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ABSTRACT: Technology and media are delivering content that is transforming
society. Providers must compete for consumer attention to sell their digital informa-
tion goods effectively. This is challenging, since there is a high level of uncertainty
associated with the consumption of such goods. Service providers often use free
programming to share product information. We examine the effectiveness of content
sampling strategy used for on-demand series dramas, a unique class of entertainment
goods. The data were extracted from a large set of household video-on-demand
(VoD) viewing records and combined with external data sources. We extended a
propensity score matching (PSM) approach to handle censored data, which permitted
us to explore the main causal relationships. Relevant theories in the marketing and
information systems disciplines informed our research on consumer involvement and
informedness for decision making under uncertainty, the consumption of information
goods, and seller strategies for digital content. The results show that content
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sampling stimulates higher demand for series dramas, but in a more nuanced way
than was expected. Samples of the series reveal quality information to consumers
and allow them to assess preference fit directly. As a result, they become more
informed about their purchase decisions. Also, households seem to be willing to pay
more to be better informed, and informed households tend to purchase more. This
suggests that content providers should invest in strategies that help consumers to
understand the preference fit of information goods.

KEY WORDS AND PHRASES: content sampling, data censoring, digital entertainment,
household informedness, information asymmetry, information goods, online content,
preference fit, propensity score matching, video-on-demand.

Disruptive technologies, such as digital content-streaming platforms, have boosted
the production and consumption of entertainment content. Economies of scale now
allow digital entertainment service providers to market and sell information goods
directly to consumers on an on-demand, anytime, anywhere basis. Among the
different types of content that are offered on-demand, video-on-demand (VoD)
services are a key source of revenue for digital entertainment firms [47]. At the
industry level, a consulting firm [60] has estimated that the VoD market of US$47.25
billion in 2015 will grow to almost US$75 billion by 2020, representing a compound
annual growth rate (CAGR) of 9.63 percent.
In the past decade, TV series have experienced a great upswing in consumer

interest. Because of this surge in market demand, all of the TV studios, including
industry incumbents such as ABC and CBS, and content distributors such as Netflix,
Hulu, and Amazon, are competing in the race for the next “big show.” They have
invested heavily in original shows despite a high failure rate in the production stage,
since the rewards for a successful hit come in so many different forms: more
viewers, higher ad revenue, and most important perhaps, a competitive edge in
sustaining the customer base [62].1 For example, the Hulu TV original series, The
Handmaid’s Tale, recently won eight Emmy awards. This success for the content
distributor signals a whole new era for original on-demand content [66], and a
growing global market.
Despite a recent audience report from Nielsen that reveals that Americans spend

almost eleven hours each day staring at the screen and consuming media [41],
content providers are struggling to market and sell their programming due to the
high level of consumer uncertainty associated with the consumption of this class of
products. A TV program’s quality is known only after it has been watched, and
imperfect information about its content typically decreases a consumer’s willingness
to pay [13, 14]. In addition, entertainment products are horizontally differentiated;
their value relies heavily on the subjective evaluation of consumers. With a large
amount of content available, it is hard for consumers to choose what they are likely
to enjoy, or what fits them best. Across different industries, various forms of
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sampling strategies have been used to communicate product information for experi-
ence goods to consumers. Readers of the New York Times, for example, can access
up to ten articles each month, representing a metered model in the newspaper
industry [35]. In addition, software companies provide the most basic version of
their software free of charge or an extended version for free during a trial period
[65]. Online music distributors, such as Apple and Spotify, also make it possible for
listeners to sample all of their songs—but for only 30 seconds each [67]. Production
companies, meanwhile, have been making trailers and sneak peeks of shows they
produce too. And firms also employ sampling strategies at the service level, such as
Netflix’s one-month basic membership trial.
The wide implementation of sampling-based strategy for digital goods has much to

do with the one-time fixed cost of content digitization and the associated cheap cost
of distribution. The impact of such strategies is more profound though. The inter-
disciplinary literature on sampling strategies for information and experience goods
has often focused on online music and software [12, 21]. Such studies have
investigated the determinants of consumer decision making and examined the con-
sumption of these household purchases. We extend this literature with empirical
evidence for the impact of sampled content on purchases of on-demand series
dramas, a unique class of entertainment products. In this context, consumers are
able to evaluate fit related to their preferences through the sampling of a series.
The theories we use are drawn from different streams of literature. The first deals

with the specific characteristics of experience goods that create a high level of
uncertainty [79]. We look at the impact of sampling strategy for physical goods
[29, 58], and the implications for experience goods. The second stream focuses on
how sampling influences consumer buying behavior under uncertainty [36, 55, 59].
We examine issues related to consumer viewing behavior [57]. To our knowledge,
this research is the first to provide empirical support for the effectiveness of
sampling strategies related to the purchase of VoD series dramas, a niche product
that consists of a video bundle with multiple episodes. Previously, Markopoulos [54]
examined sampling and video game purchases with a smaller, less granular data set,
as Clemons et al. [15] later did for music sampling purchases, but not in the depth
that we have.
We address two questions: (1) What are the impacts of different forms of content

samples on a household’s VoD series purchases? and (2) How do a household’s
choices of standard content and customized, add-on content affect its VoD series
purchases? We also discuss the role of data analytics in effective implementation of
sampling-based strategies for the marketing of digital information goods.
To answer these research questions, we designed a study to learn about the

aggregate behavior related to free sampling and series purchases with an emphasis
on the household level as our unit of analysis. We addressed causality and potential
threats to the robustness of our main findings with additional econometric proce-
dures. We used a blend of data analytics methods to establish evidence for causality.
Our analysis work benefited from access to millions of TV viewing records,
including those involving VoD content, across hundreds of thousands of households,
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and multiple sources of data on series dramas. The period of observation for VoD
viewing records was limited though—just one month.
Without access to additional data or the ability to construct a set of formal field

experiments within the operations of the sponsor of this research, we implemented
an innovative approach using propensity score matching (PSM). It uses iterative
replacement methods to pair data across censored and noncensored data groups
based on discoverable sequences over time, and patterns of observable past activities
by the subjects—households, in our case. This allowed us to make inferences related
to unobservable viewing records outside the study period, which caused data
censoring. The overall approach enabled us to make causal arguments about the
impact of free samples, on the basis of our extensive data analysis. The findings
contribute to theory and practice by highlighting the importance of an effective
sampling-based strategy in marketing digital information goods, while offering new
managerial knowledge about how to offer effective sampling to consumers.

Theoretical Background

We now turn to the relevant streams of literature: (1) product uncertainty associated
with the consumption of digital information goods; (2) selling strategy for digital
information goods; and (3) consumer viewing and purchase behavior for digital
information goods.

Uncertainties Associated with the Consumption of Digital Information
Goods

Product uncertainty is viewed as an important construct in marketing and informa-
tion systems (IS) research, as it directly affects consumers’ willingness to pay for
goods and services [1, 72]. Hong and Pavlou [40] distinguished between uncertainty
about product quality and uncertainty about product fit with a consumer’s taste. The
product may not be in the promised condition [69], or the vendors may fail to
communicate product information to consumers [22, 31], hence uncertainty about
quality is normal. Fit uncertainty refers to the degree to which consumers are unable
to assess whether a product’s attributes match their preferences [40]. Imperfect
information concerning quality and fit creates higher perceived transaction costs
and tends to diminish a consumer’s willingness to pay [51].
In another stream of research, Nelson [63] separated experience goods from search

goods: the quality of search goods can be determined simply by inspection before
purchase, whereas the quality of experience goods is realized only after use. Thus,
the assessment of digital information goods, such as music, books, or movies, must
involve personal experience [43, 56]. In fact, the actual source of quality is the
experience itself, in which product fit plays a critical role [46]. A study on the craft
beer industry has shown that firms with highly differentiated products experience
higher revenue growth when consumers become more informed [13]. They are often
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willing to pay more when the match between product characteristics and their
preferences is improved. Different types and levels of informedness can also influ-
ence consumer choices [49]; for instance, elimination of product fit uncertainty for a
digital experience good can increase the number of purchases and consumer loyalty
[56]. In platforms on which entertainment is marketed and sold at the product level,
the effects of consumer informedness about products and their fit become more
pronounced.

Sales Strategy for Digital Information Goods

As streaming media have become affordable, and demand for content has increased,
firms have had to adjust their strategies to be more effective with the selling of
digital information goods. Online reviews and word of mouth are good sources of
information on digital goods for consumers. Moretti [61] showed that social learning
and peer effects have positive impacts on the consumption of movies. Nevertheless,
it is hard to describe the characteristics of an experience good, especially when
consumer tastes vary significantly [56]. A TV program is better from a consumer’s
perspective if it fits his or her viewing preferences. Signaling quality and content is
achievable, while communicating fit is more complicated.
Previous studies have focused on selling strategies for digital information goods,

and the market context and environment in which they are offered. Bhattacharjee
et al. [6] looked at online music sales in the presence of online piracy, and showed
that effective pricing options, search tools, and licensing structures are leading
strategies to mitigate the related revenue losses for the music labels and artists.
The search process for digital information goods is different from that for physical
goods. Each product is unique and has its own characteristics, so consumers need to
repeat the search process for every purchase. As a result, the associated search cost
will vary greatly and be proportional to the number of options available. As part of
the transaction cost, search costs can influence consumer purchase decisions [8, 42].
Product sampling lowers the search cost by effectively communicating product

quality to consumers. Thus, it is a key promotional tool to stimulate sales for many
products [58]. A sample is a portion of a product given to consumers to try for free
before making a purchase decision. Consumers like to receive free goods. Thus, free
samples can influence their behavior at the point of purchase, encouraging
unplanned purchases and active switching to promoted brands [36, 70]. For retailers
of physical products, sampling yields a higher purchase conversion rate and return
on investment than other direct advertising [28, 29]. Nevertheless, it has mainly been
used to enhance the effectiveness of traditional marketing only; the implementation
of a sampling strategy is expensive, and the market reach is limited [58].
Considerable attention has also been given to sampling strategies for information

and experience goods. Information goods are characterized by large sunk costs for
development, and negligible costs of reproduction and distribution [79]. Digital
content can be digitally broadcast, streamed, and stored at a relatively low cost.
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Niculescu and Wu [65] explored the economics of free under perpetual licensing for
two software business models. With a feature-limited freemium, consumers gain free
access to a basic version of the software but have to pay for premium versions, while
under uniform seeding, firms offer a full product for free to part of the market.
Halbheer [35] studied the profitability of ad-supported content sampling for news-
papers. In the entertainment sector, offering teasers or previews for movies and TV
shows has become an industry norm; yet the implications are overlooked in the
literature.
The execution of sampling strategies for digital content is not that straightforward

though. Firms need to consider how individuals value the same product differently,
reflecting customer heterogeneity, to design an appropriate strategy. For software
products, the rate of learning by users determines the effectiveness of time-locked
trials [21]. Using data analytics though, firms can help buyers find their nearly
“perfect” product fit. Netflix, for example, shows different trailers of the same series
to different market segments, so it is able to figure out their viewing preferences [10].
It may take longer for some consumers to reach a decision; yet offering lengthy
samples is not desirable for most providers [37]. Free content may interfere with the
market’s consumption of programming, and free content on the Internet decreases
consumer willingness to pay for content in other channels [5].

Consumer Viewing and Purchase Behavior for Digital Information
Goods

Research on consumer behavior has examined different aspects of TV viewing
activity. Rubin [76] looked at the interaction between viewing patterns and motiva-
tion and identified two viewer types: one watches TV out of habit to pass time; the
second seeks information and watches TV to learn. Viewing activity is recognized as
a gratification-seeking process, in which viewers search for and watch the content
that matches their preferences [53]. Viewers may also modify their viewing prefer-
ences, a variety-seeking behavior [57]. Variety-seekers respond positively to new
programs, and new means of delivery across different platforms, such as their
desktops, tablets, and phones.
Recently though, researchers have begun to focus more on specific types of

programming, TV shows and series dramas. This has been due to the emergence
of advanced content-streaming technology. A survey conducted by Harris-Netflix
has shown that most viewers admitted to binge-watching [64]; they get hooked and
watch multiple episodes of a series in one sitting [39]. Theoretical perspectives from
multiple disciplines are helpful to explain this behavior. For example, connectedness,
the relationship between a viewer and the characters, intensifies as the viewer spends
more time watching a show [78], and not having closure on how a story ends may
cause dissatisfaction and regret [4, 32]. The most prominent consideration is instant
gratification, the desire to fulfill a need without delay [2]. If the content triggers a
viewer’s interest, he or she will feel the impulse to purchase the show. On-demand
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services make it easier for consumers to have access to extensive TV content, which
influences consumption.
Personal experience with the viewing content is necessary, similar to other experi-

ence goods. A majority of viewers may agree on certain attractive features of a show,
but it is unlikely that all will enjoy watching it. A successful movie is not necessarily
suitable for every member of its audience. Given a choice, consumers want to learn
as much as possible about products by experiencing their content, rather than by
gathering information from secondary sources [59]. Overall, this is a trade-off
between effort and accuracy; consumers always gather risk-diminishing information
when there is uncertainty. They often choose options that are satisfactory, but
suboptimal if decision costs were zero [36].

Development of Hypotheses

This research was made possible through a partnership with a large digital entertain-
ment firm in Singapore. There are varied kinds of programming from a number of
content clusters (also called genres), such as news and children’s programs, and
entertainment and educational shows. Customers can specify the clusters of content
as well as premium channels to be included in their subscription packages. Most
channels are available in high-definition format also. Monthly subscription fees
reflect the number, type, and quality of channels accessible to households.
The service provider also delivered a wide selection of movies and series dramas on

demand, on top of a household’s TV subscription. VoD services can be expensive though:
a series with multiple episodes can cost from $3 to $60 in the market we studied. For each
VoD series purchased, a household obtains immediate access over a preset period—
depending on the number of shows in the series. The service provider offers households
the first episode of series dramas to watch for free before they make a purchase. We next
develop hypotheses on content sampling, the purchase of VoD series, and the effects of
subscriptions at the household level, based on different theoretical perspectives.2

Free Sampling and Consumer Purchases

Information acquisition is known to be a costly and time-consuming though valuable
process [20]. Initially, households will be uncertain about the quality of a series and
whether it fits their preferences. They actively seek fit-related, risk-diminishing
product information before making purchase decisions, especially when there may
be financial consequences [18]. Though they can learn about a TV series through
various means—online and offline, such as through online reviews or viewership
ratings—they will explore and update their evaluations of different series through
the free episode samples. Samples give households direct and easy access to quality
and preference fit information for a series, 3 thus reducing the associated search cost.
Free samples can reduce uncertainty too, given that a household obtains direct
experience with the content of one episode [55]. Thus, we offer:
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Hypothesis 1: (Household’s Content Sampling) A household’s free sampling of a
series has a positive effect on its likelihood to purchase that series.

Even when a household identifies a series that its viewers will like, it is possible that
the household members will sample a few other series to rule out the available
alternatives. By sampling this way, they will be more informed in the decision to buy
the VoD series. This greater involvement will likely lead to more than one purchase.
First, the household members are more likely to find other acceptable entertainment
goods that meet their preferences. Second, sampling also provides a way for a household
to broaden its consumption. For instance, a household that normally prefers the comedy-
related genre may sample a crime-related drama and find it interesting. Such variety-
seeking behavior [57] may result in multiple purchases across different genres. And
because the first episodes of all series are offered for free, the perceived search cost for a
household is minimal. So by increasing the household’s involvement, free sampling
ought to increase VoD series demand in the household.4 We assert:

Hypothesis 2: (Household’s Purchase Decision Involvement). A household’s
involvement in its purchase decisions via content previews increases the number
of drama series that it purchases.

Paid Sampling and Consumer Purchases

Households are likely to purchase the series that satisfy them based on their
experience with free samples. This does not imply that a one-episode free sample
is effective for all series though. Such a sample may not be sufficient for households
to evaluate fit, as it is rarely the pilot episode that gets consumers hooked on a series
[45].5 After a household watches a first free episode of a series, they can purchase
subsequent episodes of that series separately at the typical stated price, around $1 or
$2 each, or purchase the whole series at a discount. The price of a series is fixed,
regardless of how many episodes the household has already purchased. Hence, the
best solution ex post is not the same as the best solution ex ante. The best option for
those who like a series is to purchase it shortly after free sampling. If the household
is still hesitant about buying the series, its members can also seek additional
information from outside sources for further evaluation. This alternative option is
not desirable though. For different series, the search costs involved can vary greatly,
and yet the household will still not be able to evaluate fit.
Any episode purchased before the household has purchased the whole series is

considered to be a paid sample, as the household pays to additionally sample the
series. Purchasing a paid sample is preferable in this case, because continuing to
watch the series is the most effective way to reduce uncertainty concerning fit; this is
especially true after the household has already previewed the first episode. In
addition, the consumer decision making process involves a trade-off between effort
and accuracy [36], so households should be willing to pay more for direct fit over
indirect fit information. As a household purchases more paid samples, it will become
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more informed about whether the content is suitable, and this should increase the
number of series purchases. Hence, we posit:

Hypothesis 3: (Household’s Informedness About Fit). A household’s informed-
ness about the fit of any drama series increases the number of drama series that
it purchases.

Pay TVand TV services represent a good source of revenue for service providers. It
is useful to look at the interaction between the consumption of new service innova-
tions, such as VoD series, and the consumption of existing services, especially when
both are subject to time and budget constraints [3]. For instance, Liebowitz and
Zentner [52] showed the impact of Internet consumption as a substitute for television
viewing. While the household’s overall subscription package reveals its demand and
preferences for TV viewing, the next two hypotheses examine a more nuanced
relationship between the household’s choices of content and its purchases of VoDs.

Standard Content Choices and Consumer Purchases

A household’s TV subscription usually includes a selected number of standard
content clusters.6 A cluster includes multiple channels that are similar in nature.
For example, consider the News cluster, which includes local, regional, and inter-
national news channels. The number of standard content clusters approximates how
many channels the household has access to, as well as its monthly payment.
Consequently, households with a variety of channels to choose from will be less
interested in VoD content, especially because a VoD series is typically longer than
other programming: a 20-episode drama, at 45 minutes per episode, takes about 15
hours to finish. A subtler implication is that even if a household likes the content of
the series after the free episode, it is still less likely to purchase the series, due to
time and budget constraints. The marginal utility from the consumption of a VoD
series is likely to diminish. So the variety of choices in a household’s subscription
appears to interfere with its series purchases:

Hypothesis 4: (Standard Content Choice). The greater the number of choices of
standard content in a household’s TV subscription, the lower the number of
series it purchases.

Customized Add-On Content Choices and Consumer Purchases

Households can also customize their viewing experience beyond standard content
clusters by: (1) adding specific programs and niche channels; (2) adding more
channels in the same content cluster; or (3) upgrading their subscribed channels to
higher screen resolutions. These requests reveal a household’s expected level of
utility from TV viewing, and they reflect utility for additional paid content that goes
beyond what is available in a typical household TV services subscription. The
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members of a household are likely to experience different levels of utility, and not all
of them will agree on the same programming content. For example, households with
fewer members or those who do not have time for TV viewing are likely to be
content with the basic channels; and yet households with small children may benefit
from special educational programming. If TV viewing is the main form of entertain-
ment for the household, then acquiring access to a more diversified set of channels
beyond the basic subscription services is appropriate. Households with a higher level
of utility are more likely to try out VoD services, and likely will have higher
willingness to pay for more suitable content. Adding on more customized, paid
services gives households more control over the content they watch, in the same
manner that they were able to customize their packages when they initiated their
service subscriptions. Thus, we assert:

Hypothesis 5: (Customized, Add-On Content Choices). The more customized,
add-on choices a household’s TV subscription service offers, the higher the
number of series it purchases.

The household’s choices for standard content versus its own customized, add-on
choices have different impacts on its demand for VoD series purchases, as the
service provider used different pricing structures for the standard clusters and the
add-on channels.

Research Setting and Data

We first present our research setting and the data extraction approach that allowed us
to gather information from various sources and handle the limitations that accom-
pany it. Then, we analyze the data sets to discover the underlying causal
relationships.

Research Setting and Data Extraction Approach

The VoD and household-related data were collected through smartcards that are used
in digital set-top boxes for digital cable TV and satellite entertainment systems.
Smartcards store a household’s information, the channels to which it subscribed, and
all of the viewing records the smartcard captured. The technology does not identify
which individual members watched the programming though. The voluminous data
that we use pertain to household-level VoD viewing activities for one month
between September 30 and October 30, 2011, and include more than 17 million
viewing sessions. A viewing session for a TV program occurs when a household
starts watching, and ends when it switches to another channel or turns off the TV.
There are three categories of VoD sessions: (1) free-sample sessions include the
viewing of first episodes of a series; (2) paid-sample sessions involve the viewing of
purchased episodes; and (3) series-purchase sessions record the viewing of pur-
chased series.7 There were no holidays, promotions, or special events during this
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period that might have influenced household viewing activities in ways that created
anomalies in the data or household-level biases, which would have made our use of
it problematic.
The large amount of set-top box data represents only one month of household

viewing for the provider’s market though. An important aspect of empirical research
with consumer and household data at scale is to obtain as deep an understanding of
behavior as the data will allow [11]. Thus, we used multiple data sources to bring
together the household information, series characteristics, and VoD activities for this
study. A problem arises when there are many observations at the level of the primary
unit of analysis, but an incomplete set of variables across all the time periods or
stratification.8 This forced us to make choices on how to construct a workable
research design to support the overall research inquiry, while still yielding useful
insights.
We implemented a data extraction approach, feature selection, to maximize the

number of observations available for empirical testing. Feature selection refers to a
process of strategically selecting a subset of variables that are relevant to address
each research objective. We analyzed all VoD sessions for 14,596 different holds.
This set of anonymized households is called the Households with VoDs Only Data
Set. We used it to explore the sequences and patterns of household VoD consump-
tion. Nevertheless, it was not possible to link the full household-level information to
the viewing-related variables that would have supported an ideal research design at
the household level for the series-drama sampling the households did. We could only
match 8,939 households with their subscription information. We call this set of
anonymized households as the Households with VoDs and Subscription Information
Data Set, and used it to test our hypotheses related to household VoD activities (see
Figure 1). Both data sets are representative of the entire customer population.

Preliminary Analysis of Households’ TV Viewing and VoD Activities

In the Households with VoDs Only Data Set, the anonymized households viewed
28,214 free samples for the first episodes of the various series, and 10,164 paid
samples of other episodes. There were 1,140 series purchased, which yielded a
conversion rate for free samples to series purchases of 4.04 percent. A closer look
at the volume of household sampling and purchasing activities throughout the weeks
revealed an interesting pattern (see Figure 2).
We observed similar sampling and purchasing patterns. A surge of free-sample

activity on Fridays was followed by a high number of paid samples and series
purchases on Saturdays. These patterns provide visual evidence for the positive
relationship between sampling and purchasing, and suggest that the anonymized
households searched for shows so they could watch them during the weekend. All
activities slowed down during the weekdays though; the households did not have as
much time during the week for TV viewing. The gap between the number of free
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samples and series purchases points to room for service providers to improve the
conversion rate for VoD content.
We also looked more closely at the Households with VoDs and Subscription

Information Data Set to examine the underlying relationships. The conversion rate
for free samples to series purchases of these households is 5.02 percent. The
descriptive statistics and correlation matrix for the variables in this data set are
reported (see Table 1). #SeriesPurchases is the number of series that household j
purchased in the study period, #FreeSamples is the number of one-episode free
samples it watched, and #PaidSamples represents the number of episodes it bought.
ContentClusters captures the number of groups of standard content to which house-
hold j subscribed. PremiumChannels refers to the number of customized channels
selected when the service contract was signed. Together, they represent a household

Figure 1. Approach Used to Extract Data for This Study

Figure 2. Average Number of Samples by Type and Series Purchased, by Day of the Week
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j’s subscription package. Households with many content clusters were more likely to
have more premium channels, so the correlation was 57.6 percent.
Other considerations in the anonymized households’ VoD purchases are the

nature of the service offerings and the characteristics of the series themselves.
Factors such as ads, price, and rental time are likely to influence household
purchase decisions. In our context, the service provider advertised all series dramas
under “VoD Services,” thus there were no advertisement effects for individual
series. Higher-quality and more popular series from particular markets or genres
may receive more attention from viewers, and thus they were more sampled and
purchased. For example, romantic Korean dramas have attracted audiences world-
wide in recent years. Consequently, we may overestimate the effect of free samples
on a subset of popular dramas. Due to data scarcity, however, we cannot incorpo-
rate these factors into the main models, so we conducted a series-drama-level
analysis separately. We also extracted outside quality information on the series,
such as viewership, ratings, and award nominations to assess the impact of
sampling versus outside quality information on series sales.

Research Methodology

We next present the explanatory empirical approach we used for causal inference in
this study. (See Figure 3 for an overview of the data analytics procedures.) To test
the hypotheses on the overall effectiveness of sampling strategy on the consumption
of series dramas, we used different count data models that can handle aggregated
data at the household level over a one-month study period. We also implemented
propensity score matching (PSM) to reduce selection bias due to household hetero-
geneity, and address the endogeneity issue, by using a suitable instrumental variable
for a household’s free samples. To test for a direct relationship between a house-
hold’s free sample of a series and its likelihood of purchase for that series, we
needed to handle the issue of left- and right-data censoring in our data set. Finally,
we also implemented an identification strategy using heterogeneity across the VoD
series.

Empirical Testing Procedures

Count data models

The variable of interest is the count value of VoD #SeriesPurchases for each
household. This value is censored at 0, if a household did not purchase any series;
censoring makes ordinary least squares (OLS) estimates inconsistent [33].
We captured the relationship between the number of #SeriesPurchases and

other variables via this function: #SeriesPurchases = f (#FreeSamples,
#PaidSamples, ContentClusters, PremiumChannels) for each household j,9 and
estimated:
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#SeriesPurchasesj ¼ β0 þ β1#FreeSamplesj þ β2#PaidSamplesj

þ β3ContentClustersj þ β4PremiumChannelsj þ ε

Since most households did not make many purchases and the maximum was just
seven series, we assessed various count data models that are appropriate to handle
these characteristics. Count models restrict the dependent variable to nonnegative
integer values, and account for the mean and variance of the distribution used to
characterize the dependent variable [9].

Poisson regression model

The most well-known of the discrete regression models for count data is the Poisson
model, which takes the form of: yj , Poisson θj

� �
for j = 1,…, N and all

yj > 0; θj ¼ exp
Pn
j
βjxj

 !
and all θj > 0; and finally yj , Poisson exp β0 þ β1X1ðð

þ β2X2 þ . . .þ βnXnÞÞ. Using the Poisson distribution, the events are estimated as
independent of one another, without any restrictions on the independent variables. It
constrains the conditional mean and variance of the dependent variable to be the

Figure 3. Overview of the Data Analytics Procedures in This Study
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same though, which is not appropriate for our research. So, we use this model as an
estimation baseline only.

Negative binomial (NB) model.
We observed a sparse dependent variable matrix, which is common in purchase

conversion research, as the majority of households made no purchases or few
purchases. In our data, this was a larger proportion than what we would see for a
normal distribution (see Table 2).
Overdispersion occurs when the conditional variance of the dependent variable

exceeds the conditional mean. As a result, the standard errors of the parameter
estimates from the model will be underestimated [38], and the estimated values of
the parameters will be greater than would be predicted based on the use of the
Poisson distribution for the observed event counts. We checked for overdispersion
by calculating the overdispersion ratio, which is more or less than 1 if there is
overdispersion or underdispersion, respectively. Negative binomial regression gen-
eralizes the Poisson model and handles this issue. It has an extra parameter, α, to
model the degree of overdispersion: the larger α is, the greater the amount of
overdispersion in the data. The confidence intervals for the negative binomial
model are also narrower compared to those of a Poisson regression model.

Zero-inflated negative binomial (ZINB) model

In addition to overdispersion, our data sets exhibited more zeros for no purchase
decisions than those that the Poisson model can handle. The Poisson model also
assumes that the zeros and nonzeros come from the same data-generating process
[16]; this is not true in our setting though. The class of zero-inflated models relaxes
this assumption [34], by modeling the response variable as a mixture of the
Bernoulli and Poisson distributions.10

A household’s zero-purchase decision may result from different processes. For
example, if a household does not have money or time to consume the whole series,

Table 2. Conversion Rates of Free Sample for Households

Conversion Rate
Households with VoDs and Subscription

Information Data Set, %

Free samples to paid samples only 8.09
Free samples to series purchases

only
3.44

Free samples to paid samples and
series purchases

3.56

Notes: The conversion rate of free samples to purchases at the household level is the number of the
household’s purchases, divided by the number of its free samples. All household data were
anonymized.
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they will not purchase regardless of whether they watched the free previews. And if
the household purchases a VoD series, then its decision making process will have
been a function of perceived quality and fit, in keeping with their unitary or
aggregate preferences. This is a count process model, where the count is influenced
by other variables. Based on our observation of the anonymized households’ TV
viewing activities, the consumption of on-demand content is bounded by several
constraints. Thus, we modeled the expected count of SeriesPurchases as the result of
a combination of two processes:

E #SeriesPurchasesj ¼ k
� � ¼ Pr HouseholdWithConstraintsð Þ � 0
þPr HouseholdWithoutConstraintsð Þ � E #SeriesPurchasesj

¼ kjHouseholdWithoutConstraintsÞ

To account for this, we chose the ZINB regression model, which has a logit model
part and a negative binomial count data model part. The logit part models the
probability of excess 0s independently; the probability of #SeriesPurchases = 0,
due to the fact that a household’s purchases are bounded by some constraints. The
covariate, ContentClusters, reveals some of these constraints for household j. The
two parts do not need to use the same predictors, and the estimated parameters do
not need to be the same either. Since yj below represents #SeriesPurchases, the
number of series purchased by household j, the probability density function is:

Pr Yj ¼ yj
� � ¼ Φþ 1� Φð Þ 1þ kμj

� ��k�1

yj ¼ 0

1� Φð Þ Γ yjþk�1ð Þ
yj!Γ k�1ð Þ

kμjð Þyj
1þkμjð Þyjþk�1 yj > 0

;

8>><
>>:

with E(y) = μj (1 – ϕ); and Var(Yj) = μj (1 – ϕ) (1 + kμj + ϕμj), where μj and ϕ depend
on the covariates. Here, ϕ is the density function governing the binary process such
that 0 ≤ ϕ < 1, and the dispersion parameter k ≥ 0 is a scalar [48]. When ϕ or k is
greater than 0, there is overdispersion. When ϕ = 0, the equation reduces to a
negative binomial, and for k = 0, it becomes a zero-inflated Poisson (ZIP) model.

Propensity Score Matching (PSM) to Address Selection Bias

Causal inference using observational studies has been a central pillar of many
disciplines [23]. A causal effect is a comparison between the potential outcome of
a treatment group and a control group, averaged over a population [77]. Without a
randomized assignment, bias may arise due to systematic differences between the
groups. In our business context, the households that watched free-sample episodes
may be different from those that did not. The differences between these households
produce bias in our estimations. Matching methods have been used effectively to
address this problem [74, 75]; they involve the pairing of treated and controlled
observations that are similar in some observable characteristics.
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In our Households with VoD and Subscription Information Data Set, we identified
586 households without any free-sample sessions. We used the PSM approach and
found comparable matches for these anonymized households, based on two sets of
covariates that are likely to have influenced the households’ decisions to sample
VoD content. The treatment is the household’s exposure to VoD sampling, and the
outcome is SeriesPurchases. The first set of covariates consists of LoyalCustomer,
ValueCustomer, EarlyAdopter, and TechOptimist, representing four different house-
hold relationships with the service provider. TechOptimist represents the households
that typically respond promptly to new products and services, and EarlyAdopter
represents the households that were first to subscribe to new offerings.
LoyalCustomer refers to households that were observed to use multiple services
from the provider, and ValueCustomer refers to those with high-value contracts with
the provider.
The second set of covariates includes demographic variables such as AgeBand,

Ethnicity, HouseholdSegment, Housing, and Region. The category of variables,
HouseholdSegment, captures the diversity of the customer base, which may reflect
the differences in viewing preference. Housing offers a way to control for household
size and income, as larger and wealthier families tend to live in larger residences. We
weighted the differences between the covariates for the households that were
observed to have sampled VoD content and those that did not, in order to establish
statistical equivalence between the treatment and control groups [50, 68]. This
matching method yielded 1,655 households with free samples and 394 households
without free samples.

Instrumental Variable (IV) Analysis for a Household’s Free Episode
Samples

Another issue in our econometric models is whether the variable, #FreeSamples, is
exogenous. We handled this endogeneity issue by finding a suitable instrumental
variable (IV) for a household’s free samples. A suitable IV should be exogenously
related to that household’s tendency to sample VoD series, but not affect its VoD
series purchases. We noticed that, at the time of the research, the service provider
offered an interactive home entertainment service to households on a monthly
subscription, on-demand basis. Anonymized households that subscribed to this
service were able to access an extensive library of songs in various languages to
watch or sing along with. It was offered on the same platform as the VoD series.
Every time a household used this service, it was exposed to a variety of VoD series.
Thus, households that used the service frequently were more likely to sample VoD
series. Yet we did not expect to see a direct relationship between a household’s usage
of this service and its series purchases.
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Propensity Score Matching (PSM) to Handle Data Censoring in a
Small Sample

In marketing, medical epidemiology, and employment research, data censoring has
been a common challenge since historical data for consumers, patients and employ-
ment are rarely available in complete form.11 In addition, personally identifiable
information on consumers must be masked due to privacy regulations. In this
research, we encountered left- and right-data censoring for free- and paid-video
sampling, as well as subsequent purchases, during the one-month time window.
Thus, the number of observations in the noncensored data category is relatively
small. This small set is also infeasible for empirical testing to gauge the effect of a
household’s free samples on its likelihood to purchase that series, as each free-
sample session corresponds to a purchase session. Common computational and
resampling approaches, such as the partial deletion, multiple imputation, and boot-
strapping methods, are not suitable to handle this issue [26, 27].
Censored data create a roadblock for establishing a solid foundation for causal

inference. We view this as an opportunity for a methodological advance, however.
We propose a household behaviour matching method that requires the recognition of
patterns and the adherence to a particular kind of ordering, or sequence in all of the
data, to match them so that censored records for some household behaviour can be
recovered. Our method extends the PSM and data imputation approaches to match
and impute the values of the censored records from outside the observation window
of the study based on a probabilistic model [19, 30, 71]. This is an advance for
identifying causal links, by the completeness of the household-level data for causal
inference.

Results

We offer the main empirical results from our econometric models, followed by
analytical procedures to address concerns that a reader may raise, and we discuss
the robustness of our identification strategy.

Household’s Samples and Purchases of VoD Series

The estimation results obtained from count data models support the positive relation-
ship between a household’s samples and the number of VoD series it purchased. To
strengthen this relationship, we include procedures to address selection bias and
endogeneity issues arising from heterogeneity across different households and dif-
ferent VoD series.
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Count data models results

Table 3 shows the results of the Poisson, negative binomial, and zero-inflated
negative binomial models, at the household level of analysis.
We report the estimates of the ZINB model as our main results. The coefficients

for #FreeSamples, #PaidSamples, and PremiumChannels are positive and signifi-
cant. The coefficient for ContentClusters is negative as we expected, but not
significant. The marginal effects of #FreeSamples, #PaidSamples, and
PremiumChannels are 1.198 (= e0.181), 1.095 (= e 0.091), and 1.092 (= e 0.088),
respectively. The exponential values of the coefficients represent the incidence rate
ratio, which is the relative risk of something occurring versus not occurring [25]. We
further leveraged them to interpret the estimation results in terms of their statistical
confidence intervals. If a household were to watch one free sample more, for
example, its corresponding incidence rate ratio would be expected to increase by a
factor of 1.198. Thus, households with an additional free sample will purchase
dramas 19.8 percent more of the time, supporting the Household’s Purchase
Decision Involvement Hypothesis (H2). Likewise, an additional paid sample caused
a 9.4 percent increase in the number of series purchased, aligning with the
Household’s Informedness About Fit Hypothesis (H3). An additional premium
channel predisposed a household to have a 9.2 percent increase in the number of
series purchased, which supports the Customized, Add-On Content Choices
Hypothesis (H5) (see Table 4).
We did not find statistical support for the Standard Content Choice Hypothesis

(H4) though. Interestingly, the results also reveal that the log odds of the excess
zeros decreased by 1.505 for each content cluster that a household subscribed to.
This implies that no-purchase decisions were less likely due to time and budget
constraints.

Robustness of the ZINB model estimates

Our choice of the ZINB model is appropriate for this data set. The overdispersion
ratio of 1.289 from the Poisson model suggests overdispersion estimation bias. The
NB model, with an extra parameter that estimates the degree of overdispersion,
produced coefficients that are slightly larger than those of the Poisson model (0.178
> 0.135, 0.094 > 0.041, 0.090 > 0.080, and 0.085 > 0.078). Thus, we observed an
improvement of the NB model, as expected, over the Poisson model.12 Next, the
ZINB model deals with the excess zeros for no-purchase decisions in the data set, by
modeling “true zeros” and “inflated zeros” separately. The impact of free samples
was stronger compared to the results from the prior models. The ZINB model fit the
data better than the null intercept-only model in a statistically significant way.13 We
used a closeness test to check whether the two models were indistinguishable [80].
Based on a Vuong test statistic of 1.75 (p < 0.1), we rejected the null hypothesis that
the two models were equally close to the true data-generating process.
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ZINB model results after the PSM approach

The imbalance in the covariates may have affected the outcome of our results.
Households that sampled free episodes are different from those that did not sample
them, which influenced their series purchase decisions. We employed the PSM
approach to match the households with and without free samples. Table 5 shows
the ZINB model results after the PSM approach was applied. These coefficients
align with our main results, which provides additional support for the impact of
content sampling on the consumption of VoD series (see Table 5).

Two-stage least-squares (2SLS) IV results

We used the number of household-level home entertainment sessions as an IV for a
household’s free samples. We removed all duplicate sessions in the same day. We
also conducted an endogeneity test on the 479 households that subscribed to home

Table 4. Incidence Rate Ratios for Coefficients from ZINB Model and Their
Confidence Intervals

Confidence interval

Variables Coef. 2.5% 97.5%

Intercept 0.048 0.029 0.080
#FreeSamplesj 1.198 1.162 1.236
#PaidSamplesj 1.094 0.075 1.115
ContentClustersj 0.991 0.900 1.092
PremiumChannelsj 1.092 1.061 1.124

Note: The confidence intervals of 2.5 percent and 97.5 percent are the lower and upper bounds,
respectively, of the 95 percent confidence intervals for coefficients.

Table 5. ZINB Model Results After the PSM Approach Was Applied

Count Data Part Logit Part

Variables Coef. SE z-Val. p (>|z|) Coef. SE z-Val. p (>|z|)

Intercept –1.945*** 0.509 –3.823 < 0.001 2.497* 1.409 1.772 0.076
#FreeSamplesj 0.156*** 0.025 6.355 < 0.001
#PaidSamplesj 0.072*** 0.014 5.107 < 0.001
ContentClustersj –0.121 0.093 –1.303 0.193 –0.911* 0.487 –1.873 0.061
PremiumChannelsj 0.075** 0.029 2.569 0.010
Ln(θ) –0.149 0.441 –0.337 0.736

Notes. ZINB model; 2,049 obs.; dep. var.: #SeriesPurchases. Pseudo R2: 0.055, AIC: 1,589, θ =
0.862. ***p < 0.01, **p < 0.05, *p < 0.10.
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entertainment services. The estimation results for the OLS and 2SLS models are
reported in Table 6, suggesting that even if the #FreeSamples variable is considered
to be endogenous, the results are still in alignment with our earlier findings (see
Table 6). The Hausman IV test result (χ2 = 0.511) for endogeneity shows that
#FreeSamples can be treated as exogenous, however.
Tables 3 and 4 offer empirical evidence of the positive impact of samples on the

number of VoD series that households purchased. Those that viewed more free
samples and paid samples ended up purchasing more VoD series. These results
align with our main hypotheses: households that are more involved in the purchase
decision, and more informed about the fit of VoD series dramas with their aggregate
preferences will likely purchase more. In addition, we also wanted to see if the
households’ TV subscriptions influenced additional VoD purchases. As we expected,
households that purchased more customized, add-on TV viewing content options
beyond their basic TV subscriptions were more likely to purchase VoDs series.
These findings remained robust after we addressed the issues of heterogeneity and
endogeneity. More important, our results offer the service provider a directional
reading on causality between content sampling and on-demand purchases, after all
other covariates were accounted for.

Household’s Free Samples and Likelihood of Purchase for VoD Series

Extended PSM for censored data in a small data set

The noncensored data contained fewer observations than were desirable for empiri-
cal testing. At the household level, there were only 193 observations for which we
had a full reading of free-sample, paid-sample, and series-purchase activities, out of
30,006 observations in total. Thus, it was infeasible with this small a sample size to
gauge the extent of a causal relationship between a household’s decision to watch a
free sample and then make a series purchase. So, we matched censored household-
level data to noncensored household-level data, based on their sequences of activ-
ities. Then, we inferred a behavior in the censored data using the 90th percentile of
the distribution for the viewing patterns associated with all noncensored data from
that sequence of activities. The use of the 90th percentile of the distribution is
appropriate based on the data. As more time goes by after watching a sample, the
households were less likely to made a purchase, making the use of anything more
than the 90th percentile unnecessary. And yet, using anything less than the 90th
percentile would discard the households that needed more time to make their
decision. As a result, we recovered 862 left- and 10,848 right-censored household-
level data that were likely to have occurred just outside the study period.
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Logit model results

We used a logit model to estimate the effect of whether a household samples a series
on the likelihood of its purchase of that series. The binary dependent variable in this
model represents whether a household j purchased a particular series i. Beyond all
the independent variables that are used in the count data models above, we added a
binary independent variable, FreeSamplej (0/1), to show whether the household j had
watched the free episode of series i. This model tests for the direct effect of a series’
free sample on the likelihood of a household’s purchase of that series. The results
from this model strengthened our findings above (see Table 7).
The coefficient of FreeSample is positive and significant; so a household that

sampled a series was more likely to purchase that series. This supports the direct
relationship between a household’s sampling and purchase for each series, which is
our Household’s Content Sampling Hypothesis (H1). Overall, a free sample of a
series directly influenced a household’s purchase decision of that series. It also
positively influenced the household’s decision to purchase other VoD series.

Robustness Check Analysis for the Empirical Research Design

The main objective of this research has been to extend our understanding of entertain-
ment content-service providers’ sampling-based strategy in the context of digital infor-
mation goods. Causal inference with observational data still remained a challenge
though we were able to access more than 17 million digital traces of anonymized
households’ viewing activities. This entertainment service provider and the data set
did not permit us to conduct a full test to infer causality in the manner we wished, since
we had no control over the business setting. So we took a divide-and-conquer approach
to understand more deeply the causality relationship between content sampling and
purchases in a scientific manner. First, the count data models were useful for under-
standing this data set, and allowed us to reach a general conclusion: over the one-month
study period, the more samples a household watched, the more series dramas it
purchased. We conducted a matching procedure to address selection bias due to

Table 7. Logit Model Results

Variables Coef. SE z-Val. p (>|z|)

Intercept –1.713*** 0.114 –14.970 < 0.001
FreeSamplej (0/1) 1.366*** 0.104 13.092 < 0.001
#FreeSamplesj –0.007* 0.004 –1.927 0.054
#PaidSamplesj –1.017*** 0.003 –5.632 < 0.001
ContentClustersj 0.010 0.014 0.729 0.466
PremiumChannelsj 0.002 0.006 0.401 0.688

Notes: Model: logit; 19,815 obs.; dep. var.: SeriesPurchase (0/1). Null dev.: 26,712; 19,814 d.f.;
resid. dev.: 26,422; 19,809 d.f., pseudo R2: 0.011, AIC: 26,434. ***p < 0.01, **p < 0.05, *p < 0.10.
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household heterogeneity. And we addressed potential endogeneity with a Hausman test
and a suitable instrument to increase our ability to claim the presence of a causal
relationship.
An intriguing question remains: Did the households really purchase the same

series that they had sampled? To address this question, we repurposed PSM to
impute censored observations for a smaller data set, but still one that was entirely
representative of our study’s setting overall. This innovation provided us enough
complete sequences of data to analyze the direct impact of sampling on series
purchases. We also accounted for series drama heterogeneity, and examined the
relative effectiveness of content sampling versus outside quality information. Our
findings indicate that the impact of series samples on purchases remained significant.
Households were likely to purchase series dramas that fit their viewing preferences
and expectations, rather than those that they perceived as being of generally good
quality.

Discussion and Limitations

Our findings suggest that there is not just an association but also a causal link
between episode samples and series purchases. A household’s free sample increases
its likelihood to purchase the series. This suggests that sample content signals both
vertical and horizontal differentiation on objective features. In addition, free-episode
samples are effective in increasing the purchase conversion rate not only because
they were made available to the customers; the customers actually watched the
content to evaluate its fit related to their preferences. An additional free sample for
a household caused a 19.8 percent increase in the number of series it purchased. This
indicates that for entertainment goods, customers also searched for and evaluated
different alternatives before making a purchase. Watching free-episode samples is a
faster and cheaper way for them to gain experiential knowledge. Thus, this action
had a positive impact on series purchases in our study.
An important finding from this research is that an additional paid-sample episode

led to a 9.4 percent increase in the number of series a household purchased. This
seems counterintuitive because purchasing individual episodes of a series will
increase the transaction cost of buying the remaining content of that series. Yet
this result aligns with our overarching theory in this research: customers are willing
to pay to be more well-informed about the content they like to watch, and informed
households will end up purchasing more series dramas. Several aspects of this
research deserve further discussion, especially in terms of the business insights
that they have to offer. Next, we discuss the implications for service providers for
their use of sampling-based strategies.

600 HOANG AND KAUFFMAN



Implications for Service Providers

Omni-platform consumption and binge-watching of digital content have become the
new norms. Analytics with big data on consumers’ digital traces also play a salient
role in guiding business strategic planning. Our research contributes to the under-
standing of content sampling as a strategic marketing tool. It also raises important
questions regarding more effective implementation of sampling-based strategy: (1) Is
there an appropriate amount of content sampling that stimulates series purchases by
households? Would it be easier to convince household’s viewers to purchase a
cheaper, shorter series after a single free episode? (2) Can a service provider
influence consumer conversion rates for different types of TV series? If the service
provider has limited screen space to advertise free-TV series episodes, should it
promote a cheaper, shorter series or a longer, more expensive one?
To the best of our knowledge, none of the prior studies addressed the issue of how

much free content is enough in the context of series dramas, largely due to the other
authors’ limited access to data; thus, the most important problems have remained
unsolved. We attempted to provide a sneak peek of some answers in this study.
Across the households, in many cases, it was evident that one free-sample episode
for a series was not enough for a purchase to occur. Service providers gain an
additional stream of revenue from paid-sample episodes, however, it is not a desir-
able approach for everyone involved. Paid samples impose additional transaction
costs for households, making VoD content more expensive. For example, even if a
household sampled Episode 1 for free and then purchased Episodes 2 and 3 of a 10-
episode drama, it still would have had to pay a fixed price for the seven remaining
episodes. This may dissuade households from purchasing the series, creating a
potential opportunity for the provider that would be missed.
The diverse nature of the series dramas in the data sets allowed us to examine the

effect of the amount of sampling on household purchases, when the provider offered
one free-sample episode for each series. The number of episodes in a series is a
proxy for its price: the longer the series, the more expensive it is, and vice versa. For
longer series in episodes terms, the conversion rate for paid samples was also high,
while the conversion rate for series purchases was low. This suggests that a small
portion of the sample content was not effective to stimulate series purchases, as
households ended up purchasing many paid samples for additional viewing. So
service providers, as a result, may wish to offer more episodes as free samples for
longer series dramas. When one episode represents around 5–6 percent of the
episode length of a drama series, the conversion rate of the free samples to series
purchases was at its maximum, suggesting that this amount may be sufficient to
spark a household’s interest in a series. Service providers apparently will not benefit
from simply increasing the number of free episodes, as our results suggest that the
conversion rates for purchases quickly diminished for short series with a larger
percentage of free content (see Figure 4).
There are many possible explanations for this. When a household has watched a

substantial portion of a drama series via free samples, the remaining portion will
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have become relatively more expensive, and a series purchase may be less attractive.
Though our results only provide a glimpse into what really happened, the practical
implications are important. Service providers should consider customizing their
offerings of free samples and paid samples for different series dramas. An appro-
priate amount of free sampling is the amount that sparks a household’s interest in a
drama. An even more direct strategy is to offer a decreasing price scheme for the
remainder of the series, encouraging more sampling and purchasing.
Another concern worth mentioning is that online piracy has taken a new form via

illegal streaming services. It was estimated that there were over 141 billion visits
across 200 million devices to the 14,000 largest piracy sites [7]. According to the
same source, music and TV series are at the top of all illegally streamed content;
streaming websites made up 73.7 percent of 78.5 billion visits to access pirated TV
content in 2015. Offering content on an on-demand basis via legal streaming
services has not been sufficient though: the rise of music streaming services has
not killed music piracy [24]. This poses a major challenge and, at the same time,
presents a new opportunity for content producers and service providers. Firms must
leverage new technology and proprietary data for understanding consumer behavior
more deeply to improve their market offerings, and to do so in a way that consumers
cannot benefit from when they obtain programming from other illegal streaming
sources.

Research Design Issues

Even with an innovative research methodology coupled with a strong theoretical
foundation across different disciplines, the limited coverage of our one-month of

Figure 4. Conversion Rates by Amount of Content Sampled. Series dramas were sorted and
aggregated based on their length in episode terms. So a one-episode preview for a 20-episode
series is 5.0 percent, for a 30-episode series it is 3.3 percent, and for just 6 episodes it is 16.7
percent. The x-axis values represent the average conversion rate of all dramas within a given
range of the amount of content sampling in percentages.
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observational data hindered causal testing. This led us to modify our objective
slightly, to making statistical inferences about important relationships that come
very close to true causality, and at the same time, provide managerially important
results. We formulated empirical testing models that worked well with the available
data to make reasonable inferences about causality, based on an appropriate theore-
tical background. The different count data models that we used, with one improving
on another, addressed the specific characteristics of set-top box viewing data. In
addition, the key variables that we selected for these models relate directly to the
VoD business. Next, we adapted the PSM approach to handle selection bias. We also
conducted a Hausman test and used an instrumental variable estimation to address
endogeneity. Finally, our use of PSM to impute censored household-level records for
the data set allowed us to achieve more convincing empirical test results.
Our research is unique in that we studied a specific area of digital goods, on-demand

series dramas, very closely. Thus, our results may not be generalizable to other types of
digital entertainment products. In addition, the study was done in Singapore, so it would
be interesting to conduct a similar study in other markets, such as the United States,
where TV series play a major role in media consumption. An extension of this work also
should consider a nonunitary model of the household to account for the differences
among households whose average consumption preferences are similar, but whose
individual members express different preferences [73]. How much free content is
appropriate to make available for sampling remains a question for researchers and
managers alike, and opens up new empirical research opportunities. We call for future
studies that explore new marketing strategies for digital information goods, and studies
that assess causality more thoroughly, by building on our method.

Conclusion

This research provides an empirical validation for the common wisdom that infor-
mation goods are experience goods too, and giving the consumer a glimpse of the
experience will be the most effective way to stimulate more purchases. Series
dramas represent a major source of revenue for digital entertainment service provi-
ders, and the market for VoD drama series is unique for the application of sampling
strategies to the consumption of digital information goods. This research is the first
to provide empirical support for how episode sampling works in the context of VoD
drama series purchases. A free-sample episode of a series has a beneficial effect by
reducing a household’s fit uncertainty for that series.
Even when a household’s members know what they want to watch, they may need

to sample other dramas to rule out any alternatives. Thus, a free sample of a series
serves as a point of comparison for other series. Households with more customized
content in their TV services are more likely to purchase VoD content, yet the number
of content clusters that a household subscribes to apparently interferes with its VoD
purchase intention. In addition, recognizing that a one-episode free sample will have
different implications for dramas with various lengths in episode terms permitted us
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to gain insights on the appropriate amount of sampling that needs to be supported.
Although households were willing to acquire paid samples to ensure that a series fit
their tastes, service providers should offer free samples more strategically than on a
common market-wide basis.
We emphasize the main message that personal experience—Experience me!—is

more influential than second-hand information for digital information goods sales to
household consumers. With this in mind, service providers should invest more in
marketing strategies that provide useful information about the fit of their digital
goods with household preferences, since such strategies will help firms to reduce
their marketing costs and increase sales and revenue performance in the long run.
Another possibility is a decision support system that offers specific recommenda-
tions based on household viewing pattern matches on the households’ TV screens.
The will allow like-minded viewers to share their comments about their choices of
VoD series with others. Equally important, digital entertainment service providers
should implement incentive schemes that encourage viewers to watch more episodes
and eventually make purchases, instead of looking for alternate sources of
entertainment.
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NOTES

1. A series drama consists of 10, 20, 30, or more episodes. Most American TV series,
packaged since the 1960s with 20 to 26 episodes a season, are in this format. The economic
importance of paid TV series revenue streams has increased, while providers have been

604 HOANG AND KAUFFMAN



fighting for profitability in the face of Internet delivery and digital convergence. Producing an
original TV series requires a huge investment: about US$2 million to shoot a half-hour pilot
and about US$5.5 million for an hour-long drama [62].

2. In this study, we consider a unitary model of the household in which the viewing time
constraint, demand, and preferences of all household members are pooled [73]. The current
technology in our setting did not permit tracking individual viewers.

3. Content sampling signals both horizontal and vertical differentiation on objective
features of a series to consumers. If the content only signals vertical differentiation, then
consumers just need to know such samples are available, and they do not actually need to
watch any free-sample episodes.

4. There are some drawbacks to free content. A perception that free content is available
may dissuade consumers from buying programs [44]. Also, unlimited access to free content
makes other programs less attractive and decreases consumers’ willingness to pay [5]. Further,
some consumers may sample with no intention to purchase anything, though this is unlikely
for a majority of them in the VoD setting for several reasons. Series dramas are unique, so a
viewer’s experience is not complete without seeing it all. So, after viewing the free sample of
a series’ first episode, viewers may feel connected and want to view the rest of the content
[78]. Those that sample a portion of the series are more likely to purchase the remainder of it.
In addition, since households will have many channels in their TV subscriptions, they are
unlikely to watch a free sample episode of a series if they have no prior topical interest.

5. Netflix’s method of releasing a series—in its entirety—has helped the company to
understand customer viewing behavior for the different series it offers across various market
segments. This is relevant to our context, since it shows that a one-episode free sample may
not be sufficient for the viewers [45].

6. In our research context, the households decided on the number of standard content
clusters in their TV subscriptions at the beginning of long-term service contracts.

7. Households often finish watching an episode across multiple viewing sessions, as each
episode takes more than 30 minutes. So, if a household had three free-sample sessions for a
series, we only admitted the earliest session to our data set based on its timestamp, and
removed other duplicates.This was normally not permissible.

8. Meaningful stratification is sometimes difficult with in big data analytics research. Even
though the researcher may have access to a lot of data, often it is surprisingly hard to develop
research designs to support causal analysis, such as researcher-designed field experiments, and
quasi-experimental designs that have “just right” conditions that can be leveraged to produce
undeniably correct managerial insights.

9. In the different count data models that we used, we did not include any household
demographic characteristics as control variables. Instead, we used them in our propensity
score matching approach, so this would have been double-counting to add them as control
variables also. These variables include the demographic segmentation of the household, such
as the region of the residence, age band, and gender of the residents. Other specifics regarding
the ethnicity of the anonymized households are not included or reported, due to our nondi-
sclosure agreement with the research sponsor. In fact though, these variables did not add much
explanatory capability for the dependent variable of interest.
10. Hurdle models also relax the assumption that the zeros and nonzeros in the data set

come from the same data-generating process. They use a Bernoulli probability that governs
the binary outcome for the count variable with a 0 or a positive count. Once the hurdle or
threshold is crossed, and a positive number occurs, the conditional distribution is represented
by a truncated-at-zero count data model. Since we had prior knowledge of the cause of the
excess zeros, we chose to proceed with zero-inflated models.
11. In censored data, the total number of observations is known but full information is not

available for some [17]. Left-censoring arises when the events of interest occurred before the
study period; right-censoring refers to events that might or might not have occurred after the
period of observation ended. Data without censoring are ideal for empirical testing.
12. We justify the use of the NB model by showing that the data are overdispersed. The

Poisson model is nested in the NB model. It relaxes the assumption that the conditional
variance is equal to the conditional mean. We use a likelihood ratio test to assess the null
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hypotheses to see if this restriction is true: λ = –2 · (LLNB – LLPoisson). We rejected the
null hypothesis that it is appropriate in favor of the NB model, based on χ2 = 394.29. This
exceeds 2.71 (p < 0.001), so overall the evidence suggested the data are overdispersed.
13. We show that the ZINB model fits the data better than the null intercept-only model

does. The associated χ2 value for the difference between the model-level log likelihoods, λ
= –2 (LLZINB – LLNull) is 408.64. So the ZINB model is preferred over the null intercept-
only model.

REFERENCES

1. Ba, S., and Pavlou, P. A. Evidence of the effect of trust building technology in
electronic markets: Price premiums and buyer behavior. MIS Quarterly, 26, 3 (September
2002), 243–268.

2. Baumeister, R.F., and Bushman, B.J. Social Psychology and Human Nature, 2nd ed.
Boston: Cengage Learning, 2010.

3. Becker, G.S. A theory of the allocation of time. Economic Journal, 75, 299 (September
1965), 493–517.

4. Bell, D. E. Regret in decision making under uncertainty. Operations Research, 30, 5
(October 1982), 961–981.

5. Berger, B.; Matt, C.; Steininger, D.; and Hess, T. It is not just about competition with
“free”: Differences between content formats in consumer preferences and willingness to pay.
Journal of Management Information Systems, 32, 3, (July 2015), 105–128.

6. Bhattacharjee, S.; Gopal, R.; Lertwachara, K.; and Marsden, J.R. Consumer search and
retailer strategies in the presence of online music sharing. Journal of Management Information
Systems, 23, 2 (Summer 2006), 129–159.

7. BI Intelligence. Illegal streaming is dominating online piracy. Business Insider. (August
2016). http://www.businessinsider.com/illegal-streaming-is-dominating-online-piracy-2016-8
(accessed on March 25, 2018).

8. Brynjolfsson, E.; Hu, Y.J.; and Simester, D. Goodbye Pareto principle, hello long tail:
The effect of search costs on the concentration of product sales. Management Science, 57, 8
(June 2011), 1373–1386.

9. Cameron, A.C., and Trivedi, P.K. Regression Analysis of Count Data, 2nd ed.
Econometric Society Monograph no. 53. Cambridge: Cambridge University Press, 1998.
10. Carr, D. Giving viewers what they want. New York Times, February 24, 2013.
11. Chang, M.R.; Kauffman, R.J.; and Kwon, Y. Understanding the paradigm shift to

computational social science in the presence of big data. Decision Support Systems, 63
(2014), 67–80.
12. Chellappa, R., and Shivendu, S. Managing piracy: Pricing and sampling strategies for

digital experience goods in vertically segmented markets. Information Systems Research, 16, 4
(December 2005), 400–417.
13. Clemons, E.K.; Gao, G.; and Hitt, L. When online reviews meet hyper differentiation: A

study of the craft beer industry. Journal of Management Information Systems, 23, 2 (Fall
2006), 149–171.
14. Clemons, E.K.; Gu, B.; and Spitler, R. Hyper-differentiation strategies: Delivering

value, retaining profits. In R.H. Sprague Jr. (ed.), Proceedings of the Thirty-Sixth Hawaii
International Conference on System Science. Los Alamitos, CA: IEEE Computer Society
Press, 2003. 225b.
15. Clemons, E.K.; Spitler, R.; Gu, B.; and Markopoulos, P. Information, hyperdifferentia-

tion, and delight: The value of being different. In S. Bradley and R. Austin (eds.), The
Broadband Explosion: Leading Thinkers on the Promise of a Truly Interactive World.
Boston: Harvard Business School Press, 2005, pp. 137–164.
16. Cragg, J.G. Some statistical models for limited dependent variables with application to

the demand for durable goods. Econometrica 39, 5 (September 1971), 829–844.
17. David, F.N., and Johnson, N.L. Statistical treatment of censored data I: Fundamental

formulae. Biometrika, 41, 1 (June 1954), 228–240.

606 HOANG AND KAUFFMAN

http://www.businessinsider.com/illegal-streaming-is-dominating-online-piracy-2016-8


18. De Matos, M.; Ferreira, P.; Smith, M.D.; and Telang, R. Culling the herd: Using real-
world randomized experiments to measure social bias with known costly goods. Management
Science, 62, 9 (February 2016), 2563–2580.
19. Dehejia, R.H., and Wahba, S. Propensity score-matching methods for non-experimental

causal studies. Review of Economics and Statistics, 84, 1 (February 2002), 151–161.
20. Demski, J. Information Analysis. Reading, MA: Addison-Wesley, 1980.
21. Dey, D.; Lahiri, A.; and Liu, D. Consumer learning and time-locked trials of software

products. Journal of Management Information Systems, 30, 2 (Fall 2013), 239–268.
22. Dimoka, A.; Hong, Y.; and Pavlou, P.A. On product uncertainty in online markets:

Theory and evidence. MIS Quarterly, 36, 2 (June 2012), 395–426.
23. Ding, P.; VanderWeele, T.; and Robins, J. Instrumental variables as bias amplifiers with

general outcome and confounding. Biometrika, 104, 2 (June 2017), 291–302.
24. Dunn, J. The rise of music streaming services hasn’t killed music piracy. Business

Insider (April 2017). http://www.businessinsider.sg/music-piracy-streaming-chart-2017-4/
(accessed on March 25, 2018).
25. Dupont, W.D. Multiple Poisson regression. Chapter 9 in Statistical Modeling for

Biomedical Researchers: A Simple Introduction to the Analysis of Complex Data.
Cambridge: Cambridge University Press, 2002, pp. 295–318.
26. Efron, B. Censored data and the bootstrap. Journal of American Statistical Association,

76, 374 (June 1981), 312–319.
27. Efron, B., and Tibshirani, R. An Introduction to the Bootstrap. New York: Chapman and

Hall, 1993.
28. Faugère, C., and Kumar, G.T. Designing free software samples: A game theoretic

approach. Information Technology and Management, 8, 4 (September 2006), 263–278.
29. Freedman, A.M. Use of free product samples wins new favor as sales tool. Wall Street

Journal, August 28, 1986.
30. Gemici, S.; Rojewski, J.W.; and In-Heok, L. Use of propensity score matching for

training research with observational data. International Journal of Training Research, 10, 3
(June 2012), 219–232.
31. Ghose, A. Internet exchanges for used goods: An empirical analysis of trade patterns

and adverse selection. MIS Quarterly, 33, 2 (June 2009), 163–291.
32. Gilovich, T., and Medvec, V.H. The experience of regret: What, when, and why.

Psychology Review, 102, 2 (April 1995), 379–395.
33. Greene, W.H. Econometric Analysis. London: Pearson, 2012.
34. Gurmu, S., and Trivedi, P.K. Excess zeros in count models for recreational trips.

Journal of Business and Economic Statistics, 14, 4 (October 1996), 469–477.
35. Halbheer, D.; Stahl, F.; Koenigsberg, O.; and Lehmann, D.R. Choosing a digital content

strategy: How much should be free? International Journal of Research in Marketing, 31, 2
(June 2014), 196–206.
36. Haubl, G., and Trifts, V. Consumer decision making in online shopping environments:

The effects of interactive decision aids. Management Science, 19, 1 (February 2000), 4–21.
37. Heiman, A.; McWilliams, B.; Shen, Z.; and Zilberman, D. Learning and forgetting:

Modeling optimal product sampling over time. Management Science, 47, 4 (April 2001), 532–
546.
38. Hilbe, J.M. Negative Binomial Regression, 2nd ed. Cambridge: Cambridge University

Press, 2011.
39. Holloway, K. The reasons you can’t stop binge watching. Alternet.com, December 30,

2015.
40. Hong, Y., and Pavlou, P. A. Product fit uncertainty in online markets: Nature, effects,

and antecedents. Information Systems Research, 25, 2 (April 2014), 328–344.
41. Howard, J. Americans devote more than 10 hours a day to screen time, and growing.

CNN.com, July 29, 2016.
42. Johnson, E.J.; Moe, W.W.; Fader, P.S.; Bellman, S.; and Lohse, G.L. On the depth and

dynamics of online search behavior. Management Science, 50, 3 (March 2004), 299–308.
43. Jones, R., and Mendelson, H. Information goods vs. industrial goods: Cost structure and

competition. Management Science, 57, 1 (January 2011), 164–176.

CONTENT SAMPLING AND HOUSEHOLD INFORMEDNESS 607

http://www.businessinsider.sg/music-piracy-streaming-chart-2017-4/


44. Kamins, M.A.; Folkes, V.S.; and Fedorikhin, A. Promotional bundles and consumers’
price judgments: When the best things in life are not free. Journal of Consumer Research, 36,
4 (November 2009), 660–670.
45. Kastranekes, J. Netflix knows the exact episode of a TV show that gets you hooked.

TheVerge.com, September 23, 2015.
46. Kwark, Y.; Chen, J.; and Raghunathan, S. Online product reviews: Implications for

retailers and competing manufacturers. Information Systems Research, 25, 1 (March 2014),
93–110.
47. Lafayette, J. Threat becomes profit center as TV leverages technology.

BroadcastingCable.com, January 6, 2014.
48. Lawal, B. Zero-inflated count regression models with applications to some examples.

Quality and Quantity, 46, 1 (January 2012), 19–38.
49. Li, T.; Kauffman, R.J.; Van Heck, E.; Vervest, P.; and Dellaert, B.G.C. Consumer

informedness and firm information strategy. Information Systems Research, 25, 2 (May
2014), 345–363.
50. Li, X. Could deal promotion improve merchants’ online reputations? The moderating

role of prior reviews. Journal of Management Information Systems, 33, 1 (June 2016), 171–
201.
51. Liebeskind, J., and Rumelt, R.P. Markets for experience goods with performance

uncertainty. RAND Journal of Economics, 20, 4 (Winter 1989), 601–621.
52. Liebowitz, S.J., and Zentner, A. Clash of the titans: Does Internet use reduce television

viewing? Review of Economics and Statistics, 94, 1 (February 2012), 234–245.
53. Lin, C.A. Modeling the gratification-seeking process of TV viewing. Human

Communication Research, 20, 2 (December 1993), 224–244.
54. Markopoulos, P.M. Product information dissemination in Internet markets and markets

for product information. Ph.D. diss., University of Pennsylvania, Philadelphia, 2004.
55. Markopoulos, P.M., and Clemons, E.K. Reducing buyers’ uncertainty about taste-

related product attributes. Journal of Management Information Systems, 30, 2 (Fall 2013),
269–299.
56. Matt, C., and Hess, T. Product fit uncertainty and its effects on vendor choice: An

experimental study. Electronic Markets, 26, 1 (February 2016), 83–93.
57. McAlister, L., and Pessemier, E. Variety seeking behavior: an interdisciplinary review.

Journal of Consumer Research, 9, 3 (December 1982), 311–322.
58. McGuinness, D.; Gendall, P.; and Mathew, S. The effect of product sampling on product

trial, purchase and conversion. International Journal of Advertising, 11, 1 (January 1992), 83–
92.
59. Mehta, N.; Rajiv, S.; and Srinivasan, K. Price uncertainty and consumer search: A

structural model of consideration set formation. Marketing Science, 22, 1 (Winter 2003), 58–
84.
60. Mordor Intelligence. Global video on demand market by revenue model, platform,

applications, industry verticals, geography and vendors: market shares, forecasts and trends
(2015 -2020). PR Newswire (September 2015). https://www.prnewswire.com/news-releases/
global-video-on-demand-market-by-revenue-model-platform-applications-industry-verticals-
geography-and-vendors—market-shares-forecasts-and-trends-2015—2020-300148230.html
(accessed on March 25, 2018).
61. Moretti, E. Social learning and peer effects in consumption: evidence from movie sales.

Review of Economic Studies, 78, 1 (January 2011), 356–393.
62. Nathanson, J. The economics of a hit TV show. Priceonomics.com, October 17, 2013.
63. Nelson, P. Information and consumer behavior. Journal of Political Economy, 78, 2

(March–April 1970), 311–329.
64. Newswire. Netflix declares binge watching is the new normal: Study finds 73% of TV

streamers feel good about it. December 13, 2013.
65. Niculescu, M., and Wu, D. J. Economics of free under perpetual licensing implications

for the software industry. Information Systems Research, 25, 1, (March 2014), 173–199.
66. New York Times. The best and worst moments of the 2017 Emmys. New York Times,

September 18, 2017.

608 HOANG AND KAUFFMAN

http://TheVerge.com
http://BroadcastingCable.com
https://www.prnewswire.com/news-releases/global-video-on-demand-market-by-revenue-model-platform-applications-industry-verticals-geography-and-vendors---market-shares-forecasts-and-trends-2015%20142020-300148230.html
https://www.prnewswire.com/news-releases/global-video-on-demand-market-by-revenue-model-platform-applications-industry-verticals-geography-and-vendors---market-shares-forecasts-and-trends-2015%20142020-300148230.html
https://www.prnewswire.com/news-releases/global-video-on-demand-market-by-revenue-model-platform-applications-industry-verticals-geography-and-vendors---market-shares-forecasts-and-trends-2015%20142020-300148230.html
http://Priceonomics.com


67. O’Kane, S. Spotify unveils Touch Preview, a beautiful new music discovery tool.
TheVerge.com, January 22, 2015.
68. Oestreicher-Singer, G., and Zalmanson, L. Content or community? A digital business

strategy for content providers in the social age. MIS Quarterly, 37, 2 (June 2013), 591–616.
69. Pavlou, P.; Liang, H.; and Xue, Y. Understanding and mitigating uncertainty in online

exchange relationships: A principal-agent perspective. MIS Quarterly, 31, 1 (March 2007),
105–136.
70. Pinsker, J. The psychology behind CostCo’s free samples. Atlantic, October 2014, 1–6.
71. Pirracchio, R.; Resche-Rigon, M.; and Chevret S. Evaluation of the propensity score

methods for estimating marginal odds ratios in case of small sample size. BMC Medical
Research Methodology, 12, 1 (May 2012), 70–79.
72. Rao, A.R., and Monroe, K.B. Causes and consequences of price premiums. Journal of

Business, 69, 4 (October 1996), 511–535.
73. Rode, A. Literature review: Non-unitary models of the household (theory and evidence).

Working paper, University of California, Santa Barbara, 2011.
74. Rosenbaum, P., and Rubin, D. Constructing a control group using multivariate matched

sampling methods that incorporate the propensity. American Statistician, 39, 1 (February
1985), 33–38.
75. Rosenbaum, P., and Rubin, D. The central role of the propensity score in observational

studies for causal effects. Biometrika, 70, 1 (April 1983), 41–55.
76. Rubin, A.M. Television uses and gratifications: The interactions of viewing patterns and

motivations. Journal of Broadcasting, 27, 1 (January 1983), 37–51.
77. Rubin, D. Matching to remove bias in observational studies. Biometrics, 29, 1 (March

1973), 159–183.
78. Russell, C.A.; Norman, A.T.; and Heckler, S.E. The consumption of television program-

ming: Development and validation of the connectedness scale. Journal of Consumer
Research, 31, 1 (June 2004), 150–161.
79. Shapiro, C., and Varian, H.R. Information Rules: A Strategic Guide to the Network

Economy. Boston: Harvard Business School Press, 1999.
80. Vuong, Q. Likelihood ratio tests for model selection and non-nested hypotheses.

Econometrica, 57 2 (March 1989), 307–333.

CONTENT SAMPLING AND HOUSEHOLD INFORMEDNESS 609

http://TheVerge.com

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	11-2016

	Content sampling, household informedness, and the consumption of digital information goods
	Ai Phuong HOANG
	Robert J. KAUFFMAN
	Citation


	Abstract
	Theoretical Background
	Uncertainties Associated with the Consumption of Digital Information Goods
	Sales Strategy for Digital Information Goods
	Consumer Viewing and Purchase Behavior for Digital Information Goods

	Development of Hypotheses
	Free Sampling and Consumer Purchases
	Paid Sampling and Consumer Purchases
	Standard Content Choices and Consumer Purchases
	Customized Add-On Content Choices and Consumer Purchases

	Research Setting and Data
	Research Setting and Data Extraction Approach
	Preliminary Analysis of Households’ TV Viewing and VoD Activities

	Research Methodology
	Empirical Testing Procedures
	Count data models
	Poisson regression model
	Zero-inflated negative binomial (ZINB) model

	Propensity Score Matching (PSM) to Address Selection Bias
	Instrumental Variable (IV) Analysis for a Household’s Free Episode Samples
	Propensity Score Matching (PSM) to Handle Data Censoring in a Small Sample

	Results
	Household’s Samples and Purchases of VoD Series
	Count data models results
	Robustness of the ZINB model estimates
	ZINB model results after the PSM approach
	Two-stage least-squares (2SLS) IV results

	Household’s Free Samples and Likelihood of Purchase for VoD Series
	Extended PSM for censored data in a small data set
	Logit model results

	Robustness Check Analysis for the Empirical Research Design

	Discussion and Limitations
	Implications for Service Providers
	Research Design Issues

	Conclusion
	This research was originally supported by the Singapore National Research Foundation under its International Research Centre @ Singapore Funding Initiative and administered by the Infocomm Development Authority. An earlier version was: A.P. Hoang and R.J. Kauffman, “Experience Me! The Impact of Content Sampling Strategies on the Marketing of Digital Entertainment Goods,” in R. Sprague and T. Bui (eds.), Proceedings of the 49th Hawaii International Conference on Systems Science (Kauai, HI: IEEE Computer Society Press, Washington, DC, 2016), where it was nominated for the Best Research Paper Award in the Organizational Systems Track. In addition, some aspects of the empirical methodology related to censored data and propensity score matching were presented at the 2017 Statistical Challenges in Electronic Commerce Workshop in Ho Chi Minh City, Vietnam, in July 2017. We are grateful to the late Steve Fienberg for his support and feedback in seminars at Carnegie Mellon University. Vladimir Zwass and the anonymous referees helped to shape our intellectual contributions in this research. We also acknowledge Steve Miller, Kapil Tuli, Qian Tang, and other academic participants in seminars at the Living Analytics Research Centre (LARC) at Singapore Management University, for their thoughtful comments. Eric Clemons, Atanu Lahiri, Jennifer Zhang, Yabing Jiang, Avi Seidmann and the participants of the “Integrating Business Operations, Information Technologies, and Consumer Behavior Mini-Track,” gave us many suggestions that have made this research stronger. Rong Zheng, Tuan Phan, Ting Li, and the participants of the 13th Statistical Challenges in E-�Commerce Research (SCECR 2017) Workshop offered helpful suggestions, and Terence Saldanha and Zhoulun Li also gave us feedback. We are especially grateful for support and guidance from the anonymous reviewers. This research was conducted with the participation of a corporate sponsor under a binding nondisclosure agreement; thus, some details of the data and qualitative findings were disguised. The households and data used in this research were anonymized. Also, the identities of individual households and account holders cannot be traced back through our analysis. All errors and omissions are the responsibility of the authors.
	Notes
	References

