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1 Introduction

In most countries, the central bank provides the medium to physically settle the smallest payments
(cash) and the means to electronically settle the largest payments, which typically are wholesale
payments between banks. For the latter purpose the central bank usually operates a system
through which banks can settle payments in central bank money. Historically, interbank payments
were settled via (end of day) netting systems, but as volumes and values increased central banks
became worried about the risks inherent in deferred net settlement systems, so most central banks
opted for the implementation of a Real Time Gross Settlement (RTGS) system. With RTGS,
payments are processed individually, immediately and with finality during operational hours. This
eliminates settlement risk and the potential unwinding of payments, at the cost of increased need
for liquidity provision by participants.

Liquidity demands in RTGS systems can be enormous. Fedwire Funds, the large value payment
system in the United States, averages around 590,209 payments a day with a total value close
to $3 trillion in 2016.1 CHAPS, the large value payment system in the United Kingdom has an
average daily volume around 165,285 worth close to £ 334 billion in 2017.2 Target2, the European
Union’s large value payment system, has average daily volume of 342,008 payments worth up to
€1.7 trillion Euro in 2016.3 To put these numbers in perspective, in most countries every 5 to 6
business days, payment values equate to annual GDP.

Over the last 20 years or so, central banks around the world have implemented Liquidity Savings
Mechanisms (LSMs) in their large-value payment systems in order to reduce liquidity demands
of these systems. LSMs work by either encouraging greater liquidity recycling or by allowing
banks to settle net obligations intraday. Liquidity recycling arises from the fact that banks can
use incoming liquidity to make outgoing payments and generally, more liquidity will be recycled
if banks make payments in a timely fashion.4 Policies that incentivize timely payment processing

∗Authors are listed alphabetically. We thank conference participants at the 2017 Payments Canada Payments
Workshop for helpful feedback. Author contact information: garratt@ucsb.edu; zhilingguo@smu.edu.sg.
1Fedwire Funds Service https://www.federalreserve.gov/paymentsystems/fedfunds_ann.htm
2Bank of England CHAPS Statistics https://www.bankofengland.co.uk/payment-and-settlement/chaps
3TARGET Annual Report 2016 https://www.ecb.europa.eu/pub/pdf/other/ecb.targetar2016.en.pdf?
45a0984578894290ca5228a5465fe81e

4As a simple illustration, consider a situation where bank A has to make a one million dollar payment to bank B,
bank B has to make a one million dollar payment to bank C, and bank C has to make a one million dollar payment
to bank A. If these payments are made in sequence they can all be completed using one million dollars in liquidity.
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(e.g. throughput guidelines) or punish delayers (e.g. time-varying tariffs) make it more likely that
liquidity will be recycled and hence reduce the overall liquidity needs of the system.

The most effective LSMs, however, are the ones that economize on liquidity needs by matching
offsetting payments that have been submitted to a central queue and settling these payments using
only the liquidity needed to cover the net obligations. Suppose bank A needs to make a payment
to bank B for a value of 100, and bank B needs to make a payment to bank A for a value of 80.
Then the amount of liquidity requirement to settle these two payments, if they were entered into a
queue operating an offsetting algorithm, would be 20, the value of the net obligation of bank A to
bank B. In contrast, in a pure RTGS system without an LSM, the liquidity requirement to settle
these two payments would be 100.5 Potentially greater gains can be obtained by netting payments
between more than two banks on a multilateral basis.

The potential liquidity savings of offsetting algorithms are decreasing in the frequency with which
net obligations are calculated. The largest potential liquidity savings would occur if all payments
for the entire payments day were netted at the end of the day. This is, in fact, what is done in
systems like Bacs, Cheque and Credit, or FPS in the United Kingdom, ACH in the United States,
or ACSS in Canada. However, most wholesale payments cannot be delayed for the entire day.
Typical payment requests that banks receive from their customers require same day processing,
but banks often have some flexibility in terms of when, during the day, they execute them. Ball et
al. (2011) estimates that 4% of payments are urgent, meaning they must be processed immediately
otherwise there will be significant consequences to the customer. But this means 96% of payments
are somewhat flexible. Many economists have suggested, however, that delaying payments results
in some customer dissatisfaction.6 Hence, there is a trade-off between liquidity savings resulting
from delaying payments to increase netting opportunities and conserve liquidity and the cost of
delay.

Netting algorithms run by central banks operate a centralized queue which typically clears at pre-
determined time intervals. Operators try to balance the trade-off between the increased potential
for finding offsetting payments that results from longer netting cycles and the cost of longer average
settlement times. This is a difficult task which the central bank must try to resolve with imper-
fect information. The central bank does not know what payment obligations individual banks are
holding outside of the RTGS system or if they will choose to enter them into the queue. In addi-
tion, netting opportunities would be quite limited if centralized systems only considered perfectly
offsetting payments. Instead, algorithms run by centralized systems look for sets of imperfectly
offsetting payments that can be settled with the available liquidity. The liquidity available to the
queue is a choice variable of the participants and again, this is something that a central operator
may have to estimate when designing its system.

Even if liquidity and payments are known, the problem of solving for the optimal netting solution
can be very complex. If there are n payments in a payment file the number of netting combinations
to consider is 2n−1, which can become NP hard for large n. Another issue is that centralized netting
algorithms seek to maximize the value or volume of payments they can settle, but they generally
have no way of weighting the importance of payments or assessing the cost of liquidity provision,
which can vary across banks and throughout the day. There is an incomplete information problem
that prevents the central operator from maximizing the social welfare of the system. Finally,
centralized queues operate within a given jurisdiction or banking system. Netting payments across
systems can be done, but it involves providing liquidity to yet another centralized system (e.g.
CLS pay-ins).

This paper considers an alternative to a centralized netting queue that addresses problems men-
tioned above while at the same time adding additional benefits associated with distributed ledger
technology. We refer to the approach described in this paper as a decentralized liquidity savings
mechanism. The decentralized approach allows individual participants to make netting proposals

However, if bank B delays in making the payment to C, either because it is not processing payments in a timely
fashion or because it uses the liquidity it received from bank A for another payment and is not willing to provide
additional liquidity, then bank C may have to provide one million in liquidity to complete its payment to bank A.

5One possibility would be that bank A provides liquidity of 100 to send its payment to bank B, and then bank B
uses 80 units of that liquidity to make its payment to bank A. Another possibility would be that bank B provides
liquidity of 80 to send its payment to bank A, and then bank A adds a further 20 units of liquidity to send its
payment to bank B. Either way, the total liquidity required is 100.

6See for example, Angelini (1998) and Bech and Garratt (2003, 2012).
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that reflect, in real time, their current conditions. This allows for competitive proposals that reflect
market conditions and increase the welfare of participants. Distributed ledger systems are likely
to span multiple jurisdictions and participants in these systems would be able to propose liquid-
ity saving opportunities within and across jurisdictions without pre-paying liquidity to multiple
operators.

There are two parts to the proposed solution. One part is the method by which individual nodes
collect information necessary to determine netting opportunities and make a netting proposal.
The other part is the proposal for how liquidity is provided to settle net obligations and the actual
settlement of obligations across the distributed system. The liquidity proposal may be as simple
as having each participant contribute liquidity equal to their own net debit positions, but we also
entertain the possibility of side payments. Properly selected side payments facilitate outcomes
that, under certain conditions, replicate bargaining outcomes and meet accounting objectives of
fairness, equity and neutrality (Roth and Verrecchia 1979).

There are two key technological innovations involved the proposed solution. The first is the recur-
sive graph scanning algorithm that allows any node on the network to identify all of the netting
opportunities that it could potentially contribute to. The second is the use of atomic transactions
that bundle together multiple changes to the ledger into one single transaction that either suc-
ceeds or fails as a whole. These innovations require certain functionalities that may not exist in
all distributed ledger platforms. The current version of Corda, a blockchain-inspired open source
distributed ledger platform developed by R3 and a consortium of banks and financial institutions,
meets our requirements. Corda has the ability to create atomic transactions that contain multi-
ple payments, which either settle all-at-once or not-at-all. A complex netting resolution involving
multiple parties, obligations, and resolution payments may be created by any participant, and the
whole set is settled or none at all. This atomicity is crucial, as a partial resolution of a netting
cycle would leave the system in a complex state to unwind.

Section 2 reviews the relevant literature. Section 3 discusses centralized queues and gives examples
of different approaches used by operators to settle obligations in the queue. Section 4 discusses
problems of imperfect and incomplete information that limit the ability of central operators to settle
obligations in the centralized queue in a welfare maximizing way. Section 5 formally introduces our
approach to decentralized multilateral netting and introduces the of notion side payments. Section
6 concludes.

2 Related Literature and Ongoing Projects

There are a few theoretical papers that explore the potential for liquidity savings mechanism to
enhance welfare in priced credit (e.g. Fedwire) and collateralized credit (e.g. CHAPS) systems.
See Martin and McAndrews (2008) for an example of the former and Jurgilas and Martin (2013)
for an example of the latter. These papers use specialized models and provide general insight.
The conclusions are very straightforward. In the collateralized credit world, the only equilibrium
without an LSM is “bad" (all participants delay payment processing) and the LSM always helps.
In the priced credit world, there is a “good" (no participants delay payment processing) and a
“bad" equilibrium without the LSM and it is possible that the LSM makes things worse. In reality
the welfare benefits of an LSM are likely to depend upon several factors, such as the cost of
providing liquidity, the cost of delay, individual bank payment characteristics (size, arrival time,
time criticality), joint payment characteristics and behavioural factors, (e.g. which payments are
put into the queue), and these models cannot fully account for these things.

More relevant, perhaps, are the papers that test the performance of actual LSMs. Norman (2010)
provides an overview of studies that examine benefits of specific applications of queues. Norman
(2010) reports savings of 20% for Bank of Korea’€™s BOK-Wire+ payment system and 15% for
the Japanese BOJ-Net system. More recently, Davey and Grays (2014) and the follow up by David
Seaward (2016) estimate the liquidity savings resulting from the LSM introduced to CHAPS in
April of 2013. They found initial savings around 20%, however this number fell to near zero in
recent years as banks have been flush with liquidity due to quantitative easing policies.

Atalay et al. (2010) quantify the hypothetical benefits of adding a LSM to Fedwire. They find

3



that an LSM can be welfare decreasing, but that potential gains are more than 500,000 USD per
day under realistc scenarios. Using a similar approach, Diehl and Schollmeyer (2011) conduct
an assessment of welfare benefits of the LSM in TARGET2. They evaluate both the fee-based
and collateral-based liquidity provision and demonstrate the welfare effects can reach the order of
170,000 to 300,000 Euro per day.

In 2016 some central banks began experimenting with the possibility of adding LSMs to their
proofs of concept for distributed ledger technology based on wholesale payment platforms. The
first to report their findings was Bank of Canada’s Jasper Project (Chapman et al. 2017, Project
Jasper White Paper 2017). This group implemented a centralized LSM in the form of a centralized
queue with periodic multilateral payment netting.

The centralized queue embedded in the Jasper phase 2 design is intended to be used for payments
for which the sender is willing to accept delay before settlement in exchange for possible liquidity
savings. Rather than choosing atomic settlement, users submit payment obligations to the queue.
The queue collects all the payment obligations submitted by users over a short period of time
(configured by the Notary node) known as a “matching cycle". At the end of the matching cycle a
multilateral netting algorithm is run which offsets as many payments in the queue as it can subject
to liquidity constraints.

In order for the matching algorithm to run it needs to know exactly how much liquidity it has
available to settle net obligations. One way to do this would be to freeze the whole system while
the algorithm runs. However, the Jasper phase 2 architects had a better idea. Instead of freezing
the whole system, participants make payments to the notary just before the algorithm runs. This
is called the inhale phase. With these funds under the control of the notary, the algorithm runs,
draws on this liquidity as needed, and returns unused liquidity and any additional net credits from
the matching solution to the participants when the algorithm had finished. This is called the exhale
phase. The inhale/exhale architecture allowed a centralized queue to operate within an otherwise
decentralized system.

A recent report on the joint venture by the ECB and Bank of Japan (2017) describes a decentralized
approach for bilateral netting in the Stella Project. The LSM is implemented via smart contracts
that allow banks to conduct payment transfers with LSMs in the distributed ledger environment.

In Singapore, Project Ubin explores the use of distributed ledger technology for interbank payment
and settlements with LSMs introduced for the purpose of gridlock resolution (Monetary Authority
of Singapore 2017). Gridlock refers to a situation where banks are unable to settle any payments
because the liquidity available to each participant in the payment system is less than any of their
outstanding payment obligations. The standard approach to gridlock resolution is to look for
netting cycles within the set of gridlocked payments that deliver net amounts that can be settled
with available liquidity. Phase 2 of the project was completed in October 2017. Three software
prototypes were developed on three leading DLT platforms: Corda, Hyperledger Fabric and Quo-
rum. The three workstream designs leverage different capabilities with their distinct methods. For
example, fund transfer functionality and privacy of transactions is achieved by Corda with its Un-
spent Transaction Output (UTXO) model and confidential identities, Hyperledger Fabric with its
Channels design, and Quorum using Constellation and zero knowledge proofs (ZKP). In addition,
the queuing mechanism and LSM are implemented through different solution designs. The EAF2
algorithm7, originally developed to support bilateral and multilateral net settlements in centralized
queues, was used for gridlock resolution in both Hyperledger Fabric and Quorum prototypes. The
former splits the gridlock resolution into two main stages: initiation/participation and settlement,
while the latter uses a cycle of four system states: normal, line up, resolving, and settling. Since the
Hyperledger Fabric relies on a specialized MAS node representing a central authority to facilitate
the settlement, and Quorum relies on a global gridlock queue to track queued payments in the
system in order to trigger gridlock resolution, these two platforms haven’t achieved a full decen-
tralized deign. In contrast, the Corda workstream achieved the highest degree of decentralization
in implementing the decentralized gridlock resolution. It proposed a graph-based queue-scan ap-
proach to facilitate the discovery of queued payments in the decentralized environment. It further
developed a new cycle-based algorithm that consists of three stages: detect, plan, and execute. We
will provide more technical details of this innovative design in Section 5.
7The EAF2 algorithm is the earliest FIFO-based algorithm used in Germany. Please refer to Section 3 for more
details of the offsetting algorithms in central queues.
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The mechanism described here is an extension of the Corda gridlock resolution mechanism de-
scribed in the Project Ubin Phase 2 report. Gridlock mechanisms are emergency features of
payment systems and while they conserve on liquidity they are not specifically invoked for this
purpose. Our proposed mechanism differs from a gridlock resolution mechanism, in three im-
portant ways. First, we do not invoke our mechanism only as a gridlock solution. Rather it is
envisioned that banks voluntarily put payments into the queue for netting in order to save liquid-
ity, reflecting on the trade-offs between delay and liquidity savings discussed above. Second, the
gridlock resolution mechanisms described in the Ubin report are programmed to select a particular
netting cycle subject to certain pre-specified criteria (e.g under the Corda approach the gridlock
mechanism executes the netting cycle that clears the largest obligation sum). In contrast, we allow
banks to make propose any netting cycle. Third, in the gridlock solutions described in the Ubin
report banks pay their net obligations under the selected matching cycle. In contrast, we allow
banks to propose side-payments.

3 Centralized Queue Design

Queuing arrangements used in the interbank settlement systems economize on liquidity needs by
matching (partially) offsetting payments that have been submitted to a queue and settling these
payments using only the liquidity needed to cover the net obligations. There are many design
issues that have to be considered when setting up a centralized queuing mechanism. One of these
issues is the decision of how often to clear the queue. Potential liquidity savings are decreasing
in the frequency with which net obligations are calculated and yet delay is costly as it results
in customer dissatisfaction.8 Hence there is a trade-off between liquidity savings resulting from
delaying payments to increase netting opportunities and the cost of delay.

Another important decision central operators have to make is which payments to settle. Given
a set of payments in a queue the central operator can compute each bank’s net obligation. The
entire queue can be settled if all banks in a negative net debit position provide liquidity equal to
their negative positions. However, central queues are typically prefunded, with banks specifying
amounts they are willing to contribute to clear the queue, and these amounts may not be sufficient
to cover all negative debit positions. When this situation arises, it is necessary to determine a
subset of queued payments that can be settled on a net basis with the available liquidity.

The problem of solving for the optimal netting solution can be very complex. If there are n
payments in a payment file the number of netting combinations to consider is 2n − 1, which
for large n is extraordinarily large. More formally, the decision problem is NP-complete and the
optimization problem is NP-hard, which means that there is no known algorithm that is guaranteed
to find an optimal solution in polynomial time.9 This problem belongs to the general class of
combinatorial optimization problems. The traveling salesman problem and the knapsack problem
in operations research and the winner determination problem in combinatorial auctions are other
well-known examples of combinatorial optimization problems. As the size of the problem increases,
the first-best solution is computationally challenging to be obtained.

To obtain a second-best solution, banks utilize routines that discard payments until liquidity
constraints are met. Here, multiple objectives may be at play. On the one hand, the goal of the
operator may be to maximize the value of payments settled or in some instances the number of
payments. But at the same time, it is recognized that not all payments in the queue have equal
priority from the point of view of the bank that inserted it into the queue. Centrally located
queuing facilities in currently operating payment systems (see Table 1) mostly utilize the First-in-
first-out (FIFO) principle because of its simplicity and fairness, or a variation on the FIFO rule
to improve efficiency. Under FIFO, in the event that a liquidity shortfall prevents all payments in
the queue from being settled, payments that were added first are excluded first. This is not always
adhered to strictly. Some systems allow banks to designate priority levels to the payments that
they place in the queue.10 Payments are then released for settlement on a FIFO basis within each
8Different payments will have different delay costs depending on the underlying customer need. Some payments
cannot be delayed at all and must be processed through a pure RTGS stream. However, within the group of
payments that do not require immediate processing there are still varying degrees of urgency.

9See Güntzer, Jungnickel and Leclerc (1998).
10Payment priority can be automatically defined by the payment type or assigned by the sender.
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priority level. The use of priorities helps banks to achieve greater flexibility in FIFO processing.
Other variations on FIFO include combining simple FIFO with facilities such as reordering or
bypass. FIFO-Reorder involves moving a payment to the end of the queue or changing its priority
code. FIFO-Bypass allows the operator to bypass a large payment if it cannot be settled due to a
lack of funds, without the need to reorder payments.

In addition, some algorithms utilize sorted queue method to improve the offsetting efficiency. This
allows the operator to abandon FIFO altogether. The algorithm first sorts payments in ascending
or descending order based on value. It then gradually adds or removes payments to identify the
largest subset of payments which can be settled simultaneously without any bank incurring an
overdraft and without deviating from the banks’ designated priority order. To achieve higher
efficiency in the offsetting algorithms, some other forms of optimization have also been proposed.
These include optimization routines that simulate the net balance of each participant under a
variety of subsets of queued incoming payments and queued outgoing payments in order to find
the arrangement that settles as many of the queued payments as possible subject to the liquidity
constraints.

Flexible and sophisticated queue arrangements enable systems to achieve higher offsetting effi-
ciency. The most commonly used FIFO and sorted-queue offsetting algorithms are provided below:

FIFO-based Algorithm

1. Activate all pending queued payments and calculate the net balance position of each partic-
ipant.

2. Identify the participant with the largest uncovered debit position (i.e. the largest difference
between outgoing and incoming payments and available liquidity).

3. Remove the latest payments of the participant identified in step 2 until its balance is no
longer negative.

4. Repeat steps 2 and 3 until all participants’ balances become non-negative.

5. Settle all remaining payments in the queue using available liquidity.

Sorted-Queue Algorithm

1. Activate all pending queued payments and calculate the net balance position of each partic-
ipant.

2. Identify the participant with the largest uncovered debit position (i.e. the largest difference
between outgoing and incoming payments and available liquidity).

3. Sort the payments of the participant identified in step 2 in ascending (or descending) order
based on amount and remove payments, progressing backwards from the end of the list, until
its balance is no longer negative.

4. Repeat steps 2 and 3 until all participants’ balances become non-negative.

5. Settle all remaining payments in the queue using available liquidity.

The above basic forms of FIFO and sorted-queue algorithms cannot guarantee the optimal settle-
ment of queued payments. Some systems have developed more sophisticated algorithms to improve
the offsetting performance. For example, the Electronic Payment System (MEPS+) of the Mone-
tary Authority of Singapore has taken iterative approaches to reorder payments in Step 3 of the
FIFO algorithm, and chooses the iteration that results in the highest total transaction amount
for each participating bank. MEPS+ also runs through a series of inactivation/activation checks
in combination with the sorted-queue algorithm. The algorithms first try to identify harmless
removals that have no adverse effect on receiving banks. If no such opportunity is found, then the
algorithms revert to a sorted-queue algorithm.

6



Some centralized queues allow participants to specify conditions under which payments can be
released from the queue. The trigger to run the offsetting algorithms can be based on time or
the occurrence of some payment event. Time-driven algorithms run at predefined time intervals,
some designated times, or upon decision of the system operator. Event-driven algorithms run
whenever a criterion is met, such as the arrival of a new payment, or accumulated volume or value
of payments, or if certain netting opportunities appear. In addition, a balance-reactive LSM allows
banks to select a balance threshold below which payments are not released from the queue (Martin
and McAndrews (2010)). Systems may also allow participants to set additional restrictions on
the amount of their own liquidity that can be used. Bilateral limits restrict the maximum net
amount a participant is willing to pay to another participant. Multilateral limits determine the
maximum net outflow of funds a participant is willing to allow to all other participants or groups of
participants in the system. And finally, a total limit restricts the total amount of liquidity available
for both RTGS and LSM operations.

Note that there is a distinction between the usage of offsetting algorithms as a gridlock-preventing
feature in a pure-RTGS system versus as a separate settlement mode alongside the RTGS mode. In
the former case, the offsetting mechanism runs only occasionally in order to clear the outstanding
payment queues at a certain time or when necessary (e.g. when a certain volume of payments
remains unsettled for a certain period). In the latter case (as shown in Table 1), the system is
called an “RTGS system with LSM,” which normally has two settlement modes: RTGS mode and
LSM mode. In general, banks can use the settlement account’s full liquidity in the RTGS mode and
only the assigned liquidity for LSM mode. The assigned liquidity can take the form of dedicated
LSM accounts or reservations created for certain type of payments. In the case of dedicated LSM
account, the LSM account liquidity can be managed with different design features. Participants
normally need to prefund their account balance at the beginning of the day. Supplemental funding
is also possible throughout the day. Two common forms of credit extension by central bank
are repurchase agreements (repo) and overdraft on central bank accounts (pledge). Settlement
institutions may also provide intraday credit up to a predefined limit (a net debit cap).

Table 1 summarizes the existing centralized queuing mechanisms in major countries. It shows
that there are large differences among the countries and systems in terms of the design of central
queuing functions and LSM account features. First, almost all systems have adopted a FIFO
centralized queue with priority design. Normally there are two or three categories of priority
representing (highly) urgent and normal payments with the exception that MEPS+ has 5 levels
and RIX allows up to 9 levels of payment priority. Second, existing systems all adopted the
FIFO principle and its variations including reordering and bypass. Those systems that specifically
mentioned FIFO-bypass (RITS, TARGET2, BOK-Wire+, BOJ-NET and RIX) and sorted queue
(MEPS+ and CHAPS) in their offsetting algorithms are identified in Table 1. Third, even though
bilateral offsetting and multilateral offsetting are used in combination, most systems run bilateral
offsetting algorithms continuously throughout the day and the multilateral offsetting algorithms
less frequently (eg BOK Wire+ every 30 minutes and BOJ-NET four times a day). Finally, BOJ-
NET and RIX have dedicated LSM accounts, while a majority of the systems do not have separate
LSM accounts but allow liquidity reservations for LSM queue processing.

The most recent RTGS system with an LSM is CHAPS in the U.K., which introduced its LSM in
2013. In this system, the RTGS mode and LSM mode are operated in a single stream of processing,
where RTGS mode is switched to LSM mode every two minutes in a matching cycle (Denbee and
McLafferty (2013), Dent and Dison (2012)). The matching cycle lasts around 20 seconds, where
either bilateral or multilateral offsetting algorithms run to match and settle non-urgent payments.
The offsetting algorithms may choose between different queue release methods: FIFO or sorted
queue by value. Any payments not settled by a matching cycle remain in the queue and the system
will attempt to match and settle them in the next cycle.

The Bank of Japan operates the RTGS and LSM separately as two independent mechanisms.
Participants are required to transfer funds to the LSM account at the beginning of each settlement
day. Additional transfer of funds to the LSM account is possible at any time during the day.
At the end of the day, the balance in the LSM account is automatically transferred back to the
RTGS account. In BOJ-NET, the bilateral offsetting is the primary LSM mechanism, which runs
continuously during the day, while multilateral offsetting is supplemental, which runs at four fixed
times (10:30, 13:30, 14:30, and 15:30) each day. The offsetting algorithms follow the basic FIFO
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Table 1: Properties of selected centralized queuing mechanisms.

Country System Year 
of 

LSM  

Centralized Queueing Functions Dedicated 
LSM 

Account 
Priority of 
payments 

Queue release 
method 

Bilateral 
offsetting 

Multilateral 
offsetting 

Australia RITS 2009 Priority 
Active 
Deferred 

FIFO Bypass Continuous NA N 

Eurosystem TARGE
T2 

2007 Highly urgent  
Urgent  
Normal 

FIFO Bypass Continuous Continuous N 

Korea BOK-
Wire+ 

2009 Urgent 
Normal 

FIFO Bypass Continuous Runs every 30 
minutes 

N 

Japan BOJ-
NET 

2008 Urgent 
Non-urgent  

FIFO Bypass Continuous Runs 4 times a 
day 

Y 

Mexico SPEI 2004 High priority 
Normal 

FIFO  Continuous Every few seconds N 

Singapore MEPS+ 2006 5 levels FIFO  
Sorted Queue 

Continuous Continuous  N 

Sweden RIX 2009 9 levels  FIFO Bypass At certain 
specified intervals 

At certain 
specified intervals 

Y 

Switzerland SIC 2008 High 
Norm 

FIFO  Every few seconds NA N 

U.K. CHAPS 2013 High priority 
Non-urgent 

FIFO   
Sorted Queue 

Every 2 minutes Every 2 minutes  N 

 

release order, but participants are allowed to change the order of payments (Nakajima 2015).

Increasing computing power makes it possible to implement complex settlement mechanisms and
offsetting algorithms can now be applied on a continuous basis. Technological progress will broaden
the set of feasible designs and support the development of innovative new solutions. However,
technological progress alone may not allow operators of centralized queues to achieve outcomes
that maximize participant welfare.

4 Problems with Centralized Queues

Central operators have no way of assessing the importance of payments (beyond the coarse pri-
ority categorizations the systems allow) or assessing individual bank’s cost of liquidity provision,
which can vary across banks and throughout the day. As such they cannot make accurate welfare
assessments or set system parameters to maximize social welfare.11

Using the terminology of formal models of dynamic games (Fudenberg and Tirole (1991)) the
problems faced by the central operator are ones of imperfect and incomplete information. In the
case of imperfect information, a player is unable to observe the earlier or simultaneous moves of
some other players. In the case of incomplete information, the player is unsure about some of the
underlying characteristics of the game, such as another player’s payoff.

4.1 Imperfect Information

Imperfect information arises because the central operator does not see all the moves of all the
participants in the system. Actions that are hidden from the central operator include the arrivals
of payment requests to participants from their customers. This has always been a challenging aspect
of RTGS systems with or without LSMs. The smooth functioning of any payment system requires
11There is a literature that predates the consideration of decentralized LSMs that evaluates the welfare impacts of
introducing LSMs to RTGS systems: eg Atalay, Martin and McAndrews (2010), Diehl and Schollmeyer (2011)
and Diehl (2013). These studies use the stylized models of Martin and McAndrews (2008) and Jurgilas and
Martin (2013) which assume there is a single matching cycle in the morning period and all payments entered into
the queue perfectly offset. This work attempts to measure welfare benefits based on aggregate statistics of the
underlying system. This work abstracts from the queue implementation and management features that are the
focus of this proposal.
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that participants process payments in a timely fashion. Since liquidity provision is costly, banks
have an incentive to free-ride on the other system participants by waiting for incoming payments
in order to obtain liquidity to make outgoing ones. Detecting free-riding behavior is difficult,
however, because of imperfect information (See Denbee et al (2012, 2015) and Diehl (2011)). The
central bank does not know when payment requests by customers arrive at banks. As such RTGS
systems usually employ relatively weak guidelines to ensure timely payment processing, such as
through put guidelines that must only be met on average over periods of time. For instance,
CHAPS participants in the UK are required to complete 50% by noon and 75% by 2:30 pm, but
this restriction is only assessed as an average over a monthly period and if a bank is in violation the
"punishment" is that they must appear before the Star Chamber (a collection of CHAPS members)
and explain their behavior. In short, it is difficult to enforce good behavior when it is not possible
to definitively detect bad behavior. This is true in RTGS systems with or without a central queue.

4.2 Incomplete Information

Even if the central operator had perfect information about the payment obligations of all partici-
pants in the system (i.e. it either can see the requests come in from customers or see the decisions
of participants to process or not process these payments), it would still have difficulty setting up
a welfare maximizing system because it does not know all of the costs and benefits of partici-
pants. One the benefit side, we have already discussed that the most urgent payments have to be
settled immediately and will not be entered into a queue by the bank, but rather will be settled
immediately using the pure RTGS stream12. However, within the set of payment requests that
banks receive that do not require immediate settlement there is variation in the degree of urgency.
Existing systems sometimes allow banks to specify a priority level when they enter payments into
a queue. Systems that allow this typically only permit two categories: urgent (high priority) and
non-urgent (normal). TARGET2 allows three levels and MEPS+ allows five levels of priority (see
Table 1).

There are good reasons for limiting the number of categories as partitioning the payments set too
finely can limit netting opportunities. Our point here, however, is that any degree of coarseness
in information limits the ability of the central operator to distinguish between any two payments
within a category and hence payments may be selected for processing in a suboptimal order.

The other important piece of private information that participants possess is their cost of providing
liquidity. The opportunity cost of funds that participants provide to a central queue for settling
net obligations depends on their own cost of liquidity and their predictions on future liquidity
needs. Banks often set limits on funds they are willing to make available to the centralized queue
at the end of any matching cycle, and they use their private information to inform this decision.
However, given specified limits the central operator does not have this information available when
deciding whether to settle one set of payments using particular sources of liquidity versus another
set using different sources.

4.3 Prefunding and Hard Limits

A constraining aspect of centralized queues, which is not a direct consequence of imperfect or in-
complete information, is that banks make decisions on how much liquidity to provide to centralized
queues before knowing what the benefits are the central queue operator has to look for netting
solutions that are subject to these given liquidity amounts. In other words, netting algorithms look
for a solution subject to hard limits. It is not difficult to construct examples where a large number
of high-value payments could be processed from a central queue if a small amount of additional
liquidity was provided, however, we know of no centralized queue systems with functionality to
request and receive additional liquidity during a matching cycle.13

12Regardless of the liquidity savings opportunities that systems provide, all systems must and do allow a RTGS
stream

13In principle, the additional liquidity needed to net large sets of payments could of provided, when deemed worth-
while, by the central operator. However, this would expose the operator to credit risk.
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5 Decentralized Multilateral Netting

The basic premise of the decentralized approach is that netting proposals are made by and agreed
upon by the participants rather than the central operator. In order for this to happen, participants
must be able to collect information about what the netting opportunities are, across system par-
ticipants, at any point in time. This requires banks with existing (unsettled) payment obligations
to be willing to announce these obligations to their respective obligees. A payment obligation is a
payment request that has been received from a system participant’s (i.e. bank’s) customer, or an
obligation arising from a bank’s own proprietary operations (e.g. interbank trading). The bank
knows the details of the payment, such as the amount, the payee, and also the urgency of the
payment, namely some measure of the cost of delay to the customer, and indirectly itself through
the impact on the bank-customer relationship if the payment is not made within a certain time
frame. Often, obligations are not visible to any other party unless the obilgor makes them visible
by revealing them. Banks may or may not want to inform obligees of every payment.14

An obligation is ultimately either settled via a cash payment, via one or more new obligations, or
via a combination of the two. An obligation may also, optionally, be cancelled.

Given a series of bilateral obligations, liquidity saving can be reduced to a 3-stage process:

1. Detect obligations between various participating nodes.

2. Plan a strategy to successfully meet payment obligations on a net basis.

3. Execute the plan through a single atomic netting transaction.

The detect stage operates independently of the other two stages. In theory, the plan and execute
stage, making use of results from an earlier detect phase, can operate in parallel with another
detect stage.

5.1 Stage 1: Detect

The detect operation is based around a concept of a recursive graph scanning algorithm.15 Once
banks have broadcast their (selected) payments obligations to the obligees, any individual bank can
obtain a complete picture of the netting opportunities that involve that bank using this algorithm.

Consider, for example, the graph displayed in Figure 1. In this graph, we see a series of vertices,
labelled A through Q, representing nodes in a network. The edges and directions represent the
payment obligations that have been broadcast by the obligors to the obligees. In reality there
would be payment values (weights) associated with these edges, and in fact there could be multiple
payments (a vector of weights) associated with an edge, however we suppress this information in
the diagram. During the detect phase any node with payment obligations may initiate a scan. We
can identify each scan with a unique scan ID, which allows each specific scan to be tracked.

As a node starts to participate in a scan (either as the initiator, or after having been contacted as
a result of the scan being initiated by another node) the following actions occur:

• The node checks all payment obligations that it has made to other nodes. For all obligations
that it would like to see involved in netting it adds these to a list of graph edges. This
does not need to include all (or even any) obligations - only those that it would want to be
involved in a netting solution. This may include more than one edge if there are two or more
obligations from the same obligor to the same obligee.

• The node sends a scan request (SCAN-REQUEST) message to each node with which it shares
a payment obligation.

14This same situation arises in centralized systems with transparent queues (See Table 1). To the extent that obligors
do not wish to inform obligees about impending payments, netting cannot be achieved in either centralized or
decentralized systems.

15The Ubin phase 2 report referes to their gridlock resolution process, which includes the final netting proposal
and payments, as their cycle-solver algorithm. The recursive graph scanning algorithm can be thought of as a
component of the broader cycle-solver algorithm.
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Figure 1: Obligation network involving banks A through Q.

• Any node sending a SCAN-REQUEST message starts a timeout timer and waits for a scan
acknowledgement (SCAN-ACK) message to be returned to it before the timer expires. If the
timeout timer expires then it presumes that the request has failed and that the recipient will
not respond. Any messages received after a timeout must be ignored.

• Nodes that receive a SCAN-REQUEST message must respond with a SCAN-ACK message.
The SCAN-ACK contains no information other than that the SCAN-REQUEST was received.
A node that issues a SCAN-ACK is committed to issuing a subsequent scan response (SCAN-
RESPONSE).

• The recipient of a SCAN-REQUEST proceeds as a newly reached node.

• When all data has been collated by a node then it sends a SCAN-RESPONSE message to
whichever node sent it a SCAN-REQUEST.

• The SCAN-RESPONSE message will indicate the final status of a request. This may indicate
a set of edges found during scanning, or that another scan has already been seen with a lower
scan ID within a set time frame (eg the last 20 seconds). The timing can be altered to be
appropriate for the size of the network.

• If a node receives a SCAN-RESPONSE reporting a scan collision in which a lower value
scan ID (treating scan IDs as a large integer) has already been seen then the scan will be
stopped. If the recipient of the SCAN-RESPONSE is, itself, waiting to return data to an
earlier requester then it will issue a SCAN-RESPONSE message to its requester indicating
the scan collision.

• When a node has received all pending SCAN-RESPONSE messages it aggregates all of the
results into one larger message, removing any duplicates.

When the final SCAN-RESPONSE message is received by the initiator its final aggregation of
results will represent all of the edges in the graph, and the full graph can be trivially recomputed.

We illustrate the recursive graph scanning algorithm in terms of the simple example shown in
Figure 2.

While any node may initiate a scan, for the purpose of illustration it is convenient to assume it is
started by node A.

1. A initiates the scan and requests nodes B and C continue it. A will record edge AB.
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Figure 2: Obligation network involving banks A through D.

2. Node B subsequently requests that node C continue the scan, while node C requests both
nodes B and D continue.

3. Node D responds with the details of the edge DC.

4. At this point it is possible that either node B, C or A may take different actions, dependent
on the timing of the scan, but node C will ultimately bundle the reply from D regarding edge
DC, while adding details of the edge CA. Node B offers details of the edge BC

5. Node A collates the replies from B and C, forming a view of a graph with edges AB, CA,
BC and DC.

The above steps are illustrated in Figure 3.16

Figure 3: Illustration of the recursive graph scanning algorithm.

16In the Appendix, we provide a technical description of the implementation of the recursive graph scanning algo-
rithm using Corda and provide a link to the software.
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5.1.1 Scan Complexity

The scan complexity is a function of the worst-case graph walk. In most instances, our graph will
be predominantly a tree structure, but our worst-case scenario is a purely linear graph, initiated by
one of the least-connected nodes. In this, worst-case, scenario our scan complexity is O(n) (twice
linear) where n is the number of nodes in the graph. More typically the complexity is O(log(n))
as we are performing a tree scan.

5.1.2 Concurrent Scanning

Given that any node might wish to initiate a scan at any time, it is possible for two or more
nodes to start simultaneously. In this case there must be a procedure that ensures all but one
deterministically back-off. This is achieved by having each scan initiator generate a unique scan
ID and ensuring that the lowest value ID always succeeds. To ensure fairness in the selection of
scan IDs, an algorithmic approach is required, and compliance can be enforced by each node within
the scan.

Here is one such proposal. When the initiating node is ready to start scanning it computes a SHA2-
256 hash over its pseudo-anonymous identity, concatenated with a starting timestamp. This hash
value will be the scan ID. The SCAN-REQUEST message will include both the identity, timestamp,
and scan ID. Recipients of scan requests will also compute the same SHA2-256 hash over the identity
and timestamp to ensure that the initiator computed a fair scan ID. The randomizing nature of
the hash computation means that no one node will be favoured over any other.

It is worth noting that if two nodes initiate scans at the same time, but the sets of payment
obligations reachable from both are not connected, then both nodes may complete scans of their
respective graphs. Both may attempt to find netting solutions independently of each other.

5.1.3 Privacy Concerns

The scanning process involves sharing payment information with parties that are not involved on
either side of a transaction. Implementation of this scheme may require that participants agree in
advance to allow the required payment information to be shared. Doing so without protecting the
information may not be desirable, or even allowed, in many applications.

An option to protect information is to consider using pseudonyms, created by banks to protect
their identities from other banks, in order to limit information sharing. In such a system, the link
between banks’ true identities and their pseudonyms should, and could, be known by the regulator.
A process for creating, managing, and retiring pseudonyms is found within Corda’s confidential
identity framework. Pseudonyms, alone, are insufficient to prevent information leakage, but could
potentially be combined with encryption and secure computing enclaves, such as Intel’s SGX, to
make it impossible for an observer to gather any insights into payment information.

With a secure computing enclave, even the operator of the CPU in which the enclave exists would
be unable to determine the data that is being used to compute a netting solution. Such data would
only reside in an encrypted form with pseudoanonymous identifiers.

5.2 Stage 2: Plan

Having completed a scan and thus having knowledge of existing payment obligations for its con-
nected components of the network, a node is ready to make a liquidity saving proposal. The detect
phase provides the necessary information to construct an in-memory graph representation, and
from this nodes are able to use standard approaches to finding cycles within that graph represen-
tation. Simple sets of payment obligations may have only one or two cycles, larger sets may have
significantly more. Consider our earlier example in Figure 1 again:

In this payment graph, we can see several examples of cycles with shared edges. For example,
the cycles BPLEDB, BPLEFDB, and BPLEFDCB all share the edges BP, PL, LE. Similarly, the
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cycles BPLEFDB and EFGHE are quite different but share the edge EF. In cases where we have
multiple cycles that share a common edge, resolving any one will also eliminate the other cycle
too. Similarly, though, a shared edge may indicate that it would be advantageous to try to solve
two or more cycles simultaneously.

It is also important to recognize that we have no guarantees that any particular set of payments
may be possible. There is no concept of “locking" the state of the payment network while the
decentralized LSM process operates, so while the LSM is running, individual payment obligations
that are considered to be part of the netting solution may be settled unilaterally, and thus not
be available to be re-settled as part of a netting solution. In such cases some possible netting
approaches that are produced by the planning stage may prove to be irrelevant, so the planning
stage should not try to produce a single netting transaction. Instead it should calculate many
possible independent netting transactions, prioritizes them, and try them in turn.

One option for a liquidity savings proposal is to try and clear all existing payment obligations simul-
taneously. This is the unconstrained solution, as it would be the solution if there were no liquidity
constraints. In fact, the sum of liquidity savings obtained from settling the net amounts associated
with any collection of cycles cannot exceed the savings from settling all payments simultaneously.
Hence, the unconstrained solution maximizes netting efficiency.

5.2.1 Unconstrained Solution

Denote the set of banks in the system by N = {1, ..., n}. Start with a matrix P which represents
all of the payment obligations revealed by the current scan. Let pij denote the payment from bank
i to bank j, and there are tij such payments. The net debit (or credit if the debit is negative)
position of bank i is given by

di = max

0,
∑
j 6=i

tij∑
k=1

pijk −
∑
j 6=i

tji∑
k=1

pjik

 . (1)

The first double-summation term in (1) adds up all of the outgoing payments from i and the second
double-summation term in (1) adds up all of the incoming payments to i. The unconstrained
solution can be obtained if each bank i is willing to to provide liquidity di.

In a centralized system, each bank i typically pre-specifies an amount li of liquidity that they are
willing to provide to the queue. The goal of a centralized queue is to settle all the payments in
the queue. However, this is only possible if the liquidity provided by each bank is enough to cover
their net position (if negative). Specifically, settling all payments in the queue requires li ≥ di for
all i. If this condition is not satisfied, then it is not possible to settle all payments in the queue
and some must be discarded (technically, set aside until the next matching cycle or until the bank
decides to make the payment outside the queue). We refer to a situation where the set of payments
cannot be settled with the available liquidity as uncovered.

As discussed above, banks can use different criteria for deciding which payments to eliminate from
the queue when the payment set P is uncovered by the available liquidity. A main advantage of
the decentralized approach is that banks can decide after seeing a netting proposal whether or not
they are willing to provide a prescribed amount of liquidity. Banks can assess a take-it-or-leave-it
offer by comparing the benefits they get from having a set of payments settled atomically at that
instant against the instantaneous cost of liquidity provision and/or side payments.

In fact, the current benefits and costs of settling a payment now are uncertain, because not settling
now means settling at a future instant, the timing of which may be influenced by future payment
arrivals, decisions to broadcast these arrivals as new payment obligations and decisions to include
payments in new offers and accept them. Modeling this decision in a way that fully takes into
account all these future trade-offs may be computationally intractable.17 Instead, we assume
17We would have to specify a distribution on all payment arrivals, specify equilibrium strategies of the dynamic
game in which proposals are made and the benefits and costs of accepting proposals are specified in terms of the
likelihood of future payments arrivals, the inclusion of current payments in future proposals and the likelihood of
accepting a payment in a future payment proposal given the computed equilibrium strategies (if these exist and
are unique).
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banks can determine a constant, instantaneous delay cost that reflects the current per dollar
benefit of processing each individual payment as an immediate atomic transaction versus having
it remain unsettled and awaiting inclusion in another (future) proposal or being reassigned for
gross settlement. This benefit should depend on the priority level of individual payments, but is
otherwise assumed to be constant per dollar within payments of the same priority.

Specifically, if we allow for an arbitrary number of priority levels for outgoing payments h = 1, ...,H,
then at each instant we assume the marginal benefit of settling a dollar’s worth of a priority h
payment immediately is bh. Likewise, we assume that each bank i has a known per dollar cost
of providing liquidity at the current settlement opportunity, which we denote by ci. The cost of
providing liquidity at the current instant does not depend on the priority of the payment, but may
differ across banks (and intraday).

Using these parameters banks can assess the instantaneous benefits and costs of any netting pro-
posal. In particular, we can evaluate the unconstrained solution that clears all existing payment
obligations. The same approach can be used to evaluate proposals for clearing subsets of payments.

We start by determining the net benefits of solutions without side payments. That is, we assess
whether banks might accept netting proposals that involve each bank providing the liquidity to
cover its own net debit position.

In this case the computation of net benefits is straightforward. Using the above notation, the net
benefit to bank i of the unconstrained solution would be:∑

j 6=i

∑
k,h

bh × phijk − ci × di. (2)

In principle, we might expect that any bank i will agree to the unconstrained solution so long as (2)
is positive. However, this solution may not provide a fair division of surplus and for these reasons
may be rejected by some participants. Again, the same can be true of any proposal involving
subsets of P . To address the issue of fairness we introduce the notion of side payments.

5.2.2 Proposals with Side Payments

We begin the discussion of side payments with a very simple example in which there are only two
participants in the system, whom we conveniently name bank A and bank B. Suppose bank A owes
bank B $100 and bank B owes bank A $80. If bank A and bank B are able to net these obligations,
then they will only need $20 worth of liquidity. So far, we have assumed that the individual who is
a net debit position (in this case bank A) be the one to provide the required liquidity (in this case
$20). However, is this fair? If bank B did not submit his payment bank A would have to provide
$80 worth of liquidity. And, of course, if bank A did not submit her payment bank B would have
had to provide $100 worth of liquidity. The point is that both participants are made better off due
to the netting so perhaps they both should contribute to the liquidity cost. Or, more pertinently,
bank A might have an expectation that bank B should contribute to the liquidity cost and hence
not accept a proposal by bank B that does not meet this expectation.

We need a fair way of allocating costs associated with obtaining the joint benefit. Economists often
turn to the Shapley value (Shapley 1953) in situations like this. There is a solid justification for
using the Shapley value in cost allocation problems. Roth and Verrecchia (1979) show that, under
reasonable assumptions, it provides the same expected utility the participants would expect to get
from bargaining to an uncertain outcome.

To define the solution suggested by Roth and Verrecchia, we must define the Shapley value of
each participant in any netting proposal, and to do this, we first must introduce the notion of a
characteristic function. The characteristic function v(S) defines the total net benefit that can be
obtained by a group of banks S ⊆ N by settling their combined payment obligations on a net
basis.

Using the above notation,

v(S) =
∑
i∈S

∑
j 6=i

∑
k,h

bh × phijk − ci × di

 . (3)

15



That is, v(S) is computed as the sum of the accrued benefits from payments settled minus the
combined costs of supplying the liquidity required to settle them. Then, following Shapley (1953)
the Shapley value for bank i is given by

wi =
∑
S⊂N

(s− 1)!(n− s)!

n!
[v(S)− v(S − i)] , (4)

where s is the number banks in group S. The Shapley value of bank i is the weighted sum of
the terms [v(S)− v(S − i)], which represent bank i’s marginal contribution to coalition S. It can
therefore be interpreted as a bank’s expected marginal contribution to a coalition of banks that
seek to net payments, based on the assumption that each bank’s sequential arrival to the coalition
is determined randomly.

Each bank i’s share of the cost burden of providing liquidity to settle the payments in P , denote
this by CP

i , is then defined as the gross benefit to bank i of having its own payments in P settled
minus its Shapley value:

CP
i =

∑
j 6=i

∑
k,h

bh × phijk − wi. (5)

A property of the Shapley value is that it assigns the total value of the coalition to its members
(efficiency), so that the sum over all banks of the terms in (4) equals v(N). It follows that the
sum of the cost shares in (5) over all of the banks cover the actual cost of the proposal: ie∑n

i=1 C
P
i =

∑n
i=1 c

idi.

To actually implement these cost shares we propose the use of side payments. That is, each bank
provides liquidity equal to its net debit position and then side payments are made to so that the
final cost share to each bank equals the amount specified by (5). Formally, side payments from
bank i to bank j associated with any solution of the type given by (5) can be defined as

SPij =

{
0 if di > 0

(cjdj − CP
j )

CP
i∑

s:ds=0 CP
s

otherwise.
(6)

As a simple (but not overly trivial) illustration let us consider three banks: A, B and C. Assume
bank A owes bank B $100, bank B owes bank C $80 and bank C owes bank A $70. Bank A has a
net debit position of $30 and both bank B and bank C have net credit positions of $20 and $10,
respectively. V (S) = 0 for all S ⊆ N except S = N . When all three join together there is a netting
cycle that clears $250 worth of payments with $30 in liquidity. Assume that all the payments are
the same priority and that the benefit per dollar to each bank of settling those payments at the
current instant is b = .05. In addition, assume that the instantaneous, per-dollar cost of liquidity
provision is the same for all banks and is equal to c = .1.18 Then the total net benefit that can
be obtained by the three banks by settling their combined payment obligations on a net basis is
equal to v(A,B,C) = .05× $250− .1× $30 = $9.5.

To compute the Shapley value for each bank, we list all the possible orderings of the banks and
then take the average over all orderings of the marginal contributions of each bank to the total net
benefit.19 Since there are three banks, there are six possible orderings as shown in Table 2.

The calculation of the marginal contribution can be understood as follows. Let us take the order
A,B,C as an example. If bank A pays $100, the benefit is $5 and the cost is $10. So bank A
would not choose to clear its payment obligation to bank B. The marginal contribution of bank A
under this ordering is therefore $0. Next, if both bank A and bank B form a coalition, the total
settlement benefit is $9 and the total liquidity cost is $10. So they would choose not to clear their
payment obligations. The marginal contribution of bank B is therefore also $0. Finally, if all three
banks form a coalition, the total benefit of clearing their obligations is $12.5 and the total liquidity
cost is $3. With a net gain of $9.5, all three banks would choose to clear their obligations. The
marginal contribution of bank C is thus $9.5.
18Both b and c should be small relative to magnitudes of liquidity provided. They only reflect the costs and benefits
of settlement now versus an uncertain point in the near future. It is also reasonable to set b smaller than c. This
is consistent with assumptions made in Bech and Garratt (2003, 2012). If it were not, then one might expect the
bank to settle the payment via the standard RTGS stream.

19This is the same computation as (4).
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Table 2: Shapley value equals the average of each bank’s marginal contributions over all of the
different orderings.

Order MC A MC B MC C
A,B,C 0 0 9.5
A,C,B 0 9.5 0
B,A,C 0 0 9.5
B,C,A 9.5 0 0
C,A,B 0 9.5 0
C,B,A 9.5 0 0

Shapley value 3.16667 3.16667 3.16667

In this case, the average marginal contribution is the same for all three banks since each is pivotal
in completing the netting cycle the same number of times. Therefore, the Shapley value is the
same for all three banks.

Next, we compute bank i’s share of the cost burden of providing liquidity to settle the proposed
payments. In this simplified setting: (CP

A , CP
B , CP

C )&(b × pAC − wA, b × pBC − wB , b × pCA −
wC)&(.05×100−3.16667, .05×80−3.16667, .05×70−3.16667)&(1.83333, 0.83333, 0.33333). These
cost shares can be realized by having bank A provide $30 in liquidity at a cost of $3 and having
banks B and C make side payments to bank A of $0.83333 and $0.33333, respectively. One can
argue that this solution is more fair and equitable than bank A providing all the liquidity and
receiving no side payments.

5.3 Stage 3: Execute

Having identified a set of payment obligations for which a net settlement is possible, the node
running the LSM may initiate sub-flows to each participant. Each will be asked to construct a
payment to one or more other participants, on the basis that was agreed to during the planning
stage. Each of these payments will be bundled together into one single atomic transaction. The
transaction will then be sent to each participant to be checked, verified, and signed, before being
finalized through the notary service and stored into each relevant node’s vault.

6 Concluding Remarks

This paper makes a proposal for a decentralized liquidity savings mechanism and it argues that
such a scheme could be welfare improving. The potential for welfare improvement comes, in part,
from the ability of decentralized proposals to utilize private information of the participants. This
occurs because proposers know their own information and can learn about the information of others
through repeated interaction. In essence, we are advocating that a market solution might dominate
the planner’s solution, however, this remains an open question.

One potential obstacle to realizing welfare gains is the degree of complexity involved in determining
netting solutions and proposing cost allocations. There is a lot of information to process. Banks
need to constantly assess their own liquidity situation, forecast their future liquidity needs and
availability, and, ideally, aggregate information from accepted and rejected proposals over time
in order to determine other banks payment characteristics. It is possible that there is too much
complexity for treasury managers or any human to process in real time. There is thus likely to be
a role for Artificial Intelligence or machine learning.

Questions also arise as to how well a decentralized LSM might perform under extreme stress
scenarios. If voluntary proposals break down, then there is heightened potential for gridlock. For
this reason, it might be desirable to have a more automated gridlock resolution mechanism in place,
as a backstop, with proposals initiated by the central operator.
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Appendix: Implementation of the Recursive Graph Scanning
Algorithm Using Corda

The detect, plan and execute logic are all immediate subdirectories of the ubin-corda git repo,
available at https://github.com/project-ubin/ubin-corda.

6.1 SCAN-REQUEST

The SCAN-REQUEST message has the following form:

• Initiator node identity: 32 bytes

• Timestamp: 8 bytes (integer, little endian, UTC time in microseconds since 1970-01-01:00:00:00)

• Scan ID: 32 bytes (SHA2-256 hash over the initiator node identity and timestamp)

• Time to live: 4 bytes (positive integer, little endian, timeout in microseconds)

The time to live (TTL) value is set by the initiating node, and will represent the total amount
of time that the scanning process may take before timing out. As each new node propagates the
SCAN-REQUEST it must reduce this value to ensure that it will time-out any failed requests with
enough time to reply to the node that requested it to scan, and before that node times-out its
request.

Nominally if the initial scan time is set to 6000000 microseconds (6 seconds) then each successive
request should reduce this value by 100000 microseconds (100 ms). This allows for up to 60 scan
propagations.

6.2 SCAN-ACK

The SCAN-ACK message has the following form:

• Scan ID: 32 bytes (the Scan ID from the original SCAN-REQUEST).

6.3 SCAN-RESPONSE

The SCAN-RESPONSE message has the following form:

• Scan ID: 32 bytes (the Scan ID from the original SCAN-REQUEST).

• Status: Integer

– 0: Returning edge list

– 1: Scan collided with a lower scan ID

• Edge count: Integer

• “edge count” edge response entries

• Liquidity offer count: Integer

• “liquidity offer count” liquidity offers

An edge response entry has the following form:

• Node ID 1: 32 bytes (node’s pseudo-anonymous identity)

• Node ID 2: 32 bytes (node’s pseudo-anonymous identity)

• Obligation value: Big decimal (value of the obligation)

A liquidity offer entry has the following form:

• Node ID: 32 bytes (nodes’ pseudo-anonymous identity)
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• Liquidity offer: Big decimal (amount of liquidity being offered by the node to help with net
payments)
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using distributed ledger technology to 
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on six continents. It is the largest 
collaborative consortium of its kind in 
financial markets. 

Is an open source, 
financial grade distributed ledger that 
records, manages and executes 
institutions’ financial agreements in 
perfect synchrony with their peers. 

Corda is the only distributed ledger 
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