
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

6-2017

Flexible wildcard searchable encryption system
Yang YANG

Ximeng LIU
Singapore Management University, xmliu@smu.edu.sg

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

Jian WENG

DOI: https://doi.org/10.1109/TSC.2017.2714669

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
YANG, Yang; LIU, Ximeng; DENG, Robert H.; and WENG, Jian. Flexible wildcard searchable encryption system. (2017). IEEE
Transactions on Services Computing. 1-14. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/200253968?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TSC.2017.2714669
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4123&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4123&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2714669, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

Flexible Wildcard Searchable Encryption System
Yang Yang, Member, IEEE, Ximeng Liu, Member, IEEE, Robert H. Deng, Fellow, IEEE , Jian Weng

Abstract—Searchable encryption is an important technique for public cloud storage service to provide user data confidentiality
protection and at the same time allow users performing keyword search over their encrypted data. Previous schemes only deal with
exact or fuzzy keyword search to correct some spelling errors. In this paper, we propose a new wildcard searchable encryption system
to support wildcard keyword queries which has several highly desirable features. First, our system allows multiple keywords search
in which any queried keyword may contain zero, one or two wildcards, and a wildcard may appear in any position of a keyword and
represent any number of symbols. Second, it supports simultaneous search on multiple data owner’s data using only one trapdoor.
Third, it provides flexible user authorization and revocation to effectively manage search and decryption privileges. Fourth, it is
constructed based on homomorphic encryption rather than Bloom filter and hence completely eliminates the false probability caused
by Bloom filter. Finally, it achieves a high level of privacy protection since matching results are unknown to the cloud server in the test
phase. The proposed system is thoroughly analyzed and is proved secure. Extensive experimental results indicate that our system is
efficient compared with other existing wildcard searchable encryption schemes in the public key setting.

Index Terms—searchable encryption, wildcard search, user revocation, multiple users, top-k.

F

1 INTRODUCTION

C LOUD storage [1] provides subscribers ubiquitous,
dynamic, scalable and on-demand storage service.

While cloud storage brings more convenience and ben-
efit than ever, it also introduces significant security
and privacy threats to customers’ data [2]. To ensure
privacy of the outsourced data in the untrusted public
cloud, data encryption is an effective way to prevent
inside/outside adversaries from accessing the sensitive
information. Meanwhile, it is necessary to support data
retrieval function (without decryption) on encrypted da-
ta to facilitate the data usage. Such mechanism is referred
to as searchable encryption (SE).

Consider an electronic health record (EHR) storage
system as an application example of SE. Suppose data
user Alice wants to store her sensitive EHR in the
public health cloud. She firstly extracts a set of keywords
describing the EHR and encrypts these keywords using
SE encryption algorithm to build an index. Then, the
keyword encryption index and the encrypted EHR are
uploaded to the cloud. In the data retrieval phase, a
data user Bob who is Alice’s doctor or relative generates
a trapdoor to make a keyword query. The cloud uses
the trapdoor to search on the encrypted EHRs and
returns the matching files to Bob. In the search process,
no plaintext information about the keyword and EHR
should be leaked to the cloud.

In 2004, Boneh et al. [3] put forth the concept of

Y. Yang and X. Liu are with College of Mathematics and Computer Sci-
ence, Fuzhou University, Fuzhou, China, 350116; and School of Informa-
tion Systems, Singapore Management University, Singapore 188065 (email:
yang.yang.research@gmail.com, snbnix@gmail.com.)

R. H. Deng is with School of Information Systems, Singapore Management
University, Singapore 188065 (email: robertdeng@smu.edu.sg).

Y. Yang is also with Fujian Provincial Key Laboratory of Information
Processing and Intelligent Control (Minjiang University), Fuzhou, China,
350121.

X. Liu is the corresponding author.

public key encryption with keyword search (PEKS) to
enable keyword query over encrypted data. In order to
share the query authority among multiple users, differ-
ent access control methods were adopted to searchable
encryption, such as proxy re-encryption [4] and attribute
based encryption (ABE) [5], [6]. A few fuzzy keyword
search schemes [11]-[15] were proposed to tolerate cer-
tain spelling errors. However, these schemes can only
make exact keyword search or edit distance based simi-
larity search.

To achieve flexible search functions, the concept of
wildcard searchable encryption was proposed [16] to
enable wildcard keyword search. In the query phase,
a data user queries a keyword containing a wildcard,
which may represent one or more symbols. For example,
Alice’s doctor Bob may use the keyword “05/**/2016”
to search for all Alice’s EHRs created during the month
of May of 2016 and use the keyword “*ache” to search
for Alice’s EHRs containing “headache”, “stomachache”
or “heartache”. However, most of the existing wildcard
SE solutions in the literature are constructed based on
Bloom filter [14]. A notable drawback of Bloom filter is
that false-positive probability is inevitable. These Bloom
filter based wildcard searchable encryption schemes [17],
[18], [19] return false results to users with a non-
negligible probability. Moreover, these schemes are built
in symmetric key setting; hence, a data owner has to
reveal her private key to authorize the search privilege
to other users and the authorization is non-revokable.

1.1 Related Work

The problem of secure search on encrypted database
was studied by Jarecki et al. [7], which supports ar-
bitrary boolean queries. Later, Sepehri et al. proposed
a new privacy-preserving query processing method on
partitioned database based on the multi-party compu-

Published in IEEE Transactions on Services Computing, June 2017, Advance online
https://doi.org/10.1109/TSC.2017.2714669

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2714669, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

tation methodology [8], and a high scalable proxy re-
encryption scheme with secure equality queries [9]. Sun
et al. [10] put forth a multi-client searchable encryption
scheme over database and support boolean queries.
Except for these searchable encryption schemes on
database, the secure keyword query over non-structural
encrypted data is also investigated.

Li et al. [11] proposed a fuzzy keyword search scheme
over encrypted data for cloud computing. They exploit-
ed edit distance to measure keywords similarity and
design two methods to construct fuzzy keyword sets. A
symbol-based tree was used to accelerate the search algo-
rithm. In 2013, Li et al. [12] extended their scheme [11] to
the multiple user scenario utilizing ABE encapsulation.
In 2014, Wang et al. [13] proposed a multi-keyword fuzzy
searchable encryption scheme utilizing Bloom filter [14]
and locality sensitive hash function. The scheme tolerates
small edit distance errors and support multi-keyword
search. Fu et al. [15] improved the accuracy so that more
spelling mistakes can be tolerated.

The limitation of fuzzy searchable encryption scheme
is that only small edit distance errors, such as spelling
errors, can be corrected. It is almost useless if the query
keyword has a large edit distance from the exact key-
word. In 2010, Sedghi et al. [16] constructed a searchable
encryption scheme with wildcards in public key setting
and based on bilinear pairing. Hidden vector encryp-
tion (HVE) is the core component of Sedghi’s scheme,
which derives from identity based encryption. In their
construction, the position of the wildcards need to be
specified and each wildcard represents only one charac-
ter. It requires a large amount of modulo exponentiation
operations in its encryption, trapdoor generation and test
algorithms. The test algorithm also needs several time
consuming bilinear pairing operations.

In 2011, Bosch et al. [17] introduced a conjunctive wild-
card searchable encryption scheme in symmetric key
setting. Pseudo random function and Bloom filter [14]
were utilized to construct the scheme. It has improved
efficiency than Sedghi’s scheme. However, it merely
enumerates all the commonly used keywords that the
wildcard keyword can represent from the lexicon. Then,
these expanded keywords are all inserted into a Bloom
filter. The method has limited applicability since not all
the keywords can be extracted from the lexicon, such as
chemical formulas, biological product and abbreviation
expressions.

In 2012, Suga et al. [18] proposed a wildcard search-
able encryption scheme based on Bloom filter, in which
each keyword has its own Bloom filter. The storage
overhead grows with the number of extracted keywords
from the document. The disadvantage of the scheme is
that one wildcard can only represent one character. For
instance, if a user desires to search all keywords that
begin with “acid”, he has to submit the trapdoors for
wildcard keywords “acid??”, “acid???” and “acid??????
??” respectively so that the keywords “acidic”, “acidity”
and “acidification” can be matched. To overcome this

problem, Hu et al. [19] introduced an improved scheme
such that one wildcard can represent any number of
characters. Hu’s scheme is constructed based on Suga’s
scheme [18] but utilizes a different method to insert a
keyword into Bloom filter.

A serious drawback of Bloom filter based searchable
encryption schemes [17], [18], [19] is the inevitability
of false probability. Bloom filter [14] is a data structure
to efficiently determine the membership of an element,
which is represented by an array of m bits and ini-
tially set to 0. It needs r independent hash functions
(ht : {0, 1}∗ → [1,m], 1 ≤ t ≤ r), each of which maps
an element into one of the m positions. Each element
in set S = {s1, · · · , sn} is mapped to the Bloom filter
BF . To determine whether an element a belongs to
S, one should check whether all the bits at positions
ht(a), 1 ≤ t ≤ r are set to 1 in BF . If not, a is not a
member of S. Otherwise, a is possible to be a member
of S. Bloom filter has false-positive probability due to the
reason that each position in BF may be set to 1 by one
or more other elements. The false-positive probability is
fp = [1 − (1 − 1/m)rn]r ≈ e−m/nln(p)ln(1 − p), where
p = (1− 1/m)rn ≈ e−rn/m. The false-positive probability
grows with n/m.

1.2 Contribution
In this paper, to address the above problems, we pro-
pose a flexible wildcard searchable encryption scheme
supporting multiple users. It is constructed in public key
setting without relying on Bloom filter, is efficient, and
achieves high security level. The main contributions of
this paper are listed below.
• Flexible wildcard representation. In some existing

wildcard searchable encryption schemes [16], [18],
the wildcard only represents a single symbol. In
our system, a wildcard can represent any number
of symbols. A data user can use “acid?” to search
all the derivative words of “acid”. Moreover, up
to two wildcards are supported in our system and
the wildcards may appear in any positions of the
keyword. We note that keywords with more than
two wildcards are seldomly used in practice.

• Flexible search function. Our system is the first
wildcard SE which allows a data user to use one
trapdoor to simultaneously search on multiple data
owner’s files. For example, a medical doctor can
issue one wildcard keyword query to simultaneous-
ly search over multiple patients’ encrypted EHRs.
Moreover, in the search algorithm, the user can
use multiple keyword to generate one trapdoor.
These query keywords may contain zero, one or
two wildcards. The user can issue “AND” or “OR”
queries on these keywords and the top-k documents
that have the highest relevance scores is returned to
the user.

• Flexible user authorization and revocation. Our sys-
tem enables a data owner to authorize her research

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2714669, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

Fig. 1: Cloud based System Architecture

privilege to other users within a pre-defined period
of time and automatically revoke these users when
the authorization period expires.

• No false probability. Most of the existing fuzzy
or wildcard searchable encryption schemes are con-
structed based on Bloom filter [17], [18], [19], [13],
[15] and hence suffer from false-positive probability.
Our system guarantees that all returned files are
exact match files.

We conduct extensive experiments on the proposed
system to evaluate its computation and communication
performances. The simulation results affirm that this
system is efficient and practical compared with existing
schemes in the public key setting.

2 SYSTEM ARCHITECTURE AND SECURITY
MODEL

2.1 Cloud Based System Architecture
Fig. 1 shows the cloud based system architecture. The
entities and operations are introduced below.
• Key generation center (KGC) is fully trusted and

tasked to manage and distribute public/secret keys
in the system, which includes user registration,
key generation, certificate and storage units. The
registration unit provides registration service for
the system users; the key generation unit generates
public/secret keys for the system and the users; the
certificate unit provides certificate generation and
revocation services; and the storage units stores the
certificates and revocation list.

• Cloud platform (CP) stores users’ encrypted files
and is responsible to execute data retrieval op-
erations, which includes the storage, process and
metadata units. The storage unit provides storage
service, which stores the encrypted files and the
secure keyword indexes. The process unit provides

process service, which operates secure search. The
metadata unit provides metadata service, and the
metadata includes the information of the data own-
er, authorization certificates, file location, file upload
and access date. The metadata server also provides
notification services to the system users, which is
a separate service dedicated to monitor if changes
have been made to data owners’ accounts. These
information are stored in the database and mainly
used to provide better service to the customers.
These three types of units interact with each other
to provide services.

• Computing service provider (CSP) has powerful
computation resources, which includes the compute
and metadata units. The compute unit of CSP inter-
acts with that in CP to perform secure calculations;
and the metadata unit stores the authorization cer-
tificates for the CSP to operate authorized computa-
tions. It is assumed that CP and CSP do not collude
with each other.

• Data owner encrypts keywords and files, and sends
them to CP for storage.

• Data user creates keyword trapdoors which are
used by the CP to search on encrypted data.

• The secure socket layer (SSL) or transport layer
security (TLS) protocols are made use to secure all
communications between CP and CSP, data owner
and CP, data user and CP, and the KGC with other
parties. The SSL/TLS protocols aim primarily to
provide the privacy and data integrity between two
communicating entities.

Cloud computing provides various kinds of services to
the customers (shown in Fig. 2), such as infrastructure-
as-a-service (IaaS), platform-as-a service (PaaS) and
software-as-a-service (SaaS). The information, process
and storage services belong to PaaS. To provide security
protection to the cloud, security services arouses wide

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2714669, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

Fig. 2: Cloud Service Architecture

attention and becomes a hot research topic [20]. Secure
search, the problem addressed in this paper, is one of
the security services in the cloud and regarded as secure
search-as-a-service [21].

2.2 Attack Model
We follow the attack model in [22], [23]. We assume that
KGC is a fully trusted entity, CP and CSP are ”honest-
but-curious” who are honest to execute the protocols but
curious with the plaintext of user data. An adversary
A∗ is defined in this attack model whose purpose is to
recover the plaintext of data owner’s privacy-preserving
documents and data user’s retrieved results. A∗ has the
following capabilities.

(1) A∗ could eavesdrop all communications.
(2) A∗ could compromise CP and try to get the plaintext

from the encrypted files sent by the data owner and
CSP.

(3) A∗ could compromise CSP and try to obtain the
plaintext from the ciphertext sent by CP in the
interactive protocol.

(4) A∗ could compromise data owner or data user (ex-
cept the challenge user) and get their privileges
with the aim of getting the challenge user’s plain-
text information.

However, the attacker A∗ is not allowed to compro-
mise: (1) CP and CSP simultaneously, and (2) the chal-
lenge user. These are typical restrictions in cryptographic
protocols [24].

2.3 Security Model
The security model in [25], [26] is adopted in this
work. Consider three parties: system user (a.k.a ”D1”),
CP (a.k.a ”S1”) and CSP (a.k.a ”S2”), where system
user includes data owner and user. We construct three
simulators (SimD1

, SimS1
, SimS2

) to against three types
of attackers (AD1 ,AS1 ,AS2) that corrupt D1, S1 and
S2, respectively. These attackers are deemed as non-
colluding and semi-honest. Due to the page limitation,
please refer to [25], [26], [27] for the detailed definition
of the security model.

3 CRYPTO PRIMITIVES AND PROTOCOLS
3.1 Paillier Cryptosystem with Threshold Decryp-
tion
The Paillier cryptosystem [28] with threshold decryption
(PCTD) in [27], [29] is utilized for data encryption and

for preventing the secret key leakage risk in this paper.
It is a non-deterministic encryption system and based
on the decisional composite residuosity assumption. The
Paillier system could provide the confidentiality of the
outsourced data in the cloud platform, and also realizes
the homomorphic properties. In that way, various calcu-
lations can be directly operated on the ciphertext with-
out decryption to realize secure outsourced calculation.
Moreover, it has lower computation overhead than fully
homomorphic encryption systems. Let L(X) denote the
bit length of X .

KeyGen: Let κ be the security parameter and p, q be
two large prime numbers such that L(p) = L(q) = κ. Let
N = pq and λ = lcm(p− 1, q − 1)/2 1. Define a function
L(x) = x−1

N and select a generator g of order ord(g) =
(p − 1)(q − 1)/2. The system public parameter is PP =
(g,N). The master secret key of the system is SK = λ.
A user i in the system is assigned a secret key ski ∈ ZN
and a public key pki = gski mod N2.

Encryption: On input a plaintext m ∈ ZN , a user
randomly selects r ∈ [1, N/4] and uses his public key
pki to encrypt m to ciphertext [m]pki = (C1, C2), in which
C1 = pkri (1 +mN) mod N2 and C2 = gr mod N2.

Decryption with ski: On input ciphertext [m]pki and
secret key ski, the message can be recovered by comput-
ing m = L(C1/C

ski
2 mod N2).

Decryption with master secret key: Using master
secret key SK = λ of the system, any ciphertext [m]pki
encrypted by any public key can be decrypted by com-
puting Cλ1 = (pkri)

λ(1 + mNλ) = (1 + mNλ) mod N2.
Since gcd(λ,N) = 1 holds 2, we have m = L(Cλ1
mod N2)λ−1 mod N.

Master secret key splitting: The master secret key
SK = λ can be randomly split into two parts SK1 = λ1

and SK2 = λ2 such that λ1 + λ2 ≡ 0 mod λ and
λ1 + λ2 ≡ 1 mod N2.

Partial Decryption with SK1 (PD1): On input the
ciphertext [m]pki = (C1, C2), we can use SK1 = λ1 to
compute C(1)

1 = (C1)
λ1 = (pkri)

λ1(1 +mNλ1) mod N2.
Partial Decryption with SK2 (PD2): On input [m]pki

and C
(1)
1 , we can use SK2 = λ2 to compute C

(2)
1 =

(C1)
λ2 = (pkri)

λ2(1 +mNλ2) mod N2. The message can
be recovered by computing m = L(C

(1)
1 · C(2)

1).
Ciphertext Refresh (CR): CR algorithm is utilized to

refresh a ciphertext [m]pki = (C1, C2) to a new ciphertext
[m′]pki = (C ′1, C

′
2) such that m = m′. It selects a random

r′ ∈ ZN and calculates C ′1 = C1 · hr
′

i mod N2, C ′2 = C2 ·
gr
′
mod N2.

It is easy to verify that PCTD is additive homomor-
phic: [m1]pki · [m2]pki = [m1 + m2]pki and ([m]pki)

r =
[r ·m]pki for random r ∈ ZN .

The following protocols in [27] are utilized in the
proposed system. Let pkA and pkB be the public keys of
users A and B. pkΣ is an public key that will be defined
later.

1. lcm : lowest common multiple.
2. gcd: greatest common divider.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2714669, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

Secure Addition Protocol across Domains (SAD): Giv-
en [X]pkA and [Y]pkB , SAD protocol securely calculates
[X + Y]pkΣ .

Secure Multiplication Protocol across Domains (SMD):
Given [X]pkA and [Y]pkB , SMD protocol securely calcu-
lates [X · Y]pkΣ .

Secure Less Than Protocol across Domains (SLT): Giv-
en [X]pkA and [Y]pkB , SLT protocol securely calculates
[u]pkΣ = SLT([X]pkA , [Y]pkB), where u = 1 if X < Y and
u = 0 if X ≥ Y .

Fig. 3: Example of K2C operation

3.2 Keyword Representation and Encryption
In order to encode a keyword to an element in ZN ,
we firstly transform each character in the keyword to
its ASCII code. Then, the hexadecimal ASCII code is
converted to a decimal. According to the position of
the character in the keyword, each decimal is multiplied
with a weight. Then, these weighted decimal numbers
are added together and encrypted using PCTD algorith-
m. This algorithm is named as keyword to ciphertext
algorithm (K2C) and illustrated in Figure 3.

3.3 Secure Greater or Equal Protocol (SGE)
Given two encrypted numbers [X]pkA and [Y]pkB with
X,Y ≥ 0, the goal of secure greater or equal protocol
(SGE) is to obtain an encrypted data [u∗]pkΣ

to show the
relationship between X and Y (i.e. X ≥ Y or X < Y).
We require L(X),L(Y) < L(N)/4 to make the protocol
properly work. The description of the SGE protocol is as
follows.

Step 1: CP calculates [X1]pkA = ([X]pkA)
2 · [1]pkA =

[2X + 1]pkA , [Y1]pkB = ([Y]pkB)
2 = [2Y]pkB .

CP chooses random number r1, r2, s.t. L(r1) <
L(N)/4 − 1, L(r2) < L(N)/8. Then, CP flips a coin
s ∈ {0, 1} randomly. CP and CSP jointly execute the
following operations.
If s = 1, [γ]pkΣ ← SAD(([X1]pkA)

r1 , ([Y1]pkB)
N−r1).

If s = 0, [γ]pkΣ
← SAD(([Y1]pkB)

r1 , ([X1]pkA)
N−r1).

Then, CP computes l = [γ]pkΣ
· [r2]pkΣ

and l′ =
PD1SK1

(l) and sends (l, l′) to CSP.
Step 2: CSP decrypts l′′ = PD2SK2(l, l

′). If L(l′′) >
L(N)/2, CSP denotes u′ = 0 and u′ = 1 otherwise. Then,
CSP uses pkΣ to encrypt u′, and sends [u′]pkΣ

to CP.

Step 3: Once [u′]pkΣ is received, CP computes as
follows: if s = 1, CP denotes [u∗]pkΣ = CR([u′]pkΣ);
otherwise, CP computes [u∗]pkΣ

= [1]pkΣ
· ([u′]pkΣ

)N−1 =
[1−u′]pkΣ

. If u∗ = 1, it indicates X ≥ Y ; u∗ = 0 otherwise.

3.4 Encrypted Keyword Equivalence Testing Proto-
col
Given two encrypted keywords [X]pkA and [Y]pkB
(X,Y ≥ 0), a secure keyword equivalent test protocol
across domains (KET) outputs an encrypted result [u∗]pkΣ

to indicate whether two keywords are the same. We
restrict L(X),L(Y) < L(N)/4 to make the protocol
properly work. CP and CSP jointly computes [u1]pkΣ =
SGE([X]pkA , [Y]pkB), [u2]pkΣ = SGE([Y]pkB , [X]pkA),
[u]pkΣ

= SMD([u1]pkΣ
, [u2]pkΣ

). If u∗ = 1, it indicates that
the two keywords are the same. Otherwise, u∗ = 0.

4 WILDCARD SEARCH

4.1 Important Tools
In this subsection, we introduce the important tools used
to realize wildcard searchable encryption. These tools
play the role of “magic scissor” to securely partition
ciphertext into several encrypted parts according to our
requirements.

A.1. Secure Multi-Bit Extraction Protocol (MBE)

Given a ciphertext [X] and a positive integer $ (X ∈
ZN , $ < L(N)), the goal of secure multi-bit extraction
protocol (MBE) is to calculate [x] such that x is the least
significant $-bit of the X’s bit representation. The MBE
protocol is shown as below.

(1) CP selects r ∈R ZN , calculates Y = [X] · [r], Y ′ =
PD1SK1(Y) and sends (Y, Y ′) to CSP.

(2) CSP calculates y = PD2SK2(Y, Y
′), y1 = (y

mod 2$) + 2$ and sends [y1] to CP.
(3) CP calculates r1 = (r mod 2$), [x′] = [y1] · [r1]

N−1.
(4) CP and CSP jointly computes [u] = SGE([x′], [2$]).
(5) Then, CP computes [x] = [x′] · [u]N−2$

.

Next, we illustrate the MBE protocol.
(1) To protect the privacy of X , CP firstly randomizes

X with a random number r ∈ ZN by calculating
Y = [X] · [r] = [X + r].

(2) After decryption, CSP gets y = X+r mod N . Since
X, r ∈ ZN and r is randomly selected, CSP can not
deduce any information of X from y. Then, CSP
computes (y mod 2$) to get the least $ bits of y.
The purpose of adding 2$ is to deal with the carry
bit of (X mod 2$) + (r mod 2$), which will be
explained in detail later.

(3) r1 is the least $ bits of r. CP calculates [x′] = [y1] ·
[r1]

N−1 = [(y mod 2$)− (r mod 2$) + 2$].
(4) If (y mod 2$) ≥ (r mod 2$), we have x′ ≥ 2$

and [u] = SGE([x′], [2$]) = [1].
If (y mod 2$) < (r mod 2$), we have x′ < 2$

and [u] = SGE([x′], [2$]) = [0].

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2714669, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

(5) If (y mod 2$) ≥ (r mod 2$), it indicates that (X
mod 2$)+ (r mod 2$) = (y mod 2$). Then, [x] =
[(y mod 2$)− (r mod 2$)] = [X mod 2$].
If (y mod 2$) < (r mod 2$), it indicates that
(X mod 2$) + (r mod 2$) = (y mod 2$) + 2$.
Then, [x] = [(y mod 2$)− (r mod 2$) + 2$] = [X
mod 2$].

A.2. Secure Ciphertext Partition Protocol (SCP)

In the wildcard searchable encryption construction, we
need to partition a ciphertext [X] into two encrypted
parts [X1], [X2] without revealing the plaintext.

Given [X] and a positive integer $ (X ∈ ZN , $ <
L(N)), the goal of secure ciphertext partition protocol
(SCP) is to calculate [X1], [X2] such that X1 is the least
significant $-bit of the X’s bit representation and X =
X1 +X2 × 2$. The SCP protocol is shown as below.

(1) CP and CSP jointly calculate [X1] = MBE([X], $);
(2) CP computes Z = [X] · [X1]

N−1 and [X2] = Za

mod N , where a = (2$)−1 (mod N).
An example of SCP protocol is shown in Figure 4(a). If

[X] is a ciphertext of keyword “privacy” and $ = 8×3 =
24, the SCP([X], $) will output [X1], [X2] such that [X1]
is the encryption of “pri” and [X2] is the encryption of
“vacy”. The SCP protocol acts as a “magic scissor” to
securely cut the encrypted keyword to two encrypted
strings.

(a) SCP (b) FW (c) MW (d) BW

Fig. 4: Examples of SCP, FW, MW, and BW protocols

4.2 Single Wildcard Search

Here, we begin to deal with the keyword search with
single wildcard over encrypted data, which can present
any number of symbols. Since the single wildcard could
appear in the front, in the middle or in the back of
the string, we design three protocols to handle these
situations. These protocols are executed by CP and CSP.
Both of them do not know the plaintext of the result.

Suppose a document of data owner A contains a
keyword X and encrypted to [X]pkA . The data user B
generates a keyword with wildcard to issue a query.
The following protocols will test whether the submitted
encrypted query matches [X]pkA . Let ? represent the
wildcard. When the wildcard appears in the front or
in the middle of the keyword, data user B specifies a
positive integer ν1 to be the maximum character number
that the wildcard can be substituted. When the wildcard
appears in the back of the keyword, it represents any
number of characters.

B.1. Secure Front Wildcard Match Protocol (FW)

A data user B generates a wildcard keyword in the
form of “ ? +Y1”, where Y1 is a string. Encrypt Y1 to
[Y1]pkB using K2C algorithm. Taken [X]pkA , [Y1]pkB and
ν1 as input, the FW protocol, shown as Algorithm 1,
outputs a ciphertext [u]pkΣ . If the wildcard keyword
“ ?+Y1” matches X , we have u = 1; otherwise, u = 0.

Algorithm 1: SECURE FRONT WILDCARD MATCH
PROTOCOL (FW)

Input: [X]pkA , [Y1]pkB , ν1.
Output: [u]pkΣ .

1 Initialize [u]pkΣ = [0]pkΣ ;
2 for i = 0 to ν1 do
3 CP and CSP jointly calculate

([X1]pkA , [X2]pkA) = SCP([X]pkA , 8× i);
4 [ui]pkΣ = KET([X2]pkA , [Y1]pkB);
5 CP calculates [u]pkΣ = [u]pkΣ · [ui]pkΣ ;

6 CP and CSP jointly calculate [u]pkΣ = SLT([0]pkA , [u]pkΣ);
7 Return [u]pkΣ .

Firstly, initialize [u]pkΣ = [0]pkΣ (line 1). The protocol
includes ν1 + 1 rounds (line 2). In round i, [X]pkA
is partitioned into two parts [X1]pkA , [X2]pkA and the
plaintext of [X1]pkA contains i symbols (line 3). X1 is the
string that the wildcard represents. In line 4, if string
X2 = Y1, we have ui = 1; otherwise, ui = 0. Then, add
ui to u by computing [u]pkΣ = [u]pkΣ ·[ui]pkΣ = [u+ui]pkΣ .
After the ν1 + 1 rounds, if u > 0, the protocol outputs
[u]pkΣ

= [1]pkΣ
; otherwise, [u]pkΣ

= [0]pkΣ
. An example

of FW is shown in Figure 4(b).

B.2. Secure Middle Wildcard Match Protocol (MW)

A data user B generates a wildcard keyword
in the form of “Y1 + ? + Y2”, where Y1, Y2 are
strings and Y1 contains η1 symbols, and then encrypts
Y1, Y2 to [Y1]pkB , [Y2]pkB using K2C algorithm. Taken
[X]pkA , [Y1]pkB , [Y2]pkB , ν1 and η1 as input, the MW pro-
tocol, shown as Algorithm 2, outputs a ciphertext [u]pkΣ

.
If the wildcard keyword “Y1 + ? + Y2” matches X , we
have u = 1; otherwise, u = 0.

Algorithm 2: SECURE MIDDLE WILDCARD MATCH
PROTOCOL (MW)

Input: [X]pkA , [Y1]pkB , [Y2]pkB , ν1, η1.
Output: [u]pkΣ .

1 Initialize [u]pkΣ = [0]pkΣ ;
2 CP and CSP jointly calculate
([X1]pkA , [X2]pkA) = SCP([X]pkA , 8× η1);

3 [u1]pkΣ = KET([X1]pkA , [Y1]pkΣ);
4 [u2]pkΣ = FW([X2]pkA , [Y2]pkΣ , ν1);
5 [u]pkΣ = SMD([u1]pkΣ , [u2]pkΣ);
6 Return [u]pkΣ .

Firstly, initialize [u]pkΣ
= [0]pkΣ

(line 1). In line 2,
[X]pkA is partitioned into two parts [X1]pkA , [X2]pkA and
the plaintext of [X1]pkA contains η1 symbols. In line 3,
if string X1 = Y1, we have u1 = 1; otherwise, u1 = 0.
In line 4, utilizing FW protocol, it tests whether “ ?+Y2”

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2714669, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

matches X2. If they match, we have u2 = 1; otherwise,
u2 = 0. Then, multiple u1, u2 by computing [u]pkΣ =
SMD([u1]pkΣ , [u2]pkΣ) = [u1 · u2]pkΣ . If u1 = 1, u2 = 1, we
have u = 1; otherwise, u = 0. An example of MW is shown
in Figure 4(c).

B.3. Secure Back Wildcard Match Protocol (BW)

A data user B generates a wildcard keyword in the
form of “Y1 + ?”, where Y1 is a string and contains
η1 symbols, and then encrypts Y1 to [Y1]pkB using K2C
algorithm. Taken [X]pkA , [Y1]pkB and η1 as input, the BW
protocol, shown as Algorithm 3, outputs a ciphertext
[u]pkΣ

. If the wildcard keyword “Y1 + ?” matches X , we
have u = 1; otherwise, u = 0.

Algorithm 3: SECURE BACK WILDCARD MATCH
PROTOCOL (BW)

Input: [X]pkA , [Y1]pkB , η1.
Output: [u]pkΣ .

1 CP and CSP jointly calculate
([X1]pkA , [X2]pkA) = SCP([X]pkA , 8× η1);

2 [u]pkΣ = KET([X1]pkA , [Y1]pkB);
3 Return [u]pkΣ .

In line 1, [X]pkA is partitioned into two parts
[X1]pkA , [X2]pkA and the plaintext of [X1]pkA contains η1

symbols. X2 is the string that the wildcard represents. In
line 2, if string X1 = Y1, we have u = 1; otherwise, u = 0.
In the protocol, “privacy” and “privacy?” are deemed as
match keywords. An example of BW is shown in Figure
4(d).

(a) FMW (b) FBW (c) MMW (d) MBW

Fig. 5: Examples of FMW, FBW, MMW, MBW protocols

4.3 Two Wildcards Search

We now proceed to consider keyword search with two
wildcards over encrypted data. Since a wildcard could
appear in the front, the middle or the back of a string,
we design four protocols to handle different situations.
These protocols are executed by CP and CSP but without
learning the plaintext of the match result.

When the wildcard appears in the front or in the
middle of the keyword, data user B specifies a positive
integer to denote the maximum character number that
the wildcard can be substituted. Denote the positive inte-
gers as ν1, ν2 for the two wildcards. When the wildcard
appears in the back of the keyword, it represents any
number of characters.

C.1. Secure Front & Middle Wildcards Match Protocol (FMW)

A data user B generates a wildcard keyword in
the form of “ ? +Y1 + ? + Y2”, where Y1, Y2 are
strings and Y1 contains η1 symbols, and then encrypts
Y1, Y2 to [Y1]pkB , [Y2]pkB using K2C algorithm. Taken
[X]pkA , [Y1]pkB , [Y2]pkB , ν1, ν2 and η1 as input, the FMW
protocol, shown as Algorithm 4, outputs a ciphertext
[u]pkΣ . If the wildcard keyword “?+Y1+?+Y2” matches
X , we have u = 1; otherwise, u = 0.

Algorithm 4: SECURE FRONT & MIDDLE WILDCARDS
MATCH PROTOCOL (FMW)

Input: [X]pkA , [Y1]pkB , [Y2]pkB , ν1, ν2, η1.
Output: [u]pkΣ .

1 Initialize [u]pkΣ = [0]pkΣ ;
2 for i = 0 to ν1 do
3 CP and CSP jointly calculate

([X1]pkA , [X2]pkA) = SCP([X]pkA , 8× i);
4 ([X3]pkA , [X4]pkA) = SCP([X2]pkA , 8× η1);
5 [si]pkΣ = KET([X3]pkA , [Y1]pkB);
6 for j = 0 to ν2 do
7 CP and CSP jointly calculate

([X5]pkA , [X6]pkA) = SCP([X4]pkA , 8× j);
8 [tj]pkΣ = KET([X6]pkA , [Y2]pkB);
9 [ui,j]pkΣ = SMD([si]pkA , [tj]pkB);

10 [u]pkΣ = [u]pkΣ · [ui,j]pkΣ ;

11 CP and CSP jointly calculate [u]pkΣ = SLT([0]pkA , [u]pkΣ);
12 Return [u]pkΣ .

Firstly, initialize [u]pkΣ = [0]pkΣ (line 1). FMW proto-
col utilizes two-level iterative computations to test the
keywords. The outer loop traverses different symbol
numbers that the first wildcard can be substituted; the
inner loop traverses different symbol numbers for the
second wildcard. In line 3, [X]pkA is partitioned into
[X1]pkA , [X2]pkA and X1 contains i symbols, for 0 ≤ i ≤
ν1. X1 is the string that the first wildcard represents.
In line 4, [X2]pkA is partitioned into [X3]pkA , [X4]pkA
and X3 contains η1 symbols. In line 5, if X3 = Y1,
we have si = 1; otherwise, si = 0. In line 7, [X4]pkA
is partitioned into [X5]pkA , [X6]pkA and X5 contains j
symbols, for 0 ≤ j ≤ ν2. X5 is the string that the second
wildcard represents. In line 8, if X6 = Y2, we have
tj = 1; otherwise, tj = 0. In line 9, si multiplies tj by
computing [ui,j]pkΣ

= SMD([si]pkA , [tj]pkB) = [si · tj]pkΣ
.

If si = 1, tj = 1, we have ui,j = 1; otherwise, ui,j = 0. In
line 10, ui,j is added to u. In line 11, if u > 0, the protocol
outputs [u]pkΣ

= [1]pkΣ
; otherwise, [u]pkΣ

= [0]pkΣ
. An

example of FMW is shown in Figure 5(a).

C.2. Secure Front & Back Wildcards Match Protocol (FBW)

A data user B generates a wildcard keyword in the
form of “ ? +Y1 + ?”, where Y1 is a string and contains
η1 symbols, and then encrypts Y1 to [Y1]pkB using K2C
algorithm. Taken [X]pkA , [Y1]pkB , ν1 and η1 as input, the
FBW protocol, shown as Algorithm 5, outputs a cipher-
text [u]pkΣ

. If the wildcard keyword “?+Y1+?” matches
X , we have u = 1; otherwise, u = 0.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2714669, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

Algorithm 5: SECURE FRONT & BACK WILDCARDS
MATCH PROTOCOL (FBW)

Input: [X]pkA , [Y1]pkB , ν1, η1.
Output: [u]pkΣ .

1 Initialize [u]pkΣ = [0]pkΣ ;
2 for i = 0 to ν1 do
3 CP and CSP jointly calculate

([X1]pkA , [X2]pkA) = SCP([X]pkA , 8× i);
4 ([X3]pkA , [X4]pkA) = SCP([X2]pkA , 8× η1);
5 [si]pkΣ = KET([X3]pkA , [Y1]pkB);
6 [u]pkΣ = [u]pkΣ · [si]pkΣ ;

7 CP and CSP jointly calculate [u]pkΣ = SLT([0]pkA , [u]pkΣ);
8 Return [u]pkΣ .

Firstly, initialize [u]pkΣ
= [0]pkΣ

(line 1). FBW protocol
utilizes an iterative computation to test the keywords,
which traverses different symbol numbers that the first
wildcard can be substituted. In line 3, [X]pkA is parti-
tioned into [X1]pkA , [X2]pkA and X1 contains i symbols,
for 0 ≤ i ≤ ν1. X1 is the string that the first wild-
card represents. In line 4, [X2]pkA is partitioned into
[X3]pkA , [X4]pkA and X3 contains η1 symbols. X4 is the
string that the second wildcard represents. In line 5, if
X3 = Y1, we have si = 1; otherwise, si = 0. In line 6, si
is added to u. In line 7, if u > 0, the protocol outputs
[u]pkΣ

= [1]pkΣ
; otherwise, [u]pkΣ

= [0]pkΣ
. An example

of FBW is shown in Figure 5(b).

C.3. Secure Middle & Middle Wildcards Match Protocol
(MMW)

A data user B generates a wildcard keyword in the
form of “Y1+?+Y2+?+Y3”, where Y1, Y2, Y3 are strings
and Y1, Y2 contains η1, η2 symbols, respectively, and then
encrypts Y1, Y2 to [Y1]pkB , [Y2]pkB using K2C algorithm.
Taken [X]pkA , [Y1]pkB , [Y2]pkB , [Y3]pkB , ν1, ν2, η1 and η2 as
input, the MMW protocol, shown as Algorithm 6, outputs
a ciphertext [u]pkΣ

. If the wildcard keyword “Y1+?+Y2+
?+ Y3” matches X , we have u = 1; otherwise, u = 0.

Firstly, initialize [u]pkΣ
= [0]pkΣ

(line 1). MMW proto-
col utilizes two-level iterative computations to test the
keywords. The outer loop traverses different symbol
numbers that the first wildcard can be substituted; the
inner loop traverses different symbol numbers for the
second wildcard. In line 2, [X]pkA is partitioned into
[X1]pkA , [X2]pkA and X1 contains η1 symbols. In line 3, if
X1 = Y1, we have u1 = 1; otherwise, u1 = 0. In line 5,
[X2]pkA is partitioned into [X3]pkA , [X4]pkA and X3 con-
tains i symbols, for 0 ≤ i ≤ ν1. X3 is the string that the
first wildcard represents. In line 6, [X4]pkA is partitioned
into [X5]pkA , [X6]pkA and X5 contains η2 symbols. In line
7, if X5 = Y2, we have si = 1; otherwise, si = 0. In
line 9, [X6]pkA is partitioned into [X7]pkA , [X8]pkA and X7

contains j symbols, for 0 ≤ j ≤ ν2. X7 is the string that
the second wildcard represents. In line 10, if X8 = Y3, we
have tj = 1; otherwise, tj = 0. In line 11, si multiplies
tj by computing [ui,j]pkΣ = SMD([si]pkA , [tj]pkB) = [si ·
tj]pkΣ . If si = 1, tj = 1, we have ui,j = 1; otherwise,

Algorithm 6: SECURE MIDDLE & MIDDLE
WILDCARDS MATCH PROTOCOL (MMW)

Input: [X]pkA , [Y1]pkB , [Y2]pkB , [Y3]pkB , ν1, ν2, η1, η2.
Output: [u]pkΣ .

1 Initialize [u]pkΣ = [0]pkΣ ;
2 CP and CSP jointly calculate
([X1]pkA , [X2]pkA) = SCP([X]pkA , 8× η1);

3 [u1]pkΣ = KET([X1]pkA , [Y1]pkB);
4 for i = 0 to ν1 do
5 CP and CSP jointly calculate

([X3]pkA , [X4]pkA) = SCP([X2]pkA , 8× i);
6 ([X5]pkA , [X6]pkA) = SCP([X4]pkA , 8× η2);
7 [si]pkΣ = KET([X5]pkA , [Y2]pkB);
8 for j = 0 to ν2 do
9 CP and CSP jointly calculate

([X7]pkA , [X8]pkA) = SCP([X6]pkA , 8× j);
10 [tj]pkΣ = KET([X8]pkA , [Y3]pkB);
11 [ui,j]pkΣ = SMD([si]pkA , [tj]pkB);
12 [ui,j]pkΣ = SMD([ui,j]pkΣ , [u1]pkΣ);
13 [u]pkΣ = [u]pkΣ · [ui,j]pkΣ ;

14 CP and CSP jointly calculate [u]pkΣ = SLT([0]pkA , [u]pkΣ);
15 Return [u]pkΣ .

ui,j = 0. In line 12, ui,j multiplies u1 by computing
SMD([ui,j]pkΣ

, [u1]pkΣ
) = [ui,j · u1]pkΣ

. If ui,j = 1, tj = 1, it
outputs [ui,j]pkΣ

= [1]pkΣ
; otherwise, [ui,j]pkΣ

= [0]pkΣ
. In

line 13, ui,j is added to u. In line 14, if u > 0, the protocol
outputs [u]pkΣ = [1]pkΣ ; otherwise, [u]pkΣ = [0]pkΣ . An
example of MMW is shown in Figure 5(c).

C.4. Secure Middle & Back Wildcards Match Protocol (MBW)

A data user B generates a wildcard keyword in the
form of “Y1 + ? + Y2 + ?”, where Y1, Y2 are strings
and Y1, Y2 contains η1, η2 symbols, respectively, and then
encrypts Y1, Y2 to [Y1]pkB , [Y2]pkB using K2C algorithm.
Taken [X]pkA , [Y1]pkB , [Y2]pkB , ν1, η1 and η2 as input, the
MBW protocol, shown as Algorithm 7, outputs a cipher-
text [u]pkΣ

. If the wildcard keyword “Y1 + ? + Y2 + ?”
matches X , we have u = 1; otherwise, u = 0.

Algorithm 7: SECURE MIDDLE & BACK WILDCARDS
MATCH PROTOCOL (MBW)

Input: [X]pkA , [Y1]pkB , [Y2]pkB , ν1, η1, η2.
Output: [u]pkΣ .

1 Initialize [u]pkΣ = [0]pkΣ ;
2 CP and CSP jointly calculate
([X1]pkA , [X2]pkA) = SCP([X]pkA , 8× η1);

3 [u1]pkΣ = KET([X1]pkA , [Y1]pkB);
4 for i = 0 to ν1 do
5 CP and CSP jointly calculate

([X3]pkA , [X4]pkA) = SCP([X2]pkA , 8× i);
6 ([X5]pkA , [X6]pkA) = SCP([X4]pkA , 8× η2);
7 [si]pkΣ = KET([X5]pkA , [Y2]pkB);
8 [si]pkΣ = SMD([si]pkΣ , [u1]pkΣ);
9 [u]pkΣ = [u]pkΣ · [si]pkΣ ;

10 CP and CSP jointly calculate [u]pkΣ = SLT([0]pkA , [u]pkΣ);
11 Return [u]pkΣ .

Firstly, initialize [u]pkΣ = [0]pkΣ (line 1). MBW protocol
utilizes a iterative computations to test the keywords,

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2714669, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

which traverses different symbol numbers that the first
wildcard can be substituted. In line 2, [X]pkA is parti-
tioned into [X1]pkA , [X2]pkA and X1 contains η1 symbols.
In line 3, if X1 = Y1, we have u1 = 1; otherwise, u1 = 0.
In line 5, [X2]pkA is partitioned into [X3]pkA , [X4]pkA
and X3 contains i symbols, for 0 ≤ i ≤ ν1. X3 is the
string that the first wildcard represents. In line 6, [X4]pkA
is partitioned into [X5]pkA , [X6]pkA and X5 contains η2

symbols. In line 7, if X5 = Y2, we have si = 1;
otherwise, si = 0. In line 8, si multiplies u1 by computing
SMD([si]pkΣ

, [u1]pkΣ
) = [si · u1]pkΣ

. If si = 1, u1 = 1, it
outputs [si]pkΣ

= [1]pkΣ
; otherwise, [si]pkΣ

= [0]pkΣ
. In

line 9, si is added to u. In line 10, if u > 0, the protocol
outputs [u]pkΣ = [1]pkΣ ; otherwise, [u]pkΣ = [0]pkΣ . An
example of MBW is shown in Figure 5(d).

5 PROPOSED SYSTEM

5.1 Key Generation
Let SEnc/SDec be a symmetric encryption/decryption
algorithm pair (with key space K) and Sig/V erify be
a signature/verification algorithm pair that are crypto-
graphically secure.3 Define hash functions H1 : {0, 1}∗ →
ZN and H2 : ZN → K.

Running KeyGen algorithm of PCTD, KGC generates
the system public parameter PP = (g,N), master secret
key MSK = λ and user Ai’s public/secret key pair
pkAi

= gθi , skAi
= θi. KGC calculates the master public

key MPK = gλ. MSK will be kept secret by KGC and
MPK is public. Then, KGC executes master secret key
splitting algorithm of PCTD to generate partial strong
secret keys SK1 = λ1 and SK2 = λ2, which are secretly
sent to CP and CSP, respectively. skAi

is confidentially
sent to user Ai and pkAi is public. In order to protect the
privacy of user Ai’s identity, KGC generates a unique
anonymous identity AIDAi

∈ {0, 1}ϑ, where ϑ is a
positive integer and 2ϑ is larger than the total number
of users in the system.

5.2 User Authorization and Revocation
If data owner A authorizes the search and decryption
right to data user B, A will set the valid period V P to
indicate the start and end time (such as V P = “20170101-
20180101”). A generates an authorization certificate for
B with certificate number CN . To guarantee the unique-
ness of CN , it should begin with AIDA to indicate
that CN is generated by A. The authorization certificate
CERA,B is 〈cer = (CN,AIDB , V P, pkΣ), Sig(cer, skA)〉,
where pkΣ = gskΣ , skΣ = H1(CN, skA).4 The secret key
skΣ is confidentially sent to B. CERA,B is transmitted
to KGC, CP, CSP and user B. The authorization will be
automatically invalid when V P expires.

If A plans to revoke B’s privilege within V P , he
generates a revocation certificate RVKA,B as 〈rvk =

3. The concrete algorithms will not be specified in this paper.
4. To simplify the presentation, we utilize the element in ZN to be

the secret key of Sig algorithm. In practical usage, the signature key
can be easily derived from the element in ZN using the hash function.

(revoke, CN), Sig(rvk, skA)〉. Then, RVKA,B is sent to
KGC, CP, CSP and user B.

If B wants to simultaneous issue query on data owners
(A1, · · · , Am)’s files, he should apply for the certificates
CERAi,B (1 ≤ i ≤ m) from each data owner. Then,
he applies for certificate from KGC. After verifying the
certificates, KGC computes the valid period V PΣ =
V P1

⋂
· · ·

⋂
V Pm and generates the certificate CERΣ,B

as 〈cer = (CN,AIDB , V PΣ, pkΣ), Sig(cer,MSK)〉,
where pkΣ = gskΣ , skΣ = H1(CN,MSK), CN begin-
s with KGC’s identity IDKGC ∈ {0, 1}ϑ to indicate
that CN is generated by KGC5. skΣ is confidentially
delivered to user B and pkΣ is public to CP, CSP
and user B. To revoke CERAi,B within V PΣ, KGC
generates a revocation certificate RVKΣ,B as 〈rvk =
(revoke, CN), Sig(rvk,MSK)〉. Then, RVKΣ,B is sent to
CP, CSP and user B.

5.3 Encryption
A data owner A outsources a file M (with file identity
ID ∈ ZN) to the cloud. He extracts a set of keywords
(kw1, · · · , kwn1

) to describe the file and encrypts them
to W = ([kw1]pkA , · · · , [kwn1]pkA) using K2C algorithm.
He randomly selects K ∈ ZN as the file encryption key
and encrypts it to [K]pkA . The file M is encrypted to
C = SEnc(M,K ′), where K ′ = H2(K) ∈ K. Then, the
encrypted index (W, [ID]pkA , [K]pkA) and file ciphertext
C are sent to CP.

5.4 Query Generation
Data user B figures out a set of query keywords
{qw1, · · · , qwn2}. The queried keyword may contain ze-
ro, one or two wildcards. If the wildcard is in the front
or middle of the keyword, B specifies a positive number
to indicate the maximum characters that the wildcard
can be substituted. B encrypts the query keyword qwi
to Qi according to the keyword type, 1 ≤ i ≤ n2. Table
1 depicts eight types of keywords and their parameter
settings. The parameters in blue represent that they are
not actually the input of the corresponding protocol.

Let Q = (Q1, · · · , Qn2
). The data user B desig-

nates a relationship to the query (i.e. AND or OR)
to make conjunctive or disjunctive query. Then, data
user sends anonymous identity AIDB , the encryption
Q of {qw1, · · · , qwn2

}, a signature Sig(Q, skB) and the
relationship (AND or OR) to CP as query trapdoor.

Since there are eight types of keywords, we present a
concrete selection method (Supplemental Material A.1)
to encrypt the keyword, which is based on Table 1 and
the protocols in Section 4.

5.5 Search
Receiving the query trapdoor 〈AIDB ,Q, Sig(Q, skB)〉
and query relationship (AND or OR), CP firstly verifies

5. IDKGC may be set to ϑ zeros.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2714669, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

TABLE 1: Parameter Comparison of the Eight Protocols

f = | ? | String Type Protocol
Parameters

[X] [Y1] [Y2] [Y3] ν1 ν2 η1 η2

0 Y KET [X]pkA
[Y]pkB

– – -1 -1 -1 -1

1
?+ Y1 FW [X]pkA

[Y1]pkB
– – > 0 -1 -1 -1

Y1 + ? BW [X]pkA
[Y1]pkB

– – -1 -1 > 0 -1
Y1 + ?+ Y2 MW [X]pkA

[Y1]pkB
[Y2]pkB

– > 0 -1 > 0 -1

2

?+ Y1 + ?+ Y2 FMW [X]pkA
[Y1]pkB

[Y2]pkB
– > 0 > 0 > 0 -1

∗+ Y1 + ? FBW [X]pkA
[Y1]pkB

– – > 0 -1 > 0 -1
Y1 + ?+ Y2 + ?+ Y3 MMW [X]pkA

[Y1]pkB
[Y2]pkB

[Y3]pkB
> 0 > 0 > 0 > 0

Y1 + ?+ Y2 + ? MBW [X]pkA
[Y1]pkB

[Y2]pkB
– > 0 -1 > 0 > 0

TABLE 2: Performance of K2C, MBE, SCP, KET, BW Protocols

Computation Overhead (s) Communication Overhead (KB)

N 512 768 1024 1280 1536 1792 2048 512 768 1024 1280 1536 1792 2048

K2C 0.002 0.009 0.018 0.034 0.058 0.084 0.121 –

MBE 0.045 0.151 0.307 0.559 1.007 1.438 2.322 1.27 1.91 2.55 3.19 3.83 4.47 5.11

SCP 0.042 0.146 0.310 0.569 0.993 1.841 2.346 1.27 1.91 2.55 3.19 3.83 4.47 5.11

KET 0.127 0.380 0.828 1.687 2.809 3.933 5.879 4.34 6.51 8.68 10.86 13.04 15.22 17.39

BW 0.114 0.397 0.969 1.884 3.476 4.407 6.878 5.61 8.43 11.24 14.06 16.88 19.69 22.51

TABLE 3: Performance of FW, MW, FBW, MBW Protocols

Computation Overhead (s) Communication Overhead (KB)

ν1 1 2 3 4 5 6 1 2 3 4 5 6

FW 1.537 1.569 1.743 2.224 2.253 2.555 25.82 37.08 48.33 59.56 70.84 82.05

MW 2.206 2.234 2.386 2.810 2.836 3.106 41.68 52.91 64.20 75.40 86.64 97.95

FBW 1.905 1.913 2.114 2.483 2.674 3.270 30.926 44.739 58.565 72.374 86.078 100.026

MBW 2.474 2.452 2.669 3.065 3.241 3.827 32.074 45.867 59.713 73.515 87.211 101.163

TABLE 4: Performance of FMW, MMW Protocols

(ν1, ν2) (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

Computation FMW 1.867 1.891 2.024 1.923 1.938 2.112 2.068 2.136 2.674
Overhead (s) MMW 2.439 2.459 2.589 2.493 2.517 2.686 2.627 2.715 3.232

Communication FMW 90.953 122.685 154.333 136.497 184.077 231.657 181.889 245.351 308.779
Overhead (KB) MMW 92.096 123.833 155.479 137.625 185.218 232.795 183.027 246.489 309.917

TABLE 5: Execution Time

Encryption Time (s) Query Generation Time (s)

|KW| 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5

Time 0.019 0.020 0.023 0.033 0.038 0.039 0.046 0.056 0.057 0.060 0.043 0.047 0.052 0.056 0.061

TABLE 6: Search Performance

(|W|, |Q|) (3,1) (3,2) (3,3) (4,1) (4,2) (4,3) (6,1) (6,2) (6,3)

Computation AND 2.274 2.61 2.938 2.303 2.665 2.955 2.618 2.950 3.159
Overhead (s) OR 1.957 2.029 2.169 1.979 2.068 2.168 2.034 2.164 2.294

Communication AND 0.339 0.677 1.016 0.452 0.903 1.355 0.677 1.355 2.032
Overhead (MB) OR 0.333 0.665 0.998 0.443 0.887 1.33 0.665 1.33 1.995

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2714669, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

whether B is authorized to access to the data. If B has
the privilege, CS verifies the signature of Q using user
B’s public key pkB . If it is not valid, the query will be
rejected. Otherwise, CP responds to the search query.
According to the parameters in Qj , CP inputs [kwi]pkA
in W and Qj in Q to corresponding keyword match
protocols (KET, FW, MW, BW, FMW, FBW, MMW or MBW). Then,
CP obtains the encrypted match result [ui,j]pkΣ . If kwi
matches qwj , we have ui,j = 1; otherwise, ui,j = 0. To
facilitate the protocol selection, we present a concrete
selection method (Supplemental Material A.2) to choose
the keyword match protocol, which is based on Table 1
and the protocols in Section 4.

If the data user makes an OR query, CP ini-
tializes [u∗]pkΣ

= [0]pkΣ
and calculates [u∗]pkΣ

=∏
i∈[n1],j∈[n2][ui,j]pkΣ . If u∗ > 0, it indicates the trapdoor

matches the keywords; otherwise, u∗ = 0.
If the data user makes an AND query, CP initializes

[u]pkΣ = [1]pkΣ . CP and CSP jointly calculates

[u]pkΣ
= SMD([u]pkΣ

, [ui,j]pkΣ
),

for 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. If u∗ = 1, it indicates the
trapdoor matches the keywords; otherwise, u∗ = 0.

Then, CP sends ([u∗]pkΣ
, [ID]pkA) to data user for the

searched documents.

5.6 Decryption
Receiving the returned results, the user B decrypts
[u∗]pkΣ to get the search result u∗. If B makes an OR
query, B will rank u∗ and ask CP to return the top-
k documents that has the highest u∗ values, which is
the relevance score. If B makes an AND query, B will
ask CP to return all or part of the documents that have
u∗ = 1. B will send [ID]pkA to CP for the document
query. Receiving the returned files, the user B decrypts
the file encryption key K, which is hashed to symmetric
key K ′ = H2(Ki) ∈ K. Then, the file M is recovered
using K ′.

Remark: In this system, the CP sends the test result
of all searched files to user for decryption. If the re-
turned data is large, however, the transmission overhead
between CP and user will be large. An effective way
to solve this problem is letting the CP directly put the
test results into the secure top-k rank algorithm in [30],
which will output the top-k documents that have the
highest relevance scores. Then, only the top-k files are re-
turned to data user. This optimization method increases
the computation overhead on CP and CSP, but reduces
computation overhead of data user and the communi-
cation overhead between CP and data user. Moreover,
due to the characteristic of secure top-k algorithm in
[30], CP can not distinguish the returned results from
the original ciphertext, which protects user’s privacy to
the maximum extent.

6 PERFORMANCE ANALYSIS
We implement this system and the protocols using JAVA
on a Windows 10 64-bit personal computer with Intel(R)

Core(TM) i5-6600T CPU @2.70GHz, 8GB RAM. Multi-
thread programming technology is utilized to program
the protocols and system. In general, the execution time
of the system grows with the number of searched key-
words, wildcards, users and influenced by the parameter
L(N). These influential factors are analyzed below.

6.1 Performance of Crypto Primitives and Protocols

The computation and communication costs of the pro-
tocols are evaluated and the results are shown in Tables
2-4. The overhead of these protocols grows with the pa-
rameter L(N) since the modular addition, multiplication
and exponentiation calculations increase with L(N). In
Table 2, we set L(N) to be 512, 768, 1024, 1280, 1536, 1792
and 2048 bits to test the MBE, SCP, KET, BW protocols and
K2C algorithm.

Since the performance of the FW, MW, FMW, FBW, MMW,
MBW protocols depends on the values of ν1, ν2, we fix
L(N) = 1024 to evaluate these protocols in Tables 3-
4. The performance of these protocols grows with the
maximum character numbers ν1, ν2 that the wildcards
can be substituted.

When L(N) = 1024, the system achieves 80-bit se-
curity level [31]. In order to trade off the security and
performance, it is recommended to set L(N) = 1024 in
practical environment.

• The execution time of K2C algorithm is shown in
Table 2. It costs only 0.018 s to encrypt a keyword
when L(N) = 1024. This algorithm does not incur
any communication cost.

• Table 2 shows the performance of MBE, SCP, KET
and BW protocols. When L(N) = 1024, MBE protocol
incurs computation cost 0.307 s and communication
cost 2.55 KB; SCP protocol incurs computation cost
0.310 s and communication cost 2.55 KB; KET proto-
col incurs computation cost 0.828 s and communi-
cation cost 8.68 KB; BW protocol incurs computation
cost 0.969 s and communication cost 11.24 KB.

• Table 3 shows the performances of FW, MW, FBW
and MBW protocols increase with ν1, which is the
maximum number of symbols that the wildcard
can be substituted. In these experiments, we set
L(N) = 1024. When ν1 = 6, FW protocol in-
curs computation cost 2.555 s and communication
overhead 82.05 KB; MW protocol incurs computation
cost 3.106 s and communication overhead 97.95 KB;
FBW protocol incurs computation cost 3.270 s and
communication overhead 100.026 KB; MBW protocol
incurs computation cost 3.827 s and communication
overhead 101.163 KB.

• Table 4 shows the performances of FMW and MMW
protocols increase with ν1 and ν2, which are the
maximum numbers of symbols that the wildcards
can be substituted. When ν1 = 3, ν2 = 3, FMW
protocol incurs computation cost 2.674 s and com-
munication overhead 308.779 KB; MMW protocol in-

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2714669, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

curs computation cost 3.232 s and communication
overhead 309.917 KB.

6.2 System Performance

The system performance is evaluated in this subsection.
We set L(N) = 1024 to achieve 80-bit security level.
• The key generation algorithm in this system needs

0.09 ms to generate public parameter PP , mas-
ter public/secret key pair MPK/MSK and partial
strong secret keys SK1/SK2. For each user, KGC
spends 0.04 ms to create its public/private key pair.

• In encryption phase, the data owner encrypts key-
words using K2C algorithm. The performance grows
with the number of keywords that are extract-
ed from the file. When the keywords number
varies from 1 to 10, Table 5 shows that it spend-
s less than 0.060 s to build the encrypted index
(W, [ID]pkA , [K]pkA).

• In query phase, the data user specifies a set of
query keywords, which may include wildcard. The
performance of the query algorithm increases with
the number of searched items. When the keywords
number varies from 1 to 5, Table 5 shows that it
spends less than 0.061 s to calculate Q, which is the
encryption of the query keywords.

• In search phase, CS tests whether the trapdoor
and encrypted index match. The performance grows
with the number of keywords in trapdoor and that
in encrypted index. The number and position of the
wildcard also affect the performance. In the exper-
iment, we randomly select the queried keyword,
which may include zero, one or two wildcards.
The maximum symbol number ν that the wildcard
can be substituted is also randomly chosen. For
keyword that contains only one wildcard, we select
a random ν ∈ {1, · · · , 6}. For keyword that contains
two wildcards, we select random ν1, ν2 ∈ {1, · · · , 3}.
Table 6 shows the average cost of search algo-
rithm when it is executed for 1000 times. When
(|W|, |Q|) = (6, 3) for an AND query, it requires
3.159 s computation cost and 2.032 MB communica-
tion cost. When (|W|, |Q|) = (6, 3) for an OR query,
it requires 2.294 s computation cost and 1.995 MB
communication cost.

TABLE 7: Computation Overhead Comparison (s)

Symmetric Key Asymmetric Key

Algorithms [19] [18] [17] [16] Ours

Setup 0.001 0.001 0.001 0.145 0.009

Enc 0.323 0.320 0.001 2.145 0.060

Query 0.001 0.001 0.001 2.014 0.061

Search 0.001 0.001 0.001 3.236 2.294/3.159

The efficiency of this system is compared with [16],
[17], [18], [19] in Table 7. In the experiment, data owner
extracts six keywords from the document and data user

chooses three keywords to issue a query. The query key-
words are randomly selected. Each algorithm is executed
1000 times to get the average time.

It is obvious that the wildcard searchable encryption
schemes in symmetric key setting [17], [18], [19] have
better efficiency. However, these systems only support
single user scenario. If a data owner authorizes his search
privilege to other user, he has to reveal his private key
to the authorized user. It is not practical in network
application. Moreover, these symmetric schemes are all
constructed based on Bloom filter and suffer from false-
positive probability. The scheme [16] is a public key set-
ting, which has larger computation overhead compared
with ours. Moreover, it does not support user revocation
nor simultaneously searching on multiple data owner’s
encrypted data using only one trapdoor.

7 SECURITY ANALYSIS

In this section, we will firstly prove the security of the
protocols under the security model defined in Section
2.3. Then, we analyze the security of the proposed
wildcard searchable encryption system.

7.1 Protocols Security Proof
Theorem 1. The SGE protocol is secure against the semi-
honest (non-colluding) attackers A = (AD1 ,AS1 ,AS2) with-
out random oracles.

Refer Supplemental Material B for the security proof.

Theorem 2. The KET protocol is secure against the semi-
honest (non-colluding) attackers A = (AD1 ,AS1 ,AS2) with-
out random oracles.

Proof. KET protocol just calls SGE and SMD as subpro-
tocols and all data are encrypted using PCTD encryption.
Since SGE and SMD protocols are proved secure in The-
orem 1 and [27], the KET protocol is also secure in the
presence of attackers A = (AD1

,AS1
,AS2

). �

Theorem 3. The MBE protocol is secure against the semi-
honest (non-colluding) attackers A = (AD1

,AS1
,AS2

) with-
out random oracles.

Refer Supplemental Material B for the security proof.

Theorem 4. The SCP protocol is secure against the semi-
honest (non-colluding) attackers A = (AD1

,AS1
,AS2

) with-
out random oracles.

Proof. SCP protocol calls MBE as subprotocol and
all data are encrypted using PCTD encryption. Since
MBE protocol is proved secure in Theorem 3, the SCP
protocol is secure in the presence of attackers A =
(AD1

,AS1
,AS2

). �

Theorem 5. The FW protocol is secure against the semi-honest
(non-colluding) attackers A = (AD1

,AS1
,AS2

) without
random oracles.

Proof. FW protocol calls KET, SCP and SLT as subpro-
tocols and all data are encrypted using PCTD encryption.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2714669, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 13

Since these protocols are proved secure in Theorem 2, 4
and [27], the FW protocol is secure in the presence of
attackers A = (AD1 ,AS1 ,AS2). �

The security proofs of MW, BW, FMW, FBW, MMW and MBW
are similar to that of FW in the presence of semi-honest
(non-colluding) attackers A = (AD1

,AS1
,AS2

).

7.2 System Security Proof

The security of this system is analyzed as follows.
• Key Generation: The privacy of master secret key

and users’ private keys is based on the hardness
of discrete logarithm problem. Adversary can not
deduce MSK and skAi

from MPK and pkAi
, re-

spectively. Due to the security of PCTD [27], the
secret keys of CP and CSP are secure.

• User Authorization and Revocation: Assume that
the signature scheme Sig is strong unforgeable. It
ensures that the authorization/revocation certificate
can not be forged when user and KGC’s secret keys
are confidentially kept.

• Encryption: The semantic security of PCTD [27]
guarantees the security of encrypted index. Assume
the symmetric encryption algorithm SEnc is cryp-
tographically secure. It ensures that the encrypted
file is secure.

• Query: The security of trapdoor is guaranteed by the
semantic security of PCTD. Unauthorized user can
not issue a valid query due to the strong unforgeable
of Sig algorithm.

• Search: In the search phase, the encrypted index
and query trapdoor are put into different protocols
(KET, FW, MW, BW, FMW, FBW, MMW, MBW) according
the queried keyword type. Since these protocols are
proved secure above and SMD protocol is proved
secure in [27], the search algorithm is secure.

Next, we following the attack model in Section 2.2 to
prove this system is secure against adversary A∗.

(1) Suppose A∗ eavesdrop all the interactive informa-
tion between the system user and CP, and all the
data transmitted between CP and CSP. A∗ still
can not get any plaintext information since all
these data are protected by PCTD and symmetric
encryption algorithm SEnc.

(2-3) Suppose A∗ compromise CP or CSP and obtain
λ1 or λ2. However, A∗ could not simultaneously
compromise CP and CSP to get the master secret
key λ. If A∗ compromises CSP and get the inter-
mediate computation results in the protocols, A∗
can not deduce any valuable information because
all original data are blinded by a random number
using the ”blinding technology” [32].

(4) Suppose A∗ compromise data owners or data users
(except the challenge user) and get their secret keys.
He is not able to get the challenge user’s plaintext
information since the secret keys belong to different
users are independent.

Resist to Collusion Attack: We show that our system
is resistant to collusion attack from authorized users.
Suppose data users (B1, · · · , Bn) collude to seek for the
search and decryption privilege of the challenge data
user B∗ and B∗ /∈ (B1, · · · , Bn). First, they are not able
to submit a valid search query for B∗, because they can
not forge a valid query trapdoor signature Sig(Q, skB∗)
without the secret key skB∗ . They can not derive skB∗
from their own secret keys (skB1

, · · · , skBn
), since these

secret keys are independently generated. Second, even
though they can eavesdrop the communication channel
to get the search result of B∗, they can not recover the
plaintext since the decryption key skΣ is unknown.

8 CONCLUSION

In this paper, we proposed a new and flexible wildcard
searchable encryption system for secure cloud storage
service, which supports flexible wildcard representa-
tion, flexible search function and flexible user autho-
rization/revocation. The system does not suffer from
false probability in returning search results to users
and no privacy information is leaked to cloud service
including the relevance score of the match files. The
system also supports AND and OR relationship based
multiple keywords search and top-k search. We formally
proved security of the underlying protocols and the
system. We implemented the system on a PC and the
test results showed that the proposed system achieves
high efficiency compared with existing schemes in the
public key setting.

ACKNOWLEDGMENTS

This work is supported by National Natural Sci-
ence Foundation of China under Grant No. 61402112,
61472307, 61472309, 61502086; the Singapore National
Research Foundation under the NCR Award Number
NRF2014NCR-NCR001-012; AXA Research Fund; Fujian
Provincial Key Laboratory of Information Processing and
Intelligent Control (Minjiang University) MJUKF201734;
Fujian Major Project of Regional Industry 2014H4015;
and Major Science and Technology Project of Fujian
Province under Grant No. 2015H6013.

REFERENCES

[1] Kamara S, Lauter K. Cryptographic cloud stor-
age[C]//International Conference on Financial Cryptography
and Data Security. Springer Berlin Heidelberg, 2010: 136-149.

[2] Singh A, Chatterjee K. Cloud security issues and challenges: A
survey[J]. Journal of Network and Computer Applications, 2017,
79: 88-115.

[3] Boneh D, Di Crescenzo G, Ostrovsky R, et al. Public key encryption
with keyword search[C]//International Conference on the Theory
and Applications of Cryptographic Techniques. Springer Berlin
Heidelberg, 2004: 506-522.

[4] Yang Y, Ma M. Conjunctive Keyword Search With Designated
Tester and Timing Enabled Proxy Re-Encryption Function for E-
Health Clouds[J]. IEEE Transactions on Information Forensics and
Security, 2016, 11(4): 746-759.

1939-1374 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2017.2714669, IEEE
Transactions on Services Computing

IEEE TRANSACTIONS ON SERVICES COMPUTING 14

[5] Yang Y. Attribute-based data retrieval with semantic keyword
search for e-health cloud[J]. Journal of Cloud Computing, 2015,
4(1): 1.

[6] Qiu S, Liu J, Shi Y, et al. Hidden policy ciphertext-policy attribute-
based encryption with keyword search against keyword guessing
attack[J]. Science China Information Sciences, 2017, 60(5): 052105.

[7] Jarecki S, Jutla C, Krawczyk H, Rosu M, Steiner M. Outsourced
symmetric private information retrieval. In Proc. ACM CCS 2013,
pp. 875-888.

[8] Sepehri M, Cimato S, Damiani E. Privacy-preserving query pro-
cessing by multi-party computation. The Computer Journal, vol.
58, no. 10, 2015, pp. 2195-2212.

[9] Sepehri M, Cimato S, Damiani E, Yeun CY. Data sharing on
the cloud: A scalable proxy-based protocol for privacy-preserving
queries. In Proceedings of TrustCom/BigDataSE/ISPA, Helsinki,
Finland, August 20-22, 2015, Volume 1, pp. 1357-1362.

[10] Sun SF, Liu JK, Sakzad A, Steinfeld R, Yuen TH. An Efficient
Non-Interactive Multi-client Searchable Encryption with Support
for Boolean Queries. In Proc. ESORICS 2016, pp. 154-172.

[11] Li J, Wang Q, Wang C, et al. Fuzzy keyword search over encrypted
data in cloud computing[C]//INFOCOM, 2010 Proceedings IEEE.
IEEE, 2010: 1-5.

[12] Li J, Chen X. Efficient multi-user keyword search over encrypted
data in cloud computing[J]. Computing and Informatics, 2013,
32(4): 723-738.

[13] Wang B, Yu S, Lou W, et al. Privacy-preserving multi-keyword
fuzzy search over encrypted data in the cloud[C]//IEEE INFO-
COM 2014-IEEE Conference on Computer Communications. IEEE,
2014: 2112-2120.

[14] Bloom B H. Space/time trade-offs in hash coding with allowable
errors[J]. Communications of the ACM, 1970, 13(7): 422-426.

[15] Fu Z, Wu X, Guan C, et al. Toward efficient multi-keyword fuzzy
search over encrypted outsourced data with accuracy improvement
[J]. IEEE Transactions on Information Forensics and Security, 2016,
11(12): 2706-2716.

[16] Sedghi S, Van Liesdonk P, Nikova S, et al. Searching keywords
with wildcards on encrypted data[C]//International Conference
on Security and Cryptography for Networks. Springer Berlin Hei-
delberg, 2010: 138-153.

[17] Bosch C, Brinkman R, Hartel P, et al. Conjunctive wildcard search
over encrypted data[C]//Workshop on Secure Data Management.
Springer Berlin Heidelberg, 2011: 114-127.

[18] Suga T, Nishide T, Sakurai K. Secure keyword search using
Bloom filter with specified character positions[C]//International
Conference on Provable Security. Springer Berlin Heidelberg, 2012:
235-252.

[19] Hu C, Han L. Efficient wildcard search over encrypted data[J].
International Journal of Information Security, 2015: 1-9.

[20] Su S, Teng Y, Cheng X, Xiao K, Li G, Chen J. Privacy-Preserving
Top-k Spatial Keyword Queries in Untrusted Cloud Environments.
IEEE Transactions on Services Computing. 2015 Sep 24.

[21] Singh A, Srivatsa M, Liu L. Search-as-a-service: Outsourced search
over outsourced storage. ACM Transactions on the Web (TWEB).
2009 Sep 1, 3(4):13.

[22] Liu X, Deng R H, Ding W, et al. Privacy-preserving outsourced
calculation on floating point numbers[J]. IEEE Transactions on
Information Forensics and Security, 2016, 11(11): 2513-2527.

[23] Liu X, Choo R, Deng R, et al. Efficient and Privacy-Preserving
Outsourced Calculation of Rational Numbers[J]. IEEE Transac-
tions on Dependable and Secure Computing, publish online,
DOI.10.1109/TDSC.2016.2536601.

[24] Do Q, Martini B, Choo K K R. A forensically sound adversary
model for mobile devices[J]. PloS one, 2015, 10(9): e0138449.

[25] Kamara S, Mohassel P, Raykova M. Outsourcing Multi-Party
Computation[J]. IACR Cryptology ePrint Archive, 2011, 2011: 272.

[26] Liu X, Qin B, Deng R, et al. An Efficient Privacy-
Preserving Outsourced Computation over Public Data[J].
IEEE Transactions on service computing, publish online, DOI:
10.1109/TSC.2015.2511008.

[27] Liu X, Deng R, Choo K K R, et al. An Efficient Privacy-Preserving
Outsourced Calculation Toolkits with Multiple Keys[J]. IEEE Trans-
actions on Information Forensics and Security, publish online.

[28] Paillier P. Public-key cryptosystems based on composite degree
residuosity classes[C]//International Conference on the Theory
and Applications of Cryptographic Techniques. Springer Berlin
Heidelberg, 1999: 223-238.

[29] Bresson E, Catalano D, Pointcheval D. A simple public-key cryp-
tosystem with a double trapdoor decryption mechanism and its
applications[C]//International Conference on the Theory and Ap-
plication of Cryptology and Information Security. Springer Berlin
Heidelberg, 2003: 37-54.

[30] Liu X, Lu R, Ma J, et al. Privacy-preserving patient-centric clinical
decision support system on naive Bayesian classification[J]. IEEE
journal of biomedical and health informatics, 2016, 20(2): 655-668.

[31] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, ”NIST special
publication 800-57, NIST Special Publication, vol. 800, no. 57, pp.
1-142.

[32] Peter A, Tews E, Katzenbeisser S. Efficiently outsourcing multi-
party computation under multiple keys[J]. IEEE transactions on
information forensics and security, 2013, 8(12): 2046-2058.

Yang Yang received the B.Sc. degree from Xi-
dian University, Xi’an, China, in 2006 and Ph.D.
degrees from Xidian University, China, in 2012.
She is an associate professor in the college of
mathematics and computer science, Fuzhou U-
niversity. She is also a research fellow (postdoc-
tor) under supervisor Robert H. Deng in School
of Information System, Singapore Management
University. Her research interests are in the area
of information security and privacy protection.

Ximeng Liu received the B.Sc. degree from Xi-
dian University, Xi’an, China, in 2010 and Ph.D.
degrees from Xidian University, China, in 2015.
He was the research assistant at School of
Electrical and Electronic Engineering, Nanyang
Technological University, Singapore from 2013
to 2014. Now, he is a research fellow at School
of Information System, Singapore Management
University, Singapore. His research interests in-
clude cloud security and big data security.

Robert H. Deng is an AXA Chair Professor of
Cybersecurity in School of Information Systems,
Singapore Management University. His research
interests include data security and privacy, net-
work and system security. He has served/is
serving on the editorial boards of many interna-
tional journals in security, such as IEEE Transac-
tions on Information Forensics and Security and
IEEE Transactions on Dependable and Secure
Computing. He is Fellow of IEEE.

Jian Weng received the Ph.D. degree from
Shanghai Jiao Tong University, in 2008. From
April 2008 to March 2010, he was a post-doctor
in the School of Information Systems, Singapore
Management University. Currently, he is a pro-
fessor and executive dean with the School of
Information Technology, Jinan University. He has
published more than 60 papers in cryptography
conferences and journals such as Eurocryp, Asi-
acrypt, PKC, and IEEE TIFS.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	6-2017

	Flexible wildcard searchable encryption system
	Yang YANG
	Ximeng LIU
	Robert H. DENG
	Jian WENG
	Citation

	TSC2714669.pdf

