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Decision Aids for Addressing the 
Validity-Adverse Impact Trade-Off

Paul R. Sackett, Wilfried De Corte, and Filip Lievens

Introduction

Typically, adverse impact (AI) is an after-the-fact analysis: Once predictor 
scores for a pool of applicants are available, AI is evaluated. Sometimes 
the analysis is made in real time, as predictor scores are obtained on a 
set of applicants, and AI calculations are done on a “what if” basis as 
input to decisions about features such as where to set a cutoff score. The 
focus of this chapter, however, is on attempts to estimate in advance the 
likely impact of a given selection system. Here, estimates are made based 
on available information about the features such as the expected mag-
nitude of subgroup differences, expected interpredictor correlations, 
and expected predictor-criterion correlations. Such information may be 
local (e.g., group differences observed the last time a predictor was used) 
or based on a more general research literature (e.g., group differences 
reported in publisher manuals or in the published literature for a given 
predictor type and a given job category).

These projections of AI and other outcomes are generally made in one 
of two ways. The first is via simulation, in which multiple samples of data 
are generated from populations with specified parameters (e.g., means, 
standard deviations [SDs], interpredictor rs, subgroup differences). Indices 
of interest (e.g., AI ratios [AIRs], proportion of positions filled by minority 
group members) are computed for each sample, and the distributions of 
these indices are tallied and examined. The second is via analytic solu-
tion, in which the outcomes of interest can be determined precisely via 
equation. For example, while one can determine the expected value of an 
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460	 Adverse Impact

AIR obtained if a selection device with a d of 1.0 SD is used with a selec-
tion ratio (SR) of 10% by drawing repeated random samples from a normal 
distribution, one can determine this more directly via the equation for the 
area under a normal curve. Simulations are more useful in settings for 
which an analytic solution is not available.

We use the standardized mean difference d as the index of group differ-
ences. This is the majority mean minus the minority mean divided by the 
pooled within-group standard deviation. This index expresses the group 
difference in standard deviation units, with zero indicating no difference, 
a positive value indicating a higher mean for the majority group, and a 
negative value indicating a higher mean for the minority group.

In this chapter, we summarize a number of decision aids for AI plan-
ning. These design tools address a range of applied questions. They fall 
into two major categories. The first involves those that focus solely on AI 
as an outcome. While these are useful for understanding the likely AI 
in a specific selection setting, they are silent regarding the consequences 
for other outcomes of attempts to reduce AI. The second involves those 
that focus on both AI and other outcomes, with the mean criterion perfor-
mance of those selected as the most common additional outcome. Studies 
in this second category permit examining trade-offs between AI and 
mean criterion performance (e.g., documenting the performance conse-
quences of setting a low cutoff score). In the remainder, we examine each 
category in turn.

Category 1: Approaches That Focus 
Solely on Adverse Impact

AI as a Function of d and SR

A basic starting point for insight into AI is a clear understanding of the 
major components that contribute to it. If top-down selection on a given 
score distribution (which may be a single predictor or a composite of 
multiple predictors) is used, and if normality assumptions are met, the 
expected value of the AIR is a function of the standardized mean differ-
ence d between the two groups of interest and the SR. The relationship 
among d, SR, and AI can then be derived from properties of the normal dis-
tribution. Tables showing this relationship were presented by Sackett and 
Wilk (1994) and expanded to a broader range of SRs by Sackett, Schmitt, 
Ellingson, and Kabin (2001). They presented separate tables for the effects 
of d and majority group SR on two outcomes: the minority group SR and 
the AIR. Table 17.1 integrates this information into a single table.
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Table 17.1

Minority Group Selection Ratios and Four-Fifths Ratios When the Majority 
Group Selection Ratio Is 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, or 99%

Standardized 
group 

difference (d)

Majority group selection ratioa

1% 5% 10% 25% 50% 75% 90% 95% 99%

0.0 .010 .050 .100 .250 .500 .750 .900 .950 .990
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.1 .008 .041 .084 .221 .460 .716 .881 .938 .987
.80 .82 .84 .88 .92 .95 .98 .99 .99

0.2 .006 .033 .069 .192 .421 .681 .860 .925 .983
.60 .66 .69 .77 .84 .91 .96 .97 .99

0.3 .004 .026 .057 .166 .382 .644 .837 .910 .978
.40 .52 .57 .66 .76 .86 .93 .96 .99

0.4 .003 .021 .046 .142 .345 .606 .811 .893 .973
.30 .42 .46 .57 .69 .81 .90 .94 .98

0.5 .002 .016 .038 .121 .309 .568 .782 .873 .966
.20 .32 .38 .48 .62 .76 .87 .92 .98

0.6 .002 .013 .030 .102 .274 .528 .752 .851 .957
.20 .26 .30 .41 .55 .70 .84 .90 .97

0.7 .001 .010 .024 .085 .242 .488 .719 .826 .947
.10 .20 .24 .34 .48 .65 .80 .87 .96

0.8 .001 .007 .019 .071 .212 .448 .684 .800 .936
.10 .14 .19 .28 .42 .60 .76 .84 .95

0.9 .001 .006 .015 .058 .184 .409 .648 .770 .922
.10 .12 .15 .23 .37 .54 .72 .81 .93

1.0 .000 .004 .011 .047 .159 .371 .610 .739 .907
.00 .08 .11 .19 .32 .49 .68 .78 .92

1.1 .000 .003 .009 .038 .136 .334 .571 .705 .889
.00 .06 .09 .15 .27 .45 .63 .74 .90

1.2 .000 .002 .007 .031 .115 .298 .532 .670 .869
.00 .04 .07 .12 .23 .40 .59 .71 .88

1.3 .000 .002 .005 .024 .097 .264 .492 .633 .846
.00 .04 .05 .10 .19 .35 .55 .67 .85

1.4 .000 .001 .004 .019 .081 .233 .452 .595 .821
.00 .02 .04 .08 .16 .31 .50 .63 .83

1.5 .000 .001 .003 .015 .067 .203 .413 .556 .794
.00 .02 .03 .06 .13 .27 .46 .59 .80

a	 Selection ratio = number of applicants hired/number of applicants applied. Per cell, two 
values are given. The first value refers to the minority group selection ratio. The second 
value in bold represents the four-fifths ratio (i.e., the minority group selection ratio/
majority group selection ratio). Tabled values in bold less than .80 represent scenarios 
that violate the four-fifths rule.

Add leading zeros in 
table if appropriate.
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This table illustrates a variety of useful general principles. First, at a 
given d, the AIR increases as SR increases. This is certainly a well-known 
result, but the table is useful in making clear the magnitude of this effect. 
For example, with d = .5, the AIR ranges from .20 at a majority SR of 1% 
to .62 at a majority SR of 50% to .98 at a majority SR of 99%. Of course, 
as SR approaches 100%, subgroup SRs must converge, and the AIR must 
approach 1.0. Second, at a given SR, the AIR increases as d increases. This 
is also a well-known result; again, the table is useful in making clear the 
magnitude of the relationship. Third, the table illustrates the combination 
of SRs and d values that results in a violation of the four-fifths rule. For 
small d values (e.g., .1 to .2), the four-fifths rule is violated only when SR 
is less than 50%. For d values larger than .5, the four-fifths rule will be 
violated unless SR is very large, typically 90% or higher.

This decision aid can help project the likely effects of using a particular 
predictor with a particular SR. It permits addressing questions such as, 
If d could be reduced by adding additional valid predictors with lower 
d, how much change from the current d would be needed to avoid violat-
ing the four-fifths rule? or How large a change from a planned SR would 
be needed to avoid violating the four-fifths rule? Other similar questions 
might focus on target levels other than the four-fifths rule, such as, How 
much of a change from the current d would be needed to improve the AIR 
by a specified magnitude?

The discussion to this point has dealt with expected values of the AIR. 
However, given the small-to-modest sizes of applicant pools in many set-
tings, it is certainly possible for a given sample to deviate from the popula-
tion value. The AIR, like any sample statistic, has a sampling distribution, 
and De Corte and Lievens (2005) extended the work with an explicit treat-
ment of this sampling distribution. They presented the relevant equations 
and offered illustrative examples. Table 17.2 shows the distribution of AIRs 
for various d values for the situation in which there are 300 applicants, a 
10% SR, and 20% of the applicant pool is from the minority group. The 
table shows each possible AIR value as well as the likelihood of obtaining 
an AIR value of that magnitude or lower. For example, it shows that even 
if d were .00, such that we would expect no AI, the AIR would drop below 
80% for 24.2% of samples. Note that large deviations from the expected 
value are more likely when a small minority applicant pool is paired with 
a small SR. Further exploration of the sampling variability in AI can be 
found in the work of Roth, Bobko, and Switzer (2006).

While the discussion to this point has focused on the AIR as the outcome 
of interest, AI is sometimes operationalized as a finding that the differ-
ence in selection rates for the two groups of interest is statistically signifi-
cant. De Corte and Lievens also extended prior work by examining the 
probability with which a planned selection using a predictor with a given 
effect size d will result in a selection outcome that reflects AI according 

Provide a reference.

to Fisher’s exact test. They referred to this probability as the risk of AI. 
For both extensions (examining the sampling distribution of the AIR and 
assessing the risk of AI), De Corte and Lievens offered the needed equa-
tions and illustrative examples as well as a flexible computer program 
permitting the user to input values of specific interest. The program can 
be downloaded from the Internet at http://users.ugent.be/~wdecorte/
software.html. This site also offers access to most of the other programs 
that are mentioned in this chapter.

Prospects for Reducing d by Adding Additional Low-d Predictors

One potential strategy for reducing AI is to supplement a high-d predictor 
with one or more additional predictors with lower d. Sackett and Ellingson 
(1997) offered a set of formulas that permit an estimation of the expected 
effect of supplementing an existing predictor with additional predictors. 
They offered the following formula for determining the degree of group 
differences present when two or more predictors are combined to form an 
equally weighted composite:
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This table illustrates a variety of useful general principles. First, at a 
given d, the AIR increases as SR increases. This is certainly a well-known 
result, but the table is useful in making clear the magnitude of this effect. 
For example, with d = .5, the AIR ranges from .20 at a majority SR of 1% 
to .62 at a majority SR of 50% to .98 at a majority SR of 99%. Of course, 
as SR approaches 100%, subgroup SRs must converge, and the AIR must 
approach 1.0. Second, at a given SR, the AIR increases as d increases. This 
is also a well-known result; again, the table is useful in making clear the 
magnitude of the relationship. Third, the table illustrates the combination 
of SRs and d values that results in a violation of the four-fifths rule. For 
small d values (e.g., .1 to .2), the four-fifths rule is violated only when SR 
is less than 50%. For d values larger than .5, the four-fifths rule will be 
violated unless SR is very large, typically 90% or higher.

This decision aid can help project the likely effects of using a particular 
predictor with a particular SR. It permits addressing questions such as, 
If d could be reduced by adding additional valid predictors with lower 
d, how much change from the current d would be needed to avoid violat-
ing the four-fifths rule? or How large a change from a planned SR would 
be needed to avoid violating the four-fifths rule? Other similar questions 
might focus on target levels other than the four-fifths rule, such as, How 
much of a change from the current d would be needed to improve the AIR 
by a specified magnitude?

The discussion to this point has dealt with expected values of the AIR. 
However, given the small-to-modest sizes of applicant pools in many set-
tings, it is certainly possible for a given sample to deviate from the popula-
tion value. The AIR, like any sample statistic, has a sampling distribution, 
and De Corte and Lievens (2005) extended the work with an explicit treat-
ment of this sampling distribution. They presented the relevant equations 
and offered illustrative examples. Table 17.2 shows the distribution of AIRs 
for various d values for the situation in which there are 300 applicants, a 
10% SR, and 20% of the applicant pool is from the minority group. The 
table shows each possible AIR value as well as the likelihood of obtaining 
an AIR value of that magnitude or lower. For example, it shows that even 
if d were .00, such that we would expect no AI, the AIR would drop below 
80% for 24.2% of samples. Note that large deviations from the expected 
value are more likely when a small minority applicant pool is paired with 
a small SR. Further exploration of the sampling variability in AI can be 
found in the work of Roth, Bobko, and Switzer (2006).

While the discussion to this point has focused on the AIR as the outcome 
of interest, AI is sometimes operationalized as a finding that the differ-
ence in selection rates for the two groups of interest is statistically signifi-
cant. De Corte and Lievens also extended prior work by examining the 
probability with which a planned selection using a predictor with a given 
effect size d will result in a selection outcome that reflects AI according 

to Fisher’s exact test. They referred to this probability as the risk of AI. 
For both extensions (examining the sampling distribution of the AIR and 
assessing the risk of AI), De Corte and Lievens offered the needed equa-
tions and illustrative examples as well as a flexible computer program 
permitting the user to input values of specific interest. The program can 
be downloaded from the Internet at http://users.ugent.be/~wdecorte/
software.html. This site also offers access to most of the other programs 
that are mentioned in this chapter.

Prospects for Reducing d by Adding Additional Low-d Predictors

One potential strategy for reducing AI is to supplement a high-d predictor 
with one or more additional predictors with lower d. Sackett and Ellingson 
(1997) offered a set of formulas that permit an estimation of the expected 
effect of supplementing an existing predictor with additional predictors. 
They offered the following formula for determining the degree of group 
differences present when two or more predictors are combined to form an 
equally weighted composite:Indicate mathematical 

notation for the 
formula.

Table 17.2

Sampling Distribution Function of the AI Ratio When 
Selecting 30 Candidates From a Total of 300 
Applicants (60 Minority and 240 Majority Candidates) 
Using a Selection Test With Population Mean 
Difference Equal to 0, 0.2, 0.5, and 1.0

Population mean difference

J K AI ratio δ = 0.0 δ = 0.2 δ = 0.5 δ = 1.0

0 30 0.000 0.001 0.007 0.058 0.394
1 29 0.138 0.008 0.044 0.237 0.770
2 28 0.286 0.037 0.146 0.495 0.940
3 27 0.444 0.110 0.321 0.732 0.988
4 26 0.615 0.242 0.532 0.885 0.998
5 25 0.800 0.420 0.725 0.960 1.000
6 24 1.000 0.609 0.862 0.988 1.000
7 23 1.217 0.770 0.942 0.997 1.000
8 22 1.455 0.883 0.979 0.999 1.000
9 21 1.714 0.949 0.994 1.000 1.000

10 20 2.000 0.981 0.998 1.000 1.000
11 19 2.316 0.994 1.000 1.000 1.000
12 18 2.667 0.998 1.000 1.000 1.000
13 17 3.059 1.000 1.000 1.000 1.000

Note:	 J indicates the number of selected minority applicants. 
K indicates the number of selected majority applicants

Leading zeros correct 
throughout table?
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where di indicates the d value for each predictor included in the composite, 
k indicates the number of predictors combined to form the composite, and 
rii indicates the average correlation between the predictors included in the 
composite. The equation for d reduces to the following when only two 
predictors are combined to form a composite:

	 d d d
r

= +
+

1 2

122 2

where d1 indicates the d value of the first predictor, d2 indicates the d value 
of the second predictor, and r12 indicates the correlation between the two 
predictors. Table 17.3 presents the d values that would be observed when 
two predictors are combined to form a composite. The two factors that 
influence composite d (i.e., the summation of standardized difference 

scores for each predictor and the correlation between the two predictors) 
are systematically varied.

A review of Table 17.3 reveals a number of trends. First, holding sum of d 
constant, as the correlation between the two predictors increases, the level 
of composite d decreases. When two predictors become more highly cor-
related, they share increasing amounts of common variance. Combining 
two such predictors in a composite creates additional common variance, 
which produces decreased group differences. Second, Table 17.3 demon-
strates that, in certain contexts, supplementing a predictor with a large 
d with another predictor with a smaller d actually produces a composite 
with a larger d than either of the individual predictors. Third, in discus-
sions about this issue we find that the intuition of many of our colleagues 
is that the d for a composite of two predictors will be approximated by 
“splitting the difference” between the d values for the two predictors (e.g., 
a composite of a predictor with a d of 1.0 and another with a d of 0.0 will 
have a d of .5). Particularly when the correlation between the predictors is 
low, this intuition will severely underestimate the composite d (e.g., in the 
example, with two uncorrelated predictors, the composite d will actually 
be .71). Thus, the degree to which group differences, and subsequently AI, 
can be reduced by supplementing a predictor with a large d with a second 
predictor with a small d may be commonly overestimated.

Sackett and Ellingson (1997) also showed that adding additional supple-
mental measures has diminishing returns. For example, when d1 = 1.0 and 
each additional measure is uncorrelated with the original measure and 
has d = 0.0, the composite d values when adding a second, third, fourth, 
and fifth measure are .71, .58, .50, and .45, respectively. Finally, they also 
offered an expanded equation for composite d when differing weights are 
applied to the predictors.

While the approaches discussed thus far shed light on the features driv-
ing AI, they are silent regarding the effects of modifying a selection sys-
tem to reduce AI on mean criterion performance. We turn now to a set of 
decision aids that do attend to both AI and performance.

Category 2: Focus on Both AI and Criterion 
Performance as Outcome

Estimating AI and Other Selection Outcomes for 
Single-Stage and Multistage Selection

De Corte and Lievens (2003) and De Corte, Lievens, and Sackett (2006) 
described analytic procedures that enable selection researchers and 

Table 17.3

Standardized Group Differences (d) for Two Predictors Combined to Form a 
Composite

Sum of 
ds

Correlation between the two predictors

.00 .10 .20 .30 .40 .50 .60 .70 .80 .90 1.0

0.0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
0.2 .14 .13 .13 .12 .12 .12 .11 .11 .11 .10 .10
0.4 .28 .27 .26 .25 .24 .23 .22 .22 .21 .21 .20
0.6 .42 .40 .39 .37 .36 .35 .34 .33 .32 .31 .30
0.8 .57 .54 .52 .50 .48 .46 .45 .43 .42 .41 .40
1.0 .71 .67 .65 .62 .60 .58 .56 .54 .53 .51 .50
1.2 .85 .81 .77 .74 .72 .69 .67 .65 .63 .62 .60
1.4 .99 .94 .90 .87 .84 .81 .78 .76 .74 .72 .70
1.6 1.13 1.08 1.03 .99 .96 .92 .89 .87 .84 .82 .80
1.8 1.27 1.21 1.16 1.12 1.08 1.04 1.01 .98 .95 .92 .90
2.0 1.41 1.35 1.29 1.24 1.20 1.15 1.12 1.08 1.05 1.03 1.00
2.2 1.56 1.48 1.42 1.36 1.31 1.27 1.23 1.19 1.16 1.13 1.10
2.4 1.70 1.62 1.55 1.49 1.43 1.39 1.34 1.30 1.26 1.23 1.20
2.6 1.84 1.75 1.68 1.61 1.55 1.50 1.45 1.41 1.37 1.33 1.30
2.8 1.98 1.89 1.81 1.74 1.67 1.62 1.57 1.52 1.48 1.44 1.40
3.0 2.12 2.02 1.94 1.86 1.79 1.73 1.68 1.63 1.58 1.54 1.50

Note:	 Sum of d = the d value for one predictor + the d value for the second predictor.

Use leading zeros in 
table if appropriate., as 
they seem to be for all 
columns after the first.
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scores for each predictor and the correlation between the two predictors) 
are systematically varied.

A review of Table 17.3 reveals a number of trends. First, holding sum of d 
constant, as the correlation between the two predictors increases, the level 
of composite d decreases. When two predictors become more highly cor-
related, they share increasing amounts of common variance. Combining 
two such predictors in a composite creates additional common variance, 
which produces decreased group differences. Second, Table 17.3 demon-
strates that, in certain contexts, supplementing a predictor with a large 
d with another predictor with a smaller d actually produces a composite 
with a larger d than either of the individual predictors. Third, in discus-
sions about this issue we find that the intuition of many of our colleagues 
is that the d for a composite of two predictors will be approximated by 
“splitting the difference” between the d values for the two predictors (e.g., 
a composite of a predictor with a d of 1.0 and another with a d of 0.0 will 
have a d of .5). Particularly when the correlation between the predictors is 
low, this intuition will severely underestimate the composite d (e.g., in the 
example, with two uncorrelated predictors, the composite d will actually 
be .71). Thus, the degree to which group differences, and subsequently AI, 
can be reduced by supplementing a predictor with a large d with a second 
predictor with a small d may be commonly overestimated.

Sackett and Ellingson (1997) also showed that adding additional supple-
mental measures has diminishing returns. For example, when d1 = 1.0 and 
each additional measure is uncorrelated with the original measure and 
has d = 0.0, the composite d values when adding a second, third, fourth, 
and fifth measure are .71, .58, .50, and .45, respectively. Finally, they also 
offered an expanded equation for composite d when differing weights are 
applied to the predictors.

While the approaches discussed thus far shed light on the features driv-
ing AI, they are silent regarding the effects of modifying a selection sys-
tem to reduce AI on mean criterion performance. We turn now to a set of 
decision aids that do attend to both AI and performance.

Category 2: Focus on Both AI and Criterion 
Performance as Outcome

Estimating AI and Other Selection Outcomes for 
Single-Stage and Multistage Selection

De Corte and Lievens (2003) and De Corte, Lievens, and Sackett (2006) 
described analytic procedures that enable selection researchers and 

If incorrect, provide 
reference.
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practitioners to explore the consequences in terms of several key outcomes 
of single- and multistage selection decisions. These procedures extend 
earlier related work by Cronbach and Gleser (1965) to the case for which 
applicants belong to several subpopulations with different mean predictor 
and performance structures. The procedures build on and generalize from 
earlier work by Tallis (1961) and Muthen (1990). They focused on the pro-
totypic scenario that the Standards for Educational and Psychological Testing 
(American Educational Research Association, American Psychological 
Association, & National Council on Measurement in Education [AERA, 
APA, & NCME], 1999) labeled as “fixed applicant pool.” In this scenario, 
the organization has information on the size and makeup of the appli-
cant pool and considers using several predictors with known effect sizes, 
validities, and intercorrelation values to select the required number of 
applicants. Because single-stage selection is a special case of the more 
general multistage selection decisions, only the latter type of decisions 
are henceforth considered.

When planning a fixed-pool multistage selection system in which the 
applicants belong to different populations, a variety of decisions are to 
be made, each of which affects the selection cost, the mean performance 
of those selected, and the minority hiring rate. The first is determining 
which predictors to administer at an initial stage and which to administer 
at subsequent stages. The second relates to the proportion of the pool that 
will advance to subsequent stages in the selection procedure. The third is 
determining how final selection decisions should be made. Here, the key 
decision is whether the predictors used in initial screening also play a part 
in the final selection decision (i.e., if A is administered at Stage 1 and B at 
Stage 2, is the final selection done on the basis of B only or on A + B?).

The analytical procedure described by De Corte et al. (2006) is designed 
to assist the selection practitioner in making these decisions. Compared 
to the simulation approach proposed by Doverspike, Winter, Healy, and 
Barrett (1996), which may serve the same purpose, the analytical procedure 
is more flexible and permits dealing with the common situation in which 
only approximate values for some or most of the decision parameters (e.g., 
the predictor validities, effect sizes, and intercorrelations) are available. 
Also, whereas the results of the simulation method vary over repeated 
applications on the same input data, the analytical method always results 
in the same point estimate.

To illustrate the potential of the analytical procedure, we consider a situ-
ation in which the applicant population is a mixture of white and black 
candidate populations (with mixture proportions of .80 and .20, respec-
tively) and four predictors are available (i.e., biodata [BI], a cognitive ability 
test [CA], a measure of conscientiousness [CO], and a structured interview 
[SI]). Table  17.4 displays the input parameter data for the predictor and 
criterion (i.e., task performance) mean subgroup differences, the predictor 

validities, and the predictor intercorrelation values. The reported data 
correspond to the meta-analytic values provided by Potosky, Bobko, and 
Roth (2005) and to estimates obtained from Cortina, Goldstein, Payne, 
Davison, and Gilliland (2000); Ployhart, Weekley, Holtz, and Kemp (2003); 
and Dalessio and Silverhart (1994).

With these input parameter data in hand, the selection practitioner may 
now explore the likely consequences of alternative courses of action. For 
example, the practitioner may contrast, for a planned two-stage selec-
tion with equal selection rates of .5 in the stages, (a) the usage of the unit-
weighted composite of the low-impact predictors (i.e., SI and CO) in the 
first stage followed by the unit-weighted composite of the high-impact pre-
dictors (i.e., CA and BI) in the second stage (Scenario 1) with (b) the reverse 
approach in which the initial selection is based on the unit weighted high-
impact predictor composite, and the unit-weighted low-impact composite 
is used in the second stage (Scenario 2). Other possibilities, such as giving 
zero weight to one or more predictors, can also be explored. The expected 
effect of using regression-weighted composites instead of unit-weighted 
composites in Scenarios 1 and 2, leading to the Scenarios 3 and 4, respec-
tively, as well as the expected merits of a single-stage approach in which 
either the unit-weighted or the regression-based composite of all four pre-
dictors is used with a selection rate of .25 (i.e., Scenarios 5 and 6), may also 
be of interest.

Table 17.5 summarizes the results in terms of AI and average criterion 
performance of the six previously described scenarios. As expected, these 
results reveal that scenarios in which regression-based composites are 
used result in a higher average quality of the selected candidates and 
in a somewhat less-favorable AIR than comparable scenarios with unit-
weighted composites (cf. Scenario 1 vs. 3 and Scenario 2 vs. 4). Also, com-
paring the results of Scenarios 1 and 2 to those of Scenario 5 and the results 
of Scenarios 3 and 4 to those of Scenario 6, it is again quite natural to find 
that the single-stage Scenarios 5 and 6, which use all the available predic-
tor information at once, show a higher expected criterion score for the 
selected applicants than their two-stage counterparts. Alternatively, the 
comparison of Scenario 1 with Scenario 2 and the comparison of Scenario 

Y100250_C017.indd   466 3/20/09   3:16:24 PM



Decision Aids for Addressing the Validity-Adverse Impact Trade-Off	 467

validities, and the predictor intercorrelation values. The reported data 
correspond to the meta-analytic values provided by Potosky, Bobko, and 
Roth (2005) and to estimates obtained from Cortina, Goldstein, Payne, 
Davison, and Gilliland (2000); Ployhart, Weekley, Holtz, and Kemp (2003); 
and Dalessio and Silverhart (1994).

With these input parameter data in hand, the selection practitioner may 
now explore the likely consequences of alternative courses of action. For 
example, the practitioner may contrast, for a planned two-stage selec-
tion with equal selection rates of .5 in the stages, (a) the usage of the unit-
weighted composite of the low-impact predictors (i.e., SI and CO) in the 
first stage followed by the unit-weighted composite of the high-impact pre-
dictors (i.e., CA and BI) in the second stage (Scenario 1) with (b) the reverse 
approach in which the initial selection is based on the unit weighted high-
impact predictor composite, and the unit-weighted low-impact composite 
is used in the second stage (Scenario 2). Other possibilities, such as giving 
zero weight to one or more predictors, can also be explored. The expected 
effect of using regression-weighted composites instead of unit-weighted 
composites in Scenarios 1 and 2, leading to the Scenarios 3 and 4, respec-
tively, as well as the expected merits of a single-stage approach in which 
either the unit-weighted or the regression-based composite of all four pre-
dictors is used with a selection rate of .25 (i.e., Scenarios 5 and 6), may also 
be of interest.

Table 17.5 summarizes the results in terms of AI and average criterion 
performance of the six previously described scenarios. As expected, these 
results reveal that scenarios in which regression-based composites are 
used result in a higher average quality of the selected candidates and 
in a somewhat less-favorable AIR than comparable scenarios with unit-
weighted composites (cf. Scenario 1 vs. 3 and Scenario 2 vs. 4). Also, com-
paring the results of Scenarios 1 and 2 to those of Scenario 5 and the results 
of Scenarios 3 and 4 to those of Scenario 6, it is again quite natural to find 
that the single-stage Scenarios 5 and 6, which use all the available predic-
tor information at once, show a higher expected criterion score for the 
selected applicants than their two-stage counterparts. Alternatively, the 
comparison of Scenario 1 with Scenario 2 and the comparison of Scenario 
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Table 17.4

Standardized Mean Differences, Validities, and Intercorrelations 
for a Planned Selection System

Predictors d Validity Intercorrelation matrix

1. Cognitive ability (CA) 0.72 0.51
2. Structured interview (SI) 0.31 0.48 0.31
3. Conscientiousness (CO) 0.06 0.22 0.03 0.26
4. Biodata (BI) 0.57 0.32 0.37 0.17 0.31

Eliminate numbers if 
unnecessary.

Eliminate leading zeros 
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3 with 4 suggest the less-intuitive finding that it may be better, in terms 
of AI, to sequence the high-impact predictors (i.e., CA and BI) before the 
low-impact predictors (i.e., SI and CO), without incurring any substantial 
loss of selection quality. However, Sackett and Roth (1996) and De Corte et 
al. (2006) obtained a similar result, and we refer to the latter authors for a 
tentative explanation of the phenomenon.

On the basis of the Table 17.5 results and those presented by De Corte 
et al. (2006), one might be tempted to pursue the quest for a set of rules 
or guidelines for the design of multistage selection scenarios that opti-
mize the AI and the average quality of the selection. However, both De 
Corte et al. and Sackett and Roth (1996) warned against such a quest by 
observing that “there are no simple rules that can be offered about which 
approach to hurdle based selection is preferred” (Sackett & Roth, 1996, p. 
569). Instead, these authors recognized that informative design principles 
are typically contingent on both generic and specific characteristics of 
the situation (such as, for example, the set of available predictors and the 
makeup of the applicant pool).

So, although the analytic approach can be used to investigate the 
expected consequences of different selection designs, its merit as a decision 
aid remains limited to the exploration of alternative what if approaches. 
Within such an exploratory perspective, and provided that the bound-
ary conditions for its application are reasonably fulfilled, the procedure 
is quite versatile. So, provided that the joint distribution of the predictor 
and criterion variables is approximately multivariate normal in the differ-
ent subpopulations and that reasonably accurate data on the effect sizes, 
validities, and intercorrelations of the predictors are available, the proce-
dure is applicable and produces fairly accurate results for a broad class 
of planned selection designs. As discussed by De Corte et al. (2006), the 
method can under these boundary conditions be applied to study general 

Provide end of quota-
tion if this is incorrect.

Table 17.5

Projected Selection Quality (i.e., Average Criterion Score of the Selected 
Applicants) and AI Ratio for Several Planned Selection Scenarios

Selection rate Predictor composite Average 
criterion 

score
AI 

ratioScenario Stage 1 Stage 2 Stage 1 Stage 2

1 .50 .50 1.00 SI + 1.00 CO 1.00 CA + 1.00 BI 0.70 0.39
2 .50 .50 1.00 CA + 1.00 BI 1.00 SI + 1.00 CO 0.69 0.45
3 .50 .50 0.45 SI + 0.10 CO 0.45 CA + 0.15 BI 0.75 0.38
4 .50 .50 0.45 CA + 0.15 BI 0.45 SI + 0.10 CO 0.74 0.42
5 .25 / 1.00 CA + 1.00 SI + 1.00 CO + 1.00 BI 0.75 0.40
6 .25 / 0.37 CA + 0.32 SI + 0.09 CO + 0.10 BI 0.80 0.37
7 .25 / 0.00 CA + 0.00 SI + 1.00 CO + 0.00 BI 0.28 0.93

Use leading zeros for 
second and third col-
umns, if appropriate.

Leading zeros correct 
in last two columns?
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3 with 4 suggest the less-intuitive finding that it may be better, in terms 
of AI, to sequence the high-impact predictors (i.e., CA and BI) before the 
low-impact predictors (i.e., SI and CO), without incurring any substantial 
loss of selection quality. However, Sackett and Roth (1996) and De Corte et 
al. (2006) obtained a similar result, and we refer to the latter authors for a 
tentative explanation of the phenomenon.

On the basis of the Table 17.5 results and those presented by De Corte 
et al. (2006), one might be tempted to pursue the quest for a set of rules 
or guidelines for the design of multistage selection scenarios that opti-
mize the AI and the average quality of the selection. However, both De 
Corte et al. and Sackett and Roth (1996) warned against such a quest by 
observing that “there are no simple rules that can be offered about which 
approach to hurdle based selection is preferred” (Sackett & Roth, 1996, p. 
569). Instead, these authors recognized that informative design principles 
are typically contingent on both generic and specific characteristics of 
the situation (such as, for example, the set of available predictors and the 
makeup of the applicant pool).

So, although the analytic approach can be used to investigate the 
expected consequences of different selection designs, its merit as a decision 
aid remains limited to the exploration of alternative what if approaches. 
Within such an exploratory perspective, and provided that the bound-
ary conditions for its application are reasonably fulfilled, the procedure 
is quite versatile. So, provided that the joint distribution of the predictor 
and criterion variables is approximately multivariate normal in the differ-
ent subpopulations and that reasonably accurate data on the effect sizes, 
validities, and intercorrelations of the predictors are available, the proce-
dure is applicable and produces fairly accurate results for a broad class 
of planned selection designs. As discussed by De Corte et al. (2006), the 
method can under these boundary conditions be applied to study general 

single- and multistage selection schemes either with or without a proba-
tionary period and involving an arbitrary number of protected applicant 
groups besides the majority group. Selection systems with multidimen-
sional job performance criteria are handled within the same framework. 
Doing so requires the correlation between performance dimensions and 
the specification of the relative weights to be assigned to each dimension 
in creating an overall performance measure.

De Corte et al. (2006) also provided a computer program to apply their 
procedure. The program output provides detailed information on the 
expected applicant flow through the stages by calculating for each selection 
stage the proportion retained and the stage-specific AIR of each applicant 
group. In addition, the program computes how the initial group differ-
ences on the predictors evolve through the subsequent selection stages. 
Finally, the program enables integrating the analytic procedure within a 
Monte Carlo approach to handle uncertainty in the selection parameters 
related to the predictor effect sizes, validities, and intercorrelations as well 
as to the makeup of the applicant pool.

As emphasized by De Corte et al. (2006), their analytical procedure 
has, compared to using simulation, the major advantage that it can be 
integrated within a straightforward approach to the design of selection 
scenarios that aim to achieve a given set of goals in terms of workforce 
quality and desired levels of workforce diversity. To highlight the impor-
tance of such an integration, we return to Table 17.5 and, in particular, 
to the results reported there for Scenario 7. This scenario, in which can-
didates are selected in a single stage on the basis of only the CO predic-
tor scores, corresponds to the best-possible design when only the goal 
of reducing the expected AI of the selection is of importance, whereas 
Scenario 6 is the optimal design when only the average criterion score 
of the selected applicants is valued. The expected outcomes of these two 
scenarios show a wide range of possible values for the AIR (i.e., between 
.37 and .93) and the average criterion score of the selected applicants (i.e., 
between .28 and .80).

Such substantial ranges of possible values for the AI ratio and selection 
quality are common, and if both workforce quality and workforce diver-
sity are valued, only scenarios that offer an optimal trade-off between 
these often-conflicting goals will be of interest. To identify these optimal 
trade-off scenarios, the computational procedure of De Corte et al. (2006) 
could be used many times, each time inserting different values for the 
predictor weights and the stage-specific retention weights, but it is obvi-
ous that this “trial-and-error” approach is far from practical. Instead, a 
more direct procedure is to be preferred. Such a procedure, which inte-
grates the De Corte et al. computational method within a multicriteria 
optimization approach, is discussed next.
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Pareto-Optimal Trade-Offs

To assist selection practitioners in planning future selection systems to 
optimize both AI and selection quality, De Corte, Lievens, and Sackett 
(2007) presented a decision tool. This decision tool focuses on the common 
scenario in which employers have to make decisions on forming a com-
posite of a set of predictors (e.g., cognitive tests, personality tests, inter-
views, work samples; Sackett & Ellingson, 1997; Schmitt, Rogers, Chan, 
Sheppard, & Jennings, 1997). In this scenario, how to maximize the mean 
criterion score of selected applicants is well known, namely, by inputting 
all predictors into a regression equation and using the resulting weights. 
However, employers often ask whether there exists an alternative way of 
using the predictors that comes close to this optimal solution in terms of 
the level of criterion performance achieved but does so with less AI.

Prior approaches tried to answer this question by using a trial-and-error 
strategy for determining various predictor weights to find a composite 
alternative that comes closest to meeting the two objectives (Hattrup, 
Rock, & Scalia, 1997; Pulakos & Schmitt, 1996; Sackett & Ellingson, 1997; 
Schmitt et al., 1997). Such ad hoc trial-and-error strategies are also exem-
plified by technical reports that typically present a series of alternative 
models that use varying combinations of available predictors, weighted 
in differing ways.

De Corte et al. developed an analytical and formal procedure to deter-
mine in advance whether there is an alternative way of using the pre-
dictors that comes close to the regression-based weighting in terms 
of predictive efficiency but does so with less AI. Thus, this procedure 
enables the determination of values for the predictor weights such that 
the resulting predictor composites provide an optimal balance or trade-
off between productivity (i.e., high-validity) and diversity (i.e., low-AI) 
objectives. To this end, the notion of Pareto-optimal trade-offs between 
the two outcomes was presented. Given a set of predictors, there are an 
infinite number of possible weighting schemes that could be applied in 
forming predictor composites. A Pareto-optimal trade-off corresponds to 
a weighting scheme for which one outcome cannot be improved without 
harm to the other outcome given the details of the intended selection 
scenario (e.g., SR) and the available selection predictors. For example, 
there may be multiple weighting schemes that would result in a given 
correlation between the predictor composite and the criterion; of these 
schemes, the Pareto-optimal one is the set of weights that result in the 
highest AIR. Similarly, there may be multiple weighting schemes that 
would result in a given AIR; the Pareto-optimal one is the set of weights 
that result in the highest level of validity. So, Pareto-optimal composites 
offer optimal trade-offs between the AI and the validity objective, and 
the entire collection of these Pareto-optimal trade-offs is usually referred 
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Pareto-Optimal Trade-Offs

To assist selection practitioners in planning future selection systems to 
optimize both AI and selection quality, De Corte, Lievens, and Sackett 
(2007) presented a decision tool. This decision tool focuses on the common 
scenario in which employers have to make decisions on forming a com-
posite of a set of predictors (e.g., cognitive tests, personality tests, inter-
views, work samples; Sackett & Ellingson, 1997; Schmitt, Rogers, Chan, 
Sheppard, & Jennings, 1997). In this scenario, how to maximize the mean 
criterion score of selected applicants is well known, namely, by inputting 
all predictors into a regression equation and using the resulting weights. 
However, employers often ask whether there exists an alternative way of 
using the predictors that comes close to this optimal solution in terms of 
the level of criterion performance achieved but does so with less AI.

Prior approaches tried to answer this question by using a trial-and-error 
strategy for determining various predictor weights to find a composite 
alternative that comes closest to meeting the two objectives (Hattrup, 
Rock, & Scalia, 1997; Pulakos & Schmitt, 1996; Sackett & Ellingson, 1997; 
Schmitt et al., 1997). Such ad hoc trial-and-error strategies are also exem-
plified by technical reports that typically present a series of alternative 
models that use varying combinations of available predictors, weighted 
in differing ways.

De Corte et al. developed an analytical and formal procedure to deter-
mine in advance whether there is an alternative way of using the pre-
dictors that comes close to the regression-based weighting in terms 
of predictive efficiency but does so with less AI. Thus, this procedure 
enables the determination of values for the predictor weights such that 
the resulting predictor composites provide an optimal balance or trade-
off between productivity (i.e., high-validity) and diversity (i.e., low-AI) 
objectives. To this end, the notion of Pareto-optimal trade-offs between 
the two outcomes was presented. Given a set of predictors, there are an 
infinite number of possible weighting schemes that could be applied in 
forming predictor composites. A Pareto-optimal trade-off corresponds to 
a weighting scheme for which one outcome cannot be improved without 
harm to the other outcome given the details of the intended selection 
scenario (e.g., SR) and the available selection predictors. For example, 
there may be multiple weighting schemes that would result in a given 
correlation between the predictor composite and the criterion; of these 
schemes, the Pareto-optimal one is the set of weights that result in the 
highest AIR. Similarly, there may be multiple weighting schemes that 
would result in a given AIR; the Pareto-optimal one is the set of weights 
that result in the highest level of validity. So, Pareto-optimal composites 
offer optimal trade-offs between the AI and the validity objective, and 
the entire collection of these Pareto-optimal trade-offs is usually referred 

to as the Pareto-optimal trade-off curve or function (Keeney & Raiffa, 
1993; Pareto, 1906).

De Corte et al. (2007) wrote a computer program to implement the mul-
ticriteria optimization procedure for identifying the set of Pareto-optimal 
composites. As input for the program, a set of predictors with given valid-
ity, intercorrelations, and subgroup differences and the specification of an 
SR are needed. Both probationary and nonprobationary selection as well 
as situations in which the applicants come from several different minority 
populations can be addressed.

The results of the procedure are expressed in tabular or graphical form. 
Figure 17.1 illustrates the graphical outcome of the technique; it presents 
the Pareto-optimal trade-off curve for a composite of cognitive ability 
and a structured interview, based on values from Table  17.1 of Potosky 
et al. (2005) (cf. the present Table 17.4 values). The figure shows the opti-
mal levels of AIR achievable at each level of validity or, equivalently, the 
optimal level of validity achievable at each level of AIR. Table 17.6 shows 
the tabular presentation as it further details a selected number of optimal 
trade-offs. For each selected trade-off (the numbered trade-off points on 
Figure 17.1), the table summarizes the validity and AIR value as well as 
the weighting (with weights scaled to have unit sum) of the predictors that 
characterize the corresponding optimal composite.

The definition of the set of Pareto-optimal composites implies that 
the regression-based composite is one particular element of the set. As 
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Figure 17.1
Pareto-optimal validity-adverse impact ratio trade-off curve for a selection with selection 
rate of .10 using a composite of cognitive ability and a structured interview as based on 
values from Potosky et al. (2005; cf. Table 17.1 of Potosky et al.). Change correct? Or 
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chapter?
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regression-based weights maximize the validity of the resulting com-
posite, no other weighing of the predictors can outperform this compos-
ite in terms of the validity criterion. In the figure, the regression-based 
composite refers to Point 1, with a mean quality of 0.61 and an AIR of 
0.27. The minimal impact composite, defined as the composite with the 
highest possible AIR value (0.56), is another example of the set (see Point 
11 in Figure 17.1). Under the common condition of all positive predictor 
effect sizes, the regression-based and the minimum impact composite are 
the boundary points of the Pareto-optimal set, with all the other Pareto-
optimal composites showing more balanced trade-offs between validity 
and AI. More specifically, these intermediate composites are all character-
ized by a smaller validity than the regression-based composite, and they 
all show a smaller value for the AIR than the minimum impact compos-
ite. Table 17.6 also illustrates how this technique can be used to answer 
whether there exists a different weighting of predictors that will come 
close (i.e., within a specified distance) to the maximum mean quality attain-
able, but with less adverse impact. To address this, the definition of close 
must be specified; once a given decision maker defines it (e.g., anything 
within 95% of the maximum mean quality attainable), then Figure  17.1 
permits this question to be answered. As noted, the maximum mean qual-
ity attainable with these predictors at this SR is 0.61. Thus, we can move 
down the optimal trade-off curve to the point at which mean quality (as 
gauged by the validity coefficient) is 0.58 (i.e., 95% of 0.61); we find that 
the Pareto-optimal weighting of predictors at this point produces an AIR 
of 0.37 compared to the value of 0.27 for the weighting that maximizes 

Zero correct?

Zero correct?

quality. The table also presents the predictor weights that would be used 
to obtain this result. Finally, it can be determined that the gain in AI from 
0.27 to 0.37 corresponds to a 32% improvement of minority hiring.

Alternately, suppose another decision maker is willing to accept 10% 
reduction in validity (rather than the 5% in the example). Here, we can 
move down the optimal trade-off curve to the point at which mean qual-
ity is 0.55 (i.e., 90% of 0.61) and find that the Pareto-optimal weighting of 
predictors at this point produces an AIR of 0.43 compared to the value of 
0.27 for the weighting that maximizes quality.

Possible reactions to the Pareto-optimal approach might include ques-
tions about whether it is permissible to deviate from a validity maximi-
zation strategy and whether the Civil Rights Act of 1991 precludes any 
selection strategy that takes AI into account when weighting predictors. 
Regarding the first issue, there is no general requirement to maximize 
validity; in fact, the use of methods that depart from validity maximiza-
tion is routine. Unit weights are often used for administrative ease; score 
bands (e.g., “green-yellow-red” or “pass-fail”) are commonly used to sim-
plify decision making; shorter forms of tests are commonly used to reduce 
costs and testing time. What is restricted by the U.S. Civil Rights Act of 
1991 is treating scores differently by subgroup. The key point is that the 
Pareto-optimal approach does not involve such differential treatment. All 
candidates are treated the same: Any decision about the predictor weights 
applies to all of the candidates. The procedure simply includes workforce 
diversity as an additional objective to be met by the selection system. 
Note that the Pareto-optimal approach does not tell the selection system 
designer which weights should be used. Instead, it serves essentially as 
a method of choosing among differing weighting schemes given a set of 
predictors, providing information regarding relative gains and losses in 
terms of validity and AI if differing weights are chosen. It is a matter of 
values about whether an employer is willing to accept a given reduction 
in validity (i.e., 1% or 5%) for a given reduction in AI. The phrase “willing 
to accept” is important because the approach does not specify a particular 
trade-off that one should accept. Finally, it is important to emphasize that 
investigating weighting schemes a priori may be legally more defensible 
than waiting until after predictor data have been gathered. In some set-
tings, organizations are even required by statute or policy to reveal the 
weights given to the components of a selection system to applicants prior 
to testing.

Aguinis and Smith (2007)

Aguinis and Smith (2007) offered a decision aid that is quite different in 
nature from those discussed. They presented an approach that integrates 
four variables: (a) magnitude of the predictor-criterion relationship, (b) AI, 

Table 17.6

Selected Pareto-Optimal Trade-Off 
Composites of Cognitive Ability (CA) and 
Structured Interview (SI)

Predictor weights

Point Validity AI ratio CA SI

  1 0.61 0.27 0.53 0.47
  2 0.61 0.31 0.42 0.58
  3 0.59 0.34 0.35 0.65
  4 0.58 0.37 0.30 0.70
  5 0.57 0.40 0.25 0.75
  6 0.55 0.43 0.20 0.80
  7 0.54 0.45 0.16 0.84
  8 0.52 0.48 0.12 0.88
  9 0.51 0.51 0.08 0.92
10 0.49 0.53 0.04 0.96
11 0.48 0.56 0.00 1.00

Eliminate leading 
zeros if appropriate 
throughout.
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regression-based weights maximize the validity of the resulting com-
posite, no other weighing of the predictors can outperform this compos-
ite in terms of the validity criterion. In the figure, the regression-based 
composite refers to Point 1, with a mean quality of 0.61 and an AIR of 
0.27. The minimal impact composite, defined as the composite with the 
highest possible AIR value (0.56), is another example of the set (see Point 
11 in Figure 17.1). Under the common condition of all positive predictor 
effect sizes, the regression-based and the minimum impact composite are 
the boundary points of the Pareto-optimal set, with all the other Pareto-
optimal composites showing more balanced trade-offs between validity 
and AI. More specifically, these intermediate composites are all character-
ized by a smaller validity than the regression-based composite, and they 
all show a smaller value for the AIR than the minimum impact compos-
ite. Table 17.6 also illustrates how this technique can be used to answer 
whether there exists a different weighting of predictors that will come 
close (i.e., within a specified distance) to the maximum mean quality attain-
able, but with less adverse impact. To address this, the definition of close 
must be specified; once a given decision maker defines it (e.g., anything 
within 95% of the maximum mean quality attainable), then Figure  17.1 
permits this question to be answered. As noted, the maximum mean qual-
ity attainable with these predictors at this SR is 0.61. Thus, we can move 
down the optimal trade-off curve to the point at which mean quality (as 
gauged by the validity coefficient) is 0.58 (i.e., 95% of 0.61); we find that 
the Pareto-optimal weighting of predictors at this point produces an AIR 
of 0.37 compared to the value of 0.27 for the weighting that maximizes 

quality. The table also presents the predictor weights that would be used 
to obtain this result. Finally, it can be determined that the gain in AI from 
0.27 to 0.37 corresponds to a 32% improvement of minority hiring.

Alternately, suppose another decision maker is willing to accept 10% 
reduction in validity (rather than the 5% in the example). Here, we can 
move down the optimal trade-off curve to the point at which mean qual-
ity is 0.55 (i.e., 90% of 0.61) and find that the Pareto-optimal weighting of 
predictors at this point produces an AIR of 0.43 compared to the value of 
0.27 for the weighting that maximizes quality.

Possible reactions to the Pareto-optimal approach might include ques-
tions about whether it is permissible to deviate from a validity maximi-
zation strategy and whether the Civil Rights Act of 1991 precludes any 
selection strategy that takes AI into account when weighting predictors. 
Regarding the first issue, there is no general requirement to maximize 
validity; in fact, the use of methods that depart from validity maximiza-
tion is routine. Unit weights are often used for administrative ease; score 
bands (e.g., “green-yellow-red” or “pass-fail”) are commonly used to sim-
plify decision making; shorter forms of tests are commonly used to reduce 
costs and testing time. What is restricted by the U.S. Civil Rights Act of 
1991 is treating scores differently by subgroup. The key point is that the 
Pareto-optimal approach does not involve such differential treatment. All 
candidates are treated the same: Any decision about the predictor weights 
applies to all of the candidates. The procedure simply includes workforce 
diversity as an additional objective to be met by the selection system. 
Note that the Pareto-optimal approach does not tell the selection system 
designer which weights should be used. Instead, it serves essentially as 
a method of choosing among differing weighting schemes given a set of 
predictors, providing information regarding relative gains and losses in 
terms of validity and AI if differing weights are chosen. It is a matter of 
values about whether an employer is willing to accept a given reduction 
in validity (i.e., 1% or 5%) for a given reduction in AI. The phrase “willing 
to accept” is important because the approach does not specify a particular 
trade-off that one should accept. Finally, it is important to emphasize that 
investigating weighting schemes a priori may be legally more defensible 
than waiting until after predictor data have been gathered. In some set-
tings, organizations are even required by statute or policy to reveal the 
weights given to the components of a selection system to applicants prior 
to testing.

Aguinis and Smith (2007)

Aguinis and Smith (2007) offered a decision aid that is quite different in 
nature from those discussed. They presented an approach that integrates 
four variables: (a) magnitude of the predictor-criterion relationship, (b) AI, 

Zero correct?
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(c) selection errors (false positives and false negatives), and (d) test bias. 
Their approach incorporates the specification of a desired level of crite-
rion performance; that specification permits the determination of false 
positives and false negatives at a given SR. It also incorporates the Cleary 
model of test bias, in which a test is viewed as unbiased if the regression 
line relating predictor and criterion scores is identical for the subgroups 
compared. If the regression lines are not identical (i.e., they differ in slopes, 
intercepts, or both), the test is viewed as biased, and the use of a common 
regression line would result in systematic errors of prediction being made. 
The Aguinis and Smith approach distinguishes between prediction errors 
due to imperfect validity and error made due to treating a biased test as 
if it were unbiased (e.g., using a common regression line when, in fact, the 
regression lines for the groups under consideration differ).

Aguinis and Smith (2007) developed an analytical approach that inte-
grates all four of these features and offered a computer program that 
permits users to enter values for the predictor and criterion of interest to 
them and to examine the resulting AI, mean criterion performance, and 
false-positive and false-negative rates by subgroup. One important way 
in which their approach differs from others discussed is in the informa-
tion needed as input to the program. While the other approaches focus 
on correlations, the Aguinis and Smith formulation focuses on regres-
sion analysis. It requires as input means and standard deviations for 
predictors and criteria for each subgroup as well as predictor-criterion 
correlations. As such, it requires more concrete and detailed informa-
tion than the approaches described. For example, the other approaches 
permit addressing a question such as, What would we expect to happen 
if we added a conscientiousness measure to a cognitive ability measure? 
The approaches discussed would require an estimate of subgroup differ-
ences on both predictors, predictor-criterion correlation estimates for both 
predictors, and the correlation between the two predictors. The Aguinis 
and Smith approach requires predictor and criterion means and standard 
deviations as well and thus seems to focus on specific measures in specific 
situations rather than on general planning strategy prior to selecting spe-
cific measures. Nonetheless, in settings in which these specific details are 
available, the approach does incorporate issues of rates of false positives 
and false negatives as well as information about test bias.

Discussion

One crucial point is that all of the approaches are descriptive: They out-
line the consequences of various courses of action (e.g., What would we 
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expect to happen if we lower a cutoff score? What would we expect to 
happen if we add a structured interview to our selection system?). These 
decision aids do not tell the user what they should do as that is a matter of 
values. This is perhaps made most explicit in the work on Pareto-optimal 
selection by De Corte, Lievens, and Sackett (2007). That approach specifies 
the amount of improvement in AI that would be expected to result from 
any given reduction in the mean criterion performance of those selected 
(i.e., a reduction in validity). Whether a given validity loss for a given AI 
gain is seen as acceptable is a value judgment, not a technical issue. A 
trade-off that seems reasonable to some will be seen as inappropriate by 
others. We anticipate that some readers will take the stance that validity is 
the only outcome of interest, and that it is inappropriate to even consider 
AI-validity trade-offs. Our response is that it is our experience that many 
organizations do value both diversity and performance and are willing to 
consider trade-offs between the outcomes. Our stance is that one is best 
served by as clear an understanding as possible of the implications of any 
choices made regarding trade-offs between these outcomes, and thus we 
have pursued the series of investigations and developed the series of deci-
sion aids described in this chapter.

A second issue worthy of discussion is the fact that some of the values 
required as input for the approaches described in this chapter may not be 
known with certainty. For example, what does one do if one is considering 
adding a new predictor to a selection system that already includes a pre-
dictor with known validity and known d, but the correlation between the 
new predictor and the existing predictor is unknown? Here, we advocate 
a sensitivity analysis, in which a range of possible values are input into the 
decision aid. In some cases, the emergent finding is that variation on the 
unknown parameter has little effect on the outcomes of interest, in which 
case one can proceed without concern. In other cases, the finding may be 
that the outcomes of interest do indeed hinge on this parameter. Here, one 
option is to work harder to locate an estimate of the parameter, perhaps 
conducting a local study to obtain the needed value. Another option is to 
“prepare for the worst” by identifying the worst-case scenario and esti-
mating its effect. Yet another is to note that one truly is uncertain about 
the expected outcome and thus shy away from offering a priori statements 
about the likely degree of AI. In short, in some cases one may conclude 
that one does have a pretty good idea about likely outcomes prior to actual 
data collection; in other cases, one is best off admitting to a high degree 
of uncertainty.

A third issue concerns the limitations of the present decision aids. Some 
of these limitations are tied to the assumption underlying these methods, 
whereas others point to aspects of the decision situation that still need to 
be addressed. Thus, several of the presented methods are based on the 
assumption that the predictor-criterion space is multivariate normal, or 
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that the within-group regressions of the criterion on the predictors is linear. 
Features of the decision situation that require further elaboration include 
job refusal and a focus on classification rather than selection decisions. 
The extension to multiple-hurdle selection situations of the multicriteria 
optimization approach to uncover Pareto-optimal trade-offs is another 
example. All these extensions should provide the selection practitioner 
with a set of more realistic and generally applicable tools when planning 
selection decisions to achieve given valuable goals in terms of workforce 
quality and diversity.

Fourth, we note that work on trade-offs has focused on AI and mean 
performance among those selected as outcomes. A broader range of out-
comes are certainly of interest to organizations. These range from nar-
row outcomes, such as costs of implementing the selection system (e.g., De 
Corte et al., 2006) or administrative ease in administering a selection sys-
tem, to much broader outcomes, such as organizational effectiveness and 
firm reputation. These broader outcomes are more difficult to measure 
and model. Nonetheless, we do note that there are additional trade-offs of 
potential interest that are worthy of investigation.

Fifth, we acknowledge that adding low-impact predictors and predictor 
weighting are only some routes to workforce diversity (Ployhart & Holtz, 
2008). Apart from these routes, there exist other routes to workforce diver-
sity, such as banding and the development of innovative test presenta-
tion (e.g., video; see Chan & Schmitt, 1997) and response (e.g., constructed 
responses; see Edwards & Arthur, 2007). Clearly, these strategies also have 
important merits. While prior research has typically used these strate-
gies in isolation, we need studies that examine the combination of various 
strategies for reducing AI.

References

Aguinis, H., & Smith, M. A. (2007). Understanding the impact of test validity and 
bias on selection errors and adverse impact in human resource selection. 
Personnel Psychology, 60, 165–199.

American Educational Research Association, American Psychological Association, 
& National Council on Measurement in Education. (1999). Standards for edu-
cational and psychological testing. Washington, DC: American Educational 
Research Association.

Chan, D. & Schmitt, N. (1997). Video-based versus paper-and-pencil method of 
assessment in situational judgment tests: Subgroup differences in test per-
formance and face validity perceptions. Journal of Applied Psychology, 82, 
143–159.

Y100250_C017.indd   476 3/20/09   3:16:27 PM



Decision Aids for Addressing the Validity-Adverse Impact Trade-Off	 477

Civil Rights Act of 1991, Pub. L. No. 102-166, 7 U.S.C. §701, 702, 703, 705, 706, 
717 (1991).

Cortina, J. M., Goldstein, N. B., Payne, S. C., Davison, H. K., & Gilliland, S. W. 
(2000). The incremental validity of interview scores over and above cogni-
tive ability and conscientiousness scores. Personnel Psychology, 53, 325–351.

Cronbach, L. R., and Gleser, G. C. (1965). Psychological tests and personnel decisions. 
Urbana: University of Illinois Press.

Dalessio, A., & Silverhart, T. (1994). Combining biodata test and interview infor-
mation: Predicting decisions and performance criteria. Personnel Psychology, 
47, 303–315.

De Corte, W., & Lievens, F. (2003). A practical procedure to estimate the quality and 
the adverse impact of single-stage selection decisions. International Journal of 
Selection and Assessment, 11, 89–97.

De Corte, W., & Lievens, F. (2005). The risk of adverse impact in selections based 
on a test with known effect size. Educational and Psychological Measurement, 
65, 737–758.

De Corte, W., Lievens, F., and Sackett, P. R. (2006). Predicting adverse impact 
and mean criterion performance in multi-stage selection. Journal of Applied 
Psychology, 91, 523–537.

De Corte, W., Lievens, F., and Sackett, P. R. (2007). Combining predictors to achieve 
optimal trade-offs between selection quality and adverse impact. Journal of 
Applied Psychology, 92, 1380–1393.

Doverspike, D., Winter, J., Healy, M., & Barrett, G. (1996). Simulation as a method 
of illustrating the impact of differential weights on personnel selection out-
comes. Human Performance, 9, 259–273.

Edwards, B. D., & Arthur, W., Jr. (2007). An examination of factors contributing to a 
reduction in subgroup differences on a constructed-response paper-and-pen-
cil test of scholastic achievement. Journal of Applied Psychology, 92, 794–801.

Hattrup, K., Rock, J., & Scalia C. (1997). The effects of varying conceptualizations 
of job performance on adverse impact, minority hiring, and predicted perfor-
mance. Journal of Applied Psychology, 82, 656–664.

Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: Preferences and 
value tradeoffs. Cambridge: Cambridge University Press.

Muthen, B. (1990). Moments of the censored and truncated bivariate normal distri-
bution. British Journal of Mathematical and Statistical Psychology, 43, 131–143.

Pareto, V. (1906). Manuale di economica polittica [Manual of political economy]. 
Milan, Italy: Societa Editrice Libraia.

Ployhart, R. E., Weekley, J. A., Holtz, B. C., & Kemp, C. (2003). Web-based and 
paper-and-pencil testing of applicants in a proctored setting: Are personality, 
biodata, and situational judgment tests comparable? Personnel Psychology, 56, 
733–752.

Ployhart, R. E., & Holtz, B.C. (2008). The diversity-validity dilemma: strategies for 
reducing racioethnic and sex subgroup differences and adverse impact in 
selection. Personnel Psychology, 61, 153–172

Potosky, D., Bobko, P., & Roth, P. L. (2005). Forming composites of cognitive abil-
ity and alternative measures to predict job performance and reduce adverse 
impact: Corrected estimates and realistic expectations. International Journal of 
Assessment and Selection, 13, 304–315.

Y100250_C017.indd   477 3/20/09   3:16:28 PM



478	 Adverse Impact

Pulakos, E. D., & Schmitt, N. (1996). An evaluation of two strategies for reduc-
ing adverse impact and their effects on criterion-related validity. Human 
Performance, 9, 241–258.

Roth, P. L., Bobko, P., & Switzer, F. S. (2006). Modeling behavior of the 4/5ths 
rule for determining adverse impact: Reasons for caution. Journal of Applied 
Psychology, 91, 507–522.

Sackett, P. R., & Ellingson, J. E. (1997). On the effects of forming multi-predictor 
composites on group differences and adverse impact. Personnel Psychology, 
50, 708–721.

Sackett, P. R., & Roth, L. (1996). Multistage selection strategies: A Monte Carlo 
investigation of effects on performance and minority hiring. Personnel 
Psychology, 49, 549–572.

Sackett, P. R., Schmitt, N., Ellingson, J. E., & Kabin, M. B. (2001). High stakes test-
ing in employment, credentialing, and higher education: Prospects in a post-
affirmative action world. American Psychologist, 56, 302–318.

Sackett, P. R., & Wilk, S. L. (1994) Within-group norming and other forms of score 
adjustment in pre-employment testing. American Psychologist, 49, 929–954.

Schmitt, N., Rogers W., Chan, D., Sheppard L., & Jennings, D. (1997). Adverse 
impact and predictive efficiency of various predictor combinations. Journal 
of Applied Psychology, 82, 719–730.

Tallis, G. M. (1961). The moment generating function of the truncated multi-nor-
mal distribution. Journal of the Royal Statistical Society, Series B 23, 223–229.

Y100250_C017.indd   478 3/20/09   3:16:28 PM


	Singapore Management University
	Institutional Knowledge at Singapore Management University
	1-2009

	Decision aids for addressing the validity-adverse impact trade-off
	Paul R. SACKETT
	Wilfried DE CORTE
	Filip LIEVENS
	Citation


	Decision Aids for Addressing the Validity-Adverse Impact Trade-Off


