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Abstract

We propose a heterogeneous time-varying panel data model with a latent group

structure that allows the coefficients to vary over both individuals and time. We assume

that the coefficients change smoothly over time and form different unobserved groups.

When treated as smooth functions of time, the individual functional coefficients are

heterogeneous across groups but homogeneous within a group. We propose a penalized-

sieve-estimation-based classifier-Lasso (C-Lasso) procedure to identify the individuals’

membership and to estimate the group-specific functional coefficients in a single step.

The classification exhibits the desirable property of uniform consistency. The C-Lasso

estimators and their post-Lasso versions achieve the oracle property so that the group-

specific functional coefficients can be estimated as well as if the individuals’ membership

were known. Several extensions are discussed. Simulations demonstrate excellent finite

sample performance of the approach in both classification and estimation. We apply

our method to study the heterogeneous trending behavior of GDP per capita across 91

countries for the period 1960-2012 and find four latent groups.
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1 Introduction

Longitudinal or panel data sets have become widely available nowadays. Analysis of panel

data sets has various advantages over that of pure cross-sectional or time series data sets,

among which the most important one is perhaps that the panel data provide researchers a

flexible way to model both heterogeneity among cross-sectional units and possible structural

changes over time. For example, influenced by preference changes, technological progress,

institutional transformation, and economic transition, the functional relationships between

economic variables may change over time. For this reason, numerous studies have been

devoted to test for structural changes in panel data models; see Han and Park (1989), Bai

and Lluís Carrion-I-Silvestre (2009), Bai (2010), Kim (2011), Chen and Huang (2014), Li,

Qian, and Su (2016), and Qian and Su (2016), among others. On the other hand, panel

data usually cover individual units sampled from different backgrounds and with different

individual characteristics so that an abiding feature of the data is its heterogeneity, much of

which is simply unobserved. Despite the fact that traditional panel data models frequently

assume homogeneous slopes for the ease of estimation and inference, such an assumption has

been frequently rejected in empirical studies (e.g., Lee, Pesaran, and Smith 1997; Durlauf,

Kourtellos, and Minkin 2001; Juárez and Steel 2010; Su and Chen 2013) and there has been

increasing interest in modeling slope heterogeneity in panel data models.

Although individual heterogeneity and structural changes are likely to coexist, existing

panel data models only address at most one of these two important features. First, the studies

on the panel data models with structural changes can be grouped into two categories, one is to

consider abrupt changes and the other is to model smooth changes. For the former approach,

see, e.g., Bai (2010), Kim (2011), and Qian and Su (2016). The latter approach is mainly

motivated from the time-varying (functional) coefficient model or nonparametric regression

model in the time series framework. For example, Li, Chen, and Gao (2011) generalize Cai,
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Fan, and Yao’s (2000) and Cai’s (2007) time-varying coefficient model to the panel data

framework, and develop a local linear dummy variable approach to estimate the functional

coefficients; Robinson (2012) introduces a nonparametric trending model with cross-sectional

dependence and estimates the trend by kernel method; Chen, Gao, and Li (2012) extend

Robinson’s (2012) nonparametric trending model to a semiparametric partially linear panel

data model. Nevertheless, all parameters of interest, of finite or infinite dimension, in these

models are assumed to be common across all cross-sectional units. Second, econometricians

and statisticians have tried to address the potential slope heterogeneity in panel data models

for a long time, say, through the random coefficient models in econometrics (e.g., Hsiao 2003,

Chapter 6; Hsiao and Pesaran 2008) and the random effects model in statistics (e.g., Diggle,

Heagerty, Liang, and Zeger 2003, Chapter 9). More recently, Su, Shi, and Phillips (2016,

SSP hereafter) propose a novel variant of Lasso to estimate heterogeneous linear panel data

models where the slope parameters are heterogeneous across groups but homogeneous within

a group and the group membership is unknown. But they do not allow the coefficients to

change over time.

In this paper we propose a heterogeneous time-varying panel data model with latent

group structures to capture individual heterogeneity and smooth structural changes over

time simultaneously. To the best of our knowledge, this is the first model to capture these

two important features together. As individual heterogeneity and smooth structural changes

are likely to coexist, our model appears more realistic than existing models and is expected to

have much broader empirical applications. Following Cai (2007), we model the time-varying

coefficients as smooth functions of time which can be estimated by nonparametric sieve or

kernel methods. We could allow each individual unit to have distinct functional coefficients

and estimate them individually but only with a slow convergence rate. Here, we adopt

the latent group structure advocated by SSP and assume that the individuals belong to 

different groups, and the individual functional coefficients are heterogeneous across groups

but homogeneous within a group. The major difficulty lies in the fact that the individuals’

group membership is unknown. Our interest is to infer the individuals’ group membership

and estimate the group-specific functional coefficients at the same time.

In terms of statistical methodology, we propose a penalized-sieve-estimation-based classifier-
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Lasso (C-Lasso) procedure to identify the individuals’ membership and to estimate the group-

specific functional coefficients simultaneously. Since our estimation procedure is an iterative

procedure and computationally involved, we prefer the sieve method to the kernel method

in order to approximate the unknown functional coefficients. In particular, we propose to

use polynomial B-splines given their good approximation properties and stable numerical

properties; see, e.g., Huang, Wu, and Zhou (2004), Huang and Shen (2004), and Xue and

Yang (2006). The penalty term in our penalized sieve estimation (PSE) is constructed in

the spirit of SSP’s C-Lasso procedure which aims to shrink each individual coefficient to

one of the  unknown groups. Our procedure achieves classification and estimation in a

single step. The classification exhibits the desirable property of uniform consistency. The

PSE-based C-Lasso estimators and their post-Lasso versions achieve the oracle property of

Fan and Li (2001) so that the group-specific functional coefficients can be estimated as well

as if the individuals’ membership were known. We also propose a data-driven method to

determine the number of groups. Simulations demonstrate excellent finite-sample perfor-

mance of our approach in both classification and estimation. We apply our method to study

the heterogeneous trending behavior of GDP per capita across 91 countries for the period

1960-2012 and find four latent groups.

It is worth mentioning that recently grouping or homogeneity pursuit has generated a lot

of interest in statistics. The fused Lasso of Tibshirani, Saunders, Rosset, Zhu, and Knight

(2005) can be regarded as an effort of exploring slope homogeneity. Bondell and Reich (2008)

propose a method called OSCAR to simultaneously select variables while grouping them into

predictive clusters. Shen and Huang (2010) develop an algorithm called grouping pursuit

by using the truncated 1 penalty to penalize differences for all pairs of coordinates. Such

an algorithm is further extended by Zhu, Shen, and Pan (2013) to allow for simultaneous

grouping pursuit and feature selection. To explore homogeneity of coefficients, Ke, Fan,

and Wu (2015) propose a new method called clustering algorithm in regression via data-

driven segmentation (CARDS), which is extended to the panel setup by Wang, Phillips,

and Su (2017). Nevertheless, almost all of these papers consider linear data models in the

cross-sectional framework.

The rest of the paper is organized as follows. In Section 2, we introduce our time-
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varying panel data model with latent group structures. In section 3, we consider the PSE

for this model. We examine the asymptotic properties of the estimators in Section 4 and

discuss several possible extensions in Section 5. Section 6 provides Monte Carlo study and

empirical illustration. Section 7 concludes. All proofs of the main results are relegated to

Appendix A. Further technical details and the numerical algorithm are contained on the

online supplementary appendix.

Notation. For an  ×  real matrix , we denote its transpose as 0, its Frobenius

norm as kk(≡ [tr(0)]12) and its Moore-Penrose generalized inverse as +. When 

is symmetric, we use max() and min() to denote its largest and smallest eigenvalues,

respectively. Let kksp(≡ [max(0)]12) denote the spectral norm of  I and 0× denote
the ×  identity matrix and ×  matrix of zeros. 1{·} denotes the indicator function. We
use “p.s.d.’ to abbreviate “positive semidefinite”. The operator

→ denotes convergence in

probability,
→ convergence in distribution, and plim probability limit. We use (  )→∞

to signify that  and  tend to infinity jointly. For a vector-valued function  (·) defined
on [0 1]  we use kk2 to denote its 2-norm: kk2 ≡ {

R 1
0
k ()k2 }12 Given sequences

of positive numbers  and    .  and  &  mean  is bounded,

and  ³  means that both  .  and  &  hold. When  and  are

random,  .  and  &  mean  is stochastically bounded and  ³ 

means that both  and  are stochastically bounded.

2 Time-Varying Panel Structure Model

In this section, we introduce the time-varying panel structure model. The dependent variable

 is generated according to the following time-varying panel structure model:

 =  + 0 +   =  ()  (2.1)

where  = 1 2    = 1 2    is a  × 1 vector of regressors, ’s are unobserved
individual fixed effects that may be correlated with some components of  and are assumed

to be different for different individuals,  has mean zero and variance one and is independent

of the process {} so that  is the idiosyncratic error term with conditional variance
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2 () given  and  =  ( ) is a  × 1 vector of time-varying slope coefficients
exhibiting the following latent group structure:

 =

X
=1

 ( ) · 1 { ∈ }  (2.2)

We assume that k − k2 6= 0 for any  6= , ∪=1 = {1 2     }, and ∩ = ∅ for

any  6= . Let  = # denote the cardinality of the set . For the moment we assume

that the number of groups,  is known and fixed, but each individual’s group membership

is unknown. We will propose an information criterion to determine  in Section 4.4.

Interestingly, our model in (2.1) and (2.2) does not appear as restrictive as the time-

invariant panel data models considered in Lin and Ng (2012), Bonhomme and Manresa

(2015), and SSP. All the latter authors assume that an individual cannot change its group

identity during the whole sampling period. As a matter of fact, this restrictive assumption

also serves as an important motivation for our paper. To see this point, we can go back to

the SSP’s framework. When the regression coefficients do not change over time, the model

is given by

 =  + 0 +   = 1    = 1  

where ’s have some grouped patterns. For simplicity, suppose that there are only two

groups with the first and second half of individuals belonging to Groups 1 and 2, respectively.

In this case, the number of groups (2 here) and the group identity for each individual remain

fixed during the whole time period. To allow for the change of group membership for some

individuals, it is natural to model  as  ( )  In this case, we say that individuals  and

 belong to the same group (say Group 1) if only if  ( ) =  ( ) for  = 1   It is

possible that

 ( ) =  ( ) for all  = 1  0 and  ( ) 6=  ( ) for some  = 0 + 1  

in which case  and  belong to the same group (say Group 1) until time 0 and different

groups after that. In this case, the total number of groups is generally not 2 but 3 at

least, and our PSE method introduced below can identify the emergence of new groups

asymptotically. That is, by enlarging the number of groups (), we effectively allow the

change of group membership for some individuals over the whole time period. In essence, the
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number of groups should not be regarded as given at the beginning of the sampling period.

Instead, it is determined throughout the whole sampling period, which makes our model

very attractive in comparison with existing panel structure models. In short, the change of

group membership has been built into our model through the use of time-varying functional

coefficients.

Our interest is to estimate the time-varying group-specific functional coefficients  (·) 
 = 1 2   and to infer each individual’s group identity. Following the literature on

smooth time-varying regression models (e.g., Cai 2007; Robinson 2012; Chen, Gao, and Li

2012, Zhang, Su, and Phillips 2012), we assume that  (·)’s and  (·)’s are smooth functions
of  See also Robinson (1989, 1991) for the discussion on the use of  rather than  as

an argument of the functions.

Our model (2.1) is fairly general, and it includes a variety of panel data models as special

cases.

1. If  = 1 and  (·) =  (·) for some function  (·) and for each  = 1   then

the model in (2.1) becomes the nonparametric trending panel data model studied by

Robinson (2012):

 =  +  ( ) +  (2.3)

2. If  (·) =  (·) for some function  (·) and for each  = 1   then (2.1) becomes

the time-varying functional coefficient panel data model studied by Li, Chen, and Gao

(2011):

 =  +  ( )
0
 +  (2.4)

3. If () =  and  () =  for any  ∈ (0 1]  = 1   and  = 1   then

model (2.1) becomes the linear time-invariant panel structure model considered by

SSP.

4. If  = 1, then model (2.1) becomes the nonparametric trending panel structure

model:

 =  +  ( ) +  (2.5)

where  =  ( ) satisfies the latent group structure in (2.2). Obviously, this model

generalizes that of Robinson (2012) to allow for heterogeneous trending behavior.
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In sum, our model in (2.1) can be regarded as an extension of that of SSP or that

of Li, Chen, and Gao (2011). It extends the time-invariant model of SSP to allow time-

varying coefficients and the homogeneous functional coefficient model of Li, Chen, and Gao

(2011) to allow heterogeneous time-varying functional coefficients. It captures the smooth

structural changes over time and the individuals’ heterogeneity across groups simultaneously,

and is thus expected to have much broader empirical applications than existing models in

the literature. For example, as our empirical application demonstrates, the logarithm of

the gross domestic product (GDP) per capita across countries exhibit heterogenous grouped

patterns over time. For another example, the beneficial effects of foreign direct investment

(FDI) on economic growth in host countries may exhibit both smooth structural changes

and cross-country heterogeneity (c.f., Cai, Chen, and Fang 2014). In either case, one has to

apply the methodology developed in this paper.

Hereafter, we use the superscript 0 to denote the true values or functions. In particular,

we use 0 (·) and 0 (·) to denote the true functional coefficients and 0
 the true value of



3 Penalized Sieve Estimation

In this section, we introduce the PSE method.

3.1 Sieve Approximation of Time-Varying Coefficients

We propose to estimate () and () by polynomial splines of order . Let 0 = 0 ( )

be a prescribed integer that depends on ( )  Divide [0 1] into (0 + 1) subintervals  =

[ +1) for  = 0 1  0− 1 and 0 = [0 1] where V ≡ {}0=1 is a sequence of equally
spaced points (interior knots),

−(−1) =  = −1 = 0 = 0  1  2    0  1 = 0+1 =  = 0+

 =  for  = 1  0 and  = 1 (0 + 1) denotes the distance between two neighboring

points. LetG = GV denote the space of polynomial splines of order  based on V It consists
of functions  satisfying: (i)  is a polynomial of degree  − 1 on each of the subintervals
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{}0=0  (ii) for  ≥ 2,  is − 2 times continuously differentiable on [0 1]  Let  = 0 + 

We use  () = (−+1 ()  −+2 ()   0 ())
0
to denote a basis system of the space

G. In this paper, we focus on B-splines of order  (or degree  − 1) because of the good
approximation properties of splines and the stable numerical properties of B-splines. In

particular, we will use cubic B-splines in our simulations and application, corresponding to

 = 4 For more discussions on splines or B-splines, we refer the readers directly to Schumaker

(1981), DeVore and Lorentz (1993), de Boor (2001), or the survey paper by Chen (2007).

See Appendix A for some basic properties of B-splines that are used in our analysis.

Given the spline basis system  (), we can approximate the square-integrable functions

() and () by 0() and 0() for some  ×  matrices  = (1  ) and

 = (1  ). Note that for notational simplicity we choose the same basis functions

with the same interior knots and polynomial order to approximate different functions of

interest. Then we can rewrite the model in (2.1) as:

 =  + [ ⊗( )]
0
vec() +  (3.1)

where  =  + 0 − [ ⊗( )]
0
vec(), and  =  if  ∈  for  = 1   and

 = 1  

3.2 Penalized Sieve Estimation of  and 

Given the representation of the model in (3.1), we could estimate  by minimizing the

following least squares objective function:

0 (πγ) =
1



X
=1

X
=1

{ −  −  0vec()}2 

where π = (vec(1)
0 vec()0)0 γ = (1  )

0 and  ≡  ⊗ ( ). Since the

individual effects ’s are not of primary interest, we concentrate them out and obtain the

following concentrated objective function:

1 (π) =
1



X
=1

X
=1

h
̃ − ̃ 0vec()

i2
 (3.2)
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where ̃ = − 1


P

=1  and ̃ = − 1


P

=1 . By minimizing the objective function

in (3.2), we obtain the least squares estimator of π by π̃ = (vec(̃1)
0 vec(̃)0)0 where

vec(̃) =

Ã
1



X
=1

̃̃
0


!+Ã
1



X
=1

̃̃

!
for  = 1   (3.3)

Let ω = (vec(1)
0    vec()

0)0 and ̃ = (̃1     ̃ )
0 To estimate π and ω together,

we consider the following penalized least squares objective function:


()

 (πω) = 1 (π) +




X
=1

̃2−

Y
=1

°°°̃vec( − )
°°° (3.4)

where  = ( ) is a tuning parameter, ̃ = {diag(  ̃ 0̃)}12, and ̃ = { 1
P

=1[̃ −
̃ 0vec(̃)]

2}12 is an estimator of the sample standard deviation of {}=1. Minimizing ob-
jective function in (3.4) yields the PSE-based classifier-Lasso (C-Lasso hereafter) estimators

π̂ =(vec(̂1)
0  vec(̂)0)0 and ω̂ = (vec(̂1)0  vec(̂)

0)0 of π and ω, respectively.

The objective function in (3.4) is in the same spirit as that in SSP if we replace ̃ and ̃

by one and an identity matrix, respectively. We apply ̃ and ̃ to ensure the scale-invariant

property of our objective function:  (πω) remains unchanged when one changes the

scales of either ̃ or ̃ by changing those of  and  Note that the objective function

in (3.4) is not convex in π or ω In the supplementary Appendix C we provide an iterative

algorithm to obtain the estimators π̂ and ω̂ Given these estimators, we can obtain the

estimators of ()’s and ()’s as follows:

̂() = ̂0() and ̂() = ̂0() for  = 1   and  = 1  (3.5)

We will study the asymptotic properties of these estimators in the next section.

Remark 1. Alternatively, one can extend the K-means algorithm to our framework. The

latter approach is adopted by Ng and Lin (2012) in linear panel data models with additive

fixed effects, by Bonhomme and Manresa (2015) for linear models with grouped additive

effects, and by Ando and Bai (2016) in linear panel data models with grouped interactive

fixed effects. There are three major differences between the C-Lasso and K-means methods.

First, the C-Lasso estimation needs to specify the number of groups () and the tuning

parameter () while the K-means estimation requires the specification of  only. Despite
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this, it is hard to tell which method should be preferred as the additional parameter  may

offer some degree of freedom in finite samples. Secondly, the K-means algorithm forces all

individuals to be classified into one of the  groups while the C-Lasso procedure may leave

some individuals unclassified for small values of . For large values of  the C-Lasso can also

classify all individuals to one of the  groups and produce similar results as the K-means

algorithm. But it is hard to tell whether we should force all individuals to be classified.

In fact, when  is not large, forcing all individuals to be classified via either the K-means

algorithm or the use of a large value of  for the C-Lasso tends to yield a large proportion

of misclassification. In contrast, when  is not large enough, the C-Lasso allows for some

individuals to be left unclassified, which could yield better finite sample performance for the

estimators of the group-specific functional coefficients especially when  is not large. For

large  the choice of  does not matter very much and the two methods generally produce

highly consistent classification results. Third, computationally the C-Lasso is much less

demanding than the K-means algorithm. This is because the K-means estimation is NP-

hard and the C-Lasso problem, despite its nonconvexity, can be transformed into a sequence

of convex problems (see the supplementary Appendix C).

We will show that C-Lasso estimators of the group-specific functional coefficients and

their post-Lasso versions are oracally efficient — they are asymptotically equivalent to the

corresponding infeasible estimators of the group-specific functional coefficients that are ob-

tained by knowing all individual group identities. Following the theoretical studies in Bon-

homme and Manresa (2015) and Ando and Bai (2016), we conjecture that the K-means

estimators also exhibit the oracle property. If this is the case, the two types of estimators

for the group-specific functional coefficients are asymptotically equivalent.

4 Asymptotic Theory

In this section we first establish the preliminary convergence rates for ̂() and ̂() and

then study the consistency of the classification. We also establish the asymptotic distribu-

tions of ̂()’s and their post-Lasso versions and study the determination of .
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4.1 Preliminary Rates of Convergence for Coefficient Estimates

Let min and max denote min1≤≤ min1≤≤ and max1≤≤ max1≤≤  respectively. Let

() [0 1] denote the space of functions that are th order continuously differentiable on

[0 1], where  ≥ 1 Let (2)
 =  if  does not contain 1 and  = (1 

(2)0
 )

0 otherwise.

To study the consistency of ̂() and ̂(), we make the following assumptions.

Assumption A1. (i) Let 
(2)
 = (

(2)
1  

(2)

 )
0 and  = (1   )

0
 {((2)

  )} are
independently distributed over .

(ii) For each  = 1   the process {((2)
  )  = 1 2 } is strong mixing with mixing

coefficient  () satisfying  () ≤ 
 for some  ∞ and  ∈ [0 1)

(iii) max kk ≤ ̄ ∞ and max || ≤ ̄ ∞ for some   6

(iv) There exist positive constants  and ̄ such that  ≤ min min(Var ((2)
 )) ≤

max max ( (
0
)) ≤ ̄ whenever 6= 1There exists   0 such that lim→∞min ̄2

≥  where ̄
2
 ≡ −1

P

=1 (
2
) 

(v) For  = 1 2  , 0 ∈ () [0 1] for some 2 ≤  ≤ + 1 There exists   0 such

that min1≤ 6=≤
°°0 − 0

°°
2
≥ 

(vi)  →  ∈ (0 1) for each  = 1  as  →∞.

Assumption A2. (i) As (  )→∞  →∞ 2 → 0  (+1)2 → 0 and2 1−2 (ln)02

→ 0 for some 0  1.

(ii) As ( ) → ∞  ln → ∞ +(−1)2 → ∞ and 
√
 (−1)2(ln )3 → ∞

and  (ln )
 → 0 for some   0

Assumptions A1(i)-(ii) require that {(2)
  } be independently distributed over individ-

uals and weakly dependent over time. We assume that {((2)
  )  = 1 2 } is a strong

mixing process with a geometric decay rate, which can be satisfied by many well-known

linear processes such as ARMA processes and a variety of nonlinear processes. Note that we

allow serial correlation in {} and lagged dependent variables in (2)
 When 

(2)
 contains

lagged dependent variables (e.g., −1), the strong mixing condition imposes some restric-

tions on the fixed effects  and the error terms  In this case, we can assume that ’s are

nonrandom and ’s have Lebesgue-integrable characteristic functions (Andrews 1984). If

’s are stochastic, we can follow Hahn and Kuersteiner (2011) and Su and Chen (2013) and
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adopt the concept of conditional strong mixing where the mixing coefficients are defined by

conditioning on the fixed effects. A1(iii) imposes moment conditions for  and  A1(iv)

imposes the identification condition that ensures the large dimensional matrix 


P

=1 ̃̃
0


(see (3.3)) is asymptotically nonsingular and the preliminary estimator ̃2 of ̄
2
 is uniformly

bounded away from zero with probability approaching one (w.p.a.1); see Lemmas A.3 and

A.5 in Appendix A. Note that  may contain 1 or not and we allow = 1. When = 1

the first part of Assumption A1(iv) is not relevant. Assumption A1(vi) is also assumed in

SSP and it implies that each group has an asymptotically non-negligible number of members

as  →∞

The first part of Assumption A1(v) imposes smooth conditions on the group-specific

functional coefficients 0 (and thus the individual functional coefficients 
0
 ). By Theorem

12.6 in de Boor (2001, p.149), there exists 0 ∈ R such that

sup
∈[01]

°°0 ()− 00 ()
°° =  () = 

¡
−

¢
for  = 1  (4.1)

Similarly, there exists 0 ∈ R such that

sup
∈[01]

°°0 ()− 00  ()
°° =  () = 

¡
−

¢
for  = 1   (4.2)

and 0 = 0 if  ∈ 0
 The second part of A1(v) implies conditions for the identification of

the group-specific functional coefficients. By the triangle inequality, (A.1) in Appendix A,

and (4.1), we have

 ≤
°°0 − 0

°°
2
≤
°°°¡0 − 0

¢0

°°°
2
+
°°0 − 00 

°°
2
+
°°0 − 00

°°
2

=

½
tr

µ¡
0 − 0

¢0 Z
 () ()

0

¡
0 − 0

¢¶¾12
+

¡
−

¢
³ −12

°°0 − 0
°° for any  6= 

That is, °°0 − 0
°° ³ 12 for any  6=  (4.3)

which will be used in the proof of Theorem 4.1.

Assumptions A2 imposes conditions on    and  It requires that  shrinks to zero

at a suitable rate such that the penalty term can effectively distinguish individuals in one
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group from those in the other groups asymptotically. The range in which  converges to zero

mainly depends on  and  but not  The intuition is clear:  controls the bias from the

sieve approximation and the effective number of parameters in the sieve estimation;  , in

conjunction with  controls the speed at which one can estimate the individual functional

coefficients  (·)’s and the group-specific functional coefficients  (·)’s. Clearly, A2 allows
the choice of a wide range of values of  and  provided the corresponding functions are

sufficiently smooth and  is large enough.

The following theorem studies the preliminary convergence rates of the estimators of 0

and 0

Theorem 4.1 Suppose Assumptions A1 and A2(i) hold. Then

(i) k̂ − 0 k =  (
−+12 +−12 +  (+1)2) for  = 1 2   ,

(ii) −1P

=1 k̂ − 0k2 =  (
−2+1 +2−1),

(iii )
°°̂() − 0

°° =  (
−+12 +−12) for  = 1 2  ,

where (̂(1)  ̂()) is a suitable permutation of (̂1  ̂)

Theorems 4.1(i) and (ii) establish the pointwise and mean-square convergence of ̂,

respectively. The first two terms, namely, −+12 and −12 in part (i) reflect the con-

tributions of the usual asymptotic bias and variance terms of sieve estimation, respectively,

and the last term  (+1)2 signifies the effect of the penalty term in the C-Lasso proce-

dure. For small enough  i.e., if  . max(−12 (1−)2 −−2) we obtain the usual

convergence rate for the coefficient estimates when B-splines are used. Interestingly, the

mean-square convergence of ̂ and the pointwise convergence of ̂() do not depend on 

which is analogous to the results of SSP in the parametric setting. See the proof in Appendix

A for details. In particular, we show in the proof of Theorem 4.1(iii) that the convergence

rate of ̂() depends on the mean-square but not the pointwise convergence rate of ̂ Note

that Assumption A2(i) ensures that k̂ − 0 k =  (1) and
°°̂() − 0

°° =  (1) 

For notational simplicity, hereafter we will write ̂ for ̂() and ̂ (·) for ̂() (·) where
̂() (·) = ̂0() (·)  Then we can define the estimated groups:

̂ = { ∈ {1 2  } : ̂ = ̂} for  = 1  (4.4)

The following corollary establishes the pointwise and 2 convergence rates of ̂(·) and ̂ (·) 
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Corollary 4.2 Suppose Assumptions A1 and A2(i) hold. Then

(i) sup∈[01]
°°°̂()− 0 ()

°°° =  (
−+12+−12+ (+1)2) and

R 1
0

°°°̂()− 0 ()
°°°2 

=  (
−2 +−1 + 2) for  = 1 2   ;

(ii) sup∈[01] k̂ ()− 0 ()k =  (
−+12 + −12) and

R 1
0
k̂ ()− 0 ()k2  =

 (
−2 + −1) for  = 1 2  .

Similar results hold when we replace the integration by the sample mean. That is,

1


P

=1 ||̂ ( )−0 ( ) ||2 =  (
−2+−1+2) for  = 1 2   and 1



P

=1 ||̂

( )− 0 ( ) ||2 =  (
−2 + −1) for  = 1 2 .

4.2 Classification Consistency

We define the following sequences of events:

̂ =
n
 ∈ ̂| ∈ 0



o
and ̂ =

n
 ∈ 0

| ∈ ̂

o


where  = 1 2   and  = 1 2 . Let ̂ = ∪∈0

̂ and ̂ = ∪∈̂

̂.

The events ̂ and ̂ mimic Type I and Type II errors in statistical tests: ̂

denotes the error event of not classifying an individual in the th group into the -th group;

̂ denotes the error event of classifying an individual that does not belong to the -

th group into the -th group. Following SSP’s definition, we say that the classification is

uniformly consistent if  (∪=1̂ ) → 0 and  (∪=1̂ ) → 0 as ( ) → 0 i.e., the

probability of committing either type of errors shrinks to zero asymptotically.

The following theorem establishes the classification consistency of our method.

Theorem 4.3 Suppose Assumptions A1 and A2 hold. Then

(i)  (∪=1̂ ) ≤
P

=1  (̂ )→ 0 as (  )→∞;
(ii)  (∪=1̂ ) ≤

P

=1  (̂ )→ 0 as ( )→∞.

Theorem 4.3 implies that all individuals within a group, say 0
 can be simultaneously

correctly classified into the same group (denoted ̂) w.p.a.1. Conversely, all individuals

that are classified into the same group, say ̂ simultaneously correctly belong to the same

group (0
) w.p.a.1.
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Remark 2. Let ̂0 denote the group of individuals in {1 2  } that are not classified
into any of the  groups, i.e., ̂0 = {1 2  } \(∪=1̂). Define the events ̂ =

{ ∈ ̂0} Theorem 4.3(i) implies that 
³
∪1≤≤̂

´
≤P

=1  (̂ )→ 0 That is, all

individuals can be classified into one of the  groups w.p.a.1. Nevertheless, when  is not

large, it is possible for a small number of individuals to be left unclassified if we stick with

the classification rule in (4.4). To ensure that all individuals are classified into one of the 

groups, say, if one is sure that there are no isolated individuals as in our simulations, one

can modify the classifier a little bit. In particular, for any  ∈ ̂0 we can classify it to ̂ for

some  = 1   if

k̂ − ̂k = min {k̂ − ̂1k   k̂ − ̂k} 
Since the event ∪1≤≤̂ occurs with probability approaching zero, we can follow SSP

to ignore it in subsequent asymptotic analysis and restrict our attention to the classification

rule in (4.4) to avoid confusion. That is, ̂ = { ∈ {1  } : ̂ = ̂} for  = 1 

4.3 Post-Lasso Estimator and Oracle Property

Given the estimated groups {̂  = 1 } defined in (4.4), we can readily pool the
observations within each estimated group to obtain the post-Lasso sieve estimator of the

corresponding group-specific functional coefficients by:

̂̂
() = ̂0

̂
 ()  (4.5)

where for  = 1 

vec
¡
̂̂

¢
=

⎛⎝X
∈̂

X
=1

̃̃
0


⎞⎠+X
∈̂

X
=1

̃̃ (4.6)

When the group identity for each individual is known, we obtain the oracle estimators:

̂0

() = ̂00


 ()  where vec(̂0


) =

³P
∈0



P

=1 ̃̃
0


´+P
∈0



P

=1 ̃̃

Let  = (1   )
0
Then Var(|) = Σ

12
 Σ

12
 whereΣ =diag(

2
 (1)   

2
 ( ))

and  =  (
0
)  Let 

()
 =  () We add the following assumption:

Assumption A3. (i) For  = 1   there exist two positive constants  and ̄ such

that 0  ≤ lim( )→∞min∈0

min() ≤ lim( )→∞max∈0


max() ≤ ̄  for some

nondecreasing sequence  satisfying 
−1 → 0
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(ii) max
°°°()



°°° ≤ ̄
()
 for some constant ̄

()
 ∞ and   6

(iii) There exist two positive constants 
()
 and ̄

()
 such that 

()
 ≤ min min(Var((2)

 ))

≤ max max((()
 

()0
 )) ≤ ̄

()
  where

(2)
 = 

()
 if

()
 does not contain nonrandom

element and 
(2)
 is a collection of the random elements of 

()
 otherwise.

(iv) As ( )→∞ −2 → 0.

Assumption A3(i) imposes conditions on the variance-covariance matrix of  in order

to verify the Lindeberg condition for a central limit theorem to hold. For its minimum

eigenvalue, we only need it to be bounded away from zero by a positive constant. Such a

condition can be easily satisfied. For example, if we follow Huang, Wu, and Zhou (2004)

and assume that  can be decomposed into two components:  = 
(1)
 + 

(2)
  where 

(1)
 is

an arbitrary mean zero process and 
(2)
 is an independent process of “measurement errors”

that are independent over time and have mean zero and constant positive variance 2 then

the lower bound for the minimum eigenvalue is given by 2 For the maximum eigenvalue,

we allow it to be constant or divergent as (  )→∞ If there is no serial correlation, then

 is diagonal and the condition requires that the maximum value of the diagonal elements

of  to be of order  ( )  where  =  (). For any× matrix  = {}  note that
kk2sp ≤ kk1 kk∞  where kk1 = max1≤≤

P

=1 || and kk∞ = max1≤≤
P

=1 || 
Since  is symmetric and p.s.d., we have kk1 = kk∞ and max () = kksp ≤ kk1  So
our maximum eigenvalue condition will be satisfied if the column sums of  are bounded

by the order  =  (). This condition is automatically satisfied under our strong mixing

and moment conditions on {} if  has the same second moment across  Assumption
A3(i) says that the central limit theorem can hold without the strong mixing conditions or

identical moments across individuals. Assumptions A3(ii) and (iii) parallel the first part of

A1(iii) and A1(iv), respectively. If  () = 0  0 a.s., A3(ii) and (iii) would become

redundant. A3(iv) ensures that the asymptotic biases of the estimators ̂ () and ̂̂
()

do not contribute to their limit distributions.

The following theorem gives the oracle property of the PSE-based C-Lasso estimators

and their post-Lasso versions.

Theorem 4.4 Suppose Assumptions A1-A3 hold. Then, for  = 1 2 , we have

(i)
p
S

−12
 [̂ ()−  ()]

→  (0 I) 

17



(ii)
p
S

−12


£
̂̂

()−  ()
¤ →  (0 I) 

where S−12 is the symmetric square root of S−1  S = (I ⊗ ())
0
(Q̄̃̃)

−1{ 


P
∈0



̃ 0Σ
12
 Σ

12
 ̃}(Q̄̃̃)

−1 (I ⊗ ())  and Q̄̃̃ =
1



P
∈0



P

=1 ̃̃
0


Theorem 4.4 indicates that both the C-Lasso estimator ̂ () and the post-Lasso version

̂̂
() are asymptotically equivalent to the infeasible estimator ̂0


(). The latter can

be obtained only if one knows all individuals’ group identity. In this sense, our C-Lasso

estimators and their post-Lasso versions have the oracle efficiency. Despite the asymptotic

equivalence between the C-Lasso and post-Lasso estimators, it is well known that the post-

Lasso estimators typically outperform the C-Lasso estimators and are thus recommended for

practical use.

Remark 3. As a referee points out, it does not appear transparent to see the relative

rates on  and  to obtain all the asymptotic properties so far because they are related to

Assumptions A2(i)-(ii) and A3(iv). To gain some insight, we focus on the case where all func-

tions of interest are sufficiently smooth so that the approximation biases are asymptotically

negligible and all terms associated with  in Assumptions A2(ii) and A3(iv) do not matter.

In this case, the single most important requirement on ( ) is given by the last part of

Assumption A2(i) because other conditions are essentially imposed on  and  This part of

the assumption holds if  or  or both are sufficiently large. If {((2)
  )} is sub-Gaussian

as in Bonhomme and Manresa (2015),  =∞ and  can grow at any polynomial rate faster

than  The first two conditions in Assumption A2(i) require that  diverge to infinity at

a rate slower than
√
 (i.e., 1¿  ¿  12) and all the other conditions in Assumption A2

would be satisfied if

max
³
−−

−1
2  −12−

−1
2 (ln )3

´
¿ ¿ min

³
−

+1
2  −1 (ln )

´


It is easy to see that such  exists under that condition that 1¿  ¿  12 and  ≥ 2When
 and  pass to infinity at the same rate (as is commonly assumed in large dimensional macro

panels), our choice of 0 (or  ≡ 0 + ) and  in the following simulation and application

sections would meet the above conditions and Assumption A3(iv) provided   6 and   3

Remark 4. For statistical inference, one needs to estimate S consistently. Suppose that

one can estimate Θ ≡ 


P
∈̂

̃ 0Σ
12
 Σ

12
 ̃ by Θ̃ such that ||Θ̃ − Θ||sp =  (1) 
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Define

S̃ = (I ⊗ ())
0
(Q̃̃̃)

−1Θ̃(Q̃̃̃)
−1 (I ⊗ ()) 

where Q̃̃̃ =
1

̂

P
∈̂

P

=1 ̃̃
0
 and ̂ = #̂ Following SSP we can readily show

that ̂
→ 1 ||Q̃̃̃−Q̄̃̃||sp =  (1)  and S̃−S =  (1)  Under various primitive

conditions, one can propose the corresponding consistent estimator Θ̃; see, e.g., Su and Jin

(2012). The procedure is standard and thus omitted.

4.4 Determination of the Number of Groups

In practice, the exact number of groups,  is typically unknown. Here we assume that 

is bounded from above by a finite integer max and denote the true value of  as 0 We

propose a BIC-type information criterion (IC) to determine the data-driven choice of 

Byminimizing the objective function in (3.4), we obtain the C-Lasso estimates {̂()}=1
and {̂()}=1 of {}=1 and {}=1 for  = 1 max where we make the depen-

dence of the estimators on () explicit. When  = 1 one effectively works on the

non-penalized sieve estimation. As before, we can classify individual  into group ̂()

if and only if ̂() = ̂(), i.e.,

̂() = { ∈ {1 2  } : ̂() = ̂()} for  = 1   (4.7)

Denote ̂() = {̂1()  ̂()}. Conditional on the classification, we could
define the post-Lasso estimate of  as follows:

vec
³
̂̂()

´
=

⎛⎝ X
∈̂()

X
=1

̃̃
0


⎞⎠+ X
∈̂()

X
=1

̃̃ (4.8)

In addition, define ̂2
̂()

= 1


P

=1

P
∈̂()

P

=1

h
̃ − ̃ 0vec(̂̂())

i2
. Then, we

choose ̂ to minimize the following information criterion:

() = ln
h
̂2
̂()

i
+  (4.9)

where  is a tuning parameter.

Let() = (1  ) be any-partition of the set of individual indices {1 2  } 
Let G denote the collection of such partitions. Let ̂2() =

1


P

=1

P
∈

P

=1[̃ −
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̃ 0vec
¡
̂

¢
]2 where vec

¡
̂

¢
=
³P

∈

P

=1 ̃̃
0


´+P
∈

P

=1 ̃̃. The fol-

lowing assumptions are useful in the asymptotic development.

Assumption A4. As (  ) → ∞ min1≤0
inf()∈G ̂2()

→ 2  20 where 20 =

plim( )→∞ 1


P

=1

P

=1 
2


Assumption A5. As (  )→∞  → 0 and  →∞.

Assumption A4 requires that all under-fitted models yield asymptotic mean square errors

that are larger than 20, which is delivered by the true model. A5 imposes usual conditions

for the consistency of model selection, namely, the penalty coefficient  cannot shrink to

zero either too fast or too slowly.

The following theorem justifies the use of (4.9) as a criterion to select 

Theorem 4.5 Suppose that Assumptions A1-A5 hold. Then  (̂ = 0)→ 1 as (  )→
∞

Theorem 4.5 implies that the IC could determine the number of groups w.p.a.1. Of

course, to implement it, one still needs to choose the tuning parameter   Motivated by

BIC, we will set  = 0 ln( )( ) in our simulations and application.

5 Extensions

In this section, we discuss several possible extensions of the time-varying panel structure

model studied above.

5.1 Mixed Time-Varying Panel Structure Models

Consider the time-varying panel data models where some of the functional coefficients in

’s are common across all individuals whereas the others are group-specific. Write  =

(
(1)0
  

(2)0
 )0 where (1) = 

(1)
 ( ) is a 1 × 1 vector of heterogenous functional coefficients

that exhibits the following latent group structure


(1)
 =

X
=1

 ( ) · 1 { ∈ } 
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and 
(2)
 is (− 1) × 1 vector of homogenous functional coefficients. Partition  con-

formably as  = (
(1)0
  

(2)0
 )

0 The model becomes

 =  + 
(1)0
 

(1)
 + 

(2)0
 

(2)
 +  (5.1)

where  and  are defined as before. Our PSE method can be extended to this model

straightforwardly. Given the spline basis system (), we can approximate 
(1)
 () 

(2)()

and  () by 
(1)0
 () (2)

0
() and 0 ()  respectively. Letπ

(1) = (vec(
(1)
1 )

0 vec((1) )
0)0

π(2) =vec((2)) and ω = (vec(1)
0    vec()

0)0 Now we can estimate π(1) π(2) and ω by

minimizing the following objective function:


()



¡
π(1)π(2)ω

¢
= 1 (π

(1)π(2)) +




X
=1

̃2−

Y
=1

°°°̃vec((1) − )
°°° (5.2)

where

1 (π
(1)π(2)) =

1



X
=1

X
=1

n
̃ − ̃

(1)0
 vec(

(1)
 )− ̃

(2)0
 vec(

(2))
o2



̃ =  − 1


P

=1  ̃
()
 = 

()
 − 1



P

=1 
()
  

()
 = 

()
 ⊗  ( ) for  = 1 2

̃ = {diag( 

̃ 0̃)}12, ̃ = (̃1  ̃ )

0 ̃ = (̃
(1)0
  ̃

(2)0
 )

0 and ̃ = { 1


P

=1[̃ −
̃ 0vec(̃)]

2}12  and ̃ = (̃
(1)
  ̃(2)) is a preliminary estimate of  = (

(1)
  (2)) obtained

as in Section 3.2.

Let π̂(1)=(vec(̂
(1)
1 )

0  vec(̂(1) )
0)0 π̂(2)=vec(̂(2)) and ω̂ = (vec(̂1)

0  vec(̂)
0)0 of

π(1) π(2) and ω, respectively. We obtain the estimators of 
(1)
 ()’s, 

(2) ()  and ()’s

as follows:

̂
(1)

 () = ̂
(1)0
 () ̂

(2)
() = ̂(2)0() and ̂() = ̂0(), (5.3)

where  = 1   and  = 1  Following the analyses in Sections 4.1-4.3, we can estab-

lish the asymptotic properties of the above estimators. In particular, we can establish the

uniform consistency of the classification based on the PSE method and the oracle properties

of ̂() and ̂
(2)
() and their post-Lasso versions. We omit the details due to the space

constraint.
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5.2 Unbalanced Panels

To broaden the applications of our model, we now consider an extension to unbalanced

panels. Like Atak, Linton, and Xiao (2011) and for notational simplicity, we consider an

unbalanced panel in which consecutive observations on individual units are available, but

the number of time periods available may vary from unit to unit. The model becomes

 =  + 0 +   = 1    =    (5.4)

where ’s have the latent group pattern in (2.2), and the other notations are defined as in

Section 2. Let   = − +1 and  =
P

=1   Note that   and  denote the total number

of observations for individual  and the whole sample, respectively. Now we can estimate π

and ω by minimizing the following objective function:


()

 (π ω) = 1 (π) +




X
=1

̃2−

Y
=1

°°°̃vec( − )
°°° (5.5)

where

1(π) =
1



X
=1

1

 

X
=

n
̃ − ̃ 0vec()

o2


̃ = − 1
 

P
=

 ̃ = − 1
 

P
=

  = ⊗ ( )  ̃ = {diag(   ̃ 0̃)}12,
̃ = (̃  ̃)

0 ̃ = { 1 
P

=
[̃ − ̃ 0vec(̃)]

2}12 and ̃ is a preliminary estimate

of  obtained as in Section 3.2. Let π̂ =(vec(̂1)
0  vec(̂)0)0 and ω̂ = (vec(̂1)

0 

vec(̂)
0)0 of π and ω, respectively. The formulae for the estimators ̂() and ̂() of

() and () are the same as those given in (3.5). Define the estimated group ̂ as in

Section 4.1. The post-Lasso estimator of () becomes

̂̂
() = ̂0

̂
 ()  (5.6)

where for  = 1 

vec
¡
̂̂

¢
=

⎛⎝X
∈̂

1

 

X
=

̃̃
0


⎞⎠+X
∈̂

1

 

X
=

̃̃ (5.7)

Let  ≡ min1≤≤   To study the asymptotic properties of these estimators, we assume

that  → ∞ and the conditions in Assumptions A1-A3 continue to hold with  replaced
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by  . We need → ∞ for the pointwise and mean square convergence results in Theorem

4.1, which are needed for the proofs of the uniform classification consistency and the oracle

properties of ̂() and its post-Lasso version. With some change in notation, the results

in Theorem 4.1, Corollary 4.2, and Theorems 4.3-4.4 continue to hold. In particular, the

results in Theorem 4.4 become:

(i)
p
S

−12
 [̂ ()−  ()]

→  (0 I) 

(ii)
p
S

−12


£
̂̂

()−  ()
¤ →  (0 I) 

where S = (I ⊗ ())
0
(Q̄̃̃)

−1{ 


P
∈0





2
̃ 0Σ

12
 Σ

12
 ̃}(Q̄̃̃)

−1 (I ⊗ ())  and

Q̄̃̃ =
1


P
∈0



1
 

P
=

̃̃
0
 for  = 1 

5.3 Panels with Cross-Sectional Dependence

We can also allow for cross-sectional dependence in our model. A popular way to introduce

the cross-sectional dependence is via the use of the interactive fixed effects:

 = 0 + 0 +  (5.8)

where  and  denote an × 1 vector of factor loadings and common factors, respectively,
both of which can be correlated with {}  ’s have the latent group pattern in (2.2),
and the other notations are defined as in Sections 2. When  = 1  = 1 the model

in (5.8) becomes the model in (2.1) with additive fixed effects. Let  = (1   )
0 and

Λ= (1  )
0
 Following Bai and Ng (2002), Moon and Weidner (2015), and Su and Ju

(2017), we impose the identification restrictions: −1 0 = I Γ0Γ =diagonal with

descending diagonal elements. Let  ≡ (1      )0 and  ≡ (1      )
0
where recall

that  =  ⊗ ( )  We propose to estimate {}  {}   and Γ by minimizing the

following penalized objective function


()

0 (πωΓ) = 0 (π Γ) +




X
=1

Y
=1

kvec( − )k (5.9)

where 0 (π Γ) =
1



P

=1 k − vec()− k2  and  and Γ satisfy the above

identification restrictions. Following Moon and Weidner (2015) and Su and Ju (2017), we
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can concentrate Γ and  out in turn and obtain the profile objective function


()

 (πω) = 1 (π) +




X
=1

Y
=1

kvec( − )k  (5.10)

where 1 (π) =
1


P

=+1 

h
1


P

=1 ( − vec()) ( − vec())
0
i
and  () de-

notes the th largest eigenvalue of  by counting multiple eigenvalues multiple times.

Minimizing the criterion function in (5.10) produces the C-Lasso estimators π̂ =(vec(̂1)
0

vec(̂)
0)0 and ω̂ = (vec(̂1)

0  vec(̂)
0)0 of π and ω. The estimators ̂ and Γ̂ of 

and Γ are obtained as the solutions to the following eigenvalue problem:"
1



X
=1

( − vec(̂)) ( − vec(̂))
0
#
̂ = ̂ and Γ̂ = (̂1  ̂)

0 (5.11)

where  is a diagonal matrix consisting of the  largest eigenvalues of the above matrix

in the square bracket, arranged in descending order, and ̂ = −1̂ 0( − vec(̂)). The

formulae for the estimators ̂() and ̂() of () and () are the same as those given

in (3.5). Following the technical analyses in Su and Ju (2017) and those in Sections 4.1-4.3,

we can establish the asymptotic properties of the above estimators. In particular, we can

establish the uniform consistency of the classification and the oracle properties of ̂() and

its post-Lasso version. For brevity, we omit the details.

6 Monte Carlo Study and Empirical Illustration

6.1 Monte Carlo Study

In this section, we evaluate the finite sample performance of the information criterion in

determining the number of groups and the C-Lasso and post-Lasso estimates.

6.1.1 Data Generating Processes

We consider three data generation processes (DGPs). In all DGPs, the fixed effect  and the

idiosyncratic error  follow the standard normal distribution and are mutually independent

across both  and . The observations in each DGP are drawn from three groups with
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1 : 2 : 3 = 03 : 03 : 04. We consider four combinations of the sample sizes with

 = 50 100 and  = 40 80.

DGP 1 (Trending panel structure model)  is generated via  = +0 ( )+ where

0 () =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
01() = 6 ( 05 01) if  ∈ 0

1

02() = 6 [2 − 62 + 43 +  (; 07 005)] if  ∈ 0
2

03() = 6 [4 − 82 + 43 +  (; 06 005)] if  ∈ 0
3

 (6.1)

 (·; ) = {1 + exp[−(·− )]}−1 denotes the cumulative distribution function of the
logistic distribution with location and scale parameters given by  and  respectively.

DGP 2 (Time-varying panel structure model with an exogenous regressor)  is generated

via  =  + 01 ( ) + 02 ( ) +  where {} is an IID (0 1) sequence,

01 () =
1
2
0 () with 0 () given in (6.1),

02 () =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
012() = 3 [2 − 42 + 23 +  (; 06 01)] if  ∈ 0

1

022() = 3 [ − 32 + 23 +  (; 07 004)] if  ∈ 0
2

032() = 3 [05 − 052 +  (; 04 007)] if  ∈ 0
3

 (6.2)

and  is defined as above. Here, the first element in the group-specific parameter vector

0 (·) is given by 01 (·) = 1
2
0 (·) with 0 (·) defined in (6.1). The left and right panels of

Figure 1 depict the group-specific time trends 01(·) and 02(·) for  = 1 2 3 respectively.
DGP 3 (Time-varying dynamic panel structure model)  is generated via  =  +

03 ( )−1 +  where

03 () =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
013() =

3
2
[−05 + 2 − 52 + 23 +  (; 06 003)] if  ∈ 0

1

023() =
3
2
[−05 +  − 32 + 23 +  (; 02 004)] if  ∈ 0

2

033() =
3
2
[−05 + 05 − 052 +  (; 08 007)] if  ∈ 0

3

 (6.3)

and  is defined as above.

In addition, we also check the performance of our method when the error terms exhibit

weak cross-sectional dependence and when the number of groups is large. The simulation

results are quite similar to those reported below. Due to the space limit, we do not reports

these results in this paper.
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Figure 1: The plots of the group-specific functional coefficients in DGP 2 (Left panel: solid,

dotted and dashed lines for 011 (·)  021 (·)  and 031 (·)  respectively in DGP 2; Right panel:
solid, dotted and dashed lines for 012 (·)  022 (·)  and 032 (·)  respectively in DGP 2)

6.1.2 Determination of the Number of Groups

In this subsection, we assess the performance of (4.9) in determining the number of groups.

We set 0 = b( )16c the number of knots in the cubic B-spline approximation, where
bc denotes the integer part of . We set  =  ( )

−(2+3)24
and consider various values

of  to examine the sensitivity of the IC’s performance to the choice of  We consider

 = 1 2 4 but only report the results for  = 1 here to save space. The results for  = 2

and 4 are quite similar and available upon request from the authors.

For each DGP, we simulate 200 data sets for each of the four combinations of  and

 . We evaluate the IC for  = 1 2 max with max = 6 and select the optimal number

of groups by minimizing the IC in (4.9). Table 1 reports the empirical probability that a

specific number of groups is selected based on 200 replications. As shown in the table, our

IC works fairly well.

6.1.3 Classification and Estimation

As shown in the previous subsection, the IC in Section 4.4 works fairly well in finite sam-

ples. In this subsection, we assume that the number of groups is known and focus on the

classification and estimation.

We set the tuning parameter  as above. We set the initial values of ’s to be ̃’s
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Table 1: The performance of information criterion in determining the number of groups

DGP    = 1  = 2  = 3  = 4  = 5  = 6
1 50 40 0.000 0.015 0.985 0.000 0.000 0.000

50 80 0.000 0.000 0.985 0.015 0.000 0.000

100 40 0.000 0.000 0.995 0.005 0.000 0.000

100 80 0.000 0.000 1.000 0.000 0.000 0.000

2 50 40 0.000 0.075 0.925 0.000 0.000 0.000

50 80 0.000 0.000 0.990 0.010 0.000 0.000

100 40 0.000 0.010 0.990 0.000 0.000 0.000

100 80 0.000 0.000 0.980 0.020 0.000 0.000

3 50 40 0.000 0.120 0.880 0.000 0.000 0.000

50 80 0.000 0.030 0.970 0.000 0.000 0.000

100 40 0.000 0.020 0.980 0.000 0.000 0.000

100 80 0.000 0.005 0.995 0.000 0.000 0.000

Note: The main entries are the empirical probability that a specific number of groups is selected

based on 200 replications.

and those of ’s to be zero. We have also tried other initial values and found that the

classification and estimation results are quite similar to those reported here, suggesting the

robustness of our algorithm to the initial values of parameters.

We run 200 replications for each DGP and classify individual  into group  if k̂− ̂k
achieves the minimum. To measure the accuracy of classification, we report two types

of classification errors as defined in Section 4.2, i.e., ̄ (̂) = 1


P

=1 ̂ (∪=1̂) and

̄ (̂ ) = 1


P

=1 ̂ (∪=1̂) where ̂ denotes the empirical average probabilities across

200 replications. Table 2 reports the classification errors. The results with different ’s are

quite similar, indicating the robustness of our algorithm to the choice of tuning parameter.

Moreover, the classification errors ̄ (̂) and ̄ (̂ ) are all below 3% for each scenario of the

first two DGPs. The classification errors are a little bit large for the dynamic panel data

models, but are still acceptable. In particular, all of them shrink toward zero quickly as 

increases.

For the estimation, Figure 2 depicts the three true group-specific trends and their post-

Lasso estimates in DGP 2 for the case  = 100  = 40 based on 200 replications. As

shown in Figure 2, the fitted trends approximate the true trends pretty well, indicating

the excellent behavior of our estimation procedure. To measure the accuracy of estimation

for the group-specific functional coefficients, we define the weighted root-mean-square-error
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Table 2: Two types of classification error in percentages

DGP   = 1 = 2 = 4

̄ (̂) ̄ (̂ ) ̄ (̂) ̄ (̂ ) ̄ (̂) ̄ (̂ )
1 50 40 0.460 0.434 0.380 0.357 0.600 0.570

50 80 0.110 0.080 0.000 0.000 0.010 0.009

100 40 0.580 0.606 0.855 0.747 0.425 0.415

100 80 0.015 0.015 0.005 0.005 0.010 0.010

2 50 40 2.930 2.734 2.870 2.617 2.100 1.959

50 80 0.570 0.389 0.340 0.289 0.230 0.114

100 40 1.645 1.547 2.665 2.460 1.765 1.700

100 80 0.800 0.984 0.120 0.114 0.070 0.068

3 50 40 6.730 6.542 6.535 6.178 7.720 6.917

50 80 2.175 2.052 1.995 1.873 2.230 2.208

100 40 5.585 5.692 5.360 5.294 5.970 5.973

100 80 1.135 1.087 1.050 1.008 1.190 1.084

Table 3: Root mean squared errors of the C-Lasso and post-Lasso estimates

DGP coeff   oracle = 1 = 2 = 4
C-Lasso post-Lasso C-Lasso post-Lasso C-Lasso post-Lasso

1 0 50 40 0.166 0.218 0.167 0.233 0.167 0.205 0.169

50 80 0.150 0.165 0.151 0.170 0.150 0.165 0.150

100 40 0.153 0.220 0.155 0.261 0.156 0.206 0.154

100 80 0.116 0.141 0.116 0.214 0.116 0.160 0.116

2 01 50 40 0.117 0.143 0.123 0.175 0.126 0.141 0.119

50 80 0.096 0.111 0.099 0.138 0.096 0.110 0.098

100 40 0.097 0.126 0.099 0.185 0.101 0.133 0.100

100 80 0.076 0.106 0.082 0.180 0.076 0.110 0.076

02 50 40 0.120 0.144 0.126 0.165 0.128 0.141 0.123

50 80 0.096 0.112 0.101 0.127 0.096 0.110 0.099

100 40 0.097 0.122 0.099 0.185 0.102 0.127 0.099

100 80 0.065 0.096 0.072 0.183 0.065 0.099 0.065

3 03 50 40 0.297 0.418 0.397 0.472 0.453 0.432 0.403

50 80 0.201 0.323 0.292 0.334 0.304 0.318 0.301

100 40 0.210 0.394 0.383 0.397 0.375 0.408 0.399

100 80 0.146 0.307 0.271 0.311 0.283 0.302 0.284
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Figure 2: True trends (the heavy black line) and the post-Lasso estimators for DGP2 ( =

100  = 40)
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(RMSE) of the estimates ̂ ( )’s in DGP 1 for each replication as follows

(̂·) =
1



3X
=1

(̂)

where (̂) = { 1
P

=1[̂ ( )−0 ( )]2}12 for  = 1 2 3 The weighted RMSEs
of the estimates of 01 ( ) and 

0
2 ( ) in DGP 2 are similarly defined. Table 3 reports

the average of these RMSEs across 200 replications for both the C-Lasso and post-Lasso

estimators for  = 1 2 4, in comparison with the oracle estimators. As shown in Table 3,

the RMSEs are quite similar for different choices of  and generally decline as  increases

for fixed  . The RMSEs of the post-Lasso estimators are less than those of the C-Lasso

estimators in all cases and they are close to those of the oracle estimators when  = 80

This suggests that the post-Lasso estimators tend to outperform the C-Lasso estimators and

would be recommended for practical use.

6.2 Empirical Illustration

As a key indicator of a country’s standard of living, GDP per capita has been one of the

most important variables in economics; see, e.g., Solow (1956), Cass (1965), and Barro (1991,

1996). It not only provides a useful statistic for comparison of wealth across countries but

also describes the development of a particular country. However, the exact realization of

GDP per capita is not very useful in comparison due to the existence of the short term

fluctuations. In fact, policy makers often target on long-lasting changes rather than short

transitory fluctuations. This prompts us to extract the trend of GDP per capita, which can

capture the medium-to long-term changes and have some implications on economic modeling,

testing and forecasting. For example, most of the existing literature assumes a linear trend

behavior for the GDP per capita when testing trend stationarity against unit root; see, e.g.,

Fleissig and Strauss (1999) and Lluís Carrion-I-Silvestre, Barrio-Castro, and López-Bazo

(2005). If the underlying trend is nonlinear in fact, then the conclusions can be misleading.

In this section, we use our time-varying panel data model with latent structure to estimate

the heterogeneous trending behavior of GDP per capita across countries. In comparison with

Robinson’s (2012) nonparametric panel trend model, our model allows for unobserved cross-

sectional heterogeneity. This is important as it is hard to believe the GDP per capita for all
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countries exhibit the same trend over time. Although macroeconomists have some consen-

sus that globalization leads to the synchronization of business cycles across countries (Kose,

Prasad, and Terrones 2003), it is unrealistic to assume all the countries share the same trend.

In fact, a stream of empirical studies confirm the cross-country divergence rather than con-

vergence implied by the neoclassical growth models (Barro, 1991), and thus provide ample

evidences on the cross-sectional heterogeneity. To account for the cross-sectional hetero-

geneity, applied researchers usually select a small group of countries (e.g., OECD countries)

that they think would share slope homogeneity, and then conduct statistical analysis for the

selected countries. However, such a selection appears arbitrary which may further induce

misleading results. As mentioned above, our model provides a data-driven classification be-

fore we embark on the estimation and inference procedure for the group-specific trending

behavior. Hence, it is useful to extract the group-specific trends of GDP per capita across

countries based on our new methodology.

6.2.1 Data and Setting

Denote the GDP per capita as . Then we estimate the following trending panel structure

model

log  =  + ( ) + 

using the annual data from 1960 to 2012 for as many countries as possible. We obtain the

GDP per capita data from Federal Reserve Economic Data (FRED), measured in terms of

2005 U.S. dollars. By deleting countries with missing observations, we obtain a balanced

panel that contains  = 91 countries and  = 53 observations for each country. As we are

interested in the common trend across countries, we take logarithm for the data. By taking

logarithm, the slope of the trend could be roughly interpreted as the growth rate of GDP per

capita up to a scaling factor  . The data series are depicted in Figure 3. To show the path

of the data more clearly, we report the demeaning data. It is obvious that the time path

of GDP per capita exhibits noticeable heterogeneity. The whole world realization, which

is marked by the thick black curve in the figure, is not a reasonable representative of the

economic development.

We estimate the trending panel structure model in (2.5) by using the iterative algorithm

31



1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Figure 3: GDP per capita (logarithm and demean) for 91 countries between 1960 and 2012

(logarithm and demeaned, the thick black curve denotes the value for the whole world)

introduced in the online Appendix C. To implement the penalized least squares estimation

with cubic B-spline approximation, we set the number of knots (0) and tuning parameter

 as in the simulation section.

6.2.2 Estimation Results

To determine the appropriate number of groups, we choose  to minimize the information

criterion in Section 4.4. Table 4 reports the ICs for the number of group  = 1 2  6

with different tuning parameters  = 05 1 2 4. The results show that the IC is robust to

the tuning parameter and always achieves the minimum when  = 4. Figure 4 depicts the

estimated trends for the four estimated groups and Figure 5 reports the realization of GDP

per capita (logarithm and demeaned) and the trend for each group. To save space, we do

not report the detailed estimation results here. A detailed report for the empirical results

and discussions can be found in the online Appendix D.
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Table 4: The information criterion for different numbers of groups

 \  1 2 3 4 5 6
0.5 -2.584 -3.174 -3.344 -3.605 -3.234 -2.500
1 -2.584 -3.174 -3.360 -3.559 -2.922 -2.504
2 -2.584 -3.174 -3.375 -3.407 -3.237 -2.555
4 -2.584 -3.174 -3.344 -3.697 -3.409 -2.687

Group 1  
Group 2 
Group 3 
Group 4 

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

-0.75
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Figure 4: The estimated trends for the four estimated groups of economies
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Figure 5: The GDP per capita (logarithm and demean) for countries in each group and the

estimated group-specific trend (thick solid curve)

6.3 Further Discussion on Potential Applications

The proposed time-varying panel data model with latent structures could capture the smooth

structural changes over time and the individuals’ heterogeneity across groups simultaneously.

The model is flexible and hence is expected to have much broad applications in empirical

study. As mentioned before, changes induced by policy switch, preference change, and tech-

nology progress can cause structural changes of the functional relationships between eco-

nomic variables. Besides, individual units sampled from different backgrounds are expected

to have heterogeneous features. To handle the individual heterogeneity, many empirical

studies classify units to different groups based on some external criterion. For example, in

macroeconomic studies involving countries, researchers often consider the OECD countries

and the emerging economies separately. In microeconomic studies, individuals are usually

classified into low income group, middle income group and high income group. By adopting

our method, one does not need to classify units into different groups a priori. Our method

could identify individuals’ membership endogenously. Here, we discuss two potential appli-

cations.

The first example is the energy intensity. Energy intensity is a measure of the energy
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efficiency of a nation’s economy. It is calculated as units of energy per unit of GDP. High

energy intensities indicate a high price or cost of converting energy into GDP. The trend of

the energy intensity reveals the changes of the economic energy efficiency. Due to the different

stages of economic development that different countries attain, the trend of energy intensity

varies across countries. Hence, we can consider the following trending panel structure model

to estimate the trend of energy intensity for various countries:

 =  + ( ) + 

where  is the individual effect and ( ) satisfies the latent group structure in our paper.

The second example is the beneficial effects of foreign direct investment (FDI) on eco-

nomic growth in host countries over a long period of time. As mentioned before, the rela-

tionships between variables tend to change during a long period. In addition, due to the

difference of absorptive capacities in different host countries, the FDI effects tend to be het-

erogeneous. To capture the time-varying relationship and the cross-country heterogeneous

absorptive capacities simultaneously, we consider the following model:

 = +
(1)
 ( )+

(2)
 log( )+

(3)
 +

(4)
 +

(5)
 (( ) × )+

where  denotes the growth rate of GDP per capita in country/region  during the period

,  is the logarithm of population growth rate,  is the human capital, and  is the

individual effect used to control the unobserved country-specific heterogeneity. Here, FDI

and DI refer to foreign direct investment and domestic investment, respectively;  represents

the total output. Hence, ( ) denotes the average ratio between the FDI and the total

output during the period  in country/region  and ( ) is defined in the same fashion

for the domestic investment. In the model, 
(1)
 exhibits the latent group structure in (2.2),

and 
()
 = () ( )   = 2 3  5 are homogeneous functional coefficients. This model is

the mixed time-varying panel structure model that can be estimated by using the technique

given in Section 5.1. Alternatively, we can also allow 
()
   = 2 3  5 to be heterogeneous

and have the latent group structure. In either case, the model extends the typical empirical

growth equation

 = +(1)( )+(2) log( )+(3)+(4)+(5) (( ) × )+

See Kottaridi and Stengos (2010) and Cai, Chen and Fang (2014) and the references therein.
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7 Conclusion

In this paper we propose a time-varying panel data model with latent group structures to

capture individual heterogeneity and smooth structural changes over time simultaneously.

We focus on the penalized sieve estimation (PSE) of such a model where the penalty term

is constructed to achieve simultaneous classification and estimation. The PSE achieves the

uniform classification consistency and oracle property. We also propose a BIC-type infor-

mation criterion to determine the unknown number of groups. Simulations are conducted

to evaluate the finite sample performance of the proposed information criterion and PSE

method. We apply our method to study the heterogeneous trending behavior of GDP per

capita across 91 countries for the period 1960-2012 and find four latent groups.

Several extensions are possible. First, one can consider general functional coefficient

panel data models with latent group structures where the coefficients are functions of cer-

tain random covariates. More generally, one can consider other types of nonparametric or

semiparametric panel data models (e.g., the partially linear single-index panel data model

of Chen, Gao, and Li 2013) with latent group structures. Second, as discussed in Section 5.3

we can also allow for cross-sectional dependence in our model. But the asymptotic theory is

extremely involved and we leave it for future research.
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Mathematical Appendix

A Proofs of the Results in Section 4

We first state some lemmas that are used in the proof of the main results in Section 4. The

proofs of these lemmas are available in the online supplementary appendix.

We use various properties of B-splines in our proofs. Recall that () = (−+1 ()  −+2
()   0 ())

0 for  ∈ [0 1] and  = 0 +  The B-splines  = () of order  have the

following properties:

(i)  () ≥ 0 for each  = −+ 1  0 and  ∈ [0 1]  and  () vanishes outside the

interval [ +); see de Boor (2001, p.91)

(ii)
P0

=−+1 () = 1 for  ∈ [0 1] ; see de Boor (2001, p.96 ).
(iii) There are two positive constants 1 and 2 such that

1


kck2 ≤

Z
{c0 ()}2  ≤ 2


kck2 for all c ∈ R  (A.1)

See DeVore and Lorentz (1993, p.145) or de Boor (2001, p.133).

Clearly, (i)-(ii) imply that () is uniformly bounded on [0 1] and
R 1
0
 ()  =  (−1)

uniformly in  (iii) implies that the maximum andminimum eigenvalues of 
R 1
0
 () ()

0


are bounded from above by 2 and from below by 1 respectively.

For g(1) ( ) = (
(1)
1 ( )   

(1)
 ( ))0 and g(2) ( ) = (

(2)
1 ( )   

(2)
 ( ))0

define the empirical and theoretical inner products respectively as  g(1)g(2) =
1


P

=1

(g(1) ( )
0
)

¡
 0

g
(2) ( )

¢
and  g(1)g(2) = 

£
 g(1)g(2) 

¤
 Denote the corre-

sponding norms as k·k and k·k  respectively.

Lemma A.1 Suppose that Assumption A1 holds. Let G ≡{ (·) = 0 (·)   ∈ R} and
 () = 0 () for  = 1   Let g () = (1 ()    ())

0. Then kgk2 ³
P

=1 kk22 ³
−1 kvec ()k2 

Lemma A.2 Suppose that Assumption A1 holds. Let G⊗ denote the collection of vectors

of spline functions g = (1  )
0 with  ∈ G defined as above. Then for any   0

(i) 

µ
max1≤≤ supg∈G⊗

¯̄̄̄
1



=1[g( )

0]


1



=1 [g( )

0]
 − 1

¯̄̄̄
 

¶
=  (−1) for  = 1 2;

(ii) 

µ
supg∈G⊗

¯̄̄̄
=1kgk2
=1kgk2

− 1
¯̄̄̄
 

¶
= 

µ
supg∈G⊗

¯̄̄̄
1



=1


=1[g( )

0]
2

1



=1


=1[g( )

0]
2 − 1

¯̄̄̄
 

¶
=  (−1) 

37



Lemma A.3 Suppose that Assumption A1 holds. Let ̂̃̃ =
1


P

=1 ̃̃
0
 Recall ̃ =

[diag(̂̃̃)]
12 Then there exist two positive constants  and ̄ that do not depend on

  or  such that (i)  ( ≤ min1≤≤ min(̂̃̃) ≤ max1≤≤ max(̂̃̃) ≤ ̄) =

1− (−1)  and (ii)  (12 ≤ min1≤≤ min(̃) ≤ max1≤≤ max(̃) ≤ ̄
12
 ) = 1− (−1) 

Lemma A.4 Suppose that Assumption A1 holds. Let  = 0 ( ) − 00 ( ) and

 =  0
 Let ̂̃̃ =

1


P

=1 ̃̃ for  =   and  where ̃ = − 1


P

=1  ̃ and

̃ are analogously defined. Then (i) ||̂̃̃|| =  (
−−12 +−12) (ii) 1



P

=1 ||̂̃̃||2 =
 (

−2−1 + −1)  (iii)  (max1≤≤ ||̂̃̃||  2 (̄)
2

 ) = (−1) where  ≡
max1≤≤ sup∈[01] k0 ()− 00 ()k =  (−)  and (iv)  (max1≤≤ ||̂̃̃|| ≥ −12 (ln )3)

=  (−1) for any   0

Lemma A.5 Suppose that Assumption A1 holds. Then for any   0 (i)  (max1≤≤ −12

k̃ − 0 k  ) = (−1) and (ii)  (max1≤≤
¯̄
̃2 − ̄2

¯̄
 ) = (−1)

Lemma A.6 Suppose that Assumptions A1-A2 hold. Let Q̂̃̃ =
1



P
∈̂

P

=1 ̃̃
0


and Q̄̃̃ =
1



P
∈0



P

=1 ̃̃
0
 Then (i) ||(Q̂̃̃−Q̄̃̃)|| = 

¡
−12

¢
;(ii) there exist

finite positive constants  and ̄ such that  (2 ≤ min(Q̂̃̃) ≤ max(Q̂̃̃) ≤
2̄) = 1−  (1) 

Lemma A.7 Suppose that Assumptions A1-A3 hold. Let ̂
()

̃̃ =
1


P

=1 
2
 () ̃̃

0
 and

Q̄()̃̃ =
1



P
∈0



P

=1 
2
 () ̃̃

0
 Then there exist finite positive constants 

()
 and ̄

()


such that (i)  (max∈0

max(̂

()

̃̃) ≤ ̄
()
 ) = 1 −  (1)  and (ii)  (

()
 ≤ min(Q̄

()

̃̃))

= 1−  (1) 

To state the next two lemmas, let c be an arbitrary nonrandom ×1 vector with kck = 1
Define c = c⊗ () and ̄c = c kck  Let ̃ = − 1



P

=1  and ̃ = − 1


P

=1 

where  =
£
0 ( )− 0( )

¤0


Lemma A.8 Suppose that Assumptions A1-A3 hold. Let  = 0c(Q̄̃̃)
−1 1√



P
∈0

P

=1 ̃̃ and ̂ = 0c(Q̂̃̃)
−1 1√



P
∈0



P

=1 ̃̃ Let 
2
c = c

0Sc = 0c(Q̄̃̃)
−1

×{ 


P
∈0


̃ 0Σ

12
 Σ

12
 ̃}(Q̄̃̃)

−1c denote the variance of  conditional on X
= {1  }  Then (i) c ³ kck ³ 1; (ii) c

→  (0 1) ; and (iii) (̂ −
 )c =  (1) 

Lemma A.9 Suppose that Assumptions A1-A3 hold. Then ̂ = ̄0c(Q̂̃̃)
−1 1√



P
∈0

P

=1 ̃̃ =  (1) 
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Lemma A.10 Suppose that Assumptions A1-A5 hold. Let ̄20 =
1



P

=1

P

=1 ̃
2
 Then

max0≤≤max

¯̄̄
̂2
̂()

− ̄2
0

¯̄̄
=  (()

−1
)

Proof of Theorem 4.1. (i) Recall that ̃ = {diag( 

̃ 0̃)}12 and ̃2 =

1


P

=1[̃ −
̃ 0vec(̃)]

2 By Lemma A.3(ii), ̃ is a diagonal matrix with diagonal elements bounded

away from both zero and infinity uniformly in  w.p.a.1. By Lemma A.5 and Assumption

A1(iv), ̃2 ’s are uniformly bounded away from zero by a positive constant (say, 2) w.p.a.1.

Let ̂ =vec(̂ − 0 ) and  =vec( − 0 ) Define 1() =
1


P

=1[̃−vec()0̃]
2

and (ω) = 1() +̃
2−


Q

=1

°°°̃vec( − )
°°°. Then

1()−1(
0
 ) = 0̂̃̃ − 20̂̃̃ (A.2)

where ̂̃̃ =
1


P

=1 ̃̃
0
 and ̂̃̃ =

1


P

=1 ̃̃ By the triangle inequality, the fact

that kk = kksp ≤ kksp kk for conformable matrix  and vector , and the fact that

kvec ()k = kk, we have¯̄̄̄
¯
Y
=1

°°°̃vec (̂ − )
°°°− Y

=1

°°°̃vec ¡0 − 

¢°°°¯̄̄̄¯
≤
¯̄̄̄
¯
−1Y
=1

°°°̃vec (̂ − )
°°°n°°°̃vec (̂ − )

°°°− °°°̃vec ¡0 − 

¢°°°o¯̄̄̄¯
+

¯̄̄̄
¯
−2Y
=1

°°°̃vec (̂ − )
°°°°°°̃vec ( − )

°°°n°°°̃vec (̂ − −1)
°°°− °°°̃vec ¡0 − −1

¢°°°o¯̄̄̄¯
+ +

¯̄̄̄
¯
Y
=2

°°°̃vec ¡0 − 

¢°°°n°°°̃vec (̂ − 1)
°°°− °°°̃vec ¡0 − 1

¢°°°o¯̄̄̄¯
≤ ̂ (ω)

°°°̃vec ¡̂ − 0
¢°°° ≤ ̂ (ω)

°°°̃°°°
sp

°°°̂°°°  (A.3)

where ̂ (ω) =
Q−1

=1 ||̃vec(̂ − ) ||+
Q−2

=1 ||̃vec(̂ − ) ||||̃vec(0 − ) ||++Q

=2 ||̃ vec(0−)|| =  (
(−1)2) as both  and  are × dimensional matrices and

||̃||sp =  (1) by Lemma A.3(ii). Since ̂ minimizes ( ω̂), we have (̂ ω̂)−
(

0
  ω̂) ≤ 0 This, in conjunction with the definition of  and (A.2)-(A.3), implies

that ̂0̂̃̃ ̂ ≤ 2̂0̂̃̃+̂ (ω̂)||̃||sp||̂|| Letting ̂̃̃ = min1≤≤ min(̂̃̃) we have

̂̃̃||̂||2 ≤  [2||̂̃̃||+ ̂ (ω̂)||̃||sp]||̂|| or equivalently,°°°̂°°° ≤ ̂−1̃̃ 

∙
2
°°°̂̃̃

°°°+ ̂ (ω̂)
°°°̃°°°

sp

¸
 (A.4)

Then by Lemmas A.3 and A.4(i),°°°̂°°° =  [ (
−−12 + −12) +  (−1)2] =  (

−+12 + −12 +  (+1)2) (A.5)
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(ii) By Minkowski’s inequality, we have:

̂ (ω) ≤
−1Y
=1

h°°°̃vec ¡̂ − 0
¢°°°+ °°°̃vec ¡0 − 

¢°°°i
+

−2Y
=1

h°°°̃vec ¡̂ − 0
¢°°°+ °°°̃vec ¡0 − 

¢°°°i °°°̃vec ¡0 − 

¢°°°
+ +

Y
=2

°°°̃vec ¡0 − 

¢°°°
=

−1X
=0

°°°̃vec ¡̂ − 0
¢°°° Y

=1



°°°̃vec ¡0 − 

¢°°°−1−
≤  (ω)

−1X
=0

°°°̃vec ¡̂ − 0
¢°°°

≤  (ω)

µ
1 + 2

°°°̃°°°
sp

°°̂ − 0
°°¶ (A.6)

where ’s are finite integers and  (ω) = max1≤≤ max0≤≤≤−1
Q

=1 ||̃vec(0
−)||−1− = max1≤≤ max0≤≤≤−1

Q

=1 k||̃vec(0 − )||−1− = ( (−1)2) as

 is a  ×  matrix. Let  = 2 (ω̂)||̃||sp̂−1̃̃  In view of the fact that  =



¡
 (+1)2

¢
=  (1)  we can combine (A.4) with (A.6) to yield°°°̂°°° ≤ ̂−1̃̃

1− 



∙
2
°°°̂̃̃

°°°+  (ω̂)
°°°̃°°°

sp

¸


Then by Lemmas A.3-A.4

1



X
=1

°°°̂°°°2 ≤ µ
̂−1̃̃

1− 

¶2
2



X
=1

∙
8
°°°̂̃̃

°°°2 + 22 (ω̂)
2
°°°̃°°°2

sp

¸
= 2 (

−2−1 + −1 + 2−1) =  (
−2+1 + 2−1 + 2+1) (A.7)

To refine the result in (A.7), we need to demonstrate 1


P

=1 ||̂||2 =  (
2
 ) where

 = −+12+ −12 Recall that π = (vec(1)0 vec()0)0 Let π = π0+ ν where

ν =(vec(1)
0 vec()0) with ’s being  ×  matrices. We want to show that for any

given ∗  0 there exists a large constant  =  (∗) such that, for sufficiently large 

and  we have



(
inf

−1


=1kk2=

()



¡
π0 + ν ω̂

¢
 

()



¡
π0ω0

¢) ≥ 1− ∗ (A.8)
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This implies that w.p.a.1 there is a local minimum {π̂ ω̂} such that −1P

=1 ||̂||2 =
 (

2
 ) regardless of the property of ω̂ By (A.2) and the Cauchy-Schwarz inequality

−2

h

()



¡
π0 + ν ω̂

¢−
()



¡
π0ω0

¢i
=

1



X
=1

vec ()
0
³
̂̃̃

´
vec ()− 2

−1




X
=1

vec ()
0
̂̃̃

+
−2



X
=1

̃2−

Y
=1

°°°̃vec ¡0 +  − ̂

¢°°°
≥ ̂̃̃

1



X
=1

kk2 − 2
(
1



X
=1

kk2
)12(

2−2



X
=1

°°°̂̃̃

°°°2)12
≡ 1 −2  say.

By LemmaA.3(i), ̂̃̃ is bounded below by ̃̃  0w.p.a.1. By LemmaA.4(ii),
2−2





P

=1 ||̂̃̃||2
= 2−2 (

−2−1 + −1) =  (1) So 1 dominates 2 for sufficiently large 

That is −2 [
()

 (π
0 + ν ω̂) − 

()

 (π
0ω0)]  0 for sufficiently large  and we

cannot achieve minimization. Consequently, we must have −1P

=1 ||̂||2 =  (
2
 ) 

(iii) Let  (πω) =
1


P

=1 ̃
2−


Q

=1 k̃vec( − ) k. Observe that
0 ≥  (π̂ ω̂)−  (π̂ω

0)

=
£
 (π̂ ω̂)−  (π

0 ω̂)
¤
+
£
 (π

0 ω̂)−  (π
0ω0)

¤
− £ (π̂ω

0)−  (π
0ω0)

¤
 (A.9)

By (A.3), (A.6), and (A.7),

| (π̂ω)−  (πω)| ≤  (ω)
1



X
=1

̃2−

½°°°̃°°°
sp
k̂k+ 2

°°°̃°°°2
sp
k̂k2

¾

≤  (ω)1

⎧⎨⎩2

Ã
1



X
=1

k̂k2
!12

+
23



X
=1

k̂k2
⎫⎬⎭

= ( (−1)2) (1) (
−+12 + −12)

=  (
−+2 +  (+1)2−12) (A.10)

where 1 = max1≤≤ ̃2−  2 = { 1
P

=1 ||̃||2sp}12 and 3 = max1≤≤ ||̃||2sp all
of which are  (1) by the remark at the beginning of the proof. In addition,

 (π
0 ω̂)−  (π

0ω0) =
1



X
=1

̃2−

Y
=1

°°°̃vec(̂ − 0 )
°°°

≥ 11



Y
=1

°°̂ − 01
°°++



Y
=1

°°̂ − 0
°° (A.11)
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where  = (min∈0

̃2− )min∈0


min(̃) for  = 1   and we have used the fact

kk2 =tr(02) ≥ min (
2)tr(0) for symmetric matrix  and conformable matrix 

(e.g., Bernstein 2005, p.275). Combining (A.9)-(A.11), we have

0 ≥ 11



Y
=1

°°̂ − 01
°°+ +





Y
=1

°°̂ − 0
°°+

¡
−+2 +  (+1)2−12

¢


which, by Assumption A1(vi) and the fact that  is bounded away from zero, implies

that
Q

=1 k̂ − 0 k = 

¡
−+2 +  (+1)2−12

¢
for  = 1  This further im-

plies that there is a permutation
¡
̂(1)  ̂()

¢
of (̂1  ̂) such that

°°̂() − 0
°° =

min1≤≤ k̂ − 0k and
°°̂() − 0

°° ≥ k0 − 0 k −
°°̂() − 0

°° ³ k0 − 0 k ³ 12 for

 6=  by (4.3) as we can easily show that
°°̂() − 0

°° must be smaller than 12 in

probability order by contradiction under Assumption A1(v). Consequently,
°°̂() − 0

°° =
−(−1)2 (

−+2 + (+1)2−12) =  (
−+12 +−12) for each  = 1   ¥

Proof of Corollary 4.2. We only prove (i) as the proof of (ii) is analogous. First, we

make the decomposition: ̂()− 0 () = [̂ − 0 ]
0
 () + 00  () −0 ()  By Properties

(i)-(ii) of B-splines, k ()k = {P0
=−+1 ()

2}12 ≤ {P0
=−+1 ()}12 = 1 This, in

conjunction with Theorem 4.1(i), implies that,

sup
∈[01]

°°°£̂ − 0
¤0
 ()

°°° ≤ °°̂ − 0
°° =  (

−+12 + −12 +  (+1)2)

ByAssumption A1(v), sup∈[01]
°°00  ()− 0 ()

°° =  (
−) Consequently, sup∈[01] ||̂()

−0 ()|| =  (
−+12 + −12 +  (+1)2)

Note that
R 1
0

°°°̂()− 0 ()
°°°2  ≤ 2 R °°[̂ − 0 ]

0
 ()

°°2 +2 R 1
0
||00  ()−0 () ||2

≡ 21 + 22 say. By Property (iii) of B-splines and Theorem 4.1(i),

1 = 2

Z 1

0

°°°¡̂ − 0
¢0
 ()

°°°2  = 2tr½¡̂ − 0
¢0µZ 1

0

 () ()
0


¶¡
̂ − 0

¢¾
³ −1

°°°̂°°°2 = 

¡
−2 + −1 + 2

¢


By Assumption A1(v), 2 = (−2) Thus the result in (i) follows. ¥
Proof of Theorem 4.3. (i) Fix  ∈ {1 2 }. By Theorem 4.1, ||̂ − ̂|| →
k0 − 0 k 6= 0 for all  ∈ 0

 and  6=  Let ̂ ≡
Q

=1 6= k̃vec(̂ − ̂) k and 0 =Q

=1 6= k 0
 (

0
 − 0 )k  where  0

 denotes the probability limit of ̃ Note that

̂ =

Y
=1 6=

k̃vec
©¡
̂ − 0

¢− ¡̂ − 0
¢
+
¡
0 − 0

¢ª k
=

Y
=1 6=

{|| 0
 vec

¡
0 − 0

¢ ||+  (1)} ³ 0 ³  (−1)2 for any  ∈ 0


42



Now, suppose that k̂ − ̂k 6= 0 for some  ∈ 0
. Then the first order condition with

respect to vec() for the minimization problem in (3.4) implies that:

0×1 =
−2


X
=1

̃

h
̃ − ̃ 0vec(̂)

i
+ 

X
=1

̃ 2
 vec(̂ − ̂)

k̃vec (̂ − ̂) k
Y

=1 6=
k̃vec (̂ − ̂) k

= −2̂̃̃ +

∙
2̂̃̃̃

−1
 +

̂

k̃vec (̂ − ̂) k
̃

¸ h
̃vec(̂ − ̂)

i
− 2̂̃̃

+ 2̂̃̃vec(̂ − 0 ) + 

X
=1 6=

̃ 2
 vec(̂ − ̂)

k̃vec (̂ − ̂) k
Y

=1 6=
k̃vec (̂ − ̂) k

≡ ̂1 + ̂2 + ̂3 + ̂4 + ̂5 say,

where ̂̃̃ is defined in Lemma A.3, and ̂̃̃ and ̂̃̃ are defined in Lemma A.4.

Let κ = −+12 (ln ) + −12 (ln )3 +  (+1)2 (ln )

 ̄0 = max∈0 

0
 

0
 =

min∈0

0 and ̂ = [̃vec(̂ − ̂)]||̃vec(̂ − ̂)|| Let  denote a generic constant

that may vary across lines. Following the proof of Theorem 4.1 and using the uniform results

in Lemmas A.3—A.5, we can show that


³
max



°°̂ − 0
°° ≥ κ

´
= 

¡
−1¢ for some   0 (A.12)


¡°°̂ − 0

°° ≥ 
¡
−+12 + −12

¢
(ln )


¢
= 

¡
−1¢  (A.13)


¡
02 ≤ ̂ ≤ 2̄0

¢
= 1− 

¡
−1¢  (A.14)

By (A.12)—(A.14) and Lemma A.3, 
³
max∈0



°°°̂5

°°° ≥ κ

´
=  (−1) for some   0

Combining these results with those in Lemmas A.3-A.4, we have  (Ξ ) = 1 −  (−1) 

where

Ξ ≡ ©
02 ≤ ̂ ≤ 2̄0

ª ∩ ©°°̂ − 0
°° ≤ 

¡
−+12 + −12

¢
(ln )


ª

∩
½
 ≤ min

1≤≤
min(̂̃̃) ≤ max

1≤≤
max(̂̃̃) ≤ ̄

¾
∩
½
12 ≤ min

1≤≤
min(̃) ≤ max

1≤≤
max(̃) ≤ ̄12

¾
∩
½
max
1≤≤

°°°̂̃̃

°°° ≤ 2 (̄)2 

¾


where  ≡ max1≤≤ sup∈[01] k0 ()− 00 ()k =  (−)  Then conditional on Ξ 
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we have uniformly in  ∈ 0
,

̂
0
̂2 ≥ ̂̂

0
̃̂ ≥ ̂min(̃) ≥ 12 

0
2¯̄̄

̂
0
̂3

¯̄̄
≤ 2

°°°̂̃̃

°°° ≤ 4 (̄)2  ¯̄̄
̂
0
̂4

¯̄̄
≤ 2−1

°°°̂̃̃

°°°
sp

°°̂ − 0
°° ≤ 2−1̄ ¡−+12 + −12

¢
(ln )


¯̄̄

̂
0
̂5

¯̄̄
≤ max

∈0


°°°̂5

°°° ≤ κ 

and ¯̄̄
̂
0


³
̂2 + ̂3 + ̂4 + ̂5

´¯̄̄
≥

¯̄̄
̂
0
̂2

¯̄̄
−
¯̄̄
̂
0


³
̂3 + ̂4 + ̂5

´¯̄̄
≥ 12 

0
2−

h
4 (̄)

2
 + 2

−1̄
¡
−+12 + −12

¢
(ln )


+ κ

i
≥ 12 

0
4 for sufficiently large ( ) 

where the last inequality follows because  (−1)2 À −+−1
¡
−+12 + −12

¢
(ln )


+

κ by Assumption A2. Then for all  ∈ 0
 we have

 (̂) = 
³
 ∈ ̂ |  ∈ 0



´
= 

³
−̂1 = ̂2 + ̂3 + ̂4 + ̂5

´
≤ 

³¯̄̄
̂
0
̂1

¯̄̄
≥
¯̄̄
̂
0


³
̂2 + ̂3 + ̂4 + ̂5

´¯̄̄´
≤ 

³°°°̂1

°°° ≥ 12 
0
4 Ξ

´
+  (Ξ

 ) = 
¡
−1¢ 

where Ξ
 denotes the complement of Ξ and the convergence follows by Lemma A.4

and Assumption A2 . Consequently, we can conclude that with probability 1−  (−1) the

differences ̂ − ̂ must reach the point where k̃vec( − ) k is not differentiable with
respect to vec() for some  ∈ 0

. That is,  (k̂ − ̂k = 0| ∈ 0
) = 1−  (−1) 

For uniform consistency, we have:  (∪0

=1̂ ) ≤
P0

=1  (̂ ) ≤
P0

=1

P
∈0


 (̂)

and by Lemma A.4(iv) and Assumption A2(ii),

0X
=1

X
∈0




³
̂

´
≤

0X
=1

X
∈0



h

³°°°̂1

°°° ≥ 12 
0
4 Ξ

´
+  (Ξ

 )
i

≤  max
1≤≤


³°°°̂̃̃

°°° ≥ 12 
0
4
´
+  (1) =  (1)  (A.15)

This completes the proof of Theorem 4.3(i).

(ii) Given (i), the proof is identical to Theorem 2(ii) in SSP and thus omitted. ¥
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Proof of Theorem 4.4. (i) We first show that
p
 [̂()− ̂

()] =  (1). Noting

that
p
 k̂ ()− ̂

()k ≤
p
 k̂ − ̂

k k ()k and k () k2 =P

=1 ()
2

≤P

=1 () = 1 by Properties (i)-(ii) of B-splines and Lemma A.8(i), we can prove (i) by

showing that
p
 k̂ − ̂

k =  (1).

Based on subdifferential calculus (e.g., Bertsekas 1995, Appendix B.5), the first order

conditions for the minimization of the objective function 
()

(πω) in (3.4) with respect

to  and  are given by

0×1 =
−2


X
=1

̃

h
̃ − ̃ 0vec(̂)

i
+





X
=1

̃2− ̂

Y
=1 6=

°°°̃vec (̂ − ̂)
°°°  (A.16)

0×1 =




X
=1

̃2− ̂

Y
=1 6=

°°°̃vec (̂ − ̂)
°°°  (A.17)

where ̂ =
̃ 2 vec(̂−̂)
k̃vec(̂−̂)k if k̂ − ̂k 6= 0 and k̂k ≤ ||̃||sp if k̂ − ̂k = 0. Fix

 ∈ {1 2 } Then (a) k̂ − ̂k = 0 for any  ∈ ̂ by the definition of ̂; (b)

k̂ − ̂k = k(̂ − 0)− (̂ − 0 ) + (
0
 − 0)k ≥ k0 − 0 k−  (1) ³ k0 − 0 k for any

 ∈ ̂ and  6=  by Theorem 4.1. It follows that k̂k ≤ ||̃||sp for any  ∈ ̂ and

̂ =
̃ 2
 vec(̂−̂)

k̃vec(̂−̂)k =
̃ 2
 vec(̂−̂)

k̃vec(̂−̂)k w.p.a.1 for any  ∈ ̂ and  6= . Let ̂0 denote the set

of unclassified individuals. As a result, we have that w.p.a.1X
∈̂

X
=1 6=

̃2− ̂

Y
=1 6=

°°°̃vec (̂ − ̂)
°°°

=
X
∈̂

X
=1 6=

̃2−

̃ 2
 vec (̂ − ̂)

k̃ (̂ − ̂) k
Y

=1 6=

°°°̃vec (̂ − ̂)
°°° = 0×1 (A.18)

and
X
=1

̃2− ̂

Y
=1 6=

°°°̃vec (̂ − ̂)
°°°

=
X
∈̂

̃2− ̂

Y
=1 6=

°°°̃vec (̂ − ̂)
°°°+X

∈̂0

̃2− ̂

Y
=1 6=

°°°̃vec (̂ − ̂)
°°°

+

X
=1 6=

X
∈̂

̃2− ̂

Y
=1 6=

°°°̃vec (̂ − ̂)
°°°

=
X
∈̂

̃2− ̂

Y
=1 6=

°°°̃vec (̂ − ̂)
°°°+X

∈̂0

̃2− ̂

Y
=1 6=

°°°̃vec (̂ − ̂)
°°°

= 0×1 (A.19)
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Combine (A.18) and (A.19) with (A.16), we have

2



X
∈̂

X
=1

̃

h
̃ − ̃ 0vec(̂)

i
+





X
∈̂0

̃2− ̂

Y
=1 6=

°°°̃vec (̂ − ̂)
°°° = 0×1

It follows that

vec(̂) = Q̂−1̃̃
1



X
∈̂

X
=1

̃̃ + Q̂−1̃̃


2

X
∈̂0

̂

Y
=1 6=

°°°̃vec (̂ − ̂)
°°°

≡ vec(̂̂
) + ̂ say.

where Q̂̃̃ =
1



P
∈̂

P

=1 ̃̃
0
 Thus, for any   0, we have by Theorem 4.3(i)


³p


°°°̃vec ¡̂ − ̂̂

¢°°° ≥ 
´
= 

³p


°°°̂

°°° ≥ 
´
≤

X
=1

X
∈


³
 ∈ ̂0| ∈ 0



´
≤

X
=1

X
∈


³
 ∈ ̂| ∈ 0



´
= (1)

Consequently, we have
p
 ||̃vec(̂ − ̂̂

)|| =  (1) implying that
p
 ||̂ −

̂̂
|| =  (1) by Lemma A.3(ii). It follows that

p
[̂() − ̂̂

()] =  (1). Then

(i) holds by result in part (ii).

(ii) We first make the following decomposition:p


£
̂̂

()− 0 ()
¤
=
p


¡
̂̂
− 0

¢0
 () +

p


£
00 ()− 0 ()

¤
≡ D1 +D2 say.

By Assumptions A1(v) and A3(iv) and Lemma A.8(i), D2c =
√
−1 (−) =

(
√
−1−2) = (1) It suffices to prove (ii) by showing that D11c

→ (0 1).

Let  =
£
0 ( )− 0( )

¤0
 ̃ =  − 1



P

=1  and ̃ =  − 1


P

=1 

Let c be a nonrandom  × 1 vector with kck = 1 and c = c ⊗  ()  Noting that ̃ =

̃ 0vec(
0
 )+̃ = ̃ 0vec(

0
) +̃

0
vec(

0
−0)+̃+̃ and vec(123) = (03 ⊗1)vec(2)

(e.g., Bernstein 2005, p.249), we have

D01c =
p
 ()

0 ¡
̂̂
− 0

¢
c =

p


0
cvec

¡
̂̂
− 0

¢
= 0c

³
Q̂̃̃

´−1 1p


X
∈̂

X
=1

̃̃ + 0c
³
Q̂̃̃

´−1 1p


X
∈̂

X
=1

̃̃

+ 0c
³
Q̂̃̃

´−1 1p


X
∈̂

X
=1

̃̃
0
vec(

0
 − 0)

≡ D11 +D12 +D13 say.
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It suffices to prove D1c
→ (0 1) by showing: (ii1) D11c

→ (0 1), (ii2) D12c
=  (1), and (ii3) D13c =  (1).

By arguments as used in the proof of Lemma A.6(i), D11c = D̄11c +  (1) 

where D̄11 = 0c(Q̂̃̃)
−1 1√



P
∈0



P

=1 ̃̃ By Lemma A.8(ii), D̄11c
→

(0 1) Thus (ii1) follows. To prove (ii2)-(ii3), in view of the fact that c ³ kck by
Lemma A.8(i), it suffices to show that D̄1 = D1 kck =  (1) for  = 2 3 Let

̄c = c kck  By arguments as used in the proof of Lemma A.6(i), we can readily show that
D̄12 = D∗12+ (1)  where D

∗
12 = ̄0c(Q̂̃̃)

−1 1√


P
∈0



P

=1 ̃̃ By Lemma A.9,

D∗12 =  (1)  Thus D̄12 =  (1) and (ii2) follows.

By the fact that 1{ ∈ ̂} = 1{ ∈ 0
} + 1{ ∈ ̂ \ 0

} − 1{ ∈ 0
 \ ̂} and that

0 = 0 for  ∈ 0
 we have

D̄13 = ̄0c
³
Q̂̃̃

´−1 1p


X
∈̂

X
=1

̃̃
0
vec(

0
 − 0)

= ̄0c
³
Q̂̃̃

´−1 1p


X
∈̂\0

X
=1

̃̃
0
vec(

0
 − 0)

It follows that for any   0, we have 
¡¯̄
D̄13

¯̄
≥ 
¢ ≤  (̂ )→ 0 by Theorem 4.3. That

is, D̄13 =  (1) and (ii3) follows.

In sum, we have proved thatp
c

0 £̂̂
()− 0 ()

¤
c

→ (0 1)

where 2c = (c0 ⊗  ()
0
)(Q̄̃̃)

−1{ 


P
∈0


̃ 0Σ

12
 Σ

12
 ̃}(Q̄̃̃)

−1 (c⊗ ()) =

c0Sc Then
p
S

−12


£
̂̂

()− 0 ()
¤ → (0 I) by the Cramér-Wold device. ¥

Proof of Theorem 4.5. Let K = {1 2 max}. We partition K as follows: K0 =
{ ∈ K :  = 0}  K− = { ∈ K :   0}  and K+ = { ∈ K :   0}  denoting
subsets of K in which true, under-, and over-fitted models are produced. We prove the

theorem by showing that 
¡
inf∈K−∪K+  ()   (0 )

¢ → 1 as ( ) → ∞ i.e.,

neither the under-fitted model nor the over-fitted model can minimize the information cri-

terion function. Using Theorems 4.3 and 4.4 and Assumption A5, we can readily show that

when  = 0

 (0 ) = ln
h
̂2
̂(0)

i
+ 0

= ln

⎡⎣ 1



0X
=1

X
∈̂(0)

X
=1

³
̃ − ̂0

̂(0)
̃

´2⎤⎦+  (1)
→ ln

¡
20
¢

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We consider the cases of under- and over-fitted models separately.

When the model is under-fitted, i.e.,   0 we have

̂2
̂()

=
1



X
=1

X
∈̂()

X
=1

³
̃ − ̂0

̂()
̃

´2
≥ min

1≤0

inf
()∈G

1



X
=1

X
∈

X
=1

³
̃ − ̂0

̃

´2
= min

1≤0

inf
()∈G

̂2() 

Then by Assumptions A4-A5 and Slutsky Lemma,min1≤0
 () ≥ min1≤0

inf()∈G
ln(̂2())+

→ ln(2)  ln(20) It follows that 
¡
min∈K−  ()   (0 )

¢→
1

Let  = ()
12

When the model is over-fitted, by Lemma A.10 and the fact that

2 =  →∞ under Assumption A5, we have
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+ 2 ( −0) +  (1)  0

¶
→ 1 as ( )→∞ ¥

SUPPLEMENTARY MATERIALS

The online supplementary appendix presents the proofs of the technical lemmas and

numerical algorithm in the paper.
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This appendix provides the proofs of some technical lemmas and the numerical algorithm

used in the above paper.

B Proofs of the Technical Lemmas

Proof of Lemma A.1. Noting that the eigenvalues of  (
0
) are uniformly bounded

away from zero and above from the infinity under Assumption A1(iv), we have
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This completes the proof of the lemma. ¥

Proof of Lemma A.2. The proof of (i) is analogous to that of Lemma A.2 in Huang, Wu,

and Zhou (2004) and that of Lemma A.1 in Huang and Shen (2004). Specifically, Huang

and Shen (2004) prove (i) for  = 2 and strictly stationary strong mixing processes without

taking the supremum over  The strict stationarity condition can be relaxed as in Qian and

Su (2016). One can readily modify the proofs in these papers to obtain the above claims

under the conditions stated in Assumption A1. (ii) follows from (i) with  = 2 ¥
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Consequently, the minimum eigenvalue of ̂̃̃ is bounded away from below by a positive
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 −

µZ 1

0

1 (;1) 

¶2
+

Z 1

0

g
(2)

(2) ()
0
Ω
(2)
 ()g

(2)

(2) ()  −
µZ 1

0

g
(2)

(2) ()
0

(2)
 () 

¶2
+2

½Z 1

0

1 (;1)
(2)
 ()

0
g
(2)

(2) ()  −
Z 1

0

1 (;1) 

Z 1

0

g
(2)

(2) ()
0

(2)
 () 

¾
= ̄

(1)
 + ̄

(2)


where

̄
(1)
 =

Z 1

0

g
(2)

(2) ()
0
Ω̄
(2)
 ()g

(2)

(2) () 

̄
(2)
 =

"Z 1

0

1 (;1)
2
 −

µZ 1

0

1 (;1) 

¶2 #

+

"Z 1

0

g
(2)

(2) ()
0

(2)
 ()

(2)
 ()g

(2)

(2) ()
0
 −

µZ 1

0

g
(2)

(2) ()
0

(2)
 () 

¶2#

+2

½Z 1

0

1 (;1)
(2)
 ()

0
g
(2)

(2) ()  −
Z 1

0

1 (;1) 

Z 1

0

g
(2)

(2) ()
0

(2)
 () 

¾


3



Noting that g
(2)

(2) () = (2 (;2)    (;))
0
=  (2)0 () where  (2) = (2 )

is a  × (− 1) matrix such that $(2) =vec
¡
 (2)

¢
and tr(1234) =vec(1)

0
(2 ⊗

04)vec(
0
3) (e.g., Bernstein 2005, p. 253), we have

̄
(1)
 =

Z 1

0

g
(2)

(2) ()
0
Ω̄
(2)
 ()g

(2)

(2) ()  =

Z 1

0

 ()
0
 (2)Ω̄

(2)
 () (2)0 () 

=

Z 1

0

tr
³
 (2)Ω̄

(2)
 () (2)0 () ()0

´


= $(2)0
Z 1

0

Ω̄
(2)
 ()⊗ ( () ()0)$(2)

= $0

⎛⎝ 0× 0×(−1)

0(−1)×
R 1
0
Ω̄
(2)
 ()⊗ ( () ()0)

⎞⎠$

Let ̄1 (;1) = 1 (;1) −
R 1
0
1 (;1)  

(2)
 () = 

(2)
 () ⊗  ()  and ̄

(2)
 () =


(2)
 ()−R 1

0

(2)
 () Using ̄1 (;1) = 1 (;1)−

R 1
0
1 (;1)  = 0

1̄ () with ̄ () =

 ()− R 1
0
 ()  and 

(2)
 ()

0
g
(2)

(2) () =$
(2)0((2) ()⊗ ()) =$(2)0(2) ()  we have

̄
(2)
 = 0

1

Z 1

0

̄ () ̄ ()
0
1 +$

(2)0
Z 1

0

̄
(2)
 () ̄

(2)
 ()

0
$(2) + 20

1

Z 1

0

̄ () ̄
(2)
 ()

0
$(2)

= $0

⎛⎝ R 1
0
̄ () ̄ ()

0


R 1
0
̄ () ̄

(2)
 ()

0
R 1

0
̄
(2)
 () ̄ ()

0


R 1
0
̄
(2)
 () ̄

(2)
 ()

0


⎞⎠$

It follows that ̄ =$
0̄ (1)$ +$0̄ (2)$ where

̄ (1) =

⎛⎝ R 1
0
̄ () ̄ ()

0


R 1
0
̄ () ̄

(2)
 ()

0


0(−1)×
R 1
0
Ω̄
(2)
 ()⊗ ( () ()0)

⎞⎠ and

̄ (2) =

⎛⎝ 0× 0×(−1)R 1
0
̄
(2)
 () ̄ ()

0


R 1
0
̄
(2)
 () ̄

(2)
 ()

0


⎞⎠ 

By Lemma 21.2.1 in Harville (1997), the eigenvalues of either the lower or upper block

triangular matrices are given by the collection of the eigenvalues of their diagonal blocks.

As a result,

min
¡
̄ (1)

¢
= min

µ
min

µZ 1

0

̄ () ̄ ()
0


¶
 min

µZ 1

0

Ω̄
(2)
 ()⊗ ( () ()0)

¶¶


min
¡
̄ (2)

¢
= min

µ
min (0×)  min

µZ
̄
(2)
 () ̄

(2)
 ()

0


¶¶
= 0
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Noting that ̄ as a centered version of , also shares Property (iii) of B-splines, we have

min

³R 1
0
̄ () ̄ ()

0

´
& −1 In addition,

min

µZ 1

0

Ω̄
(2)
 ()⊗ ( () ()0)

¶
≥ min


Ω̄
(2)
 ( )min

µ
I−1 ⊗

Z 1

0

 () ()
0


¶
= min


Ω̄
(2)
 ( )min

µZ 1

0

 () ()
0


¶
& −1

Consequently, min
¡
̄ (1)

¢
& −1 ByWeyl inequality (e.g., Bernstein 2005, Theorem 8.4.11,

p.274), min
¡
̄ (1) + ̄ (2)

¢ ≥ min
¡
̄ (1)

¢
+ min

¡
̄ (2)

¢
& −1 and

̄ & −1 k$k 

Consequently, the minimum eigenvalue of ̂̃̃ is bounded away from below by a positive

constant, say  uniformly in  as (  )→∞ Using Lemma A.2, we can further strengthen

the result to  ( ≤ min1≤≤ min(̂̃̃)) = 1−  (−1).
Case 2:  = 1 In this case, we only need to apply the basic properties of B-splines.

In particular,

$0 (1 −2)$ = $0
"
1



X
=1

 ( ) ( )
0 − 1



X
=1

 ( )
1



X
=1

 ( )
0
#
$

³ $0
∙Z 1

0

 () ()
0
 −

Z 1

0

 () 

Z 1

0

 ()
0


¸
$

= $0
Z 1

0

̄ () ̄ ()
0
$

where ̄ () =  () − R 1
0
 ()  By the properties of B-splines, 

R 1
0
̄ () ̄ ()

0
 has

maximum eigenvalue bounded above by2 given in (A.1) and minimum eigenvalue bounded

below from zero. Then the conclusion in (i) also holds.

(ii) By (i) and the fact that for a  ×  symmetric matrix  I ≤  ≤ ̄I if and
only if  ≤ min () ≤ max () ≤ ̄ (e.g., Bernstein 2005, Lemma 8.4.1., p.271), we have

 (I ≤ ̂̃̃ ≤ ̄I) = 1 −  (−1). By the fact that for symmetric matrices  =

{} and  = {}   ≤  implies that  ≤  for each  (see, e.g., Bernstein 2005,

Fact 8.8.9, p. 296). Consequently,  (I ≤diag(̂̃̃) ≤ ̄I) = 1−  (−1) and (ii)
follows. ¥

Proof of Lemma A.4. (i) Recall that  = 0 ( )− 00 ( )  =  0
 and  =

max1≤≤ sup∈[01] k0 ()− 00 ()k  Noting that  = +
0


£
0 ( )− 00 ( )

¤
=

 +  we have ̂̃̃ = ̂̃̃ + ̂̃̃ where ̂̃̃ =
1


P

=1 ̃̃ ̂̃̃ =
1


P

=1 ̃̃

and ̃ and ̃ are defined analogously to ̃ Note that ̃ = ̃ + ̃ By the property of
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B-splines,



°°°°° 1
X
=1



°°°°°
2

=
1

 2

X
=1

X
=1


£
( ⊗ ( ))

0
( ⊗ ( )) 

¤
≤ 1

 2

X
=1

X
=1

 ( 0


0


0
) ( )

0
 ( )

≤ ̄4 2

1

 2

X
=1

X
=1

 ( )
0
 ( )

≤ ̄4 2

X
=1

(
1



X
=1

 ( )
1



X
=1

 ( )

)

³ ̄4 2

X
=1

½Z
 () 

¾2
= 

¡
−2

¢

¡
−1

¢
= 

¡
−2−1

¢


where we use the fact that ( 0


0


0
) ≤ 2

¡kk2 kk2
¢ ≤ 2(kk4) ≤

̄
4
 2 =  (−2) by Assumptions A1(iii) and (v) and (4.1). It follows that

°°° 1 P

=1 

°°° =


¡
−−12

¢
 Similarly, we can show that

°°° 1 P

=1 

°°° = 

¡
−12

¢
and 1



P

=1  =

 (
−)  Then

°°°̂̃̃

°°° = °°° 1 P

=1  − 1


P

=1 
1


P

=1 

°°° = 
¡
−−12

¢


Noting that



°°°°° 1
X
=1

()⊗ ( )

°°°°°
2

=
1

 2

X
=1

X
=1

 ( 0
) ( )

0
 ( )

=
1

 2

X
=1


¡
 0


2


¢ k ( )k2
+
2

 2

−1X
=1

X
=+1

 ( 0
) ( )

0
 ( )

≡ 1 +2 say.

By Assumptions A1(iii)-(iv), Jensen inequality, and the properties of B-splines,

1 ≤ (̄̄)
4

 2

X
=1

k ( )k2 ³ (̄̄)
4



Z
k ()k2  = 

¡
−1

¢


Noting that k ()k = {P0
=−+1 ()

2}12 ≤ {P0
=−+1 ()}12 = 1 uniformly in  ∈
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[0 1]  by Assumptions A1(ii)-(iv) and Davydov inequality for strong mixing processes,

|2| ≤ 2

 2

X
=1

−1X
=1

X
=+1

¯̄
 () ( )

0
 ( )

¯̄
≤ 16

 2

X
=1

max


n

¯̄
 0


¯̄2o4 −1X

=1

∞X
=1

 ()
(−4)

= 
¡
−1

¢


Hence
°°° 1 P

=1 ()⊗ ( )
°°°2 =  (−1) and

°°° 1 P

=1 ()⊗ ( )
°°° = 

¡
−12

¢
by Chebyshev inequality. It follows that°°°̂̃̃

°°° =

°°°°° 1
X
=1

 − 1



X
=1



1



X
=1



°°°°°
≤

°°°°° 1
X
=1

()⊗ ( )

°°°°°+
°°°°° 1

X
=1



°°°°°
°°°°° 1

X
=1



°°°°°
= 

¡
−12

¢
+

¡
−12

¢


¡
−12

¢
= 

¡
−12

¢


Consequently, ||̂̃̃|| ≤ ||̂̃̃|| + ||̂̃̃|| = 

¡
−−12 + −12

¢
. This completes the

proof of (i).

(ii) The proof of (ii) is analogous to that of (i) and thus omitted.

(iii) Using the fact that
P

=1 ̃̃ =
1


P

=1 ̃ and by the triangle and Jensen

inequalities, °°°̂̃̃

°°°2 ≤ ( 1


X
=1

kk |̃|
)2
≤ 1



X
=1

kk2 1


X
=1

̃2

By (4.1)-(4.2),

1



X
=1

̃2 ≤
1



X
=1

2 =
1



X
=1

 0


£
0 ( )− 00 ( )

¤2 ≤ 2

1



X
=1

kk2 

Using the same arguments as used in the study of 31 in the proof of Lemma A.5 below,

we can show that  (max1≤≤ 1


P

=1

¡kk2 − kk2
¢ ≥ ) =  (−1)  It follows that



Ã
max
1≤≤

1



X
=1

kk2 ≥ 2̄
!
≤ 

Ã
max


 kk2 + max
1≤≤

1



X
=1

¡kk2 − kk2
¢ ≥ 2̄!

= 
¡
−1¢

where ̄ ≡ max kk2 ≤ (̄)2 under Assumption A1(iii). Then



Ã
max
1≤≤

1



X
=1

̃2 ≥ 2̄2

!
= 

Ã
max
1≤≤

1



X
=1

kk2 ≥ 2̄
!
= 

¡
−1¢  (B.1)
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By fact that k ()k ≤ 1 uniformly in  ∈ [0 1]  we have kk = k ⊗ ( )k =
kk k ( )k ≤ kk  It follows that



Ã
max
1≤≤

1



X
=1

kk2 ≥ 2̄
!
≤ 

Ã
max
1≤≤

1



X
=1

kk2 ≥ 2̄
!
= 

¡
−1¢ 

Consequently, we have



µ
max
1≤≤

°°°̂̃̃

°°° ≥ 2 (̄)2 

¶
= 

¡
−1¢  (B.2)

(iv) Now, we study the uniform probability order of
°°°̂̃̃

°°° Note that ̂̃̃ =
1


P

=1 

− 1


P

=1 
1


P

=1  Following analogous analysis of 31 in the proof of Lemma A.5 be-

low, we can show that for any   0



Ã
max
1≤≤

°°°°° 1
X
=1



°°°°° ≥ −12 (ln )3
!

= 
¡
−1¢ 



Ã
max
1≤≤

°°°°° 1
X
=1



°°°°° ≥ −12 (ln )3
!

= 
¡
−1¢ 



Ã
max
1≤≤

°°°°° 1
X
=1

[ − ()]

°°°°° ≥ −12 (ln )3
!

= 
¡
−1¢ 

These results, in conjunction with the fact that max1≤≤
°°° 1 P

=1 ()
°°° = 

¡
−12

¢


imply that 
³
max1≤≤

°°°̂̃̃

°°° ≥ −12 (ln )3
´
=  (−1)  ¥

Proof of Lemma A.5. (i) Using ̃ = ̃ 0vec(
0
 )+̃ we have vec(̃ − 0 ) = ̂−1̃̃̂̃̃ By

the fact kk = ||vec() || and kk = kksp ≤ kksp kk for any matrix  and conformable
vector , we have by Lemmas A.3(i) and A.4(iii)-(iv)

max
1≤≤

°°̃ − 0
°° = max

1≤≤

°°°̂−1̃̃̂̃̃

°°° ≤ 12 max
1≤≤

°°°°³̂̃̃

´−1°°°°
sp

max
1≤≤

°°°12̂̃̃

°°°
= 12 (1)  (1) = 

¡
12

¢


(ii) Recall that ̃2 =
1


P

=1[̃ − ̃ 0vec(̃)]
2 and ̄2 = −1

P

=1 (
2
). Noting that

̃ = ̃ 0vec(
0
 ) + ̃ we have

̃2 =
1



X
=1

[̃ + ̃ 0vec
¡
0 − ̃

¢
]2

=
1



X
=1

̃2 + vec
¡
0 − ̃

¢0 1


X
=1

̃̃
0
vec

¡
0 − ̃

¢
+ 2vec

¡
0 − ̃

¢0 1


X
=1

̃ 0̃

≡ 3 +4 +5 say.
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We prove the lemma by showing that (ii1)  (max1≤≤ |3 − ̄2 | ≥ ) = (−1) (ii2)
 (max1≤≤ |4| ≥ ) = (−1) and (ii3)  (max1≤≤ |5| ≥ ) = (−1) for any   0
Using ̃ = ̃ + ̃ as used in the proof of Lemma A.5, ̃ =  − 1



P

=1  and the

fact that
P

=1 ̃̃ =
P

=1 ̃ we have

3 − ̄2 =

Ã
1



X
=1

̃2 − ̄2

!
+
1



X
=1

̃2 +
2



X
=1

̃̃

=
1



X
=1

£
2 −

¡
2
¢¤−Ã 1



X
=1



!2
+
1



X
=1

̃2 +
2



X
=1

̃

≡ 31 −32 +33 + 234 say.

Let  =  (ln)
−0 for some 0  1Define 

(1)
 = 21− (21)  (2) = 21̄ and 

(3)
 =

 (21̄)  where 1 = 1 {2 ≤ } and 1̄ = 1−1 Then 31 =
1


P

=1(
(1)
 +

(2)
 −(3) )

Let 20 = max[Var(
(1)
 )+2

P

=+1 |Cov((1)  
(1)
 )|] Note that 20 ∞ under our mixing and

moment conditions in Assumption A1. By Bernstein inequality for strong mixing processes

(e.g., Theorem 2 in Merlevéde, Peligrad, and Rio 2009 or Lemma A.2 in Qian and Su 2016),

there exists a positive constant 0 such that for any   0



Ã
max
1≤≤

¯̄̄̄
¯ 1

X
=1


(1)


¯̄̄̄
¯ ≥ 

!
≤

X
=1



Ã¯̄̄̄
¯

X
=1


(1)


¯̄̄̄
¯ ≥ 

!

≤  exp

µ
− 0

22

20 + 2 +  (ln )
2

¶
= 

¡
−1¢ 

By Markov inequality, Lebesgue dominated convergence theorem, and Assumptions A1(iii)

and A2(i)



Ã
max
1≤≤

¯̄̄̄
¯ 1

X
=1


(2)


¯̄̄̄
¯ ≥ 

!
≤ 

µ
max
1≤≤

max
1≤≤

2  

¶

≤ 1


2



X
=1

X
=1


£|| 1©2  

ª¤
= 

¡
−1¢ 

where we use the fact that 2
−2
 = 2 1−2 (ln)02 =  (1) under Assumption

A2(i). In addition, 1


P

=1 
(3)
 ) ≤ max1≤≤ max1≤≤  (21̄) =  (1)  Consequently

 (max1≤≤ |31| ≥ ) =  (−1) for any   0Analogously, we can show that  (max1≤≤
|32| ≥ ) =  (−1) for any   0 By (B.1),



µ
max
1≤≤

|33| ≥ 

¶
= 

Ã
2 max

1≤≤
1



X
=1

kk2 ≥ 

!
= 

¡
−1¢ 

Similarly, we can show that



µ
max
1≤≤

|34| ≥ 

¶
= 

⎛⎝max
1≤≤

Ã
1



X
=1

2

!12(
1



X
=1

̃2

)12
≥ 

⎞⎠ =  (1) 
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In sum, we have  (max1≤≤ |3 − ̄2 | ≥ ) = (−1) This shows (ii1).
For (ii2)-(ii3), we observe that

max
1≤≤

|4| ≤ −1 max
1≤≤

max

³
̂̃̃

´
max
1≤≤

°°̃ − 0
°°2  and

max
1≤≤

|5| ≤ −12 max
1≤≤

°°°12̂̃̃

°°° max
1≤≤

°°̃ − 0
°° 

Then the results follow from Lemmas A.3(i) and A.4(iii). ¥

Proof of Lemma A.6. (i) Noting that 1{ ∈ ̂} = 1{ ∈ 0
}+ 1{ ∈ ̂ \0

}− 1{ ∈
0
 \ ̂}, we have


³
Q̂̃̃ − Q̄̃̃

´
=





X
∈̂\0

X
=1

̃̃
0
 −





X
∈0


\̂

X
=1

̃̃
0
 ≡ 1 −2 say.

For any   0, we have 
¡k1k ≥ −12

¢ ≤  (̂ ) → 0, and 
¡k2k ≥ −12

¢ ≤
 (̂ )→ 0 by Theorem 4.3. Thus ||(Q̂̃̃ − Q̄̃̃)|| = 

¡
−12

¢
and (i) follows.

(ii) By the definition of maximum and minimum eigenvalues, we have

max

³
Q̂̃̃

´
= sup

kκk=1
κ0
h
Q̄̃̃ +

³
Q̂̃̃ − Q̄̃̃

´i
κ ≤ max

¡
Q̄̃̃

¢
+
°°°Q̂̃̃ − Q̄̃̃

°°°  and
min

³
Q̂̃̃

´
= inf

kκk=1
κ0
h
Q̄̃̃ +

³
Q̂̃̃ − Q̄̃̃

´i
κ ≥ min

¡
Q̄̃̃

¢− °°°Q̂̃̃ − Q̄̃̃

°°° 
Using arguments analogous to those used in the proof of Lemma A.3(i), we can show

that there exist finite positive constants  and ̄ such that  ( ≤ min(Q̄̃̃) ≤
max(Q̄̃̃) ≤ ̄) → 1 Then (ii) follows by (i). ¥

Proof of Lemma A.7. (i) Noting that ̂
()

̃̃ =



P

=1 
2
 () ̃̃

0
 the proof is

analogous to that of Lemma A.3(i) and thus omitted. The major change is to replace 

by  () and apply Assumptions A3(ii)-(iii) in place of Assumptions A1(iii)-(iv). Note

that Lemma A.2(i) continues to hold when we replace  by  () in the statement.

(ii) Noting that Q̄()̃̃ =
1



P
∈0



P

=1 
2
 () ̃̃

0
 we can prove the claim by fol-

lowing the arguments used in the proof of Lemma A.3(i) and Assumptions A3(ii)-(iii). ¥

Proof of Lemma A.8. (i) First, by the properties of B-splines, and the fact that k⊗k =
kk kk and kck = 1

kck = k ()k kck =
(

0X
=−+1

 ()
2

)12
≤
(

0X
=−+1

 ()

)12
= 1

Since  () = 0 if  ∈ [ +), at most +1 of  ()’s are nonzero and sum up to one. It

follows that kck must be bounded from below by a positive constant and kck ³ 1 Using
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the inequality 0 ≥ min () 
0 repeatedly for conformable vector  and p.s.d. symmetric

matrix  and the fact that min (
−1) = [max ()]

−1
when  is nonsingular, we have by

Assumption A3 and Lemmas A.6-A.7

2c = 0c(Q̄̃̃)
−1 



P
∈0



̃ 0Σ
12
 Σ

12
 ̃(Q̄̃̃)

−1c

≥ 1


min

Ã




P
∈0



̃ 0Σ
12
 Σ

12
 ̃

!£
max(Q̄̃̃)

¤−2 kck2
≥ min

∈0


min ()min

Ã




P
∈0



̃ 0Σ̃

!£
max(Q̄̃̃)

¤−2 kck2
= min

∈0


min ()min

³
Q̄()̃̃

´ £
max(Q̄̃̃)

¤−2 kck2
& kck2 ³ 1 (B.3)

(ii) Recall that  = (1   )
0
 Let ̃ = (̃1  ̃ )

0 and  = (1   )
0
 Noting

that
P

=1 ̃̃ =
P

=1 ̃ = ̃ 0 = ̃ 0Σ
12
  we have

 = 0c(Q̄̃̃)
−1 1p



X
∈0



̃ 0Σ
12
  =

X
∈0





where  = { 1


0c(Q̄̃̃)
−1̃ 0Σ

12
 Σ

12
 ̃(Q̄̃̃)

−1c}12 and ’s are independent with
mean zero and variance one conditional on X ≡ {(1 )}  (c.f. Lemma A.8 in Huang,
Wu, and Zhou 2004). In view of the fact that  (|X ) = 0 it suffices to prove that


qP

∈0

2

→  (0 1) by verifying the Lindeberg condition:

max∈0

2P

∈0

2

=  (1)  (B.4)

Using the inequality 0 ≤ max () 
0 repeatedly for conformable vector  and p.s.d.

symmetric matrix  and the fact that max (
−1) = [min ()]

−1
when  is nonsingular, we

have by Lemmas A.6-A.7 and Assumptions A3 and A1(vi),

max
∈0



2 ≤



max
∈0



n
max

³
̃ 0Σ

12
 Σ

12
 ̃

´o
0c(Q̄̃̃)

−1(Q̄̃̃)
−1c

≤ 1



max
∈0



max ()max
∈0



max

³
̂

()

̃̃

´ £
min(Q̄̃̃)

¤−2 kck2
=

1



 ( ) (1) (1) =  () =  (1) 
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This, in conjunction with (B.3) and the fact that 2c =
P

∈0

2 , implies that

max∈0

2P

∈0

2

≤
1

max∈0


max ()max∈0 max

³
̂

()

̃̃

´ £
min(Q̄̃̃)

¤−2
min∈0


min ()min

³
Q̄()̃̃

´ £
max(Q̄̃̃)

¤−2
³ 1



max
∈0



max () =  () =  (1) 

That is, (B.4) is satisfied and the proof of the lemma is complete.

(iii) Let  =
1√



P
∈0


̃ 0Σ

12
  By straightforward moment calculation and

Chebyshev inequality, kk = 

¡
12

¢
Noting that ̂− = −0c(Q̂̃̃)

−1[(Q̂̃̃

−Q̄̃̃)](Q̄̃̃)
−1 and kck ≤ 1 we have¯̄̄

̂ −

¯̄̄
≤

¯̄̄
0c(Q̂̃̃)

−1
h
(Q̂̃̃ − Q̄̃̃)

i
(Q̄̃̃)

−1

¯̄̄
≤

°°°(Q̂̃̃)
−1
°°°
sp

°°°(Q̂̃̃ − Q̄̃̃)
°°°°°(Q̄̃̃)

−1°°
sp
kk

=  (1) 
¡
−12

¢
 (1)

¡
12

¢
=  (1) 

It follows that (̂ − )c =  (1) by (i). ¥

Proof of LemmaA.9. Let ̂ = ̄0c(Q̂̃̃)
−1 where  =

1√


P
∈0



P

=1 ̃̃

By Assumption A1 and Markov inequality,

1



X
∈0



X
=1

2 =
1



X
∈0



X
=1

n£
0 ( )− 0( )

¤0


o2
≤ 2

1



X
∈0



X
=1

kk2 = 

¡
2

¢


Next, let $∗ = (Q̂̃̃)
−1c Then by Lemma A.2,





X
∈0



X
=1

¯̄̄
0c(Q̂̃̃)

−1̃

¯̄̄2
=





X
∈0



X
=1

$∗0̃̃
0
$

∗

=




X
∈0



X
=1

∗ ( )
0


0
∗ ( )

=




X
∈0



X
=1

∗ ( )
0
 [

0
] ∗ ( ) {1 +  (1)}
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≤ ̄



X
=1

∗ ( )
0
∗ ( ) =

̄



X
=1

$∗0 ( ) ( )0$∗

³ $∗0
Z 1

0

 () ()
0
$∗ ³ k$∗k = k$∗ksp ≤

°°°(Q̂̃̃)
−1
°°°
sp
=  (1) 

Consequently, we have¯̄̄
̂

¯̄̄
≤ 1p



X
∈0



X
=1

¯̄̄
0c(Q̂̃̃)

−1̃

¯̄̄
||

≤
p


⎧⎨⎩ 



X
∈0



X
=1

¯̄̄
0c(Q̄̃̃)

−1̃

¯̄̄2⎫⎬⎭
12⎧⎨⎩ 1



X
∈0



X
=1

2

⎫⎬⎭
12

≤
p
 (1) ( ) =  (1) 

This completes the proof of the lemma. ¥

Proof of Lemma A.10. The proof is analogous to that of Lemma A.1 in Su, Shi, and

Phillips (2016). When  ≥ 0 we can follow the proof of Theorem 4.1 and show that

k̂ − 0 k =  (
−+12+−12+ (+1)2) for each  and 1



P

=1

Q

=1Π

=1 k0 − ̂k =

 (
−+2+  (+1)2−12) Noting that 0   = 1   only take 0 distinct values, the

latter implies that the collection {̂  = 1  } contains at least 0 distinct vectors, say,

̂(1)  ̂(0) such that ̂()−0 = −(−1)2 (
−+2 + (+1)2−12) =  (

−+12+
−12) for  = 1  0 For notational simplicity, we rename the other vectors in the

above collection as ̂(0+1)  ̂() As before, we classify  ∈ ̂ () if
°°̂ − ̂()

°° = 0
for  = 1  and  ∈ ̂0 () otherwise. Using arguments as used in the proof of

Theorem 4.3, we can show thatX
∈0




³
̂

´
=  (1) for  = 1  0 and

X
∈̂()


³
̂

´
=  (1) for  = 1 0

The first part implies that
P

=1  ( ∈ ̂0 () ∪ ̂0+1 () ∪  ∪ ̂ ()) =  (1) 

Let ̂ () = ̃ − ̃ 0vec
³
̂̂()

´
 Observe that

̂ () = ̃ − ̃ 0
̂̂() ( ) = ̃ − ̃ 0



h
̂̂() ( )− 0 ( )

i
 (B.5)

Using the fact that 1{ ∈ ̂} = 1{ ∈ 0
} + 1{ ∈ ̂\0

} − 1{ ∈ 0
\̂} we have

̂2
̂()

= 1


P

=1

P
∈̂()

P

=1 [̂ ()]
2
= 1 +2 −3 +4  where

1 =
1



0X
=1

X
∈0



X
=1

[̂ ()]
2
 2 =

1



0X
=1

X
∈̂()\0



X
=1

[̂ ()]
2


3 =
1



0X
=1

X
∈0


\̂()

X
=1

[̂ ()]
2
 and 4 =

1



X
=0+1

X
∈̂()

X
=1

[̂ ()]
2

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Following the proof of Theorem 4.4, we can show that ̂̂() ( )−0 ( ) =  (()
−12

)

for  = 1  0Using this and (B.5), we can readily show that1 = ̄2
0
+ (()

−1
)

For 2  3  and 4  we have that for any   0  (2 ≥ ()
−1

) ≤P0

=1  (̂ ) → 0  (3 ≥ ()
−1

) ≤ P0

=1  (̂ ) → 0 and  (4 ≥
()

−1
) ≤ P

=1  ( ∈ ∪0+1≤≤̂ ()) → 0 It follows that ̂2
̂()

= ̄2
0
+

 (()
−1
) for all 0 ≤  ≤ max¥

C Numerical Algorithm

Here, we follow Su, Shi, and Phillips (2014) and propose an iterative numerical algorithm to

obtain the estimates π̂ and ω̂. The iterative algorithm goes as follows:

1. Start with arbitrary initial values ω̂(0) = (vec(̂
(0)
1 )

0vec(̂(0)2 )
0 vec(̂(0) )

0)0 and π̂(0) =
(vec(̂

(0)
1 )

0vec(̂(0)2 )
0 vec(̂(0) )

0)0 such that
P

=1 k̂(0) − ̂
(0)

 k 6= 0 for each  =

2  . For example, one can simply let ̂
(0)
 = ̃ for  = 1   and set ̂

(0)

 ’s

to be either the zero vector or the average of ̂
(0)
 ’s.

2. In step  ≥ 1, given ω̂(−1) = (vec(̂(−1)1 )0 vec(̂(−1) )0)0 and π̂(−1) = (vec(̂(−1)1 )0 
vec(̂

(−1)
 )0)0, we first choose (π 1) to minimize


(1)

 (π 1) = 1 (π)+




X
=1

̃2−

°°°̃vec( − 1)
°°°× Y

 6=1

°°°̃vec(̂(−1) − ̂
(−1)
 )

°°° 
and obtain the updated estimate (π̂(1) ̂

()
1 ) of (π 1). Then, we choose (π 2) to

minimize


(2)

 (π 2) = 1 (π) +




X
=1

̃2−

°°°̃vec( − 2)
°°°°°°̃vec(̂(1) − ̂

()
1 )
°°°

×
Y

 6=12

°°°̃vec(̂(−1) − ̂
(−1)
 )

°°°
and obtain the updated estimate (π̂(2) ̂

()
2 ) of (π 2). Repeat this procedure until

(π ) is chosen to minimize


()

 (π 2) = 1 (π) +




X
=1

̃2−

°°°̃vec( − )
°°°−1Y

=1

°°°̃vec(̂() − ̂
()

 )
°°° 

to obtain the updated estimate (π̂() ̂
()

 ) of (π ). Let π̂
() = π̂() and ω̂() =

(vec(̂
()
1 )

0 vec(̂() )
0)0.
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3. Repeat step 2 until a convergence criterion is reach, e.g., whenP

=1

°°°() − 
(−1)


°°°2P

=1

°°°(−1)

°°°2 + 00001   and

P

=1

°°°() − 
(−1)


°°°2P

=1

°°°(−1)

°°°2 + 00001  

where  is some pre-specified tolerance level (e.g., 0.0001). Define the final (say ) it-

erative estimate ofω which satisfies the convergence criterion as ω̂ = (vec(̂
()
1 )0 vec(̂() )0)0

and the final estimate of π as π̂ = (vec(̂1)
0 vec(̂)0)0, where

̂ =

X
=1

̂
()

 1
n
̂
()
 = ̂

()

 for some  = 1 
o

+ ̂
()


"
1−

X
=1

1
n
̂
()
 = ̂

()

 for some  = 1  
o#

where 1 {·} denotes the indicator function. That is, individual  is classified to group
̂ if 

()
 = ̂

()

 for some  = 1 2 ; otherwise, it is left unclassified and we can

define ̂ as ̂
()
 .

We note that the objective function 
()

 (π ) is convex in (π ) in each substep 

of the th iteration. Therefore, the above iterative algorithm can be implemented with rapid

convergence in practice.

D Further Details on the Empirical Application

D.0.1 Estimation Results

When we fix the number of groups to be four, our C-Lasso method with  = 1 classifies the

91 economies into the following four groups:

• Group 1 (16 Economies): Belize, Botswana, China, Egypt, India, Indonesia, Japan, Ko-
rea, Luxembourg, Malaysia, Portugal, Puerto Rice, Saint Vincent and the Grenadines,

Seychelles, Singapore, Sri Lanka;

• Group 2 (31 Economies): Australia, Austria, Barbados, Belgium, Bermuda, Brazil,
Canada, Chile, Colombia, Costa Rica, Denmark, Dominican, Finland, France, Greece,

Hungary, Iceland, Israel, Italy, Lesotho, Morocco, Netherlands, Norway, Pakistan,

Paraguay, Spain, Sweden, Turkey, United Kingdom, United States, World;

• Group 3 (26 Economies): Algeria, Bahamas, Bangladesh, Benin, Burkina Faso, Cameroon,
Republic of the Congo, Ecuador, Fiji, Gabon, Guatemala, Guyana, Honduras, Kenya,

Malawi, Mexico, Nepal, Papua New Guinea, Panama, Peru, Philippines, Rwanda,

South Africa, Sudan, Trinidad and Tobago, Uruguay;
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• Group 4 (18 Economies): Burundi, Bolivia, Bolivarian Republic of Venezuela, Central
African Republic, Chad, Republic of Cote D’Ivoire, Democratic Republic of Congo,

Ghana, Madagascar, Mauritania, Niger, Nigeria, Nicaragua, Senegal, Sierra Leone,

Togo, Zambia, Zimbabwe.

Figure 4 in the paper depicts the estimated trends for the four estimated groups and

Figure 5 reports the realization of GDP per capita (logarithm and demeaned) and the trend

for each group. As shown in the figures, the first group contains 16 economies with fastest

growth rate of GDP per capita. Half of them are emerging Asian countries and the other

eight economies are from Africa (3), Europe (2), North America (2) and South America (1).

The trend of the second group is quite similar to the path of the whole world’s GDP per

capita. Most of the countries in the second group are developed countries with 20 out of

them being OECD countries. The third groups are countries with lower but still positive

growth rate. Most of these countries belong to Latin America and Africa, which either

have low GDP per capita or suffer from the “middle income trap”. The trend of the fourth

group is oscillating about the zero line, which means that the improvement of the GDP per

capita is negligible during the last half century. 15 out of 18 countries in group 4 are from

Africa, which may be the poorest countries in the world, while the other three are from Latin

America and suffer severely from the “middle income trap”.

Our results have some implications for economic modeling and testing. First, although

the estimated trend of the first group’s GDP per capita appear to be approximately linear,

the other three estimated trends appear to be nonlinear. Thus, when one tests panel unit

root against trend stationary processes, the setting of linear trends may suffer from model

misspecification problem and induces misleading results. Second, most of the developing

countries in Asia, which are generally classified to the first group, provide justifications for

the Neoclassical growth models’ implication of world-wide convergence, as the first group

grows faster than the second group, containing most of developed countries. However, this

is not the case for Latin America and Africa, which generally belong to the third and fourth

groups. Both the level and the growth rate of GDP per capita for countries from these

two continents are lower than those for the developed countries. As a result, the gap be-

tween these two continents and the developed countries is widened, i.e., it shows economic

divergence rather convergence. Third, although our data-driven classification exhibits some

geographic features, it can not be obtained based on geographic location. For example, such

Asian countries as Philippines and Bangladesh are classified into the third group. In addi-

tion, although most of the OECD countries are classified into the second group, there are

still some countries classified into the first (e.g., Japan, Korea, Luxembourg, and Portugal)

and the third (e.g., Mexico) groups. As a result, a classification based on some external

criterion such as continental location is inevitably misleading.
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