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Second-order Online Active Learning and Its
Applications

Shuji Hao, Jing Lu, Peilin Zhao, Chi Zhang, Steven C.H. Hoi and Chunyan Miao

Abstract—The goal of online active learning is to learn predictive models from a sequence of unlabeled data given limited label query
budget. Unlike conventional online learning tasks, online active learning is considerably more challenging because of two reasons.
Firstly, it is difficult to design an effective query strategy to decide when is appropriate to query the label of an incoming instance given
limited query budget. Secondly, it is also challenging to decide how to update the predictive models effectively whenever the true label
of an instance is queried. Most existing approaches for online active learning are often based on a family of first-order online learning
algorithms, which are simple and efficient but fall short in the slow convergence and sub-optimal solution in exploiting the labeled
training data. To solve these issues, this paper presents a novel framework of Second-order Online Active Learning (SOAL) by fully
exploiting both the first-order and second-order information. The proposed algorithms are able to achieve effective online learning
efficacy, maximize the predictive accuracy and minimize the labeling cost. To make SOAL more practical for real-world applications,
especially for class-imbalanced online classification tasks (e.g., malicious web detection), we extend the SOAL framework by proposing
the Cost-sensitive Second-order Online Active Learning algorithm named “SOALCS ”, which is devised by maximizing the sum of
weighted sensitivity and specificity or minimizing the cost of weighted mistakes of different classes. We conducted both theoretical
analysis and empirical studies, including an extensive set of experiments on a variety of large-scale real-world datasets, in which the
promising empirical results validate the efficacy and scalability of the proposed algorithms towards large-scale online learning tasks.

Index Terms—Online Learning, Active Learning, Malicious websites detection.

F

1 INTRODUCTION

Online Learning is an active research area in machine learning
for processing large-scale learning tasks. This area has been ex-
tensively studied in literature for its high efficiency and scalability
in processing big data streams [1], [2], [3], [4], [5], [6], [7], [8],
[9]. Different from the traditional batch-based machine learning
algorithms which require the availability of all data before training
the models, online learning typically works in a sequential manner.
We take an online binary classification task as an example. At time
t, the learner only receives one instance xt from the environment
and then makes a prediction of its class label ŷt = sign(f(xt)),
where f is a classifier that maps the feature vector xt to a real
value classification score. After making the prediction, it usually
assumes that the true label yt ∈ {+1,−1} will be revealed
from the environment and then updates the classifier whenever
necessary, for example, when the leaner makes a mistake (
ŷt 6= yt). In contrast to traditional batch learning, which often
suffers from expensive re-training cost when new training data
comes, online learning avoids re-training and learns incrementally
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from data streams, which makes them much more efficient.
Although a variety of online learning algorithms have been

proposed over the past decades [10], [11], [12], [13], [14], [15],
[16], [17], [18], conventional fully supervised online learning
algorithms usually assume that the ground truth (e.g., the class
labels in classification tasks) is always available to the learner
at the end of each iteration. However, in many real applications,
the dataset is usually large and unlabeled, and manually labeling
all the instances is usually too expensive to afford meanwhile.
For example, in the social media platforms, data stream usually
comes with a high speed and volume, which makes it costly or
nearly infeasible to label all of the instances. This has raised a
challenging problem of how to minimize the number of instances
to be labeled and train a well-performed learner meanwhile (i.e.
designing effective query strategies which can automatically select
a subset of most informative instances to label).

To address this challenge, researchers have proposed a serial
of “Online Active Learning” algorithms [19], [20], [21], [22] in
recent years. A pioneering study is the “Perceptron-based active
learning” [23]. The learner in [23] decides when to query by
drawing a Bernoulli random variable Zt ∈ {0, 1} with parameter
δ/(δ+ |pt|), where |pt| is the margin value (the distance of the in-
stance to the prediction hyperplane) of xt and δ > 0 is a sampling
parameter to control the labeling budget. If and only if Zt = 1,
the learner will then place a query to ask an external oracle to give
true label of the current instance. The intuitive idea is to query the
instances nearby the hyperplane as they are harder to be correctly
predicted and thus more informative. This similar approach has
also been used by the online Passive Aggressive (PA) learners
in recent studies [7]. Despite their simplicity, these algorithms
often suffer some critical limitations. First, they often adopt first-
order based online learning algorithms as the prediction model,
whose performance is usually limited as all dimensions share same
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learning rate when the model is updated. Second, as the margin
|pt| only depends on the classifier wt, the query strategy would be
sub-optimal when the classifier wt is not precise. For example, in
the early rounds of learning, the margin value may be not accurate
as the classifier wt is not trained well with sufficient samples.

To overcome these limitations, we present a new algorithm,
Second-order Online Active Learning (SOAL), which explores
second-order online learning techniques for both training the
classifiers and forming the query strategy. Specifically, we de-
vise a novel query strategy, which enables to query the most
informative instances by exploiting both margin and second-order
confidence information, and the proposed algorithm SOAL also
takes advantages of the second-order information which enables
each dimension of the model w to be update with different and
adaptive learning rate. In addition, to tackle the issue of accuracy
evaluation metric on the imbalanced tasks, such as malicious web
sites detection [24] etc, we proposed the Cost-sensitive Second-
order Online Active Learning (SOALCS) algorithm, which aims
to maximize the sum of weighted sensitivity and specificity or
minimize the cost of weighted mistakes.

When compared with the first-order based online active learn-
ing, our proposed algorithms are different in the following as-
pects: (1) most of the existing algorithms only update a single
weight vector w during the online learning process, where not
enough information is used for effective updates. While in our
proposed algorithm, we learn not only the mean but also the
possible distribution of the w, which leads to a faster convergence
rate. Specially, we will demonstrate that our proposed algorithm
updates each dimension of the weight vector w with a different
learning rate, depending on the confidence it has on this particular
dimension; (2) existing active learning algorithms usually query
instances with the smallest distance to the decision boundary,
which however, might be misleading when the decision boundary
itself is not well trained. While in the proposed SOAL algorithm,
the variance of the distance to the decision boundary is also
considered. Consequently, the instances selected for labeling in
our proposed algorithm are more informative than those of the
existing algorithms.

To evaluate the performance of the proposed algorithm SOAL,
we conduct both theoretical analysis and empirical studies that
investigate the algorithm in terms of accuracy, parameter sensi-
tivity and scalability. Furthermore, we also apply the proposed
Cost-sensitive algorithm (SOALCS) to several malicious websites
detection datasets. Encouraging results show clear advantages of
the proposed algorithm over a family of state-of-the-art online
active learning algorithms. In summary, the main contributions of
this work are as follows:

• We propose a novel second-order based online active learning
algorithm (SOAL) for the binary classification problems, in
which the proposed query strategy considers not only the
uncertainty of the prediction but also the confidence of the
classification model.

• To tackle the imbalance problem in practice, we also
propose a novel second-order based online active learn-
ing (SOALCS) by considering different loss on different
class.

• To evaluate the performance of the proposed algorithms, we
first present theoretical analysis for the SOAL algorithm,
and then conduct empirical studies from several aspects, such
as varied query ratio, parameter sensitivity, scalability etc.

It should be noted that a short version of this work has been
published as a conference paper [25].

2 RELATED WORK

Our work is related to three major groups of studies in machine
learning literature: (i) online learning, (ii) active learning and
(iii) cost-sensitive learning.

2.1 Online Learning
Online learning has been an active research topic in machine
learning community [10], [11], [12], [13], [14], [15], [16], [26],
in which a variety of online learning models has been proposed.
Typically, based on the model updating strategy, the existing
online learning algorithms can be categorized into two main
groups: (i) first-order based online learning, where only the first-
order feature information is exploited, (ii) Second-order based
online learning, which maintains not only the first-order feature
information but also the second-order information, such as the
covariance matrix of the feature information.

In the first-order based online learning algorithms, one of
the most well-known ones is the Perceptron algorithm [27],
[28], which updates the learner by adding or subtracting the
misclassified instance with a fixed weight to the current set of
support vectors. Recently, several works also studied the first-
order based online learning algorithms by maximizing the margin
value. One pioneer work is the Relaxed Online Maximum Margin
Algorithm (ROMMA) [29], which repeatedly chooses the classi-
fier which can correctly classify the existing training instances
with a large margin. Another work is the Passive-Aggressive
algorithms (PA) [30], which updates the current model when the
current instance is misclassified or its prediction value doesn’t
reach a predefined margin value. By examining the empirical
performance of these first-order based online learning algorithms,
we can observe that the large margin algorithms can generally
outperform the Perceptron algorithm. However, the performance
of these large margin algorithms is still restricted as only the first-
order information is adopted.

In recent years, researchers have been actively designing
second-order based online learning algorithms in order to over-
come the limitations of first-order based algorithms. Gener-
ally, the performance of second-order based algorithms have
been significantly improved by exploring the parameter confi-
dence information (second-order information). One of the well-
known second-order models is the Second-Order Perceptron al-
gorithm (SOP) [31], which is usually viewed as a variant of the
whitened Perceptron algorithm. The authors explore the online
correlation matrices of the previously seen instances to achieve
the whitened effect. Later, several large margin second-order
online learning algorithms are also proposed, such as Confidence-
Weighted (CW) learning [32], which maintains a Gaussian distri-
bution over the model parameters and uses the covariance of the
parameters to guide the update of each parameter. Although CW is
promising both in theory and empirical studies, it may suffer from
its aggressive hard margin update strategy in noisy data. To tackle
this limitation, researchers have proposed improved versions, such
as the Adaptive Regularization of Weights algorithm (AROW) [33]
and Soft Confidence-Weighted algorithms [34] by employing an
adaptive regularization for each training instance. In general, the
second order algorithms can consistently converge faster and
perform better than the first-order based algorithms.
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2.2 Active Learning

The goal of active learning is to train a well-performed predictive
model by actively selecting a small subset of informative instances
whose labels will be queried. As active learning can largely reduce
the labeling cost, it has been extensively studied in the batch-based
learning scenarios [20], [21]. Existing active learning techniques
could be generally grouped into four categories: (1) uncertainty-
based query strategies [7], [22], [35], where instances with the
lowest prediction confidence are queried; (2) disagreement-based
query strategies [36], [37], [38], which query the instances on
which the hypothesis space has the most disagreement degree
on their predictions; (3) labeling the instances which could min-
imize the expected error and variance on the pool of unlabeled
instances [39] and (4) exploiting the structure information among
the instances [40]. More about batch-based active learning studies
can be found in the comprehensive survey [19], [41].

Batch-based active learning algorithms are effective in re-
ducing labeling cost in several applications, such as text clas-
sification, image recognitions and abnormal detection. However,
these algorithms typically require that all of the data should be
collected firstly before the active learning process. This makes
them infeasible in some real-world applications, such as in online
social media platforms, where data usually comes in a sequential
manner. To overcome this challenge, researchers have studied
online active learning (OAL) [2], [7], [22], [42], also known as
selective sampling, which aims to learn predictive models from
a sequence of unlabeled data given limited label query budget.
These online active learning algorithms typically adopt first-order
based query strategies, such as margin-based query strategy. This
makes the algorithms suffer from two major limitations. First,
the performance (in terms of accuracy) of these algorithms is
usually limited as most of them adopt first-order based predictive
models. Second, their active query strategies often strongly rely
on the predictive model wt, which may not be precise in the early
rounds of online learning. The work in this paper aims to tackle
these limitations by proposing a new online active learning method
going beyond the existing first-order learning approaches.

2.3 Cost-sensitive Classification

Cost-Sensitive classification, has been widely used in malicious
web detection, credit fraud detection and medical diagnosis, where
the cost of misclassify a malicious or fraud target (false-negative)
is much higher than that of a false-positive. Traditional classifica-
tion algorithms would be inappropriate since they adopt accuracy
as evaluation metric and treat the cost of a false-negative and a
false-positive equally. To overcome this limitation, researchers
have investigated a variate of cost-sensitive metrics. Two of the
most well-known algorithms are called the weighted sum of
sensitivity and specificity [43] and the weighted misclassification
cost [44]. In the past decades, several batch learning algorithms
have been proposed for these cost-sensitive metrics [45], [46],
[47]. Besides, a few cost-sensitive online learning algorithms are
also proposed recently. However, these algorithms either are based
on first-order learning algorithms [48], or assume that all the
instances are well labeled [48]. In this article, we propose a
new second-order online active learning algorithm not only to
reduce the labeling cost but also to improve the cost-sensitive
performance.

3 SECOND-ORDER ONLINE ACTIVE LEARN-
ING (SOAL)
Generally, there are two open challenges when designing an online
active learning algorithm. (i) “When to query”, i.e. how to design
an effective query strategy that can query the most informative
unlabeled examples for training. (ii) “How to update”, i.e. how to
update the learner effectively whenever a query has been placed
and the feedback is revealed to the learner. In this section, we
present a new framework of Second-order Online Active Learning
to solve both the “When to query” and the “How to update”
challenges.

3.1 Problem Formulation
In this work, we consider a typical online binary classification
task. A learner iteratively learns from a sequence of training
instances {(xt, yt) |t = 1, . . . , T}, where xt ∈ Rd is the feature
vector of the t-th instance and yt ∈ {−1,+1} is its true class
label. The goal of online binary classification is to learn a linear
classifier ŷt = sign(w>t xt), where wt ∈ Rd is the weight vector
at the t-th round.

Unlike regular supervised online learning, when receiving xt,
an online active learning algorithm needs to decide whether to
query the true label yt or not. If the algorithm decides to query the
true label, an external oracle (e.g. an expert in this task who is able
to give correct label) will be asked to give the true label. Once the
true label is revealed, the algorithm may suffer some positive loss
and adopt regular online learning techniques to update the model
wt. Otherwise, the algorithm will ignore the instance and process
the next one. In this way, online active learning aims to query
a small fraction of informative instances for the true labels and
at the same time achieve a comparable accuracy with the regular
online learning algorithms which query all of the instances for true
labels.

In this article, we assume that the classifier w follows a
Gaussian distribution [33], [34], [48], [49], i.e., w ∼ N (µ,Σ).
The values µi and Σi,i encode the model’s knowledge of and
confidence in the weight for i-th feature wi: the smaller the
value of Σi,i is, the more confident the learner is in the mean
weight value µi. The covariance term Σi,j captures interactions
between wi and wj . In practice, it is often easier to simply use the
expectation of weight vector µ = E[w] as the classifier to make
predictions.

3.2 SOAL Algorithm
The proposed algorithm SOAL mainly consists of two parts: 1)
“How to update” presents the updating rule of the classifier µ and
Σ whenever the true label of an instance is revealed; 2) “When to
query” presents the proposed second-order based query strategy
which decides when to query an unlabeled instance for the true
label. We discuss each part in detail as follows.

3.2.1 How to Update
The idea to design the learning object function is three folds: 1)
the learnt new model shall suffer small loss on the current training
instance; 2) the learnt new model shall not make too large updating
step from the previous model [49]; 3) the learnt model shall be
more confident on its prediction on the future instances which are
same or similar as the current training instance. Specifically, at the
t-th round, if the true label yt of xt is revealed, we will update the
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model to make sure that it suffers small loss on t-th instance and
has high confidence on its prediction. Formally, we want to update
the Gaussian distribution by minimizing the following objective
function

Ct(µ,Σ) = DKL(N (µ,Σ)‖N (µt,Σt)) + ηg>t µ + 1
2γx>t Σxt, (1)

The first term is to keep the new model not far away from the
previous model. The second term is to minimize the (linearized)
loss of the new model on the current example. The final term is to
minimize the variance of prediction margin value.

In Eq. (1),

DKL(N (µ,Σ)‖N (µt,Σt))

=
1

2
log

(
detΣt

detΣ

)
+

1

2
Tr(Σ−1t Σ) +

1

2
‖µt − µ‖2

Σ−1
t
− d

2
,

(2)

gt = ∂`t(µt) = −ytxt, η > 0 and γ > 0 are two positive
regularization parameters. `t(µt) = max(0, 1 − ytµTt xt) is the
hinge loss function adopted.

When `t(µt) > 0, we solve the above minimization in the
following two steps:
• Update the confidence matrix parameters:

Σt+1 = arg min
Σ
Ct(µ,Σ);

• Update the mean parameters:

µt+1 = arg min
µ
Ct(µ,Σ);

For the first step, by setting the derivative ∂ΣCt(µ,Σt+1) = 0,
we can derive the closed-form update:

Σt+1 = Σt −
Σtxtx

>
t Σt

γ + x>t Σtxt
, (3)

where the Woodbury identity is used.
For the second step, by setting ∂µCt(µt+1,Σ) = 0, we can

derive the closed-form update:

µt+1 = µt − ηΣtgt,

Since the update of the mean relies on the confidence parameter,
we try to update the mean based on the updated covariance matrix
Σt+1, i.e.,

µt+1 = µt − ηΣt+1gt, (4)

which should be more accurate than the update in Equation (4).
In order to handle high-dimensional data, we can only keep

the diagonal elements of Σ and the updating rules in Equation (3)
and (4) becomes

Σt+1 = Σt −
Σt � xt � xt �Σt

γ + (xt �Σt)>xt
, (5)

µt+1 = µt − ηΣt+1 � gt, (6)

where � denotes the element-wise multiplication.
Remark: By comparing the above updating equation with

first-order based updating rules, such as Eq. (3) in [30], we can
observe that the above updating rule assigns different feature
dimension with different learning rate via Σ, so that the less
confident weights will be updated more aggressively (the diagonal
value of Σt+1 would be big). However, the updating rules in the
first-order based algorithms [30] assign different feature dimen-
sion with same learning rate, thus less confident weights will be
updated equally as the confident weights.

3.2.2 When to Query
In the “How to Update” section, we solved the challenge of how
to update the classifier µ whenever we receive the true label yt of
xt, in this section, we propose a novel second-order based query
strategy to solve the “When to Query” challenge by considering
two factors as follows.

The first factor is the margin value |pt| = |µ>t xt|, which
represents how far the instance is away from the current classifier
hyperplane wt. The smaller the value of |pt| is, the more uncertain
the classifier is about its prediction on the instance xt, and the
instance should have a higher chance to be queried for the true
label.

This margin value has been extensively adopted in existing
online active learning algorithms [2], [7], [22]. However, we can
observe that the margin value pt is directly depending on the
precision of learned classifier µt. If µt is precise, pt would
be accurate. However, when µt is not precise, such as in the
early rounds of learning process, pt would not be precise and
thus affects the query strategy. To overcome this limitation, our
proposed query strategy not only considers this margin value pt,
but also considers a second factor which describes how confident
the model is on its prediction.

Specifically, the second factor is defined as

ct =
1

2

−η
1
vt

+ 1
γ

, (7)

where η > 0, γ > 0 are two fixed hyper-parameters and vt =
V ar[µ>t xt] = x>t Σtxt is the only variable, which models the
variance of the margin value of xt. In other words, vt characterizes
how often the instances which are similar as xt have been seen by
the classifier µ in the past t-th round. Specifically,
• when ct is small (vt is large), the classifier has not been well

trained on the instances which are similar to xt so far and it’s
necessary to place high probability to query the true label;

• when ct is large (vt is small), the classifier has been well
trained on the instances which are similar to xt so far and we
should place a low probability to query the true label yt .

By combining these two terms together, we can compute the
term

ρt = |pt|+ ct. (8)

This equation servers as a soft version of margin-based query
strategy, where the query decision not only depends on the
margin value (uncertainty), but also considers the correctness or
confidence of this predicted margin value.

There are two cases to be considered. When ρt ≤ 0, i.e. the
model is extremely not confident on the trained classifier, we
always query the label of instance no matter how large |pt| is.
Compared to the traditional query strategy [7], [23] where a large
value of |pt| always results in a small query probability no matter
how unreliable the current classifier is, our proposed strategy is
more reasonable.

When ρt > 0, i.e. the model is confident on the trained
classifier (ct is large), the margin value |pt| computed based on
the trained weight vector is reliable. In this situation, we draw a
Bernoulli random variable Zt ∈ {0, 1} of parameter δ

δ+ρt
, where

δ > 0 is a smoothing parameter. Here, ρt contains both the first-
order information pt and the second-order information vt, which
is more reliable than the margin value pt alone. Formally,
• If ρt ≤ 0, query yt;
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• Else ρt > 0, draw a Bernoulli random variable Zt ∈ {0, 1}
with Pr(Zt = 1) = δ

δ+ρt
;

– If Zt = 1, query true label yt;
– Else Zt = 0, discard xt.

Remark: By comparing to the margin-based query strategies
in previous studies [7], [22], our proposed strategy not only con-
siders the margin value pt (which describes how far the instance
is away from the classifier hyperplane), but also considers the
confidence value ct (which describes how well the classifier is
trained on the instances which are similar as current instance xt).
In precious studies, if pt is small, the margin-based query strategy
would make a query with a high probability no matter how large
ct is (the classifier is already well trained on the instances which
are similar to xt so far and querying xt is not necessary); however,
in our proposed strategy shown in Eq. (8), even pt is small, the
chance to make a query would be reduced if ct is large. Thus, our
proposed query method would be more effective than the margin-
based strategy.

Finally, Algorithm 1 summarizes the proposed algorithm.

Algorithm 1 SOAL:Second-order Online Active Learning.

Input: learning rate η; regularization parameter γ, smoothing
parameter δ.
Initialize: µ1 = 0, Σ1 = I .
for t = 1, . . . , T do

Receive xt ∈ Rd;
Compute pt = µ>t xt;
Make prediction ŷt = sign(pt);
Compute ρt = |pt|+ ct, where ct = 1

2
−η

1
vt

+ 1
γ

;
if ρt > 0 then

Draw Bernoulli random variable Zt ∈ {0, 1} of parameter
δ

δ+ρt
;

else
Zt = 1;

end if
if Zt = 1 then

Query yt ∈ {−1,+1};
Compute `t(µt) = [1− ytx>t µt]+;
if `t > 0 then

Σt+1 = Σt −
Σtxtx

>
t Σt

γ+x>t Σtxt
,µt+1 = µt − ηΣt+1gt, or

Σt+1 = Σt − Σt�xt�xt�Σt
γ+(xt�Σt)>xt

,µt+1 = µt − ηΣt+1 � gt;
end if

end if
end for

3.3 Theoretical Analysis

To be concise, we introduce two notations:

Mt = I(ŷt 6= yt), Lt = I(`t(µt) > 0, ŷt = yt).

Next we would analyze the performance of the proposed algorithm
in terms of expected mistake bound E[

∑T
t=1Mt].

Theorem 1. Let (x1, y1), . . . , (xT , yT ) be a sequence of input
examples, where xt ∈ Rd and yt ∈ {−1,+1} for all t. If the
SOAL algorithm is run on this sequence of examples, then the

expected number of prediction mistakes made is bounded from
above by the following inequality, for any vector µ ∈ Rd,

E

[
T∑
t=1

Mt

]

≤ E

[
T∑
t=1

Zt`t(µ)

]
+
Dµ + (1− δ)2‖µ‖2

ηδ
Tr(Σ−1T+1)

+
1

δ
E

∑
ρt<0

ηγvt
(γ + vt)

+
2

δ
E

∑
ρt>0

Lt

− E

[
T∑
t=1

Lt

]

where δ > 0, Dµ = maxt≤T ‖µt − µ‖2.

Remark: First, when γ = 1, E
∑
ρt<0

γvt
(γ+vt)

≤∑d
i=1 ln(1+λi), where the right-hand side is used in the Theorem

3 of [22], which implies our term is better.
Second, since

E
∑
ρt<0

γvt
(γ + vt)

≤ E
∑
t

γvt
(γ + vt)

≤ γE ln(
∣∣∣Σ−1T+1

∣∣∣),
if η =

√
(Dµ+(1−δ)2‖µ‖2)Tr(Σ−1

T+1)

γ ln |Σ−1
T+1|

, we have the following

expected mistake bound,

E

[
T∑
t=1

Mt

]

≤ E
T∑
t=1

Zt`t(µ) +
2

δ
E

∑
ρt>0

Lt

− E

[
T∑
t=1

Lt

]

+
2

δ

√
Dµ + (1− δ)2‖µ‖2

√
γTr(Σ−1T+1) ln

∣∣∣Σ−1T+1

∣∣∣.
4 COST-SENSITIVE SECOND-ORDER ONLINE AC-
TIVE LEARNING ALGORITHMS

In the algorithm SOAL 1, we proposed maximizing the accuracy in
classification problems based on the assumption that the numbers
of the instances from the two classes are roughly balanced. How-
ever, this assumption is usually hard to meet. For example, in the
abnormal detection problems, the number of abnormal instances
is usually limited. In these problems, it would be infeasible to
maximize the accuracy as a trivial learner which simply classifies
all samples as normal could still achieve a high accuracy. Thus,
more appropriate performances metric should be adopted. We
first propose to maximize the weighted sum of sensitivity and
specificity,

sum = αp ×
Tp

Tp + Fn
+ αn ×

Tn
Tn + Fp

, (9)

where Tp and Fn are the number of true positives and false
negatives, Tn and Fp denote the number of true negatives and
false positives, αp + αn = 1 and 0 ≤ αp, αn ≤ 1, which are
two parameters that controls the trade-off between sensitivity and
specificity. It should be noted that when αp = αn = 0.5, the
corresponding sum equals the accuracy metric used in balanced
datasets. Generally, we pursue a higher sum value when designing
the classification models in imbalanced datasets. An alternative
evaluation metric is to evaluate the total mis-classification cost,

cost = cp × Fn + cn × Fp, (10)
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where cp + cn = 1 and 0 ≤ cp, cn ≤ 1 are the mis-classification
cost parameters for positive and negative classes, respectively.
In general, the lower the cost value, the better the classification
performance.

Based on these two metrics, the objective of a classification
algorithm is either to maximize the sum or minimize cost as shown
in [48], [50], which can be unified into minimizing the following
objective:∑

yt=+1

θ1(ytµ · xt < 0) +
∑
yt=−1

1(ytµ · xt < 0), (11)

where 1(x) is an indicator function. When θ =
αpTn
αnTp

, the
objective function equals to maximize the sum metric, and when
θ =

cp
cn

, it equals to minimize the cost metric. And it should be
noted this objective function is not convex, thus we replace it by
its convex surrogate:

`CS(µ; (x, y))

= max (0, (θ1(y = 1) + 1(y = −1))− y(µ · x)) .
(12)

Based on the cost-sensitive loss `CS defined, we assume the
model follows a Gaussian distribution as described in Section
(3.1), and the updating rule of the model could be obtained by
minimizing the following cost-sensitive object function

CCSt (µ,Σ)

= DKL(N (µ,Σ)‖N (µt,Σt)) + ηg>t µ +
1

2γ
x>t Σxt,

where gt is the gradient of cost-sensitive loss function `CS over
µ variable.

When `CS(µt; (xt, yt)) > 0, we update the µ and Σ
iteratively by setting the derivative of CCSt over µ and Σ to zero,
respectively, and this can give us the closed-form updating rule as
follows:

Σt+1 = Σt −
Σtxtx

>
t Σt

γ + x>t Σtxt
, (13)

µt+1 = µt − ηΣt+1gt, (14)

For the high dimensional tasks, we also can adopt the diagonal
version of Σ as follows:

Σt+1 = Σt −
Σt � xt � xt �Σt

γ + (xt �Σt)>xt
, (15)

µt+1 = µt − ηΣt+1 � gt, (16)

where � denotes the element-wise multiplication.
It should be noted that there is no much difference of the

updating rules between the cost-insensitive algorithm in Section 3
and the cost-sensitive algorithm defined here, and the only differ-
ence is how the loss function is defined. In the cost-insensitive
algorithm, the loss will treat the positive and the negative equally.
While in the cost-sensitive algorithm, the false negative one would
suffer more loss such that the model can make fewer mistakes on
positive ones in future.

It should also be noted that this cost-sensitive algorithm is
fully-supervised, which makes it quite expensive to query all of the
instances labels, especially for the abnormal detection problems.
To alleviate this labeling cost, we adopt the second-order query
strategy proposed in Section (3.2).

Finally, Algorithm 2 summarizes the proposed cost-sensitive
second-order based online active learning algorithm.

Algorithm 2 SOALCS : Cost-sensitive Second-order Online Ac-
tive Learning.

Input: learning rate η; regularization parameter γ, bias pa-
rameter θ =

αpTn
αnTp

for sum and θ =
cp
cn

for cost, smoothing
parameter δ.
Initialize: µ1 = 0, Σ1 = I .
for t = 1, . . . , T do

Receive xt ∈ Rd;
Compute pt = µ>t xt;
Make prediction ŷt = sign(pt);
Compute ρt = |pt|+ ct, where ct = 1

2
−η

1
vt

+ 1
γ

;
if ρt > 0 then

Draw Bernoulli random variable Zt ∈ {0, 1} of parameter
δ

δ+ρt
else
Zt = 1;

end if
if Zt = 1 then

Query yt ∈ {−1,+1};
Compute θt = θ1(y = 1) + 1(y = −1);
Compute `t(µt) = [θt − ytx>t µt]+;
if `CSt > 0 then

Σt+1 = Σt −
Σtxtx

>
t Σt

γ+x>t Σtxt
,µt+1 = µt − ηΣt+1gt, or

Σt+1 = Σt − Σt�xt�xt�Σt
γ+(xt�Σt)>xt

,µt+1 = µt − ηΣt+1 � gt;
end if

end if
end for

5 EXPERIMENTS

5.1 Compared Algorithms and Experimental Testbed
To evaluate the proposed algorithms, we compare it with several
state-of-the-art algorithms, which are listed as follows:
• APE: the Active PErceptron algorithm [23];
• APAII: the state-of-the-art first-order Active Passive-

Aggressive algorithm [7];
• ASOP”: the state-of-the-art Second-Order Active Perceptron

algorithm [22];
• SOL”: the passive version of SOAL algorithm which queries

all of the instances;
• SORL”: the random version of SOAL algorithm with random

query strategy;
• SOAL-M”: the margin-based SOAL algorithm which adopts

the same query strategy as in APE, APAII and ASOP;
• SOAL”: our proposed Second-order Online Active Learning

in Algorithm 1.
To examine the performance of proposed algorithm, we con-

duct extensive experiments on a variety of benchmark datasets
from machine learning repositories. Table 1 shows the details of
datasets used in the following experiments. All of these datasets
can be freely downloaded from LIBSVM website 1 and UCI
machine learning repository 2.

All the compared algorithms learn a linear classifier for the
binary classification tasks (The multi-class datasets are changed
into binary datasets with one-vs-all strategy). The parameters of
each algorithm are searched from 10[−5:5] through cross validation
for all datasets. The smoothing parameter (determining the query

1. http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/
2. http://www.ics.uci.edu/∼mlearn/MLRepository.html
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TABLE 1: Summary of datasets in the experiments.

Dataset #Instances #Features

a8a 32,561 123
covtype 116,405 54
HIGGS 11,000,000 28

kddcup99 494,012 41
letter 20,000 16

magic04 19,002 10
optdigits 5,620 64
satimage 6,435 36

w8a 64,700 300

ratio) δ is set as 2[−10:10] in order to examine varied querying
ratios. All the experiments are conducted over 20 runs of different
random permutations for each dataset. All the results are reported
by averaging over these 20 runs. The algorithms are evaluated with
three metrics, accuracy, parameter sensitivity and time complexity.

All of the algorithms are implemented with C++ language, and
all of following experiments are conducted in an Ubuntu OS 64-
bit PC with Intel Core i7-4770 CPU @ 3.40GHz × 8 and 16 GB
memory.

5.2 Evaluation of Varied Query Ratio
In this experiment, we investigate the performance of proposed
algorithm SOAL with varied query ratio by setting the parameter
δ to different value. Fig. 1 summarizes the average performance
on different datasets in terms of accuracy. Based on the results, we
can make several observations.

First, in general, second-order based algorithms (SOAL-M and
SOAL) can outperform the first-order based algorithms (APE and
APAII). This is consistent with the results found in [32], [33] and
confirms the necessity of considering second-order information,
such as the co-variance matrix, to improve the predictive perfor-
mance. Second-order based Active Perceptron (ASOP) algorithm
usually performs better than the first-order based Active Percep-
tron (APE) algorithm, which is consistent with the finding in [22].
However, on half of the cases, ASOP algorithm even performs
worse than the first-order algorithm APAII, one possible reason is
that ASOP is more sensitive to noise.

Second, both the proposed algorithm SOAL and its variant
SOAL-M algorithm can consistently achieve better performance
than the random query strategy algorithm SORL. This observation
indicates that both the margin-based query strategy in SOAL-M
and our proposed query strategy in SOAL are effective in identi-
fying more informative instances to label thus can greatly reduce
the cost in labeling. This also indicates that the random query
strategy can not effectively identify the informative instances to
train the model.

Third, compared to the margin-based query strategy in SOAL-
M, our proposed strategy in SOAL can consistently achieve the
highest accuracy with varied query ratio on all of the datasets.
The reason is that we not only consider the margin value of the
instance, but also consider the confidence of model. This makes
SOAL can identify the instances on which the model has low
uncertainty on its predication and low confidence on the learned
classifier, such as in the early rounds of online learning. Besides,
we observe that the SOAL can achieve comparable performance
as SOL by querying less than 20% of the instances. It should
be noted that SOL is a fully-supervised online learning algorithm
which uses 100% of the query ratio, to make the algorithm clear,
we draw a straight line in the Fig. 1.

Last, on some datasets, for example, HIGGS and kddcup99 the
active learning algorithms SOAL even can outperform the fully-
supervised algorithm SOL. We guess that these datasets might
contain many noisy labels. It also should be noted that ASOP
algorithm performs worse when the query ratio increases on some
datasets, such as a8a, HIGGS and magic04. One possible reason
is that ASOP algorithm may suffer the overfitting issue on these
datasets.

5.3 Evaluation of Parameter Sensitivity
In the previous section, the parameters η and γ in SOAL are
searched from 10[−5:5] via cross validation. In this section, we
evaluate the sensitivity of algorithms to these parameters.

Fig. 2 shows the experiment results on a8a, covtype and
HIGGS datasets. For each dataset, x-axis and y-axis correspond to
parameters η and γ, respectively, and different colour corresponds
to different performance in terms of accuracy. From the figure,
we can observe that parameter η should be neither too small or
too large when γ is fixed. This is consistent with our theoretical
analysis in Theorem 1. When η is too small, the second term
in Theorem 1 will become the dominant term and thus the
performance decreases. When η is too large, the third term in
Theorem 1 will become dominant and thus make the performance
worse. Typically, η should be searched around 1.

In Fig. 2, we can also observe that parameter γ should be
decreased when η increases in order to achieve a high accuracy
(yellow colour). This observation is also consistent with the
theoretical analysis in Theorem 1. When keeping the other terms
fixed, we can roughly get γ ∼ 1

η2 relationship between γ and η.
In practice, we can either adopt a grid search for both the η

and γ or find the best η first followed by searching best γ around
1
η2 .

5.4 Evaluation of Scalability and Efficiency
Time complexity is usually a major concern for large-scale prob-
lems. To evaluate the scalability of the proposed algorithm SOAL,
we conducted this experiment to show the time cost corresponding
to the log of varied query ratio on three datasets in Fig. 3. Similar
observations also could be made on the other datasets.

First, as expected, the first-order based algorithms APE and
APAII are the most efficient ones among all algorithms, which
only cost less than 0.5 seconds when being trained on all of the
instances. This confirms that the first-order online learning scheme
is efficient and easy to be scalable to large scale applications. And
we also observe that the second-order based algorithms (ASOP,
SOL, SORL, SOAL-M and SOAL) typically cost more time due
to the computation of the second-order information Σ. Among
them, AOSP usually requires more time, which is almost two times
of the other second-order algorithms (SOL, SORL, SOAL-M and
SOAL). Moreover, the proposed algorithm SOAL costs more time
than its random variant SORL and the margin-based SORL-M
algorithms due to the computation of the query strategy shown in
Equation 8.

Second, compared to the passive version SOL, the time
complexity of both the random algorithm (SORL) and active
algorithms (SOAL-M and SOAL) is smaller when query ratio
is less than 100%. The reason is that we will skip updating the
model if the label of an instance is not queried. When query ratio
increases, the time cost of these algorithms slowly converges to
the SOL as expected. This indicates that the proposed algorithm
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Fig. 1: Evaluation of accuracy with respect to log of varied query ratio.
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Fig. 3: Evaluation of time cost (seconds) with respect to log of varied query ratio.

SOAL can not only reduce the labeling cost shown in Fig. 1, but
also speed up the training process by updating the model only with
the queried instance.

Third, when query ratio is around 100%, the time cost of
SOAL exceeds the one of SOL as SOAL needs extra time to
compute the query strategy. However, the extra time cost could
be almost ignored considering the high efficiency of the online
learning scheme.

5.5 Application on Malicious Web Classification
In this section, we evaluate the proposed Cost-sensitive Second-
order Online Active Learning algorithm (SOALCS) shown in
Algorithm 2. To examine its performance, we conduct experiments
on two large-scale benchmark datasets for malicious detection
problem as follows:

1) “URL” [51]: the task in URL dataset is to classify the
malicious URLs from the normal ones. The features in each
URL are composed by two parts: (a) Lexical features, the
textual properties of the URL itself (not the content of the
page), such as length of the hostname, the length of the entire
URL, the number of the dots in the URL and so on; (b) Host-
based features, such as the IP address properties, WHOIS
properties, domain name properties, Geographic properties
and so on. In the end, each URL is described by 3231961
features.

2) “webspam” [52]: this dataset is taken from a subset of the
one used in Pascal Large Scale Learning Challenge. The
web spam pages are obtained by extract the URLs from the
email spam corpora SpamArchive 3. The normal web pages
are extracted by traversing the well-known websites, such as
news, sports and so on. For each instance, we treat continuous
1 bytes as a word, and use word count as the feature value.
In the end, we obtain 254 features for each website.

It should be noted that the original URL and webspam datasets
were created in purpose to make them somehow balanced, in
which the number of malicious samples is roughly similar to the
number of normal ones. In the following experiments, we sample
two subsets of these two datasets in order to make them more
realistic, in which we randomly sample instances to make sure
that the ration between the number of positive instances and the
number of negative instances equals to the number shown in the
table. Table 2 shows the details of these two subsets, in which

3. ftp://spamarchiev.org/pub/archieves

Tp/Tn denotes the ratio of number of malicious samples over the
number of normal ones.

TABLE 2: Summary of the datasets

Dataset #Instances #Features Tp/Tn
URL 1,620,187 3,231,961 1:99

webspam 140,000 254 1:63

Based on previous evaluation, we know that the proposed
algorithm SOAL can consistently achieve the best performance
in terms of accuracy, thus here we only consider the SOAL
among the algorithms which adopt the accuracy as evaluation
metric. Besides, we also consider the following state-of-the-art
cost-sensitive algorithms:
• CSOAL [2]: the state-of-the-art first-order based Cost-

sensitive Online Active Learning algorithm, which adopts the
margin-based query strategy [7], [22] to decide when to query
the instance;

• ARCSOGD [48]: the state-of-the-art second-order based
Cost-sensitive fully-supervised Online Learning algorithm,
which queries all of the instances for labels;

• SOAL-MCS : a variant of SOALCS algorithm which adopts
the margin-based query strategy [7], [22] and the cost-
sensitive loss function defined in Eq. (12);

• SORLCS : a variant of SOALCS algorithm which adopts the
random query strategy;

• SOALCS : our proposed Cost-sensitive Second-order based
Online Active Learning method shown in Algorithm 2, which
adopts the query strategy shown in Section 3.2.2 to decide
when to query the instance and the cost-sensitive loss defined
in Eq. 12.

To make a fair comparison, all algorithms adopt the same
experimental setup. For the evaluation metric sum, we set
αp = αn = 0.5 for all cost-sensitive algorithms, while for
cost, we set cp = 0.9 and cn = 0.1. The parameter C in
CSOAL, parameters η and γ in ARCSOGD, SOALCS , SOAL-
MCS , SORLCS and SOAL are selected by cross validation from
[10−5, 10−4, . . . , 105] for each dataset. The smoothing parameter
δ in CSOAL, SOAL-MCS and SOALCS is set as 2[−10:2:10] in
order to achieve varied querying ratio.

All the experiments are conducted over 10 random permuta-
tions on each dataset. The results are reported by averaging over
these 10 runs. We evaluate the online classification performance
by three metrics: the accuracy which treats the positives and the
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Fig. 4: Evaluation of Accuracy, Sum, Cost against the varied query ratios on URL dataset.
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Fig. 5: Evaluation of Accuracy, Sum, Cost against the varied query ratios on webspam dataset.

negatives equally, the weighted sum defined in Eq. 9 and the cost
defined in Eq. 10.

By varying the δ value, we can achieve the performance of
algorithm with different query ration. Fig. 4 and Fig. 5 show the
results on datasets URL and webspam, respectively. As the feature
dimension of “URL” is too high to run the experiments in a single
PC, so second-order algorithms shown in Fig. 4 are their diagonal
versions with updating rule as describe in Eq. (15) and Eq. (16).
Based on the results, we can make several observations.

First, we observe that when we aim to achieve best accu-
racy shown in Fig. 4 (a) and Fig. 5 (a), the proposed algo-
rithm SOAL which adopts regular hinge loss can achieve the
best performance. When the query ratio is small, the proposed
cost-sensitive algorithm SOALCS can roughly achieve similar
accuracy with the SOAL algorithm. However, when the query
ratio increases, the performance of SOAL algorithm consistently
increases and achieves the best performance lastly. This indicates
that the accuracy in the imbalanced dataset could be a misleading
evaluation metric. Thus, this motivates us to investigate the other
proper metrics, such as sum and cost. It should also be noted that
the proposed SOALCS algorithm can consistently outperform the
other cost-sensitive algorithms even with accuracy as evaluation
metric, which again validates the query strategy proposed in
Section 3.2.2 is effective in querying informative instances.

Second, when we adopt the evaluation metric sum of sensitiv-
ity and specificity shown in Fig. 4 (b) and Fig. 5 (b), we observe
that cost-sensitive algorithm SOALCS , SORLCS can achieve
better performance than SOAL when the query ratio is larger than
1%. It should also be noted that first-order based cost-sensitive

algorithm CSOAL also can outperform SOAL when query ratio is
larger than 10%. These observations indicate that it’s necessary
to import cost-sensitive strategy which put a larger weight on
the malicious samples. Furthermore, it can be observed that the
second-order cost-sensitive algorithms SOALCS , SORLCS and
ARCSOGD can outperform the first-order algorithm CSOAL.
This indicates its effectiveness to consider the second-order in-
formation when designing learning models. We also observe that
the proposed algorithm SOALCS can consistently outperform
the margin-based algorithm SOAL-MCS and the random version
SORLCS . This again verifies the effectiveness of the proposed
active learning strategy.

Third, similar observations with metric cost can be made in
Fig.4 (c) and Fig. 5 (c) as the metric sum. Besides, it should
be noted that the fully-supervised cost-sensitive algorithm ARC-
SOGD can achieve the best performance in terms of both sum
and cost, however, ARCSOGD requires to query 100% of the
instances, which is costly and time consuming. For example, in the
URL dataset, we have more than 1.5 million instances and labeling
all of these instances would be extreme costly. Our proposed active
learning algorithm SOALCS can achieve comparable performance
as ARCSOGD with less than 50% query ratio.

6 CONCLUSION

This paper proposed SOAL — a framework of Second-order
Online Active Learning in order to address the open challenge of
real-life online learning from unlabeled data streams given limited
label query budget. By adopting an effective second-order online
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learning framework, we proposed to build an effective label query
strategy by carefully considering not only the prediction margin
of an incoming unlabeled instance but also the confidence of the
learner. To further tackle the cost-sensitive learning problems for
class-imbalanced applications such as malicious web detection, we
extended the SOAL framework by proposing a new cost-sensitive
and second-order online active learning algorithm SOALCS to
explicitly optimize the cost-sensitive metrics. We theoretically
analyzed the mistake bounds of the proposed SOAL algorithm
and conducted a set of extensive experiments to examine its empir-
ical effectiveness in terms of accuracy, parameter sensitivity and
scalability. We also successfully applied the proposed SOALCS
algorithm to two large-scale malicious web classification tasks.
The experimental results showed that our algorithms consistently
outperform several state-of-the-art approaches. Future work will
explore some hyper-parameter learning strategy for automatically
re-adjusting the parameters γ and η in the online learning process,
and active learning in the transfer learning domain [53], multi-task
learning [54] etc.
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APPENDIX
PROOF OF THEOREM 1

To facilitate the proof, we first present a lemma as follows.

Lemma 1. Let (x1, y1), . . . , (xT , yT ) be a sequence of input
examples, where xt ∈ Rd and yt ∈ {−1,+1} for all t. If the
SOAL algorithm is run on this sequence of examples, then the
following bound holds for any w ∈ Rd,

Zt

[
Mt(δ + |pt|) + Lt(δ − |pt|)

]
≤ 1

2η
Zt

[
‖µt − δµ‖2Σ−1

t+1
− ‖µt+1 − δµ‖2Σ−1

t+1

+‖µt − µt+1‖2Σ−1
t+1

+ δ`t(µ)

]
,

where δ > 0.

Proof. When Zt = 0, it is easy to verify the inequality in the
theorem, using the fact `t ≥ 0.

When Zt = 1, it is easy to observe that

µt+1 = arg min
µ
ht(µ)

ht(µ) =
1

2
‖µt − µ‖2

Σ−1
t+1

+ ηg>t µ.

Because ht is convex, we have the following inequality ∀µ,

0 ≤ ∂ht(µt+1)>(µ− µt+1)

=
[
Σ−1t+1(µt+1 − µt) + ηgt

]>
(µ− µt+1).

Re-arranging the above inequality will result in

ηg>t (µt+1 − µ)

≤
(
µt+1 − µt)

>Σ−1t+1(µ− µt+1

)
=

1

2

[
‖µt − µ‖2

Σ−1
t+1
− ‖µt+1 − µ‖2

Σ−1
t+1

]
− 1

2

[
‖µt − µt+1‖2Σ−1

t+1

] (17)

Now, we would provide a lower bound for g>t (µt+1 − µ),

g>t (µt+1 − µ)

= g>t (µt − µ) + g>t (µt+1 − µt)

= (Lt +Mt)(−ytx>t µt) + (Lt +Mt)ytx
>
t µ

− 1

η
‖µt+1 − µt‖2Σ−1

t+1
,

(18)

where the second equality used the facts gt = (Lt+Mt)(−ytxt)
and ∂ht(µt+1) = 0 i.e.,

Σ−1t+1(µt+1 − µt) + ηgt = 0. (19)

Combining the above equality (18) with the facts

Mt(−ytx>t µt) = Mt|ytx>t µt| = Mt|pt|
Lt(−ytx>t µt) = Lt(−|ytx>t µt|) = −Lt|pt|

ytx
>
t µ + δ`t(µ/δ) ≥ ytx>t µ + δ(1− ytx>t µ/δ) = δ,

we get the following bound for g>t (µt+1 − µ),

g>t (µt+1 − µ)

≥ (Mt|pt| − Lt|pt|) + (Lt +Mt)[δ − δ`t(µ/δ)]

− 1

η
‖µt+1 − µt‖2Σ−1

t+1

= [Mt(δ + |pt|) + Lt(δ − |pt|)]−
1

η
‖µt+1 − µt‖2Σ−1

t+1

− (Lt +Mt)δ`t(µ/δ).

(20)

Combining the above two inequalities (17) and (20), will give
the following important inequality

[Mt(δ + |pt|) + Lt(δ − |pt|)]

≤ 1

2η

[
‖µt − µ‖2

Σ−1
t+1
− ‖µt+1 − µ‖2

Σ−1
t+1
− ‖µt − µt+1‖2Σ−1

t+1

]
+

1

η
‖µt+1 − µt‖2Σ−1

t+1
+ δ`t(µ/δ)

=
1

2η

[
‖µt − µ‖2

Σ−1
t+1
− ‖µt+1 − µ‖2

Σ−1
t+1

+ ‖µt − µt+1‖2Σ−1
t+1

]
+ δ`t(µ/δ)

Replacing µ with δµ concludes the proof.

We now proof the proposed Theorem 1 as follows.

Proof. Firstly, according to the equality (19), we have

‖µt − µt+1‖2Σ−1
t+1

= η2g>t Σt+1gt

= η2(Mt + Lt)x
>
t Σt+1xt

= η2(Mt + Lt)
(
x>t Σtxt −

x>t Σtxtx
>
t Σtxt

γ + x>t Σtxt

)
= η2(Mt + Lt)

γvt
γ + vt

,
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where we used the updating rule of Σ. Plugging it into the
inequality in the Lemma 1 and re-arranging it will give

Zt

[
Mt

(
δ + |pt| −

ηγvt
2(γ + vt)

)
+ Lt

(
δ − |pt| −

ηγvt
2(γ + vt)

)]
≤ 1

2η
Zt
[
‖µt − δµ‖2Σ−1

t+1
− ‖µt+1 − δµ‖2Σ−1

t+1

]
+ δ`t(µ)

Summing the above inequality over t = 1, 2, . . . , T and using
the definition of ρt can give

T∑
t=1

Zt

[
Mt(δ + ρt) + Lt(δ + ρt − 2|pt|)

]

≤ 1

2η

T∑
t=1

Zt

[
‖µt − δµ‖2Σ−1

t+1
− ‖µt+1 − δµ‖2Σ−1

t+1

]

+ δ
T∑
t=1

Zt`t(µ)

(21)

Now, we would like to bound the right-hand side of the above
inequality. Firstly, we bound the first term as

T∑
t=1

Zt
[
‖µt − δµ‖2Σ−1

t+1
− ‖µt+1 − δµ‖2Σ−1

t+1

]
≤ ‖µ1 − δµ‖2Σ−1

2
+

T∑
t=2

[
‖µt − δµ‖2Σ−1

t+1
− ‖µt − δµ‖2Σ−1

t

]
≤ ‖µ1 − δµ‖2Tr(Σ−12 ) +

T∑
t=2

‖µt − δµ‖2Tr(Σ−1t+1 −Σ−1t )

= max
t≤T
‖µt − δµ‖2Tr

(
Σ−1T+1

)
≤ 2(Dµ + (1− δ)2‖µ‖2)Tr(Σ−1T+1)

(22)

where Dµ = maxt≤T ‖µt − µ‖2. Plugging the above upper
bound (22) into the inequality (21), we can get

T∑
t=1

Zt [Mt(δ + ρt) + Lt(δ + ρt − 2|pt|)]

≤ 1

η

(
Dµ + (1− δ)2‖µ‖2

)
Tr
(
Σ−1T+1

)
+ δ

T∑
t=1

Zt`t(µ)

(23)

When ρt > 0, using EtZt = δ/(δ + ρt), we have

E
{
Zt [Mt(δ + ρt) + Lt(δ + ρt − 2|pt|)]

}
= δE[Mt] + δE [Lt (1− 2|pt|/(δ + ρt))]

≥ δE[Mt] + (δ − 2)E[Lt].

When ρt ≤ 0, i.e.,|pt| ≤ ηγvt
2(γ+vt)

, using EtZt = 1, we have

E
{
Zt[Mt(δ + ρt) + Lt(δ + ρt − 2|pt|)]

}
≥ EMt

(
δ − ηγvt

2(γ + vt)

)
+ ELt

(
δ − ηγvt

γ + vt

)

To summarize,
T∑
t=1

E
{
Zt [Mt(δ + ρt) + Lt(δ + ρt − 2|pt|)]

}

≥ δE
[
T∑
t=1

Mt

]
+ δE

[
T∑
t=1

Lt

]
− 2E

∑
ρt>0

Lt


− E

∑
ρt<0

Mt
ηγvt

2(γ + vt)

− E

∑
ρt<0

Lt
ηγvt
γ + vt


Taking expectation of the inequality (23) and combining with

the above inequality conclude the proof.
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