting that Q1,∞(z1, k) = −kz1 +
∫
E

d
P (x) lδ(u1, z1)dN1, I have shown that, for all types fo tails,

Q1,n(z1, k) Q1,∞(z1, k).
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Similarly, by denoting Q0,∞(z0, k) = −kz0 +
∫
E

1−d
1−P (x) lδ(u0, z0)dN0, I can show that

Q0,n(z0) Q0,∞(z0).

Step 2:

From the proof of step 1, it is sufficient to show the asymptotic independence of

Ψ1,n :=

n∑
i=1

W1(Di, P (Xi))lδ(α1,n(Ui,1 − β1,n), z1)

and

Ψ0,n :=
n∑
i=1

W0(Di, P (Xi))lδ(α0,n(Ui,0 − β0,n), z0)

for any (z1, z0). Also I have already shown in step 1 that

Ψ1,n  
∫
E1

dg1(j, d, x)dN1(j, d, x)

and

Ψ0,n  
∫
E0

(1− d)g0(j, d, x)dN0(j, d, x).

Therefore, I only have to show that, for any pair of constants (t1, t0),

E exp
(̃
it1Ψ1,n + ĩt0Ψ0,n

)
→ E exp

(
ĩ

∫
E1

t1dg1dN1

)
E exp

(
ĩ

∫
E0

t0(1− d)g0dN0

)
.

This is done by Lemma E.2(3).

Step 3:

From the results in step 1 and 2, I obtain the joint convergence:

(Q1,n(z1, k),Q0,n(z0, k)) (Q1,∞(z1, k),Q0,∞(z0, k)) and Q1,∞(z1, k) ⊥⊥ Q0,∞(z0, k).

By the continuous mapping theorem,

Q1,n(z1, k) +Q0,n(z0, k) Q1,∞(z1, k) +Q0,∞(z0, k).

This result can be easily improved to hold over finite pairs of (z1, z0). For fixed k as the limiting

of τnn who satisfies Assumption 9, recall that

Qj,n(zj,l, k) = −
n∑
i=1

Wj(Di, P̂ (Xi))τnzj,l +

n∑
i=1

Wj(Di, P̂ (Xi))lδ(αj,n(Ui,j − βj,n), zj,l),
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and

Qj,∞(zj,l, k) = −kzj,l +
∞∑
i=1

Wj(Di,j , P (Xi,j))lδ(Ji,j , zj,l).

Then
L∑
l=1

[Q1,n(z1,l, k) +Q0,n(z0,l, k)] 
L∑
l=1

[Q1,∞(z1,l, k) +Q0,∞(z0,l, k)].

This is the finite-dimensional convergence of the objective function. Also notice that Q1,∞(z1) +

Q0,∞(z0) is convex in (z1, z0). Therefore, in order to apply the convexity lemma as in Chernozhukov

(2005), I only have to further verify two statements: (1) Qj,∞(zj) is finite over a non-empty open set

of (zj) and (2) Zj,∞(k), j = 0, 1 is a unique pair of random variables who minimizes
∑

j=0,1Qj,∞(zj).

In fact, (1) can be proved similar to the proof of Theorem 4.1 Part 2(II) in Chernozhukov (2005).

(2) holds by the fact that k satisfies Assumption 9. One sufficient condition for Assumption 9 is

k ∈ [κ1, κ2]/(L1 ∪ L2)18, in which

Lj =

{
k ∈ [κ1, κ2] :P

∑
i∈µ

1

P (Xi,j)
= k

 > 0 or P

∑
i∈µ

1

P (Xi,j)
+

1

P (Xj,h)
= k

 > 0

for some h and µ ∈M(l), l ≤ h− 1

}
.

Then, the convexity lemma implies that

(Ẑ1,n(k), Ẑ0,n(k)) (Z1,∞(k), Z0,∞(k)) := arg min
(z1,z0)∈R2

∑
j=0,1

[
−kzj +

n∑
i=1

Wj(Di,j , P (Xi,j))lδ(Ji,j , zj)

]
.

Step 4:

Recall that

Qj,n(zj , k) = −
n∑
i=1

Wj(Di, P̂ (Xi))τnzj +
n∑
i=1

Wj(Di, P̂ (Xi))lδ(αj,n(Ui,j − βj,n), zj)

and

Qj,∞(zj , k) =

(
−kzj +

∞∑
i=1

Wj(Di,j , P (Xi,j))lδ(Ji,j , zj)

)
.

Then I have

(Ẑ1,n(kl), Ẑ0,n(kl))
L
l=1 = arg min

(z1,l,z0,l)
L
l=1∈R2L

L∑
l=1

∑
j=0,1

Qj,n(zj,l, kl).

18Lemma E.5 and E.6 show that when k ∈ [κ1, κ2]/(L1∪L2), uniqueness and tightness of Zj,∞(k), j = 0, 1
hold. This sufficient condition will be used later in the proof.
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When kl satisfies Assumption 9 for l = 1, 2, · · · , L, by repeating Step 1–3, I can establish that

L∑
l=1

∑
j=0,1

Qj,n(zj,l, kl) 
L∑
l=1

∑
j=0,1

Qj,∞(zj,l, kl).

By the same Convexity Lemma used in Step 3, I have

(Ẑ1,n(kl), Ẑ0,n(kl))
L
l=1  (Z1,∞(kl), Z0,∞(kl))

L
l=1

:= arg min
(z1,l,z0,l)

L
l=1∈R2(L+1)

∑
j=0,1

L∑
l=1

[
−klzj,l +

n∑
i=1

Wj(Di,j , P (Xi,j))lδ(Ji,j , zj,l)

]
.

Step 5:

I aim to prove the result by applying Theorem 13.1 of Billingsley (1999) with Tp = [κ1, κ2]/(L1∪L0)

because as mentioned above, all the discontinuities of the Zj,∞(k) occurs in Lj . In fact, with

(κ1, κ2) /∈ L1 ∪ L0, I only need to show (Ẑ1,n(k), Ẑ0,n(k)) indexed by k ∈ [κ1, κ2] is tight. Then

based on Theorem 13.3 of Billingsley (1999), it suffices to show that (1) Tp’s complement in [κ1, κ2]

is at most countable, (2) for j = 0, 1 and every ε,

lim
δ→0

[
P (|Zj,∞(κ2)− Zj,∞(κ2 − δ)| ≥ ε) + P (|Zj,∞(κ1)− Zj,∞(κ1 + δ)| ≥ ε)

]
= 0, (E.22)

and (3) for j = 0, 1, any positive ε, and any η, there exists constants δ and n0 such that

P
(
|ω′′j,n(δ)| ≥ ε

)
≤ η (E.23)

in which

ω′′j,n(δ) := sup
k1≤k2≤k3,k3−k1≤δ

{
|Ẑj,n(k2)− Ẑj,n(k1)| ∧ |Ẑj,n(k3)− Ẑj,n(k2)|

}
.

(E.22) holds by Assumption 9. For (E.23), I focus on the case for j = 1. The case for j = 0 can

be handled similarly. First, by convention, I define Z1,∞(k) as the left limit of the sample path,

that is, Z1,∞(k) = limk′↓k Z1,∞(k′). Notice that Z1,∞(k) is piece-wise constant and the jumps only

occur when k − 1
P (Xh) =

∑
i 6=h

Ti
P (Xi)

1{Ji < Jh} or k =
∑

i 6=h
Ti

P (Xi)
1{Ji < Jh} for some h such

that Th = 1. By Lemma E.2(4), for k1 < k2 < k3, such that k3 − k1 < 1, either Ẑj,n(k2) = Ẑj,n(k1)

or Ẑj,n(k2) = Ẑj,n(k3). This implies that (E.23) holds whenever δ < 1. Last, for k ∈ L1, k can

be written as
∑I1

i=1Ni
1

P (xi)
where {xi}I1i=1 are the point mass of the CDF of Xi,1, {Ni}I1i=1 are

a sequence of nonnegative integers, and I1 is the total number of point mass, which is finite by

Assumption 8. Since 1
P (xi)

> 1,
∑I1

i=1Ni ≤ κ2 which implies that the cardinality of L1 is at most

finite. Similarly, the cardinality of L0 is also finite. This implies that Tp’s complement in [κ1, κ2]

is finite. Hence by Theorem 13.3 of Billingsley (1999), the marginal processes Ẑ1,n(k) and Ẑ2,n(k)

indexed by k in D[κ1, κ2] are tight and (Ẑ1,n(k), Ẑ0,n(k)) converges to (Ẑ1,∞(k), Ẑ0,∞(k)) under
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Skorohod metric.

E.5 Proof of Theorem 4.2

First note that

α1,n

α0,n
=
α1,n(q1(

mkl′
n )− q1(

kl′
n ))

α0,n(q(
mkl′
n )− q0(

kl′
n ))

q0(
mkl′
n )− q0(

kl′
n )

q1(
mkl′
n )− q1(

kl′
n )
→ kξ0−ξ1l′

m−ξ1 − 1

ρ(m−ξ0 − 1)
:= ρ̃.

Hence,
α̂n
α1,n

∼
√
kl′

max(Ẑ1,n(mkl′)− Ẑ1,n(kl′),
α1,n

α0,n
(Ẑ0,n(mkl′)− Ẑ0,n(kl′)))

∼
√
kl′

max(Z1,∞(mkl′)− Z1,∞(kl′), ρ̃(Z0,∞(mkl′)− Z0,∞(kl′)))
.

Similarly, α̂n
α0,n

∼
√
kl′ ρ̃

max(Z1,∞(mkl′ )−Z1,∞(kl′ ),ρ̃(Z0,∞(mkl′ )−Z0,∞(kl′ )))
. By combining the above results

with Theorem 4.1, I obtain that

Ẑn(k) =α̂n(q̂(τn)− q(τn)) =
α̂n
α1,n

Ẑc1,n(k)− α̂n
α0,n

Ẑc0,n(k) Zc∞(k).

Note that the limiting distribution is non-degenerate even when ρ = 0 or ∞.

E.6 Proof of Proposition 4.2

α̂n(

L∑
l=1

r̂lq̂(τn,l)−
L∑
l=1

rlq(τn,l))

=α̂n(
L∑
l=1

(r̂l − rl)q(τn,l)) + α̂n(
L∑
l=1

r̂l(q̂(τn,l)− q(τn,l)))

=α̂n(
L∑
l=1

(r̂l − rl)(q(τn,l)− q(0))) + α̂n(
L∑
l=1

r̂l(q̂(τn,l)− q(τn,l))).

Since αj,n(qj(τn) − qj(0)) → ηj(k), α̂n
αj,n

= Op(1) for j = 0, 1, and γ̂l → γl, the first term is op(1).

The second term converges to
∑L

l=1 γlZ
c
∞(kl). This concludes the proof.

E.7 Proof of Theorem 5.1

The proof follows the five steps in the proof of Theorem 4.1 which I will not repeat. The key

ingredient, Lemma E.2, is replaced by the following Lemma.

Lemma E.3. Let Pn,i =
∑n

l=1 1{Il = i}. Under the conditions of Theorem 5.1, for j = 0, 1,

(1) 1
n

∑n
i=1 Pn,iWj(Di, P (Xi))→ 1 a.s.
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(2) For N̂∗j :=
∑n

i=1 Pn,i1{αj,n(Ui,j − βj,n), Di, Xi},

N̂∗j  N∗j :=
∞∑
i=1

Γi,j1{Ji,j ,Di,j ,Xi,j}.

(3) Let

g1(u, x) =
1

P (x)
lδ(u, x, z1), g0(u, x) =

1

1− P (x)
lδ(u, x, z0),

and

Ψj,n =
n∑
i=1

(jDi + (1− j)(1−Di))Pn,igj(αj,n(Ui,j − βj,n), Xi).

Then for a pair of constants (t1, t0),

E exp(̃it1Ψ1,n + ĩt0Ψ0,n)→ E exp(̃i

∫
E1

t1dg1dN
∗
1 )E exp(̃i

∫
E0

t0(1− d)g0dN
∗
0 ),

in which Nj is defined in (2).

(4) The distances between the two closest discontinuities of the marginal sample paths of the two-

dimensional stochastic process (Ẑ∗1,n(k), Ẑ∗0,n(k)) indexed by k are both greater than 1.

E.8 Proof of Theorem 5.2

The proof is divided into three steps. For j = 0, 1, denote Z∗j,n(k) = αj,b(q̂
∗
j (τb) − qj(0))19 where

αj,b is the infeasible convergence rate defined after Assumption 7. In the first step, I want to show

that (Z∗1,n(k), Z∗0,n(k)) as a two-dimensional stochastic process indexed by k in D([κ1, κ2]) converges

weakly to (Z1,∞(k), Z0,∞(k)) defined in Theorem 4.1 under Skorohod metric. In the second step, I

want to show that α̂∗b(q̂
∗(τb)− q(τb)) as a stochastic process indexed by k in D([κ1, κ2]) converges

weakly to Zc∞(k) defined in Theorem 4.2 under the Skorohod metric. Last, I want to show that

α̂∗b(q̂(τb)−q(τb)) as a stochastic process indexed by k in D([κ1, κ2]) converges weakly to 0 under the

uniform metric. Combining the results from the last two steps, I can establish the desired result

that

α̂∗b(q̂
∗(τb)− q̂(τb)) = α̂∗b(q̂

∗(τb)− q(τb))− α̂∗b(q̂(τb)− q(τb)) Zc∞(k).

Step 1.

(Ẑ∗1,b(k), Ẑ∗0,b(k)) = arg min
(z1,z2)

∑
j=0,1

{
−

n∑
i=1

Pn,iWj(Di, P̂ (Xi))τbzj

+

n∑
i=1

Pn,iWj(Di, P̂ (Xi))lδ(αj,b(Ui,j − qj(0)), zj)

}
.

If the replacement is allowed, Pn,i =
∑b

l=1 1{Il = i}, (In,1, In,2, · · · , In,b) is a multinomial vector

19It is different from Ẑ∗n(k) = α̂∗b(q̂
∗(τb)− q̂(τb)). q̂∗j (τb) is defined before Theorem 5.2.
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with parameter b and probabilities ( 1
n , · · · ,

1
n). If replacement is not allowed, {Pn,i}ni=1 has b 1’s

and n − b 0’s and each combination of {Pn,i}ni=1 has equal probability 1
Cbn

. The proof of this step

follows the five steps in the proof of Theorem 4.1 which I will not repeat. The key ingredient,

Lemma E.2, is replaced by the following Lemma.

Lemma E.4.

(1) 1
n

∑n
i=1 Pn,iWj(Di, P (Xi))→ 1 a.s.

(2) For N̂∗j :=
∑n

i=1 Pn,i1{αj,b(Ui,j − βj,b), Di, Xi},

N̂∗j  Nj :=
∞∑
i=1

1{Ji,j ,Di,j ,Xi,j}.

(3) Let

g1(u, x) =
1

P (x)
lδ(u, x, z1), g0(u, x) =

1

1− P (x)
lδ(u, x, z0),

and

Ψj,n =
n∑
i=1

(jDi + (1− j)(1−Di))Pn,igj(αj,b(Ui,j − βj,b), Xi).

Then for a pair of constants (t1, t0),

E exp(̃it1Ψ1,n + ĩt0Ψ0,n)→ E exp(̃i

∫
E1

t1dg1dN1)E exp(̃i

∫
E0

t0(1− d)g0dN0),

in which Nj is defined in (2).

(4) The distances between the two closest discontinuities of the marginal sample paths of the two-

dimensional stochastic process (Ẑ∗1,n(k), Ẑ∗0,n(k)) indexed by k are both greater than 1.

Step 2.

First, I note that

α̂∗b(q̂
∗(τb)− q(0)) =

α∗b
α1,b

Ẑ∗1,b(k)−
α∗b
α0,b

Ẑ∗0,b(k),

α1,b max(q̂∗1(mτb,l′)− q̂∗1(τb,l′), q̂
∗
0(mτb,l′)− q̂∗0(τb,l′))

→max(Z1,∞(mkl′)− Z1,∞(kl′), ρ̃(Z0,∞(mkl′)− Z0,∞(kl′))),

and similarly,

α0,b max(q̂∗1(mτb,l′)− q̂∗1(τb,l′), q̂
∗
0(mτb,l′)− q̂∗0(τb,l′))

→max(
1

ρ̃
(Z1,∞(mkl′)− Z1,∞(kl′)), Z0,∞(mkl′)− Z0,∞(kl′)).

By step 1, I have

(Ẑ∗1,b(k), Ẑ∗0,b(k)) (Z1,∞(k), Z0,∞(k)).

Therefore

α̂∗b(q̂
∗(τb)− q(τb)) 

√
kl′(Z1,∞(k)− ρ̃Z0,∞(k))

max(Z1,∞(mkl′)− Z1,∞(kl′), ρ̃(Z0,∞(mkl′)− Z0,∞(kl′)))
.
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Last, I have that αj,b(qj(τb) − qj(0)) → ηj(k) uniformly in k ∈ [κ1, κ2]. Combining this with the

above result, I obtain that

α̂∗b(q̂
∗(τb)− q(τb)) Zc∞(k) :=

√
kl′(Z

c
1,∞(k)− ρ̃Zc0,∞(k))

max(Z1,∞(mkl′)− Z1,∞(kl′), ρ̃(Z0,∞(mkl′)− Z0,∞(kl′)))
.

This concludes step 2.

Step 3.

By construction, τbn = τnn
n
b →∞. By Theorem 3.1, λj,n(k)(q̂j(τb)−qj(τb)) as a stochastic process

indexed by k is tight. I only need to show
α̂∗b

λj,n(k) → 0. To see this, I note that, by step 1,

α̂∗b = Op(min(α1,b, α0,b)). Furthermore, since k ∈ [κ1, κ2], I have

α̂∗b
λj,n(k)

.p
αj,b

λj,n(k)
.p

√
b

nκ1
= o(1).

This concludes the proof.

E.9 Proof of Corollary 5.1

By Assumption 13 and Theorem 5.2, I have

Ẑc∗n (k)/Sn(k) Zc∞(k)/σ(k) in D[κ1, κ2].

Let ρ be the Skorohod metric on D([κ1, κ2]). Since 0 is a constant function, the map ρ(s, 0) =

supk∈[κ1,κ2] |s| is continuous in s ∈ D([κ1, κ2]). Therefore,

sup
k∈[κ1,κ2]

|Ẑc∗n (k)/Sn(k)| sup
k∈[κ1,κ2]

|Zc∞(k)/σ(k)|.

Next, I note that supk∈[κ1,κ2] |Zc∞(k)/σ(k)| is continuously distributed by Lemma E.8. Thus,

Ĉ1−a
p−→ C1−a

in which Ĉ1−a and C1−a are the (1− a)-th quantiles of

sup
k∈[κ1,κ2]

|Ẑc∗n (k)/Sn(k)| and sup
k∈[κ1,κ2]

|Zc∞(k)/σ(k)|, respectively.

This implies that the (1− a)-th uniform confidence band is consistent, that is,

lim
n→∞

P

(
q(
k

n
) ∈

[
q̂(
k

n
)− Sn(k)Ĉ1−a/α̂n, q̂(

k

n
) + Sn(k)Ĉ1−a/α̂n

]
: k ∈ [κ1, κ2]

)
= 1− α.
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E.10 Proof of Theorem 5.3

If {τn}n≥1 ∈ Γex and τn ≤ τn,1 for n large enough,

C̃ha (τn) = C̃bna (τn).

By Theorem 5.1,

P
(
q(τn) ∈

(
q̂(τn)− C̃h1−a

2
(τn), q̂(τn)− C̃ha

2
(τn)

))
= 1− a.

If {τn}n≥1 ∈ Γex and for n large enough, τn > τn,1,

C̃ha (τn) = C̃ lfa (τn)

and thus
P
(
q(τn) ∈

(
q̂(τn)− C̃h1−a

2
(τn), q̂(τn)− C̃ha

2
(τn)

))
≥P

(
q(τn) ∈

(
q̂(τn)− C̃bn1−a

2
(τn), q̂(τn)− C̃bna

2
(τn)

))
= 1− a.

These two situations exhaust all sequences in Γex.

If {τn}n≥1 ∈ Γint, for n large enough, I have τn ≥ τn,1. This implies that

P
(
q(τn) ∈

(
q̂(τn)− C̃h1−a

2
(τn), q̂(τn)− C̃ha

2
(τn)

))
≥P

(
q(τn) ∈

(
q̂(τn)− C̃nn1−a

2
(τn), q̂(τn)− C̃nna

2
(τn)

))
= 1− a,

where the last equality is by Theorem 3.3.

If {τn}n≥1 ∈ Γreg, for n large enough, I have τn ≥ τn,2. This implies that

C̃ha (τn) = C̃nna (τn),

and thus by the assumption in the theorem,

P
(
q(τn) ∈

(
q̂(τn)− C̃h1−a

2
(τn), q̂(τn)− C̃ha

2
(τn)

))
= 1− a.

E.11 Proof of Proposition 5.2

It suffices to show that α̂n(q̂(0) − q(0))  
∑L

l=1 γlZ
c
∞(kl). Then Proposition 5.1 shows that Ĉa is

consistent for the a-th quantile of
∑L

l=1 γlZ
c
∞(kl).

First, by Theorem 3.4, ξ̂j
p−→ ξj for j = 0, 1. This implies that (γ̂1, γ̂2, γ̂3)

p−→ (γ1, γ2, γ3) where

(γ1, γ2, γ3) is the unique solution to the follow system of equations:

3∑
l=1

rl = 1,
3∑
l=1

rlk
−ξ1
l = 0,

3∑
l=1

rlk
−ξ0
l = 0. (E.24)
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In addition,

α̂n(q̂(0)− q(0)) = α̂n

{ 3∑
l=1

[r̂lq̂(τn,l)− rlq(τn,l)]
}

+ α̂n

{ 3∑
l=1

rl[q(τn,l)− q(0)]

}
.

Since (γ̂1, γ̂2, γ̂3)
p−→ (γ1, γ2, γ3), by Proposition 4.2, the first term converges weakly to

∑L
l=1 γlZ

c
∞(kl).

For the second term, since αj,n(qj(τn,l) − qj(0)) → ηj(kl) = k
−ξj
l and α̂n

αj,n
= Op(1), by (E.24), I

have

α̂n

{ 3∑
l=1

rl[q(τn,l)− q(0)]

}
=

(
α̂n
α1,n

+
α̂n
α0,n

)
o(1) = op(1).

This concludes the proof.

E.12 Proof of Theorem 5.4

Let ξ
(1)
1 , ξ

(1)
0 , ξ

(2)
1 , and ξ

(2)
0 be the EV index for Y

(1)
1 , Y

(1)
0 , Y

(2)
1 , and Y

(2)
0 , respectively. Denote

c(s, t) = ks−tl′
m−s−1
m−t−1

. Then following the proof of Theorem 4.2, I have

α
(1)
0,n1

α
(1)
1,n1

→ c(ξ
(1)
1 , ξ

(1)
0 )ρ1,

α
(2)
0,n2

α
(2)
1,n2

→ c(ξ
(2)
1 , ξ

(2)
0 )ρ2

α
(2)
1,n2

α
(1)
1,n1

→ υ−ξ
(2)
1 c(ξ

(1)
1 , ξ

(2)
1 )ρ3,

α
(2)
0,n2

α
(1)
1,n1

→ υ−ξ
(2)
0 c(ξ

(1)
1 , ξ

(2)
0 )ρ4,

α
(2)
1,n2

α
(1)
0,n1

→ υ−ξ
(2)
1 c(ξ

(1)
0 , ξ

(2)
1 )ρ5, and

α
(2)
0,n2

α
(1)
0,n1

→ υ−ξ
(2)
0 c(ξ

(1)
0 , ξ

(2)
0 )ρ0.

(E.25)

In addition,

α̂n

(
q̂(1)(

k

n1
)− q̂(2)(

k

n2
)

)
=α̂n(q̂

(1)
1 (

k

n1
)− q(1)

1 (
k

n1
))− α̂n(q̂

(1)
0 (

k

n1
)− q(1)

0 (
k

n1
))− α̂n(q̂

(2)
1 (

k

n2
)− q(2)

1 (
k

n2
)) + α̂n(q̂

(2)
0 (

k

n2
)− q(2)

0 (
k

n2
)).

Following (E.25),

α̂n(q̂
(1)
1 (

k

n1
)− q(1)

1 (
k

n1
))

= min

{
V

(1)
1 ,

(
α

(1)
0,n1

α
(1)
1,n1

)
V

(1)
0 ,

(
α

(2)
1,n2

α
(1)
1,n1

)
V

(2)
1 ,

(
α

(2)
0,n2

α
(1)
1,n1

)
V

(2)
0

}
Z
c,(1)
1,∞ (k) + op(1)

= min

{
V

(1)
1 ,

(
c(ξ

(1)
1 , ξ

(1)
0 )ρ1

)
V

(1)
0 ,

(
c(ξ

(1)
1 , ξ

(2)
1 )ρ3

υξ
(2)
1

)
V

(2)
1 ,

(
c(ξ

(1)
1 , ξ

(2)
0 )ρ4

υξ
(2)
0

)
V

(2)
0

}
Z
c,(1)
1,∞ (k) + op(1),

in which

V
(s)
j =

√
kl′

Z
(s)
j,∞(mkl′)− Z

(s)
j,∞(kl′)

, j = 0, 1, s = 1, 2.
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Similarly,

α̂n(q̂
(1)
0 (

k

n1
)− q(1)

0 (
k

n1
))

= min

{(
1

c(ξ
(1)
1 , ξ

(1)
0 )ρ1

)
V

(1)
1 , V

(1)
0 ,

(
c(ξ

(1)
0 , ξ

(2)
1 )ρ5

υξ
(2)
1

)
V

(2)
1 ,

(
c(ξ

(1)
0 , ξ

(2)
0 )ρ0

υξ
(2)
0

)
V

(2)
0

}
Z
c,(1)
0,∞ (k) + op(1),

α̂n(q̂
(2)
1 (

k

n2
)− q(2)

1 (
k

n2
))

= min

{(
υξ

(2)
1

c(ξ
(1)
1 , ξ

(2)
1 )ρ3

)
V

(1)
1 ,

(
υξ

(2)
1

c(ξ
(1)
0 , ξ

(2)
1 )ρ5

)
V

(1)
0 , V

(2)
1 ,

(
c(ξ

(2)
1 , ξ

(2)
0 )ρ2

)
V

(2)
0

}
Z
c,(2)
1,∞ (k) + op(1),

and

α̂n(q̂
(2)
0 (

k

n2
)− q(2)

0 (
k

n2
))

= min

{(
υξ

(2)
0

c(ξ
(1)
1 , ξ

(2)
0 )ρ4

)
V

(1)
1 ,

(
υξ

(2)
0

c(ξ
(1)
0 , ξ

(2)
0 )ρ0

)
V

(1)
0 ,

(
1

c(ξ
(2)
1 , ξ

(2)
0 )ρ2

)
V

(2)
1 , V

(2)
0

}
Z
c,(2)
1,∞ (k) + op(1).

Since the four min{·} terms are all Op(1) and at least one of them is non-degenerate, there exists

a non-degenerate random variable ZTS(k) such that

α̂n

(
q̂(1)(

k

n1
)− q̂(2)(

k

n2
)

)
 ZTS

∞ (k).

In addition, since the min{·} terms are independent of k and by Lemma E.7, Z
c,(s)
j,∞ (k) are all

continuously distributed for j = 0, 1, s = 1, 2, ZTS
∞ (k) is also continuous. Following the similar

argument in the proof of Theorem 5.2, I can also show that

α̂∗b

[(
q̂(1)∗(

k

b1
)− q̂(1)(

k

b1
)

)
−
(
q̂(2)∗(

k

b2
)− q̂(2)(

k

b2
)

)]
 ZTS

∞ (k).

The detail is omitted for brevity. This concludes the proof.

E.13 Proof of Corollary A.1

I only have to show the weak convergence of P (X ∈ .|Y1 = y) to
∑

t P (xt)pt1{xt ∈ .}, that is, for any

F ∈ Supp(X) with ∂F ∩ {x1, x2, · · · , xT } = ∅, limy→q1(0) P (X ∈ F |Y1 = y) =
∑T

t=1 pt1{xt ∈ F}.
I first claim that for an arbitrarily small constant γ, there exist a small constant η, such that for

any t = 1, · · · , T , if |y − q1(0)| < η, Sy,t ⊂ {x : |x− xt| ≤ γ}.

Suppose not, since T is finite, as y ↓ q1(0), there exists a t and a sequence xy,t ∈ Sy,t, such that

|xy,t− xt| > γ0. Also because xy,t ∈ Sy, there exists a corresponding εy,t such that g(xy,t, εy,t) ≤ y.

Since Supp(X)× [0, 1] is compact, there is a convergent subsequence {xy′,t, εy′,t} of {xy,t, εy,t} with

limiting point (xt′ , εt′). Since g(xy′,t, εy′,t) ≤ y′ and g is lower semi-continuous, as y′ → q1(0),
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g(xt′ , ε
′
h) ≤ lim infy′→q1(0) g(xy′,t, εy′,t) ≤ q1(0). So g(xt′ , ε

′
h) = q1(0). This means xt′ ∈ S0. But

|xt′ − xt| ≥ γ0. In addition, Sy,t is monotone decreasing in y by construction so {xy′,t} ⊂ Sy0,t.

This implies d(xt′ , Sy0,t) = 0 for some t′ 6= t, which contradicts with the construction of Sy0,t.

Let δ0 = min(xt,xt′ )∈S0×S0
||xt − xt′ || and B(x, d) be a ball with radius d and center x. Then when

y is small enough, Sy,t = Sy ∩ B(xt, δ0/2), which is defined independent of the initial partition

{Sy0,t}Tt=1. This implies pt is well defined independent of Sy0,t. Furthermore, for any F such that

∂F ∩ {x1, x2, · · · , xT } = ∅, either d(xt, F ) > 0 or d(xt, F
c) > 0 for all t = 1, 2, · · · , T . Whenever y

is small enough, either sy,t ⊂ F if d(xt, F
c) > 0 or Sy,t ∩F = ∅ if d(xt, F ) > 0. Therefore, for some

arbitrarily small γ, there always exists a y small enough such that

|P (X ∈ F |Y1 = y)−
∑
t

pt1{xt ∈ F}|

=

∣∣∣∣ T∑
t=1

E1{X ∈ Sy,t ∩ F}∂λ(X,y)
∂y

E1{X ∈ Sy}∂λ(X,y)
∂y

− pt1{xt ∈ F}

∣∣∣∣
≤

T∑
t=1

|py,t − pt|1{xt ∈ F}

≤Mγ

This implies that P (X ∈ .|Y1 = y) weakly converges to
∑

t pt1{xt ∈ .}.

E.14 Proof of Corollary A.3

In the proof of corollary A.1, I have shown that for any γ > 0, Sdy,r ⊂ B(xr, γ). I next show that it

is also true for Scy,t, that is, Scy,t ⊂ (S0,t)
γ .

Suppose not, there exists γ0 > 0 and a sequence xy,t ∈ Scy,t such that d(xy,t, S0,t) > γ0. xy,t ∈ Scy,t
implies that there exists a corresponding sequence {ey,t} such that g(xy,t, ey,t) ≤ y. Then there ex-

ists a convergent subsequence (xy′,t, ey′,t) with limit (x′, e′) such that g(x′, e′) ≤ lim infy→q1(0) g(xy,t, ey,t) ≤
q1(0). This implies x′ ∈ S0. But d(x′, S0,t) > γ0, so x′ ∈ S0,t′ for t′ 6= t or x′ = xr, for some

r = 1, 2, · · · , Rd. But Scy,t is decreasing so I have d(x′, Scy0,t) = 0, which contradicts with the way I

construct {Scy0,t}
T
t=1 and {Sdy0,t}

Rd
r=1.

The above claim implies that whenever y is small enough, Sdy,r = B(xr, δ0/2) ∩ Sy and Scy,t =

(S0,t)
δ0/2 ∩ Sy. Then {Sdy,r}R

d

r=1 and {Scy,t}Tt=1 are defined independent of {Scy0,t}
T
t=1 and {Sdy0,r}

Rd
r=1

and they are disjoint. This implies that pdy,r and pcy,t are well defined independent of {Scy0,t}
T
t=1 and

{Sdy0,r}
Rd
r=1. Furthermore, S0,t is compact because for a convergent sequence {xn}∞n=1 with limit x,

there exists a corresponding sequence {εn}∞n=1 ⊂ [0, 1] such that it has a convergent subsequence

{ε′n} with limit ε. Then g(x, ε) ≤ lim infn′ g(xn′ , εn′) ≤ q1(0), which implies x ∈ S0. Since all S0,t′ ,

t′ = 1, 2, · · · , T are separate, it implies x ∈ S0,t. Therefore, F ∩ Scy,t → F ∩ S0,t.

The potential discontinuity S of the limiting distribution is {xr}R
d

r=1 ∪
(
SX ∩ (∪Rcr=1(∂S0,r))

)
where
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SX is the discontinuity of X. Let F be a collection of all open and relatively compact set such that

∂F ∩ S = ∅. Then, in order to show the weak convergence, it suffices to show that

lim
y→q1(0)

P (X ∈ F |Y1 = y) =
∑
r

1{Xr ∈ F}pdr +

Tc∑
t=1

pct

∫
S0,t∩F

σt(x)1/ξtdFX(x)∫
S0,t

σt(x)1/ξtdFX(x)
,

for all F with ∂F ∩ S = ∅.

Notice that
fU (y−q∗1 |X)
fεt (y−q∗1) → σt(X)−1/ξt locally uniformly and F ∩ Scy,t → F ∩ S0,t. Then, by the

dominated convergence theorem, as y → q1(0), I have

E1{X ∈ F ∩ Scy,t}
∂λ(X,y)
∂y

E1{X ∈ Scy,t}
∂λ(X,y)
∂y

=
E1{X ∈ F ∩ Scy,t}

fU (y−q∗1 |X)
fεt (y−q∗1)

E1{X ∈ Scy,t}
fU (y−q∗1 |X)
fεt (y−q∗1)

→E1{X ∈ F ∩ S0,t}σt(X)−1/ξt

E1{X ∈ S0,t}σt(X)−1/ξt
.

Therefore, for any fixed F such that ∂F ∩ S = ∅, as y → q1(0),

P (X ∈ F |Y = y)

=
E1{X ∈ F}∂λ(X,y)

∂y

E1{X ∈ Sy}∂λ(X,y)
∂y

=
Rd∑
r=1

E1{X ∈ F ∩ Sdy,r}
∂λ(X,y)
∂y

E1{X ∈ Sy}∂λ(X,y)
∂y

+
T∑
t=1

E1{X ∈ F ∩ Scy,t}
∂λ(X,y)
∂y

E1{X ∈ Sy}∂λ(X,y)
∂y

=

Rd∑
r=1

pdy,r
E1{X ∈ F ∩ Sdy,r}

∂λ(X,y)
∂y

E1{X ∈ Sdy,r}
∂λ(X,y)
∂y

+

T∑
t=1

pcy,t
E1{X ∈ F ∩ Scy,t}

∂λ(X,y)
∂y

E1{X ∈ Scy,t}
∂λ(X,y)
∂y

→
Rd∑
r=1

pdr1{xr ∈ F}+

T∑
t=1

pct
E1{X ∈ F ∩ S0,t}σt(X)−1/ξt

E1{X ∈ S0,t}σt(X)−1/ξt
.

This concludes the proof.

E.15 Proof of Lemma E.2

(1) is trivial.

For (2), it is known that a Poisson random measure (PRM) with the Lebesgue mean measure can

be written as
∑∞

i=1 1{
∑i

l=1 Ei ∈ .} where Ei is independent and identically standard exponentially

distributed. Then by Proposition 3.7 and 3.8 in Resnick (1987), I can transform and augment the

baseline point process and show that PRM(µj) = Nj(.) :=
∑∞

i=1 1{(Ji,j ,Di,j ,Xi,j) ∈ .} for j = 0, 1,

in which for j = 0, 1,

µj((a, b)× {d} × F ) =

∫
F

(dP (x) + (1− d)(1− P (x)))P+
j (dx|Yj = qj(0))(hj(b)− hj(a)).
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I focus on j = 1. Since P+
1 (X ∈ .|Y1 = q1(0)) is a bounded measure, its discontinuities are at most

countable. So there exists F1, a basis of relatively compact open sets of Rd such that F1 is closed

under finite unions and intersections and for any F ∈ F1, P+
1 (X ∈ ∂F |Y1 = q1(0)) = 0. Then by

Lemma 9.3 and 9.4 in Chernozhukov (2005), I only have to verify that, for any F ∈ F1 and any

interval (a, b), EN̂1((a, b)×{d}×F )→ µ1((a, b)×{d}×F ). Notice that l/α1,n+β1,n ↓ F−1
u1

(0) = 0

or −∞ for any l ∈ (−∞,+∞) for type 1 tails, any l ∈ (−∞, 0) for type 2 tails, and any l ∈ [0,+∞)

for type 3 tails. Let Sn = (q1(0) + β1,n + a/α1,n, q1(0) + β1,n + b/α1,n) and f1(y) be the density of

Y1. By the continuous mapping theorem, I obtain that

EN̂1((a, b)× {d} × F )

=P (D = d,X ∈ F |α1,n(U1 − β1,n) ∈ (a, b))nP (α1,n(U1 − β1,n) ∈ (a, b))

=(1 + o(1))

∫
Sn
P (D = d,X ∈ F |Y1 = y)f1(y)dy∫

Sn
f1(y)dy

(h1(b)− h1(a))

=(1 + o(1))

∫
Sn×F (dP (x) + (1− d)(1− P (x)))P (dx|Y1 = y)f1(y)dy∫

Sn
f1(y)dy

(h1(b)− h1(a))

→
∫
F

(dP (x) + (1− d)(1− P (x)))P+
1 (dx|Y1 = q1(0))(h1(b)− h1(a)).

This is the desired result for the marginal convergence.

For (3), let (U ′i,j , X
′
i,j)j=0,1 be an i.i.d. sequence such that (U ′i,1, X

′
i,1) ⊥⊥ (U ′i,0, X

′
i,0) and that

(U ′i,j , X
′
i,j) is distributed as (Ui,j , Xi)|Di = j. Let p = P (Di = 1). Then

E exp(̃it1Ψ1,n + ĩt0Ψ0,n)1{D1 = 1, · · · , Ds = 1, Ds+1 = 0, · · · , Dn = 0}

=E exp

(
ĩt1(

s∑
i=1

g1(α1,n(Ui,1 − β1,n), Xi)) + ĩt0(
n∑

i=s+1

g0(α0,n(Ui,0 − β0,n), Xi))

)
× 1{{Di = 1}si=1, {Di = 0}ni=s+1}

=ps(1− p)n−sE exp

(
ĩt1(

s∑
i=1

g1(α1,n(U ′i,1 − β1,n), X ′i,1))

)

× E exp

(
ĩt0(

n∑
i=s+1

g0(α0,n(U ′i,0 − β0,n), X ′i,0))

)
.

Therefore, by symmetry,

E exp(̃it1Ψ1,n + ĩt0Ψ0,n)

=

n∑
s=0

{
Csnp

s(1− p)n−sE exp

(
ĩt1(

s∑
i=1

g1(α1,n(U ′i,1 − β1,n), X ′i,1))

)

× E exp

(
ĩt0(

n∑
i=s+1

g0(α0,n(U ′i,0 − β0,n), X ′i,0))

)}
.
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Define E′j for j = 0, 1 as follows:

for type 1 tails (ξj = 0): E′j = [−∞,+∞)× Supp(X ),

for type 2 tails (ξj > 0): E′j = [−∞, 0)× Supp(X ),

for type 3 tails (ξj < 0): E′j = [0,+∞)× Supp(X ).

Let N ′j be PRM(µ′j) on E′j with

µ′j([a, b]× F ) =

∫
F

(jP (x) + (1− j)(1− P (x)))P+
j (dx|Yj = qj(0))(hj(b)− hj(a))

and

N̂ ′j(.) :=

js+(n−s)(1−j)∑
i=1

1
{

(αj,n(U ′i,j − βj,n), X ′i,j) ∈ .
}
.

Let rn =
√

2n log(log(n)), Sn = {s ∈ Z, |s− np| ≤ rn}. Then,∣∣∣∣E exp(̃it1Ψ1,n + ĩt0Ψ0,n)− E exp(̃i

∫
E1

t1g1dN
′
1)E exp(̃i

∫
E0

t0g0dN
′
0)

∣∣∣∣
≤
∑
s∈Sn

Csnp
s(1− p)n−s

∣∣∣∣E exp

(
ĩt1

∫
E′1

g1dN̂
′
1

)
E exp

(
ĩt0

∫
E′0

g0dN̂
′
0

)

− E exp

(
ĩ

∫
E1

t1g1dN
′
1

)
E exp

(
ĩ

∫
E0

t0g0dN
′
0

)∣∣∣∣
+
∑
s∈Scn

Csnp
s(1− p)n−s

∣∣∣∣E exp

(
ĩt1

∫
E′1

g1dN̂
′
1

)
E exp

(
ĩt0

∫
E′0

g0dN̂
′
0

)

− E exp

(
ĩ

∫
E1

t1g1dN
′
1

)
E exp

(
ĩ

∫
E0

t0g0dN
′
0

)∣∣∣∣
≤
∑
s∈Sn

Csnp
s(1− p)n−s

∣∣∣∣E exp

(
ĩt1

∫
E′1

g1dN̂
′
1

)
E exp

(
ĩt0

∫
E′0

g0dN̂
′
0

)

− E exp

(
ĩ

∫
E1

t1g1dN
′
1

)
E exp

(
ĩ

∫
E0

t0g0dN
′
0

)∣∣∣∣+ const×

∑
s∈Scn

Csnp
s(1− p)n−s

 .

(E.26)

By the law of iterated logarithm,
∑

s∈Scn C
s
np

s(1 − p)n−s = o(1) as n → ∞. Therefore, the second
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term is asymptotically negligible. For the first term, if s ≥ [np],∣∣∣∣∣E exp(̃it1

∫
E′1

g1dN̂
′
1)− E exp(̃it1

∫
E′1

g1dN
′
1)

∣∣∣∣∣
≤
∣∣∣∣E exp

(
ĩt1

∫
E′1

g1dN̂
′
1

)
− E exp

ĩt1 [np]∑
i=1

g1(α1,n(U ′i,1 − β1,n), X ′i,1)

∣∣∣∣
+

∣∣∣∣∣∣E exp

ĩt1 [np]∑
i=1

g1(α1,n(U ′i,1 − β1,n), X ′i,1)

− E exp

(
ĩt1

∫
E′1

g1dN
′
1

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣E exp

ĩt1 [np]∑
i=1

g1(α1,n(U ′i,1 − β1,n), X ′i,1)

exp

ĩt1 s∑
i=[np]

g1(α1,n(U ′i,1 − β1,n), X ′i,1)

− 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣E exp

ĩt1 [np]∑
i=1

g1(α1,n(U ′i,1 − β1,n), X ′i,1)

− E exp

(
ĩt1

∫
E′1

g1dN
′
1

)∣∣∣∣∣∣
≤E

2− 2 cos(t1

s∑
i=[np]+1

g1(α1,n(U ′i,1 − β1,n), X ′i,1))

1/2

+

∣∣∣∣∣∣E exp

ĩt1 [np]∑
i=1

g1(α1,n(U ′i,1 − β1,n), X ′i,1)

− E exp

(
ĩt1

∫
E′1

g1dN
′
1

)∣∣∣∣∣∣ ,
(E.27)

in which the last inequality is by the fact that | exp(̃it)− 1|2 ≤ 2− 2 cos(t).

Similar to the proof in step 1,

[np]P (α1,n(U ′i,1 − β1,n) ∈ [a, b], X ′i,1 ∈ F )

=
[np]

p
P (α1,n(U ′i,1 − β1,n) ∈ [a, b], X ′i,1 ∈ F,Di = 1)

=
[np]

p

∫ b

a

∫
F
P (x)P (dx|α1,n(Ui,1 − β1,n) = u)dP (α1,n(Ui,1 − β1,n) ≤ u)

→
∫
F
P (x)P+

1 (dx|Y1 = q1(0))(h1(b)− h1(a))

=µ′1([a, b]× F ).

Then by the continuous mapping theorem and the fact that g1(u, x) ∈ Ck(E′1), I have

[np]∑
i=1

g1(α1,n(U ′i,1 − β1,n), X ′i,1) 
∫
E1

g1dN
′
1.
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Similarly, because rn
n → 0, I have that

s∑
i=[np]+1

|g1(α1,n(U ′i,1 − β1,n), X ′i,1)| ≤
[np+rn]+1∑
i=[np]+1

|g1(α1,n(U ′i,1 − β1,n), X ′i,1)| = op(1).

Therefore, for the first term on the RHS of (E.27), I have

sup
s∈Sn,s≥[np]

2− 2 cos(t1

s∑
i=[np]+1

g1(α1,n(U ′i,1 − β1,n), X ′i,1))


≤2

1− cos(|t1|
[np+rn]+1∑
i=[np]+1

|g1(α1,n(U ′i,1 − β1,n), X ′i,1))

1


[np+rn]+1∑
i=[np]+1

|g1(α1,n(U ′i,1 − β1,n), X ′i,1)| ≤ π

|t1|


+ 21


[np+rn]+1∑
i=[np]+1

|g1(α1,n(U ′i,1 − β1,n), X ′i,1)| ≥ π

|t1|


=op(1).

Therefore, by the dominated convergence theorem, I have

sup
s∈Sn,s≥[np]

E

2− 2 cos(t1

s∑
i=[np]+1

g1(α1,n(U ′i,1 − β1,n), X ′i,1))

→ 0.

For the second term of (E.27), I have, by the dominated convergence theorem, that∣∣∣∣∣∣E exp

ĩt1 [np]∑
i=1

g1(α1,n(U ′i,1 − β1,n), X ′i,1)

− E exp

(
ĩt1

∫
E′1

g1dN
′
1

)∣∣∣∣∣∣→ 0.

Combining the two terms, I obtain that

sup
s∈Sn,s≥[np]

∣∣∣∣∣E exp

(
ĩt1

∫
E′1

g1dN̂
′
1

)
− E exp

(
ĩt1

∫
E′1

g1dN
′
1

)∣∣∣∣∣→ 0.

If s < [np], then
∑[np]−1

i=s

∣∣∣g1(α1,n(U ′i,1 − β1,n), X ′i,1)
∣∣∣ ≤ ∑[np]−1

i=[np−rn]

∣∣∣g1(α1,n(U ′i,1 − β1,n), X ′i,1)
∣∣∣ =

op(1). By the same argument, I have

sup
s∈Sn,s<[np]

∣∣∣∣∣E exp

(
ĩt1

∫
E′1

g1dN̂
′
1

)
− E exp

(
ĩt1

∫
E′1

g1dN
′
1

)∣∣∣∣∣→ 0.

To sum up, I have sups∈Sn

∣∣∣E exp
(
ĩt1
∫
E′1
g1dN̂

′
1

)
− E exp

(
ĩt1
∫
E′1
g1dN

′
1

)∣∣∣ → 0. Similarly, I can

show that

sup
s∈Sn

∣∣∣∣∣E exp

(
ĩt0

∫
E′0

g0dN̂
′
0

)
− E exp

(
ĩt0

∫
E′0

g0dN
′
0

)∣∣∣∣∣→ 0.
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This implies

∑
s∈Sn

Csnp
s(1− p)n−s

∣∣∣∣E exp

(
ĩt1

∫
E′1

g1dN̂
′
1

)
E exp

(
ĩt0

∫
E′0

g0dN̂
′
0

)

−E exp

(
ĩ

∫
E1

t1dg1dN1

)
E exp

(
ĩ

∫
E0

t0(1− d)g0dN0

)∣∣∣∣
≤ sup
s∈Sn

∣∣∣∣∣E exp

(
ĩt1

∫
E′1

g1dN̂
′
1

)
− E exp

(
ĩt1

∫
E′1

g1dN
′
1

)∣∣∣∣∣
+ sup
s∈Sn

∣∣∣∣∣E exp

(
ĩt0

∫
E′0

g0dN̂
′
0

)
− E exp

(
ĩt0

∫
E′0

g0dN
′
0

)∣∣∣∣∣
→0

(E.28)

Combining (E.26) and (E.28),∣∣∣∣E exp
(̃
it1Ψ1,n + ĩt0Ψ0,n

)
− E exp

(
ĩ

∫
E1

t1g1dN
′
1

)
E exp

(
ĩ

∫
E0

t0g0dN
′
0

)∣∣∣∣→ 0.

Last, notice that the random variable
∫
E′j
gjdN

′
j is uniquely determined by its characteristic function

E

(
exp(̃it

∫
E′j

gjdN
′
j)

)
= exp

(
−
∫
E′j

(1− exp(−ĩtgj))dµ′j

)
.20

Similarly, the random variable
∫
Ej

(dj + (1− d)(1− j))gjdNj is uniquely determined by its charac-

teristic function

E exp

(
ĩt

∫
Ej

(dj + (1− d)(1− j))gjdNj

)
= exp

(
−
∫
E′j

(
1− exp(−ĩt(jd+ (1− j)(1− d))gj)

)
dµj

)
.

In addition, I have∫
Ej

(
1− exp(−ĩt(jd+ (1− j)(1− d))gj)

)
dµj

=

∫
Ej

(jd+ (1− j)(1− d))(1− exp(−ĩtgj))dµj

=

∫
E′j

jP (x)(1− exp(−ĩtgj))dµj(u, 1, x) +

∫
E′j

(1− j)(1− P (x))(1− exp(−ĩtgj))dµj(u, 0, x)

=

∫
E′j

(1− exp(−ĩtgj))dµ′j(u, x),

20See the definition of Laplace functional of PRM(µ) in section 3.2 of Resnick (1987).
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that is, the two characteristic functions are the same. This implies∫
E′j

gjdN
′
j =

∫
Ej

(dj + (1− d)(1− j))gjdNj .

Therefore

E exp

(
ĩ

∫
E1

t1g1dN
′
1

)
E exp

(
ĩ

∫
E0

t0g0dN
′
0

)
= E exp

(
ĩ

∫
E1

t1dg1dN1

)
E exp

(
ĩ

∫
E0

t0(1− d)g0dN0

)
and ∣∣∣∣E exp

(̃
it1Ψ1,n + ĩt0Ψ0,n

)
− E exp

(
ĩ

∫
E1

t1dg1dN1

)
E exp

(
ĩ

∫
E0

t0(1− d)g0dN0

)∣∣∣∣→ 0.

For part (4), it is easy to see that (Ẑ1,n(k), Ẑ0,n(k)) are piece-wise constant because for instance,

when j = 1 and k − 1
P̂ (Xh)

<
∑

i 6=h
Ti

P̂ (Xi)
1{αnUi,1 < αnUh,1} < k for some h such that Th =

1, then Ẑ1,n(k) = αnUh,1. The discontinuity for the sample path only occurs at k − 1
P̂ (Xh)

=∑
i 6=h

Ti
P̂ (Xi)

1{αnUi,1 < αnUh,1} or k =
∑

i 6=h
Ti

P̂ (Xi)
1{αnUi,1 < αnUh,1} = k. W.l.o.g., I assume

0 < P̂ (Xi) < 1 for all i. This implies that the distances between the two closest discontinuities for

the sample paths are min1≤i≤n
1

P̂ (Xi)
≥ 1.

E.16 Proof of Lemma E.3

For (1), I compute its characteristic function conditioning on data Φn. Let ĩ be the imaginary

number. I have

E

{
exp

[
ĩt

(
1

n

n∑
i=1

n∑
l=1

1{Il = i}Wj(Di, P (Xi))

)]
|Φn

}

=

{
E

[
exp

(
ĩt(

1

n

n∑
i=1

1{I1 = i}Wj(Di, P (Xi)))

)
|Φn

]}n

=

{
1− 1

n

[
n∑
l=1

1− exp

(
ĩt

(
1

n
Wj(Dl, P (Xl))

))]}n
.

By the Taylor expansion,
∑n

l=1 1− exp

(
ĩt
(

1
nWj(Dl, P (Xl))

))
− ĩt 1

n

∑n
l=1Wj(Dl, P (Xl))→ 0 a.s.

By SLLN,

1

n

n∑
l=1

Wj(Dl, P (Xl))→ EWj(Dl, P (Xl)) = 1 a.s.

So E
{

exp

[
ĩt

(
1
n

∑n
i=1

∑n
l=1 1{Il = i}Wj(Di, P (Xi))

)]
|Φn

}
→ exp(̃it) a.s, which implies the de-

sired result.

For (2), I first note that
∑n

i=1 1{αj,n(Ui,j − βj,n), Di, Xi}  
∑n

i=1 1{Ji,j ,Di,j ,Xi,j} by Lemma

E.2(2). Then (2) follows by Proposition 6.3 of Resnick (2007).
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For (3),

E exp
(̃
i(t1Ψ1,n + t0Ψ0,n)

)
=E exp

(
n∑
l=1

n∑
i=1

1{Il = i}̃i (t1g1,n(α1,nU1.n, Xi, z1) + t0g0,n(α0,nU0.n, Xi, z0))

)

=E

[
1

n

n∑
i=1

exp

(
ĩ(t1Dig1,n(α1,nU1.n, Xi, z1) + t0(1−Di)g0,n(α0,nU0.n, Xi, z0))

)]n

=E

[
1− 1

n

n∑
i=1

(
1− exp(̃i(t1Dig1,n(α1,nU1.n, Xi, z1) + t0(1−Di)g0,n(α0,nU0.n, Xi, z0)))

)]n
.

Conditioning on D1 = · · · = Ds = 1 and Ds+1 = · · · = Dn = 0, I have

n∑
i=1

(1− exp(̃i(t1Dig1,n(α1,nU1.n, Xi, z1) + t0(1−Di)g0,n(α0,nU0.n, Xi, z0))))

=

s∑
i=1

(1− exp(̃it1g1,n(α1,nU
′
1,n, X

′
i, z1))) +

n∑
i=s+1

(1− exp(̃it0g0,n(α0,nU
′
0,n, X

′
i, z0)))

=J1,s,n + J0,s,n,

(E.29)

in which (U ′i,j , X
′
i,j) is defined in the proof of Lemma E.2 and p = P (D = 1). Then J1,s,n ⊥⊥ J0,s,n

and

E exp
(̃
i(t1Ψ1,n + t0Ψ0,n)

)
=

n∑
s=0

Csnp
s(1− p)n−sE

[
1− 1

n
(J1,s,n + J0,s,n)

]n
.

Similar to the proof of Lemma E.2, it can be shown that Jj,s,n −
∫

(1 − exp(̃itjgj))dN
′
j = op(1)

uniformly over |s− np| ≤ rn. Therefore,

n∑
s=0

Csnp
s(1− p)n−sE

[
1− 1

n
(J1,s,n + J0,s,n)

]n
=

∑
|s−np|≤rn

Csnp
s(1− p)n−sE

[
1− 1

n
(J1,s,n + J0,s,n)

]n
+ o(1)

→E exp

(
−
∫

(1− exp(̃it1g1))dN ′1 −
∫

(1− exp(̃it0g0))dN ′0

)
=E exp

(
−
∫

(1− exp(̃it1g1))dN ′1

)
E exp

(
−
∫

(1− exp(̃it0g0))dN ′0

)
=E exp

(
−
∫

(1− exp(̃it1dg1))dN1

)
E exp

(
−
∫

(1− exp(̃it0(1− d)g0))dN0

)
=E exp

(
ĩ

∫
E1

t1dg1dN
∗
1

)
E exp

(
ĩ

∫
E0

t0(1− d)g0dN
∗
0

)
.

In the above derivation, the first line is by the law of iterated logarithm. The second line is by

the fact that Jj,s,n −
∫

(1 − exp(̃itjgj))dN
′
j = op(1) uniformly over |s − np| ≤ rn and then the
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dominated convergence theorem because |[1 − 1
n(J1,s,n + J0,s,n)]n| ≤ 1. The third line is because

J1,s,n ⊥⊥ J0,s,n and thus so are their limits. The fourth line is because, for any f ∈ CK(E′j),∫
E′j
fdN ′j =

∫
Ej

(dj + (1− d)(1− j))fdNj . The last line is because, for example, for j = 1 and any

f ∈ CK(E1),

E exp

(∫
E1

fdN∗1

)
=E exp

( ∞∑
i=1

Γi,1f(Ji,1,Di,1,Xi,1)

)
=EΠ∞i=1E exp(Γi,1f(Ji,1,Di,1,Xi,1)|{Ji,1,Di,1,Xi,1}i≥0)

=EΠ∞i=1 exp(−(1− exp(f(Ji,1,Di,1,Xi,1))))

=E exp

(
−
∫
E1

(1− exp(f))dN1

)
.

(E.30)

For (4), I note that Ẑ∗1,n(k) and Ẑ∗0,n(k)) are also piece-wise constant as (Z1,∞(k), Z0,∞(k)), that

is, when k − 1
P̂ (X∗h)

<
∑

i 6=h
D∗i

P̂ (X∗i )
1{αnU∗i,1 < αnU

∗
h,1} < k for some h such that D∗h = 1, then

Ẑ∗1,n(k) = αnU
∗
h,1. And the discontinuity for the sample path occurs at

k − 1

P̂ (X∗h)
=
∑
i 6=h

D∗i
P̂ (X∗i )

1{αnU∗i,1 < αnU
∗
h,1}

or

k =
∑
i 6=h

D∗i
P̂ (X∗i )

1{αnU∗i,1 < αnU
∗
h,1} = k.

W.l.o.g., I assume P̂ (Xi) < 1 for all i. This implies the distances between the two closest disconti-

nuities for the sample paths are min1≤i≤n
1

P̂ (Xi)
≥ 1.

E.17 Proof of Lemma E.4

For (1), Let ĩ be the imaginary number. When replacement is allowed,

E

(
exp

(
ĩt

(
1

b

n∑
i=1

b∑
l=1

1{Il = i}Wj(Di, P (Xi))

))
|Φn

)

=

[
E

(
exp

(
ĩt

(
1

b

n∑
i=1

1{I1 = i}Wj(Di, P (Xi))

))
|Φn

)]b

=

[(
E exp

(
ĩt(

1

b

n∑
i=1

1{I1 = i}Wj(Di, P (Xi)))

)
|Φn

)]b

=

[
1− 1

b

b

n

(
n∑
l=1

1− exp

(
ĩt(

1

b
Wj(Dl, P (Xl)))

))]b
.

Because b
n

{∑n
l=1

[
1− exp

(̃
it(1

bWj(Dl, P (Xl)))
)]}
→ ĩt as b, n → ∞ a.s., the characteristic func-

tion converges to exp(̃it). This implies that 1
b

∑n
i=1

∑m
l=1 1{Il = i}Wj(Di, P (Xi))→ 1 a.s.
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When replacement is not allowed,

1

b

n∑
i=1

Pn,iWj(Di, P (Xi)) =
1

b

n∑
i=1

(Pn,i −
b

n
)Wj(Di, P (Xi)) +

1

n

n∑
i=1

Wj(Di, P (Xi)). (E.31)

The second term of (E.31) converges to 1 almost surely by SLLN. For the first term of (E.31), Wj

is bounded and E(1
b

∑n
i=1(Pn,i − b

n)Wj(Di, P (Xi)))
2 . 1

b + 1
n → 0. This concludes part (1).

For part (2), EPn,i = b
n and N̂j :=

∑n
i=1 1{αj,n(Ui,j − βj,n), Xi, Di}  Nj . By Proposition 6.2 of

Resnick (2007), for N̂∗j and Nj as random element in the space of point measure,

P (N̂∗j ∈ .|{αj,n(Ui,j − βj,n), Xi, Di}ni=1)
p−→ P (Nj ∈ .).

Taking expectation on both sides, I obtain N̂∗j  Nj .

For part (3), I first denote (U ′i,j , X
′
i,j) as is defined in the proof of Lemma E.2 and p = P (D = 1).

When replacement is allowed,

E exp(̃i(t1Ψ1,n + t0Ψ0,n))

=E exp

(
ĩ

(
b∑
l=1

n∑
i=1

1{Il = i}(t1Dig1(α1,b(Ui,1 − β1,b), Xi) + t0(1−Di)g0(α0,b(Ui,0 − β0,b), Xi))

))

=E

[
1− 1

b

(
b

n

n∑
i=1

(
1− exp(̃i(t1Dig1(α1,b(Ui,1 − β1,b), Xi) + t0(1−Di)g0(α0,b(Ui,0 − β0,b), Xi)))

))]b

=

n∑
s=0

Csnp
s(1− p)n−sE

{
1− 1

b

[
b

n

s∑
i=1

(
1− exp(̃it1g1(α1,b(U

′
i,1 − β1,b), X

′
i))
)

+
b

n

n∑
i=s+1

(1− exp(̃it0g0(α0,b(U
′
i,0 − β0,b), X

′
i)))

]}b
.

(E.32)

For s = [np], E b
n

∑[np]
i=1 1{(α1,b(U

′
i,1 − β1,b), X

′
i) ∈ .} → µ′1(.) and E b

n

∑n
i=[np]+1 1{(α0,b(U

′
i,0 −

β0,b), X
′
i) ∈ .} → µ′0(.), where µ′j is defined as the mean measure of N ′j and N ′j is defined in

Lemma E.2. Then by Theorem 5.3 of Resnick (2007), b
n

∑[np]
i=1 1{(α1,b(U

′
i,1 − β1,b), X

′
i)}  N ′j as

b
n → 0. By the same argument in the proof of (3) of Lemma E.2, I can show that this convergence

is uniform over |s− np| ≤ rn. Therefore, uniformly over |s− np| ≤ rn,

b

n

s∑
i=1

(
1− exp(̃i(t1g1(α1,b(U

′
i,1 − β1,b), X

′
i)))
) p−→

∫
E′1

[
1− exp(̃i(t1g1(u, x)))

]
dµ′1,

and

b

n

n∑
i=s+1

(
1− exp(̃i(t0g0(α0,b(U

′
i,0 − β0,b), X

′
i)))
) p−→

∫
E′0

[
1− exp(̃i(t0g0(u, x)))

]
dµ′0.
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Since the term inside the expectation of the RHS of (E.32) is bounded by 1, by the dominated

convergence theorem, the RHS of (E.32) converges to

exp

{∫
E′1

[
1− exp(̃i(t1g1(u, x)))

]
dµ′1 +

∫
E′0

[
1− exp(̃i(t0g0(u, x)))

]
dµ0

}

= exp

{∫
E1

[
1− exp(̃i(t1dg1(u, x)))

]
dµ1 +

∫
E0

[
1− exp(̃i(t0(1− d)g0(u, x)))

]
dµ0

}
=E exp

(
ĩt1

∫
E1

dg1dN1

)
E exp

(
ĩt0

∫
E0

dg0dN0

)
,

in which the first equality is by the relation between µj and µ′j and the second equality is by the

definition of Laplace functional of Poisson random measure with mean measure µj .

If replacement is not allowed, then by the exchangeablity of the weights Pn,i,

E exp(̃i(t1Ψ1,n + t0Ψ0,n))

=E exp

(
ĩ(t1

b∑
i=1

Dig1(α1,b(Ui,1 − β1,b), Xi) + t0

b∑
i=1

(1−Di)g0(α0,b(Ui,0 − β0,b), Xi))

)

=E exp

(
ĩt1

∫
E1

dg1dN1

)
E exp

(
ĩt0

∫
E0

dg0dN0

)
,

in which the second equality is by the same argument in the proof of (3) in Lemma E.2 with n is

replaced by b.

(4) holds for the same reason as in the proof of (4) in Lemma E.3.

E.18 Tightness, uniqueness and continuity

Lemma E.5. Zj,∞(k), j = 0, 1 are tight.

Proof. Here I focus on the case for j = 1. The proof follows the proof of Lemma 9.7 in Chernozhukov

(2005). The difference is that lδ(u, v) is reweighted by the inverse propensity score d
P (x) .

First, note that the limiting objective function is Q1,∞(z1, k) = −kz1 +
∫
E

d
P (x)(z1− j)+dN1(j, d, x)

when j > −δ. I can choose zf such that −kzf +
∫
E

d
P (x)(zf − j)+dN1(j, d, x) = Op(1). Let

z∗ = zf +Mv, where v = ±1. Then by the convexity of objective function in z and the argument

between Equation (9.74) and (9.75) of Chernozhukov (2005), I only need to show that, for any K

and ε > 0, there is an M large enough such that

P ( min
v=±1

Q1,∞(z∗) > K) ≥ 1− ε. (E.33)

The claim holds trivially when v = −1. For v = 1, first note that P (x) ≤ 1− c. When Y1 has the
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type 1 or 3 tail, ∫
E

d

P (x)
(zf +M − j)+dN1(j, d, x)

≥
∫

[0,κ]×{1}×Supp(X )

d

P (x)
(zf +M − j)+dN1(j, d, x)

≥N([0, κ]× {1} × Supp(X ))
(zf +M − κ)+

1− c
.

Because N([0, κ] × {1} × Supp(X )) is a Poisson random variable with mean
∫
P (x)P+

1 (dx|Y =

q1(0))h(κ) → ∞ as κ → ∞. For κ → ∞, N([0, κ] × {1} × Supp(X)) > (k + 1)(1 − c) with

probability greater of equal to 1− ε.

When Y1 has type 2 tail, I have, for any κ < 0,∫
E

d

P (x)
(zf +M − j)+dN1(j, d, x)

≥
∫

[−∞,κ]×{1}×Supp(X )

d

P (x)
(zf +M − j)+dN1(j, d, x)

≥N([−∞, κ]× {1} × Supp(X ))
(zf +M − κ)+

1− c
.

Then similarly, N([−∞, κ]×{1}×Supp(X )) is a Poisson random variable with mean
∫
P (x)P+

1 (dx|Y =

q1(0))h(κ)→∞ as κ→ 0. For κ→ 0, N([−∞, κ]×{1}×Supp(X)) > (k+1)(1−c) with probability

greater of equal to 1− ε

So by letting M be large enough, with probability greater or equal to 1− ε, I have

Q1,∞(z∗, k) = −kzf − kM +

∫
E

d

P (x)
(zf +M − j)+dN1(j, d, x)

≥ −kzf − kM + (zf +M − κ)+(k + 1) > K.

This verifies (E.33).

Lemma E.6. LetM(l) be the set of l-element subsets of N = {1, 2, · · · }. For j = 0, 1, the sequence

(Di,Xi,j) are i.i.d such that Di is Bernoulli distributed with success probability P (Xi,j) and Xi,j has

law P+
j (X ∈ .|Yj = qj(0)). If P (

∑
i∈µ

1
P (Xi,1) = k) = 0, P (

∑
i∈µ

1
P (Xi,1) + 1

P (Xh,1) = k) = 0,

P (
∑

i∈µ
1

1−P (Xi,0) = k) = 0, and P (
∑

i∈µ
1

1−P (Xi,0) + 1
1−P (Xh,0) = k) = 0, for any h and µ ∈ M(l),

l ≤ h− 1, then both Z1,∞(k) and Z0,∞(k) are unique minimizers a.s.

Proof. Here I focus on the case for j = 1. Following the notation in Theorem 4.1, Ji = h−1
1 (
∑i

l=1El).

By Proposition 6.1 of Koenker (2005) and Lemma E.5, Z1,∞(k) = Jh for some h such that Th = 1.

Then by taking directional derivative of the objective function,

k − 1

P (Xh)
≤
∑
i 6=h

Di
P (Xi)

1{Ji < Jh} ≤ k. (E.34)
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Since Ji is monotone increasing,

P

∑
i 6=h

Di
P (Xi)

1{Ji < Jh} = k


≤

∑
l≤h−1,µ∈M(l),h

P

∑
i∈µ

1

P (Xi)
= k


=0.

(E.35)

Similarly, P (
∑

i 6=h
Di

P (Xi)1{Ji < Jh} + 1
P (Xh) = k) = 0. Therefore, the inequality (E.34) holds

strictly. This implies Z1,∞(k) is the unique minimizer.

Lemma E.7. Zj,∞(k) is continuous for any k and j = 0, 1. If k′(m − 1) > 1
infx∈Supp(X ) P (x) and

k′(m− 1) > 1
infx∈Supp(X )(1−P (x)) , then

√
k′

Zj,∞(k) + c

max(Z1,∞(mk′)− Z1,∞(k′), ρ̃(Z0,∞(mk′)− Z0,∞(k′)))

is also continuous for j = 0, 1.

Proof. Z1,∞(k) = Jh for some h with Th = 1. Because Jh is continuous, P (Z∗1,∞(k) = z) =∑
h P (Jh = z) = 0. Therefore, Z1,∞(k) is continuous. Similarly, Z0,∞(k) is also continuous.

Assume h1 and h2 solve the following two first order conditions:

k′ − 1

P (Xh1)
≤
∑
i 6=h1

Di

P (Xi)
1{Ji < Jh1} ≤ k′,

mk′ − 1

P (Xh2)
≤
∑
i 6=h2

Di

P (Xi)
1{Ji < Jh2} ≤ mk′.

Then h1 = h2 = h implies (m − 1)k′ ≤ 1
P (Xh) for some Xh ∈ Supp(X ). However, the imposed

condition rules out this situation. Thus h1 6= h2 and Z∗j,∞(mk′) 6= Z∗j,∞(k′). In fact, following the

same argument in step 3 of proof of Lemma E.1 in Chernozhukov and Fernández-Val (2011), I can

prove that Zj,∞(mk′)−Zj,∞(k′) > 0, j = 0, 1. Last, noting that function 1/max(u, v) is continuous

on (u, v) ∈ R+ × R+, I have proved the stated result.

Next, I aim to show supk∈[κ1,κ2] |Zc∞(k)/σ(k)| is continuous. Recall the definition of J1,i and J0,i in

Theorem 4.1. I rely on the next technical assumption to derive the result.

Assumption 19. If ρ̃ ∈ (0,∞), for any pair of positive integers (h0, h1),
∣∣∣Jh1,1

−ρ̃Jh0,0
−(η1(k)−ρ̃η0(k))

σ(k)

∣∣∣
has at most L local extremum which are denoted as {k∗l (Jh1,1 − ρ̃Jh0,0)}Ll=1 for some finite integer

L. Furthermore, the following two conditions holds:

1. k∗l (Jh1,1 − ρ̃Jh0,0) is continuously distributed for l = 1, · · · , L.
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2. For any positive integers (h0, h1), any z, and any l = 1, · · · , L,

P

(∣∣∣∣Jh1,1 − ρ̃Jh0,0 − (η1(k)− ρ̃η0(k))

σ(k)

∣∣∣∣ = z|k∗l (Jh1,1 − ρ̃Jh0,0) = k

)
= 0

for almost all k ∈ [κ1, κ2].

If ρ̃ = 0, for any pair of positive integers (h0, h1), |Jh1,1
−η1(k)

σ(k) | has at most L local extremum which

are denoted as {k∗l (Jh1,1)}Ll=1 for some finite integer L. Furthermore, the following two conditions

holds:

1. k∗l (Jh1,1) is continuously distributed for l = 1, · · · , L.

2. For any positive integers (h0, h1), any z, and any l = 1, · · · , L,

P

(∣∣∣∣Jh1,1 − η1(k)

σ(k)

∣∣∣∣ = z|k∗l (Jh1,1 − ρ̃Jh0,0) = k

)
= 0

for almost all k ∈ [κ1, κ2].

If ρ̃ =∞, for any pair of positive integers (h0, h1), |Jh0,0
−η0(k)

σ(k) | has at most L local extremum which

are denoted as {k∗l (Jh0,0)}Ll=1 for some finite integer L. Furthermore, the following two conditions

holds:

1. k∗l (Jh0,0) is continuously distributed for l = 1, · · · , L.

2. For any positive integers (h0, h1), any z, and any l = 1, · · · , L,

P

(∣∣∣∣Jh0,0 − η0(k)

σ(k)

∣∣∣∣ = z|k∗l (Jh1,1 − ρ̃Jh0,0) = k

)
= 0

for almost all k ∈ [κ1, κ2].

This assumption is mild. For example, if σ(k) := 1, the assumption holds automatically. To see

this, note that Jh1,1 − ρ̃Jh0,0 is continuously distributed and k∗l (Jh1,1 − ρ̃Jh0,0) does not depends

on Jh1,1 − ρ̃Jh0,0, that is, it is deterministic.

Lemma E.8. κ1 and κ2 are not in the discontinuity of either Z1,∞(k) and Z0,∞(k), and Assumption

19 holds. If ρ̃ ∈ (0,∞), then

sup
k∈[κ1,κ2]

|(Zc1,∞(k)− ρ̃Zc0,∞(k))/σ(k)|

is continuous.

If ρ̃ = 0, then

sup
k∈[κ1,κ2]

|Zc1,∞(k)/σ(k)|
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is continuous.

If ρ̃ ∈ (0,∞), then

sup
k∈[κ1,κ2]

|Zc0,∞(k)/σ(k)|

is continuous.

If k′(m− 1) > 1
infx∈Supp(X ) P (x) and k′(m− 1) > 1

infx∈Supp(X )(1−P (x)) , then

sup
k∈[κ1,κ2]

|Zc∞(k)/σ(k)| = sup
k∈[κ1,κ2]

∣∣∣∣∣
√
k′

σ(k)

Zc1,∞(k)− ρ̃Zc0,∞(k)

max(Z1,∞(mk′)− Z1,∞(k′), ρ̃(Z0,∞(mk′)− Z∗0,∞(k′)))

∣∣∣∣∣
is also continuous.

Proof. I only consider the case for ρ̃ ∈ (0,∞). The other two cases can be proved similarly.

Let Lh,1 = {k : Dh = 1, k =
∑

i<hW1(Di,1,Xi,1) or k =
∑

i≤hW1(Di,1,Xi,1)} and Lh,0 = {k :

1−Dh = 1, k =
∑

i<hW0(Di,0,Xi,0) or k =
∑

i≤hW0(Di,0,Xi,0)}. Then the discontinuities for the

sample path of Zj,∞(k) is ∪h≥1Lj,h. Since the closest distance between two distinct discontinuities

of Zj,∞(k) is at least 1, there are at most finite number of discontinuities of either Z1,∞(k) or

Z0,∞(k). This implies the closest distance between two distinct discontinuities of Zc∞(k) is strictly

positive. For a fixed event ω, if supk∈[κ1,κ2] |Zc∞(k)(ω)| = z, then there exists a convergent sequence

k̂m(ω)21 with limit k̂(ω) such that |Zc∞(k̂m(ω))(ω)| → z. Since Zj,∞(k) is piece-wise constant, κ1

and κ2 are not in ∪j=0,1 ∪h≥1 Lj,h, there exist M(ω) large enough such that for m > M(ω),

z = sup
k∈[κ1,κ2]

|Zc∞(k)(ω)/σ(k)|

=|(Z1,∞(k̂m)− ρ̃Z0,∞(k̂m)− (η1(k̂)− ρ̃η0(k̂)))/σ(k̂)|

=|(Jĥ1,1
− ρ̃Jĥ0,0

− (η1(k̂)− ρ̃η0(k̂)))/σ(k̂)|,

in which k̂m− 1
P (Xĥ1,1

) <
∑

i<ĥ1
W1(Di,1,Xi,1) < k̂m, k̂m− 1

1−P (Xĥ0,0
) <

∑
i<ĥ0

W0(Di,0,Xi,0) < k̂m,

and k̂ ∈ L(ĥ1, ĥ0) := Lĥ1,1
∪ Lĥ0,0

∪ {k∗l (Jĥ1,1
− ρ̃Jĥ0,0

)}Ll=1 ∪ {κ1} ∪ {κ2}. Furthermore, let

Ah = {
∑

i≤hDi,1 > κ2,
∑

i≤h(1−Di,0) > κ2}. Then on Ah, ĥj ≤ h for j = 0, 1. Therefore,

P

(
sup

k∈[κ1,κ2]
|Zc∞(k)(ω)/σ(k)| = z

)
≤
∑
h>κ2

P

(
|(Jĥ1,1

− ρ̃Jĥ0,0
− (η1(k̂)− ρ̃η0(k̂)))/σ(k̂)| = z, k̂ ∈ L(ĥ1, ĥ0),Ah

)
≤
∑
h>κ2

∑
h1≤h,h0≤h

P

(
|(Jh1,1 − ρ̃Jh0,0 − (η1(k̂)− ρ̃η0(k̂)))/σ(k̂)| = z, k̂ ∈ L(h1, h0)

) (E.36)

21k̂m(ω) depends on the sample path and thus is random.
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In order to bound the last equation, I note that Jh1,1 − ρ̃Jh0,0 − (η1(k) − ρ̃η0(k)) is continu-

ously distributed, Ji,j is independent of (Di,j ,Xi,j) for any realization (h1, h0) of (ĥ1, ĥ0), and

(Jh1,1,Jh0,0) ⊥⊥ L(h1, h0). Hence, if k̂ ∈ Lh1,1 and for instance, k̂ =
∑

i<h1
W1(Di,1,Xi,1), I have

P

(
|(Jh1,1 − ρ̃Jh0,0 − (η1(k̂)− ρ̃η0(k̂)))/σ(k̂)| = z, k̂ =

∑
i<h1

W1(Di,1,Xi,1)

)
≤
∫
P

(
|(Jh1,1 − ρ̃Jh0,0 − (η1(k)− ρ̃η0(k)))/σ(k)| = z|

∑
i<h1

W1(Di,1,Xi,1) = k

)
× dP

(∑
i<h1

W1(Di,1,Xi,1) ≤ k
)

=

∫
P

(
|Jh1,1 − ρ̃Jh0,0 − (η1(k)− ρ̃η0(k))| = z

)
dP

(∑
i<h1

W1(Di,1,Xi,1) ≤ k
)

=0.

Similarly, if k̂ ∈ Lh0,0 and k̂ =
∑

i≤h1
W1(Di,1,Xi,1),

P

(
|(Jh1,1 − ρ̃Jh0,0 − (η1(k̂)− ρ̃η0(k̂)))/σ(k̂)| = z, k̂ =

∑
i≤h1

W0(Di,0,Xi,0)

)
= 0.

If k̂ ∈ {k∗l (Jh1,1 − ρ̃Jh0,0)}Ll=1,

P

(
|(Jh1,1 − ρ̃Jh0,0 − (η1(k̂)− ρ̃η0(k̂)))/σ(k̂)| = z, k̂ ∈ {k∗l (Jh1,1 − ρ̃Jh0,0)}Ll=1

)
≤

L∑
l=1

∫ κ2

κ1

P

(
|(Jh1,1 − ρ̃Jh0,0 − (η1(k)− ρ̃η0(k)))/σ(k)| = z|k∗l (Jh1,1 − ρ̃Jh0,0) = k

)
× dP

(
k∗l (Jh1,1 − ρ̃Jh0,0) ≤ k

)
= 0.

Last, if k̂ = κ1 or κ2,

P

(
|(Jh1,1 − ρ̃Jh0,0 − (η1(k̂)− ρ̃η0(k̂)))/σ(k̂)| = z, k̂ = κ1 or κ2

)
= 0.

To sum up, I have

P

(
|(Jh1,1 − ρ̃Jh0,0 − (η1(k̂)− ρ̃η0(k̂)))/σ(k̂)| = z, k̂ ∈ L(ĥ1, ĥ0)

)
= 0.

Then by (E.36), I have, for any z ∈ <,

P

(
sup

k∈[κ1,κ2]
|Zc∞(k)(ω)/σ(k)| = z

)
= 0.
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This means supk∈[κ1,κ2] |Zc∞(k)(ω)/σ(k)| is continuously distributed. The second result can be

proved in a same manner as in Lemma E.7.
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F Additional simulation results

F.1 Simulation results with n = 300

Tables 9 and 10 report the coverage of BN-CI and NN-CI as well as their corresponding me-

dian lengths. I am interested in the QTE at quantile order k = (5, 10, 20, 40). In this case, the

corresponding quantile indices are τn = (0.017, 0.033, 0.067, 0.133). Y1 and Y0 have four differ-

ent conditional boundary structures: (1) single minimizer, (2) multiple minimizers, (3) continuum

minimizers, and (4) mixture minimizers. When reading the table, the row indicates the potential

outcome Y1 while the column indicates the potential outcome Y0. The detail of each model can be

found in Appendix B. The subsample size used to compute Table 9 and Figure 13 is 120. Figure

13 shows the evolution of the BN-CI coverage over k ∈ [5, 40]. In all cases, the coverage before the

cutoff line k = min(40, 0.2b
m ) is close to the nominal rate. Figure 14 shows that the evolution of

BN-CI’s coverage against subsample size b is stable.

τn =
0.001, k =
5

(1) (2) (3) (4) τn =
0.002, k =
10

(1) (2) (3) (4)

(1) 0.949 0.942 0.948 0.939 (1) 0.971 0.964 0.972 0.952
(0.176) (0.167) (0.152) (0.169) (0.186) (0.174) (0.160) (0.187)

(2) 0.940 0.947 0.947 0.948 (2) 0.967 0.961 0.969 0.972
(0.155) (0.140) (0.116) (0.166) (0.162) (0.147) (0.126) (0.184)

(3) 0.946 0.950 0.955 0.952 (3) 0.967 0.964 0.970 0.964
(0.135) (0.122) (0.061) (0.106) (0.138) (0.127) (0.069) (0.118)

(4) 0.950 0.954 0.947 0.937 (4) 0.970 0.966 0.962 0.961
(0.185) (0.177) (0.171) (0.165) (0.205) (0.200) (0.191) (0.186)

τn =
0.004, k =
20

(1) (2) (3) (4) τn =
0.008, k =
40

(1) (2) (3) (4)

(1) 0.978 0.971 0.976 0.981 (1) 0.983 0.978 0.965 0.891
(0.229) (0.223) (0.208) (0.281) (0.193) (0.185) (0.166) (0.328)

(2) 0.980 0.974 0.964 0.976 (2) 0.968 0.968 0.963 0.912
(0.202) (0.185) (0.165) (0.282) (0.164) (0.163) (0.137) (0.327)

(3) 0.982 0.975 0.967 0.982 (3) 0.983 0.978 0.966 0.903
(0.173) (0.166) (0.098) (0.198) (0.156) (0.145) (0.089) (0.249)

(4) 0.992 0.987 0.984 0.989 (4) 0.955 0.938 0.948 0.949
(0.362) (0.354) (0.347) (0.348) (0.401) (0.399) (0.389) (0.274)

Table 9: Coverage of 95% b out of n bootstrap CI, sample size = 300
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τn =
0.001, k =
5

(1) (2) (3) (4) τn =
0.002, k =
10

(1) (2) (3) (4)

(1) 0.858 0.841 0.847 0.833 (1) 0.872 0.884 0.842 0.864
(0.119) (0.112) (0.096) (0.118) (0.137) (0.129) (0.117) (0.140)

(2) 0.868 0.868 0.837 0.820 (2) 0.874 0.877 0.878 0.840
(0.104) (0.096) (0.076) (0.107) (0.115) (0.110) (0.092) (0.130)

(3) 0.846 0.814 0.871 0.842 (3) 0.844 0.855 0.879 0.866
(0.085) (0.077) (0.041) (0.072) (0.097) (0.088) (0.051) (0.089)

(4) 0.864 0.861 0.841 0.863 (4) 0.884 0.872 0.871 0.886
(0.118) (0.109) (0.108) (0.117) (0.142) (0.137) (0.136) (0.147)

τn =
0.004, k =
20

(1) (2) (3) (4) τn =
0.008, k =
40

(1) (2) (3) (4)

(1) 0.908 0.885 0.867 0.901 (1) 0.929 0.919 0.915 0.927
(0.159) (0.152) (0.139) (0.169) (0.187) (0.180) (0.168) (0.218)

(2) 0.901 0.908 0.894 0.881 (2) 0.928 0.924 0.916 0.907
(0.131) (0.128) (0.112) (0.162) (0.156) (0.155) (0.140) (0.214)

(3) 0.901 0.881 0.893 0.892 (3) 0.927 0.921 0.909 0.927
(0.110) (0.101) (0.066) (0.113) (0.129) (0.124) (0.088) (0.159)

(4) 0.892 0.901 0.892 0.928 (4) 0.917 0.905 0.919 0.938
(0.186) (0.185) (0.185) (0.200) (0.274) (0.277) (0.280) (0.305)

Table 10: Coverage of 95% n out of n bootstrap CI, sample size = 300
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Each (i, j)-th subplot represents the (i, j)-th model. The dashed line
is the coverage of BN-CI with b = 120 and n = 300 for quantile index
τ ∈ [1.67%, 16.67%]. The dotted line is the coverage of NN-CI. The
horizontal dotted dashed line is the 95% nominal coverage rate, and
the vertical dotted dashed line is τ = min( 40

n ,
0.2b
mn ).

Figure 13: Coverage across quantiles
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Each (i, j)-th subplot represents the (i, j)-th model. The solid line is
the coverage for b out of n bootstrap CI at k = 10 in which
b ∈ [100, 200].

Figure 14: Coverage across subsample size

τn =
0.017, k =
5

(1) (2) (3) (4) τn =
0.033, k =
10

(1) (2) (3) (4)

(1) 0.372 0.132 0.376 -0.138 (1) 0.195 0.113 0.288 -0.199
(2) 0.315 0.154 0.049 -0.058 (2) 0.149 0.120 0.122 -0.091
(3) -0.109 0.139 0.011 -0.127 (3) -0.129 -0.017 0.033 -0.177
(4) 0.198 0.011 0.100 0.086 (4) 0.028 0.177 0.060 -0.006

τn =
0.067, k =
20

(1) (2) (3) (4) τn =
0.133, k =
40

(1) (2) (3) (4)

(1) -0.024 0.024 0.139 -0.075 (1) -0.168 -0.096 0.136 -0.102
(2) 0.079 0.182 0.113 -0.089 (2) -0.125 0.081 0.136 -0.127
(3) -0.154 -0.087 0.038 -0.149 (3) -0.021 -0.150 -0.013 -0.098
(4) -0.163 0.030 0.055 -0.033 (4) -0.460 -0.154 -0.005 1.487

Table 11: Bias of the median-unbiased estimator, sample size = 300. All values are inflated
by 100.
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τn =
0.017, k =
5

(1) (2) (3) (4) τn =
0.033, k =
10

(1) (2) (3) (4)

(1) 2.996 2.992 2.588 3.047 (1) 3.194 3.218 2.868 3.462
(2) 2.608 2.421 1.911 2.964 (2) 2.748 2.770 2.351 3.226
(3) 2.260 1.998 0.995 1.899 (3) 2.397 2.141 1.222 2.212
(4) 2.754 2.672 2.695 2.890 (4) 3.253 3.291 3.301 3.598

τn =
0.067, k =
20

(1) (2) (3) (4) τn =
0.133, k =
40

(1) (2) (3) (4)

(1) 3.678 3.691 3.426 4.163 (1) 4.057 4.037 4.035 5.375
(2) 3.120 3.062 2.725 3.974 (2) 3.494 3.450 3.238 5.299
(3) 2.714 2.433 1.527 2.682 (3) 3.002 2.795 2.010 3.935
(4) 4.053 4.298 4.156 4.511 (4) 5.819 5.951 6.107 8.230

Table 12: root-MSE of the median-unbiased estimator, sample size = 300. All values are
inflated by 100.

τn =
0.017, k =
5

(1) (2) (3) (4) τn =
0.033, k =
10

(1) (2) (3) (4)

(1) 0.262 -0.005 0.217 -0.044 (1) 0.138 -0.060 0.155 0.009
(2) 0.322 0.235 -0.040 0.156 (2) 0.155 0.021 0.055 0.103
(3) -0.012 0.248 -0.010 -0.079 (3) -0.079 0.045 0.016 -0.124
(4) 0.082 -0.013 0.010 0.028 (4) -0.136 -0.036 -0.224 -0.160

τn =
0.067, k =
20

(1) (2) (3) (4) τn =
0.133, k =
40

(1) (2) (3) (4)

(1) -0.192 -0.072 -0.096 0.239 (1) -0.164 -0.271 0.098 0.228
(2) -0.061 0.144 -0.057 -0.037 (2) -0.092 -0.076 0.066 0.271
(3) -0.144 -0.089 -0.007 -0.082 (3) -0.041 -0.044 -0.010 0.010
(4) -0.397 -0.229 -0.122 -0.231 (4) -0.553 -0.510 -0.196 1.542

Table 13: median-bias of the median-unbiased estimator, sample size = 300. All values are
inflated by 100.
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τn =
0.017, k =
5

(1) (2) (3) (4) τn =
0.033, k =
10

(1) (2) (3) (4)

(1) 1.763 1.883 1.512 2.030 (1) 2.021 2.218 1.817 2.368
(2) 1.687 1.633 1.213 1.980 (2) 1.766 1.838 1.520 2.097
(3) 1.502 1.395 0.617 1.318 (3) 1.594 1.430 0.784 1.487
(4) 1.765 1.701 1.588 1.861 (4) 2.128 2.167 2.040 2.192

τn =
0.067, k =
20

(1) (2) (3) (4) τn =
0.133, k =
40

(1) (2) (3) (4)

(1) 2.354 2.510 2.320 2.766 (1) 2.836 2.754 2.662 3.488
(2) 2.057 2.116 1.817 2.537 (2) 2.430 2.511 2.195 3.598
(3) 1.841 1.576 0.994 1.880 (3) 1.868 1.887 1.363 2.549
(4) 2.776 2.805 2.871 3.117 (4) 3.999 3.936 4.106 5.272

Table 14: MAE of the median-unbiased estimator, sample size = 300. All values are inflated
by 100.

To compute the robust CI, τ1 := min(40
n ,

0.2b
mn ) where the spacing parameter m here is 2. To compute

the feasible normalizing factor α̂n for τ , when k := τn ≤ 25, the spacing parameter is 2 and k′l = 10

while m = 1.2 and k′l = 20 when k > 25.
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The dashed line is the coverage for BN-CI. The dotted line is the
coverage for NN-CI. The solid line is the coverage for the robust CI.
When b = 120, n = 300, and τ ∈ [6.67%, 20%]. The horizontal dotted
dashed line is the 95% nominal coverage rate. τ1 = 4% and
τ2 = 16.75%.

Figure 15: Coverage across quantiles

For the lower boundary, I use τn = (0.02, .0.04, 0.06) for n = 300 to compute the EV index. The
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subsample size used is the same as in Table 9.

(1) (2) (3) (4)
(1) 0.946 0.956 0.967 0.972

(0.605) (0.551) (0.431) (0.497)
(2) 0.958 0.960 0.964 0.973

(0.481) (0.456) (0.329) (0.428)
(3) 0.935 0.940 0.959 0.966

(0.392) (0.352) (0.153) (0.226)
(4) 0.950 0.964 0.958 0.953

(0.570) (0.514) (0.438) (0.303)

Table 15: Coverage of 95% CI, sample size = 300.
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The solid line is the coverage for b out of n bootstrap CI at k = 0 in
which b ∈ [100, 200].

Figure 16: Coverage across subsample size

(1) (2) (3) (4)
(1) -1.639 -3.178 0.201 -0.408
(2) -1.635 -0.927 -0.834 -0.145
(3) -1.097 -0.436 -0.559 -1.122
(4) -3.313 -2.065 -1.116 -1.909

Table 16: Bias of the median-unbiased 0-QTE estimator, sample size = 300. All values are
inflated by 100.
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(1) (2) (3) (4)
(1) 19.809 47.957 27.608 10.520
(2) 16.819 19.857 19.598 9.221
(3) 10.612 11.724 4.066 4.378
(4) 16.769 11.378 8.510 6.018

Table 17: root-MSE of the median-unbiased 0-QTE estimator, sample size = 300. All values
are inflated by 100.

(1) (2) (3) (4)
(1) -1.623 -0.504 0.966 -1.335
(2) -1.881 -1.243 -0.233 -1.130
(3) -1.920 -1.365 -0.461 -1.431
(4) -2.591 -2.069 -0.925 -1.965

Table 18: median-bias of the median-unbiased 0-QTE estimator, sample size = 300. All
values are inflated by 100.

(1) (2) (3) (4)
(1) 7.336 7.378 5.705 6.080
(2) 7.048 7.063 4.015 4.738
(3) 5.900 4.937 1.997 2.933
(4) 6.387 5.198 4.241 3.679

Table 19: MAE of the median-unbiased 0-QTE estimator, sample size = 300. All values are
inflated by 100.

F.2 Simulation results with n = 1, 000

Next I consider the QTE estimator with a moderate size sample: 1,000. I am still interested in

k = (5, 10, 20, 40) and the corresponding quantile indices become τn = (0.005, 0.01, 0.015, 0.02).

The subsample size used in Table 20 and Figure 17 is 300. For Figure 18, the subsample size ranges

from 150 to 500.
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τn =
0.5%, k =
5

(1) (2) (3) (4) τn = 1%,
k = 10

(1) (2) (3) (4)

(1) 0.915 0.918 0.927 0.924 (1) 0.939 0.946 0.957 0.934
(0.065) (0.063) (0.051) (0.060) (0.073) (0.070) (0.059) (0.068)

(2) 0.918 0.930 0.942 0.931 (2) 0.950 0.945 0.955 0.953
(0.061) (0.054) (0.038) (0.058) (0.066) (0.061) (0.045) (0.068)

(3) 0.926 0.933 0.949 0.921 (3) 0.950 0.949 0.954 0.948
(0.055) (0.048) (0.019) (0.036) (0.060) (0.053) (0.023) (0.044)

(4) 0.917 0.902 0.935 0.931 (4) 0.958 0.949 0.957 0.955
(0.059) (0.052) (0.047) (0.052) (0.072) (0.065) (0.060) (0.066)

τn = 2%,
k = 20

(1) (2) (3) (4) τn = 4%,
k = 40

(1) (2) (3) (4)

(1) 0.966 0.958 0.959 0.957 (1) 0.969 0.968 0.964 0.981
(0.077) (0.073) (0.063) (0.079) (0.097) (0.097) (0.082) (0.111)

(2) 0.961 0.952 0.965 0.958 (2) 0.966 0.966 0.967 0.981
(0.070) (0.064) (0.049) (0.083) (0.090) (0.081) (0.066) (0.116)

(3) 0.966 0.954 0.953 0.954 (3) 0.978 0.971 0.972 0.977
(0.064) (0.058) (0.025) (0.051) (0.081) (0.073) (0.039) (0.078)

(4) 0.957 0.963 0.957 0.966 (4) 0.990 0.993 0.990 0.989
(0.080) (0.070) (0.066) (0.073) (0.142) (0.127) (0.122) (0.132)

Table 20: Coverage of 95% b out of n bootstrap CI, sample size = 1, 000

τn =
0.5%, k =
5

(1) (2) (3) (4) τn = 1%,
k = 10

(1) (2) (3) (4)

(1) 0.822 0.832 0.857 0.836 (1) 0.868 0.861 0.859 0.861
(0.057) (0.051) (0.041) (0.050) (0.061) (0.056) (0.047) (0.058)

(2) 0.850 0.841 0.844 0.812 (2) 0.873 0.868 0.867 0.841
(0.049) (0.044) (0.031) (0.045) (0.053) (0.049) (0.037) (0.054)

(3) 0.797 0.814 0.846 0.804 (3) 0.839 0.852 0.876 0.852
(0.042) (0.034) (0.015) (0.028) (0.045) (0.039) (0.018) (0.035)

(4) 0.827 0.835 0.849 0.858 (4) 0.866 0.866 0.873 0.884
(0.049) (0.043) (0.038) (0.042) (0.055) (0.050) (0.046) (0.052)

τn = 2%,
k = 20

(1) (2) (3) (4) τn = 4%,
k = 40

(1) (2) (3) (4)

(1) 0.899 0.883 0.879 0.883 (1) 0.914 0.893 0.871 0.896
(0.066) (0.063) (0.055) (0.066) (0.074) (0.072) (0.065) (0.077)

(2) 0.895 0.892 0.885 0.885 (2) 0.910 0.911 0.901 0.894
(0.057) (0.054) (0.043) (0.062) (0.063) (0.062) (0.051) (0.072)

(3) 0.872 0.864 0.896 0.875 (3) 0.912 0.893 0.917 0.903
(0.047) (0.044) (0.022) (0.040) (0.052) (0.049) (0.029) (0.051)

(4) 0.894 0.887 0.886 0.902 (4) 0.922 0.922 0.921 0.914
(0.064) (0.061) (0.058) (0.064) (0.079) (0.076) (0.075) (0.084)

Table 21: Coverage of 95% n out of n bootstrap CI, sample size = 1, 000
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Each (i, j)-th subplot represents the (i, j)-th model. The dashed line
is the coverage of BN-CI with b = 300 and n = 1, 000 for quantile
index τ ∈ [0.5%, 10%]. The dotted line is the coverage of NN-CI. The
horizontal dotted dashed line is the 95% nominal coverage rate, and
the vertical dotted dashed line is τ = min( 40

n ,
0.2b
mn ).

Figure 17: Coverage across quantiles
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Each (i, j)-th subplot represents the (i, j)-th model. The solid line is
the coverage for b out of n bootstrap CI at k = 10 in which
b ∈ [150, 500].

Figure 18: Coverage across subsample size
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τn =
0.005, k =
5

(1) (2) (3) (4) τn =
0.010, k =
10

(1) (2) (3) (4)

(1) -0.323 0.077 1.079 -0.441 (1) -0.349 0.021 0.940 -0.107
(2) -0.963 0.386 0.206 -1.186 (2) -0.964 -0.450 0.432 -1.487
(3) -0.561 -0.070 -0.154 -0.647 (3) -0.459 -0.272 0.067 -0.767
(4) -0.044 -0.368 0.229 -0.527 (4) 0.230 -0.455 1.002 -0.665

τn =
0.020, k =
20

(1) (2) (3) (4) τn =
0.040, k =
40

(1) (2) (3) (4)

(1) 0.297 0.674 1.324 -0.213 (1) 0.956 0.123 0.981 -0.933
(2) -0.715 -0.185 0.006 -0.652 (2) 0.273 0.450 0.229 -1.097
(3) -0.482 -0.261 0.066 -0.328 (3) -0.523 0.437 -0.010 -0.322
(4) 0.270 -0.360 0.977 -0.178 (4) 0.328 0.391 1.286 -0.636

Table 22: Bias of the median-unbiased estimator, sample size = 1, 000. All values are inflated
by 1,000.

τn =
0.005, k =
5

(1) (2) (3) (4) τn =
0.010, k =
10

(1) (2) (3) (4)

(1) 1.348 1.251 1.121 1.273 (1) 1.409 1.338 1.168 1.402
(2) 1.242 1.083 0.790 1.252 (2) 1.322 1.211 0.924 1.403
(3) 1.111 0.958 0.384 0.748 (3) 1.130 0.993 0.456 0.889
(4) 1.194 1.030 0.933 1.072 (4) 1.319 1.209 1.156 1.199

τn =
0.020, k =
20

(1) (2) (3) (4) τn =
0.040, k =
40

(1) (2) (3) (4)

(1) 1.583 1.547 1.363 1.640 (1) 1.803 1.736 1.594 1.941
(2) 1.389 1.377 1.079 1.611 (2) 1.538 1.483 1.262 1.827
(3) 1.177 1.103 0.555 1.010 (3) 1.307 1.239 0.666 1.202
(4) 1.492 1.441 1.438 1.480 (4) 1.866 1.832 1.830 1.935

Table 23: root-MSE of the median-unbiased estimator, sample size = 1, 000. All values are
inflated by 100.
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τn =
0.005, k =
5

(1) (2) (3) (4) τn =
0.010, k =
10

(1) (2) (3) (4)

(1) -0.237 -0.347 -0.205 0.759 (1) -0.483 -0.414 0.430 0.080
(2) -0.892 0.703 0.359 -0.511 (2) -1.326 -0.187 0.559 -0.854
(3) -0.101 0.459 -0.077 -0.041 (3) -0.380 0.156 0.220 -0.447
(4) -0.368 -0.188 0.302 -0.309 (4) 0.364 -0.403 0.919 -0.926

τn =
0.020, k =
20

(1) (2) (3) (4) τn =
0.040, k =
40

(1) (2) (3) (4)

(1) -0.089 0.041 0.639 1.274 (1) 0.158 -0.312 0.725 0.338
(2) -1.243 -0.342 -0.315 0.261 (2) 0.617 0.511 -0.131 0.157
(3) -0.181 0.585 0.011 0.129 (3) -0.229 0.316 0.037 -0.391
(4) 0.119 -0.297 0.592 -0.285 (4) -0.029 -0.542 0.178 -0.868

Table 24: median-bias of the median-unbiased estimator, sample size = 1, 000. All values
are inflated by 1,000.

τn =
0.005, k =
5

(1) (2) (3) (4) τn =
0.010, k =
10

(1) (2) (3) (4)

(1) 0.867 0.798 0.724 0.895 (1) 0.902 0.901 0.765 0.916
(2) 0.842 0.733 0.525 0.807 (2) 0.887 0.814 0.602 0.893
(3) 0.729 0.660 0.232 0.509 (3) 0.786 0.688 0.289 0.626
(4) 0.832 0.686 0.588 0.697 (4) 0.894 0.819 0.789 0.802

τn =
0.020, k =
20

(1) (2) (3) (4) τn =
0.040, k =
40

(1) (2) (3) (4)

(1) 1.050 1.017 0.907 1.140 (1) 1.226 1.180 1.080 1.316
(2) 0.942 0.966 0.726 1.084 (2) 1.006 0.982 0.794 1.216
(3) 0.780 0.741 0.373 0.688 (3) 0.895 0.811 0.448 0.840
(4) 1.020 0.988 0.928 0.968 (4) 1.255 1.241 1.225 1.252

Table 25: MAE of the median-unbiased estimator, sample size = 1, 000. All values are
inflated by 100.

To compute the robust CI, τ1 := min(40
n ,

0.2b
mn ) where the spacing parameter m here is 2 and

τ2 = b

n
√

log(n)
. To compute the feasible normalizing factor α̂n for τ , when k := τn ≤ 50, the

spacing parameter is 2 and k′l = 10 while m = 1.2 and k′l = 20 when k > 50.
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The dashed line is the coverage for BN-CI. The dotted line is the
coverage for NN-CI. The solid line is the coverage for the robust CI.
When b = 300, n = 1, 000, and τ ∈ [0.5%, 15%]. The horizontal
dotted dashed line is the 95% nominal coverage rate. τ1 = 4% and
τ2 = 11.41%.

Figure 19: Coverage across quantiles

For the lower boundary: I use τn = (0.02, 0.04, · · · , 0.1) for n = 1, 000 to compute the EV index.

The subsample size used is the same as in Table 20.

(1) (2) (3) (4)
(1) 0.963 0.969 0.963 0.963

(0.200) (0.172) (0.119) (0.145)
(2) 0.956 0.969 0.973 0.966

(0.168) (0.155) (0.093) (0.129)
(3) 0.941 0.963 0.955 0.926

(0.140) (0.112) (0.037) (0.063)
(4) 0.920 0.918 0.950 0.938

(0.139) (0.116) (0.099) (0.085)

Table 26: Coverage of 95% CI, sample size = 1, 000.
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The solid line is the coverage for b out of n bootstrap CI at k = 0 in
which b ∈ [150, 500].

Figure 20: Coverage across subsample size

(1) (2) (3) (4)
(1) -0.475 -0.693 0.092 -0.023
(2) -0.586 -0.301 -0.046 -0.287
(3) -0.813 -0.754 -0.294 -0.675
(4) -0.831 -0.924 -0.637 -0.870

Table 27: Bias of the median-unbiased 0-QTE estimator, sample size = 1, 000. All values
are inflated by 100.

(1) (2) (3) (4)
(1) 6.162 5.751 3.711 4.096
(2) 5.502 4.651 2.809 3.450
(3) 4.042 3.140 1.152 1.859
(4) 4.473 3.836 3.049 2.862

Table 28: root-MSE of the median-unbiased 0-QTE estimator, sample size = 1, 000. All
values are inflated by 100.

(1) (2) (3) (4)
(1) -0.634 -0.861 0.348 -0.322
(2) -0.623 -0.304 -0.094 -0.670
(3) -1.258 -0.946 -0.305 -0.705
(4) -1.135 -0.931 -0.728 -0.937

Table 29: median-bias of the median-unbiased 0-QTE estimator, sample size = 1, 000. All
values are inflated by 100.
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(1) (2) (3) (4)
(1) 4.046 3.736 2.413 2.616
(2) 3.546 3.029 1.785 2.277
(3) 2.889 2.189 0.711 1.257
(4) 3.048 2.429 1.910 1.918

Table 30: MAE of the median-unbiased 0-QTE estimator, sample size = 1, 000. All values
are inflated by 100.

F.3 Simulation results with n = 5, 000

τn =
0.001, k =
5

(1) (2) (3) (4) τn =
0.002, k =
10

(1) (2) (3) (4)

(1) -0.043 0.179 0.021 -0.483 (1) 0.447 0.317 -0.030 -0.843
(2) -0.247 -0.833 0.129 -0.589 (2) -0.407 -0.798 0.077 -0.916
(3) -0.194 -0.123 -0.087 -0.421 (3) -0.398 -0.322 -0.056 -0.235
(4) -0.662 -0.962 -0.106 -0.386 (4) -0.691 -0.608 -0.034 -0.411

τn =
0.004, k =
20

(1) (2) (3) (4) τn =
0.008, k =
40

(1) (2) (3) (4)

(1) 0.156 0.498 0.098 -0.586 (1) 0.392 0.358 -0.265 -0.245
(2) -0.172 -0.727 0.123 -0.757 (2) -0.209 -0.629 -0.009 -0.090
(3) -0.390 -0.026 -0.063 -0.417 (3) -0.278 -0.056 -0.144 -0.257
(4) -0.877 -0.180 0.326 -0.501 (4) -0.280 -0.361 0.150 -0.192

Table 31: Bias of the median-unbiased estimator, sample size = 5, 000. All values are inflated
by 1,000.
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τn =
0.001, k =
5

(1) (2) (3) (4) τn =
0.002, k =
10

(1) (2) (3) (4)

(1) 5.806 4.715 3.553 4.202 (1) 5.924 5.190 3.816 4.733
(2) 5.259 4.284 2.571 4.057 (2) 5.447 4.410 2.858 4.608
(3) 5.112 3.530 1.151 2.489 (3) 5.211 3.897 1.291 2.869
(4) 4.574 3.676 2.830 3.113 (4) 4.908 3.828 3.296 3.707

τn =
0.004, k =
20

(1) (2) (3) (4) τn =
0.008, k =
40

(1) (2) (3) (4)

(1) 6.310 5.429 4.406 5.364 (1) 6.820 5.904 4.971 6.109
(2) 5.659 4.675 3.310 5.033 (2) 5.804 5.231 3.802 5.674
(3) 5.052 3.962 1.565 3.130 (3) 5.070 4.110 1.848 3.638
(4) 5.344 4.289 3.890 4.381 (4) 5.399 5.050 4.567 5.029

Table 32: root-MSE of the median-unbiased estimator, sample size = 5, 000. All values are
inflated by 1,000.

τn =
0.001, k =
5

(1) (2) (3) (4) τn =
0.002, k =
10

(1) (2) (3) (4)

(1) -0.247 -0.013 -0.337 -0.190 (1) 0.247 0.243 -0.332 -0.745
(2) -0.039 -0.684 0.023 -0.261 (2) -0.354 -0.724 -0.030 -0.745
(3) 0.110 0.010 -0.017 -0.246 (3) -0.192 -0.203 -0.019 -0.138
(4) -0.622 -0.758 0.066 -0.174 (4) -0.575 -0.303 0.158 -0.111

τn =
0.004, k =
20

(1) (2) (3) (4) τn =
0.008, k =
40

(1) (2) (3) (4)

(1) 0.186 0.244 -0.175 -0.352 (1) 0.342 0.375 -0.503 -0.291
(2) 0.132 -0.610 0.039 -0.411 (2) -0.228 -0.661 0.152 0.105
(3) 0.073 -0.031 -0.008 -0.404 (3) -0.315 -0.069 -0.154 -0.208
(4) -1.020 -0.002 0.315 -0.296 (4) -0.179 -0.391 0.085 -0.080

Table 33: median-bias of the median-unbiased estimator, sample size = 5, 000. All values
are inflated by 1,000.
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τn =
0.001, k =
5

(1) (2) (3) (4) τn =
0.002, k =
10

(1) (2) (3) (4)

(1) 3.916 3.073 2.209 2.783 (1) 4.091 3.678 2.453 2.979
(2) 3.658 2.881 1.644 2.715 (2) 3.542 2.976 1.994 3.099
(3) 3.440 2.349 0.743 1.649 (3) 3.507 2.654 0.863 1.875
(4) 3.098 2.380 1.889 2.169 (4) 3.397 2.492 2.131 2.506

τn =
0.004, k =
20

(1) (2) (3) (4) τn =
0.008, k =
40

(1) (2) (3) (4)

(1) 4.407 3.901 2.925 3.599 (1) 4.634 4.084 3.393 4.172
(2) 3.679 3.158 2.242 3.247 (2) 3.806 3.814 2.534 3.813
(3) 3.635 2.673 1.027 2.169 (3) 3.636 2.798 1.219 2.425
(4) 3.837 2.860 2.608 3.035 (4) 3.724 3.478 3.119 3.437

Table 34: MAE of the median-unbiased estimator, sample size = 5, 000. All values are
inflated by 1,000.

To compute the robust CI, τ1 := min(40
n ,

0.2b
mn ) where the spacing parameter m here is 2 and

τ2 = b

n
√

log(n)
. To compute the feasible normalizing factor α̂n for τ , when k := τn ≤ 100, the

spacing parameter is 2 and k′l = 10 while m = 1.2 and k′l = 20 when k > 100.
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The dashed line is the coverage for BN-CI. The dotted line is the
coverage for NN-CI. The solid line is the coverage for the robust CI.
When b = 1, 000, n = 5, 000, and τ ∈ [0.1%, 8%]. The horizontal
dotted dashed line is the 95% nominal coverage rate. τ1 = 0.8% and
τ2 = 6.85%.

Figure 21: Coverage across quantiles

Next are the finite sample performance of the median-unbiased point estimator.
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(1) (2) (3) (4)
(1) -0.148 -0.282 0.015 0.105
(2) 0.006 -0.120 -0.021 0.063
(3) 0.188 -0.082 -0.056 0.027
(4) -0.100 -0.284 -0.058 -0.086

Table 35: Bias of the median-unbiased 0-QTE estimator, sample size = 5, 000. All values
are inflated by 100.

(1) (2) (3) (4)
(1) 4.388 2.944 1.861 2.549
(2) 3.416 2.453 1.360 2.149
(3) 2.457 1.646 0.470 0.959
(4) 2.512 1.687 1.205 1.282

Table 36: root-MSE of the median-unbiased 0-QTE estimator, sample size = 5, 000. All
values are inflated by 100.

(1) (2) (3) (4)
(1) -0.246 -0.251 0.093 0.041
(2) -0.134 -0.136 -0.005 -0.099
(3) -0.189 -0.291 -0.082 -0.059
(4) -0.382 -0.374 -0.109 -0.177

Table 37: median-bias of the median-unbiased 0-QTE estimator, sample size = 5, 000. All
values are inflated by 100.

(1) (2) (3) (4)
(1) 2.287 1.687 1.076 1.498
(2) 1.998 1.478 0.849 1.404
(3) 1.548 1.062 0.300 0.604
(4) 1.637 1.024 0.750 0.830

Table 38: MAE of the median-unbiased 0-QTE estimator, sample size = 5, 000. All values
are inflated by 100.
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