
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

4-2018

Combined classifier for cross-project defect
prediction: An extended empirical study
Yun ZHANG
Zhejiang University

David LO
Singapore Management University, davidlo@smu.edu.sg

Xin XIA
Zhejiang University

Jianling SUN
Zhejiang University

DOI: https://doi.org/10.1007/s11704-017-6015-y

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
ZHANG, Yun; LO, David; XIA, Xin; and SUN, Jianling. Combined classifier for cross-project defect prediction: An extended
empirical study. (2018). Frontiers of Computer Science. 12, (2), 280-296. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4130

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/200253974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s11704-017-6015-y
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4130&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4130&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Front. Comput. Sci., 2018, 12(2): 280–296

https://doi.org/10.1007/s11704-017-6015-y

Combined classifier for cross-project defect prediction:
an extended empirical study

Yun ZHANG1, David LO2, Xin XIA 1, Jianling SUN1

1 College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China

2 School of Information Systems, Singapore Management University, Singapore 641674, Singapore

c© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract To facilitate developers in effective allocation of

their testing and debugging efforts, many software defect pre-

diction techniques have been proposed in the literature. These

techniques can be used to predict classes that are more likely

to be buggy based on the past history of classes, methods, or

certain other code elements. These techniques are effective

provided that a sufficient amount of data is available to train a

prediction model. However, sufficient training data are rarely

available for new software projects. To resolve this problem,

cross-project defect prediction, which transfers a prediction

model trained using data from one project to another, was

proposed and is regarded as a new challenge in the area of

defect prediction. Thus far, only a few cross-project defect

prediction techniques have been proposed. To advance the

state of the art, in this study, we investigated seven compos-

ite algorithms that integrate multiple machine learning clas-

sifiers to improve cross-project defect prediction. To evaluate

the performance of the composite algorithms, we performed

experiments on 10 open-source software systems from the

PROMISE repository, which contain a total of 5,305 in-

stances labeled as defective or clean. We compared the com-

posite algorithms with the combined defect predictor where

logistic regression is used as the meta classification algorithm

(CODEPLogistic), which is the most recent cross-project defect

prediction algorithm in terms of two standard evaluation met-

rics: cost effectiveness and F-measure. Our experimental re-

sults show that several algorithms outperform CODEPLogistic:
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Maximum voting shows the best performance in terms

of F-measure and its average F-measure is superior to

that of CODEPLogistic by 36.88%. Bootstrap aggregation

(BaggingJ48) shows the best performance in terms of cost ef-

fectiveness and its average cost effectiveness is superior to

that of CODEPLogistic by 15.34%.

Keywords defect prediction, cross-project, classifier com-

bination

1 Introduction

To build high quality software, developers need to invest a

considerable amount of effort in testing and debugging. How-

ever, their resources are frequently limited and thus they need

to prioritize these efforts. Software defect prediction tech-

niques to help developers prioritize testing and debugging ef-

forts have been proposed in the literature. Such a technique

identifies the software components that are more likely to be

defect-prone by constructing a predictive classification model

constructed from features such as lines of code (LOCs), code

complexity, and number of symbols [1–6]. Such predictions

can be used to optimize the allocation of testing and debug-

ging resources: more resources should be allocated to more

defect-prone modules.

Defect prediction techniques are effective when a sufficient

amount of training data is available [7]. Unfortunately, train-

ing data are frequently limited for new projects having little

or no historical bug data. For such cases, engineers need to

use data from other projects and companies [8]. Cross-project

Published in Frontiers of Computer Science -Springer-, 2018 April, Volume 12, Issue 2, Pages 280-296
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defect prediction is a strategy that trains a generalized pre-

diction model on data belonging to other projects and uses

the model to predict the defect proneness of components be-

longing to the target project [9, 10]. Recently, effort has been

invested in solving cross-project defect prediction, which is

a challenging problem because of the heterogeneity of data

taken from various projects [10].

Recently, Panichella et al. proposed a composite approach,

the combined defect predictor, referred to as CODEP, which

combines different and complementary classifiers learned by

different machine learning algorithms, for cross-project de-

fect prediction [11]. Their experimental results show that

CODEP outperforms many existing cross-project defect pre-

diction techniques. However, in the machine learning liter-

ature, many composite techniques have been proposed for

combining multiple classification models. In this study, our

objective was to investigate the applicability of existing com-

posite techniques proposed in the machine learning literature

for cross-project defect prediction and determine whether

they can outperform the state-of-the-art method for cross-

project defect prediction, namely CODEP.

We used four well-known metrics that are utilized to

evaluate the performance of a predictive algorithm, in par-

ticular in the context of defect prediction: cost effective-

ness [12–15], F-measure [14,16–18], mean average precision

(MAP) [19,20], and the area under the receiver operator char-

acteristic curve (AUC-ROC) [6, 14]. Cost effectiveness eval-

uates an algorithm’s performance for a given cost threshold,

such as a certain LOC inspection percentage. For example,

when a team has limited time and resources to inspect source

code, it is crucial to inspect the top percentage of code that

is predicted to be buggy, which can help developers discover

as many bugs as possible. In this study, we used the cost ef-

fectiveness setting proposed by Jiang et al. [3], which mea-

sures the number of bugs that can be discovered by inspecting

20% of the LOCs (NofB20). Furthermore, we also used F-

measure [14, 16–18], which is a summary measure that com-

bines precision and recall, for the evaluation. F-measure eval-

uates whether an increase in precision (recall) outweighs a

reduction in recall (precision). MAP is a single-figure mea-

sure of quality and has been shown to have particularly good

discrimination and stability properties for evaluating ranking

techniques. AUC-ROC measures the probability that a ran-

domly chosen defective entity ranks higher than a randomly

chosen clean entity.

In this study, we compared the composite algorithms

against the best variant of CODEP, which uses logistic re-

gression as a meta-learner, referred to as CODEPLogistic. We

evaluated the algorithms on defect datasets from ten projects

(ant, camel, ivy, jedit, log4j, lucene, poi, prop, tomcat, xalan),

which are part of the PROMISE data repository. The datasets

contain a total of 5,305 instances together with their la-

bels, i.e., defective or clean. The experimental results show

that several of the composite algorithms outperform CODEP

where logistic regression is used as the meta classification

algorithm (CODEPLogistic) in terms of F-measure and cost ef-

fectiveness. Among them, the performance of maximum vot-

ing (Max) is best in terms of F-measure, and achieves an aver-

age score of 0.412, which improves on that of CODEPLogistic

by 36.88%; the performance of BaggingJ48 is the best in

terms of cost effectiveness, achieving an average NofB20

score of 40.6, which improves on that of CODEPLogistic by

15.34%.

This paper presents an extension of a preliminary study

published in a research paper presented at a conference [21].

The preliminary paper is extended in various ways: 1) we

describe the process of the defect prediction techniques and

list the features used in our study; 2) we examine the cost

effectiveness of the composite algorithms when different per-

centages of LOCs are inspected; 3) we add two evaluation

metrics, MAP and AUC-ROC, in the experiments and re-

sults section; 4) we add a baseline approach for answering

research question 1 (RQ1), which is a common approach for

cross-project defect prediction; 5) we add a Discussion sec-

tion, in which the performance of the composite algorithms

on NASA datasets is discussed, the performance of CODEP

with meta classifier J48 is examined, the time complexity of

the composite algorithms is analyzed, and threats to valid-

ity are introduced; 6) we expand the related work section to

include more classical defect prediction work; and 7) we im-

prove the exposition by adding more examples to make the

paper clearer for readers.

In summary, the main contributions of this paper are as

follows.

1) We examine the effectiveness of seven different com-

posite algorithms proposed in the machine learning lit-

erature for cross-project defect prediction in terms of

cost effectiveness, F-measure, AUC-ROC, and MAP.

2) We describe experiments conducted using 10 defect

datasets to demonstrate the effectiveness of the algo-

rithms and highlight promising algorithms, the perfor-

mance of which is better than that of CODEP and the

common approach proposed by Zimmermann et al. [9],

denoted by LR.
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The remainder of the paper is organized as follows. We de-

scribe several classical classification algorithms and CODEP

in Section 2. We then present a number of composite algo-

rithms that can be used to combine multiple classical classi-

fication algorithms in Section 3. We present our experiments

and their results in Section 4. Section 5 discusses some is-

sues about the performance, efficiency, and threats to validity

of the composite classifiers in defect prediction. We discuss

related work in Section 6. We conclude and mention future

work in Section 7.

2 Background

In this section, we first briefly introduce the steps that de-

fect prediction techniques have in common. We then present

several classical classification techniques used in the com-

posite algorithms that we investigated in this work. Finally,

we describe a state-of-the-art cross-project defect prediction

approach named CODEP.

2.1 Defect prediction techniques: common steps

A defect prediction technique learns a prediction model from

a set of classes/files/modules that are known to be defective or

clean. The steps that are common to such techniques include

the following.

• Training data extraction Collect classes/files/modules

that are defective or clean. These classes can be identified by

manual code inspection, or, if a project has been ongoing for

some time, by mining the bug tracking and version control

systems of the project.

• Feature extraction Extract the needed features from

the training set of defective and clean classes/files/modules.

Various features have been used in many previous defect

prediction studies. Table 1 [22–27] shows the 20 features

used in our study, which were proposed by Jureczko and

Madeyski [28].

•Model training phase Train a classification model with

a particular algorithm based on the extracted features.

• Model testing phase Test the model on new

classes/files/modules, for which the defect proneness needs

to be predicted. First, the values of relevant features need to

be extracted from these new classes/files/modules. These val-

ues serve as inputs to the trained model, which then predicts

whether the new classes/files/modules are defective or not.

2.2 Classical classification techniques

Several machine learning techniques have been used to pre-

dict defect-prone source code classes/files/components, such

as logistic regression [7, 29, 30], radial basis function net-

work (RBF network) [31], multi-layer perceptron (MLP)

[32], Bayesian network (BN) [33], decision trees [34], and

decision tables (DTs) [5].

Table 1 Extracted features

Attribute Description

wmc Number of methods used in a given class [22]

dit Maximum distance from a given class to the root of an inheritance tree [22]

noc Number of children of a given class in an inheritance tree [22]

cbo Number of classes that are coupled to a given class [22]

rfc Number of distinct methods invoked by code in a given class [22]

lcom Number of method pairs in a class that do not share access to any class attributes [22]

lcom3 Another type of lcom metric proposed by Henderson-Sellers [23]

npm Number of public methods in a given class [24]

loc Number of LOCs in a given class [24]

dam Ratio of the number of private/protected attributes to the total number of attributes in a given class [24]

moa Number of attributes in a given class that are of user-defined types [24]

mfa
Number of methods inherited by a given class divided by the total number of methods that can be accessed

by the member methods of the given class [24]

cam
Ratio of the sum of the number of different parameter types of every method in a given class to the product of the

number of methods in the given class and the number of different method parameter types in the entire class [24]

ic Number of parent classes to which a given class is coupled [25]

cbm Total number of new or overwritten methods to which all inherited methods in a given class are coupled [25]

amc Average size of methods in a given class [25]

ca Afferent coupling, which measures the number of classes that depends on a given class [26]

ce Efferent coupling, which measures the number of classes on which a given class depends [26]

max_cc Maximum McCabe’s cyclomatic complexity (CC) score [27] for methods in a given class

avg_cc Arithmetic mean of McCabe’s CC scores [27] for methods in a given class
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In this study, we investigated six classification algorithms,

namely, logistic regression, BN, RBF network, MLP, alter-

nating decision tree (ADTree), and DT. We used these classi-

fication algorithms to construct various underlying classifiers

for our composite classification algorithms. We chose these

six because they were successfully used for defect prediction

in many previous studies [1,5,29,31,32]. Furthermore, these

classifiers belong to four different families: regression func-

tions, neural networks, decision trees, and rule models. We

describe these six classification algorithms succinctly in the

following paragraphs.

2.2.1 Logistic regression

Logistic regression [35] models the relationship between fea-

tures and labels as a parametric distribution P(y|x), where

y refers to the label of a data point and x refers to the data

point represented as a set of features. The parameters of this

distribution are directly estimated from the training data. Let

x = {x f1 , x f2 , . . . , x fm} denote the vector representation of the

features of a data point x, x fi denote the value of the i-th fea-

ture of x, and W = {w0,w1,w2, . . . ,wm} denote the weight

vector associated with the features in x, where w0 is a bias

parameter and wi, i ∈ {1, 2, . . . ,m} is the weight of the i-th

feature of x, i.e., x fi . Consider binary classification, where y

takes two values, 0 or 1 (in our case, 0 represents clean and 1

represents defective). We derive p(y = 1|x) and p(y = 0|x) as

p(y = 1|x) =
1

1 + exp(w0 +
∑m

i=1 wi × x fi )
, (1)

p(y = 0|x) =
exp(w0 +

∑m
i=1 wi × x fi )

1 + exp(w0 +
∑m

i=1 wi × x fi )
. (2)

To evaluate the label of a new instance xnew, we can com-

pute ratio(xnew) = p(y=1|xnew)
p(y=0|xnew) . If ratio(xnew) > 1, we predict

the label of xnew as 1; else, the predicted label is 0. The main

learning task for logistic regression is to estimate the param-

eter W. Various methods can be used for this purpose, such

as gradient ascent.

2.2.2 Bayesian network

BN is a graphical model of probabilistic relationships repre-

senting the input feature space and label space [36]. It is a

directed acyclic graph (DAG) and each node in a BN repre-

sents a feature (in our case, one of the features in Table 1) or

a label (in our case, defective or clean). A directed edge be-

tween two nodes denotes that there is a causal relationship be-

tween them. During the model training phase, BN constructs

a Bayesian network from the training set. Then, during the

prediction phase, this network is used to predict the label of

a new unlabeled instance.

2.2.3 Radial basis function network

An RBF network is an artificial neural network that uses ra-

dial basis functions as activation functions [37]. It typically

contains three different layers: an input layer, a hidden layer

with a non-linear RBF activation function, and a linear output

layer. The output of the network is a linear combination of the

radial basis functions of the inputs and neuron parameters.

2.2.4 Multi-layer perceptron

MLP is an additional type of artificial neural network model,

which is trained using a supervised learning technique, called

a back-propagation algorithm, which maps sets of input data

to a set of appropriate outputs. An MLP consists of multi-

ple layers of nodes in a directed graph: one input layer, one

output layer, and one or more hidden layers [11]. The output

of a layer is used as the input of the nodes in the subsequent

layer. MLP can distinguish data that are not linearly separa-

ble, which is an improvement on the standard linear percep-

tron.

2.2.5 Alternating decision trees

An ADTree consists of a tree structure with decision nodes

and prediction nodes in an alternating order. Decision nodes

specify conditions (e.g., f eature1 < 0.5) and each is con-

nected to two prediction nodes, one of which corresponds to

the case where the condition is evaluated as true and the sec-

ond to the case where the condition is evaluated as false. A

prediction node contains a single decimal value. An instance

(in our case, a class) is classified by an ADTree by finding

paths in the tree from the root node to leaf nodes, where all

the decision nodes in between the root and the leaf nodes

are evaluated as true based on the feature values of the in-

stance. The values of the in-between prediction nodes along

the corresponding paths are then summed. This sum is used

to determine the class label (in our case, defective or clean)

of an instance; i.e., if the sum is positive, then an instance is

defective, and otherwise it is clean.

2.2.6 Decision table

A DT can be regarded as an extension of a one-valued deci-

sion tree [35]. It is a rectangular table, the columns of which

are features and the rows sets of decision rules. Each decision

rule consists of two parts: (i) a pool of conditions that are

linked through “and” and “or” logical operators and (ii) an
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outcome that reflects the classification of an instance accord-

ing to the corresponding rule into one of the class labels (in

our case, defective or clean). In order to eliminate equivalent

rules and reduce the likelihood of over-fitting, DT attempts to

find a good subset of features by running a feature reduction

algorithm.

2.3 Combined defect predictor (CODEP)

CODEP is a two-level composite algorithm that predicts the

label of an instance, i.e., it predicts whether a class is de-

fective or clean [11]. On the first level, CODEP builds six

underlying classifiers on a training set. These six classifiers

are built by running each of the six classical classification al-

gorithms described in Section 2. Then, the confidence scores

output by each classifier on each instance in the training set

are collected to create a new dataset. On the second level, an-

other classifier is built on the new dataset, which is referred

to as the meta classifier. In this study, we used logistic regres-

sion as the meta classifier, since Panichella et al. showed that

its performance is the best. To predict the label of an instance,

first CODEP outputs the confidence scores of the six underly-

ing classifiers, and then, these confidence scores are used as

input to the meta classifier to predict the label of the instance.

3 Composite algorithms

Panichella et al. showed that the composite algorithm

CODEP that they proposed outperforms many other ap-

proaches [11]. On the basis of their work, we investigated

several other composite algorithms proposed in the machine

learning literature, aiming at finding one or more that per-

form better than CODEP. The following subsections provide

a detailed description of the composite algorithms for cross-

project defect prediction that we investigated in this study.

3.1 Overall framework

Figure 1 presents the overall framework, which describes the

usage of the composite algorithms for cross-project defect

prediction. The framework contains two phases: model build-

ing and prediction. In the model building phase, our goal is

to build a composite classifier by leveraging several underly-

ing classifiers built using one or more of the classical classi-

fication algorithms presented in Section 2. In the prediction

phase, this combined classifier is used to predict whether a

new instance, i.e., a class/file/component, is defect-prone or

not.

Our framework first extracts features from training in-

stances (Step 1©). Then, it applies a feature selection tech-

nique to select a subset of relevant features to further improve

the prediction performance (Step 2©). Using these selected

features, we next construct a composite prediction model by

combining several underlying classifiers (Step 3©). We inves-

tigated various composite classification techniques, includ-

ing average voting (Ave), Max, CODEPLogistic, BaggingJ48,

BaggingNaive, BoostingJ48, BoostingNaive, and Random For-

est (RF). These techniques are used to create composite clas-

sification models that can process an instance and predict

whether it is defective or not based on its features.

Fig. 1 Proposed overall cross-project defect prediction framework

After the composite classifier has been built, in the predic-

tion phase, it is used to predict whether a new instance is de-

fective or not. From each such new instance, our framework

first preprocesses and extracts features (Step 5©), and then

represents them by using the features selected in the model

building phase (Step 6©). Next, these features are input into

the composite classifier in the classifier application step (Step
7©). Finally, the classifier outputs the prediction result: defec-

tive or clean (Step 8©).

3.2 Average voting

Ave is a voting method that combines confidence scores from

different underlying classifiers [35]. We used the six classi-
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cal classification algorithms described in Section 2 to build

the underlying classifiers. Each underlying classifier outputs

a confidence score, which ranges from 0 to 1, for an instance.

In total, we obtained six confidence scores, which correspond

to the six underlying classifiers. Next, Ave averages the six

confidence scores and outputs the final confidence score (Ave

score), which also ranges from 0 to 1. To decide whether an

instance is of a particular class label (in our case, defective),

we compare the Ave score with 0.5. If it is larger than 0.5,

then we predict it as defective; else, it is clean. For example,

consider an instance in a project where the scores computed

by the six underlying classifiers are 0.60, 0.90, 0.40, 0.55,

0.73, and 0.81, respectively; then, the confidence score of

Ave is 0.67. Since 0.67 > 0.5, we predict it as defective.

3.3 Maximum voting

Max is also a voting method, which outputs the maximum

confidence scores of different underlying classifiers [35]. We

used the same six classical classification algorithms to build

the same the underlying classifiers as for Ave. Unlike average

voting, Max outputs the confidence score of an instance by

selecting the maximum confidence score of the six underly-

ing classifiers. For example, consider an instance in a project

where the scores computed by the six underlying classifiers

are 0.60, 0.90, 0.40, 0.55, 0.73, and 0.81, respectively; then

the confidence score of Max is 0.9. Since it is larger than 0.5,

we predict the instance as defect-prone.

3.4 Bagging

Bootstrap aggregation (Bagging) [38] is a robust ensemble al-

gorithm, which can be combined with other supervised learn-

ing algorithms to improve the overall performance and avoid

overfitting. Given a dataset D of size n, Bagging first per-

forms bootstrap sampling from D, i.e., random sampling with

replacement, to generate m new datasets D′i , i ∈ {1, 2, . . . ,m}.
The size of D′i is denoted by n′i , and n′i < n. Next, Bagging

trains a weak classifier (also called an underlying classifier)

from each dataset D′i . For the prediction phase, all the out-

puts of m classifiers are combined into a single prediction us-

ing majority voting. In this study, we used decision tree (J48)

and naive Bayes as the underlying classifiers of Bagging, de-

noted by BaggingJ48 and BaggingNaive, respectively. We note

that Bagging does not combine classifiers built by different

basic algorithms, but rather classifiers built by one algorithm

trained with different training subsets, which means it does

not use the six basic classifiers described in Section 2.

3.5 Boosting

Boosting [38] is used to generate strong classifiers from weak

classifiers. It can be combined with many other supervised

learning algorithms to improve overall accuracy and perfor-

mance. Boosting generates and calls a new weak classifier in

a series of rounds. For each round t, it updates the weights

of instances in a dataset, which indicates their different levels

of importance. In general, instances that have been misclassi-

fied in the previous round are assigned a higher weight, while

instances that have been correctly classified are assigned a

lower weight. This re-weighting strategy causes the weak

classifier in the current round to focus more on the misclas-

sified instances. In this study, as for Bagging, we use deci-

sion tree (J48) and naive Bayes as the underlying classifiers

of Boosting, denoted as BoostingJ48 and BoostingNaive, re-

spectively. Similar to Bagging, Boosting also does not use the

six basic classifiers described in Section 2; for BoostingJ48,

it trains J48 many times with weighted training instances to

generate strong classifiers.

3.6 Random forest

RF [39] combines an ensemble of decision trees. It takes ad-

vantage of both bagging and random feature selection for the

tree building; each decision tree is built using a bootstrap

sample of the data, and RF selects a subset of features ran-

domly to split at each node when growing a tree instead of

using all the features. Multiple decision trees are learned and

the output of the decision trees is combined into a single pre-

diction using majority voting.

4 Experiments and results

In this section, we evaluate the effectiveness of the seven

composite algorithms and CODEP. The experimental envi-

ronment was an Intel(R) Core(TM) T6570 2.10 GHz CPU,

4GB RAM desktop computer running Windows 7 (32 bits).

We first present our experimental setup and evaluation met-

rics in Sections 4.1 and 4.2, respectively. We then present

three research questions and the experimental results that an-

swer them in Section 4.3.

4.1 Experimental setup

We evaluated the composite algorithms on defect datasets

from ten Java projects, i.e., ant, camel, ivy, jedit, log4j,

lucene, poi, prop, tomcat, and xalan, that belong to the

Promise repository. The ten projects are all in the Java do-
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main and contain the same set of features as that listed in Ta-

ble 1, which improves the feasibility of cross-project defect

prediction. Each dataset contains a set of classes labeled as

defective or clean and their corresponding metrics, e.g., LOC

or the Chidamber and Kemerer (CK) metric; see Table 1. Ta-

ble 2 summarizes the statistics of each project. The columns

correspond to the project name (Name), the release version

of each project (Release), the total number of classes in each

project (Instances), the number of defective classes in each

project (Defective Instances), and the percentage of defective

classes (%).

Table 2 Software projects used in our study

Project Release Instances
Defect-prone

instances
Percentage/%

ant 1.7 745 166 22

camel 1.6 965 188 19

ivy 2 352 40 11

jedit 4 306 75 25

log4j 1 135 34 25

lucene 2.2 247 144 58

poi 2 314 37 12

prop 6 660 66 10

tomcat 6 858 77 9

xalan 2.4 723 110 15

Our experiments were performed in the context of cross-

project defect prediction, which means we trained a model

on one dataset and applied the model to another dataset. Our

experiments proceeded in ten iterations. In the first iteration,

we took classes from the first project “ant” as a testing set and

combined instances from the other nine projects as a train-

ing set. We learned a model from the training set and used it

to predict the defect labels of instances in the testing set. In

the second iteration, we took instances of the second project

“camel” as a testing set and combined the instances of the

other projects as a training set. We repeated the same process

eight additional times, each time taking a different project as

the testing set. We report the average performance of a pre-

diction technique across the ten iterations.

We used the implementations of the six classification tech-

niques and seven composite algorithms in Weka [40]. For

Ave, Max, CODEP, and RF, we used their default settings

in Weka. For the bagging and boosting techniques, we set the

number of iterations to ten.

4.2 Evaluation metrics

We used four performance metrics for our evaluation: cost

effectiveness, F-measure, MAP, and AUC-ROC.

4.2.1 Cost effectiveness

Cost effectiveness is widely used in defect prediction as an

evaluation metric [12–14]. It aims at maximizing benefits un-

der the condition of incurring the same amount of cost. In the

context of defect prediction, the cost is the LOCs inspected

and the benefit is the number of buggy classes found. The cost

effectiveness setup we used is the same as that used by Jiang

et al. [3]. Our objective was to count the number of buggy

classes found when a developer inspects the first 20% of the

LOCs. This number is referred to as NofB20.

To evaluate cost effectiveness, we sort instances in the test

data based on their probabilities of being defective. For each

instance, a prediction technique outputs not only its predicted

defect label (i.e., defective or clean) but also the probability

that the instance is defective. We then simulate an inspection

process where a developer examines the instances serially,

starting from those that are the most likely to be defective. We

stop the process when 20% of the LOCs have been inspected

and output the number of buggy classes that are identified.

This number is the NofB20 cost effectiveness score. An in-

crease in the cost effectiveness score indicates that a devel-

oper can discover more bugs when inspecting a certain num-

ber of LOCs.

4.2.2 F-measure

F-measure, which is the harmonic mean of precision and re-

call, is a standard and widely used measure for evaluating

classification algorithms [35]. There are four possible out-

comes for an instance in a target project: an instance can

be classified as buggy when it truly is buggy (true positive,

TP), as buggy when it is in fact clean (false positive, FP), as

clean when it is in fact buggy (false negative, FN), as clean

when it truly is clean (true negative, TN). Based on these pos-

sible outcomes, precision, recall, and F-measure are defined

as follows.

• Precision: the proportion of instances that are correctly

labeled as buggy among those labeled as buggy.

Precision = T P/(T P + FP). (3)

• Recall: the proportion of buggy instances that are cor-

rectly labeled.

Recall = T P/(T P + FN). (4)

• F-measure: a summary measure that combines precision

and recall; it evaluates whether an increase in precision (re-

call) outweighs a reduction in recall (precision)

F-measure =
2 × Precision × Recall

Precision + Recall
. (5)
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There is a trade-off between precision and recall. One can

increase precision by sacrificing recall (and vice versa). The

trade-off causes difficulties in comparing the performance of

several prediction models by using precision or recall alone

[35]. For this reason, we compared the prediction results us-

ing F-measure, which is a harmonic mean of precision and

recall. F-measure is frequently used to judge whether an in-

crease in precision outweighs a loss in recall (and vice versa).

This follows the setting used in many classification and de-

fect prediction studies [3, 17] and various software analytics

studies [41, 42].

4.2.3 Mean average precision

MAP is a single-figure measure of quality and has been

shown to have especially good discrimination and stability

properties to evaluate ranking techniques [19, 20, 43]. For a

project p, when a classifier returns a sorted list of instances,

the average precision is defined as the mean of the preci-

sion values obtained for the different sets of top k instances

that were retrieved before each defect instance was retrieved,

which is computed as

AvgP(p) =

∑M
j=1 P( j) × Rel( j)

Defect instances in p
. (6)

In the above equation, M is the number of top ranked in-

stances a developer needs to inspect, Rel( j) indicates whether

the instance at position j is defect-prone or not, and P( j) is

the precision at the given cut-off position j and is computed

as

P( j) =
Defect instances in top j positions

j
. (7)

Then, the MAP for a set of projects Ps is the mean of the

average precision scores for all the projects:

MAP =

∑
p∈Ps AvgP(p)

| Ps | . (8)

We used MAP to measure the average performance of the

composite classifiers. The higher the MAP value, the better

is the classifiers performance.

4.2.4 Area under the receiver operator characteristic curve

ROC is a non-parametric method used to evaluate models. It

plots the precision/recall values reached for all possible cut-

off values ranging within the interval [0;1]. Hence, it is in-

dependent of the cutoff, unlike the precision and recall met-

rics [6]. A curve of the false positive rate is plotted against the

true positive rate; the best possible model is that with a ROC

curve close to the line y = 1, while a random model will be

close to the diagonal y = x. To show a single scalar value

that facilitates the comparison across models, we report the

AUC-ROC values. The AUC-ROC value measures the prob-

ability that a randomly chosen defective entity ranks higher

than a randomly chosen clean entity. An area of 1 represents

a perfect classifier, whereas for a random classifier an area

of 0.5 is expected. We used AUC-ROC as the performance

metrics, because the traditional evaluation metrics, namely,

precision and recall, are sensitive to the thresholds used as

cutoff parameters [6, 14].

4.3 Research questions

We were interested in answering the following research ques-

tions.

RQ1 How effective are the seven composite algorithms?

How much improvement can these composite algorithms

achieve as compared to CODEPLogistic and LR?

•Motivation We needed to investigate the effectiveness of

the seven composite algorithms and compare them against

CODEPLogistic [11] and LR in terms of cross-project defect

prediction. The answer to this research question would shed

light on whether and to what extent the combined algorithms

improve on CODEPLogistic, which is the state-of-the-art cross-

project defect prediction technique, and on LR.

• Approach To answer this research question, we computed

the F-measure, NofB20, MAP, and AUC-ROC scores of the

seven composite algorithms and CODEPLogistic when they

were applied to ten datasets from the PROMISE repository.

We then compared the results achieved by each of the seven

combined algorithms with the results of CODEPLogistic. We

also compared the results with the LR approach proposed by

Zimmermann et al. [9], who built a logistic regression model

from other projects and tested its effectiveness for classifying

elements as defect-prone in a current project.

• Results Table 3 presents the F-measure scores of

CODEPLogistic and LR as compared with those of Ave, Max,

BaggingJ48, BaggingNaive, BoostingJ48, BoostingNaive, and

RF. The F-measure scores of CODEPLogistic vary from 0.053

to 0.435. Across the ten datasets, the average F-measure of

CODEPLogistic is 0.301. In Table 3, we can observe that the

average F-measure scores of Max, BoostingJ48, and RF are

0.412, 0.302, and 0.308, respectively, which are superior to

the average F-measure of CODEPLogistic by 36.88%, 0.33%,

and 2.33%, respectively. The F-measure scores of LR vary

from 0.0 to 0.492. Across the ten datasets, the average F-

measure of LR is 0.217, which is lower than that of all the

composite algorithms and CODEPLogistic. Max achieves the
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best F-measure scores: its F-measure scores vary from 0.286

to 0.608 and the average score is 0.412. Meanwhile, the

other four composite algorithms that we investigated in this

study do not perform as well as CODEPLogistic in terms of F-

measure. The average F-measure scores of Ave, BaggingJ48,

BaggingNaive, and BoostingNaive are 0.299, 0.245, 0.298, and

0.29, respectively, which are lower than that of CODEPLogistic

by 0.67%, 22.86%, 1.01%, and 1.01%, respectively. To

the best of our knowledge, Max achieves higher F-measure

scores than other composite algorithms because the datasets

we used in the experiments are imbalanced, and Max outputs

the confidence score of an instance by selecting the maximum

confidence score of the six underlying classifiers; therefore,

it tends to predict the clean instances as defective instances,

and can achieve a high recall score.

Table 4 presents the NofB20 scores of CODEPLogistic

and LR as compared with those of Ave, Max, BaggingJ48,

BaggingNaive, BoostingJ48, BoostingNaive, and RF. The

NofB20 scores of CODEPLogistic vary from 8 to 88. Across

the 10 datasets, the average NofB20 score of CODEPLogistic

is 35.2. In Table 4, we can see that the average NofB20 scores

of Ave, Max, BaggingJ48, BoostingJ48, and RF are 38.1, 37.1,

40.6, 35.4, and 37.2, respectively, which are superior to the

NofB20 score of CODEPLogistic by 8.24%, 5.40%, 15.34%,

0.57%, and 5.68%, respectively. The NofB20 scores of LR

vary from 7 to 87. Across the 10 datasets, the average NofB20

score of LR is 31.3, which is lower than that of all the com-

posite algorithms and CODEPLogistic. BaggingJ48 achieves the

highest NofB20 score; its NofB20 scores vary from 6 to 92

and the average score is 40.6. Meanwhile, the other two com-

posite algorithms that we investigated in this study do not

perform as well as CODEPLogistic in terms of NofB20. The

average scores of BaggingNaive and BoostingNaive are 34.4 and

22.8, respectively, which are lower than that of CODEPLogistic

by 2.33% and 54.39%, respectively.

Table 5 presents the AUC-ROC scores of CODEPLogistic

and LR as compared with those of Ave, Max, BaggingJ48,

BaggingNaive, BoostingJ48, BoostingNaive, and RF. The AUC-

ROC scores of CODEPLogistic vary from 0.633 to 0.82.

Across the ten datasets, the average AUC-ROC score of

CODEPLogistic is 0.752, and the average AUC-ROC scores of

Ave and Max are close to the results of CODEPLogistic. The

AUC-ROC scores of LR vary from 0.617 to 0.805. Across the

10 datasets, the average AUC-ROC score of LR is 0.723 and

the average AUC-ROC scores of Ave, Max, and BaggingNaive

are superior to those of LR by 3.18%, 3.6%, and 0.69%, re-

spectively.

Table 6 presents the MAP scores of CODEPLogistic and

LR as compared with those of Ave, Max, BaggingJ48,

BaggingNaive, BoostingJ48, BoostingNaive, and RF. Across the

ten datasets, the MAP score of CODEPLogistic is 0.169 and

the MAP score of LR is 0.154. In Table 6, we can see that the

MAP scores of Ave and Max are 0.173 and 0.171, respec-

tively, which are superior to the MAP scores of CODEPLogistic

Table 3 F-measure scores of the seven composite algorithms and baseline approaches

Algorithms ant camel ivy jedit log4j lucene poi prop tomcat xalan Average

Ave 0.343 0.112 0.444 0.516 0.205 0.066 0.237 0.222 0.44 0.402 0.299

Max 0.554 0.306 0.439 0.608 0.5 0.319 0.286 0.295 0.38 0.439 0.412

CODEPLogistic 0.321 0.127 0.43 0.435 0.293 0.053 0.296 0.239 0.415 0.404 0.301

BaggingJ48 0.284 0.127 0.27 0.441 0.205 0.115 0.217 0.184 0.234 0.376 0.245

BaggingNaive 0.421 0.188 0.383 0.492 0.211 0.116 0.254 0.171 0.379 0.365 0.298

BoostingJ48 0.343 0.22 0.362 0.397 0.356 0.231 0.282 0.202 0.306 0.322 0.302

BoostingNaive 0.407 0.183 0.414 0.481 0.211 0.128 0.229 0.168 0.396 0.366 0.298

RF 0.43 0.175 0.313 0.434 0.293 0.186 0.267 0.217 0.392 0.376 0.308

LR 0.283 0.04 0.367 0.492 0.0 0.079 0.217 0.105 0.368 0.222 0.217

Table 4 NofB20 scores of the seven composite algorithms and baseline approaches

Algorithms ant camel ivy jedit log4j lucene poi prop tomcat xalan Average

Ave 87 73 13 82 15 33 8 13 30 27 38.1

Max 79 77 13 81 15 33 6 11 32 24 37.1

CODEPLogistic 88 77 12 23 15 76 8 12 22 19 35.2

BaggingJ48 80 92 10 58 12 82 6 11 27 28 40.6

BaggingNaive 93 76 13 0 20 80 6 10 24 22 34.4

BoostingJ48 66 74 10 26 20 101 4 14 19 20 35.4

BoostingNaive 54 42 7 31 15 26 3 7 23 20 22.8

RF 69 64 11 65 16 84 4 9 25 25 37.2

LR 81 87 11 15 18 26 7 13 31 24 31.3
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Table 5 Area under curve-receiver operating characteristic scores of the seven composite algorithms and baseline approaches

Algorithms ant camel ivy jedit log4j lucene poi prop tomcat xalan Average

Ave 0.811 0.63 0.813 0.773 0.824 0.675 0.649 0.681 0.815 0.786 0.746

Max 0.804 0.623 0.814 0.768 0.841 0.687 0.651 0.702 0.813 0.782 0.749

CODEPLogistic 0.798 0.633 0.82 0.769 0.798 0.68 0.709 0.701 0.816 0.796 0.752

BaggingJ48 0.684 0.615 0.752 0.733 0.764 0.677 0.612 0.629 0.733 0.703 0.69

BaggingNaive 0.791 0.616 0.802 0.759 0.819 0.639 0.632 0.673 0.807 0.738 0.728

BoostingJ48 0.689 0.578 0.722 0.637 0.764 0.548 0.606 0.606 0.729 0.695 0.657

BoostingNaive 0.712 0.568 0.778 0.691 0.763 0.61 0.661 0.649 0.74 0.736 0.691

RF 0.741 0.634 0.698 0.706 0.78 0.636 0.605 0.665 0.782 0.705 0.695

LR 0.805 0.617 0.782 0.764 0.751 0.632 0.669 0.676 0.781 0.755 0.723

Table 6 Mean average precision scores of the seven composite algorithms
and baseline approaches

Algorithms MAP

Ave 0.173

Max 0.171

CODEPLogistic 0.169

BaggingJ48 0.12

BaggingNaive 0.131

BoostingJ48 0.103

BoostingNaive 0.056

RF 0.11

LR 0.154

by 2.37% and 1.18%, and to the MAP scores of LR by

12.34% and 11.04%.

The most effective algorithms, measured in terms of F-

measure and NofB20, are Max and BaggingJ48, respectively.

Max, BoostingJ48, and RF outperform CODEPLogistic in terms

of both F-measure and NofB20.

RQ2 In terms of cost effectiveness, how effective are the

composite algorithms for different LOC inspection percent-

ages?

• Motivation By default, we set the LOC inspection per-

centage as 20%, which is the setting used for RQ1. To an-

swer this research question, we investigated the effectiveness

of the seven composite algorithms for different LOC inspec-

tion percentages. The answer to this research question can

shed light on whether some of the composite algorithms out-

perform CODEP when considering other cost settings.

•Approach To answer this research question, we calculated

the cost effectiveness scores of three composite algorithms:

Max (the algorithm that achieves the best F-measure scores),

BaggingJ48 (the algorithm that achieves the best NofB20

scores), and CODEPLogistic. We investigated different LOC

inspection percentages, from 5% to 95%, at 5% intervals.

Next, we plotted the cost effectiveness graphs, which show

the number of buggy classes that can be detected by inspect-

ing different percentages of LOCs.

• Results Figure 2 presents the cost effectiveness graphs of

Max, BaggingJ48, and CODEPLogistic for the ant, camel, ivy,

jedit, log4j, lucene, poi, prop, tomcat, and xalan datasets. In

the graphs, for most of the datasets, we notice that Max and

BaggingJ48 perform better than or as well as CODEPLogistic

for a wide range of LOC inspection percentages. For camel,

the percentage range for which Max achieves a better per-

formance than CODEPLogistic is from around 15% to 80%,

and the performance of CODEPLogistic is better than that

of BaggingJ48 when the percentage is between 60% and

90%. For ivy, the percentage range for which Max achieves

the best performance is narrower, i.e., from around 5% to

45%. For jedit, Max and BaggingJ48 perform better than

CODEPLogistic for a wide range of percentages from around

5% to 65%, and for log4j, Max and BaggingJ48 perform bet-

ter than CODEPLogistic for a range of percentages from around

55% to 95%. For lucene, the percentage range for which

BaggingJ48 achieves the best performance is wide, i.e., from

around 20% to 95%. For prop, BaggingJ48 performs better

than CODEPLogistic for a percentage range from around 35%

to 85%. For tomcat, for the percentage ranges from around

10% to 30% and 55% to 75%, Max achieves better cost effec-

tiveness scores than CODEPLogistic. For xalan, the percentage

range for which BaggingJ48 achieves a better performance

than CODEPLogistic is from around 5% to 65%. However,

for ant and poi, CODEPLogistic performs better than Max and

BaggingJ48 for a wide range of percentages.

In general, the composite algorithm Max performs better

than or as well as CODEPLogistic for a wide range of LOC

percentages for most projects.

5 Discussion

5.1 NASA dataset

To evaluate the performance of the composite classifiers bet-

ter, we also applied the algorithms to NASA datasets, which
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Fig. 2 Cost effectiveness graphs for the ten datasets. (a) ant; (b) camel; (c) ivy; (d) jedit; (e) log4j; (f) lucene; (g) poi; (h) prop; (i) tomcat; (j) xalan

are also a part of the PROMISE repository. We chose five

projects that contain the same features: CM1, MW1, PC1,

PC3, and PC4. Each of the projects contains a set of classes

labeled as defective or clean and their corresponding features,

e.g., LOC and the CK metric. Table 7 summarizes the statis-

tics of each project.

Table 7 Software projects used from NASA datasets

Project Instances
Defect-prone

instances
Percentage/%

CM1 327 42 12.8

MW1 253 27 10.7

PC1 705 61 8.7

PC3 1,077 134 12.4

PC4 1,458 178 12.2

Our experiments were performed in the context of cross-

project defect prediction. We combined the instances of four

projects and trained a model, and then applied the model to

the remaining project. We report the average performance of

the prediction techniques.

Table 8 presents the F-measure scores of CODEPLogistic

and LR as compared with those of Ave, Max, BaggingJ48,
BaggingNaive, BoostingJ48, BoostingNaive, and RF. The
F-measure scores of CODEPLogistic vary from 0.0 to
0.296. Across the five datasets, the average F-measure of
CODEPLogistic is 0.109. In Table 8, we can see that the av-
erage F-measure scores of Max, BaggingNaive, BoostingJ48,
BoostingNaive, and RF are 0.329, 0.313, 0.146, 0.312, and
0.112, respectively, which are superior to the average F-
measure of CODEPLogistic by 201.83%, 187.16%, 33.94%,

186.24%, and 2.75%, respectively. The F-measure scores of

LR vary from 0.0 to 0.243. Across the five datasets, the av-
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erage F-measure of LR is 0.107, which is lower than that

of all the composite algorithms and CODEPLogistic, except

BaggingJ48. Max achieves the best F-measure scores; its F-

measure scores vary from 0.306 to 0.393 and the average

score is 0.329. Meanwhile, Ave and BaggingJ48 do not per-

form as well as CODEPLogistic in terms of F-measure.

Table 8 F-measure scores of the classifiers

Algorithms CM1 MW1 PC1 PC3 PC4 Average

Ave 0.154 0.0 0.312 0.063 0.0 0.106

Max 0.306 0.325 0.314 0.393 0.307 0.329

CODEPLogistic 0.176 0.0 0.296 0.053 0.022 0.109

BaggingJ48 0.184 0.0 0.141 0.064 0.0 0.078

BaggingNaive 0.317 0.483 0.306 0.278 0.18 0.313

BoostingJ48 0.22 0.0 0.255 0.138 0.118 0.146

BoostingNaive 0.309 0.5 0.298 0.24 0.215 0.312

RF 0.19 0.0 0.247 0.076 0.047 0.112

LR 0.217 0.0 0.243 0.075 0.0 0.107

Table 9 presents the NofB20 scores of the algorithms. The

NofB20 scores of CODEPLogistic vary from 4 to 31. Across

the five datasets, the average NofB20 score of CODEPLogistic

is 15.2. In Table 9, we can see that the average NofB20

scores of Max, BaggingJ48, BoostingJ48, and RF are 21, 16.2,

18, and 20, respectively, which are superior to the average

NofB20 score of CODEPLogistic by 38.16%, 6.58%, 18.3%,

and 31.58%, respectively. The NofB20 scores of LR vary

from 4 to 44. Across the five datasets, the average NofB20

score of LR is 16.8, the average NofB20 scores of Max,

BoostingJ48, and RF are superior to that of LR by 25%,

7.14%, and 19.05%, respectively. Max achieves the highest

NofB20 score; its NofB20 scores vary from 7 to 40 and the

average score is 21. Meanwhile, the other three composite al-

gorithms that we investigated in this study do not perform as

well as CODEPLogistic in terms of NofB20.

Table 9 NofB20 scores of the classifiers

Algorithms CM1 MW1 PC1 PC3 PC4 Average

Ave 5 7 19 16 26 14.6

Max 10 7 19 29 40 21

CODEPLogistic 4 7 20 14 31 15.2

BaggingJ48 6 3 22 21 29 16.2

BaggingNaive 5 10 13 9 17 10.8

BoostingJ48 8 0 26 24 32 18

BoostingNaive 3 10 19 15 16 12.6

RF 7 8 25 34 26 20

LR 5 4 18 13 44 16.8

Table 10 presents the AUC-ROC scores of CODEPLogistic

and LR in comparison with those of Ave, Max, BaggingJ48,

BaggingNaive, BoostingJ48, BoostingNaive, and RF. The AUC-

ROC scores of CODEPLogistic vary from 0.623 to 0.821.

Across the five datasets, the average AUC-ROC score of

CODEPLogistic is 0.732. In Table 10, we can see that the

average AUC-ROC scores of Ave, Max, BaggingNaive, and

BoostingNaive are 0.744, 0.735, 0.757, and 0.733, respec-

tively, which are superior to the average AUC-ROC score

of CODEPLogistic by 1.64%, 0.41%, 3.42%, and 0.14%, re-

spectively. The AUC-ROC scores of LR vary from 0.59

to 0.768. Across the five datasets, the average AUC-ROC

score of LR is 0.702, the average AUC-ROC scores of Ave,

Max, BaggingNaive, and BoostingNaive are superior to that

of LR by 5.98%, 4.7%, 7.83%, and 4.42%, respectively.

BaggingNaive achieves the highest AUC-ROC score and its

NofB20 scores vary from 0.705 to 0.793 and the average

score is 0.757. Meanwhile, the other three composite algo-

rithms that we investigated in this study do not perform as

well as CODEPLogistic in terms of AUC-ROC.

Table 10 Area under the receiver operator characteristic curve scores of
the classifiers

Algorithms CM1 MW1 PC1 PC3 PC4 Average

Ave 0.683 0.688 0.83 0.786 0.732 0.744

Max 0.655 0.698 0.813 0.784 0.726 0.735

CODEPLogistic 0.623 0.711 0.821 0.763 0.741 0.732

BaggingJ48 0.577 0.602 0.831 0.735 0.666 0.682

BaggingNaive 0.705 0.769 0.793 0.746 0.771 0.757

BoostingJ48 0.673 0.546 0.794 0.726 0.671 0.682

BoostingNaive 0.703 0.763 0.8 0.633 0.767 0.733

RF 0.588 0.677 0.796 0.716 0.655 0.686

LR 0.59 0.67 0.74 0.743 0.768 0.702

Table 11 presents the MAP scores of CODEPLogistic and

LR in comparison with those of Ave, Max, BaggingJ48,

BaggingNaive, BoostingJ48, BoostingNaive, and RF. Across the

five datasets, the MAP score of CODEPLogistic is 0.054, and

the MAP score of LR is 0.051. In Table 6, we can see that the

MAP scores of Ave, Max, BaggingNaive, and BoostingNaive

are 0.061, 0.075, 0.101, and 0.109, respectively, which are

superior to the MAP score of CODEPLogistic by 12.96%,

38.89%, 87.04%, and 101.85%, and to the MAP score of

LR by 19.61%, 47.06%, 98.04%, and 113.73%, respectively.

BoostingNaive achieves the highest AUC-ROC score. Mean-

while, the other three composite algorithms that we investi-

gated in this study do not perform as well as CODEPLogistic in

terms of MAP.

5.2 Performance of the combined defect predictor with

meta classifier J48

We also investigated the performance of CODEP with an-

other meta classifier. We report the result of CODEP with

J48 as the meta classifier, referred to as CODEPJ48. Table
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12 shows the F-measure, NofB20, and AUC-ROC scores

of CODEPJ48 when applied to the PROMISE datasets. The

average F-measure score of CODEPJ48 is 0.213, which is

lower than that of CODEPLogistic by 41.31%. The average

NofB20 score of CODEPJ48 is 18.5, which is lower than

that of CODEPLogistic by 90.27%. The average AUC-ROC

score of CODEPJ48 is 0.668, which is lower than that of

CODEPLogistic by 12.57%. The MAP score of CODEPJ48

is 0.086, which is lower than that of CODEPLogistic by

96.51%. From the above results, we can draw the conclu-

sion that CODEPLogistic performs better than CODEPJ48 on

the PROMISE datasets.

Table 11 Mean average precision scores of the classifiers

Algorithms MAP

Ave 0.061

Max 0.075

CODEPLogistic 0.054

BaggingJ48 0.029

BaggingNaive 0.101

BoostingJ48 0.022

BoostingNaive 0.109

RF 0.035

LR 0.051

5.3 Performance of single classifiers as compared with

maximum voting

In the experimental results above, we observe that the per-
formance of Max is best among the composite classifiers in
most situations. In this subsection, we examine the perfor-
mance of the six single classifiers, i.e., logistic regression,
BN, RBF network, MLP, ADTree, and DT, as compared with
Max. Table 13 shows the average F-measure scores of Max
and the six single classifiers. In the table, we can see that
Max performs better than all six single classifiers, with an
F-measure score of 0.412. Among the six single classifiers,
BN outperforms the other five by substantial margins, with

an F-measure score of 0.405.

5.4 Time complexity

The efficiency of the algorithms affects its practical usage.

Thus, we analyze the time complexity of the composite algo-

rithms in this section. We suppose the time complexity for a

single classifier is O(k). Then, the time complexity of Ave and

Max is O(N × k), where N denotes the number of underlying

classifiers. As CODEP is a two-level composite algorithm,

the time complexity of the first level with N underlying clas-

sifiers is O(N×k) and the time complexity of the second level

is O(k), and therefore, the total time complexity of CODEP

is O(N × k2). For bagging and boosting, the time complexity

is O(T × k), where T donates the iteration numbers. The time

complexity of RF is O(M × F × k), where M is the number

of trees that are planned to be built, and F is the number of

features planned to be sampled at each node. From the above,

we can draw the conclusion that among the composite algo-

rithms, the time complexity of CODEP is highest.

Table 13 Performance of single classifiers as compared with maximum
voting

Algorithms Average F-measure

Max 0.412

Logistic Regression 0.217

Bayes Network 0.405

RBF Network 0.039

Multi-layer Perceptron 0.268

ADTree 0.244

Decision Table 0.224

5.5 Threats to validity

Threats to internal validity are related to the errors in our

experiments. We double-checked our experiments and im-

plementation. However, there could be errors that we did

not notice. Threats to external validity are related to the

generalizability of our results. We analyzed 5,305 instances

from 10 open-source software projects. In the future, we

plan to reduce this threat further by analyzing even more de-

fect data from more open-source and commercial software

projects. Threats to construct validity refer to the suitabil-

ity of our evaluation metrics. We used cost effectiveness and

F-measure, which were also used in previous software en-

gineering studies to evaluate the effectiveness of various pre-

diction techniques [13–18,44]. Thus, we believe there is little

threat to construct validity.

6 Related work

In this section, we present related studies on defect predic-

Table 12 Performance of combined defect predictor with meta classifier J48

Algorithms ant camel ivy jedit log4j lucene poi prop tomcat xalan Average

F-measure 0.036 0.168 0.441 0.369 0.111 0.054 0.28 0.105 0.37 0.199 0.213

NofB20 19 9 3 21 13 76 8 4 24 8 18.5

AUC-ROC 0.726 0.533 0.766 0.748 0.633 0.563 0.628 0.648 0.728 0.708 0.668
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tion, cross-project defect prediction, and composite predic-

tion techniques for defect prediction.

6.1 Classical defect prediction

A number of studies have been conducted on defect predic-

tion, in which different metrics, such as code complexity,

object-oriented metrics, process metrics, and code locations,

were analyzed to build prediction models to identify defec-

tive code elements [17,18,45–51]. D’Ambros et al. analyzed

different software metrics and approaches used for defect pre-

diction in their survey [6]. Rahman et al. analyzed the ap-

plicability and efficacy of code metrics and process metrics

from several different perspectives for defect prediction [13].

In most of these studies, machine learning techniques, such

as logistic regression [7, 29, 30], RBF network) [31], BN

[9], DT [5], MLP [32], and decision trees [52], were lever-

aged to predict the defect proneness of classes/files/modules

in a software project by training a classification model on

past data of the same software project, i.e., using a within-

project setting. Zimmermann et al. used network analysis on

dependency graphs to identify defect-prone central program

units [1]. Kim et al. introduced the problem of predict-

ing buggy software changes. They used a machine learn-

ing classifier to determine whether a new software change

is more to prior buggy changes or clean changes [44].

D’Ambros et al. presented a benchmark for defect prediction

and also provided an extensive comparison of well-known

defect prediction approaches [47]. In the within-project set-

ting, defect prediction models are trained and applied on

classes/files/modules from the same project. However, in

practice, it is rare that sufficient training data are available

for a new project; however, ample data from other projects

exist.

6.2 Cross-project defect prediction

In the last few years, a substantial effort has been devoted to

using cross-project strategies for predicting the defect prone-

ness of software entities [53]. This means using defect data

from other projects to improve defect prediction for a target

project. Zimmermann et al. proposed a cross-project defect

prediction approach that trains a model on a source project,

and applies the model to a target project [9]. They listed the

factors that software engineers should consider before select-

ing a project as a source project for a given target project.

Turhan et al. employed a k-nearest neighbor algorithm for

cross-project defect prediction [10]. Their algorithm selects

instances from other projects to be used as training data

for a target project; for every unlabeled instance in a tar-

get project, they selected 10 nearest neighbor instances from

source projects. Peters et al. proposed the Peters filter for

cross-company defect prediction, which, similarly to Turhan

et al.’s method, uses a nearest neighbor approach to select

instances from source projects [16]. Nam et al. noted that

the poor performance of cross-project defect prediction is in

general due to the different feature distribution between the

source and target projects [17]. They then proposed TCA+,

a novel transfer defect learning approach, which makes fea-

ture distributions in source and target projects similar [17].

Canfora et al. proposed a multi-objective approach for cross-

project defect prediction, which uses a genetic algorithm to

build a multi-objective logistic regression model [18]. Al-

though in all of the above studies the gap between the ac-

curacy of within-project and cross-project defect predictions

was reduced, cross-project defect prediction still represents

one of the main challenges in the defect prediction field.

Recently, Panichella et al. proposed a state-of-the-art

cross-project defect prediction algorithm named CODEP that

uses a meta classification algorithm to combine the results

of six basic classification algorithms, i.e., logistic regres-

sion, BN, RBF network, MLP, ADTrees, and DT [11]. The

best results were achieved when logistic regression was used

as the meta classification algorithm, i.e., CODEPLogistic. In

our work, we focused on finding effective composite algo-

rithms for cross-project defect prediction that can outperform

CODEPLogistic. We investigated seven composite algorithms

proposed in the machine learning community, i.e., Ave, Max,

BaggingJ48, BaggingNaive, BoostingJ48, BoostingNaive, and

RF. These algorithms use different strategies to combine the

results of a number of basic classifiers. In our experiments,

we used the same basic classifiers as CODEP, and the results

of the experiments show that three out of the seven compos-

ite algorithms perform better than CODEP in terms of both

F-measure and cost effectiveness.

7 Conclusion and future work

In this paper, we examined the effectiveness of seven com-

posite algorithms proposed in the machine learning commu-

nity, i.e., Ave, Max, BaggingJ48, BaggingNaive, BoostingJ48,

BoostingNaive, and RF, for cross-project defect prediction,

with the aim of finding one or more algorithms that outper-

form CODEP, the state-of-the-art cross-project defect predic-

tion technique. We evaluated the composite algorithms using

two metrics, F-measure and cost effectiveness. We performed
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experiments on defect datasets from ten different open-source

software projects containing a total 5,305 instances, i.e.,

classes. The results show that the performance of Max is best

in terms of F-measure and it achieves an average F-measure

score of 0.412, which is superior to the average F-measure

of CODEPLogistic by 36.88%. In addition, the performance

of BaggingJ48 is best in terms of cost effectiveness and it

achieves an average NofB20 score of 40.6, which is superior

to the average NofB20 score of CODEPLogistic by 15.34%.

In addition to these two algorithms, several other algorithms

also outperform CODEPLogistic in terms of F-measure and/or

cost effectiveness. As the projects used in our experiments be-

long to different fields, the results obtained when using them

showed that the composite algorithms achieve different per-

formance levels on different projects. As compared to all the

composite algorithms we examined, we found that the perfor-

mance of Max is the best, and therefore we recommend that

users apply Max in practice.
In the future, we plan to investigate additional compos-

ite algorithms or create a custom composite algorithm that

yields a better cross-project defect prediction. We also plan to

reduce the threats to external validity further by performing

experiments with even more instances from more projects.
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