
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

7-2016

An adaptability-driven model and tool for analysis
of service profitability
Eng Lieh OUH
Singapore Management University, elouh@smu.edu.sg

Jarzabek STAN

DOI: https://doi.org/10.1007/978-3-319-39696-5_24

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Computer and Systems Architecture Commons, and the Systems Architecture

Commons

This Conference Proceeding Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at
Singapore Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized
administrator of Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
OUH, Eng Lieh and STAN, Jarzabek. An adaptability-driven model and tool for analysis of service profitability. (2016). CAiSE 2016:
International Conference on Advanced Information Systems Engineering, Slovenia, June 13-17. Research Collection School Of Information
Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4007

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-3-319-39696-5_24
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4007&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4007&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4007&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4007&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

An Adaptability-Driven Model and Tool for Analysis
of Service Profitability

Ouh Eng Lieh1(✉) and Stan Jarzabek2

1 Institute of Systems Science, National University of Singapore,
25, Heng Mui Keng Terrace, Singapore 119615, Singapore

englieh@nus.edu.sg
2 Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland

s.jarzabek@pb.edu.pl

Abstract. Profitability of adopting Software-as-a-Service (SaaS) solutions for
existing applications is currently analyzed mostly in informal way. Informal
analysis is unreliable because of the many conflicting factors that affect costs and
benefits of offering applications on the cloud. We propose a quantitative economic
model for evaluating profitability of migrating to SaaS that enables potential
service providers to evaluate costs and benefits of various migration strategies
and choices of target service architectures. In previous work, we presented a
rudimentary conceptual SaaS economic model enumerating factors that have to
do with service profitability, and defining qualitative relations among them. A
quantitative economic model presented in this paper extends the conceptual
model with equations that quantify these relations, enabling more precise
reasoning about profitability of various SaaS implementation strategies, helping
potential service providers to select the most suitable strategy for their business
situation.

Keywords: Service provider · Service profitability · Service architecture ·
Service variability · Service engineering

1 Introduction

Cloud computing paradigm promises service providers to reach large customer base,
selling software at cheaper price (which benefits customers). Still, cloud computing, and
Software-as-a-Service (SaaS) in particular is not for all businesses, nor for all software
applications. The question whether or not a service solution will be profitable is not easy
to answer. The following sample illustrates why informal analysis of SaaS profitability
is difficult:

Service profitability depends on the cost of engineering a service for a given customer
base, on service provisioning cost, and on the revenue gained from selling the service
to that customer base. The customer base depends on the level of service adaptability,
i.e., on Service Provider’s ability to vary service requirements to meet requirements of
various customers. The cost of engineering a service for adaptability depends on selected
service architecture. A service architecture that minimizes provisioning cost at the same

© Springer International Publishing Switzerland 2016
S. Nurcan et al. (Eds.): CAiSE 2016, LNCS 9694, pp. 393–408, 2016.
DOI: 10.1007/978-3-319-39696-5_24

time limits service adaptability, which in turn decreases the customer base and profit.
The cost of engineering a service further depends on the required level of service adapt‐
ability, and whether we build service from scratch or by modernizing the legacy code.
In the latter case, the cost depends on availability of modernization methods that aid and
automate the migration process.

SaaS profitability is determined by a complex web of inter-related and often
conflicting forces that make manual analysis unreliable. Service profitability has been
widely discussed primarily in the context of novel service business and pricing models,
engineering and provisioning methods (covered in Sect. 6) however no formal treatment
of the subject taking into account the many factors has been proposed. These existing
works take into account only a small subset of these factors, giving a potentially incom‐
plete analysis of service profitability especially without considering the trade-offs among
these factors. In this paper, we fill this gap by proposing a quantitative economic model
of service profitability.

In our previous works [1, 2], we set a rudimentary formal ground for analysis of
service profitability. We identified factors that affect service profitability, and built a
qualitative conceptual model formalizing dependencies among those factors. Our
conceptual model shows how decisions regarding the choices of service architecture,
dynamic (at service runtime) versus static (at the service construction-time) service
adaptation techniques, or the size of the tenant base affect service profitability. The
conceptual model built so far allows us to do qualitative analysis of service profitability.
It helps a Service Provider to spot the decisions regarding service architecture and
provisioning that are relevant in her situation, but it does not allow her to reason about
the impact of those decisions on profitability in any rigorous way.

The contribution of this paper is a quantitative economic model of service profita‐
bility that we built on top of the conceptual model. This extended model assigns weights
to various decisions and captures the impact of those decisions as formulas, in quanti‐
tative way. In particular, our economic model allows Service Providers to reason about
profitability under various assumptions and answer questions such as: “To what degree
does the selection of service architecture impact service profitability?”

Our economic model can help Service Providers to evaluate the impact of various
decisions and SaaS strategies in a more systematic way than the conceptual model alone,
but is difficult to use manually. Therefore, we also implemented a tool that automates
model calculations and guides Service Provider in exploring migration strategies to SaaS
and their expected profits. Section 2 documents our proposed Service Profitability
Model. We introduce a process method and tool to evaluate for service profitability in
Sects. 3 and 4. Experiments and analysis are in Sect. 5, followed by related work in
Sect. 6. Conclusions and future works are in Sect. 7.

2 Service Profitability Model

The concept map shown in Fig. 1 summarizes our model concepts. In our earlier paper,
we described how this concept map can be applied to address key service profitability
questions that are of interest to Service Providers. In this paper, we extends the

394 O.E. Lieh and S. Jarzabek

conceptual model with definitions and equations that quantify the relationships among
the factors in the concept map.

Fig. 1. Concept map of the service profitability

2.1 Preliminary Concepts and Definitions

Definition 1 (Tenant Base). The initial Tenant Base (TB) comprises of the initial
tenants of a given service. Delta Tenant Base (DTB) comprises of the tenants a Service
Provider expects to on-board in a specific time frame in the future.
Service Provider needs to address two sets of tenants’ requirements for a given service:
the initial tenant base (TB) and the delta tenant base (DTB). A Service Provider may
already have the need to provide the service to a set of initial tenants. On the other hand
during service period, new tenants may request to use the service and these tenants form
the delta tenant base.

Definition 2 (Range of Service Variability). The Range of Service Variability (RSV)
is the extent to which a Service can be adapted to varying service requirements of
different tenants.

The bigger range the service can accommodate, more tenants can be on-boarded and
higher revenue for the Service Provider. To on-board a tenant, the Service must be able
to meet the requirements of that tenant. As RSV reflects the Service Provider’s ability
to customize the Service, RSV determines the TB that can be supported. On the other

An Adaptability-Driven Model 395

hand for business strategic reasons, the Service Provider may have some target tenants
in mind and engineer the RSV to meet the varying requirements of the target TB. Service
Provider’s dream is always to engineer a service where RSV fulfills the varying require‐
ments of the TB, maximizing service profits.

Definition 3 (Service Engineering Costs). Service Engineering Costs (SEC) are
incurred to engineer the functionality of the Service and to engineer the Service to
support a given RSV on a given Service Architecture (SA). We termed this as Service
Functionality Engineering Cost (SFEC) and Service Variability Engineering Cost
(SVEC) respectively, collectively termed as the Service Engineering Costs (SEC).

Service Variability Engineering Cost (SVEC) is the cost of engineering Service based
on the selected Variability Techniques (VT) to support a given RSV on a given SA,
defined as a function of < SA, RSV, VT>. The relevant variability techniques to support
a given RSV are discussed in [1]. Service Functionality Engineering Cost (SFEC) is the
cost of engineering Service functionality to support a given RSV on a given SA. Service
Engineering Cost (SEC) is the cost of engineering the Service for a given SA and RSV
defined as a function of < SA, RSV, VT>.

SEC <SA, RSV , VT> = SFEC <SA> + SVEC <SA, RSV , VT>

Definition 4 (Service Provisioning Costs). Service Provisioning Cost (SPC) is the cost
to provide hardware and infrastructure resources to provision a Service to support a
given RSV on a given SA. SPC is defined as a function of < SA, RSV>. SPC can be
incurred upfront independent of number of tenants termed as SPCUpfront or during oper‐
ation based on the number of tenants termed as SPCOp.

Definition 5 (Total Service Costs). Total Service Costs (TSC) is the total service costs
of engineering (SEC) and provisioning (SPC) the Service on a given service SA to a
given TB.

TSC < SA, RSV , VT >= SEC < SA, RSV , VT > + SPC < SA, RSV >

Definition 6 (Total Service Revenue). Total Service Revenue (TSR) is the total
revenue from selling the Service on a given service SA to a given TB.

Definition 7 (Delta Variability). Delta Variability (DV) is the changes to existing
Service requirements required to on-board a given DTB. The degree of engineering
changes due to DV is termed as DVengineering and the degree of provisioning changes due
to DV is termed as DVprovisioning.

Definition 8 (Delta Cost). Delta Cost (DC) is the engineering and provisioning costs
to implement DV for a given DTB on a given SA.

Service Engineering Delta Cost (SEDC) is the cost to engineer the DV of a given
DTB for Service on a given SA defined as a function of < SA, DV, VT >. Service Provi‐
sioning Delta Cost (SPDC) is the cost to provide hardware and infrastructure resources
to support the DV of a given DTB on a given SA, defined as a function of < SA, DV>.

396 O.E. Lieh and S. Jarzabek

DC comprises of Service Engineering Delta Cost (SEDC) and Service Provisioning
Delta Cost (SPDC) and is defined as a function of < SA, DV, VT >.

DC < SA, DV , VT >= SEDC < SA, DV , VT > + SPDC < SA, DV >

Definition 9 (Delta Revenue). Delta Revenue (DR) is the revenue from selling a
Service to a given DTB.

Definition 10 (Service Profits). Service Profits (SP) is the profits from selling a Service
to a given TB and DTB defined as a function of < TSC, TSR, DC, DR >.

2.2 Service Profitability

Service Profits (SP) are the monetary benefits from selling the service, taking into
account the cost and revenue of both the tenant base and the delta tenant base: Providing
services for multi-tenants is typically a multi-year project for the Service Providers. As
such, we take into account the present value of money over time for economic analysis
and use the net present value, expanding on existing literature studies [3, 4] for the
analysis of service profitability. The net present value takes into account the engineering
and provisioning costs and the revenue gained for both the tenant and delta tenants over
an investment cycle. Given an investment cycle Y referring to the expected duration of
the investment measured in number of years and discount rate d referring to the time
value of money, typically range between 0.1 and 0.2, SP can be measured as given by:

SP = −(SEC + SPCUpfront) +
∑Y

y∈Y

TSR(y) − SPCOp(y) + DR(y) − DC(y)

(1 + d)y
(1)

Intuitively, the overall profits are based on the service costs incurred (fixed costs)
regardless of the number of on-boarded tenants and the yearly profits (taking into account
the value of money over time) with the tenant and delta tenant base. The expected return
on investment (ROI) takes into account service profits over the total service and delta
costs for a specified number of investment years and can be measured by:

ROI =
SP(

SEC + SPCUpfront

) (2)

Dividing the above ROI value by the number of investment years would yield the
annualized ROI.

3 Analysis of Service Profitability

In this section, we introduce a process to analyze service profitability. The steps of the
process are primarily composed of tenant management, service cost management,
service delta cost management and service profitability shown in Fig. 2. In each step,
the Service Provider enters estimations to characterize her situation.

An Adaptability-Driven Model 397

Fig. 2. Process to analyze service profitability

3.1 Tenant Management

This process step allows the Service Provider to specify or make their assumptions on
the initial and delta set of tenants’ requirements. These requirements can be in terms of
the number of tenants, number of users per tenant and their requirements. The Service
Provider should be able to specify or assume (e.g. based on variability distributions) the
tenant’s requirements. These inputs and assumptions is essential for the subsequent
computations of the costs, revenue and profits. The Service Provider can modify these
inputs to model different possible set of initial and delta tenants.

398 O.E. Lieh and S. Jarzabek

3.2 Service Cost Management

In our previous study [2], we introduced five types of service architectures. Fully-Shared
(SAFS), Partially-Shared (SAPS), Non-Shared (SANS) and Hybrids (SAFSPS and SAFSPSNS).
To manage the variability of tenant’s requirements for SAFS, we can design using service
oriented architecture (SOA) technique for dynamic binding of the service components.

For SANS, we can design using product-line variability management technique [5]
for static binding of the service components. Similar techniques can be used to manage
variability for SAPS, SAFSPS and SAFSPSNS. For analysis of service profitability, Service
Provider estimates the costs to engineer both the service functionality and service vari‐
ability of a given service for the initial tenant base. In order to engineer the service for
varying requirements of the tenants, the Service Provider needs to adopt variability
techniques of which the costs can differ substantially. These service costs can also differ
if the Service Provider decides to migrate from existing application or develop the
service from scratch. Cost estimation for both service engineering and service variability
engineering can be calculated using existing effort cost estimation models such as
COCOMO II. Based on a given service architecture, Service Provider also has to incur
cost to provision the service for the tenants. These provisioning costs can differ if the
Service Provider decides to lease from external cloud providers, hosting as private cloud
or adopt hybrid cloud. Cost estimation for the service provisioning on the cloud can be
calculated by using available data from existing cloud providers (e.g. Amazon EC2).

3.3 Service Delta Cost Management

Besides calculating the cost for the initial tenant base, it is also important for the Service
Provider to analysis the potential delta tenant base for a more complete service profita‐
bility analysis. For each of the delta tenant, a Service Provider need to estimate the effort
and cost to engineer the service and service variability for the varying requirements of
the tenant. Based on the range of service variability supported by a given service archi‐
tecture, the Service Provider may need to decide whether to incur additional engineering
to address the delta variability as required by the new tenant. The Service Provider may
choose to incur the additional cost to engineer the requirements or choose not to on-
board the new tenant (e.g. due to shortage of resources).

The Service Provider also has to provision the service for the delta tenant based on
the given service architecture. If the given service architecture cannot support the delta
tenant’s provisioning requirements (e.g. high isolation requirements on a given fully-
shared service architecture), the Service Provider can consider to move to hybrid service
architecture or choose not to on-board the new tenant. Cost estimation for the delta
service engineering and service provisioning can be calculated using the same models
as in service cost management.

3.4 Service Profitability

The services costs, service delta costs and revenue gained from on-boarded tenant
collectively determined the service profits. Service revenue from the tenant can vary

An Adaptability-Driven Model 399

based on the type of pricing models such as pay-per-use, subscription-based. Together
with service costs, service delta costs and revenue, service profits and ROI can be calcu‐
lated over a pre-determined service period. The ROI can be further annualized based on
the number of investment years. The Service Provider can evaluate the outcomes of the
service profitability based on different inputs and decisions made.

4 Tooling for Service Profitability Analysis

It is a Service Provider’s challenge to design a service for profitability considering
multiple factors affecting costs and gains. When designing and provisioning a service,
Service Provider may also have various goals for profitability analysis or constraints
regarding tenant base or service costs. We implemented a Service Profitability Analyzer
(SPA) tool to allow Service Provider to analyze service profitability under various strat‐
egies for service design and deployment. SPA implements the concepts and equations
defined in the Profitability Model to carry out the analysis under required assumptions.
The user interface of SPA is shown in Fig. 3.

Fig. 3. Service profitability analyzer

A typical scenario is that Service Provider wants to know which service architecture
to adopt to maximize profits. To analyze that, Service Provider inputs Service Costing
values for the service to SPA. Based on COCOMO II, Service Provider can compute
the service functionality and service variability engineering costs. The effort estimation
of COCOMO II is based on the following formula where EAF is the effort adjustment
Factor derived from the software cost drivers E is an exponent derived from the five
software scale drivers.

400 O.E. Lieh and S. Jarzabek

Effort Estimation = 2.94 ∗ EAF ∗ (KSLOC)
E (3)

One model to calculate provisioning costs is based on Amazon Web Services (AWS).
The tool allows for cost inputs for the key web services provided by Amazon; Amazon
Elastic Compute Cloud (EC2), Simple Storage Service (S3), Relational Database
Service (RDS), DynamoDB, Route 53 and CloudFront. Amazon EC2 provides resizable
compute capacity while Amazon S3 provides the fully redundant data storage infra‐
structure for storing and retrieving any amount of data. Amazon RDS makes it easy to
set up, operate, and scale a relational database (e.g. MySQL, Oracle, SQL Server) in the
cloud while Amazon DynamoDB is a fast and flexible NoSQL database service for all
applications that need consistent, single-digit millisecond latency at any scale. In terms
of networking and content delivery, Amazon Route 53 is a highly available and scalable
Domain Name System (DNS) web service and Amazon CloudFront provides an easy
way to distribute content to end users with low latency and high data transfer speeds.
The calculations of the Amazon services are based on the publicly accessible pricing
calculator [6].

To capture the demand parameters of the service, the tool enables Service Provider
to input the service tenant’s requirements in terms of the number of users and tenants
for the initial tenant base. In addition, Service Provider can also provide the expected
number of delta tenants and the estimated variability ranges of these delta tenants for
both the engineering and provisioning requirements as shown in Fig. 3. The possible
delta variability values are low, high and random. A low delta variability value indicates
a high proportion of the delta tenants require minimum changes required to existing
service and a high delta variability value indicates a high proportion of the delta tenants
require substantial changes to existing service. A random delta variability value allows
the tool to simulate based on a random distribution of the tenants’ delta variability.

With these demand inputs, the tool simulates the number of tenants of a given delta
variability values for a specified number of investment years. Each tenant along with
their delta variability (DV) values are used to calculate the delta engineering (SEDC)
and provisioning cost (SPDC) for that tenant as follows.

SEDC = DVengineering ∗ SEC ∗ 𝛼SA,VT (4)

SPDC = DVprovisioning ∗ SPC ∗ 𝛽SA (5)

α and β are weighted cost coefficients, denoting the impact to the engineering and
provisioning costs with a given service architecture and applied variability technique.
The higher the value of these cost coefficients, the higher the cost incurred. With the
Eqs. 1–5, the overall profits and ROI can be calculated.

We implemented SPA using Visual Basic .Net to compute the equations defined in
the Service Profitability Model and allow for dynamic user interactivity. The design of
the tool is modular and allow Service Provider to plug-in her own model to calculate
estimates of the engineering and provisioning costs. These plug-ins are implemented as
dynamic link libraries (DLLs) using .Net. The tool uses .Net reflection to dynamically
load the DLLs during runtime. A Service Provider may have more cost factors. For

An Adaptability-Driven Model 401

example, branding or marketing costs which impact service profits. The SPA tool can
be further adapted with plugins to include such factors.

5 Experiments and Analysis

5.1 Experiments Overview

We conducted experiments using the SPA tool to analyze service profitability of
adopting five service architectures for Apache OfBiz (OfBiz) [7]. OfBiz is an open
source Java Enterprise Edition (J2EE) package used for enterprise resource planning.
In our study we focus on four OfBiz existing services (eCommerceStoreService, Order‐
Service, CatalogService and PartyService) to be migrated to support multiple tenants.
These services comprises of 136 Java classes with close to 48 K lines of code, 61 Groovy
files, 127 Freemarker templates and 24 XML Widgets.

To capture the demand parameters of the service, we set the 8 initial tenant base and
30 delta tenants over a 5 year investment period. For the service costs calculation of
each service architecture, we first capture the engineering provisioning costs for SAFS
and then extrapolate for the rest of the architectures. We estimate the engineering costs
by measuring the five major components; external inputs, external outputs, external
inquiries, internal logical files and external interface files to obtain 394 unadjusted func‐
tion points. We use these unadjusted function points value to calculate the effort of
engineering the functionality of the service (SFEC) based on the COCOMO II model.
The COCOMO parameters “required software reliability”, “architecture/risk resolution”
and “platform” are set to high and the “parameter developed for reusability” is set to
very high, the rest of the parameters are set to nominal. We extrapolate service variability
engineering costs (SVEC) for SAPS by 20 % more than SAFS, based on an earlier study
by Poulin and Himler [8] showing that building components for an SOA requires an
approximate of 20 % additional cost over development for one-time use. For SANS using
static binding variability technique based on our experiences with the adaptive reuse
technique and the study of cost estimation in Software Product Lines [9], we assumed
an additional 30 % more in SVEC than SAFS to account for more extensive reuse effort
to adopt product line techniques and development the product line assets. For SAPS,
SAPSNS and SAFSPSNS, we estimated another additional 10 % over SANS in engineering cost
to manage variability using both SOA and product-line techniques.

For service engineering delta costs α, αNS is lower than αFS to account for greater
flexibility in static binding [9] used in SANS over dynamic binding used in SAFS. αPS of
SAPS is higher than αNS or αFS based on the reasoning that additional effort is required to
maintain both static and dynamic bindings. The values of αPS+NS, αFS+PS+NS are also set
higher to account for the effort to maintain the hybrid service architectures. Based on
the above reasoning, we make the assumption of αNS < αFS < αPS < αPSNS, αFSPSNS. The
weighted cost coefficient α values used in our experiments are as follows. These α values
are configurable on the tool and sensitivity of these values are also discussed in Sect. 5.3.

𝛼NS

(
SANS

)
= 0.2, 𝛼FS

(
SAFS

)
= 0.3, 𝛼PS

(
SAPS

)
= 0.4

402 O.E. Lieh and S. Jarzabek

𝛼PSNS

(
SAPSNS

)
= 0.5, 𝛼FSPSNS

(
SAFSPSNS

)
= 0.5

For service provisioning cost (SPC), we based our estimates on Amazon AWS
pricing calculator [6], using the recommended deployment architecture of a large web
application (all instances on demand). The estimated costs to provision for the initial
tenant base of SAFS is based on the configuration of 10 m1.medium, 10 m1.large and 10
m1.large Amazon EC2 instances for web, application and database Servers respectively,
shared by all tenants. For SANS, SAPS, SAPSNS, dedicated instances of 1 m1.medium, 1
m1.large and 1 m1.large Amazon EC2 instances for web, application and database
Servers respectively are allocated to each of the 10 initial tenants. For SAFSPSNS, we start
with the same provisioning configuration as SAFS.

For service provisioning delta costs β, βFS is set lower to account for the sharing of
resources while βNS is set to 1 to denote the additional isolated resources required. βPS
is set between βFS and βNS to denote partial sharing of resources. The cost coefficient
βPSNS, βFSPSNS are set to either 0.2, 0.5 or 1 depending on the adopted service architecture
for that tenant. To capture the service revenue earned by the Service Provider, we use
the subscription-based strategy. Each tenant pays a price depending on her requirements.
Based on the above reasoning, we assumed that βFS < βPS < βNS. The weighted cost
coefficient β values used in our experiments are as follows. These β values are config‐
urable on the tool and sensitivity of these values are also discussed in Sect. 5.3.

𝛽FS

(
SAFS

)
= 0.2, 𝛽PS

(
SAPS

)
= 0.5, 𝛽NS

(
SANS

)
= 1

𝛽PSNS

(
SAPSNS

)
= 0.5 or 1, 𝛽FSPSNS

(
SAFSPSNS

)
= 0.2, 0.5 or 1

In summary, the assumptions made in the conduct of our experiments are (i) (SVEC)
for SAPS < (SVEC) for SANS < (SVEC) for (SAPS, SAPSNS and SAFSPSNS) (ii)
αNS < αFS < αPS < αPSNS, αFSPSNS and (iii) αFS < βPS < βNS. The actual values of SVEC, α
and β are configurable on the tool user interface. In Sect. 5.3, we further evaluate the
threat to validity due to the possible sensitivities of the actual values used for α, β and
the extrapolation of SVEC.

In the initial case when fixed costs are incurred for engineering functionality and
variability, assuming no upfront provisioning costs and no on-boarded tenants, the
model returns the following values as shown in Fig. 4. These values are also manually
calculated for verification using the functionality engineering cost and functionality
variability engineering costs for each type of architecture. Note that the negative profits
are the same for partially-shared and hybrids due to our same assumptions of calculating
the service variability engineering cost (SVEC) for these architectures.

An Adaptability-Driven Model 403

Fig. 4. Service profits (no tenant)

We further conduct three experiments with delta variability low, high and random.
We executed each simulation 100 times recording the ROI and annualized ROI of the
service profits for all the five service architectures.

5.2 Analysis

For the case of low delta variability as shown in Fig. 5, service profits of SAFS ($1,112k)
and annualized ROI of 86 % is the highest among the service architectures as expected.
The maximum sharing of service components reduces the overall cost, while still being
able to fulfill the tenant’s low variation of requirements maximize the service profits.

Fig. 5. Low delta variability

However in the case of high proportion of new tenants with high delta variability as
shown in Fig. 6 adopting SAFS becomes the unwise decision in terms of service profits
and ROI as some tenants cannot be on-board without significant architecture changes,
resulting in reduced revenue to cover the initial engineering costs incurred. Adopting
SANS is the best decision in this case that maximizes the annualized ROI (61 %) and
service profits ($858k). Service Provider needs to think carefully if the assumption of
supporting tenants with high variability of requirements holds or not as the profitability
is entirely opposite if not. This insight also highlights the importance of Service Provider
to evaluate more factors (e.g. tenant’s variability) for service profitability in addition to
reducing cost by sharing resources.

404 O.E. Lieh and S. Jarzabek

Fig. 6. High delta variability

SPA output also contains results of tenants of random delta variability as shown in
Fig. 7. In this case, adopting either SANS with service profits ($857k) and annualized ROI
(61 %) or the hybrids achieved good results as adopting these service architectures allow
for more tenants to be on-boarded easily though there are higher initial engineering costs.
Service Provider if unsure about the variability of tenant base should base their decision
on this analysis instead. In this case, Service Provider is likely to achieve better ROI and
service profits with using SANS or SAFSPSNS. This also relates well with the fact that
although managing variability incurs early high cost, the benefits is substantial over the
long run.

Fig. 7. Random delta variability

5.3 Threats to Validity

The sensitivity of the parameters potentially impacts the simulation results. We did
further simulations varying SVEC, α and β values, while keeping to the assumptions of
(i) (SVEC) for SAPS < (SVEC) for SANS < (SVEC) for SAPS, SAPSNS and SAFSPSNS, (ii)
αNS < αFS < αPS < αPSNS, αFSPSNS and (iii) βFS < βPS < βNS. For each assumption, we
generate 100 sets of random values within the assumption constraints and conduct the

An Adaptability-Driven Model 405

experiments separately again. We observe similar trends as per our analysis and obser‐
vations with the original values of these parameters. However, we noted that the possible
ranges of SVEC, α and β values are extensive and complete validation of these values
is considered as part of our future validation work.

These experiments are based on service costs of one case study of an open source
package and the use of existing cost estimation models such as COCOMO II also have
its own level of confidence. To further validate the model and tool, we acknowledge the
need for more case studies with actual values should be compared with the simulated
values.

6 Related Works

Analysis of service profitability is an area that attracts much interest. Service profitability
is one key economic benefit for Service Providers and can be analyzed from multiple
perspectives.

One perspective of analyzing service profitability are the area of new/novel business
and pricing models that maximize revenue. Ma [10] proposes an analytical SaaS busi‐
ness model which analyzes user’s fit and exit costs that help Service Providers to increase
SaaS competitive ability. Ma and Seidmann [11] propose a pricing strategy analysis for
SaaS business model to study the competition between the SaaS and the traditional
COTS (Commercial off-the shelf) software. Gabriella and Arto [12] analyzes the rela‐
tionship between architectural practices different pricing models to maximize revenue.
Xu and Li [13] analyzes service profitability in terms of dynamic pricing mechanisms
and formulate revenue maximization problem with dynamic pricing as a stochastic
dynamic program.

Another perspective of analyzing service profitability focuses on effective service
adaptation of multiple tenants, placement of tenants and resource allocation to minimize
costs and maximize service profitability. Bikram and Abhik [14] discuss engineering
issues that can impact service profitability and propose for a more tenant-driven evolu‐
tion of a SaaS where a vendor can accommodate changes to a SaaS to meet tenant needs,
within reasonable limits. Ju [15] proposes a formal model as a bi-objective optimization
problem that attempts to maximize vendor profit and tenant functional commonality.
Mietzner et al. [16, 17] propose to adopt variability techniques to enable more flexible
late binding of service variants, customization of BPEL process with variability descrip‐
tors and Morin et al. [18] propose to use aspect techniques to weave aspects for varia‐
bility management. Kwok and Ajay [19] proposes a method for optimal placement of
tenants and instances based on their proposed multi-tenant placement model without
violating any SLA requirements of all tenants in a set of servers.

For this study, our analysis of service profitability takes into account existing works
in service pricing, engineering and provisioning and other factors to provide a more
complete perspective and tradeoffs in quantitative analysis of service profitability.

406 O.E. Lieh and S. Jarzabek

7 Conclusions and Future Works

Our proposed economic model of service profitability formalizes the interplay of
multiple factors that influence service profitability. We augmented a conceptual model
of service profitability with impact and effort formulas to conduct both qualitative and
quantitative analysis of how multiple service implementation scenarios affect service
profits. A tool interprets the model helping the Service Provider to explore a space of
decisions that affect service profitability. Our economic model accounts for factors such
as the tenant base, delta tenant base to be on-boarded in the future, tenant’s variability,
cost estimations models, service architecture and the use of variability techniques. Our
model shows how these factors affect service cost, revenue, profits and ROI. We illus‐
trated the usage of our profitability model and supporting tool with experiments
conducted on an open source package. The evaluation results provide quantitative
insight to the benefit of incurring initial cost to address variability for higher long-term
profitability. We believe this work is useful to Service Providers to make more informed
decision and help in building a business case that maximize service profitability.

In our future work, we will explore application of scientifically proven negotiating
decision and optimization models to provide a formal ground for economic models of
service profitability, suitable for evaluating in quantitative terms the impact of decisions
involved in planning SaaS adoption strategies.

References

1. Ouh, E.L., Jarzabek, S.: Understanding service variability for profitable software as a service
- service provider’s perspective. In: 26th International Conference on Advanced Information
Systems Engineering (CAiSE) (2014)

2. Ouh, E.L., Jarzabek, S.: A conceptual model to evaluate decisions for service profitability.
In: 7th International Conferences on Advanced Service Computing (2015)

3. Mili, A., Chmiel, S.F.o., Gottumukkala, R., Zhang, L.: An integrated cost model for software
reuse. In: 22nd International Conference on Software Engineering (ICSE) (2000)

4. Frakes, W., Terry, C.: Software reuse - metrics and models. J. ACM Comput. Surv. (CSUR)
28(2), 415–435 (1996)

5. Jarzabek, S., Daniel, D.: Adaptive reuse technique. http://art.comp.nus.edu.sg
6. Amazon Web Services, 3-Tier Auto-scalable Web Application Solution. http://calculator.

s3.amazonaws.com/index.html#key=calc-LargeWebApp-140323. Accessed Aug 2015
7. Apache, Apache OFBiz. https://ofbiz.apache.org/. Accessed Aug 2015
8. Poulin, J., Himler, A.: The ROI of SOA based on traditional component reuse, 2006. http://

semanticommunity.info/@api/deki/files/2729/=ROI_of_SOA.pdf
9. Nolan, A.J., Abrahão, S.: Dealing with cost estimation in software product lines: experiences

and future directions. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp. 121–135.
Springer, Heidelberg (2010)

10. Ma, D.: The business model of “Software-as-a-Service”. In: IEEE International Conference
on Services Computing (SCC) (2007)

11. Ma, D., Seidmann, A.: The pricing strategy analysis for the “Software-as-a-Service” business
model. In: Altmann, J., Neumann, D., Fahringer, T. (eds.) GECON 2008. LNCS, vol. 5206,
pp. 103–112. Springer, Heidelberg (2008)

An Adaptability-Driven Model 407

12. Gabriella, L., Ojala, A.: SaaS architecture and pricing models. In: IEEE International
Conference on Services Computing (SCC) (2014)

13. Xu, H., Li, B.: Dynamic cloud pricing for revenue maximization. In: IEEE Transactions on
Cloud Computing (2013)

14. Sengupta, B. Roychoudhury, A.: Engineering multi-tenant software-as-a-service systems. In:
3rd International Workshop on Principles of Engineering Service-Oriented Systems. ACM
(2011)

15. Ju, L., Sengupta, B.: Tenant Onboarding in Evolving Multi-tenant Software-as-a-Service
Systems. In: 19th International Conference on Web Services (ICWS) (2012)

16. Mietzner, R., Metzger, A., Leymann, F., Pohl, K.: Variability modeling to support
customization and deployment of multi-tenant-aware software as a service applications. In:
ICSE Workshop on Principles of Engineering Service Oriented Systems (PESOS) (2009)

17. Mietzner, R., Leymann, F.: Generation of BPEL customization processes for SaaS
applications from variability descriptors. In: International Conference of Services Computing
(SCC) IEEE (2008)

18. Morin, B., Barais, O., Jézéquel, J.-M.: Weaving aspect configurations for managing system
variability. In: 2nd International Workshop on Variability Modelling of Software-Intensive
Systems (VaMoS) (2008)

19. Kwok, T., Mohindra, A.: Resource calculations with constraints, and placement of tenants
and instances for multi-tenant SaaS applications. In: Bouguettaya, A., Krueger, I., Margaria,
T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 633–648. Springer, Heidelberg (2008)

20. Zhang, Y., Wang, Z., Bo, G.: An effective heuristic for on-line tenant placement problem in
SaaS. In: International Conference on Web Services (ICWS) IEEE (2010)

408 O.E. Lieh and S. Jarzabek

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2016

	An adaptability-driven model and tool for analysis of service profitability
	Eng Lieh OUH
	Jarzabek STAN
	Citation

	tmp.1527493689.pdf.4Ydsd

