
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

4-2018

EnTagRec(++): An enhanced tag recommendation
system for software information sites
Shawei WANG

David LO
Singapore Management University, davidlo@smu.edu.sg

Bogdan VASILESCU

Alexander SEREBRENIK

DOI: https://doi.org/10.1007/s10664-017-9533-1

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Computer and Systems Architecture Commons, and the Software Engineering

Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
WANG, Shawei; LO, David; VASILESCU, Bogdan; and SEREBRENIK, Alexander. EnTagRec(++): An enhanced tag
recommendation system for software information sites. (2018). Empirical Software Engineering. 23, (2), 800-832. Research Collection
School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4127

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s10664-017-9533-1
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4127&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

DOI 10.1007/s10664-017-9533-1

ENTAGREC++: An enhanced tag recommendation
system for software information sites

Shaowei Wang1 ·David Lo2 ·Bogdan Vasilescu3 ·
Alexander Serebrenik4

© Springer Science+Business Media, LLC 2017

Abstract Software engineers share experiences with modern technologies using software
information sites, such as Stack Overflow. These sites allow developers to label posted con-
tent, referred to as software objects, with short descriptions, known as tags. Tags help to
improve the organization of questions and simplify the browsing of questions for users.
However, tags assigned to objects tend to be noisy and some objects are not well tagged. For
instance, 14.7% of the questions that were posted in 2015 on Stack Overflow needed tag re-
editing after the initial assignment. To improve the quality of tags in software information
sites, we propose ENTAGREC++, which is an advanced version of our prior work ENTA-
GREC. Different from ENTAGREC, ENTAGREC++ does not only integrate the historical
tag assignments to software objects, but also leverages the information of users, and an ini-
tial set of tags that a user may provide for tag recommendation. We evaluate its performance
on five software information sites, STACK OVERFLOW, ASK UBUNTU, ASK DIFFERENT,

Communicated by: Romain Robbes

� Shaowei Wang
shaowei@cs.queensu.ca

David Lo
davidlo@smu.edu.sg

Bogdan Vasilescu
vasilescu@cmu.edu

Alexander Serebrenik
a.serebrenik@tue.nl

1 SAIL, Queen’s University, Kingston, Canada

2 School of Information Systems, Singapore Management University, Singapore, Singapore

3 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

4 Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, The Netherlands

Empir Software Eng (2018) 23: –800 832

Published online: 2017July21

Published in Empirical Software Engineering, 2018 April, Volume 23, Issue 2, Pages 800-832
https://doi.org/10.1007/s10664-017-9533-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9533-1&domain=pdf
http://orcid.org/0000-0003-3823-1771
mailto:shaowei@cs.queensu.ca
mailto:davidlo@smu.edu.sg
mailto:vasilescu@cmu.edu
mailto:a.serebrenik@tue.nl

SUPER USER, and FREECODE. We observe that even without considering an initial set of
tags that a user provides, it achieves Recall@5 scores of 0.821, 0.822, 0.891, 0.818 and
0.651, and Recall@10 scores of 0.873, 0.886, 0.956, 0.887 and 0.761, on STACK OVER-
FLOW, ASK UBUNTU, ASK DIFFERENT, SUPER USER, and FREECODE, respectively. In
terms of Recall@5 and Recall@10, averaging across the 5 datasets, it improves upon Tag-
Combine, which is the prior state-of-the-art approach, by 29.3% and 14.5% respectively.
Moreover, the performance of our approach is further boosted if users provide some initial
tags that our approach can leverage to infer additional tags: when an initial set of tags is
given, Recall@5 is improved by 10%.

Keywords Software information sites · Recommendation systems · Tagging

1 Introduction

The growing online media has significantly changed the way people communicate, col-
laborate, and share information with one another (Vasilescu et al. 2014). This is also
true for software developers, who create and maintain software by standing on the shoul-
ders of others (Storey et al. 2010), reuse components and libraries originating from Open
Source repositories (e.g., GITHUB, FREECODE, SOURCEFORGE), and forage online for
information that will help them in their tasks (Brandt et al. 2009). When foraging for infor-
mation, developers often turn to programming question and answer (Q&A) communities
such as STACK OVERFLOW, ASK UBUNTU, and ASK DIFFERENT. Such sites support-
ing communication, collaboration, and information sharing among developers are known
as software information sites, while their contents (e.g., questions and answers, project
descriptions)—as software objects (Xia et al. 2013).

Typically, tags are short labels not more than a few words long, provided as metadata
to software objects in software information sites. Users can attach tags to various software
objects, effectively linking them and creating topic-related structure. Tags are therefore use-
ful for providing a soft categorization of the software objects and facilitating search for
relevant information. To accommodate new content, most software information sites allow
users to create tags freely. However, this freedom comes at a cost, as tags can be idiosyn-
cratic due to users’ personal terminology (Golder and Huberman 2006). As tagging is
inherently a distributed and uncoordinated process, often similar objects are tagged differ-
ently (Xia et al. 2013). Idiosyncrasy reduces the usefulness of tags, since related objects are
not linked together by a common tag and relevant information becomes more difficult to
retrieve. Furthermore, some software information sites (e.g., STACK OVERFLOW) require
users to add tags at the time of posting a question, even if they are unfamiliar with the tags in
circulation at that time. Due to differences in personal terminology and tagging purpose, it is
often difficult for users to select appropriate tags for their content. Having a tag recommen-
dation system that can suggest tags to a new object (e.g., based on how other similar objects
have been tagged in the past) could (i) help users select appropriate tags easily and quickly,
and (ii) in time help homogenize the entire collection of tags such that similar objects are
linked together by common tags more frequently.

To illustrate the importance of tags for the well functioning of a software information
site, we note the considerable amount of discussion related to tags on META STACK OVER-
FLOW, a Q&A site with the same user interface as STACK OVERFLOW, that focuses STACK

OVERFLOW’s functioning and administration: e.g., at the time of writing there were more

Empir Software Eng (2018) 23: –800 832 801

than 4,587 questions related to tags,1 as opposed to only 1,312 related to user interface.
Furthermore, tags on STACK EXCHANGE sites receive considerable attention from the user
community, with between 14.4% and 22.5% of questions in our experiments involving tag
re-editing (see Table 1). Finally, we also note that since the earlier, conference version of
our work (Wang et al. 2014), STACK OVERFLOW has been experimenting with, and grad-
ually phasing in across the STACK EXCHANGE network, a tag recommendation system of
their own.2

In this work, we introduce an automatic tag recommendation system called ENTA-
GREC++, an enhanced version of our previous approach ENTAGREC (Wang et al. 2014).
ENTAGREC learns from historical software objects and their tags, and recommends appro-
priate tags for new objects based on words that appear in the software objects. ENTAGREC

consists of two inference components, Bayesian and frequentist, and tries to combine
the advantages of the two opposite yet complementary lines of thought in the statistics
community (Samaniego 2010).

To improve ENTAGREC, in ENTAGREC++, we integrate two additional components into
ENTAGREC: User Information Component (UIC) and Additional Tag Component (ATC).
We refer to ENTAGREC integrated with UIC alone as ENTAGREC+. The intuition behind
these two components is as follows:

– Users in software information sites tend to exhibit particular interests, thus software
objects posted by them are likely to focus on specific domains. In UIC, we leverage
this intuition to improve tag recommendation. We first link historical software objects
posted by the same user together. Next, for new software objects posted by the same
user, we make use of software objects that the user has posted before, to help identify
tags that are associated with the new object.

– We believe that it may be easier for a user to assign one or a few initial tags to a question
he/she posts, but more difficult for her to provide a comprehensive set of tags. In ATC,
we make use of an initial set of tags provided by a user to help identify additional
relevant tags.

We evaluate ENTAGREC+ on datasets from five popular software information sites,
STACK OVERFLOW, ASK UBUNTU, ASK DIFFERENT, SUPER USER, and FREECODE,
by comparing it to TAGCOMBINE (Xia et al. 2013; Wang et al. 2015).3 Our experimen-
tal results show that even without considering an initial set of tags that a user provides,
our approach achieves Recall@5 scores of 0.821, 0.822, 0.891, 0.818, and 0.651, and
Recall@10 scores of 0.873, 0.886, 0.956, 0.887, 0.761 on STACK OVERFLOW, ASK

UBUNTU, ASK DIFFERENT, SUPER USER, and FREECODE, respectively. Compared with
TAGCOMBINE, ENTAGREC+ improves TAGCOMBINE by 29.3% and 14.5% in terms
of Recall@5 and Recall@10, respectively. Furthermore, to evaluate the effectiveness of
ATC, we compare ENTAGREC+, with ENTAGREC++. We find that when an initial set
of tags is given, on average ENTAGREC++ improves ENTAGREC+ by 10.0% in terms of
Recall@5.

Our main contributions are:

1http://meta.stackexchange.com/questions/tagged/tags
2http://meta.stackexchange.com/questions/206907/how-are-suggested-tags-chosen
3Since the implementation of STACK OVERFLOW’s proprietary system is, to the best of our knowledge, not
documented publicly, a meaningful comparison was not possible.

Empir Software Eng (2018) 23: –800 832802

http://meta.stackexchange.com/questions/tagged/tags
http://meta.stackexchange.com/questions/206907/how-are-suggested-tags-chosen

– We propose ENTAGREC++, a novel automatic tag recommendation system for soft-
ware information sites. ENTAGREC++ composes a state-of-the-art Bayesian inference
technique (labeled LDA), an enhanced frequentist inference technique that leverages
a POS tagger and the spreading activation algorithm, and two other components that
analyze the user who posts a software object and the initial set of tags that the user
provides, to further boost the recommendation performance.

– We evaluate our proposed approach on datasets from five popular software information
sites. Our study shows that our approach can achieve high recall, especially for STACK

OVERFLOW, ASK UBUNTU, SUPER USER, and ASK DIFFERENT, and outperforms a
prior state-of-the-art approach.

The rest of this article is organized as follows. We provide more background on tags
in several software information sites and approaches to tag recommendation in Section 2.
We present the high-level architecture of ENTAGREC++ in Section 3, followed by detailed
descriptions of the Bayesian, frequentist, user information, and additional tag inference
components in Sections 4, 5, 6 and 7 respectively, and the specifics of how to integrate the
four components in Section 8. We present our evaluation results in Section 9. Finally, we
highlight related work in Section 10 and conclude in Section 11.

2 Preliminaries and Examples

In this section, we first describe some preliminary information on tags in software infor-
mation sites. Then, we present some recent works on tag recommendation on software
information sites. Finally, we show some motivating examples to illustrate why it is useful
to consider incorporating user information and preliminary tags in the recommendation.

2.1 Tags in Software Information Sites

To facilitate navigation, search, and filtering, contents are marked with descriptive terms
(Golder and Huberman 2006), known as tags; e.g., libraries associate books with authors’
names and keywords, while scientific publishers require the authors to choose keywords
themselves. In the digital world, tags can be used, e.g., to annotate weblog posts and
shared links. Numerous software information sites employ tags, e.g., SOURCEFORGE4 for
code projects, Eclipse MarketPlace5 for plugins, Snipplr6 for code fragments, and STACK

OVERFLOW for questions.
An example STACK OVERFLOW question is presented in Fig. 1. The question pertains to

the creation of an Eclipse plugin and it has two tags, representing the technical context of the
question (eclipse) and a specific subject area (eclipse-plugin). Figure 2 shows the
FREECODE description of Apache Ant: in addition to the textual description, two general
tags are present, Software Development (describing the general domain of Apache
Ant) and Build Tools (indicating a more specific functionality of Apache Ant, namely
building Java programs).

Comparing Figs. 1 and 2 we observe that while the basic purpose of tagging—to facili-
tate navigation, search, and content filtering through the association of related contents via

4http://sourceforge.net/
5http://marketplace.eclipse.org/
6http://snipplr.com/

Empir Software Eng (2018) 23: –800 832 803

http://sourceforge.net/
http://marketplace.eclipse.org/
http://snipplr.com/

i need a complete tutorial about Eclipse plugin. My plugin has not a graphical interface, but i need to use
his function insiede another plugin or java app.
I use eclipse ONLY to load this plugin, but must work in eclipse.
It should be easy, but i don't know how to do this.

eclipse eclipse-plugin

Fig. 1 An example question in STACK OVERFLOW and its tags

linked descriptive terms—is common to both, specific policies how the tags should be used
differ from site to site. For instance, FREECODE has no restriction on the number of tags per
project, while STACK EXCHANGE sites restrict the total number of tags given to a question
to five.

Most software information sites allow users to provide “free text tags”. Not being subject
to the formal requirements of the sites, such tags can be expected to represent user intent
in a more flexible way. However, tagging becomes a distributed and uncoordinated process,
introducing different tags for similar objects, which might persist despite moderation or the
ongoing correction efforts. For example, questions on STACK OVERFLOW entitled “SIFT
and SURF feature extraction implementation using MATLAB”7 and “Matlab implementa-
tion of Haar feature extraction”8 are both related to image feature extraction but only the
second one is labeled with the corresponding tag, i.e., feature-extraction.

2.2 Tag Recommendation

Tags have been shown to aid users in navigating a site (Held et al. 2012; Cress et al. 2013;
Bindelli et al. 2008; Zubiaga 2012). Thus, more complete tags can help in a number of sce-
narios, e.g.: (1) More complete tags may shorten the time it takes for a question to receive
an answer. On sites such as STACK EXCHANGE, users are allowed to browse unanswered
questions via tags. Giving more complete tags to a question may increase its chance to be
discovered by a suitable user who can answer it well. (2) More complete tags also sup-
port developer learning. Developers can use the tags to browse through relevant questions
and problems that others have encountered. This can help them avoid making similar mis-
takes and improve their programming and problem solving skills. (3) More complete tags
may help reduce duplicated questions. Moderators can use the tags to identify related ques-
tions; by checking these related questions, moderators can decide whether a question is a
duplicated one, and if so, it can be marked accordingly. Additionally, before posting new
questions, users can use tags to browse for related ones, and avoid posting questions that
were answered before.

Indeed, users of STACK EXCHANGE edited tags that were originally assigned to ques-
tions demonstrating that they appreciate more complete tags. Table 1 presents the ratio
of questions involving tag re-editing on STACK OVERFLOW, ASK DIFFERENT, ASK

UBUNTU, and SUPER USER. From the table, we can see that tag re-editing happens often.
From the table, we can also notice that among the tag re-editing cases, 63.1–87.2% of the

7http://stackoverflow.com/q/5550896
8http://stackoverflow.com/q/2058138

Empir Software Eng (2018) 23: –800 832804

http://stackoverflow.com/q/5550896
http://stackoverflow.com/q/2058138

Fig. 2 An example project in FREECODE and its tags

questions involve tag addition, which implies that tag addition is the major tag re-editing
scenario.

A considerable number of studies have been done on tag recommendation for software
information sites (Xia et al. 2013; Al-Kofahi et al. 2010). Among these studies, the approach
TAGCOMBINE that was proposed by Xia et al. is shown to be the state-of-the-art (Xia
et al. 2013) on software information sites. TAGCOMBINE combines three components: a
multi-label ranking component, a similarity-based ranking component, and a tag-term based
ranking component. The multi-label ranking component employs a multi-label classifica-
tion algorithm (i.e., binary relevance method with naive Bayes as the underlying classifier)
to predict the likelihood of a tag to be assigned to a software object. The similarity-based
ranking component predicts the likelihood of a tag (to be assigned to a software object)
by analyzing the tags that are given to the top-k most similar software objects that were
tagged before. The tag-term based ranking component predicts the likelihood of a tag (to
be assigned to a software object) by analyzing the number of times a tag has been used to
tag a software object containing a term (i.e., a word) before. The multi-label ranking com-
ponent of TAGCOMBINE constructs many one-versus-rest Naive Bayes classifiers, one for
each tag. Each Naive Bayes classifier simply predicts the likelihood of a software object to
be assigned a particular tag. However, mixture models have been shown to outperform one-
versus-rest traditional multi-label classification approaches (Ramage et al. 2009; Ghamrawi
and McCallum 2005; Puurula 2011). Thus, in our approach, we construct only one classi-
fier which is a mixture model that considers all tags together to improve the effectiveness of
the tag recommendation.

Table 1 Objects with tag re-editing on STACK OVERFLOW, ASK DIFFERENT, ASK UBUNTU and SUPER

USER

Dataset Period Questions
involving tag
re-editing

Total
questions

Tag re-editing
ratio

Tag addition
ratio

STACK OVERFLOW 2015.1.1 – 2015.12.31 331,667 2,250,745 14.7% 72.1%

ASK DIFFERENT Before 2016.1 11,243 63,276 17.7% 87.2%

ASK UBUNTU Before 2016.1 48,942 191,191 25.6% 69.8%

SUPER USER Before 2016.1 82,618 284,559 29.0% 63.1%

Empir Software Eng (2018) 23: –800 832 805

Fig. 3 Highest rated tags associated to questions/answers posted by a user in STACK OVERFLOW

2.3 Motivating Examples

2.3.1 User Information

In addition to user-agnostic features (e.g., tag frequency), we also expect the information
about the user posting the question to be useful when predicting tags. Indeed, one can
conjecture that users have specific interests or expertise with certain technology and these
interests or expertise are likely to manifest in the tags of their questions. To verify this con-
jecture we queried the users that asked more than one question on STACK OVERFLOW9 and
found that 51% of them have asked at least two questions labeled with the same tag. This
suggests that users may post objects associated to some particular tags, rather than all tags,
based on their personal background and interests.

For illustration, Fig. 3 presents the highest rated tags of a user in STACK OVERFLOW.10

As of December 7, 2016, the user posted a number of questions/answers spanning 326 tags,
and 215 of the user’s posts are tagged “java”, this user’s most commonly used tag. We can,
therefore, conjecture that future software objects posted by the same user are more likely to
be tagged with “java” tag, rather than other tags. Based on this observation, we can leverage
user information to facilitate tag recommendation.

2.3.2 Additional Tag

In practice, it may be easy for users to label a question they post with a few tags. How-
ever, the set of initial tags may not be sufficient and for such cases, extra tags need to be
added later - see Table 1. Intuitively, the initial tags can provide hints in the identification of
missing tags.

We notice that some tags usually appear together. We could leverage tag co-occurrences
to infer additional tags based on the initial tags that a user gave. Figure 4 presents an example
of tag editing in Stack Overflow. The set of tags assigned to the question was refined – a
tag “javascript” was added to the initial set of tags: “promise” and “pg-promise”. When we
search questions that contain tags “promise”, and “pg-promise” and at least one other tag,
we find 10 of such questions and 6 of them are also tagged with “javascript”. This suggests

9https://data.stackexchange.com/stackoverflow/queries
10http://stackoverflow.com/users/137369/thirler?tab=tags

Empir Software Eng (2018) 23: –800 832806

https://data.stackexchange.com/stackoverflow/queries
http://stackoverflow.com/users/137369/thirler?tab=tags

Fig. 4 An example of adding a tag in STACK OVERFLOW

given an initial set of tags “promise” and “pg-promise”, it is likely that “javascript” should
be included as well. This observation motivates us to recommend additional tags to users by
analyzing the initial set of tags and leveraging tag co-occurrence.

3 General Architecture

In this section we describe the general architecture of our ENTAGREC++ approach. ENTA-
GREC++ contains six processing components: Preprocessing Component (PC), Bayesian
Inference Component (BIC), Frequentist Inference Component (FIC), User Information
Component (UIC), Additional Tag Component (ATC), and Composer Component (CC).
Figure 5 presents the framework of ENTAGREC++.

Input software objects are processed by PC to generate a common representation. These
textual documents are then input to the four main processing engines, namely BIC, FIC,
UIC, and ATC. BIC and FIC infer tags based on words appearing in a software object. UIC
infers tags based on the user who posts a software object; it works based on the assumption
that a user tends to post similar software objects over time. ATC infers additional tags based
on an initial set of tags given to a software object, by considering co-occurrences of tags.
For some software objects, users who post them have provided some initial tags, and these
tags can be used to better infer missing tags. CC combines the BIC, FIC, UIC, and ATC
components.

ENTAGREC++ works in two phases, a training phase and a deployment phase, as shown
in Fig. 5a and b, respectively. In the training phase, ENTAGREC++ trains several of its com-
ponents using training software objects and corresponding tags. In the deployment phase,
the trained ENTAGREC++ is used to recommend tags for untagged software objects.

The common component in the training and deployment phase is PC, which converts
each software object into a bag (or multiset) of words. The PC starts from the textual

Empir Software Eng (2018) 23: –800 832 807

(a) (b)

Fig. 5 ENTAGREC++ Architecture

description of a software object and performs tokenization, identifier splitting, number
removal, stop word removal, and stemming. Tokenization breaks a document into word
tokens. Identifier splitting breaks a source code identifier into multiple words. We split a
token using two splitters: 1) Camel Casing splitter (Antoniol et al. 2002), e.g., the identifier
“getMethodName” will be split into “get”, “method”, and “name”; 2) special sign splitter
that splits tokens based on special signs (i.e., , −), e.g., the identifier “get method name”
will be split into “get”, “method”, and “name”. Number removal deletes numbers. Stop
word removal11 deletes words that are used in almost every document and, therefore, carry
little document-specific meaning, e.g., “the”, “is”, etc. Finally, stemming reduces words to
their root form. We use the Porter stemming algorithm (Porter 1997).

In the training phase, BIC, FIC, UIC, ATC, and CC are trained based on the training data.
BIC uses the bag-of-words representation of the software objects and their corresponding
tags to train itself. The result is a statistical model which takes as input a bag of words rep-
resenting a software object, and produces a ranked list of tags along with their probabilities
of being related to the input software object. FIC also processes the bag-of-words represen-
tations and the corresponding tags to train itself; it produces a statistical model (albeit in a
different way than BIC) which also takes as input a bag of words, and outputs a ranked list
of tags with their probabilities. UIC processes data about users who posted various software
objects, to model the peculiar behaviors of the various users; it creates a statistical model
which takes as input a user who posted a particular software object, and outputs a ranked

11Based on http://www.textfixer.com/resources/common-english-words.txt

Empir Software Eng (2018) 23: –800 832808

http://www.textfixer.com/resources/common-english-words.txt

list of tags with their probabilities. ATC takes as input a set of tags appearing together in
the past. The result is a conditional statistical model, which takes an initial set of tags given
by a user as input, and produces a ranked list of additional tags, with their probabilities. CC
learns four weights for BIC, FIC, ATC, and UIC to generate a near-optimal combination of
these four components from the training data.

After ENTAGREC++ is trained, it is used in the deployment phase to recommend tags
for untagged objects. For each such object, we first use PC to convert it to a bag of words.
Next, we feed this bag of words, including the user information and additional tags (if
available), to the trained BIC, FIC, UIC, and ATC. Each of them will produce a list of tags
with their likelihood scores. CC will compute the final likelihood score for the tags based
on the weights that it has learned in the training phase. The top few tags with the highest
likelihood scores will be output as the predicted tags of an input untagged or partially tagged
software object.

The following sections detail each of the five major components of ENTAGREC++, BIC,
FIC, UIC, ATC, and CC.

4 Bayesian Inference

The goal of BIC is to compute the probabilities of various tags, given a bag of words rep-
resenting a software object, using Bayesian inference. Given a tag t and a software object
o, BIC computes the conditional probability of t being assigned to o, given the words
{w1, . . . , wn} that appear in o. This is denoted as P(t |w1 . . . wn). Using the Bayes theorem
(Gelman et al. 2003), this probability can be computed as:

P(t |w1 . . . wn) = P(w1 . . . wn|t) × P(t)

P (w1 . . . wn)
(1)

The probabilities on the right hand side of the above equation can be estimated based on
training data.

A state-of-the-art Bayesian inference algorithm is Latent Dirichlet Allocation (LDA)
(Blei et al. 2003). LDA has been shown effective to process various software engineering
data for various tasks, e.g., Lukins et al. (2010), Baldi et al. (2008), Asuncion et al. (2010),
Panichella et al. (2013), and Rebouças et al. (2016). LDA takes as input a set of documents
and a number of topics K , and outputs the probability distribution of topics per document.
Our problem can be readily mapped to LDA, where a document corresponds to a software
object, and a topic corresponds to a tag. Using this setting, LDA outputs the probability
distribution of tags for a software object.

However, LDA is an unsupervised learning algorithm. It does not take as input any train-
ing data and it is not possible to pre-define a set of tags as the target topics to be assigned
to documents. Fortunately, recent advances in the natural language processing community
introduced extensions to LDA, such as Labeled LDA (L-LDA) Ramage et al. (2009). For
L-LDA, the labels can be predefined and a training set of documents can be used to train
the LDA, such that it will compute the probability distribution of topics, coming from a pre-
defined label set (tags, in our case), for a document (a software object, in our case), based
on a set of labeled training data. In this work, we use L-LDA as the basis for the Bayesian
inference component.

BIC works on two phases: training and deployment. In the training phase, BIC takes
as input a set of bags of words representing software objects, and their associated tags.
These are used to train an L-LDA model. In the deployment phase, given a bag of words

Empir Software Eng (2018) 23: –800 832 809

corresponding to a software object, the trained L-LDA model is used to infer the set of tags
for the input software object along with their probabilities. In the end, the top KBayesian
inferred tags for the object will be output and fed to the Composer Component (CC).

Example 1 Consider an object has following words {install, eclipse} and a tag
eclipse. In order to compute the probability P(eclipse|install, eclipse), we
need to estimate the value of P(install, eclipse|eclipse), P(eclipse), and
P(install, eclipse) first based on the (1). By using L-LDA, we could estimate
the the value of P(install, eclipse|eclipse), P(install, eclipse) and
P(eclipse). Suppose the estimated value of P(install, eclipse|eclipse) =
0.02, P(install, eclipse) = 0.001, and P(eclipse) = 0.005, thus the value of
P(eclipse|install, eclipse) is 0.1.

5 Frequentist Inference

FIC computes the probability that a software object is assigned a particular tag based on
the words that appear in the software object, while taking into account the number of words
that appear along with the tag in software objects in a training set. Section 5.1 describes our
basic approach and several extensions are presented in Section 5.2. Hereafter, unless stated
otherwise, FIC refers to the extended approach.

5.1 Basic Approach

Consider software object o with n words: {w1, w2, . . . , wn} and a tag t , the weight of tag t

for object o can be computed as the proportion of the n words that co-appear with tag t in
the training data. More formally, the weight is defined as

W(o, t) =
∑

wi∈oI (t, wi)

|o| , (2)

where

I (t, wi) =
{

1, ∃ o ∈ TRAIN | o contains wi&o tagged with t

0, otherwise
(3)

The higher the weight W(o, t), the more representative FIC deems tag t to be for software
object o.

5.2 Extended Approach

There are several problems with the basic approach. First, often not all words in a soft-
ware object are related to the tags that are assigned to the software object. Although the
pre-processing component (PC) has removed stop words, still many non-stop words are
unrelated to software object tags, thus need to be removed. Second, we have a data sparsity
problem, since many tags are not used frequently in the training set. Thus, often a tag is not
characterized by sufficiently many words. To address this problem, we leverage the relation-
ships among tags to recommend additional associated tags to an input untagged software
object.

Empir Software Eng (2018) 23: –800 832810

5.2.1 Removing Unrelated Words with POS Tagger

One problem in estimating the probabilities P(t |wi) is that not all words that appear in a
software object are related to the tags. We use the example in Fig. 1 to illustrate this. Words
“need” and “work” are not stop words, but they are unrelated to the tags eclipse and
eclipse-plugin. Thus, there is a need to filter out these unrelated words before we
estimate the probabilities.

We observe that nouns and noun phrases are often more related to the tags than other
kinds of words. Past studies have also found that nouns are often the most important words
(Capobianco et al. 2013; Shokripour et al. 2013). Thus, in this extension, we remove all
words except nouns and noun phrases. To identify these nouns and noun phrases, we use
the Part-Of-Speech (POS) Tagger (Toutanova et al. 2003) to infer the POS of each word in
the representative bag of words of a software object. In this paper, we use the Stanford Log-
linear Part-Of-Speech Tagger.12 To illustrate this extension, consider the words that appear
in the software object shown in Fig. 1. After this step, only the words “tutorial”, “eclipse”,
“plugin”, “interface”, “function”, “java”, and “app” remain.

Note that we only did this for FIC and not BIC as L-LDA assigns different probabilities
to words that are associated to a topic (i.e., a tag). Unrelated words will receive low prob-
abilities. In FIC, the words that appear in objects tagged with tag t are treated as equally
important. Thus, we only perform this extended processing step for FIC.

We refer to the basic approach extended by this processing step as FrePOS. Given an
untagged software object, FrePOS outputs the top KFrequentist tags.

5.2.2 Finding Associated Tag with Spreading Activation

Due to the data sparseness problem, FrePOS might miss some important tags that are not
adequately represented in the training data. To find additional tags, we leverage relation-
ships among tags using a technique named spreading activation (Crestani 1997). Spreading
activation takes as input a network containing weighted nodes that are connected with
one another with weighted edges, and a set of starting nodes. Initially, all nodes except
the starting nodes are assigned weight 0. Spreading activation then processes the start-
ing nodes, one at a time. For each starting node, it spreads (or propagates) the node’s
weight to its neighboring nodes which are at most MH hops away from it (where MH
is a user-defined threshold). At the end of the process, we output all nodes with non
zero weights and their associated weights. In our context, the network is a tag network,
the starting nodes are the nodes corresponding to tags returned by FrePOS, and the
weights of these starting nodes are the probabilities assigned to the corresponding tags by
FrePOS.

To perform spreading activation, we first need to construct a network of tags. Each
node in the network corresponds to a tag, and each edge connecting two nodes in the net-
work corresponds to the relationship between the corresponding tags. The weight of each
edge measures how similar two tags are. We measure this based on the co-occurrence of
tags in software objects in the training set. Consider a set of tags where each of them
is used to label at least one software object in the training set. We denote this set as:
Tags = {t1, t2, t3, ..., tk}, where k is the total number of unique tags. We denote an
edge between two tags ti and tj as eti ,tj . The weight of eti ,tj depends on the number of

12http://nlp.stanford.edu/software/tagger.shtml

Empir Software Eng (2018) 23: –800 832 811

http://nlp.stanford.edu/software/tagger.shtml

software objects that are tagged by ti and tj in the training set. It can be calculated as
follows:

weight(eti ,tj) = |Doc(tj)
⋂

Doc(ti)|
|Doc(ti)

⋃
Doc(tj)| (4)

where Doc(ti) and Doc(tj) are the sets of objects tagged with ti and tj , respectively, and | · |
denotes cardinality.

The edge connecting two tags is assigned a higher weight if the tags appear together
more frequently, which means they are more associated with each other. We denote the set
of edges connecting pairs of nodes as Links. The tag network is then a graph TN defined as
(Tags, Links). Given a tag t , we denote the node in T N corresponding to t as T N [t]. Given a
node n and an edge E(n1, n2), we denote their weights as weight(n) and weight(E(n1, n2)),
respectively.

The pseudocode of our approach to infer associated tags from the initial set of tags
returned by FrePOS is shown in Algorithm 1. The algorithm takes as input a tag network TN
constructed from all tags in the training data, a set of starting tags SST returned by FrePOS,
and a threshold MH that restricts the weight propagation to a maximum number of hops.
Then, it initializes the weights of nodes corresponding to tags in the set of starting tags with
the probabilities returned by FrePOS, and it sets the weights of other nodes to 0 (Lines 8–
11). For each starting tag, our algorithm then performs spreading activation starting from the
corresponding node in the tag network by calling the procedure SpreadingActivation
(Lines 12–14). Finally, the algorithm outputs all nodes in the set of starting tags, along with
the associated tags, which correspond to nodes in TN whose weights are larger than zero
(Line 15).

The procedure SpreadingActivation spreads the weight of a node to its neighbors.
It takes as input a tag network TN, a starting node N , the current hop CH, and the maximum
hop MH. The procedure first checks if it needs to propagate the weight of node N—it only
propagates if the current hop CH does not exceed the threshold MH, and the weight of the
current node is larger than zero (Lines 8–10). It then iterates through nodes N ′ that are
directly connected to N (Lines 11–17). For each such node, we compute a weight w which
is a product of the weight of node N and the weight of the edge N–N ′ (Line 12). If the
weight of node N ′ is less than w, we assign w as the weight of node N ′ (Lines 13–14). The

Empir Software Eng (2018) 23: –800 832812

procedure then tries to propagate the weight of N ′ to its neighbors by a recursive call to
itself (Line 15).

Example 2 Consider a set of starting tags SST = {JAVA = 0.5, PYTHON = 0.6} output
by FrePOS, a tag network TN shown in Fig. 6 and a threshold MH = 2. Let us assume the
weights of all edges in the tag network are 0.85. At the beginning, our approach initializes
the weight of the node corresponding to tag JAVA in TN with 0.5 (Fig. 6a). Then, the weight
of node JAVA is propagated to its neighbors LINUX and ECLIPSE and their weights are both
updated to 0.42 (Fig. 6b). The weight is recursively propagated to all neighbors of node JAVA

of distance MH hops or less (Fig. 6c). Then, our approach processes tag PYTHON, node
PYTHON’s weight is updated to 0.6, which is the weight of tag PYTHON output by FrePOS.

Java

(a) (b) (c)

0.5

0.42

Eclipse

IDEPython

Linux

Project

0

0.42

0

0

0.5

0.42

Eclipse

IDEPython

Linux

Project

0.36

0.42

0.36

0

0.5

0

Eclipse

IDEPython

Linux

Project

0

0

0

0

Java Java

0.5

0.42

Eclipse

IDEPython

Linux

Project0.42

0.36

0

0.6

0.5

0.51

Eclipse

IDEPython

Linux

Project0.42

0.51

0

0.6

0.5

0.51

Eclipse

IDEPython

Linux

Project0.42

0.51

0.43

0.6

Java Java Java

(d) (e) (f)

Fig. 6 Finding associated tags using spreading activation: an example

Empir Software Eng (2018) 23: –800 832 813

(Fig. 6d). Our approach then propagates the weight of node PYTHON to its neighbors. If
a neighbor’s weight is lower than that which is propagated from PYTHON, the original
weight is replaced with the new weight. Otherwise, the original weight remains unchanged.
Thus, the weights of ECLIPSE and IDE are updated to 0.51 (0.51 exceeds 0.425, the current
weights of these tags, Fig. 6e). The weight of node PROJECT is updated to 0.43 (Fig. 6f).
Finally, the tags JAVA = 0.5, PYTHON = 0.6, ECLIPSE = 0.51, IDE = 0.51, LINUX =
0.42, and PROJECT = 0.43 will be output.

The spreading activation process requires a parameter MH (maximum hop); by default,
we set the parameter MH to 1, as the complexity of spreading activation is exponential to
the value of MH. At the end, our FIC component outputs candidate tags that are output
by FrePOS and the associated tags that are output by the spreading activation procedure
described above. These tags are input to the composer component (CC).

Note that we only apply this spreading activation step to FIC and not BIC. L-LDA used
in BIC is more robust than FrePOS to the data sparsity problem. We find that the application
of this step to BIC does not improve its effectiveness.

6 User Information Component

In this component, we make use of tags attached to software objects that a user has posted
before, in order to infer tags for a new software object posted by the same user. As we show
in the Section 2.3.2, the user usually posts questions that associated to certain specific tags.
Based on this intuition, we compute the weight of a tag t given a new software object o

posted by a user u as:

w(t, o, u) =
⎧
⎨

⎩

|{o ∈ Doc(u)|o tagged with t}|
|Doc(u)| , if t ∈ TBIC

⋃
FIC

0, otherwise
, (5)

where Doc(u) is the set of past objects posted by u, TBIC
⋃

FIC is the set of tags with non-
zero weights from BIC and FIC, and | · | denotes cardinality. Note that we define w(t, o, u)

as 0 for tags not in TBIC
⋃

FIC to avoid noise due to irrelevant tags.13

Example 3 To illustrate how UIC works, consider the user in Fig. 3. Suppose she posts
a new question o. We first find questions and answers posted by her in the past. Second,
we use BIC and FIC to get a list of candidate tags for the question o, say TBIC

⋃
FIC

is {java, netbeans, string, algorithm}. Third, using (5), we compute the tags’
weights: java receives weight 203

317 , string 4
317 , algorithm 2

317 , and netbeans 2
317

(she happens to have used all four tags recommended by BIC&FIC).

7 Additional Tag Component

In this component, we make use of an initial set of tags provided by a user to infer additional
tags based on historical tag co-occurrences. Consider a software object o and a set of initial

13Our experiments show that the effectiveness of UIC substantially degrades if it takes into consideration all
tags.

Empir Software Eng (2018) 23: –800 832814

tags {t1, t2, ..., tk} provided by a user. The probability of the object o to be assigned a tag t

is:

P(o, t |t1, t2, ..., tk) =
k∏

i=1

P(o, t |ti) (6)

The above probabilities (P(o, t |ti) for 1 ≤ i ≤ k) can be estimated from the training
data as follows:

P(o, t |ti) = Number of objects labeled with t and ti

Number of objects labeled with ti
(7)

Example 4 Suppose a user posts a question o and provides an initial tag string. In
the training data, let us say there are 100 software objects labeled with tag string,
and among them 40, 30, 10, 20, and 10 posts are also labelled with tags java, c#,
io, javascript, and python, respectively. Using (7), we estimate the probabili-
ties: P(o,java|string) = 0.4, P(o,c#|string) = 0.3, P(o,io|string) = 0.1,
P(o,javascript|string) = 0.2 and P(o,python|string) = 0.1.

8 Composer Component

Given a target software object o and a tag t , BIC, FIC, UIC, and ATC each produces a
probability for the tag to be relevant. We need to combine these probabilities to estimate the
overall relevance of the tag. A simple solution is to take an average of the four probabilities.
However, this assumes that BIC, FIC, UIC, and ATC are equally accurate in predicting tag
relevance, which may not be the case. To accommodate for differences in the effectiveness
of the four components, we can assign weights to them. More accurate components can be
given higher weights, and these weights can be learned from a training data. After these
weights are learned, for every tag, we can compute a weighted average of its probabilities
and use it as its overall relevance score. This score can then be used to produce a final
ranked list of tags. This strategy is commonly referred to as fusion via a linear combination
of scores which is a classical information retrieval technique (Vogt and Cottrell 1999).

More formally, we define ENTAGREC++ ranking score as ENTAGREC++
o(t) as follows:

ENTAGREC++
o(t) = α × Bo(t) + β × Fo(t) + γ × Uo(t) + δ × Ao(t), (8)

where Bo(t), Fo(t), Uo(t), and Ao(t) are the probabilities of tag t computed by BIC, FIC, UIC,
and ATC, respectively, and α, β, γ ,14 and δ ∈ [0, 1] are the weights the composer compo-
nent assigns to BIC, FIC, UIC, and ATC, respectively.15 Note that if there is no additional
tag provided by users, ATC will be deactivated and, correspondingly, δ will be set to 0.

To automatically tune α, β, γ , and δ, we use a set of training software objects and employ
grid search (Bergstra and Bengio 2012). The pseudocode of our weight tuning procedure
is shown in Algorithm 3. The weight tuning procedure takes as input the set of training
software objects TO, an evaluation criterion EC, and the four sets of tags returned by BIC,
FIC, UIC, and ATC (along with their probabilities). Our tuning procedure initializes α, β,
γ , and δ to 0 (Line 12). Then, it incrementally increases the value of α, β, γ , and δ by

14By construction, γ is an extra weight given to some of the tags in TBIC∪FIC .
15Since ENTAGREC++

o(t) is itself a probability score, it could also be expressed as a function of only three
coefficients α′, β ′, and γ ′, with the fourth being automatically 1−α′ −β ′ −γ ′. We chose the four-coefficient
expression to better reflect the four components of ENTAGREC++.

Empir Software Eng (2018) 23: –800 832 815

0.1 until they reach 1.0 (Lines 13–16). For each combination of four parameters and each
software object o in TO, our tuning procedure computes the ENTAGREC++ scores for each
tag returned by BIC, FIC, UIC, and ATC (Lines 17–19). Then tags are ordered based on
their ENTAGREC++ scores (Line 21). This is the ranked list of tags that are recommended
for o. Next, our tuning procedure evaluates the quality of the resulting ranking based on
particular α, β, γ , and δ values using EC (Line 22). The process is repeated for all objects
in TO and again the quality of the resulting ranking is evaluated using EC (Line 24). The
process continues until all combinations of α, β, γ , and δ have been exhausted and our
tuning procedure finally outputs the best combination of α, β, γ , and δ based on EC (Line 29).

Various evaluation criteria can be used in our weight tuning procedure. In this paper, we
make use of Recall@k, which has been used as the evaluation criterion in many past tag
recommendation studies, e.g., Al-Kofahi et al. (2010) and Zangerle et al. (2011). Recall@k
was also used in the previous state-of-the-art study on tag inference for software information
sites (Xia et al. 2013).

Definition 1 Consider a set of n software objects. For each object oi , let the set of its correct
(i.e., ground truth) tags be Tagscorrect

i . Also, let TagstopK
i be the top-k ranked tags that are

recommended by a tag recommendation approach for oi . Recall@k for n is given by:

Recall@k = 1

n

n∑

i=1

|TagstopK
i

⋂
Tagscorrect

i |
|Tagscorrect

i | (9)

Empir Software Eng (2018) 23: –800 832816

In the deployment phase, the composer component combines the recommendations made
by the inference components by computing the ENTAGREC++ scores using (8) for each
recommended tag. It then sorts the tags based on their ENTAGREC++ scores (in descending
order) and outputs the top-k ranked tags.

9 Experiments and Results

In this section, we first present our experiment settings in Section 9.1. Our experiment
results are then presented in Sections 9.2. We discuss some interesting points in Section 9.3.

9.1 Experimental Setting

We evaluate ENTAGREC++ on five datasets: STACK OVERFLOW, ASK UBUNTU, ASK

DIFFERENT, SUPER USER (all four part of the STACK EXCHANGE network), and
FREECODE, which were used to evaluate ENTAGREC (Wang et al. 2014). STACK OVER-
FLOW is a Q&A site for software developers to post general programming questions. ASK

DIFFERENT is a Q&A site related to Apple devices, e.g., iPhone, iPad, mac. ASK UBUNTU

is a Q&A site about Ubuntu. SUPER USER is a Q&A site for systems administrators and
power users. FREECODE is a site containing descriptions of many software projects.

Table 2 presents descriptive statistics of the four datasets, including period of the data,
number of objects, number of tags, maximum and average number of objects for each per
tag, and average elapsed time since registration of all studied users. The STACK OVERFLOW

and FREECODE datasets are obtained from Xia et al. and they have been used to evaluate
TAGCOMBINE (Xia et al. 2013). The ASK UBUNTU, ASK DIFFERENT, and SUPER USER

datasets are new. We collect all questions in ASK UBUNTU, ASK DIFFERENT, SUPER USER

that are posted before April 2012. Following (Xia et al. 2013), to remove noise correspond-
ing to tags that are assigned idiosyncratically, we filter out tags that are associated with less
than 50 objects. These tags are less interesting since not many people use them, and thus
they are less useful to be used as representative tags and recommending them does not help
much in addressing the tag synonym problem addressed by tag recommendation studies.
The numbers summarized in Table 2 are after filtering.

We perform ten-fold cross validation (Han et al. 2011) for evaluation. We randomly split
the dataset into ten subsamples. Nine of them are used as training data, to train ENTA-
GREC++, and one subsample is used for testing. We repeat the process ten times and use
Recall@k as the evaluation metric. Note that we conduct ten-fold cross validation 100 times

Table 2 Basic statistics of the four datasets

Dataset Period Objects Tags Objects per tag Avg. age of
users (days)

Max Avg

STACK OVERFLOW 2008.6 – 2008.12 47,668 437 6,113 234.93 54
FREECODE 2001.1 – 2012.6 39,231 243 9,615 545.08 NA
ASK UBUNTU Before 2012.4 37,354 346 6,169 234.03 237
ASK DIFFERENT Before 2012.4 13,351 153 2,019 180.88 253
SUPER USER Before 2012.4 47,996 460 7,009 245.7 745

Empir Software Eng (2018) 23: –800 832 817

and take averages as results.Unless otherwise stated, we set the values of KBayesian and
KFrequentist at 70 as the setting in ENTAGREC. We conduct all our experiments on a
Windows 2008 server with 8 Intel�2.53GHz cores and 24GB RAM.

9.2 Evaluation Results

The goal of our evaluation is to compare the effectiveness of ENTAGREC++ with those
of ENTAGREC and TAGCOMBINE. TAGCOMBINE is the tag recommendation approach
proposed by Xia et al. (2013). ENTAGREC is our earlier version of ENTAGREC++ (Wang
et al. 2014), which did not include the user information component and the additional tag
component. Our goal can be refined into the following research questions:

RQ1. How effective is ENTAGREC+ compared to ENTAGREC and TAGCOMBINE in
terms of Recall@k?

To answer this research question, we perform ten-fold cross validation, and compare
ENTAGREC++, ENTAGREC and TAGCOMBINE in terms of Recall@5 and Recall@10. To
make the comparison fair, we do not provide an initial set of tags to ENTAGREC++ because
ENTAGREC and TAGCOMBINE cannot accept an initial set of tags as input. We refer to the
version of ENTAGREC++ without additional tags as ENTAGREC+.

RQ2. Does the additional tag component improve the effectiveness of ENTAGREC+?

The additional tag component makes use of the additional tags provided by a user to
recommend associated tags. We want to investigate whether this component improves
ENTAGREC+. To answer this research question, we collect the questions whose tags have
been updated in the past from STACK OVERFLOW, ASK UBUNTU, and ASK DIFFERENT.
In the experiment, we take the initial tags labeled by users when they created the questions,
and use the recent tags of the question as the ground truth. We also remove the tags that are
associated with less than 50 objects, as before in RQ1. We use the datasets in Table 1 for
this experiment; the number of tags and objects after filtering is shown at Table 3. For ASK

UBUNTU, ASK DIFFERENT and SUPER USER, we collect all questions involving tag re-
editing before December 2015. After filtering, we are left with 483 tags and 31,881 objects
associated with the tags from ASK UBUNTU, with 157 tags and 7,762 objects from ASK

DIFFERENT, and with 196 tags and 13,796 objects from SUPER USER. For STACK OVER-
FLOW, because the number of questions involving tag re-editing is too large, we randomly
sample 50,000 questions; after filtering, we are left with 649 tags and 42,493 objects. We
do not consider FREECODE for this experiment because we cannot obtain historical tag data
from FREECODE.

Table 3 Basic statistics of questions involving tag re-editing on STACK OVERFLOW, ASK UBUNTU, SUPER

USER, and ASK DIFFERENT

Dataset Tags Objects Avg. initial tag set size Avg. edited tag set size

STACK OVERFLOW 649 42,493 2.9 3.4

ASK UBUNTU 483 31,881 2.4 2.8

ASK DIFFERENT 157 7,762 2.3 3.1

SUPER USER 196 13,796 2.0 2.7

Empir Software Eng (2018) 23: –800 832818

9.2.1 RQ1: Overall Effectiveness of ENTAGREC+

We compare ENTAGREC+ with competing approaches: TAGCOMBINE proposed by Xia
et al. (2013) and ENTAGREC by Wang et al. (2014).

Table 4 summarizes the comparison between ENTAGREC+, ENTAGREC, and TAGCOM-
BINE. We also show the beanplots of the comparison between those three approaches in
Fig. 7. We performed ten-fold cross-validation 100 times and evaluated the approaches in
terms of the average Recall@5 and Recall@10. ENTAGREC+ achieves sizeable improve-
ments over TAGCOMBINE for the Stack Exchange datasets (more than 34.7% for Recall@5
and more than 18.3% for Recall@10), and performs comparably to TAGCOMBINE on
FREECODE. Averaging across the 5 datasets, ENTAGREC+ improves TAGCOMBINE in
terms of Recall@5 and Recall@10 by 27.8% and 14.1% respectively. We perform a
Wilcoxon signed-rank test (Wilcoxon 1945) to test the significance of the differences
in the performance of TAGCOMBINE and ENTAGREC+ measured in terms of Recall@5
and Recall@10. We also perform Benjamini Yekutieli procedure (Benjamini and Yekutieli
2001) to adjust the p-value obtained from Wilcoxon signed-rank test to deal with the impact
of multiple comparisons. For the Stack Exchange datasets (STACK OVERFLOW, ASK

UBUNTU, ASK DIFFERENT, SUPER USER), the results show that ENTAGREC+ outper-
forms TAGCOMBINE in terms of Recall@5 and Recall@10 significantly. For FREECODE,
ENTAGREC+ outperforms TAGCOMBINE in terms of Recall@5 significantly. However,
TAGCOMBINE significantly outperforms ENTAGREC+ in terms of Recall@10 but the
absolute difference is small (0.016).

We also compare the effectiveness of ENTAGREC+, which employs user information, to
that of ENTAGREC in terms of Recall@5 and Recall@10. Analyzing Table 4, we observe
that ENTAGREC+ outperforms ENTAGREC on all datasets. In terms of Recall@5, ENTA-
GREC+ improves ENTAGREC by 1.3% on average. In terms of Recall@10, ENTAGREC+
achieves a 0.3% improvement over ENTAGREC. We perform a Wilcoxon signed-rank
test (Wilcoxon 1945) and Benjamini Yekutieli procedure (Benjamini and Yekutieli 2001)
on each dataset. The results indicates the improvement achieved by ENTAGREC+ is
statistically significant (adjusted p-value < 0.05).

To investigate if the differences in the Recall@5 and Recall@10 values are substantial,
we also compute Cliff’s Delta (Grissom and Kim 2005) which measures effect size. The

Table 4 The comparison of
ENTAGREC+, ENTAGREC and
TAGCOMBINE in terms of
Recall@5 and Recall@10

Dataset ENTAGREC ENTAGREC+ TAGCOMBINE

Recall@5

STACK OVERFLOW 0.805 0.821 0.595

ASK UBUNTU 0.815 0.822 0.568

ASK DIFFERENT 0.882 0.891 0.675

SUPER USER 0.810 0.818 0.627

FREECODE 0.642 0.651 0.639

Recall@10

STACK OVERFLOW 0.868 0.873 0.724

ASK UBUNTU 0.882 0.886 0.727

ASK DIFFERENT 0.951 0.956 0.821

SUPER USER 0.879 0.887 0.763

FREECODE 0.754 0.761 0.777
The highest value is typeset in
boldface

Empir Software Eng (2018) 23: –800 832 819

Ask Different Ask Ubuntu Free Code Stack Overflow Super User

EnTagRec+ EnTagRec TagCombine

Fig. 7 Beanplots of ENTAGREC+, ENTAGREC and TAGCOMBINE in terms of Recall@5 and Recall@10

results are shown in Table 5. It interprets the effect size values as small for 0.147 < |d| <

0.33, medium for 0.33 < |d| < 0.474, and large for |d| > 0.474 (Grissom and Kim 2005).
If the effect size is close to 0, it means that the difference is not substantial. If the effect
size equals to 1, it means that all values of one group are larger than those of another group.
From the results we can conclude that ENTAGREC+ substantially outperforms TAGCOM-
BINE and ENTAGREC on STACK OVERFLOW, ASK UBUNTU, SUPER USER, and ASK

DIFFERENT datasets (with large effect sizes). For the FREECODE dataset, ENTAGREC+
also substantially outperforms ENTAGREC (with large effect sizes). In terms of Recall@5,
ENTAGREC+ outperforms TAGCOMBINE substantially. However, in terms of Recall@10,
TAGCOMBINE outperforms ENTAGREC+ substantially. which means that all values in one
group are larger or smaller than those in another group when comparing two groups.

9.2.2 RQ2: Effectiveness of Additional Tag Component

To answer the research question, we compare the effectiveness of two versions of ENTA-
GREC++: one with additional tag component (ENTAGREC++) and another without addi-
tional tag component (ENTAGREC+). Figure 8 presents the beanplots of ENTAGREC+ and

Table 5 Effect sizes

Dataset ENTAGREC+ vs. ENTAGREC ENTAGREC+ vs. TAGCOMBINE

Recall@5

STACK OVERFLOW 1 1

ASK UBUNTU 1 1

ASK DIFFERENT 1 1

SUPER USER 0.99 0.99

FREECODE 1 0.92

Recall@10

STACK OVERFLOW 0.68 1

ASK UBUNTU 1 1

ASK DIFFERENT 1 1

SUPER USER 0.99 0.99

FREECODE 1 −1

Empir Software Eng (2018) 23: –800 832820

Stack Overflow Ask Ubuntu Ask Different Super User

EnTagRec+ EnTagRec++

Fig. 8 Beanplots of ENTAGREC+ and ENTAGREC++ in terms of Recall@5 and Recall@10

ENTAGREC++ in terms of Recall@5 and Recall@10. Table 6 summarizes the comparison
between ENTAGREC++ and ENTAGREC+ in terms of Recall@5 and Recall@10. From the
results, we notice that ENTAGREC++ outperforms ENTAGREC+ on all datasets. On aver-
age, ENTAGREC++ achieves 10.0% and 4.8% improvements over ENTAGREC+ in terms
of Recall@5 and Recall@10, respectively. We also perform a Wilcoxon signed-rank test
(Wilcoxon 1945) and Benjamini Yekutieli procedure (Benjamini and Yekutieli 2001) on
each dataset, which indicates the improvement achieved by ENTAGREC++ is statistically
significant (adjusted p-value < 0.05). Thus, we demonstrate that additional tag component
helps to improve ENTAGREC when additional tag provided.

We also compute Cliff’s Delta (Grissom and Kim 2005) which measures effect size to
test if the differences in the recall values are substantial. The results are shown in Table 7.

9.3 Discussion

Illustrative examples Figure 9 shows a software object from STACK OVERFLOW with
the ruby and rdoc tags. TAGCOMBINE cannot infer any of the tags. On the other hand
ENTAGREC can infer all tags. This is one of the many examples where the performance of
ENTAGREC is better than TAGCOMBINE.

Figure 10 presents a software object from STACK OVERFLOW with tags python,
apache-spark, apache-spark-sql, and pyspark. The object is initially tagged
with python, apache-spark, and apache-spark-sql. Later, the tag pyspark

Table 6 The comparison of
ENTAGREC++ and
ENTAGREC+ in terms of
Recall@5 and Recall@10

Dataset ENTAGREC++ ENTAGREC+

Recall@5

STACK OVERFLOW 0.905 0.819

ASK UBUNTU 0.737 0.705

ASK DIFFERENT 0.852 0.685

SUPER USER 0.908 0.901

Recall@10

STACK OVERFLOW 0.968 0.941

ASK UBUNTU 0.87 0.866

ASK DIFFERENT 0.963 0.932

SUPER USER 0.956 0.955

Empir Software Eng (2018) 23: –800 832 821

Table 7 Effect sizes
Dataset ENTAGREC++ vs. ENTAGREC+

Recall@5

STACK OVERFLOW 1

ASK UBUNTU 1

ASK DIFFERENT 1

SUPER USER 0.99

Recall@10

STACK OVERFLOW 1

ASK UBUNTU 0.99

ASK DIFFERENT 1

SUPER USER 0.28

is added. ENTAGREC++ can infer the tag pyspark given the initial set of tags, while
ENTAGREC fails to do so.

The impact of different MH on EnTagRec+ To understand the impact of parameter
MH in Algorithm 1 on our approach, we test different values of MH of ENTAGREC+ on
the five datasets and see how the effectiveness of ENTAGREC+ varies. Figure 11 presents
the results, which show that the effectiveness of ENTAGREC+ remains stable when we
increase MH from 1 to 5. Since the difference in effectiveness is negligible for different
MH values, we choose to set MH to 1 to reduce the computing cost.

Stack exchange sites vs. FreeCode. From the experimental results, we note that ENTA-
GREC+ performs much better than TagCombine on STACK EXCHANGE Sites (i.e., STACK

OVERFLOW, ASK UBUNTU, SUPER USER, ASK DIFFERENT), while it performs similarly
to TagCombine on FREECODE. To understand why the performance of ENTAGREC+ varies
on different sites, we check the length (in words) of objects in the five datasets; the summary
is shown in Table 8. We see that the length of objects in FREECODE is much shorter than
that of STACK EXCHANGE sites. This may explain why the performance of ENTAGREC+
on FREECODE is not as good as on the other sites. BIC is based on L-LDA, which usually
requires training documents to be relatively long in order to achieve good results – c.f. Hong
and Davison (2010). Unfortunately, objects in FREECODE are short, which results in poor
results from BIC. To further verify our conjecture, we divide the objects into two groups.
We sort the objects of each dataset by their length (in words) in ascending order. We take

Taryn East

edited

9,133 3 29 61
CodingWithoutComments
9,106 12 52 73

I've got all these comments that I want to make into 'RDoc comments', so they can be formatted
appropriately and viewed using . Can anyone get me started on understanding how to use RDoc?

ruby rdoc

May 5 '13 at 0:24 asked Aug 1 '08 at 13:38

add comment

Fig. 9 ENTAGREC correctly suggests tags ruby and rdoc for this STACK OVERFLOW question, while
TAGCOMBINE does not

Empir Software Eng (2018) 23: –800 832822

Fig. 10 ENTAGREC++ correctly suggests tags pyspark for this STACK OVERFLOW question given the
initial tags python, apache-spark, and apache-spark-sql, while ENTAGREC does not

the top 50% of the objects as one group (i.e. Groupshort) and the rest as the another group
(i.e., Grouplong). We evaluate the effectiveness of ENTAGREC+ on each group of the five
datasets in terms of Recall@5 and Recall@10. The results are shown at Table 9. We could
see that ENTAGREC+ consistently achieves better Recall@k scores on Grouplong , which
suggests that our approach is more effective on long objects rather than short ones.

Fig. 11 The results of different values of MH on STACK OVERFLOW (SO), ASK UBUNTU (AU), ASK DIF-
FERENT (AD), SUPER USER (SU), and FREECODE (FC). Y axis is truncated (i.e., 0.6–1.0) and differences
are smaller than they appear

Empir Software Eng (2018) 23: –800 832 823

Table 8 The summary of the
length (in words) of objects in
the five dataset

Dataset Entire dataset Groupshort Grouplong

STACK OVERFLOW 75.8 30.9 118.8

ASK UBUNTU 77.9 28.4 125.5

ASK DIFFERENT 60.9 26.4 93.6

SUPER USER 62.7 27.9 96.5

FREECODE 19.5 11.6 27.3

Precision@k results Aside from Recall@k, Precision@k (Definition 2) has also been
used to evaluate information retrieval techniques. In this paper, we focus on Recall@k as
the evaluation metric. A similar decision was made by past tag recommendation studies
(Zangerle et al. 2011; Xia et al. 2013). This is the case as the number of tags that are attached
to an object is often small (much less than K). Thus, the value of Precision@k is often very
low and is not meaningful.

Definition 2 Consider a set of n software objects. For each object oi , let the set of its
correct (i.e., ground truth) tags be Tagscorrect

i . Also, let TagstopK
i be the top-k ranked tags

that are recommended by a tag recommendation approach for oi . Average Precision@k for
n is given by:

Precision@k = 1

n

n∑

i=1

|TagstopK
i

⋂
Tagscorrect

i |
|TagstopK

i |
(10)

Still, for the sake of completeness, we show the Precision@k results in Table 10. The
results show that ENTAGREC+ outperforms ENTAGREC and TAGCOMBINE on all datasets
in terms of Precision@5. ENTAGREC+ outperforms ENTAGREC on ASK UBUNTU,
ASK DIFFERENT, SUPER USER, and FREECODE in terms of Precision@10. In terms
of Precision@10, ENTAGREC+ also outperforms TAGCOMBINE on four out of the five
datasets. The difference between Precision@10 of ENTAGREC+ and TAGCOMBINE is
small (i.e., 0.008). We also performed the Wilcoxon signed-rank test (Wilcoxon 1945) and
Benjamini Yekutieli procedure (Benjamini and Yekutieli 2001). We found that in terms

Table 9 The comparison
between Grouplong and
Groupshort

Dataset Grouplong Groupshort

Recall@5

STACK OVERFLOW 0.912 0.680

ASK UBUNTU 0.882 0.703

ASK DIFFERENT 0.954 0.807

SUPER USER 0.908 0.689

FREECODE 0.635 0.629

Recall@10

STACK OVERFLOW 0.956 0.751

ASK UBUNTU 0.940 0.866

ASK DIFFERENT 0.986 0.781

SUPER USER 0.965 0.778

FREECODE 0.680 0.674

Empir Software Eng (2018) 23: –800 832824

Table 10 Precision@5 and
Precision@10 for three
approaches ENTAGREC+,
ENTAGREC, and TAGCOMBINE.

Dataset ENTAGREC ENTAGREC+ TAGCOMBINE

Precision@5

STACK OVERFLOW 0.346 0.353 0.221

ASK UBUNTU 0.358 0.361 0.251

ASK DIFFERENT 0.364 0.373 0.278

SUPER USER 0.376 0.380 0.285

FREECODE 0.382 0.396 0.381

Precision@10

STACK OVERFLOW 0.187 0.187 0.151

ASK UBUNTU 0.196 0.197 0.158

ASK DIFFERENT 0.205 0.202 0.173

SUPER USER 0.201 0.207 0.177

FREECODE 0.240 0.241 0.249
The highest value is typeset in
boldface

of Precision@5, ENTAGREC+ significantly outperforms TAGCOMBINE. Also, in terms
of Precision@10, ENTAGREC+ significantly outperforms ENTAGREC on all datasets and
TAGCOMBINE on STACK OVERFLOW, ASK UBUNTU, SUPER USER, and ASK DIFFER-
ENT. For FREECODE, TAGCOMBINE significantly outperforms ENTAGREC+ terms of
Precision@10.

When the additional tags are given, the precision of ENTAGREC+ and ENTAGREC++
are presented at Table 11. ENTAGREC++ outperforms ENTAGREC on all datasets in terms
of Precision@5 and Precision@10. We also performed the Wilcoxon signed-rank test
(Wilcoxon 1945) and Benjamini Yekutieli procedure (Benjamini and Yekutieli 2001). We
found that in terms of Precision@5, ENTAGREC++ significantly outperforms ENTAGREC

on all dataset.
To investigate if the differences in the precision values are substantial, we also compute

Cliff’s Delta which measures effect size. The results are shown in Table 12. From the results
we can conclude that ENTAGREC+ substantially outperforms TAGCOMBINE and ENTA-
GREC on the STACK OVERFLOW, ASK UBUNTU, SUPER USER, and ASK DIFFERENT

datasets (with at least medium effect sizes). For the FREECODE dataset,ENTAGREC+ still
substantially outperforms TAGCOMBINE in terms of Precision@5. However, TAGCOMBINE

Table 11 Precision@5 and
Precision@10 for two
approaches ENTAGREC+ and
ENTAGREC++

Dataset ENTAGREC++ ENTAGREC+

Precision@5

STACK OVERFLOW 0.225 0.202

ASK UBUNTU 0.202 0.191

ASK DIFFERENT 0.225 0.181

SUPER USER 0.249 0.247

Precision@10

STACK OVERFLOW 0.122 0.118

ASK UBUNTU 0.122 0.121

ASK DIFFERENT 0.130 0.125

SUPER USER 0.133 0.132
The highest value is typeset in
boldface

Empir Software Eng (2018) 23: –800 832 825

Table 12 Effect sizes (Precision)

Dataset ENTAGREC+ vs.
ENTAGREC

ENTAGREC++
vs. ENTAGREC+

ENTAGREC+ vs.
TAGCOMBINE

Precision@5

STACK OVERFLOW 0.939 1 1

ASK UBUNTU 1 1 1

ASK DIFFERENT 1 1 1

SUPER USER 0.461 0.92 1

FREECODE 1 NA 1

Precision@10

STACK OVERFLOW −0.024 1 1

ASK UBUNTU 1 0.568 1

ASK DIFFERENT 1 1 1

SUPER USER 0.99 0.47 0.99

FREECODE 0.341 NA −0.457

substantially outperforms ENTAGREC in terms of Precision@10. ENTAGREC++ substan-
tially outperforms ENTAGREC+ on STACK OVERFLOW, ASK UBUNTU, SUPER USER,
and ASK DIFFERENT datasets (with large and medium effect sizes). ENTAGREC+ sub-
stantially outperforms ENTAGREC in terms of Precision@5. In terms of Precision@10,
ENTAGREC+ outperforms ENTAGREC on the ASK UBUNTU, SUPER USER, and ASK

DIFFERENT datasets with large size and on the FREECODE with medium size.

Efficiency We find that ENTAGREC++ runtimes for the training and deployment phases
are reasonable. ENTAGREC++’s training time can mostly be attributed to training an L-
LDA model in the Bayesian inference component of ENTAGREC++, which never exceeds
18 minutes (it is the maximum time across the ten iterations measured on the Stack Over-
flow dataset, the largest of the four). The Frequentist inference component is much faster;
its runtime never exceeds 40 seconds (measured on the STACK OVERFLOW dataset). The
training time of user information component and additional tag component never exceeds
1 minute. In the deployment phase, the average time ENTAGREC++ takes to recommend a
tag never exceeds 0.14 seconds.

Retraining frequency Since ENTAGREC++ is efficient (i.e., model training can be com-
pleted in minutes), we can afford to retrain it daily. For example, a batch script can be run
at a scheduled hour every day. Within a day, software objects and tagging behaviors are
very likely to remain unchanged, and thus there is no need to retrain ENTAGREC++ more
frequently.

ATC usage Since more complete tags may shorten the time it takes for a question to be
discovered and receive answer, we suggest to apply ATC just after a question is created with
initial tags. Moreover, ATC can even be applied in real time, i.e., when users are entering
tags.

Threats to validity Threats to external validity relate to the generalizability of our results.
We have analyzed five popular software information sites (i.e., four STACK EXCHANGE

Empir Software Eng (2018) 23: –800 832826

sites and FREECODE) and more than 160,000 software objects. In the future, we plan to
reduce this threat further by analyzing even more software objects from more software
information sites. As a threat to internal validity, we assume that the data in the software
information sites are correct. To reduce the threat we only used older data—assuming people
correct wrongly/poorly assigned tags. Also, two of our datasets (i.e., STACK OVERFLOW

and FREECODE) were used in a past study (Xia et al. 2013). We use a lot of data and only
consider tags that are used to label at least 50 objects to further reduce the impact of noise.
Furthermore, manual inspection of a random sample of 100 STACK OVERFLOW objects
(questions) revealed that only 1 had a clearly irrelevant tag (out of a total of 3 tags for that
object).

Threats to construct validity relate to the suitability of our evaluation metrics. We have
used Recall@k and Precision@k to evaluate our proposed approaches ENTAGREC and
ENTAGREC++ in comparison with other approaches. These measures are standard infor-
mation retrieval measures used by prior tag recommendation studies, e.g., Al-Kofahi et al.
(2010), Zangerle et al. (2011), and Xia et al. (2013). We have also performed statistical test
and effect size test to check if the differences in Recall@k and Precision@k are significant
and substantial. Thus, we believe there is little threat to construct validity.

10 Related Work

Tag Recommendation: Al-Kofahi et al. proposed TAGREC which recommends tags in
work item systems (e.g., IBM Jazz) (Al-Kofahi et al. 2010). There are a number of stud-
ies from the data mining research community, that recommend tags for social media sites
like Twitter, Delicious, and Flickr (Jäschke et al. 2007; Sigurbjörnsson and van Zwol 2008;
Zangerle et al. 2011). Among these studies, the work by Zangerle et al. is the latest approach
to recommend hashtags for short messages in Twitter (Zangerle et al. 2011). Xia et al. pro-
posed TAGCOMBINE, which combines three components: a multi-label ranking component,
a similarity-based ranking component, and a tag-term based ranking component (Xia et al.
2013). Xia et al. have shown that TAGCOMBINE outperforms TAGREC and Zangerle et al.’s
approach in recommending tags in software information sites.

The closest work to ours is TAGCOMBINE proposed by Xia et al. which is also the prior
state-of-the-art work (Xia et al. 2013). There are a number of technical differences between
ENTAGREC, proposed in our preliminary work (Wang et al. 2014), and TAGCOMBINE.
ENTAGREC combines two components: a Bayesian inference component that employs
Labeled LDA (BIC), and an enhanced frequentist inference component that removes unre-
lated words with the help of a parts-of-speech (POS) tagger, and finds associated tags with
a spreading activation algorithm (FIC). Our BIC is related to the multi-label ranking com-
ponent of TAGCOMBINE since both of them employ Bayesian inference. The multi-label
ranking component of TAGCOMBINE constructs many one-versus-rest Naive Bayes clas-
sifiers, one for each tag. Each Naive Bayes classifier simply predicts the likelihood of
a software object to be assigned a particular tag. In ENTAGREC, we construct only one
classifier which is a mixture model that considers all tags together. Mixture models have
been shown to outperform one-versus-rest traditional multi-label classification approaches
(Ramage et al. 2009; Ghamrawi and McCallum 2005; Puurula 2011). Also, our FIC removes
unrelated words (using POS tagger) and finds associated tags (using spreading activation)
while none of the three components of TAGCOMBINE perform these. We have compared
our approach with TAGCOMBINE, on four datasets: STACK OVERFLOW, ASK UBUNTU,
ASK DIFFERENT, and FREECODE. We show that our approach outperforms TAGCOMBINE

Empir Software Eng (2018) 23: –800 832 827

on three datasets (i.e., STACK OVERFLOW, ASK UBUNTU, ASK DIFFERENT), and per-
forms as well as TAGCOMBINE on one dataset (i.e., FREECODE). ENTAGREC++ extends
ENTAGREC by including two additional components, User Information Component (UIC)
and Additional Tag Component (ATC), which boosts performance further.

Tagging in software engineering The need for automatic tag recommendation has been
recognized both by practitioners (Warbox 2009; Her 2011; Jmac 2013) and by researchers.
Aside from tag recommendation studies mentioned above, there are several software engi-
neering studies that also analyze tagging and leverage tags for various purposes. Treude
et al. performed an empirical study on the impact of tagging on a large project with 175
developers over a two years period (Treude and Storey 2009). Wang et al. analyzed tags of
projects in FREECODE, inferred the semantic relationships among the tags, and expressed
the relationships as a taxonomy (Wang et al. 2012). Thung et al. detected similar software
applications using software tags (Thung et al. 2012). Storey et al. proposed an approach
called TagSEA that allows one to create, edit, navigate, and manage annotations in source
code (Storey et al. 2009). Treude et al. performed an empirical study on several profes-
sional projects that involved more than 1,000 developers, and found that tagging can play
an important role in the development process (Treude and Storey 2012). They found that
tags are helpful in articulation work, finding of tasks, and exchange of information. Cabot
et al. conducted an empirical study on the labels that are used to classify issues on issue
tracking system and they found that the use of such labels improves issue resolution pro-
cess (Cabot et al. 2015). Wang et al. have demonstrated that the practice of tagging helps in
assisted tracing (a process where analysts inspect results produce by automated traceabil-
ity techniques) (Wang et al. 2015). Through a user study, they find that tagging is readily
adopted by analysts and improve the quality of the trace matrices produced at the end of the
study.

Furthermore, several studies of STACK OVERFLOW have used tags to focus on questions
or answers pertaining to a certain technology (Bazelli et al. 2013; Vasilescu et al. 2013) or
to enhance studies of related websites such as GITHUB (Pletea et al. 2014) or Wikipedia
(Joorabchi et al. 2015).

11 Conclusion and Future Work

In this work, we propose a novel approach to recommend tags to software information sites.
Our approach, named ENTAGREC++, an enhanced version of ENTAGREC, learns from
tags of historical software objects to infer tags of new software objects. To recommend
tags, ENTAGREC++ enhances ENTAGREC by adding two more inference components.
One, named user information component (UIC), makes use of historical tagging information
peculiar to a user to infer tags for a current software object the user creates. Another one,
named additional tag component (ATC), makes use of an initial set of tags given by a user to
recommend additional tags better. ENTAGREC++ composes the four components by find-
ing the best weights that optimize the performance of ENTAGREC++ on a training dataset.
We evaluate the performance of ENTAGREC++ on four datasets, STACK OVERFLOW, ASK

UBUNTU, ASK DIFFERENT, SUPER USER, and FREECODE, which contain 47,688, 39,231,
37,354, and 13,351 software objects, respectively. We find that that without leveraging ATC,
our approach (named ENTAGREC+) achieves Recall@5 scores of 0.821, 0.822, 0.891 and
0.651, and Recall@10 scores of 0.873, 0.886, 0.956 and 0.761, on STACK OVERFLOW,
ASK UBUNTU, ASK DIFFERENT, SUPER USER, and FREECODE, respectively. In terms of

Empir Software Eng (2018) 23: –800 832828

Recall@5 and Recall@10, averaging across the 4 datasets, ENTAGREC+ improves TAG-
COMBINE (Xia et al. 2013), which is the prior state-of-the-art approach, by 29.1% and
14.2% respectively. In addition, with ATC, ENTAGREC++ achieves a 13.1% improvement
over ENTAGREC+ in terms of Recall@5. We have published the code and datasets that we
used online.16 Admittedly, we have only tested our approach on Stack Exchange sites and
FreeCode.

As future work, we plan to reduce the threats to validity by experimenting with more soft-
ware objects from more software information sites. In this paper, we only consider the major
tag re-editing scenario – tag addition (see Table 1). In the future, we also plan to support tag
deletion and tag correction. Furthermore, we plan to improve the Recall@5 and Recall@10
of ENTAGREC further by investigating cases where ENTAGREC++ is inaccurate, and by
building a more sophisticated machine learning solution.

References

Al-Kofahi JM, Tamrawi A, Nguyen TT, Nguyen HA, Nguyen TN (2010) Fuzzy set approach for automatic
tagging in evolving software ICSM, pp 1–10

Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002) Recovering traceability links between code
and documentation. IEEE Trans Softw Eng 28(10):970–983

Asuncion HU, Asuncion AU, Taylor RN (2010) Software traceability with topic modeling ICSE, pp 95–104
Baldi P, Lopes CV, Linstead E, Bajracharya SK (2008) A theory of aspects as latent topics OOPSLA, pp 543–

562
Bazelli B, Hindle A, Stroulia E (2013) On the personality traits of stackoverflow users. In: 2013 IEEE

international conference on software maintenance, pp 460–463
Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency.

Ann Stat 29:1165–1188
Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. JMLR 13:281–305
Bindelli S, Criscione C, Curino C, Drago ML, Eynard D, Orsi G (2008) Improving search and navigation

by combining ontologies and social tags. In: On the move to meaningful internet systems, OTM 2008
Workshops, OTM confederated international workshops and posters, ADI, AWeSoMe, COMBEK, EI2N,
IWSSA, MONET, OnToContent + QSI, ORM, PerSys, RDDS, SEMELS, and SWWS 2008, Monterrey,
Mexico, November 9-14, 2008. Proceedings, pp 76–85

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. JMLR, 993–1022
Brandt J, Guo PJ, Lewenstein J, Dontcheva M, Klemmer SR (2009) Two studies of opportunistic program-

ming: interleaving web foraging, learning, and writing code CHI. ACM, pp 1589–1598
Cabot J, Izquierdo JLC, Cosentino V, Rolandi B (2015) Exploring the use of labels to categorize issues in

open-source software projects. In: 22nd IEEE international conference on software analysis, evolution,
and reengineering, SANER 2015. Montreal, QC, Canada, March 2-6, 2015, pp 550–554

Capobianco G, Lucia AD, Oliveto R, Panichella A, Panichella S (2013) Improving IR-based traceability
recovery via noun-based indexing of software artifacts. J Softw Evol Process 25(7):743–762

Cress U, Held C, Kimmerle J (2013) The collective knowledge of social tags: direct and indirect influences
on navigation, learning, and information processing. Comput Educ 60(1):59–73

Crestani F (1997) Application of spreading activation techniques in information retrieval. Artif Intell Rev
11(6):453–482

Gelman A, Carlin J, Stern H, Rubin D (2003) Bayesian data analysis. CRC Press
Ghamrawi N, McCallum A (2005) Collective multi-label classification CIKM, pp 195–200
Golder SA, Huberman BA (2006) Usage patterns of collaborative tagging systems. J Inf Sci 32(2):198–206
Grissom RJ, Kim JJ (2005) Effect sizes for research. A broad practical approach
Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques. Morgan Kaufmann Publishers Inc
Held C, Kimmerle J, Cress U (2012) Learning by foraging: the impact of individual knowledge and social

tags on web navigation processes. Comput Hum Behav 28(1):34–40

16https://sites.google.com/site/wswshaoweiwang/projects/entagrec

Empir Software Eng (2018) 23: –800 832 829

https://sites.google.com/site/wswshaoweiwang/projects/entagrec

Hong L, Davison BD (2010) Empirical study of topic modeling in twitter. In: Proceedings of the first
workshop on social media analytics, SOMA ’10, pp 80–88

Jäschke R, Marinho LB, Hotho A, Schmidt-Thieme L, Stumme G (2007) Tag recommendations in
folksonomies PKDD

Jmac (2013) Select and display ‘suggested tags’ for all posts based on related questions (or other logic).
http://meta.stackexchange.com/q/196702/182512

Joorabchi A, English M, Mahdi AE (2015) Automatic mapping of user tags to wikipedia concepts: the case
of a q&a website âĂŞ stackoverflow. J Inf Sci 41(5):570–583

Her J (2011) Tag recommendations for stack overflow. http://meta.stackexchange.com/q/88611/182512
Lukins SK, Kraft NA, Etzkorn LH (2010) Bug localization using latent dirichlet allocation. Inf Softw Technol

52(9):972–990
Panichella A, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, Lucia AD (2013) How to effectively use topic

models for software engineering tasks? An approach based on genetic algorithms ICSE, pp 522–531
Pletea D, Vasilescu B, Serebrenik A (2014) Security and emotion: Sentiment analysis of security discussions

on github. In: Proceedings of the 11th working conference on mining software repositories, MSR 2014.
ACM, New York, pp 348–351

Porter MF (1997) An algorithm for suffix stripping Readings in information retrieval. Morgan Kaufmann,
pp 313–316

Puurula A (2011) Mixture models for multi-label text classification. In: 10th New Zealand computer science
research student conference

Ramage D, Hall D, Nallapati R, Manning CD (2009) Labeled lda: a supervised topic model for credit
attribution in multi-labeled corpora. In: EMNLP ’09, pp 248–256

Rebouças M, Pinto G, Ebert F, Torres W, Serebrenik A, Castor F (2016) An empirical study on the usage
of the swift programming language. In: 2016 IEEE 23rd international conference on software analysis,
evolution, and reengineering (SANER), pp 634–638

Samaniego FI (2010) A comparison of the bayesian and frequentist approaches to estimation. Series in
Statistics, Springer

Shokripour R, Anvik J, Kasirun ZM, Zamani S (2013) Why so complicated? Simple term filtering and
weighting for location-based bug report assignment recommendation MSR

Sigurbjörnsson B, van Zwol R (2008) Flickr tag recommendation based on collective knowledge WWW ’08,
pp 327–336

Storey M-A, Ryall J, Singer J, Myers D, Cheng L-T, Muller M (2009) How software developers use tagging
to support reminding and refinding. IEEE Trans Softw Eng 35(undefined):470–483

Storey M-A, Treude C, van Deursen A, Cheng L-T (2010) The impact of social media on software
engineering practices and tools. In: FoSER ’10, pp 359–364

Thung F, Lo D, Jiang L (2012) Detecting similar applications with collaborative tagging. In: ICSM, pp 600–
603

Toutanova K, Klein D, Manning CD, Singer Y (2003) Feature-rich part-of-speech tagging with a cyclic
dependency network. In: HLT-NAACL

Treude C, Storey M-A (2009) How tagging helps bridge the gap between social and technical aspects in
software development. In: ICSE ’09, pp 12–22

Treude C, Storey M-A (2012) Work item tagging: communicating concerns in collaborative software
development. IEEE Trans Softw Eng 38(1):19–34

Vasilescu B, Serebrenik A, Devanbu PT, Filkov V (2014) How social Q&A sites are changing knowledge
sharing in open source software communities. In: CSCW, pp 342–354

Vasilescu B, Serebrenik A, van den Brand MGJ (2013) The babel of software development: linguistic diver-
sity in open source. In: Jatowt A, Lim E-P, Ding Y, Miura A, Tezuka T, Dias G, Tanaka K, Flanagin A,
Dai BT (eds) Proceedings of the social informatics: 5th international conference, SocInfo 2013, Kyoto,
Japan, November 25-27, 2013. Springer International Publishing, pp 391–404

Vogt CC, Cottrell GW (1999) Fusion via a linear combination of scores. Inf Retr 1(3):151–173
Wang S, Lo D, Jiang L (2012) Inferring semantically related software terms and their taxonomy by leveraging

collaborative tagging. In: ICSM, pp 604–607
Wang S, Lo D, Vasilescu B, Serebrenik A (2014) EnTagRec: an enhanced tag recommendation system

for software information sites. In: 30th IEEE international conference on software maintenance and
evolution, Victoria, BC, Canada, September 29 - October 3, 2014. IEEE Computer Society, pp 291–
300

Wang W, Niu N, Liu H, Wu Y (2015) Tagging in assisted tracing. In: 2015 IEEE/ACM 8th international
symposium on software and systems traceability, pp 8–14

Wang X-Y, Xia X, Lo D (2015) Tagcombine: recommending tags to contents in software information sites.
J Comput Sci Technol 30(5):1017–1035

Empir Software Eng (2018) 23: –800 832830

http://meta.stackexchange.com/q/196702/182512
http://meta.stackexchange.com/q/88611/182512

Warbox D (2009) Auto-tagging. http://meta.stackoverflow.com/questions/1377/auto-tagging
Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1(4):80–83
Xia X, Lo D, Wang X, Zhou B (2013) Tag recommendation in software information sites. In: MSR ’13,

pp 287–296
Zangerle E, Gassler W, Specht G (2011) Using tag recommendations to homogenize folksonomies in

microblogging environments. In: SocInfo’11, pp 113–126
Zubiaga A (2012) Enhancing navigation on wikipedia with social tags. CoRR, arXiv:1202.5469

Shaowei Wang is a Postdoc in the Software Analysis and Intelligence (SAIL) Lab at Queens University,
Canada. He obtained his PhD from Singapore Management University, and BSc from Zhejiang University.
His research interests include code mining and recommendation, software maintenance, developer forum
analysis, and mining software repositories. He has served as a reviewer of a number of high-quality jour-
nals (e.g., IEEE Transaction on Software Engineer, Empirical Software Engineering). More information at:
https://sites.google.com/site/wswshaoweiwang/.

David Lo his PhD degree from the School of Computing, National University of Singapore in 2008. He is
currently an Associate Professor in the School of Information Systems, Singapore Management University.
He has close to 10 years of experience in software engineering and data mining research and has more
than 200 publications in these areas. He received the Lee Foundation Fellow for Research Excellence from
the Singapore Management University in 2009, and a number of international research awards including
several ACM distinguished paper awards for his work on software analytics. He has served as general and
program co-chair of several well-known international conferences (e.g., IEEE/ACM International Conference
on Automated Software Engineering), and editorial board member of a number of high-quality journals (e.g.,
Empirical Software Engineering).

Empir Software Eng (2018) 23: –800 832 831

http://meta.stackoverflow.com/questions/1377/auto-tagging
http://arxiv.org/abs/1202.5469
https://sites.google.com/site/wswshaoweiwang/

Bogdan Vasilescu is an assistant professor at Carnegie Mellon University’s School of Computer Science,
where he is engaged in interdisciplinary research at the intersection of software engineering and social
computing. Bogdan explores large-scale software-related data using a mixture of quantitative and qualita-
tive methods, to develop and validate theories about the processes involved in software engineering and
computer-supported collaborative work. Prior to joining CMU, Bogdan was a postdoctoral researcher at Uni-
versity of California, Davis. He received his PhD and MSc in Computer Science at Eindhoven University of
Technology, both with cum laude distinction.

Alexander Serebrenik (PhD KULeuven, Belgium 2003) is an associate professor of software evolution at
Eindhoven University of Technology, The Netherlands. He studies how software systems and their devel-
opers’ communities change with time, and focuses both on the social and on the technical aspects of this
process. He has co-edited a book on Software evolution, co-authored 30 journal articles, more than 90 con-
ference papers and acted as the steering committee chair, general chair and program co-chair of international
conferences on software maintenance and evolution.

Empir Software Eng (2018) 23: –800 832832

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	4-2018

	EnTagRec(++): An enhanced tag recommendation system for software information sites
	Shawei WANG
	David LO
	Bogdan VASILESCU
	Alexander SEREBRENIK
	Citation

	EnTagRec++: An enhanced tag recommendation system for software information sites
	Abstract
	Introduction
	Preliminaries and Examples
	Tags in Software Information Sites
	Tag Recommendation
	Motivating Examples
	User Information
	Additional Tag

	General Architecture
	Bayesian Inference
	Frequentist Inference
	Basic Approach
	Extended Approach
	Removing Unrelated Words with POS Tagger
	Finding Associated Tag with Spreading Activation

	User Information Component
	Additional Tag Component
	Composer Component
	Experiments and Results
	Experimental Setting
	Evaluation Results
	RQ1: Overall Effectiveness of EnTagRec+
	RQ2: Effectiveness of Additional Tag Component

	Discussion
	Illustrative examples
	Stack exchange sites vs. FreeCode.
	Precision@k results
	Efficiency
	Retraining frequency
	ATC usage
	Threats to validity

	Related Work
	Tagging in software engineering

	Conclusion and Future Work
	References

