
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

2-2018

Secure fine-grained access control and data sharing
for dynamic groups in the cloud
Shengmin XU

Guomin YANG

Yi MU

Robert H. DENG
Singapore Management University, robertdeng@smu.edu.sg

DOI: https://doi.org/10.1109/TIFS.2018.2810065

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Information Security Commons, and the Portfolio and Security Analysis Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
XU, Shengmin; YANG, Guomin; MU, Yi; and DENG, Robert H.. Secure fine-grained access control and data sharing for dynamic
groups in the cloud. (2018). IEEE Transactions on Information Forensics and Security. 13, (8), 2101-2103. Research Collection School
Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3985

https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TIFS.2018.2810065
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3985&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3985&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/640?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3985&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 8, AUGUST 2018 2101

Secure Fine-Grained Access Control and Data
Sharing for Dynamic Groups in the Cloud

Shengmin Xu, Guomin Yang , Senior Member, IEEE, Yi Mu, Senior Member, IEEE,
and Robert H. Deng, Fellow, IEEE

Abstract— Cloud computing is an emerging computing para-
digm that enables users to store their data in a cloud server
to enjoy scalable and on-demand services. Nevertheless, it also
brings many security issues, since cloud service providers (CSPs)
are not in the same trusted domain as users. To protect data
privacy against untrusted CSPs, existing solutions apply cryp-
tographic methods (e.g., encryption mechanisms) and provide
decryption keys only to authorized users. However, sharing cloud
data among authorized users at a fine-grained level is still a
challenging issue, especially when dealing with dynamic user
groups. In this paper, we propose a secure and efficient fine-
grained access control and data sharing scheme for dynamic
user groups by: 1) defining and enforcing access policies based
on the attributes of the data; 2) permitting the key generation
center to efficiently update user credentials for dynamic user
groups; and 3) allowing some expensive computation tasks to be
performed by untrusted CSPs without requiring any delegation
key. Specifically, we first design an efficient revocable attribute-
based encryption (ABE) scheme with the property of ciphertext
delegation by exploiting and uniquely combining techniques of
identity-based encryption, ABE, subset-cover framework, and
ciphertext encoding mechanism. We then present a fine-grained
access control and data sharing system for on-demand services
with dynamic user groups in the cloud. The experimental data
show that our proposed scheme is more efficient and scalable
than the state-of-the-art solution.

Index Terms— Cloud storage, data sharing, access control,
revocation, dynamic group.

I. INTRODUCTION

CLOUD computing is widely accepted as a new comput-
ing paradigm due to its intrinsic resource-sharing and low

maintenance characteristics. In cloud computing, the CSPs,
such as Amazons EC2 and S3, Google App Engine, and
Microsoft Azure, are able to deliver various services, including
software as a service (SaaS), platform as a service (PaaS) and
infrastructure as a service (IaaS), to cloud users. By migrating
the local data management system into cloud storage, users

Manuscript received September 17, 2017; revised January 6, 2018; accepted
February 13, 2018. Date of publication February 27, 2018; date of current
version April 16, 2018. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Stefan Katzenbeisser.
(Corresponding author: Guomin Yang.)

S. Xu, G. Yang, and Y. Mu are with the School of Computing
and Information Technology, Institute of Cybersecurity and Cryptology,
University of Wollongong, Wollongong, NSW 2522, Australia (e-mail:
sx914@uow.edu.au; gyang@uow.edu.au; ymu@uow.edu.au).

R. H. Deng is with the School of Information Systems, Singapore Manage-
ment University, Singapore 188065 (e-mail: robertdeng@smu.edu.sg).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2018.2810065

can enjoy cost savings and productivity enhancements by using
cloud-based services to manage projects and establish collab-
orations. With the increasing development of cloud computing
technologies, it is not hard to imagine that in the near future
more and more businesses will be moved into the cloud.

One of the most fundamental services offered by CSPs
is data storage. Despite of the benefits provided by cloud
storage, it is facing many challenges that, if not well resolved,
may impede its fast growth. Consider a practical application
that a company allows its staff or departments to store and
share data via the cloud. By utilizing the cloud, the company
can be completely released from the local data storage and
maintenance burden. However, it also incurs a major security
threat towards the data confidentiality. Specifically, the CSPs
are not fully trusted by users while the data files stored in
the cloud may be sensitive and confidential. To address this
issue, a basic solution is to encrypt data, and then uploads
the encrypted data into the cloud. However, the traditional
encryption mechanisms are not efficient or flexible for data
sharing in the cloud. In order to achieve optimal usage of
storage resources, it is desirable to use advanced encryption
mechanisms allowing the data to be shared at a fine-grained
level. One of the promising tools for achieving fine-grained
access control and sharing of encrypted data is to use attribute-
based encryption (ABE) [1], [2]. Nevertheless, it is not
straightforward to directly apply ABE in real applications due
to various practicality concerns.

Dynamic User Groups: Dynamic user groups are very
common in cloud applications, e.g., due to expira-
tion or change of user membership and user credentials being
stolen/compromised/misused. In dynamic user groups, user
revocation is a critical security issue that must be properly
addressed. However, one challenging problem in handling user
revocation in cloud storage is that a revoked user may still
be able to decrypt an old ciphertext they were authorized to
access before being revoked. In order to address this problem,
the ciphertext stored in the cloud storage should be updated,
ideally by the (untrusted) cloud server. In the literature, proxy
re-encryption [3] has been proposed to enable the change of
the authorized decryptor of a ciphertext, and this approach
has been incorporated into ABE [4]–[7] to allow a ciphertext
to be updated by a third party (e.g., the CSP) for revocation
purpose. However, the proxy re-encryption approach requires
re-encryption/update keys to be issued to the CSP in order
to allow the ciphertexts to be updated. From the practicality

1556-6013 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2102 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 8, AUGUST 2018

Fig. 1. System Model.

Fig. 2. Ciphertext Update.

perspective, it is more desirable that the ciphertext update,
which can happen frequently, can be done by the CSP without
requiring any delegated key.

In this work, we aim to develop a secure and practical
approach to address the problem. As shown in Fig. 1 and 2,
a data owner sends the original ciphertext ct to the cloud stor-
age in revocation epoch t , and a data user can query the cloud
storage to access the ciphertext afterwards. Suppose the data
user issues a query at t1 ≥ t , the CSP then sends the updated
ciphertext ctt1 (i.e., ctt1 is transformed from ct by the CSP)
to the data user, and this ciphertext can be decrypted by the
user if and only if he/she satisfies the access policy specified
by the data owner and is not revoked at t1. Different from
the proxy re-encryption based approach, here we’d like the
transformation to be performed by the CSP without using any
re-encryption/update key.

In Crypto’12, Sahai et al. [8] introduced the concept
of ciphertext delegation, which allows the ciphertext to be
updated by the data storage without accessing any secret infor-
mation. Following the indirect revocation approach, the pri-
vate key of each user is divided into an attribute-based
secret key and a time-based update key, and the latter is
updated in each revocation epoch for non-revoked users.
In order to achieve ciphertext delegation, two ABE schemes
(or two instances of an ABE) were used by Sahai et al.’s
RABE scheme to handle the attributes and the time com-
ponent, respectively.In their concrete scheme, two instances
of the dual ABE scheme introduced in [9] were applied.

Although Sahai et al. [8] introduced the first RABE scheme
supporting ciphertext delegation, their scheme is not very
practical since two ABE schemes need to be applied in
their construction. Also, their concrete RABE scheme with
ciphertext delegation based on dual encryption is under com-
posite order groups and hence not efficient. Such a drawback
makes their scheme impractical in large-scale applications that
involve a large number of users and frequent user membership
changes.

A. Our Contribution

In this work, we present a new solution for enabling
attribute-based access control for dynamic user groups in cloud
storage systems. Specifically, we present a new RABE scheme
that allows the cloud storage to update ciphertexts for handling
revocation without any delegated key and at the same time
achieves high efficiency. The high cost of Sahai et al.’s scheme
is mainly due to the use of two ABE components for handling
the attributes and the time component. Therefore, our idea
is to replace the ABE for handling the time component by
a more efficient primitive. One difficulty of realizing this
idea is that we need a new access control mechanism for
the time component to efficiently handle revocation, and the
other difficulty is that we need to build a primitive that
supports ciphertext update and can be integrated with the new
time control mechanism. To address these problems, we first
introduce a novel time encoding mechanism and then combine
it with a variant of the Waters IBE to achieve our goal. As a
result, our construction significantly reduces the computation
and storage cost by a factor of logT where T denotes the
bounded system life time. An efficiency comparison between
Sahai et al.’s scheme and ours is presented in section VI.

Based on our RABE scheme, we present a secure and fine-
grained access control and data sharing system for cloud-
based on-demand service applications. Specifically, we use the
cloud-based on-demand movie streaming as a typical example.
We show our system provides a practical solution for such
applications which demand fine-grained access control and
frequent user membership update for large user groups.

We should note that there is a difference between the
ciphertext update in Sahai et al.’s scheme and in ours. The
difference is illustrated in Fig. 2. Suppose a data owner sends
the ciphertext ct to the CSPs. In the first method introduced
in [8], it allows the CSPs to sequentially update ct to ctt1
and then to ctt3 , and so on. While in our construction (second
method), we always let the CSPs to perform the ciphertext
update from the original ciphertext ct . Our approach requires
the cloud server to only maintain the origianl ciphertext
uploaded by the data owner and hence is easier for storage
management and maintanance.

B. Related Work

Many cryptographic schemes including IBE only provides
a coarse-level access control. It limits the ability of users
to selectively share their encrypted data at a fine-grained
level. Sahai and Waters [1] made some initial steps to

XU et al.: SECURE FINE-GRAINED ACCESS CONTROL AND DATA SHARING FOR DYNAMIC GROUPS IN THE CLOUD 2103

solve this problem by introducing ABE. To enrich expres-
siveness of access control policies, Goyal et al. [2] and
Bethencourt et al. [10] proposed tree based key-policy and
ciphertext-policy ABE schemes, respectively. In key-policy
ABE schemes (KP-ABE), attribute sets are used to annotate
ciphertexts, and private keys are associated with access struc-
tures that specify which ciphertexts the user will be entitled
to decrypt. Ciphertext-policy ABE (CP-ABE) proceeds in a
dual way, by assigning attribute sets to private keys and
letting senders specify an access policy that receivers’ attribute
sets should comply with. Due to the sizes of the key and
the ciphertext are linearly increased in the universe of the
attribute set and security proofs are under the selectively
model in [1] and [2], Attrapadung et al. [11] proposed the first
constant-size ABE and Lewko et al. [9] provided first fully
secure ABE with dual encryption system [12], respectively.

Same as other cryptographic primitives, efficient user revo-
cation is very important in ABE systems. Pirretti et al. [13]
suggested extending each attribute with an expiration date,
e.g., by representing an attribute as Att‖T where Att is the real
attribute and T is the expiration date. However, this approach
is impractical as the Boneh and Franklin RIBE solution [14].
Bethencourt et al. [10] proposed a bit representation to support
integer comparisons, and this approach extends the validity
period of a key to a couple of revocation epochs.

To prevent revoked users from decrypting old ciphertexts
stored in a public cloud storage, a few RABE scheme have
been proposed in the literature [4]–[7] to allow ciphertexts
to be updated by the cloud server. These RABE construc-
tions incorporated the proxy re-encryption technique where
re-encryption/update keys are issued to the cloud server to
enable ciphertext update.

Following the first practical RIBE [15] introduced in 2008,
a few RABE schemes [8], [16] have been proposed by apply-
ing the indirect revocation method. They all follow the idea
of dividing the private key into an attribute-based secret key
and a time-related update key. The RABE scheme proposed
in [8] also supports the concept of revocable storage which
means a ciphertext can be updated by a third party without
requiring any delegated key. However, the scheme in [8] used
ABE to handle both the attributes and the time component,
which makes the scheme less efficient.

C. Outline

We introduce some preliminaries in Section II and provide
the definition of RABE and its security model in Section III,
which is followed by our constructions and their security
proofs in Section IV. We then present an application of our
RABE and the experimental results in Section V and VI,
respectively.

II. PRELIMINARIES

A. Notations

Let N denote the set of all natural numbers, and for n ∈ N,
we define [n] := {1, ..., n}. If a and b are strings, then “|a|′′
denotes the bit-length of a, “a||b′′ denotes the concatenation
of a and b. Let �u := (u1, u2, ..., u�) denote a vector of

dimension � in Z
�
p . Let the Greek character “λ′′ denote a

security parameter. A function ε(λ) : N → [0, 1] is said
to be negligible if for all positive polynomials p(λ) and all
sufficiently large λ ∈ N, we have ε(λ) < 1/p(λ).

B. Bilinear Map

Let G and GT be two cyclic multiplicative groups of prime
order p and g be a generator of G. The map e : G×G→ GT

is said to be an admissible bilinear pairing if the following
properties hold true.
• Bilinearity: for all u, v ∈ G and a, b ∈ Zp , e(ua, vb) =

e(u, v)ab.
• Non-degeneration: e(g, g) �= 1.
• Computability: it is efficient to compute e(u, v) for any

u.v ∈ G.

C. The Decisional Bilinear Diffie-Hellman Assumption

Let a, b, c, z ∈ Zp be chosen at random and g be a
generator of G. The decisional Bilinear Diffie-Hellman (BDH)
assumption [1] is that no probabilistic time algorithm D
can distinguish the tuple (A = ga, B = gb, C = gc,
D = e(g, g)abc) from the tuple (A = ga, B = gb,
C = gc, Z = e(g, g)z) with a non-negligible advantage over
random guess.

D. Access Structure and Monotone Span Program

We recall the definitions of access structures and monotone
span program, as defined in [2] and [17].

Definition 1 (Access Structure): Let {P1, ..., Pn} be a set of
parties. A collection A ⊆ 2{P1,...,Pn } is monotone if ∀B, C :
if B ∈ A and B ⊆ C, then C ⊆ A. A monotone access
structure is a monotone collection A of non-empty subsets of
{P1, ..., Pn}, i.e., A ⊆ 2{P1,...,Pn } \{∅}. The sets in A are called
authorized sets, and the sets not in A are called unauthorized
sets.

Definition 2 (Monotone Span Program (MSP)): Let K be a
field and {x1, ..., xn} be a set of variables. A MSP over K is
labeled matrix M̃(M, ρ) where M is a matrix over K, and
ρ is a labeling of the rows of M by literals from {x1, ..., xn}
(every row is labeled by one literal).

A MSP accepts or rejects an input by the following criterion.
For every input set S if literals, define the submatrix MS of
M consisting of those rows whose labels are in S, i.e., rows
labeled by some i such that i ∈ S. The MSP M̃ accepts S
of and only if �1 ∈ span(MS), i.e., some linear combination
of the rows of MS given the all-one vector �1. The MSP M̃
computes a boolean function fM if it accepts exactly those
input S where fM (S) = 1. The size of M̃ is the number of
rows in M.

In the rest of paper, we define M as a matrix with d × �
elements, where d is a dynamic value depending on the access
policy A. Mi stands for the i th row of the matrix M and is
a vector size of �. In our proposed scheme, each row of the
matrix M maps to different attributes. For simply the notation,
let A(S) = 1 indicate the attribute set S satisfies the access
policy A and A(S) = 0 denote the attribute set S does not
satisfy the access policy A.

2104 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 8, AUGUST 2018

E. Subset-Cover Framework

Boldyreva et al. [15] pointed out that the revocation list can
be implemented by subset-cover framework (tree based data
structure) [18] called Complete Subtree (CS) method. Every
user is assigned to an unique leaf node. Let xl and xr denote
the left child and right child of node x , respectively. The key
update nodes algorithm KUNodes takes three parameters as
input, a binary tree BT, a revocation list rl and a time t .
It outputs a set of nodes, which is the minimal set of nodes in
the binary tree BT such that all the non-revoked nodes have at
least one ancestor or themselves in the set and none of revoked
nodes in revocation list rl has any ancestor or themselves in
the set. The function operates as Algorithm 1. First, it marks
all the ancestors of revoked nodes as revoked into the set X,
then it outputs all the non-revoked children of revoked nodes
in the set Y. Let root denote the root node of the binary
tree BT. Here is a formal specification.

Algorithm 1 KUNodes Algorithm
1: function KUNodes(BT, rl, t)
2: X, Y← ∅
3: for (vi , ti) ∈ rl do
4: if ti ≤ t then X← X ∪ Path(vi)
5: end if
6: end for
7: for x ∈ X do
8: if xl �∈ X then Y← Y ∪ xl

9: end if
10: if xr �∈ X then Y← Y ∪ xr

11: end if
12: end for
13: if Y = ∅ then Y← root
14: end if
15: return Y
16: end function

F. Managing the Time Structure

Bethencourt et al. [10] pointed out the key revocation can
be realized by numerical bit representation. Inspirited by this,
we design a time encoding mechanism TEncode. The details
of this algorithm are described in Algorithm 2. It takes the
current date t and the bounded system life time T as input,
and outputs a bit string t̃ of the size log2 T . The algorithm is
quite simply and straightforward. First, we convert a decimal
number t to a binary number t̃ . Then, we fill zeros as prefix
if the size of t̃ is less than log2 T .

Algorithm 2 TEncode Algorithm
1: function TEncode(t,T)
2: encode the decimal number t to a bit string t̃
3: while |t̃| < log2 T do t̃ ← 0||t̃
4: end while
5: return t̃
6: end function

We design a ciphertext time encoding algorithm CTEncode
to reduce the size of the ciphertext by a factor of O(log T)

without losing the property of public ciphertext update. The
details of this algorithm are represented as Algorithm 3.
It takes the time t and the bounded system life time T as input,
and outputs a bit string t̃ of the size log2 T that is less than
all future revocation epochs. We first run TEncode(t,T) and
receive t̃ as the output. Then, for all i in [log2 T], we modify
the bit t̃[i] as follows:

• If t̃[i] = 0, we set a boolean value chk to true (initial
false) that means the first 0-bit is found.

• If t̃[i] = 1 and chk is true, we modify t̃[i] to 0.
• Otherwise, we do not modify any bit.

Algorithm 3 CTEncode Algorithm
1: function CTEncode(t,T)
2: t̃ ← TEncode(t,T)
3: chk← false
4: for i ∈ [log2 T] do
5: if t̃[i] = 1 and chk = false then t̃[i] = 1
6: else
7: chk← true
8: t̃[i] = 0
9: end if

10: end for
11: return t̃
12: end function

The above algorithm is used to reduce the space complexity
of the ciphertext and to process ciphertext delegation.

1) Bit Representation: The bit representation reduces the
space complexity of the ciphertext. The returning string t̃ is
equal or less than the current date t allowing to derive all
the time t ′ ≥ t . Suppose the bounded system life time is
15 = 11112, we consider the following two cases:

• The most significant bit is non-zero, e.g., the current
revocation epoch is 10 = 10102, the output of CTEncode
is 8 = 10002.

• The most significant bit is zero. e.g., the current revo-
cation epoch is 5 = 01012, the output of CTEncode is
4 = 01002.

Hence, the output of CTEncode is less than the inputting
revocation epoch, and the binary expression is allowed to
increase by modifying the 0 to 1.

2) Ciphertext Delegation: We implement the time-related
component of the ciphertext in a novel way to achieve cipher-
text delegation.

• Producing a set Vt records all i th bit such that t[i] = 0
for the output of CTEncode.

• For each i ∈ Vt , individually generate the time-related
ciphertext component Ci by Waters’ IBE.

Hence, the ciphertext component Ci is given only for all
i th positions with t[i] = 0. The time-related part of the
ciphertext at the time t ′ ≥ t can be retrieved by combining
the components Ci for all i ∈ Vt ′ (Vt ′ ⊆ Vt by definition).
Note that the updated ciphertext needs to be re-randomized to
prevent some trivial attacks.

XU et al.: SECURE FINE-GRAINED ACCESS CONTROL AND DATA SHARING FOR DYNAMIC GROUPS IN THE CLOUD 2105

G. Goyal et al.’s ABE Scheme

For x, i ∈ Z and J ⊂ Z the Lagrange coefficient �i,J(x) is
defined as

�i,J(x) =
∏

j∈J, j �=i

(
x − j

i − j

)
.

Goyal et al. [2] provided two concrete constructions. In this
section, we review the large universe construction with a
monotone span program.

S(λ, n) is the setup algorithm. It chooses a bilinear group
of order p, a random value α ∈ Zp , and random genera-
tors g, g2 ∈ G, then it sets g1 = gα. For all i ∈ [n + 1]
where n ∈ N is the maximum size of the attribute set used in
encryption, it randomly picks ti ∈ Zp and defines a function
T (x) as:

T (x) = gxn

2

n+1∏

i=1

t
�i,[n+1](x)
i .

It returns

pp = (p, g, g1, g2, {ti }t∈[n+1]), msk = α.

SK(msk, (M, ρ)) is the private key generation algorithm.
It takes msk and an access structure (M, ρ) as input where M
is a matrix of the size d×�. Let �u be a random � dimensional
vector over Zp and �1 · �u = α. For each row i in the matrix
M , it randomly chooses ri ∈ Zp and computes the secret key
sk as:

K (0)
i = gMi ·�u

2 T (i)ri , K (1)
i = gri .

It returns the secret key sk = {K (0)
i , K (1)

i }i∈[d].
E(pp, S, m) is the encryption algorithm. It takes the public

parameter pp, an attribute set S and a message m as input,
and outputs the ciphertext ct . It randomly chooses s ∈ Zp and
sets:

C = m · e(g1, g2)
s, C1 = gs, {Ci = T (i)s}ρ(i)∈S .

It returns the ciphertext ct = (S, C, C1, {Ci }ρ(i)∈S).
D(pp, sk, ct) is the decryption algorithm.It takes∑
ρ(i)∈S Miwi = �1 and recovers the message m by

computing:

m = C ·
∏

ρ(i)∈S

(
e(K (1)

i , Ci)

e(K (0)
i , C1)

)wi

Goyal et al.’s ABE is secure if the decisional BDH assump-
tion holds.

Theorem 1: The Goyal et al.’s ABE scheme is
IND-ABE-CPA secure under decisional BDH assumption.

H. Variant of Waters’ IBE Scheme

Waters [19] proposed a practical IBE proven secure under
decisional BDH assumption. We slightly modify the scheme
as follows.

S(λ, n) is the setup algorithm. It chooses a bilinear group
of order p, picks random generators g, g2 ∈ G, and a random
integer α ∈ Zp . Then it sets g1 = gα. Additionally, it chooses

U ′ ∈ G and for each i ∈ [n] where n is the size of the
user identities in binary form, randomly picks Ui ∈ G, then
it returns the public parameter pp and the master secret key
msk as:

pp = (p, g, g1, g2, U ′, {Ui }i∈[n]), msk = α.

SK(msk, id) is the private key generation algorithm. Let
V be the set of i where id[i] = 0. It randomly chooses r ∈ Zp

and computes the secret key skid as

K (0) = gα
2

(
U ′

∏

i∈V
Ui

)r

, K (1) = gr .

Note that Waters’ IBE defines V as the set of i with id[i] = 1,
and we modify this part to all i with id[i] = 0.

E(pp, id, m) is the encryption algorithm. It randomly
chooses s ∈ Zp and constructs the ciphertext ct as follows:

C = m · e(g1, g2)
s, C1 = gs, C2 =

(
U ′

∏

i∈V
Ui

)s

.

It returns the ciphertext ct = (C, C1, C2).
D(pp, skid , ct) is the decryption algorithm. It outputs the

message m by computing

m = C · e(K (1), C2)

e(K (0), C1)

The security proof of modified IBE can be derived from
Waters’ IBE [19]. Our scheme is essentially identical to
Waters’ IBE except that we define V to be the set of all i
with id[i] = 0 rather than id[i] = 1 and defines the master
secret key as α directly rather than gα

2 for unifying the keys
in both ABE and IBE.

Theorem 2: The above variant of Waters’ IBE is IND-ID-
CPA secure under decisional BDH assumption.

III. RABE AND ITS SECURITY

In this section, we provide the formal definition and the
security model of our RABE scheme. In the rest of paper, let
T ,M,I be the system life time, the message space, and the
identity space, respectively.

A. Syntax of RABE

Definition 3 (RABE): An attribute-based encryption with
efficient user revocation and ciphertext delegation (or sim-
ply RABE) scheme RABE = (S, SK, KU, DK, E, CU, D, R) is
defined by eight algorithms. Each algorithm is run by one
of four types of parties - KGC, sender, receiver and CSP.
The KGC maintains a revocation list rl and a state st. In
what follows, we call an algorithm stateful if it updates the
revocation list rl or the state st.

S(λ,N ,T , n) is a stateful setup algorithm run by the KGC.
It takes the security parameter λ, the number of users N ,
the bounded system life time T and a value n as the maximum
number of attributes to be used in encryption as input, and
outputs the public parameter pp, the master secret key msk,
the revocation list rl (initially empty) and the state st.

2106 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 8, AUGUST 2018

SK(msk, st, id, A) is a stateful private key generation
algorithm run by the KGC. It takes the master secret key msk,
the state st, an identity id ∈ I and an access structure A as
input, and outputs the secret key skid and an updated state st.

KU(msk, rl, st, t) is a probabilistic key update algorithm
run by the KGC. It takes the master secret key msk, the revo-
cation list rl, the state st and the revocation epoch t ∈ T as
input, and outputs the key update kut .

DK(skid , kut) is a deterministic decryption key generation
algorithm run by the receiver. It takes the secret key skid

and the key update information kut as input, and outputs the
decryption key dkid,t or a special symbol ⊥ indicating that id
was revoked.

E(pp, S, t, m) is a probabilistic encryption algorithm run
by the sender. It takes the public parameter pp, an attribute
set S, an encryption time t ∈ T and a message m ∈ M as
input, and outputs the original ciphertext ct.

CU(pp, ct, t) is a probabilistic ciphertext update algorithm
run by the CSP. It takes the public parameter pp, the ciphertext
ct and the time t ∈ T as input, and outputs an updated
ciphertext ctt or a special symbol ⊥ indicating that ciphertext
ct is invalid.

D(pp, dkid,t , ctt) is a deterministic decryption algorithm
run by the receiver. It takes the public parameter pp,
the decryption key dkid,t and the ciphertext ctt as input, and
outputs the message m ∈M or a special symbol ⊥ indicating
that the ciphertext ctt is invalid.

R(rl, id, t) is a stateful revocation algorithm run by the
KGC. It takes the revocation list rl, an identity to be revoked
id ∈ I and the revocation time t ∈ T as input, and outputs
an updated revocation list rl.

B. Security of RABE

Below we describe the security definition of indistin-
guishability under chosen plaintext attack (IND-RABE-CPA
security) between an adversary and a challenger.

Setup: The challenger runs S(λ,N ,T , n) to setup the
RABE system. Then, it gives the public parameter pp to the
adversary, and keeps the master secret key msk, an initially
empty revocation list rl and a state st .

Phase 1: The adversary is given oracles, including private
key generation oracle OSK(·, ·), key update oracle OKU(·),
revocation oracle OR(·, ·), until it signals the phase is over.
Following is the definition of the above oracles.

The private key generation oracle OSK(·, ·) takes an identity
id and an access structure A as input, and runs private key
generation algorithm SK(msk, st, id, A) to return the private
key skid .

The key update oracle OKU(·) takes the time t as input, and
returns key update kut generated from key update algorithm
KU(msk, rl, st, t).

The revocation oracle OR(·, ·) takes the time t and a revoked
identity id as input, and runs revocation algorithm R(rl, id, t)
to return an updated revocation list rl.

Challenge: The adversary outputs two messages m0 and m1
of the same size, an attribute set S∗ and a time period t∗ ∈ T
satisfying the following constraints:

1) For any private key generation query OSK(id, A) such
that the challenge attribute set S∗ satisfies the access
structure A, namely A(S∗) = 1, the OR(id, t) must be
queried on t ≤ t∗.

2) If a non-revoked user with the identity id whose access
structure A satisfies the challenge attribute set S∗, then
id should not be previously queried to private key
generation oracle.

The challenger randomly picks a bit b ∈ {0, 1}, and forwards
the challenge ciphertext ct∗ to the adversary by running
encryption algorithm E(pp, S∗, t∗, mb).

Phase 2: The adversary continues issuing queries to the
challenger as in Phase 1, and following the restriction defined
in the challenge phase.

Guess: The adversary makes a guess b′ for b, and it wins
the game if b = b′.

Definition 4: An RABE scheme is secure if for any prob-
abilistic polynomial time adversary A, the advantage of this
adversary in the above RABE game defined as

Pr[b = b′] − 1/2

is negligible in the security parameter λ.
In this paper, we will focus on the selective security which

can be defined by letting the adversary commit the challenge
attribute set S∗ at the beginning of the adversarial game. Note
that we do not require the adversary to commit the challenge
time t∗ as we will use the adaptively secure Waters IBE to
handle the time component.

IV. OUR RABE CONSTRUCTIONS

In this section, we present two constructions of RABE
and analyze their security. Our first scheme is RABE with
large attribute universe in the standard model. To improve
efficiency, we also present the second construction utilizing
two cryptographic hash functions modeled as random oracles.

A. Ideas Behind Our Constructions

Our schemes have the master secret key α ∈ Zp and the
message hiding component e(g1, g2)

s , where g1 = gα, g2 is a
random element in G and s is a random value in Zp . The data
user is able to decrypt the ciphertext if he/she has the capability
to retrieve the message hiding component e(g1, g2)

s . Our idea
is to separate this hiding component into two parts: one is
related to the attribute key, and the other one is related to the
time-related key.

To recover the attribute key, let N denote the maximum
number of users in the system. Each data user is assigned to
a leaf of the binary tree BT with � depth. In the private key
generation phase, the KGC assigns each user to an unassigned
leaf node and stores his/her identity in this node. Then,
the KGC generates private keys based on Goyal et al.’s ABE
under the secret key αx , where αx is the secret information
in the node x . Hence, this private key only has partial secret
key information αx that allows the data user to generate the
partial message hiding component e(g, g2)

sαx . Thus, the whole
message hiding component cannot be recovered.

XU et al.: SECURE FINE-GRAINED ACCESS CONTROL AND DATA SHARING FOR DYNAMIC GROUPS IN THE CLOUD 2107

To recover the rest of message hiding component, let T
denote the bounded system life time. This bounded time will
be treated as the identity space in Waters’ IBE. In the key
update phase, the KGC generates the update information based
on Waters’ IBE under the secret key α−αx for the nodes output
by KUNodes, which is the minimum set of nodes needs to
be updated. The non-revoked data users will obtain the key
update information to recover e(g, g2)

s(α−αx).
Due to the property of key homomorphism, a non-revoked

data user recovers the message hiding component by combing
attribute-related and time-related components as follows:

e(g, g2)
sαx · e(g, g2)

s(α−αx) = e(g, g2)
sα = e(g1, g2)

s .

To achieve the ciphertext delegation, we use the algorithm
CTEncode to handle timestamp. It takes the current revoca-
tion epoch t and the bounded system life time T as input,
and outputs a bit string t̃ . For more details please refer to
Section II-F.

B. Our RABE Scheme in the Standard Model

S(λ,N ,T , n) is a probabilistic setup algorithm. It chooses
a bilinear group of order p according to the bilinear group
parameter generator G(λ). Then, it selects a random value
α ∈ Zp , random generators g, g2 ∈ G, and sets g1 = gα.
It picks a binary tree BT with at least N leaves and generates
the relative information about n and T , respectively.
• For each i ∈ [n + 1], it randomly picks ti ∈ Zp and

defines a function T (x) as in Section II-G.
• It chooses U ′ ∈ G and for each j ∈ [log2 T], randomly

picks U j ∈ G.
Finally, it returns the revocation list rl = ∅, the state st = BT,
the public key pp and the master secret key msk:

pp = (p, g, g1, g2, {ti }i∈[n+1], U ′, {U j } j∈[log2 T]), msk = α.

SK(msk, st, id, (M, ρ)) is a probabilistic private key genera-
tion algorithm. The parameter (M, ρ) defines the access policy
for attributes, where M is a matrix of the size d × �. It firstly
chooses an unassigned leaf node θ from the binary tree BT,
and stores id in this node. Then for each node x ∈ Path(θ),
it runs as follows:
• It fetches αx from the node x . If αx has not been defined,

it randomly chooses αx ∈ Zp and stores it in the node x .
• Let �u be a random � dimensional vector over Zp such that
�1 · �u = αx . For each row i in the matrix M , it randomly
chooses ri ∈ Zp and sets the secret key

skid,x = {K (0)
i = gMi ·�u

2 T (i)ri , K (1)
i = gri }i∈[d].

Finally, it returns the secret key skid = {skid,x }x∈Path(θ) and
an updated state st = BT.

KU(msk, rl, st, t) is a probabilistic key update algo-
rithm. It encodes time by running t̃ ← TEncode(t,T).
Let V ∈ [log2 T] be the set of all i for which t̃[i] = 0.
Then, for each node x ∈ KUNodes(BT, rl, t), the key update
is constructed as:
• It fetches αx (αx is always predefined in the private key

generation algorithm).

• It randomly chooses r ∈ Zp , and outputs the key update
information kut,x = (K (0), K (1)) as:

K (0) = gα−αx
2

(
U ′

∏

i∈V
Ui

)r

, K (1) = gr .

Finally, it returns kut = {kut,x}x∈KUNodes(BT,rl,t).
DK(skid , kut) is a deterministic decryption key generation

algorithm. Parse the secret key skid as {skid,x}x∈Path(θ) and
the key update kut as {kut,x}x∈KUNodes(BT,rl,t). Denote I
as Path(θ), and J as KUNodes(BT, rl, t). If I ∩ J = ∅,
it returns ⊥. Otherwise, it outputs the decryption key dkid,t =
{skid,x , kut,x}x∈I∩J.

E(pp, S, t, m)→ ct is a probabilistic encryption algorithm.
It encodes the time t ∈ T to t̃ ← CTEncode(t,T). Then,
it randomly chooses s ∈ Zp and generates the ciphertext ct:

C = me(g1, g2)
s, C1 = gs, {C(0)

i = T (i)s}ρ(i)∈S,

C(1) = U ′s, {C(1)
j = Us

i } j∈V .

It then returns the ciphertext

ct = (S, t, C, C1, {C(0)
i }ρ(i)∈S, C(1), {C(1)

j } j∈V).

CU(pp, ct, t) is a probabilistic ciphertext update algorithm.
Parse the original ciphertext ct as

ct = (S, t ′, C ′, C ′1, {C ′(0)
i }ρ(i)∈S, C ′(1), {C ′(1)

j } j∈V).

If the time t ′ in ciphertext is greater than t , it returns ⊥
indicating the time t is invalid. Otherwise, it encodes t ∈ T to
a bit string t̃ ← TEncode(t,T), randomly chooses s ∈ Zp ,
and re-randomizes the ciphertext ct to ctt as follows.

C = C ′e(g1, g2)
s = me(g1, g2)

s+s ′,

C1 = C ′1gs = gs+s ′, Ci = C ′(0)
i T (i)s = T (i)s+s ′,

Ct = C ′(1)U ′s
∏

j∈V
C ′(1)

j Us
j =

⎛

⎝U ′
∏

j∈V
U j

⎞

⎠
s+s ′

.

It then returns the updated ciphertext ctt :

ctt = (S, t, C, C1, {Ci }ρ(i)∈S, Ct).

D(pp, dkid,t , ctt) is a deterministic decryption algorithm.
Parse the decryption key dkid,t = {skid,x , kut,x}x∈I∩J. The
message m can be covered from ctt as follows:

• Parse skid,x = {K (0)
i , K (1)

i }i∈[d]. Recover the secret
information in the attribute-related component by taking∑

ρ(i)∈S Miwi = �1 and computing A1:

A1 =
∏

ρ(i)∈S

(
e(K (0)

i , C1)

e(K (1)
i , C(0)

i)

)wi

=
∏

ρ(i)∈S

(
e(gMi ·�u

2 , gs)e(T (i)ri , gs)

e(gri , T (i)s)

)wi

=
∏

ρ(i)∈S

e(gMi ·�u
2 , gs)wi

= e(g, g2)
sαx .

2108 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 8, AUGUST 2018

• Parse kut,x = (K (0), K (1)). Recover the secret informa-
tion in the time-related component by computing A2:

A2 = e(K (0), C1)

e(K (1), Ct)

= e(gα−αx
2 , gs)e

((
U ′

∏
i∈V Ui

)r
, gs

)

e
(

gr ,
(

U ′
∏

j∈V U j

)s)

= e(g, g2)
s(α−αx).

• Recover the message blinding component A3:

A3 = A1 A2 = e(g, g2)
sα = e(g1, g2)

s .

Finally, it recovers and returns the message m as:

C/A3 = m · e(g1, g2)
s/e(g1, g2)

s = m.

R(rl, id, t) is a deterministic revocation algorithm. It adds
(id, t) to rl, and returns the updated revocation list rl.

C. Security Analysis of Our RABE in the Standard Model

We prove the security of our scheme in the selective security
model by reducing the security of Goyal et al.’s ABE [2]
and Waters IBE [19] to the security of our proposed scheme.
Since we handle the attributes and access policies by following
Goyal et al.’s ABE scheme, our RABE construction is also
secure against collusions among users.

Theorem 3: Our first RABE scheme is selectively
IND-RABE-CPA secure in the standard model under
the assumption that Goyal et al.’ ABE scheme is selective
IND-ABE-CPA secure and Waters’ IBE scheme is IND-ID-CPA
secure.

Proof: Suppose there exists a probabilistic polynomial
time adversary A that can break our RABE scheme in the
selective security model with a non-negligible advantage ε.
We build an algorithm B that can have a non-negligible
advantage in the ABE security game simulated by CABE or the
IBE security game simulated by CIBE. Before describing B,
we define two types of the adversary.
• A is a non-revoked user who cannot query the private key

of the challenge attribute set S∗ but is allowed to gain the
key update information in t∗. In this case, B can break
the game of CABE.

• A is a revoked user who can query the private key of the
challenge attribute set S∗ and the key update information
in t∗ but all users with A(S∗) = 1 must be revoked
before or at the challenge time t∗. In this case, B can
break the game of CIBE.

The reduction works differently for each type of adversary. B
proceeds as follows:

Init: B runs A. A chooses the challenge attribute set S∗ and
sends S∗ to B.

Setup: B picks a leaf node θ∗ and randomly chooses a bit
rev ∈ {0, 1}.

If rev = 0, B assumes A is a non-revoked user and chooses
CABE to break. B sends S∗ to CABE. CABE returns the message
(p, g, g1, g2, {ti }i∈[n+1]). B then randomly chooses ru′ ∈ Zp

and computes U ′ = gru′ . For all i ∈ [log2 T], B randomly
picks rui ∈ Zp and sets Ui = grui .

If rev = 1, B assumes A is a revoked user and
chooses CIBE to break. B receives the public informa-
tion (p, g, g1, g2, U ′, {U j } j∈[log2 T]) from CIBE, and chooses
two random n degree polynomials f (x) and u(x), where
u(x) = −xn for ρ(x) ∈ S∗ and u(x) �= −xn otherwise. Then
B sets ti = gu(i)

2 g f (i) for all i ∈ [n + 1], which implicitly
defines T (i) = g f (i) for ρ(x) ∈ S∗ and T (i) = gin+u(i)

2 g f (i)

otherwise.
B sends the public parameter pp to A:

pp = (p, g, g1, g2, {ti }t∈[n+1], U ′, {U j } j∈[log2 T]).

B sets rl = ∅ and st = BT, where BT is a binary tree with
at least N leaves.

Phase 1: A adaptively queries the following oracles.
OSK(id, A): A makes the private key generation query with

the identity id and an access structure A, where A is (M, ρ)
and M is a matrix with the size of d×�. B answers the query
(id, A) as follows:

Case 1: If rev = 0 and A(S∗) = 1, it aborts since A is a
non-revoked user and the private key for A(S∗) = 1 cannot
be queried.

Case 2: If rev = 0 and A(S∗) = 0, B sends the
access structure A to CABE. B then receives {(K (0)

i , K (1)
i)}i∈[d]

as the secret key for the access structure A. According
to [2, Proposition 1], we have

Mi �u = �v + α − �v
h
· �w = αμ1 + μ2,

where the coefficients μ1 = Mi �w ·h−1 and μ2 = Mi (h�v−�v �w)
are computable.

To simulate the private key for id , B picks an unassigned
leaf node θ from BT and stores id in node θ . For all nodes
x ∈ Path(θ), it fetches αx . If αx has not been defined,
it then randomly chooses αx ∈ Zp and stores αx in node x .
To generate the private key hiding the secret key α − αx ,
we have

Mi �u = �v + α − αx − �v
h

· �w = αμ1 + μ2 + μ3,

where μ3 = −Mi �wαx is computable. B randomly chooses
ri ∈ Zp and generates the secret key skid,x as

skid,x = {(K (0)
i gμ3

2 T (i)ri , K (1)
i gri)}i∈[d].

B returns the secret key skid = {skid,x}x∈Path(θ)

Case 3: rev = 1 and A(S∗) = 0. To generate the private
key hiding the secret α, B randomly chooses r ′x ∈ Zp and sets

{K (0)
i , K (1)

i }i∈[d] as

K (0)
i = g

−μ1· f (i)
in+u(i)

1 gμ2
2 T (i)r ′x , K (1)

i = gr ′x g
−μ1

in+u(i)
1 ,

where {K (0)
i , K (1)

i }i∈[d] is legitimate key since i n + u(i) �= 0
since A(S∗) = 0 and we have

Mi �u = b�v + ab − b�v
h

· �w = abμ1 + bμ2 = b(aμ1 + μ2).

Thus, for each row i in M , the valid secret key has to contain
the component

gb(aμ1+μ2) = gaμ1+μ2
2 .

XU et al.: SECURE FINE-GRAINED ACCESS CONTROL AND DATA SHARING FOR DYNAMIC GROUPS IN THE CLOUD 2109

If we set rx = r ′x − aμ1
in+u(i) , then

K (0)
i = g

−μ1· f (i)
in+u(i)

1 gμ2
2 T (i)r ′x

= g
−μ1· f (i)
in+u(i)

1 gμ2
2 (gin+u(i)

2 g f (i))r ′x

= gμ2
2 g

−aμ1· f (i)
in+u(i) (gin+u(i)

2 g f (i))r ′x

= gaμ1
2 gμ2

2 (g−aμ1
2 g

−aμ1· f (i)
in+u(i))(gin+u(i)

2 g f (i))r ′x

= gaμ1
2 gμ2

2 (gin+u(i)
2 g f (i))

−aμ1
in+u(i) (gin+u(i)

2 g f (i))r ′x

= gaμ1
2 gμ2

2 (gin+u(i)
2 g f (i))

r ′x− aμ1
in+u(i)

= gaμ1+μ2
2 T (x)

r ′x− aμ1
in+u(i)

= gaμ1+μ2
2 T (x)rx

and,

K (1)
i = gr ′x g

−μ1
in+u(i)
1 = gr ′x− aμ1

in+u(i) = grx

Therefore, B can construct the private key for the access
structure A.
B picks an unassigned leaf node θ from BT, stores id in this

node θ and simulates private keys for all nodes x ∈ Path(θ).
It firstly fetches αx . If αx has not been defined, it then
randomly chooses αx ∈ Zp and stores αx in the node x .

Case 3.1: x ∈ (Path(θ) \ Path(θ∗)). Parse μ3 = −Mi �wαx .
We have

Mi �u = b�v + ab − αx − b�v
h

· �w
= abμ1 + bμ2 + mu3

= b(aμ1 + μ2)+ μ3.

B chooses ri ∈ Zp and generates skid,x as follows:

skid,x = {(K (0)
i gμ3 T (i)ri , K (1)

i gri)}i∈[d].
Case 3.2: x ∈ (Path(θ) ∩ Path(θ∗)). Taking �1 · �u = αx . For

each row i in the matrix M , it randomly chooses ri ∈ Zp and
computes secret key skid,x as:

skid,x = {(gMi ·�u
2 T (i)ri , gri)}i∈[d].

B returns skid = {skid,x}x∈Path(θ) to A.
Case 4: rev = 1 and A(S∗) = 1. B assigns the node θ∗

to id∗. For all nodes x ∈ Path(θ∗), it fetches αx and if αx

has not been defined, it then randomly chooses αx ∈ Z
∗
p

and stores αx in the node x . For each row i in matrix M ,
it randomly chooses ri ∈ Zp and computes secret key skid,x =
{(gMi ·�u

2 T (i)ri , gri)}i∈[d] by taking �1 · �u = αx .
B returns skid = {skid,x}x∈Path(θ∗) to A.
OKU(t): A makes the key update query with the time t .
Case 1: rev = 0. For each x ∈ KUNodes(BT, rl, t),

it fetches αx . It then picks a random value r ∈ Zp and
computes the key update information kut,x as:

K ut,x =
(

gαx
2

(
U ′

∏

i∈V
Ui

)r

, gr

)
.

B returns kut = {kut,x}x∈KUNodes(BT,rl,t) to A.

Case 2: rev = 1 and A(S∗) = 0. For each x ∈
KUNodes(BT, rl, t), it fetches αx . Then,

Case 2.1: x ∈ (Path(θ) \ Path(θ∗)). B picks a random
value r ∈ Zp and generates kut,x as

kut,x =
(

gαx
2

(
U ′

∏

i∈V
Ui

)r

, gr

)
.

Case 2.2: x ∈ (Path(θ) ∩ Path(θ∗)). B forwards the
message t to CIBE, and CIBE returns (K (0), K (1)). B picks a
random value r ∈ Zp and generates kut,x as

kut,x =
(

K (0)g−αx
2

(
U ′

∏

i∈V
Ui

)r

, K (1)gr

)
.

Case 3: rev = 1 and A(S∗) = 1. For each x ∈
KUNodes(BT, rl, t), it fetches αx . Then, B forwards the
message t to CIBE, and CIBE returns (K (0), K (1)). B picks a
random value r ∈ Zp and generates kut,x as

kut,x =
(

K (0)g−αx
2

(
U ′

∏

i∈V
Ui

)r

, K (1)gr

)
.

OR(id, t): A makes the revocation query with the identity
id and the time t . It sets the revocation list rl ← rl ∪ (id, t).

Challenge: A will submit two messages (m0, m1) and the
challenge time t∗ to B.

Case 1: rev = 0. B forwards m0 and m1 to CABE and
CABE returns message (C, C1, {Ci }i∈S). B then generates the
missing component for the ciphertext as

Ct = C
ru′
1

∏

i∈V
C

rui
1 =

(
U ′

∏

i∈V
U

)r

.

B returns the ciphertext (C, C1, {Ci }i∈S∗, Ct) to A.
Case 2: rev = 1 and for all t ≤ t∗, it has (id, t) �∈ rl such

that the access structure of id is A(S∗) = 1, then it aborts
since all users with A(S∗) = 1 must be revoked before or at
the time t∗ when rev = 1.

Case 3: If rev = 1 and for all t ≤ t∗, it has (id, t) ∈ rl
such that the access structure of id is A(S∗) = 1, then B
forwards (m0, m1) and t∗ to CIBE. CIBE returns the message
(C, C1, Ct).

Recall that T (i) = gin+u(i)
2 g f (i) = g f (i) for all ρ(i) ∈ S∗.

For each ρ(i) ∈ S∗, B computes the missing component for
the ciphertext as

Ci = C f (i)
1 =

(
g f (i)

)r = T (i)r .

B returns the ciphertext (C, C1, {Ci }ρ(i)∈S∗, Ct) to A.
Phase 2: Same as Phase 1.
Guess: A submits a bit b′ to B, then B forwards b′ to CABE

if rev = 0 and CIBE if rev = 1.
If rev = 0, B simulates the update key by embedding

the key αx . CABE generates the secret key for the attribute
set hiding the key α. B then transfers this secret key to
α − αx . Thus, A extracts the information e(g, g)α−αx in the
attribute-related component and e(g, g)αx in the time-related
component. This follows our proposal scheme. Additionally,
the challenge ciphertext comes from the CABE and B simulates

2110 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 8, AUGUST 2018

the missing time-related component to construct the challenge
ciphertext of our proposed scheme. Finally, B returns a bit b′
to CABE. CABE then use b′ to break decisional BDH problem.

If rev = 1, B simulates differently depending the nodes in
the tree BT since B will answer the key update oracle OKU (·)
when A queries the challenge time t∗. If the node is irrelevant
to the challenge attribute S∗, B simulates α − αx in attribute-
related component and α in time-related component. If the
node relates to the challenge attribute S∗, B simulates αx in
attribute-related component. CIBE returns the key α in time-
related component and B transfers it to α − αx .

Moreover, the challenge ciphertext comes from CIBE and B
simulates the missing attribute-related component to construct
the challenge ciphertext of our proposed scheme. Finally, B
returns a bit b′ to CIBE. CIBE then utilizes b′ to break decisional
BDH problem.

There are two aborts during our simulation since B needs
to guess A is either a non-revoked user or a revoked user.
It aborts when B guessing incorrectly. Thus, the advantage of
A breaks either Goyal et al.’s ABE [2] or Waters’ IBE [19]
is ε/2. �

D. Our RABE Scheme in the Random Oracle

Motived by Pirretti et al. [13] who proposed an efficient
ABE scheme in the random oracle model, we also present
our second RABE scheme in the random oracle by utilizing
two cryptographic hash functions. More precisely, we replace
the function T (x) in the attribute-related component and
the public parameters (U ′, {Ui }i∈[log2 T]) in the time-related
component by two hash functions H1 : {0, 1}∗ → G and
H2 : {0, 1}∗ → G, respectively.

In the attribute-related component, the function T (x) =
gxn

2
∏n+1

i=1 t
�i,N (x)
i is to generate the message to form the

attribute hiding component. In our construction II, the function
T (x) is replaced by the hash function H1 as T (x) = H1(x).

In the time-related component, the public parameters
(U ′, {Ui }i∈[log2 T]) have the logarithmic size in the length
of the bounded system life time in our construction I.
In our construction II, key generation center just publishes
a hash function H2(x) to generate all public parameters for
the time-related component by defining U ′ = H2(0) and
Ui = H2(1||0i) for i ∈ [log2 T], where 0i denotes a string
of i zeros.

Comparing to the our first construction in section IV-B,
it significantly reduces the number of elements in the public
parameter from logarithmic to constant and also improves
computational efficiency.

E. Security Analysis of Our RABE in the Random
Oracle Model

In this section, we show that our second RABE construction
is also seletively IND-RABE-CPA secure. Due to the similarity
between the first construction and the second one, we can
prove the security of the latter by following the security proof
of the first construction. We omit the detailed description of
the simulator and give the sketch of the simulations of the
random oracles H1(x) and H2(x).

Fig. 3. On-demand Movie Streaming System.

For the private key generation oracle OSK, the adversary
A sends the message (id, A) to the simulator B. B keeps a
hash list L = {(ρ(i), ri , r ′i)}. Parse A = (M, ρ). For each row
i in the matrix M: ρ(i) has been queried, B returns gri

2 gr ′i .
Otherwise, if ρ(i) ∈ S∗, B sets ri = 0 and randomly chooses
r ′i ∈ Zp; if ρ(i) �∈ S∗, B randomly picks ri , r ′i ∈ Zp . Then,
B returns gri

2 gr ′i .
For the key update oracle OKU, B randomly chooses ri ∈ Zp

for i from 0 to log2 T and stores them at the beginning
of the game. For any queried message t , B encodes it to
t̃ ← TEncode(t,T) and defines a set V for all i of t̃[i] = 0.
B returns gr0

∏
i∈V gri .

V. APPLICATIONS OF OUR RABE SCHEME

Our proposed RABE scheme with ciphertext delegation can
enable secure and fine-grained access control in many cloud-
based on-demand service applications. The high efficiency of
our scheme significantly reduces the workload of the service
provider in handling user revocation that occurs frequently
in many large-scale applications. In this section, we use the
on-demand movie streaming system (depicted in Fig. 3) as
an example to demonstrate the usage of our RABE scheme in
such applications. Protecting encrypted media (e.g., Videos) in
the cloud has been studied in the literature. In [20], a multi-
message attribute-based encryption was proposed to enable
access control over encrypted media based on the consumers’
attributes. In [21], a secure deduplication framework for han-
dling encrypted media in the cloud was introduced to eliminate
extra storage and bandwidth cost. In this work, we focus
on enabling efficient user revocation for attribute-based cloud
media systems.

A cloud-based on-demand movie streaming system consists
of the four parties: movie copyright owners (MCOs) such
as DreamWorks, a movie streaming service (MSS) such as
Amazon Video, a cloud storage provider and the customers.
The MSS acts as the KGC and manages (i.e., issues or revokes)
the credentials of the customers, while the MCOs act
as the data owners and encrypt movies based on their
attributes (e.g., movie type, classification, language, duration,
region, etc.) and store the encrypted movies on the cloud
storage. The customers can subscribe to the KGC by provid-
ing some personal information (e.g., age, gender, language,
country/region, etc.) and the service period (e.g., free trial
for 1 day or a contract for 1 week/month/year). The KGC

XU et al.: SECURE FINE-GRAINED ACCESS CONTROL AND DATA SHARING FOR DYNAMIC GROUPS IN THE CLOUD 2111

Fig. 4. The Data Owner and the CSP Protocol.

then generates an access policy and key based on the user
information and manages user revocation based on the service
period requested by each user.

In our system, we assume the MSS (i.e., KGC) is fully
trusted and the cloud storage provider is honest-but-curious
(i.e., semi-trusted). That is, we assume the cloud storage
provider will generate and send the correct ciphertext corre-
sponding to a time epoch. The customers are untrusted.

Below we describe the protocols implementing our RABE
scheme in a cloud-based on-demand movie streaming
(or similar) system.

A. Description of the System

The system consists of 3 protocols, namely data uploading,
user registration/revocation and data accessing.

Protocol 1: Once a data owner (i.e., MCO) and the service
provider (i.e., KGC) have reached an agreement, the data
owner will upload the data into the cloud storage. The data
uploading protocol consists of two phases, mutual authentica-
tion phase (MP-Phase) and data uploading phase (DU-Phase)
as shown in Fig. 4.

The MA-Phase can be implemented via a standard TLS
handshake initiated by the data owner. It is worth noting that
in order to protect the copyright, we should ensure that the data
is originated from the legitimate data owner and is uploaded
to the correct cloud server. Therefore, mutual authentication
is required between the two parties.

In the DU-Phase, the data owner encrypts a movie m using
our RABE scheme ct ← RABE.E(pp, S, t, m) based on the
movie attributes S, such as movie type, classification, region,
etc., and the current time t and uploads the ciphertext ct
to the cloud storage via the established TLS channel. The
cloud storage then signs the received ciphertext and returns
the receipt σ to the data owner as a proof that the movie has
been uploaded.

Protocol 2. The user registration and revocation (Fig. 5) are
performed between the KGC (i.e., MSS) and the data users
(i.e., customers). Note that the KGC represents both credential
issuer and credential revoker in this application.

The Key Issuing (KI) procedure is performed when a
user subscribes to the service. The user first establishes a
secure channel with the KGC via TLS and performs regis-
tration by providing a unique identifier id , his/her personal
information and the service period. The KGC then gener-
ates an access policy A based on the information provided
by the data user and produces the corresponding secret

Fig. 5. The Data User and the KGC Protocol.

Fig. 6. The Data User and the CSP Protocol.

key skid ← RABE.SK(msk, st, id, A) that will be sent to the
user via the established TLS channel.

The Key Update (KU) procedure is performed at the begin-
ning of a time epoch t . The KGC updates the revocation list by
checking the service period of each user and then publishes the
update key kut ← RABE.KU(msk, rl, st, t) to all the users.
A non-revoked data user id obtains the updated decryption
key dkid,t in revocation epoch t as dkid,t ← DK(skid , kut).

Protocol 3. The data accessing (i.e., movie watching) pro-
tocol is performed between a data user and the cloud storage
as shown in Fig. 6. The protocol starts when the data user
sends a data access request to the cloud storage. The cloud
storage generates and sends ctt ← RABE.CU(pp, ct, t) to
the data user based on the original ciphertext ct uploaded by
the MCO and the current time t . The data user decrypts ctt
as m ← RABE.D(pp, dkid,t , ctt).

Remark: In the above protocol, we considered our proposed
RABE scheme as a building block. Nevertheless, an issue
will arise when the RABE scheme is implemented as a
hybrid encryption scheme. That is, we use ABE to encrypt
a symmetric-key K , and then encrypt the real data by a
symmetric-key encryption scheme (e.g., AES) with K . Under
the hybrid encryption setting, if a decryptor has previously
decrypted and saved the symmetric-key K , then the decryptor
can still use K to access the data even when the ABE cipher-
text containing K is updated. We should note that this issue
also exists in other approaches (e.g., proxy re-encryption) that
allow update of a ciphertext without changing the underlying
message. On the other hand, if we purely use ABE to encrypt
the real data, then the issue of reusing a symmetric-key won’t
occur. However, the cost for encrypting and decrypting a
large document will significantly increase and updating all the
ciphertexts corresponding to the document will also incur a
large computation overhead to the CSP under this approach,
which may affect the quality of service (e.g., a document
is inaccessible during update). Finding an efficient and scal-
able solution to address this issue is an interesting yet very
challenging research problem and we leave it as our future
work.

2112 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 8, AUGUST 2018

TABLE I

SPACE & COMPUTATIONAL COMPLEXITY OF RABE WITH CIPHERTEXT DELEGATION

Fig. 7. Experimental results. (a) Size of the public parameter. (b) Size of the update key. (c) Size of the ciphertext. (d) Time of the key update. (e) Time of
the encryption.

VI. EXPERIMENTAL RESULTS

In this section, we provide experimental results comparing
the RABE scheme in [8] and our newly proposed RABE
schemes under different settings. We have implemented the
above schemes in C with the PBC library (pbc-0.5.14). In par-
ticularly, we have used a Type A elliptic curve y2 = x3 + x ,
and the symmetric pairing setting. Additionally, we used
the parameters given by “a.param” in PBC library, which
produces an elliptic curve bilinear group with 160-bit group
order, 512-bit base field and embedded degree 2. Hence,
in our scheme, p is a 160-bit prime number, and elements
in G and GT have 512 bits and 1024 bits, respectively.

In comparing the three RABE schemes, we set the maxi-
mum number of attributes in encryption to 30 and the bounded
system life time from 210 to 250. In each experiment, we set
the number of users N to be 230, and randomly pick a
value R < N as the number of revoked users. The software
implementation was performed on a desktop running 64-bit
Ubuntu 16.04 with 3.40GHz Intel(R) Core(TM) i5-3570 CPU
and 8 GB memory. The asymptotic space and computation
complexity is given in table I. The experimental results are pre-
sented in Fig. 7a–7e. Since the RABE scheme in [8] is based
on the composite order groups, we implemented a modified
version of the scheme based on Goyal et al.’s ABE [2] under
prime order groups. To obtain accurate experimental results,

for each bounded system life time T , we tested each case for
100 times and calculated the average value.

From Fig. 7 we can see that the experimental results
are consistent with what we expected from the asymptotic
complexities in Table I. Therefore, our constructions have
better performance than the state-of-the-art RABE scheme.

VII. CONCLUSION

Revocable attribute-based encryption (RABE) supporting
ciphertext delegation is a useful primitive for enabling secure
data sharing via a third-party storage service provider such as
cloud storage. In this paper, we revisited the state-of-the-art
RABE scheme supporting ciphertext delegation and proposed
a new construction paradigm that gives more efficient schemes
compared with the previous solution. We provided formal
security proofs for our proposed schemes and performed
experiments to demonstrate that our new schemes are indeed
more efficient than the previous solution. We also presented
a fine-grained access control and data sharing system for
on-demand services based on the proposed RABE scheme.

ACKNOWLEDGMENT

The authors would like to thank Dr. Stefan Katzenbeisser
and the anonymous reviewers for their insightful comments on
this paper.

XU et al.: SECURE FINE-GRAINED ACCESS CONTROL AND DATA SHARING FOR DYNAMIC GROUPS IN THE CLOUD 2113

REFERENCES

[1] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Proc.
Annu. Int. Conf. Theory Appl. Cryptogr. Techn., 2005, pp. 457–473.

[2] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proc. ACM
Conf. Comput. Commun. Secur., 2006, pp. 89–98.

[3] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed storage,”
in Proc. NDSS Symp., 2005, pp. 1–15.

[4] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in Proc.
INFOCOM, Mar. 2010, pp. 1–9.

[5] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing with
attribute revocation,” in Proc. 5th ACM Symp. Inf., Comput. Commun.
Secur., 2010, pp. 261–270.

[6] K. Yang, X. Jia, and K. Ren, “Attribute-based fine-grained access control
with efficient revocation in cloud storage systems,” in Proc. 8th ACM
Symp. Inf., Comput. Commun. Secur., 2013, pp. 523–528.

[7] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure
sharing of personal health records in cloud computing using attribute-
based encryption,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 1,
pp. 131–143, Jan. 2013.

[8] A. Sahai, H. Seyalioglu, and B. Waters, “Dynamic credentials and
ciphertext delegation for attribute-based encryption,” in Proc. Adv.
Cryptol. (CRYPTO), 2012, pp. 199–217.

[9] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters,
“Fully secure functional encryption: Attribute-based encryption and
(hierarchical) inner product encryption,” in Proc. Adv. Cryptol.
(EUROCRYPT), 2010, pp. 62–91.

[10] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Proc. IEEE Secur. Privacy, May 2007,
pp. 321–334.

[11] N. Attrapadung, J. Herranz, F. Laguillaumie, B. Libert, E. de Panafieu,
and C. Ràfols, “Attribute-based encryption schemes with constant-size
ciphertexts,” Theor. Comput. Sci., vol. 422, pp. 15–38, Mar. 2012.

[12] B. Waters, “Dual system encryption: Realizing fully secure ibe and hibe
under simple assumptions,” in Proc. Adv. Cryptol. (CRYPTO), 2009,
pp. 619–636.

[13] M. Pirretti, P. Traynor, P. D. McDaniel, and B. Waters, “Secure attribute-
based systems,” in Proc. 13th ACM Conf. Comput. Commun. Secur.,
2006, pp. 99–112.

[14] D. Boneh and M. K. Franklin, “Identity-based encryption from the Weil
pairing,” in Proc. Annu. Int. Cryptol. Conf., 2001, pp. 213–229.

[15] A. Boldyreva, V. Goyal, and V. Kumar, “Identity-based encryption with
efficient revocation,” in Proc. 15th ACM Conf. Comput. Commun. Secur.,
2008, pp. 417–426.

[16] N. Attrapadung and H. Imai, “Attribute-based encryption supporting
direct/indirect revocation modes,” in Proc. IMA Int. Conf. Cryptogr.
Coding, 2009, pp. 278–300.

[17] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,” in Proc. Int. Workshop Public
Key Cryptogr., 2011, pp. 53–70.

[18] D. Naor, M. Naor, and J. Lotspiech, “Revocation and tracing schemes for
stateless receivers,” in Proc. Annu. Int. Cryptol. Conf., 2001, pp. 41–62.

[19] B. Waters, “Efficient identity-based encryption without random oracles,”
in Proc. Adv. Cryptol. (EUROCRYPT), 2005, pp. 114–127.

[20] Y. Wu, Z. Wei, and R. H. Deng, “Attribute-based access to scalable
media in cloud-assisted content sharing networks,” IEEE Trans. Multi-
media, vol. 15, no. 4, pp. 778–788, Jun. 2013.

[21] Y. Zheng, X. Yuan, X. Wang, J. Jiang, C. Wang, and X. Gui, “Toward
encrypted cloud media center with secure deduplication,” IEEE Trans.
Multimedia, vol. 19, no. 2, pp. 251–265, Feb. 2017.

Shengmin Xu received the bachelor’s and Honor’s
degrees from the School of Computing and Infor-
mation Technology, University of Wollongong,
Australia, in 2013 and 2014, respectively, where
he is currently pursuing the Ph.D. degree, under
the supervision of Dr. G. Yang and Prof. Y. Mu.
His research interests include cryptography and
information security.

Guomin Yang (SM’17) received the Ph.D. degree
in computer science from the City University of
Hong Kong in 2009. He was a Research Scientist
with the Temasek Laboratories, National University
of Singapore, from 2009 to 2012. He is currently a
Senior Lecturer with the School of Computing and
Information Technology, University of Wollongong,
Australia. His research mainly focuses on applied
cryptography and network security. He received the
Australian Research Council Discovery Early Career
Researcher Award in 2015.

Yi Mu (SM’03) received the Ph.D. degree from
the Australian National University in 1994. He cur-
rently is a Professor with the School of Com-
puting and Information Technology, University of
Wollongong, Australia. His current research interests
include information security and cryptography. He is
the Editor-in-Chief of the International Journal of
Applied Cryptography and serves as associate editor
for many other international journals.

Robert H. Deng (F’16) is currently the AXA
Chair Professor of Cybersecurity and the Director
of the Secure Mobile Centre, School of Information
Systems, Singapore Management University (SMU).
His research interests are in the areas of data
security and privacy, cloud security, and Inter-
net of Things security. He received the Out-
standing University Researcher Award from the
National University of Singapore, the Lee Kuan Yew
Fellowship for Research Excellence from SMU, and
the Asia-Pacific Information Security Leadership

Achievements Community Service Star from the International Information
Systems Security Certification Consortium. His professional contributions
include an extensive list of positions in several industry and public services
advisory boards, editorial boards, and conference committees. These include
the Editorial Boards of IEEE Security & Privacy Magazine, the IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, the IEEE
TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, the Journal
of Computer Science and Technology, and the Steering Committee Chair of
the ACM Asia Conference on Computer and Communications Security.

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	2-2018

	Secure fine-grained access control and data sharing for dynamic groups in the cloud
	Shengmin XU
	Guomin YANG
	Yi MU
	Robert H. DENG
	Citation

	tmp.1527476787.pdf.cdVz6

