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ABSTRACT
Malicious URLs host unsolicited content and are used to perpetrate
cybercrimes. It is imperative to detect them in a timely manner.
Traditionally, this is done through the usage of blacklists, which
cannot be exhaustive, and cannot detect newly generated malicious
URLs. To address this, recent years have witnessed several efforts
to perform Malicious URL Detection using Machine Learning. The
most popular and scalable approaches use lexical properties of
the URL string by extracting Bag-of-words like features, followed
by applying machine learning models such as SVMs. There are
also other features designed by experts to improve the prediction
performance of the model. These approaches suffer from several
limitations: (i) Inability to effectively capture semantic meaning
and sequential patterns in URL strings; (ii) Requiring substantial
manual feature engineering; and (iii) Inability to handle unseen
features and generalize to test data. To address these challenges, we
propose URLNet, an end-to-end deep learning framework to learn
a nonlinear URL embedding for Malicious URL Detection directly
from the URL. Specifically, we apply Convolutional Neural Net-
works to both characters and words of the URL String to learn the
URL embedding in a jointly optimized framework. This approach
allows the model to capture several types of semantic information,
which was not possible by the existing models. We also propose
advanced word-embeddings to solve the problem of too many rare
words observed in this task. We conduct extensive experiments on
a large-scale dataset and show a significant performance gain over
existing methods. We also conduct ablation studies to evaluate the
performance of various components of URLNet.
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1 INTRODUCTION
Malicious URLs are one of the primary mechanisms to perpetrate
cyber crimes. They host unsolicited content and attack unsuspect-
ing users, making them victims of various types of scams (theft of
money, identity theft, malware installation, etc.). This has resulted
in billions of dollars worth of losses every year [16]. It has thus
become imperative to design robust techniques to detect malicious
URLs in a timely manner. Traditionally, and most popularly, this
detection is done through the usage of blacklisting methods. These
are essentially lists of URLs collected by anti-virus groups which are
"known" to be malicious. They are often collected through crowd
sourcing solutions (e.g. PhishTank [31]). While these methods are
fast (requiring a simple database lookup), and are expected to have
low False Positive rates, a major shortcoming is that they cannot
be completely exhaustive, and in particular they fail against newly
generated URLs. This is a severe limitation as new URLs are gener-
ated everyday. To address these limitations, there have been several
attempts to solve this problem through the use of machine learn-
ing [33]. In particular machine learning models offer the ability to
generalize their predictions on new unseen URLs.

Malicious URL Detection through machine learning typically
comprises two steps: first to obtain an appropriate feature repre-
sentation from the URL, and second, to use this representation of
the URL to train machine learning based prediction models. The
first step of obtaining feature representation deals with obtaining
useful information about the URL that can be stored in a vector so
that machine learning models can be applied to it. Various types
of feature have been considered, including lexical features, host-
based features, content features, and even context and popularity
features [33]. However, the most commonly used features are lex-
ical features, as they have demonstrated good performance and
are relatively easy to obtain [2, 26]. Lexical features describe the
lexical properties obtained from the URL string. These include sta-
tistical properties such as length of the URL, number of dots, etc. In
addition, Bag-of-Words like features are often used. Bag-of-Words
indicate whether a particular word or string appears in the URL
or not. Consequently, every unique word in the training dataset
becomes a feature. Using these features, in the second step, predic-
tion models such as SVMs are trained. These models can be viewed
as a form of fuzzy blacklists.

While the above approaches have shown successful performance,
they suffer from several limitations, particularly in the context of
very large scale Malicious URL Detection: (i) Inability to effectively
capture semantic or sequential patterns: Existing approaches rely on
using Bag-of-Words features, which essentially give information
about the presence of a word in the URL. They fail to effectively
capture the sequence in which words (or characters) appear in
the URL String; (ii) Require substantial manual feature engineering:

https://doi.org/10.475/123_4
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many of these approaches require expert guidance to determine the
important features for the task (e.g. which statistical properties of
the URL to use, what type of n-gram features would be better, etc.);
(iii) Inability to handle unseen features: During prediction, test URLs
are likely to contain new words that did not exist in the training
data. Under these circumstances, the trained models are unable to
extract any useful information about the URL from these words.
Moreover, the number of unique words in URLs can be extremely
large, causing severe memory constraints while training models.

To address the above issues we propose URLNet, a Deep Learn-
ing based solution for Malicious URL Detection. Deep Learning
[13, 23, 35] uses layers of stacked nonlinear projections in order
to learn representations of multiple levels of abstraction. It has
demonstrated state of the art performance in many applications
(computer vision, speech recognition, natural language processing,
etc.). In particular, Convolutional Neural Networks (CNNs) have
shown promising performance for text classification in recent years
[18, 39]. Following their success, we propose to use CNNs to learn
a URL embedding for Malicious URL Detection.

Specifically, URLNet receives a URL string as input and applies
CNNs to both characters and words in the URL. For Character-level
CNNs we first identify unique characters in the training corpus,
and represent each character as a vector. Using this, the entire URL
(a sequence of characters) is converted to a matrix representation,
on which convolution can be applied. Character CNNs identify
important information from certain groups of characters appearing
together which could be indicative of maliciousness. For Word-level
CNNs, we first identify unique words in the training corpus, de-
limited by special characters. Using a word-embedding matrix, we
obtain a matrix representation of the URL (which in this context, is
a sequence of words). Following this convolution can be applied.
Word-level CNNs identify useful patterns from certain groups of
words appearing together. However, using word-embeddings faces
some challenges: (i) it cannot obtain embeddings for new words
at test time; and (ii) too many unique words (specifically in mali-
cious URL detection) - resulting in memory constraints while learn-
ing word embeddings. To alleviate these, we propose advanced
word-embeddings where the word embedding is learned using the
character-level information of each word. This also helps recognize
subword level information. Both Character-level and Word-level
CNNs are jointly optimized to learn the URLNet prediction model.

URLNet allows us to alleviate the shortcomings of traditional
approaches such that (i) Character and Word CNNs automatically
identify and learn the semantic and sequential patterns in which
the characters and words appear in the URL; (ii) Expert feature
engineering required is reduced, since the CNN automatically learns
features to represent the URL, and we do not rely on any other
complex or expert features for the learning task; and (iii) The model
learns patterns based on both character and word embeddings.
Due to the limited number of characters, this character embedding
can generalize to new URLs easily. For word-embeddings, even
if the test URLs contain new unseen words, the character-based
(advanced word) embedding of the words still allows us to obtain
representation for these new words. This way URLNet has superior
generalization ability compared to existing approaches. We conduct
extensive experiments, analysis and ablation studies to show the
efficacy of proposed method.

2 MALICIOUS URL DETECTION
2.1 Problem Setting
Our goal is to classify a given URL as malicious or not. We do
this by formulating the problem as a binary classification task.
Consider a set of T URLs, {(u1,y1), . . . , (uT ,yT )}, where ut for
t = 1, . . . ,T represents a URL, and yt ∈ {−1,+1} denotes the label
of the URL, with y = +1 being a malicious URL, and yt = −1
being a benign URL. The first step in the classification procedure
is to obtain a feature representation ut → xt where xt ∈ Rn is
the n−dimensional feature vector representing URL ut . The next
step is to learn a prediction function f : Rn → R which is the
score predicting the class assignment for a URL instance x. The
prediction made by the function is denoted as ŷt = sign(f(xt )). The
aim is to learn a function that can minimize the total number of
mistakes (

∑T
t=1 Iŷt,yt ) in the entire dataset. This is often achieved

by minimizing a loss function. Many types of loss functions can be
used, which may also include a regularizer term. For Deep Learning,
the function f is represented as a Deep Neural Network, such as a
Convolutional Neural Network.

2.2 Lexical Features
Lexical features have often been adopted for the first stage in which
the raw URL u is converted to a feature vector x. A URL is split
into component words which are delimited by special characters in
the URL. Using the entire training corpus, all unique words in the
training dataset are identified to construct a dictionary, and each
word wi becomes a feature. Given M distinct features, each URL
ut is then mapped to a vector xt ∈ RM , such that ith element in
xt is set as 1 if wordwi is present in the URL, and 0 otherwise. In
addition to these Bag-of-Words features, other statistical features
are commonly used, including the length of URL, lengths of different
segments in the URL, number of dots, etc.

Since the number of unique words can be quite large, the fea-
ture size of this dataset is also proportionally large, typically more
than the number of URLs present in the corresponding training
dataset. Additionally, to retrain the model with new data, the fea-
ture size grows, and so does the model size. Here, we describe how
exactly using these features are responsible for limitations of ex-
isting methods. Three major limitations of these features are: (i)
Lack of information about the sequence in which the characters
or words appear in the URL. Some strategies have been used to
exploit sequential information by creating a separate dictionary for
every segment of the URL [2, 26, 27]. For example, this can help
distinguish between "com" appearing in the Top Level Domain and
"com" appearing the Path of URL. Even then, such strategies do not
account for the sequence in which the words or characters appear
within a specific segment of the URL. Moreover, these methods can-
not exploit information from substrings that may appear within a
word of the URL; (ii) Inability to obtain information from rare words.
Many words in the URL training corpus appear only once, and if
training models such as SVMs are used, these features are unable
to provide any useful information; and (iii) Inability to interpret
new words in test URLs. Since the new words have never appeared
in the training data, the models fail to extract useful information
about the URLs from these words.

To address these issues, we propose URLNet.
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3 URL NET
In this section, we describe the proposed Deep Learning based
URLNet for Malicious URL Detection. The entire network can be
visualized in Figure 1.

3.1 Deep Learning for Malicious URL Detection
The underlying deep neural network for URLNet is a Convolutional
Neural Network (CNN). CNNs have achieved extraordinary success
in Computer Vision tasks [14, 21]. Their designs allowed them to
automatically learn the salient features in the images from raw
pixel values. Eventually their principles were adopted for Natural
Language Processing [10, 17, 18, 39], where the CNNs could learn
useful structural information in text from raw values of word or
character embeddings. In URLNet, the CNNs are used to learn
structural information about the URL. Specifically CNNs are applied
at both the character-level and word-level. Next, we describe a
simple CNN for URL classification.

A URL u is essentially a sequence of characters or words (delim-
ited by special characters). We aim to obtain its matrix represen-
tation u → x ∈ RL×k , such that the instance x comprises a set of
contiguous components xi , i = 1, . . . ,L in a sequence, where the
component can be a character or a word of the URL. Each such
component is represented by an embedding such that xi ∈ Rk , is a
k-dimensional vector.

Usually, this k−dimensional representation for a component is
an embedding vector extracted from an embedding matrix that is
randomly initialized and jointly learned with the rest of the model.
In ourwork, we randomly initialize the embeddingmatrix, and learn
it in the end-to-end optimization. With this notation, an instance
with a sequence of L components can be represented as:

x = x1:L = x1 ⊕ x2 ⊕ . . . ⊕ xL

where ⊕ denotes the concatenation operator. For the purpose of
parallelization, usually all sequences are padded or truncated to the
same length L.

A CNN would convolve over this instance x ∈ RL×k using a
convolutional operator. A convolution operation ⊗ of length h

consists of convolving a filterW ∈ Rk×h followed by a non-linear
activation f to produce a new feature:

ci = f (W ⊗ xi :i+h−1 + bi )
where bi is the bias. This convolution layer’s output applies a filter
W with a nonlinear activation to every h−length segment of its
input, each of which is separated by a pre-defined stride value.
These outputs are then concatenated to produce output c such that:

c = [c1, c2, . . . , cL−h+1]
After the convolution, a pooling step (eithermax or average pooling)
is applied to reduce the feature dimension and to identify the most
important features.

By using a filter W to convolve on every segment of length h,
the CNN is able to exploit the temporal relationship of length h in
its input. A CNN model typically consists of multiple sets of filters
with different lengths (h), and each set consists of multiple filters.
These are hyperparameters of the model that need to be set by the
user. A convolution followed by a pooling layer comprises a block
in this deep neural network. There can be multiple such blocks that

can be stacked on top of each other. The pooled features from the
final block are concatenated and passed to fully connected layers
for the purpose of classification. The network can then be trained
by stochastic gradient descent using backpropagation.

URLNet uses multiple CNNs: one for character-level and one for
word-level. Next we describe each component of URLNet in detail.

3.2 Character-level CNN for Malicious URL
Detection

Here we present the key ideas for building Character level CNNs
for Malicious URL Detection. We aim to learn an embedding that
captures the properties about the sequence in which the characters
appear in a URL. To do this, we first identify all the unique alphanu-
meric and special characters in the dataset. Characters which appear
less frequently (e.g. less than 100 times in a corpus of millions of
URLs) are replaced with the unknown token denoted by <UNK>.
We obtainedM = 96 unique characters including the <UNK> and
<PAD> tokens. We set the length of the sequence L1 = 200 charac-
ters. URLs longer than 200 characters would get truncated from the
200th character, and any URLs shorter than 200 would get padded
with the <PAD> token till their lengths reached 200.

Each character is embedded into a k−dimensional vector. In our
work, we choose k = 32 for characters. This embedding is randomly
initialized and is learnt during training. For ease of implementation,
these representations are stored in an embedding matrix EM ∈
RM×k , where each row is the vector representation of a character.
Using this embedding, each URL u is transformed into a matrix,
u → x ∈ RL1×k , where k = 32 and L1 = 200.

Using the URL matrix (for all the URLs xt∀t = 1, . . . ,T ) as
the training data, we can now add convolutional layers. We use
4 types of Convolutional filters W ∈ Rk×h , with h = 3, 4, 5, 6
respectively. Thus, temporal patterns in a sequence of characters
of lengths 3, 4, 5, 6 are learnt. For each filter size, we use 256 filters.
This is followed by a Max-Pooling layer which is followed by a fully
connected layer regularized by dropout. The result is concatenated
with other branches of the URLNet, finally leading to the output
layer.

Apart from the ability to learn structural patterns in the URL
String, Character-level CNNs also allow for easily obtaining an
embedding for new URLs in the test data, thus not suffering from
inability to extract patterns from unseen words (like existing ap-
proaches). As the total number of characters is fixed, the model
size of the Character-level CNN remains fixed (unlike models based
on words - where model size increases with data size). However,
Character-level CNN is not able to exploit information from long
sequences of components in the URL. It also ignores word bound-
aries, making it difficult to distinguish special tokens in the data.
Further, in scenarios where the malicious URLs try to mimic be-
nign URLs by having a minor modification to one or few words
of the URL [9], Character-level CNN may struggle to identify this
information. This is because a sequence of characters with similar
spellings is likely to obtain a similar output from the convolutional
filters. Thus, Character-level CNNs alone are not sufficient to com-
prehensively obtain structural information from the URL String,
and it is necessary to consider word-level information as well.
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Figure 1: URLNet - Deep Learning for Malicious URL Detection. It comprises two branches with CNNs. The first branch is a
Character-level CNN where the character embedding is used to represent the URL. The second is the Word-level CNN where
a word-level embedding is used to represent the URL. The word embedding itself is a combination of the individual word’s
embedding and the character-level embedding of that word.



URLNet: Learning a URL Representation with Deep Learning for Malicious URL DetectionConference’17, July 2017, Washington, DC, USA

3.3 Word-level CNN for Malicious URL
Detection

Word-level CNNs are similar to Character-level CNNs, except the
convolutional operators are applied over words. We present a basic
word-level CNN, followed by two advanced methods.

3.3.1 Word-level CNNs. We first identify all the unique words
that appear in the training corpus of the URLs. Unlike Character
CNNs where the number of unique characters is small and (usually)
fixed, the number of unique words depends on the size of the train-
ing corpus, as new words can appear in every URL. We identify
the unique words using the approaches in Section 2.2, and [2, 26].
All unique words are obtained as a sequence of alphanumeric char-
acters (including ’-’ and ’_’), separated by special characters (e.g.
’.’, ’/’, etc.). We also use the <PAD> token as an additional word to
make the lengths of the URLs uniform in terms of number of words
(L2 = 200). This set of unique words forms a dictionary for the URL
training corpus.

In the next step, we obtain the k−dimensional vector represen-
tation for each word. In our work, we set k = 32, i.e., each word
is embedded into a 32-dimensional vector. For M unique words,
we have to learn an embedding matrix EM ∈ RM×k . Using this
representation, all the URLs are converted to their respective ma-
trix representation (L2 × k), on which the CNN is applied. We use
the same CNN architecture as in Character CNNs, i.e., we use 4
types of Convolutional filters W ∈ Rk×h , with h = 3, 4, 5, 6 and
for each filter size, we use 256 filters. Here, the aim is to learn
temporal properties from a sequence of words of length 3, 4, 5, 6
appearing together. This is followed by a Max-Pooling layer and
the fully connected layer regularized by dropout. This output is
then concatenated with the other branches of the URLNet.

As the number of words can be extremely large (See Section
4.1.2 for an example), the corresponding Embedding Matrix would
become very large, and the model would suffer from memory con-
straints. As a result, all words that appeared only once in the entire
training corpus (also called rare words) were replaced with a sin-
gle <UNK> token. This would substantially reduce the memory
constraints faced by word-based models. During test time, a lot of
URLs would contain words that have not been seen during training.
Therefore, during conversion of a test URL to matrix form, the
unseen words are also replaced with an unknown token <UNK>.

3.3.2 Special Characters as Words. While modeling Word-level
CNNs, the words are obtained as a series of alphanumeric characters
separated by special characters. This approach does not consider
using useful information that can be obtained by evaluating the
special characters in the URL String. There are two types of in-
formation missed out on: (i) The distribution and types of special
characters used; and (ii) The temporal relation of the appearance of
words around special characters. To alleviate these issues, we pro-
pose to use special characters in the URL Strings as unique words.
Conventional approaches in Deep Learning for NLP rarely exploit
special characters as words (apart from direct usage in Character-
level CNNs). However, we hypothesize that special characters offer
significant information gain for Malicious URL Detection because
special characters are more frequent and relevant in the context
of URLs than normal natural languages. As URL does not follow

normal semantic syntax, special characters can play an important
feature and should be considered with words.

3.3.3 Improved Word Embedding Using Character-level Word
Embedding. The above model does not use the rare words due to
memory constraints. Further, it is not able to obtain an effective
embedding for new words in test URLs. To address these concerns,
we propose to obtain a character-level embedding for each word.
In contrast to the previous scenario where the word embedding is
obtained directly from the word embedding matrix (which is learnt
during training), we obtain the word embedding as a combination of
the original word embedding and the embeddings of the individual
characters in that word.

Specifically, we maintain 2 Embedding Matrices: one for words
(EMw ∈ RL2×k ), and one for characters (EMc ∈ RL1×k ). Note
that the character embedding matrix here is different from the
character embedding matrix used in Character-level CNN. While
the Character Embedding Matrix for the Character-level CNN aims
to learn character representation based on the full URL, EMc is more
localized, and aims to learn the appropriate character embedding
to effectively represent the words. While obtaining the URL Matrix
representation, we first getURLw ∈ RL2×k representation based on
EMw . Next, we obtain L3 ×k matrix representation of each word in
a URL (using EMc ), where each word (as obtained in Section 3.3.2)
is padded or truncated to be a sequence of L3 = 20 characters. This
matrix is summed up to obtain a 1×k vector embedding for the word.
This is applied to all L2 words in the URL to give us the URL matrix
representationURLcw ∈ RL2×k , which is termed as character-level
word embedding of the URL. The final URL matrix representation is
simply the sum of these two matrices URLw +URLcw . This entire
approach is visualized in URLNet in Figure 1.

During training, the words that appeared only once (rare words)
in the entire training data were ignored and converted to a single
<UNK> token. However, for each of these words, a character-level
embedding was used, thus giving each of the rare words a (mostly)
unique representation even during training. In a similar fashion,
during test time we are able to obtain a unique word embedding
even for the new words not used in training. Thus, the proposed
character-level word embedding addresses the issues of memory
constraints of word-based models, is able to exploit information
from rare words, and also able to obtain a richer representation to
capture subword level information.

3.4 Model Configuration
Finally, we present the details of the URLNet model configuration.
The overview can be seen in Figure 2. The raw URL input string is
processed by 2 branches: a character-level branch and a word-level
branch. The character-level branch gives a character-level represen-
tation of the URL, while the word-level branch does the same with
words. The word-level branch itself is split into word-embedding
and character-level word embedding, which are combined to finally
give the word-level URL representation. Convolutional operations
are applied to both these branches, followed by a fully connected
(FC) layer, which is regularized by dropout for both the branches.
Then the outputs are concatenated. This is followed by 4 fully-
connected layers finally leading to the output classifier. This model
is then trained by an optimizer using Backpropagation.
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Figure 2: Configuration of URLNet

4 EXPERIMENTS
4.1 Large Scale Dataset

4.1.1 Dataset Collection. We collected a large corpus of labeled
URLs from VirusTotal 1. VirusTotal is an antivirus group whose
services are often used to validate whether a given query URL is
malicious or not. Given an input URL, VirusTotal scans through
64 different blacklists (e.g. CyberCrime, FraudSense, BitDefender,
Google Safebrowsing, etc.), and reports how many of these black-
lists contain the input URL. If none of the blacklists contain the
given URL, it is assumed that the URL is benign. The higher the
number of blacklists the URL is detected by, the higher is our confi-
dence that the given URL is indeed malicious.

We crawled all URLs queried in VirusTotal in the period between
May, 2017 to June, 2017, to build our training datatset. From the
resulting URLs, we removed any duplicates. We remove the dupli-
cates in order to examine the generalization performance of the
models on unseen URLs. However, this makes our benchmark more
challenging that traditional (possibly real world) settings. We ob-
served that there were a few dominant domains which occurred
very frequently. To reduce any bias, we limited the frequency of
any URL domain to be less than 5%. All URLs that did not appear in
any blacklist were labelled Benign, and all URLs that appeared in 5
or more blacklists were labelled Malicious. All URLs that appeared
in 1, 2, 3, or 4 blacklists were discarded, due to lack of certainty
about their true labels. This gave us millions of URLs with roughly
94% Benign and 6% Malicious.

The resulting URLs were sorted according to the timestamp at
which they were queried. After sorting, from the first 60% of the
URLs, we randomly selected 5 million URLs for training, and from
the last 40%, we randomly selected 10 million URLs for testing. The
sorting was done to avoid any "look-ahead" bias while training the
models. Other details about this corpus can be seen in Table 1.

1https://www.virustotal.com/

Table 1: URL Dataset crawled from VirusTotal

Benign URLs Malicious URLs Total
Training 4,683,425 316,575 5,000,000
Testing 9,366,850 633,150 10,000,000
Total 14,050,275 949,725 15,000,000

4.1.2 Feature Extraction. Features are extracted from the raw
URLs before training a model. For Character CNNs no feature ex-
traction is required, as the CNN directly operates at the character
level. For Word CNN, we extracted lexical features in the form of
Bag of Words. For a given training dataset, all unique words are
identified and a dictionary is constructed. The number of unique
words is denoted by M , and this value varies with the size of the
training dataset. This set of features are calledWhole URL BoW.

We also consider other types of features extracted by security
experts for baseline models along the lines of the work in [2, 25, 27]:

• URL Component Tokenization (UCT): In [27], URL is divided
into primary domain, path, last path token, and top level
domain - and BoW dictionary is constructed for each compo-
nent. This helps capture some order in terms of sequential
information in the URL.

• Position Sensitive & Bigrams (PSB): In [2], in addition to
UCT features, specific tokens such as Domain{1} and Path{2}
are extracted to account for sequential information of tokens
within the URL primary domain and the URL path. Here {x}
refers to the zero based token distance from the right most
end of a URL part. In addition, token bigrams in primary
domain and path are also extracted to further distinguish
legitimate and malicious URLs. For example, the feature
Domain{1}{0} refers to the token bigram consisting of the
second last token and the last token in the URL primary
domain.

• Character Trigrams: In [25], in addition to UCT features,
three character length sliding window is used on the URL
domain name to generate character trigram tokens. This is to
tackle malicious URLs with subtly modified domain names.
We also followed the same feature processing as [25] by only
extracting the argument names and discarding the argument
values in the URL path.

In addition to the BoW Features, as suggested by the above ap-
proaches, a variety of statistical properties of the URL were used,
such as the length of the entire URL, the length of the hostname, and
the number of dots in the URL. For the baseline [25], we also com-
puted hand designed statistical features such as alphabet entropy
measure, character continuity rate, and number rate. We call these
statistical features as "Expert Features", as these are hand-designed
by experts.

Further details on these Lexical Features can be seen in Table 2.
We show the number of words or features for a corpus of 1 million
and 5 million URLs. Basic BoW refers to the features obtained
following traditional BoW approaches. Advanced BoW refers to
features such as bigram and (character) trigram features. As can
be seen the total number of lexical features can be very large, and
keeps increasing with the data size. Correspondingly, the size of
word-based models also keeps increasing.
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Table 2: Number of lexical features (words) and expert features and the variation of Feature Size with size of Training Data

Training Size = 1m Training Size = 5m
#Basic
BoW

#Advanced
BoW

#Expert
Features

Total #Basic
BoW

#Advanced
BoW

#Expert
Features

Total

Whole URL BoW 1,372,417 N/A N/A 1,372,417 5,531,997 N/A N/A 5,531,997
UCT [27] 2,015,183 N/A 3 2,015,186 7,952,252 N/A 3 7,952,255
PSB [2] 2,015,183 4,845,517 17 6,860,717 7,952,252 16,666,144 17 24,618,413
Character Trigrams [25] 1,242,340 54,368 69 1,296,777 4,953,031 58,154 69 5,011,254
Combined 2,015,183 4,899,885 76 6,915,144 7,952,252 16,724,298 76 24,676,626

4.1.3 Word-frequency Distribution. Here, we look at the fre-
quency distribution of the words in dataset. We obtain the whole
URL BoW features for 1 million URLs, and plot the percentage of
words based on their frequency of occurrence in the entire training
data in Figure 3. As can be seen 90% of the words in the training
corpus appear only once. This implies that over 90% of the unique
words in a URL training corpus are very rare. While rare words
make up a majority in the dictionary, storing them requires a lot
of memory and is not feasible for large data sets. For example, our
training data with 5 million URLs consists of over 5 million unique
words. With an embedding size of k = 32, these words require
more than 150 million parameters for just the embedding matrix
(similar to the number of parameters as a VGG-16 network[36]).
When scaling to even larger training datasets, storing this matrix
becomes infeasible. By ignoring rare words, we are able to resolve
the memory issue and make it possible to train word-related models
on large data sets. Moreover, our proposed Character-level word
embedding allows us to obtain representations of even the rare
words (without storing the embedding for these words), and also
captures local subword information for each word.
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Figure 3: Word Frequency Distribution. More than 90% of
the words appear only once in the entire training corpus.
Storing all the words, and learning their embeddings during
training can be computationally prohibitive.

4.2 Evaluation of URLNet
4.2.1 Experimental Settings and Baselines. We constructed 2

training corpuses: first a set of 1 million URLs randomly sampled
from the 5 million, and the second includes the entire 5 million
URLs. The sampling was done such that the proportion of malicious
and benign URLs was still maintained.

As a baseline model, we used L1-regularized L2-loss SVM (im-
plemented in Liblinear [11]). The SVM was trained on the 5 sets
of baseline lexical features described in the previous subsection,
according to [2, 25, 27]. The baseline methods include SVMs trained
on: i) Whole URL BoW; (ii) UCT [27]; (iii) PSB[2]; (iv) Charac-
ter Trigrams [25]; and (v) Combined: a combination of all these
features. We compared the baselines with the proposed URLNet:

• URLNet(Character-Level) - only the Character-level CNN,
• URLNet(Simple Word-Level) - only the Word-level CNN,
• URLNet(Full) - which is the end-to-end framework com-
bining both character-level and word-level CNNs (including
special characters and character-level word embedding).

For Word-level CNN, the words obtained were based on the Whole
URL BoW (i.e. there was no separate dictionaries for different parts
of the URL). All Deep Learning models were implemented using
both Keras [8] and Tensorflow [1]2, and optimized using the Adam
Optimizer[19]. A Dropout rate of 0.5 was used in the convolutional
layers. All the models were tested on the Test corpus of 10 million
URLs and were evaluated on the basis of Area under the ROC Curve
(AUC) (due to the imbalanced nature of the dataset). In addition, we
also compare model performance in terms of True Positive Rates at
different levels of False Positive Rate to observe the detection rate
of malicious URLs at a given false positive rate (or false alarm rate).

4.2.2 Results. The main results of this paper can be seen in Ta-
ble 3, and we can further visualize the AUC characteristics in Figure
4. In general URLNet based methods significantly outperform the
baseline methods across all metrics (AUC and TPR@FPR). Within
the baseline models, we observe that heuristically accounting for
sequential information through separate dictionaries in URL Com-
ponent Tokenization (UCT) is able to improve ther performance
over using simple Whole URL BoW Features. Similarly, using other
advanced and expert features (PSB and Character Trigrams) is able
to give incremental improvement, and the best baseline model is
obtained by combining all the features together.

In contrast, without using any expert or hand-designed features,
URLNet methods offer a significant jump in AUC over baselines. It

2https://github.com/Antimalweb/URLNet
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is clear that the proposed URLNet is able to capture several types
of semantic and structural information in the URL, which existing
methods based on bag-of-words features could not. Within URL-
Net, we observe the performance of the 3 variants: Character-Level,
word-level, and Full. While Character-level and Word-Level URL-
Net have similar performances, URLNet(Full) largely exploits the
positives of both, and provides a more consistently better perfor-
mance. At low FPRs, word-level URLNet has a better performance
than Character-level URLNet, while at higher FPRs, the reverse
holds. URLNet(Full) combines the merits of both, and except at
FPR=0.0001, it gives a better performance in all other scenarios,
including offering a significant boost to the AUC. On the whole,
we also observe that increasing training data size from 1 million to
5 million has a positive impact across all metrics.
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Figure 4: Area Under ROC Curve (Trained on 1m, Tested
on 10m). URLNet(Full) is slightly worse than URLNet(Word-
level) at FPR = 10−4, but better otherwise. URLNet(Full) is
consistently better than URLNet(Character-level). All URL-
Net variants outperform baselines.

4.3 Ablation Analysis
The performance of different components of URLNet, and the incre-
mental performance gain of each component can be seen in Table 4.
Within URLNet (Word-Level), treating special characters as words
and using character-level word embedding improve the AUC score.
This validates the usage of special characters as words and the
benefits of character-level word embedding. Even though this im-
provement is consistent with varying training data size, a minor dis-
crepancy occurs at the low levels of FPR, where Simple-Word Level
URLNet offers the highest TPR. A possible reason for this is that
using special characters as words, and using a character-level word
embeddingmake the performance of theword-level CNN slightly re-
semble that of Character-level CNN, which is why the performance
at high FPRs improves, while at low FPRs, it worsens a bit. The trend
of word-level URLNet is carried over to URLNet(Full) where we see
steady improvement in AUC as we integrate additional features one
at a time (special characters as words, and character-level words).
On the whole, URLNet(Full) exploits character-level and word-level
information and significantly outperforms both Character-based
URLNet and Word-based URLNet.

4.4 Visualization
In this section, we visualize the embedding features of URLs ex-
tracted from the proposed URLNet model and compare with one
of the baselines. We randomly sampled 2,000 URLs from the test
dataset with balanced distribution of classes (1,000 Benign and 1,000
Malicious) and extracted the feature vectors of these URLs from
one of the layers in URLNet (trained on 5 million URLs). Here we se-
lected the feature vectors after concatenation of the outputs of char-
level and word-level CNN branches (Concatenated Char and Word
feature vector layer in Figure 2), and obtained a 1,024-dimensional
vector. For the baseline features, we extract BoW features and ex-
pert features being used in the Character Trigrams[25]. The baseline
feacture vector is 14,604-dimensional. From the extracted feature
vectors, we apply t-SNE [28] to reduce feature dimension and plot
the URLs on a 2-dimensional embedding space. The Figure of the
embedded URLs can be seen in Figure 5 and Figure 6.

As can be seen in Figure 5, for URLNet, the malicious URLs and
benign URLs are clearly seperated into two groups of URLs. Most of
Benign URLs are located in the left area of the plot while Malicious
URLs are in the right area. Very few data points of Malicious URLs
are overlapping with Benign URLs. In the baseline embedding space
(Figure 6), the seperation between malicious and benign URLs is
not as clear. Many Benign and Malicious URLs are located in the
center of the plot and are overlapping with each other. Different
from URLNet, in the baseline embedding, many individual data
points are scattered around the plot, making it hard to identify
which clusters those data points are more likely to belong to.

In addition to Benign/Malicious separation, we also observe
several clusters appearing in the plots. We further analyze some
of these clusters to identify potential patterns in the URL strings
which may possibly be indicative of malicious or benign nature of
a URL. We highlight some of the data points with different markers
(in black), each of which indicates a type of lexical pattern in the
URL string. Refer to Table 5 for the details of the lexical patterns
and example URLs. Analysis of such patterns could be useful in a
deeper understanding of the Malicious URL properties. For example,
URLs that contain phrases such as ’tumblr’ in URL domain, ’/opt/’
in the URL path, or ’.exe’ file extension, are clustered together. For
phrases that appear at different parts of the URL such as ’google’,
we are still able to distinguish two clusters of URLs, one for ’google’
in the URL domain, and one for ’google’ in the URL path, as can
be seen in Figure 5, despite not making any distinction between
different URL components during training. Similarly, without usage
of expert features, URLNet obtains meaningful representation and
embeds those URLs where primary domain contains an IP together;
or if the length of PD > 10, the URLs get clustered together.

Finally, with smaller number of dimensions than the baseline
feature vector and without the need to obtain expert features, URL-
Net feature vector is lightweight and efficient to represent the URL.
For data size of 2,000 URLs, URLNet feature vector is about 14 times
smaller than the baseline feature vector. Hence, URLNet does not
suffer from the memory constraints to process and store the vectors
which can be used for further downstream tasks. In contrast to
the baselines, the number of dimensions of URLNet feature vector
does not vary by the data size, making it easy to obtain and process
embedding features of large scale datasets (millions of URLs).
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Table 3: Evaluation of URLNet compared to baselines and special cases of URLNet: Character-level CNN andWord-Level CNNs.
All results are on the Test Data of 10 million URLs. The best performances have been bolded.

Training Size = 1m Training Size = 5m
TPR@ FPR Level TPR @ FPR Level

0.0001 0.001 0.01 0.1 AUC 0.0001 0.001 0.01 0.1 AUC
Baselines
Whole URL BoW 0.1759 0.7124 0.7915 0.8711 0.9208 0.3189 0.7714 0.8436 0.8995 0.9387
UCT [27] 0.1431 0.7292 0.8163 0.8890 0.9400 0.2856 0.7890 0.8624 0.9090 0.9548
PSB [2] 0.2151 0.7560 0.8500 0.9126 0.9549 0.1750 0.8179 0.8834 0.9291 0.9656
Character Trigrams[25] 0.1347 0.7326 0.8322 0.9161 0.9611 0.2017 0.7929 0.8682 0.9275 0.9665
Combined 0.1490 0.7499 0.8457 0.9259 0.9669 0.2039 0.8218 0.8883 0.9423 0.9736
URLNet
URLNet (Character-level) 0.5159 0.6876 0.8370 0.9546 0.9828 0.6463 0.7824 0.8991 0.9735 0.9892
URLNet (Word-level) 0.6337 0.7524 0.8443 0.9297 0.9730 0.7312 0.8168 0.8878 0.9595 0.9842
URLNet (Full) 0.5849 0.7683 0.8860 0.9722 0.9885 0.7160 0.8248 0.9084 0.9858 0.9929

Table 4: Ablation Analysis: We compare the performance gain from each critical component proposed in URLNet. Both
URLNet(Character-level) and URLNet(Word-level) are competitive, and are outperformed by URLNet(Full).

Training Size = 1m Training Size = 5m
TPR@ FPR Level TPR @ FPR Level

0.0001 0.001 0.01 0.1 AUC 0.0001 0.001 0.01 0.1 AUC
URLNet (Character-level)
↪→ Character-level CNN 0.5159 0.6876 0.8370 0.9546 0.9828 0.6463 0.7824 0.8991 0.9735 0.9892
URLNet (Word-level)
Word CNN 0.6337 0.7524 0.8443 0.9297 0.9730 0.7312 0.8168 0.8878 0.9595 0.9842
↪→ + Special Characters as Words 0.5957 0.7425 0.8496 0.9537 0.9832 0.7179 0.8108 0.8832 0.9649 0.9853
↪→ + Character-Level Words 0.6172 0.7694 0.8792 0.9664 0.9865 0.6937 0.8007 0.8973 0.9673 0.9878

URLNet (Full)
↪→ Character + Word 0.6239 0.7565 0.8722 0.9620 0.9864 0.7261 0.8169 0.8999 0.9769 0.9907
↪→ + Special Character Words 0.6008 0.7512 0.8634 0.9643 0.9853 0.6901 0.8104 0.8996 0.9797 0.9918
↪→ + Character-level Words 0.5849 0.7683 0.8860 0.9722 0.9885 0.7160 0.8248 0.9084 0.9858 0.9929

Table 5: Examples of lexical patterns in URLs and example URLs. The lexical patterns are extracted at different parts of the
URL string: primary domain, URL path, and file extension.

URL Compo-
nent

Lexical Pattern Example URL

Primary Domain

contains ’tumblr’ http://exampledomain.tumblr.com/

contains ’google’ http://www.google.com/urlpath/...
http://abcd123googlexyz456.com/urlpath/...

contains IP http://192.168.0.1/
http://192.168.0.1/urlpath/...

has average word length >10 http://a1ds2dce0b33fdgd425d8fsgg9836c4234d0.exampledomain.net/

Path
contains ’google’ http://www.exampledomain.com/filename?f=GOOGLEEARTH...

http://exampledomain.net/urlpath/googledrive/sub_dir/...
contains ’/opt/’ http://www.exampledomain.com/opt/...
contains the dash pattern in the last path token http://exampledomain.com/urlpath/abc-123-fff-456-...

File Extension Includes a file with extension ’exe’ http://exampledomain.net/urlpath/filename.exe
Includes a file with extension ’zip’ http://exampledomain.com/urlpath/filename.zip
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5 RELATEDWORK
For a comprehensive review on Malicious URL Detection using
Machine Learning, see [33]. Here, we briefly discuss two most re-
lated topics for our work: Feature Representation for Malicious URL
Detection, and Deep Learning (particularly for Natural Language
processing).

5.1 Feature Representation for Malicious URL
Detection

Before training a prediction model, a raw URL is typically converted
to a suitable feature vector u → x, so that it can be interpreted by
traditional machine learning models. This feature representation
needs to be chosen carefully, as the classification models work on
the premise that distributions of the features for malicious and
benign URLs are different. Researchers have proposed several types
of features for this task, including blacklist features [12, 26], lexical
features [20, 26, 27, 41], host-based features [5, 26, 30], content fea-
tures [3, 37, 40], and context and popularity based features [4, 7, 24].
Blacklist features use the presence of a URL in a blacklist as a fea-
ture, as they could be strong indicators. Lexical Features focus on
string properties of the URL, e.g. length of URL, number of special
characters, types of words that appear in the URL string, alpha-
numeric distribution of characters, etc. Host-based features are
those derived from the host-name properties of the URL including
information such as IP Address, WHOIS information, Geographic
location, etc. Content features are those that require explicitly vis-
iting and downloading the content hosted by the URL, in order to
obtain information such as HTML and JavaScript features. Context
and popularity features correspond to information about where
the URLs have been shared on social media, or their ranking and
popularity scores. Many researchers have used a combination of
some of these features, which was often determined through expert
domain knowledge.

Obtaining features from URLs can be an expensive task from
the perspective of security threats and engineering overhead. For
example, obtaining content-based features can be very slow, and
at the same time is highly risky. Moreover, identifying which fea-
tures are useful requires expert domain knowledge. Consequently,
usage of information directly obtainable from the raw URL was
popularized [26, 27]. It was shown that lexical features, which are
the easiest to obtain, gave competitive performances [2, 26]. In our
work we focused primarily on the lexical features to obtain the fea-
ture representation for the URLs. Among lexical features, various
types of information can be obtained from the URL. While some
statistical properties of the URL string, such as length of the URL,
number of dots, etc. [20] have been used, the most popular features
were Bag of Words, Term Frequency features or n-gram features
[2, 20, 26]. However, none of these methods effectively capture the
sequential properties of the URL string (or substrings). Moreover
these methods fail to extract useful information from unseen words
in the test URLs.

There have been other advanced lexical features used, such as
Kolmogorv Complexity [32], obfuscation resistant features [22],
intra-url relatedness [29], etc. However, they required substantial
feature engineering or expert knowledge, or they were not scalable
to millions of URLs, thus reducing their practical applicability.

5.2 Deep Learning
Deep Learning or Representation Learning has received increasing
interest in recent years owing to their success in several applications
[13, 14, 21, 23, 35]. The core idea is to automatically learn the feature
representation from raw or unstructured data, in an end-to-end
manner without using any hand designed features. Following this
principle, we aim to use Deep Learning forMalicious URLDetection,
in order to directly learn representation of the raw URL string,
without using any hand designed expert features.

Since we aim to train Deep Networks over lexical features, a
closely related area is Deep Learning for Natural Language Pro-
cessing (NLP). Deep learning methods have found success in many
NLP tasks: text classification [18], machine translation [6], ques-
tion answering [38], etc. Recurrent neural networks (e.g. LSTM
[15]) have been widely used due to their ability in capturing se-
quential information. However, the problems of exploding and
vanishing gradients is magnified for them, making them difficult
to train. Recently, Convolutional Neural Networks have become
excellent alternatives to LSTMs, in particular showing promising
performance for text classification using Word-level CNNs [18] and
Character-level CNNs [39].

There have been very limited attempts at using Deep Learning
for Malicious URL Detection. We recently noticed a work parallel
to ours [34] that attempted to use Character-level CNNs for this
task. However, they ignored several types of structural information
that could be captured by words in the URLs. In contrast to their
work, (i) we consider both word-level and character-level infor-
mation; (ii) through extensive analysis we show the importance
of word-level information in capturing longer temporal patterns;
(iii) we develop novel character-level word embedding for effec-
tively utilizing word-level information - in particular handling the
presence of too many unique words, and obtaining embeddings for
unseen words at test time; and (iv) we train the whole model in a
jointly optimized framework. URLNet comprehensively captures
the structural information available in the URL String through both
character and word-level information. In fact, [34] is a special case
of our proposed URLNet, where only character-level information
is considered. Further, we have even shown that URLNet(Full) is
consistently better than just a Character-level URLNet in AUC (and
TPR at all levels of FPR - particularly at low FPRs).

6 CONCLUSION
In this paper we proposed URLNet, a CNN based deep neural net-
work for Malicious URL Detection. Existing approaches mostly used
Bag of Words like features, and this caused them to suffer from
some critical limitations, including inability to detect sequential
concepts in a URL string, requiring manual feature engineering, and
inability to handle unseen features in test URLs. We proposed Char-
acter CNNs and Word CNNs for this task, and jointly optimized
the network. Moreover, we proposed advanced word-embedding
techniques which are particularly useful to deal with rare words, a
problem usually observed in malicious URL Detection tasks (and
not in traditional NLP tasks). This approach also allowed URLNet to
learn embeddings from unseen words at test time, and exploit sub-
word information. Our approach worked in an end to end manner
without requiring any expert features.
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Figure 5: Visualization of feature embedding of sampled URLs using URLNet features. The data points are color-coded by
the URL classes: Benign (Green) and Malicious (Red). The markers are also configured to distinguish certain types of lexical
patterns in URL components: PD (Primary Domain), PATH (URL Path), and FE (File Extension).
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Figure 6: Visualization of feature embedding of sampled URLs using Character Trigrams[25] features. The data points are
color-coded by the URL classes: Benign (Green) and Malicious (Red). The markers are also configured to distinguish certain
types of lexical patterns in URL components: PD (Primary Domain), PATH (URL Path), and FE (File Extension).
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