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Resource-Constrained Scheduling for Maritime Traffic Management

Lucas Agussurja, Akshat Kumar, Hoong Chuin Lau
{lagussurja, akshatkumar, hclau}@smu.edu.sg

School of Information Systems
Singapore Management University

Abstract

We address the problem of mitigating congestion and prevent-
ing hotspots in busy water areas such as Singapore Straits and
port waters. Increasing maritime traffic coupled with narrow
waterways makes vessel schedule coordination for just-in-time
arrival critical for navigational safety. Our contributions are:
1) We formulate the maritime traffic management problem
based on the real case study of Singapore waters; 2) We model
the problem as a variant of the resource-constrained project
scheduling problem (RCPSP), and formulate mixed-integer
and constraint programming (MIP/CP) formulations; 3) To
improve the scalability, we develop a combinatorial Benders
(CB) approach that is significantly more effective than stan-
dard MIP and CP formulations. We also develop symmetry
breaking constraints and optimality cuts that further enhance
the CB approach’s effectiveness; 4) We develop a realistic
maritime traffic simulator using electronic navigation charts
of Singapore Straits. Our scheduling approach on synthetic
problems and a real 55-day AIS dataset results in significant
reduction of the traffic density while incurring minimal delays.

1 Introduction

The Straits of Malacca and Singapore is one of the busiest
shipping areas in the world providing the shortest route be-
tween the Indian Ocean and the South China Sea. The vessel
traffic in Straits has been consistently increasing, with very
large container vessels (VLCC) one of the fastest growing
segments (Hand 2017). Congestion around busy port waters
critically affects safety of navigation as it limits manoeu-
vrability for large vessels, leads to increased cross traffic,
and requires vessels to frequently change course to avoid
other vessels (Segar 2015). Recently, several vessel collisions
causing oil spill in Straits have also threatened the environ-
ment (Lim 2017; Tan 2017). Therefore, our goal is to study
and develop maritime traffic coordination techniques to miti-
gate congestion and prevent hotspots for safety of navigation
in busy waterways such as Singapore Straits. The framework
and techniques we develop are fairly general and are also
applicable to other heavily trafficked ports.

The water area used as the case study, shown in figure 1, is
based on the e-navigation charts of the Straits. Different fea-
tures in this area include the traffic separation scheme (TSS)

Copyright c© 2018, Association for the Advancement of Artificial
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which is a set of mandatory one-direction routes designed
to reduce collision risk among vessels transitioning through
the Straits, and fairway where vessels may travel in any di-
rection. Other features include berths, anchorages, and pilot
boarding grounds. As fairway is relatively narrow, vessels
entering it require a local pilot onboard from pilot boarding
grounds. The water area is also divided into smaller zones
by dividing the TSS, fairway, and anchorages into smaller
parts. Such zones, also shown in figure 1, form the basis of
our scheduling approach.

We model each vessel as performing a sequence of ac-
tivities in TSS and fairway. Each such activity requires cer-
tain shared resources (e.g., physical sea space, pilots, berths
among others). The activity that directly affects congestion is
the navigation activity. For a vessel, the traversing of a zone
in the Straits/port waters is considered an activity. E.g., the
second activity of vessel 1 is navigating the zone 10EB in
figure 1. Each vessel is modeled as performing a sequence of
such navigation activities with no precedence relation with
other vessels. To improve safety of navigation, for each zone,
we limit the maximum number of vessels that can be simul-
taneously present in the zone. Such a limit can be directly
derived from data (e.g., by finding the maximum number of
vessels present at any instant in the zone from historical data),
or provided as parameter from domain experts. Our goal is to
optimize the schedule of vessels (when should each activity
start and end) such that different resource limits are respected
and the resulting schedule has maximum efficiency (or least
possible delay).

The above problem can be considered as a restricted vari-
ant of RCPSP (Kolisch and Hartmann 1999), with depen-
dency graph consisting of a set of linear dependencies per
vessel. Nevertheless, the problem is still challenging. There
is no lag/slack time between any two consecutive activities
as vessels cannot stop mid way during navigation. This can
seen as a special case of RCPSP/max with time lags set to
zero (Bartusch, Möhring, and Radermacher 1988). In con-
trast to fixed activity durations in RCPSPs, the vessels are
allowed to speed up or slow down on the TSS/fairway up to
certain limits depending on the zones. This translates to ac-
tivities having minimum and maximum durations, where the
actual durations are part of the decision variables—duration
of an activity directly translates into an average speed as the
length of the zone is known. This is the crucial difference
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Figure 1: Features within Singapore Straits and Port Waters
(only partial Straits/port waters shown). Solid black regions
are landmass

from an RCPSP where activity durations are either fixed or
follow some given distribution, whereas in our case, activity
durations are output of the scheduler.

Our contributions are as follows. First, we formalize the
maritime traffic management (MTM) problem based on the
real case study of Singapore waters and with inputs from
the maritime port authority (MPA) of Singapore. Second, We
model the problem as a variant of RCPSP, and formulate
mixed-integer and constraint programming (MIP/CP) formu-
lations for the MTM problem. The MIP formulation is an
extension of the event-based continuous-time formulation
of Koné et al. (2011) for RCPSP. However, extending this
formulation for the MTM problem requires using Big M con-
straints, which make the LP relaxation weak, and thus, the
resulting MIP is not scalable.

Our next main contribution is developing decomposition
approaches such as Benders (Benders 1962) and combinato-
rial Benders (CB) (Codato and Fischetti 2006) for the MTM
problem. Benders decomposition is a classical technique ap-
plied to several real world problems such as airline schedul-
ing (Merciera, Cordeau, and Soumis 2005) and network de-
sign (Marı́n and Jaramillo 2009). Empirically, it does not
work well for MTM due to big-M constraints in the subprob-
lem. Therefore, we adopt the CB technique that removes
dependence on big-M constraints. The CB approach has its
roots in logic-based Benders decomposition (Hooker and
Ottosson 2003). The vanilla cuts generated by the CB ap-
proach are relatively weak. To address this limitation, we
make several new contributions. We develop multiple types
of symmetry breaking constraints for the MTM problem that
significantly reduce the search space. We also develop addi-
tional optimality cuts for the CB’s subproblem to generate
much tighter combinatorial cuts by enhancing information
flow between the master and subproblems.

As a baseline approach, we also developed a CP formula-
tion of the MTM problem (illustrated in the extended version
of the paper). CP has been used in several scheduling applica-
tions such as for rail and air traffic management (Rodriguez
2007; Allignol et al. 2012). A key limitation of CP is that it is
unable to provide optimality gap when stopped prematurely,

which was indeed the case for several large MTM instances
where CP fails to terminate in 1 hr. In contrast, our CB-based
approach augmented with strong optimality cuts and sym-
metry breaking constraints is able to provably generate near
optimal solutions for several such problems. Furthermore, as
the problem size increases, the CB approach provides better
quality solutions than CP, showing the effectiveness of our
approach.

Our final contribution is a realistic maritime traffic simu-
lator using electronic navigation charts of Singapore Straits.
We use historical 55-day AIS data for Singapore Straits that
records the location of each ship within Straits and port wa-
ters at every 5 second interval over 55-days. We process this
data and extract several real MTM problem instances. Using
our scheduling technique, we show that we can significantly
reduce traffic density (to about 60% of current traffic) at the
expense of incurring marginal (≈10%) average delay to ships.
Thus, our work develops new computational approaches for
the MTM problem and demonstrates their significant practi-
cal impact in the real world setting.

2 Problem Formulation

The MTM problem is a bi-objective optimization problem,
where the first objective is minimizing congestion, and the
second is minimizing delay. These two objectives are contra-
dictory where minimizing one will increase the other. Taking
the route of turning one objective into a constraint, the prob-
lem can be formulated in two ways: (1) minimize delay sub-
ject to maximum congestion constraints (modeled as resource
capacities); (2) minimize congestion (resource consumption)
subject to delay constraints. We use the first because it suits
the application domain better, where safety (or congestion)
comes first (encoded as hard constraint) before efficiency
(objective). Empirically, we evaluate the tradeoff between the
two to better help regulators in setting the appropriate safety
level. Next, we detail the MIP formulation.

Let R be the set of resources. Examples of a resource
are an area of traversable sea space, an anchorage area, or
available pilots among others. Each resource r ∈ R has a
capacity Kr∈N. Let N be the set of n vessels. Each vessel
i ∈ N requires m activities to be carried out sequentially
without time lags between two consecutive activities (wlog
we assume m is the same for each vessel). Each vessel i
also has a release time si ≥ 0 which is the earliest start
time of its first activity. Let (i, j) denote the j-th activity
of vessel i, and A the set of all activities (|A| = nm). The
amount of resource r required by activity (i, j) is denoted
using aijr . Furthermore, each activity (i, j) has a minimum
and a maximum processing time, denoted by T ij

min and T ij
max

respectively.
Let E = {1, . . . , nm} be the set of events. Intuitively,

each event corresponds to the start or the end of at least
one activity (Koné et al. 2011). The first set of decision
variables is t = {te|e ∈ E}, where te denotes the time of
event e. The times of events are ordered sequentially, that
is, t1 ≤ . . . ≤ tnm. The second set of decision variables is
z={zije |(i, j)∈A, e∈E} where zije =1 iff activity (i, j) is
being carried out at te, and zije =0 otherwise. When express-
ing a constraint, the dummy variable zij0 or zijnm+1 might
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[P] min
n∑

i=1

Sim (2)

subject to:

∀(i, j)∈A :
nm∑
e=1

zije ≥1 (3)

∀(i, j)∈A, e∈E\{1} :
e−1∑
e′=1

zije′ ≤(e−1)
(
1−(zije −zije−1)

)
(4)

∀(i, j)∈A,e∈E\{1} :
nm∑
e′=e

zije′ ≤(nm−e+1)
(
1+(zije −zije−1)

)
(5)

∀(i, j)∈A|j �=m, e∈E :
e∑

e′=1

zij+1
e′ ≤(1−zije )e (6)

∀(i, j)∈A|j �=m, e∈E\{1} : zij+1
e ≥zije−1−zije (7)

∀e∈E, r∈R :

n∑
i=1

m∑
j=1

aij
r zije ≤Kr (8)

[auxiliary constraints (1)] (9)

∀i∈N, e∈E : starti1e =1⇒ te≥si (10)

∀i∈N, e∈E : startime =1⇒Sim≥ te (11)

∀(i, j)∈A, e,f ∈E|f >e : spanij
ef =1⇒ tf ≥ te+T ij

min (12)

∀(i, j)∈A|j �=m, e,f ∈E|f >e : spanij
ef =1⇒ tf ≤ te+T ij

max (13)

∀e∈E\{nm} : te+1≥ te (14)

∀(i, j)∈A, e∈E, i∈N : zije ∈{0, 1}, te∈R≥0, Sim∈R≥0 (15)

Table 1: MIP for the MTM problem

be used, in which case, its value is always 0 for any activ-
ity (i, j). We also define the following two sets of auxiliary
binary variables. The first set is {startije |(i, j)∈A, e∈ E}
where startije = 1 if (i, j) starts at e, otherwise zero. The
second set is {spanijef |(i, j)∈A, e∈E , f ∈E , e<f} where
spanijef = 1 if (i, j) starts at e and ends at f , otherwise zero.
We denote by X the set of all the auxiliary variables.

Auxiliary constraints:
∀(i, j) ∈ A, e ∈ E , f ∈ E , e < f,
startije ≤ zije spanij

ef ≤ startije
startije ≤ 1− zije−1 spanij

ef ≤ zijf−1

startije ≥ zije − zije−1 spanij
ef ≤ 1− zijf

startije , spanij
ef ∈{0, 1} spanij

ef ≥startije +zijf−1−zijf −1

(1)

The above constraint set (1) links the auxiliary X variables
with z. The variable startije is 1 iff zije−1 is 0 and zije is 1.
The spanijef is 1 iff activity (i, j) starts at event e and ends
at the event f . Let Sij be the start time of activity (i, j). We
have the following property of the objective function (proof
provided in the extended version):
Proposition 1. Minimizing the total delay over all the vessels
is equivalent to minimizing the sum of start times of the last
activity (Sim) of each vessel or

∑n
i=1 Sim.

We next describe constraints in the MIP of table 1. Con-
straint (3) ensures that all activities are assigned to some
events. Constraints (4) and (5) are the contiguity constraints
which make sure that an activity is assigned to a continuous

[SP] min

n∑
i=1

Sim (16)

subject to:
Constraints (10)-(14)
n∑

i=1

Sim ≤ UB(1− ε) (17)

∀e∈N, (i, j)∈A : te∈R≥0, Sim∈R≥0

Table 2: Subproblem LP for combinatorial Benders

block of events. Constraint (6) ensures that a vessel’s activi-
ties are scheduled sequentially, while constraint (7) ensures
that there is no slack time between two consecutive activities.
And the capacity constraint is given by (8). Conditional con-
straint (10) ensures that the first activity of each vessel starts
after its release time. Constraint (11) defines the start times of
the vessels’ last activities. Constraints (12) and (13) enforce
the minimum and maximum processing times of activities
respectively. Finally, constraint (14) ensures that the event
times are nondecreasing. Notice that the set of constraints can
be divided into three categories: Constraints (3)-(8) together
with the auxiliary constraints involve only binary variables,
Constraints (10)-(13) are conditional constraints where the
conditions consist of a single auxiliary variable, and the im-
plications are linear inequalities in the continuous variables,
and Constraint (14) involves only continuous variables.

One way to handle the conditional constraints (10)-(13)
is to linearize them using the big-M method. Big-M formu-
lations, however, are notoriously difficult to handle because
they typically have very loose LP relaxations. One may use
the classical Benders decomposition to remove the big-M in
the subproblem, but the resulting cuts still contain it which
make them very weak.

3 Combinatorial Benders Cuts

Similar to the classical Benders method, the problem [P]
is decomposed into the master problem [MP] and the sub
problem [SP]. In our case, [MP] is a constraint satisfaction
problem of finding a consistent activity-to-event assignment
z with respect to constraints (3)-(9) and the cuts generated so
far. It is a constraint satisfaction problem because the objec-
tive function in [P] does not contain any binary variable (Sim

is continuous). Given an activity-to-event assignment, specif-
ically the values of the auxiliary variables X , the subproblem
[SP] (the LP in table 2) is to assign times to the events while
minimizing the objective function. When the left hand side
of a conditional constraint in (10)-(13) is satisfied then the
right hand side inequality becomes active in the subproblem.
Constraint (17) is added to [SP] to incorporate optimality re-
quirements into the generated cuts, where UB is the objective
value of the current best solution, and ε is a sufficiently small
positive value less than 1.

A combinatorial cut is generated from an infeasible sub-
problem. For example, given an activity-to-event assignment
z for which [SP] is infeasible, a trivial cut can be generated
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by taking the variables on the left hand sides of all the active
conditional constraints and appending them into a single con-
straint. Let X (z) ⊆ X denotes the set of auxiliary variables
that become true (are assigned the value 1) given z. The cut
is given by

∑
x∈X (z) x≤|X (z)|−1. This trivial cut says that

the auxiliary variables X (z) can not be all true at the same
time. This cut is very weak because it cuts very few possible
assignments from the solution space of [MP] (if any at all
beside z). The idea of the combinatorial Benders cuts is to
generate a much shorter cut using the concept of irreducible
inconsistent subsystems (IISs). Given an infeasible system
of linear inequalities, an IIS is a subset of the inequalities
such that: (a) this subset is also infeasible and (b) removing
any inequality from the subset makes it feasible. Let φ be an
IIS of [SP], we denote by Xφ(z) ⊆ X (z) the set of auxiliary
variables which activate some conditional constraints in φ. A
combinatorial cut is of the form:∑

x∈Xφ(z)

x ≤ |Xφ(z)| − 1,

where in general, smaller φ generates stronger cut. Notice
that when [P] is feasible, φ must contain some conditional
constraints, otherwise, it implies that no assignment to the
continuous variables will make [SP] feasible regardless of z,
which is a contradiction. And since there can be many IISs
given an infeasible system, we can generate multiple cuts
from a single z.

The IIS generation method is based on the work of (Glee-
son and Ryan 1990) which state that given an infeasible
system of linear inequalities By ≥ d, the indices of its IISs
are exactly the supports of the vertices of the polyhedron
{π|πB = 0, πd = 1, π ≥ 0}, where π is the vector of dual
variables, each corresponding to one inequality in By ≥ d.
To generate an IIS, one can therefore solve the following LP:

minwπ s.t. π ∈ {π|πB = 0, πd = 1, π ≥ 0} , (18)

where w is the weight parameter and multiple IISs may be
generated by varying the value of w. Furthermore, w can be
used to derive an IIS with certain properties. We follow the
proposed method of (Parker and Ryan 1996) and (Bai and Ru-
bin 2009) of weighting variables corresponding to previous
found IISs more heavily to encourage the detection of IISs
with small overlaps. Initially, we start with the value w = 1,
in the hope of finding an IIS with a small cardinality. Note
that finding an IIS with the smallest cardinality is an MIP and
therefore is impractical for our purpose. Subsequently, we
set wc = 1 +Δqc where Δ > 0 and qc is the number of pre-
viously generated IISs containing the constraint associated
with the dual πc. Suitable values for Δ as well as the number
of cuts to be generated are found using trial and error.

The full procedure for solving the decomposed problem
is given in Algorithm 1. In the initialization phase (line 1),
the following are performed using heuristic solutions: (1) de-
termining the suitable number of events |E|, (2) determining
an initial upper bound, and (3) generating the initial set of
cuts. Although in the worst case, nm number of events are
needed to schedule nm activities (where the optimal solution
is scheduling all vessels sequentially), in a typical instance,
the number of events needed is much smaller. To determine

Algorithm 1: CB Decomposition for MTM

in :Γ=〈N ,A,R, {si}, {T ij
min}, {T ij

max}, {Kr}, {aij
r }〉

out :z, t
param :ε,Δ, k

1 E , UB, C ← INIT(Γ)
2 z′,X (z′) ← SOLVEMASTER([MP] ∪ C)
3 while z′ ∧ X (z′) �= {} do
4 // [MP] ∪ C is feasible
5 t′, obj ← SOLVESUB([RSP],X (z′))
6 if t′ = {} then
7 // generate k feasibility cuts
8 Φ ← {}
9 for k times do

10 φ ← SOLVEIIS([RSP],X (z′), Φ, Δ)

11 Φ ← Φ ∪
{∑

x∈Xφ(z′) x ≤ |Xφ(z
′)| − 1

}

12 C ← C ∪ Φ
13 else
14 if obj ≤ UB(1− ε) then
15 UB ← obj
16 (z, t) ← (z′, t′)
17 // generate k optimality cuts
18 Φ ← {}
19 for k times do

20 φ ← SOLVEIIS([SP],X (z′), Φ, Δ)

21 Φ ← Φ ∪
{∑

x∈Xφ(z′) x ≤ |Xφ(z
′)| − 1

}

22 C ← C ∪ Φ
23 z′,X (z′) ← SOLVEMASTER([MP] ∪ C)
24 // [MP] ∪ C is infeasible
25 return z,t

the number of events to be used, we generate a set of heuris-
tic solutions, and use the maximum number of events used
among these solutions as |E|. The best solution amongst these
is also used to set the initial value of UB, and finally, from all
the other solutions, optimality cuts are generated and added
to [MP] before starting the iteration phase.

In each iteration, we start by solving [MP] together with the
generated cuts so far (line 2 & 23). Given an activity-to-event
assignment z, we generate cuts by solving the IIS problem
defined by (18). The IIS problem is different depending on
whether we are generating a feasibility cut or an optimality
cut. We first solve the restricted subproblem [RSP] (line
5), which is [SP] with only constraints (10)-(14). If it is
infeasible, which means that there is no feasible assignment
of event times, we add feasibility cuts by generating the
IISs of [RSP] (line 8-12). On the other hand, if [RSP] is
feasible we check whether constraint (17) is violated. If it
is, optimality cuts are generated by finding IISs of the full
[SP] (line 18-22). If (17) is not violated, then a new current
best solution is found, in which case, the value of UB is
updated (line 15 & 16). This will make [SP] infeasible since
constraint (17) will now become false, and optimality cuts
are generated (line 18-22). This process continues until [MP]
becomes infeasible, in which case, the current best found
solution is within ε× 100% optimal.

In our implementation, rather than resolving [MP] repeat-
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edly, we solve a single [MP] and incorporate the cut genera-
tions within its branch-and-bound framework using CPLEX
callback functions. Whenever a feasible integer solution is
found, the search is interrupted and a process is run to solve
the corresponding IIS problems and generate cuts that are
then added back to [MP] before resuming the search. The
nodes that have been invalidated so far will remain invalid
since the added cuts only make the problem more constrained
by invalidating current node and potentially future nodes.
This has the benefit of cutting down the running time signif-
icantly by not revisiting nodes that have already been pro-
cessed in previous passes. (Bai and Rubin 2009) report sav-
ings between 3 to 6.5 times as much CPU time as compared
to resolving the master problem per iteration.

3.1 Strengthening Optimality Cuts

To further strengthen the optimality cuts generated by the
subproblem, we add the following constraints, which are
specific to the MTM problem, to [SP]:

∀i∈N, j∈ [1,m−1], e∈E : startije =1 ⇒ Sij ≥ te (19)

∀(i, j)∈A : Sij ≥ si +

j−1∑
j′=1

T ij′
min (20)

∀(i, j), (i′,j′)∈A; e, f ∈E|e≥f :

startije =1 ∧ starti
′j′
f =1⇒ Sij ≥ Si′j′ (21)

∀(i, j)∈A : Sij ∈R≥0

Constraint (19) defines the start time of activities. Notice
that in the original formulation [P], only the start times of the
last activities are defined. Here, we define the same for all the
other activities. Constraint (20) defines the minimum start
time of activities regardless of assignments to events. And
constraint (21) is a conditional constraint between any two ac-
tivities (i, j) and (i′, j′) that says that if (i, j) starts at a later
event than (i′, j′) then its start time should be later as well. To
illustrate how these constraints improve the optimality cuts,
consider the activity-to-event assignments given in Figure
2(a). Suppose that this assignment is feasible, and activity
(5,2) has an earliest start time of 10 and activity (2,2) has an
earliest start time of 5. Given this, vessel 2 will incur a delay
of at least 5. Suppose that this is the only delay and it violates
the optimality constraint (17), then the following optimality
cuts can be generated from the additional constraints:

{
start5,2e +start2,2f ≤ 1|e, f ∈ E , e < f

}
.

Notice that these cuts can not be generated from the original
constraints in [SP], since these auxiliary variables do not
appear in any of the original conditional constraints.

3.2 Symmetry-Breaking Constraints

Similar to many combinatorial optimization problems, sym-
metry occurs in our problem. Specifically, we refer to the
assignments of activities to events in the master problem
[MP], where two assignments are symmetric if both return
the same objective value when passed to the subproblem
[PSP]. Symmetries are problematic because they increase the
search space and algorithms like branch-and-bound/cut are

(a) base assignment (b) shift operations

(c) stretch operations (d) shrink operations

Figure 2: Example of equivalent assignments

particularly susceptible because a lot of efforts will be spent
on visiting symmetric states in the search tree. For recent
surveys on the subject, see (Gent, Petrie, and Puget 2006;
Margot 2010; Walsh 2012). Checking for and removing all
symmetric solutions are a hard problem in itself and at times,
might not be the best thing to do. In this section, we present
some static inequalities that are added to [MP] to remove a
large number of symmetric solutions. We start by defining a
set of operations on assignments, under which the optimal
value is preserved. We then present the inequalities that break
the symmetry defined by these operations. And finally, we
present a related constraint to strengthen the LP relaxation of
[MP].

Given an assignment z, we define the following operations
on z: shift, stretch and shrink. The shift operation takes a
non-overlapping subassignment and shifts it left or right with-
out creating new overlaps. The stretch operation takes the
assignment to an event and duplicates it to the right (left) and
shifts subsequent assignments to the right (left). The shrink
operation, which is the inverse of stretch, removes a duplicate
assignment from two consecutive events and “shrink” the rest
of the assignments. Figure 2 gives some examples of these
operations. Assignment 2(a) is used as the base. It has two
non-overlapping subassignments, one involving vessels 1, 3
and 4, and another, 2, 5, and 6. Assignment 2(b) is obtained
by shifting these subassignments around. Assignment 2(c) is
obtained by taking 2(b) and duplicating some events. Event
11 is duplicated twice to the left, event 5 once to the right
and event 3 once to the left. And finally, assignment 2(d)
is obtained by removing duplicate events in 2(c). Note that
these operations define equivalent classes, where two assign-
ments are in the same class if one can be reached from the
other with a series of these operations. We have the following
property.

Proposition 2. Let z and z′ be two assignments of activities
to events. If z and z′ belong to the same equivalent class
defined by the operations: shift, stretch and shrink, then the
subproblem [PSP] returns the same objective value for both.

Since assignments in the same class are symmetric to each
other, we only need to consider one assignment from each

6090



class during branch-and-bound. To do this, we add the fol-
lowing two global constraints to [MP]:

∀e∈E\{nm}:
n∑

i=1

m∑
j=1

zije+1≤n·
n∑

i=1

m∑
j=1

zije , (22)

∀e∈{0, . . . , nm}:
n∑

i=1

m∑
j=1

zije ⊕zije+1≥
1

n

n∑
i=1

m∑
j=1

zije , (23)

where ⊕ is the exclusive-or operation. Constraint (22) ensures
a left-shifted assignment, where an event has zero assignment
only if subsequent events have zero assignment as well. The
same effect can be obtained by ordering the variables during
search, which is a common technique in symmetry breaking.
Constraint (23) ensures that no consecutive events have the
same assignment except the zero assignment. Together, they
make only the “compact” assignment from each class feasi-
ble. The compact assignment is one that is left-shifted and
cannot be shrunk further. In the examples of Figure 2, only
assignment 2(a) is feasible given these constraints.

The left term of constraint (23) has an interesting inter-
pretation. For any event e, its value denotes the number of
activities that start or end at e+1. Given this, we can add the
following constraint to [MP] to strengthen its LP relaxation:

nm∑
e=0

n∑
i=1

m∑
j=1

zije ⊕ zije+1 = 2nm, (24)

which ensures that the total number of activity-start and end
in all events equals to twice the number of activities. It is
a valid equality cut because it doesn’t change the feasible
region of [MP], but it reduces that of its LP relaxation.
Proposition 3. Equality (24) is a valid and useful cut for the
master problem [MP].

4 Experimental Results

We perform experiments on both synthetic and real-world
instances. Synthetic instances are used to compare the per-
formance of different methods and formulations, while the
real-world instances are used to measure the effectiveness
and the tradeoff of using scheduling approach to mitigate
congestions within Singapore waters.

For each synthetic instance, we generate a semi-random
connected undirected graph where the edges of the graph
represent activities. For each vessel, we then generate a ran-
dom path of a fixed length through the graph. The length of
the path represents the number of activities. With each edge
in the path is associated a minimum and a maximum time
required to traverse the edge, which represent the minimum
and maximum processing time of the activity (which may be
different for every vessel). To each vessel is also associated
a release time. The base resources are the edge capacities
which denote the number of vessels that can be at any edge
at a given point of time. Additional resources are generated
by grouping a set of edges and setting a collective capacity
for the set (the maximum number of vessels that can be on
these edges at any point of time).

Using these synthetic instances, we compare the perfor-
mance of the combinatorial Benders approach (implemented
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(a) Plot for the busiest day
(03/13)

Date Average Delay (%)

(2014) 0.6C 0.5C 0.4C

03/02 5 14 39
03/03 7 20 37
03/04 6 14 35
03/05 4 17 35
03/06 5 19 36
03/07 6 14 32
03/08 7 19 39
03/09 5 16 38
03/10 6 19 39
03/11 4 16 37

(b) Results for the first 10 days

Figure 3: Capacity vs delay tradeoff

using CPLEX 12.7) against classical Benders decomposition
and the baseline CP approach (implemented using CP Opti-
mizer 12.7). As described in the previous section, classical
Benders suffers from the existence of big-M, which makes
the cuts very weak, and this is further confirmed in the experi-
ments. Even for medium size instances, the classical Benders
exhibits a degenerate behavior. Figure 4(a) shows the move-
ments of the upper and lower bounds of both combinatorial
Benders (CBC) and classical Benders (SBD) on a medium
size instance. It shows that while CBC manages to achieve
convergence within a few iterations, classical Benders fails
to converge even after more than 100 iterations. For compar-
isons with the baseline CP, three sets of synthetic instances
are generated by varying the number of vessels, the number
of activities and the number of additional resources.

The settings for the three sets of instances are as follows.
For all instances, the capacity of each edge is uniformly gen-
erated between 1-3, and the minimum time to traverse an
edge is sampled uniformly from [5sec, 10sec]. The maxi-
mum is set to twice the minimum. The release time of each
vessel is uniformly generated between 0-20 seconds, and
each activity consumes 1 unit of resources. For each setting,
10 instances are generated and the average values are taken.
Figures 4(b-c) show the comparison results for the three sets–
x-axis shows varying parameters, y-axis is the objective (2)
(lower is better). The CP solver is run for both 20 minutes
and 1 hour on each instance, while CBC is run for 1 hour.
The results show that on medium-size instances, CBC and
the baseline CP perform equally well. However, while the
baseline CP does not terminate within the time limit, CBC ter-
minates with proven 10% optimality gap (for instances with
variables marked by * on the x-axis). On larger instances,
CBC achieves around 10-15% improvement over CP, with
better quality with increasing number of vessels and number
of activities (figures 4(b,c)).

For real-world instances, we use 55-day historical AIS
data of vessels moving in Singapore waters from March 2nd
to April 25th, 2014, consisting of over 4 millions records. An
AIS record contains, among other things, a timestamp, vessel
unique ID, lat-long position, speed over ground, direction
and navigation status (e.g., at anchor, not under command,
etc.) An AIS transponder on-board sends a record every 2-10
seconds while the vessel is underway, and every 3 minutes

6091



����
����
����
����
����
	�

	���
	���
	���

	� 	� 	�� 	�� 	�� 	�� 	�� 	�� 	�� 	�� 	��



��
�
���
	
��
��
	
��
��
�

��������

���	�����	������
���	��� �	������
!�"	�����	������
!�"	��� �	������

(a) Convergence rate of CBC vs
SBD on a small instance
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(b) CBC vs CP with varying num-
ber of vessels
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(c) CBC vs CP with varying num-
ber of activities
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(d) CBC vs CP with varying num-
ber of additional resources

Figure 4: Performance comparison on synthetic data
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(a) Plot for the busiest day (03/13)
Date Scheduled Traffic (0.5C) Unscheduled Traffic

(2014) Min Max SD Min Max SD

03/13 - Thu 30.09 34.84 1.57 27.6 55.83 6.53
03/03 - Mon 28.52 34.45 1.61 25.85 55.03 5.8
03/21 - Fri 27.8 34.29 1.78 26.24 53.95 6.15
04/16 - Wed 28.38 32.75 1.25 25.81 54.27 6.7
04/17 - Thu 27.61 30.06 1.54 23.77 52.25 5.82

(b) Results for the top 5 busiest days

Figure 5: Comparison of traffic intensities.

at anchor. In this work, we consider only tankers and cargos,
which are the largest vessel types causing hotspots. From
the records of each day, we perform the following to create
scheduling instances. We first divide the day into 24 1-hour
periods, and group the vessels according to these periods. A
vessel belongs to a period if its first record on that day falls
within that period. Then, from the vessel set in one period, we
create an instance, where the activities of a vessel are inferred
from its records. The recorded length of an activity becomes
the minimum duration in the instance, and the maximum is
set to twice the minimum (i.e., a vessel can go twice as slow).
The earliest release time of a vessel is the timestamp of its first
record on that day. Resource capacity and requirement are
computed as follows. We identify the size (diameter) of the
smallest tankers/cargos u, and that becomes 1 unit of resource.
A vessel with the size of approximately 2u, for example, will
consume 2 units of space resources. A zone’s capacity is
set to the maximum recorded units, at any timepoint, over
all the records. A rolling-horizon approach is then used to
reschedule the vessels in a day, where we start by solving
the first-period instance. The second-period instance is then
solved by fixing the resulting schedule from the first instance
and so on.

The results are shown in Figures 3 and 5. In Figure 3,
we show the tradeoff between reducing capacities (and thus
congestion) and the incurred delay. The capacity parameter
determines the reduction in the zones’ capacities. E.g., at
0.5C, capacities of all zones are reduced by half (up to a
minimum which is required for any vessel to pass through
the zones). Figure 3(b) shows the average percentage of delay
over 24 periods for different capacity levels for the first 10
days (other 45 days show similar trends and are omitted). Fig-
ure 3(a) shows the plot for the busiest day (March 13th). An
important observation here is that delays are minimal until
0.6C capacity, which implies that schedule adjustment has
the potential to significantly reduce congestion with minimal
resulting delays. In Figures 5, we show how rescheduling
affects the traffic intensity in a day. Here the traffic intensity
is measured as the number of tankers/cargos within the plan-
ning area at any point of time. Figure 5(b) shows the min,
max and standard deviation (SD) of traffic intensity for the
5 busiest days. The scheduled traffic is with half capacity
(0.5C). It shows that by rescheduling, congestion can be sig-
nificantly reduced. Significantly lower standard deviations for
the scheduled traffic shows that peak traffic intensity is flat-
tened out. Figure 5(a) shows the plot of traffic intensities for
the busiest day, comparing unscheduled with scheduled traf-
fic. This figure further illustrates how intelligent rescheduling
effectively flattens traffic intensity over the day and thereby
reduces congestion.

5 Summary

In this paper, we address the problem of mitigating conges-
tion in a busy water area while minimizing average delay. We
formulate the maritime traffic management problem as a vari-
ant of RCPSP where activity durations, which translate into
average vessel speeds, also become decision variables unlike
the classical RCPSP. We explore both continuous-time event-
based MIP formulation and discrete-time CP formulation. To
solve the former, we apply a combinatorial Benders approach,
with stronger cuts and symmetry-breaking constraints. Em-
pirical results on synthetic instances show that combinatorial
Benders performs significantly better than classical Benders,
and is about 10-15% better than the CP model. On real-world
instances, the results confirm that using intelligent scheduling
can result in significant peak traffic reduction while incur-
ring minimal delay. We also developed a realistic maritime
simulator to analyze and visualize our approach and results.
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Bartusch, M.; Möhring, R. H.; and Radermacher, F. J. 1988.
Scheduling project networks with resource constraints and
time windows. Annals of Operations Research 16(1):199–240.
Benders, J. F. 1962. Partitioning procedures for solving
mixed-variables programming problems. Numerische Mathe-
matik 4(1):238–252.
Codato, G., and Fischetti, M. 2006. Combinatorial Ben-
ders’ cuts for mixed-integer linear programming. Operations
Research 54(4):756–766.
Cordeau, J.-F.; Stojkovic, G.; Soumis, F.; and Desrosiers,
J. 2001. Benders decomposition for simultaneous aircraft
routing and crew scheduling. Transportation Science 35(4):375–
388.
Gent, I. P.; Petrie, K. E.; and Puget, J.-F. 2006. Symmetry
in constraint programming. In Rossi, F.; van Beek, P.; and
Walsh, T., eds., Handbook of Constraint Programming. Elsevier.
329–376.
Gleeson, J., and Ryan, J. 1990. Identifying minimally infea-
sible subsystems of inequalities. ORSA Journal on Computing
2(1):61–63.
Hand, M. 2017. Malacca and S’pore Straits traffic
hits new high in 2016, VLCCs fastest growing segment.
http://www.seatrade-maritime.com/news/asia/malacca-and-
s-pore-strait-traffic-hits-new-high-in-2016-vlccs-fastest-
growing-segment.html.
Hooker, J. N., and Ottosson, G. 2003. Logic-based Benders
decomposition. Mathematical Programming 96:33–60.
Kolisch, R., and Hartmann, S. 1999. Heuristic algorithms for
the resource-constrained project scheduling problem: Clas-
sification and computational analysis. In Project Scheduling.
Springer US. 147–178.
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